Science.gov

Sample records for porphyromonas gingivalis haemoglobin

  1. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview

    PubMed Central

    Mysak, Jaroslav; Podzimek, Stepan; Sommerova, Pavla; Lyuya-Mi, Yelena; Bartova, Jirina; Janatova, Tatjana; Prochazkova, Jarmila; Duskova, Jana

    2014-01-01

    Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis and is a member of more than 500 bacterial species that live in the oral cavity. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions: this is attributed to its arsenal of specialized virulence factors. The purpose of this review is to provide an overview of one of the main periodontal pathogens—Porphyromonas gingivalis. This bacterium, along with Treponema denticola and Tannerella forsythia, constitute the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. This review outlines Porphyromonas gingivalis structure, its metabolism, its ability to colonize the epithelial cells, and its influence upon the host immunity. PMID:24741603

  2. Gingipain aminopeptidase activities in Porphyromonas gingivalis.

    PubMed

    Veillard, Florian; Potempa, Barbara; Poreba, Marcin; Drag, Marcin; Potempa, Jan

    2012-12-01

    Bestatin, a specific inhibitor of metalloaminopeptidases,inhibits the growth of Porphyromonas gingivalis. To identify its target enzyme, a library of fluorescent substrates was used but no metalloaminopeptidase activity was found. The aminopeptidase activity of P. gingivalis was bestatin-insensitive and directed exclusively toward N-terminal arginine and lysine substrates. Class-specific inhibitors and gingipain-null mutants showed that gingipains were the only enzymes responsible for this activity.The kinetic constants obtained for Rgps were comparable to those of human aminopeptidases but Kgp aminopeptidase activity was weaker. This finding reveals a new role for gingipains as aminopeptidases in the degradation of proteins and peptides in P. gingivalis.

  3. Functional Advantages of Porphyromonas gingivalis Vesicles

    PubMed Central

    Ho, Meng-Hsuan; Chen, Chin-Ho; Goodwin, J. Shawn; Wang, Bing-Yan; Xie, Hua

    2015-01-01

    Porphyromonas gingivalis is a keystone pathogen of periodontitis. Outer membrane vesicles (OMVs) have been considered as both offense and defense components of this bacterium. Previous studies indicated that like their originating cells, P. gingivalis vesicles, are able to invade oral epithelial cells and gingival fibroblasts, in order to promote aggregation of some specific oral bacteria and to induce host immune responses. In the present study, we investigated the invasive efficiency of P. gingivalis OMVs and compared results with that of the originating cells. Results revealed that 70–90% of human primary oral epithelial cells, gingival fibroblasts, and human umbilical vein endothelial cells carried vesicles from P. gingivalis 33277 after being exposed to the vesicles for 1 h, while 20–50% of the host cells had internalized P. gingivalis cells. We also detected vesicle-associated DNA and RNA and a vesicle-mediated horizontal gene transfer in P. gingivalis strains, which represents a novel mechanism for gene transfer between P. gingivalis strains. Moreover, purified vesicles of P. gingivalis appear to have a negative impact on biofilm formation and the maintenance of Streptococcus gordonii. Our results suggest that vesicles are likely the best offence weapon of P. gingivalis for bacterial survival in the oral cavity and for induction of periodontitis. PMID:25897780

  4. New approaches to combat Porphyromonas gingivalis biofilms

    PubMed Central

    Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    ABSTRACT In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections. PMID:28473880

  5. A combination of both arginine- and lysine-specific gingipain activity of Porphyromonas gingivalis is necessary for the generation of the micro-oxo bishaem-containing pigment from haemoglobin.

    PubMed Central

    Smalley, John W; Thomas, Michael F; Birss, Andrew J; Withnall, Robert; Silver, Jack

    2004-01-01

    The black pigment of Porphyromonas gingivalis is composed of the mu-oxo bishaem complex of Fe(III) protoporphyrin IX (mu-oxo oligomer, dimeric haem), namely [Fe(III)PPIX]2O. P. gingivalis W50 and Rgp (Arg-gingipain)- and Kgp (Lys-gingipain)-deficient mutants K1A, D7, E8 and W501 [Aduse-Opoku, Davies, Gallagher, Hashim, Evans, Rangarajan, Slaney and Curtis (2000) Microbiology 146, 1933-1940] were grown on horse blood/agar for 14 days and examined for the production of mu-oxo bishaem. Mu-oxo Bishaem was detected by UV-visible, Mössbauer and Raman spectroscopies in wild-type W50 and in the black-pigmented RgpA- and RgpB-deficient mutants (W501 and D7 respectively), whereas no haem species were detected in the straw-coloured colonies of Kgp-deficient strain K1A. The dark brown pigment of the double RgpA/RgpB knockout mutant (E8) was not composed of mu-oxo bishaem, but of a high-spin monomeric Fe(III) protoporphyrin IX species (possibly a haem-albumin complex). In vitro incubation of oxyhaemoglobin with cells of the W50 strain and the RgpA- and RgpB-deficient mutants (W501 and D7) resulted in the formation of mu-oxo bishaem via methaemoglobin as an intermediate. Although the Kgp-deficient strain K1A converted oxyhaemoglobin into methaemoglobin, this was not further degraded into mu-oxo bishaem. The double RgpA/RgpB knockout was also not capable of producing mu-oxo bishaem from oxyhaemoglobin, but instead generated a haemoglobin haemichrome. Inhibition of Arg-X protease activity of W50, W501, D7 and K1A with leupeptin, under conditions where Lys-X protease activity was unaffected, prevented the production of mu-oxo bishaem from oxyhaemoglobin, but resulted in the formation of a haemoglobin haemichrome. These results show that one or both of RgpA and RgpB gingipains, in addition to the lysine-specific gingipain, is necessary for the production of mu-oxo bishaem from haemoglobin by whole cells of P. gingivalis. PMID:14741050

  6. Quantitative proteomics of intracellular Porphyromonas gingivalis

    PubMed Central

    Xia, Qiangwei; Wang, Tiansong; Taub, Fred; Park, Yoonsuk; Capestany, Cindy A.; Lamont, Richard J.; Hackett, Murray

    2009-01-01

    Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18 hours within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were over-expressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be under-expressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction. PMID:17979175

  7. Iron and heme utilization in Porphyromonas gingivalis.

    PubMed

    Olczak, Teresa; Simpson, Waltena; Liu, Xinyan; Genco, Caroline Attardo

    2005-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.

  8. Novel fimbrilin PGN_1808 in Porphyromonas gingivalis.

    PubMed

    Nagano, Keiji; Hasegawa, Yoshiaki; Yoshida, Yasuo; Yoshimura, Fuminobu

    2017-01-01

    Porphyromonas gingivalis, a periodontopathic gram-negative anaerobic bacterium, generally expresses two types of fimbriae, FimA and Mfa1. However, a novel potential fimbrilin, PGN_1808, in P. gingivalis strain ATCC 33277 was recently identified by an in silico structural homology search. In this study, we experimentally examined whether the protein formed a fimbrial structure. Anion-exchange chromatography showed that the elution peak of the protein was not identical to those of the major fimbrilins of FimA and Mfa1, indicating that PGN_1808 is not a component of these fimbriae. Electrophoretic analyses showed that PGN_1808 formed a polymer, although it was detergent and heat labile compared to FimA and Mfa1. Transmission electron microscopy showed filamentous structures (2‒3 nm × 200‒400 nm) on the cell surfaces of a PGN_1808-overexpressing P. gingivalis mutant (deficient in both FimA and Mfa1 fimbriae) and in the PGN_1808 fraction. PGN_1808 was detected in 81 of 84 wild-type strains of P. gingivalis by western blotting, suggesting that the protein is generally present in P. gingivalis.

  9. Novel fimbrilin PGN_1808 in Porphyromonas gingivalis

    PubMed Central

    Hasegawa, Yoshiaki; Yoshida, Yasuo; Yoshimura, Fuminobu

    2017-01-01

    Porphyromonas gingivalis, a periodontopathic gram-negative anaerobic bacterium, generally expresses two types of fimbriae, FimA and Mfa1. However, a novel potential fimbrilin, PGN_1808, in P. gingivalis strain ATCC 33277 was recently identified by an in silico structural homology search. In this study, we experimentally examined whether the protein formed a fimbrial structure. Anion-exchange chromatography showed that the elution peak of the protein was not identical to those of the major fimbrilins of FimA and Mfa1, indicating that PGN_1808 is not a component of these fimbriae. Electrophoretic analyses showed that PGN_1808 formed a polymer, although it was detergent and heat labile compared to FimA and Mfa1. Transmission electron microscopy showed filamentous structures (2‒3 nm × 200‒400 nm) on the cell surfaces of a PGN_1808-overexpressing P. gingivalis mutant (deficient in both FimA and Mfa1 fimbriae) and in the PGN_1808 fraction. PGN_1808 was detected in 81 of 84 wild-type strains of P. gingivalis by western blotting, suggesting that the protein is generally present in P. gingivalis. PMID:28296909

  10. Porphyromonas gingivalis biofilms persist after chlorhexidine treatment.

    PubMed

    Yamaguchi, Mikiyo; Noiri, Yuichiro; Kuboniwa, Masae; Yamamoto, Reiko; Asahi, Yoko; Maezono, Hazuki; Hayashi, Mikako; Ebisu, Shigeyuki

    2013-06-01

    Chlorhexidine (CHX) gluconate effectively reduces the viability of biofilm-forming bacteria, such as Porphyromonas gingivalis. However, it is impossible to completely remove biofilms. The goal of the present study was to assess the potential pathogenicity of residual P. gingivalis biofilms in vitro after treatment with CHX gluconate. Scanning and transmission electron microscopy and confocal laser imaging revealed that treatment with CHX gluconate disrupted individual biofilm-forming P. gingivalis cells but did not destroy the biofilms. The volumes of the protein and carbohydrate constituents in the residual biofilms were not significantly different from those of the controls. The physical resistance of the residual biofilms to ultrasonication was significantly higher than that of controls. The volume of P. gingivalis adherent to the residual biofilms was higher than that to saliva-coated wells. These findings suggest that although CHX gluconate caused disruption of biofilm-forming cells, the constituents derived from disrupted cells were maintained in the biofilms, which sustained their external structures. Moreover, the residual biofilms could serve as a scaffold for the formation of new biofilms.

  11. Effect of lanthanides on Porphyromonas gingivalis proteases.

    PubMed

    Sunkara, Sasi K; Ciancio, Sebastian G; Sojar, Hakimuddin T

    2010-01-01

    Host and bacterial proteases play a vital role in periodontitis. Inhibitors of these proteases are necessary for control of this disease. The purpose of this study was to evaluate the effect of lanthanides on proteins from Porphyromonas gingivalis, a major pathogen in periodontitis. Benzoyl-L-Arg-p-nitroanilide (BAPNA); H-Gly-Pro-pNA x HCl and gelatin were used to evaluate the activity of P. gingivalis proteins in the presence of lanthanides. Proteins extracted from cell surfaces and culture media of P. gingivalis were assessed for activity in the presence of different lanthanides by BAPNA assay. Only gadolinium chloride was used for H-Gly-Pro-pNA x HCl assay and gelatin-zymography. Concentration-dependent reduction of absorbance was observed in the presence of lanthanides with BAPNA and a similar observation was made with gadolinium chloride using H-Gly-Pro-pNa. Collagenolytic activity in cell surface extracts and culture media-precipitated proteins was absent in the presence of gadolinium chloride. These results suggest that the lanthanide gadolinium can be a potential inhibitor of P. gingivalis proteases.

  12. Antibacterial action of polyphosphate on Porphyromonas gingivalis.

    PubMed

    Moon, Ji-Hoi; Park, Jae-Hong; Lee, Jin-Yong

    2011-02-01

    Polyphosphate [poly(P)] has antibacterial activity against various Gram-positive bacteria. In contrast, Gram-negative bacteria are generally resistant to poly(P). Here, we describe the antibacterial characterization of poly(P) against a Gram-negative periodontopathogen, Porphyromonas gingivalis. The MICs of pyrophosphate (Na(4)P(2)O(7)) and all poly(P) (Na(n + 2)P(n)O(3n + 1); n = 3 to 75) tested for the bacterium by the agar dilution method were 0.24% and 0.06%, respectively. Orthophosphate (Na(2)HPO(4)) failed to inhibit bacterial growth. Poly-P75 was chosen for further study. In liquid medium, 0.03% poly-P75 was bactericidal against P. gingivalis irrespective of the growth phase and inoculum size, ranging from 10(5) to 10(9) cells/ml. UV-visible spectra of the pigments from P. gingivalis grown on blood agar with or without poly-P75 showed that poly-P75 reduced the formation of μ-oxo bisheme by the bacterium. Poly-P75 increased hemin accumulation on the P. gingivalis surface and decreased energy-driven uptake of hemin by the bacterium. The expression of the genes encoding hemagglutinins, gingipains, hemin uptake loci, chromosome replication, and energy production was downregulated, while that of the genes related to iron storage and oxidative stress was upregulated by poly-P75. The transmission electron microscope showed morphologically atypical cells with electron-dense granules and condensed nucleoid in the cytoplasm. Collectively, poly(P) is bactericidal against P. gingivalis, in which hemin/heme utilization is disturbed and oxidative stress is increased by poly(P).

  13. Pyocycanin, a Contributory Factor in Haem Acquisition and Virulence Enhancement of Porphyromonas gingivalis in the Lung

    PubMed Central

    Benedyk, Malgorzata; Byrne, Dominic P.; Glowczyk, Izabela; Potempa, Jan; Olczak, Mariusz; Olczak, Teresa; Smalley, John W.

    2015-01-01

    Several recent studies show that the lungs infected with Pseudomonas aeruginosa are often co-colonised by oral bacteria including black-pigmenting anaerobic (BPA) Porphyromonas species. The BPAs have an absolute haem requirement and their presence in the infected lung indicates that sufficient haem, a virulence up-regulator in BPAs, must be present to support growth. Haemoglobin from micro-bleeds occurring during infection is the most likely source of haem in the lung. Porphyromonas gingivalis displays a novel haem acquisition paradigm whereby haemoglobin must be firstly oxidised to methaemoglobin, facilitating haem release, either by gingipain proteolysis or capture via the haem-binding haemophore HmuY. P. aeruginosa produces the blue phenazine redox compound, pyocyanin. Since phenazines can oxidise haemoglobin, it follows that pyocyanin may also facilitate haem acquisition by promoting methaemoglobin production. Here we show that pyocyanin at concentrations found in the CF lung during P. aeruginosa infections rapidly oxidises oxyhaemoglobin in a dose-dependent manner. We demonstrate that methaemoglobin formed by pyocyanin is also susceptible to proteolysis by P. gingivalis Kgp gingipain and neutrophil elastase, thus releasing haem. Importantly, co-incubation of oxyhaemoglobin with pyocyanin facilitates haem pickup from the resulting methemoglobin by the P. gingivalis HmuY haemophore. Mice intra-tracheally challenged with viable P. gingivalis cells plus pyocyanin displayed increased mortality compared to those administered P. gingivalis alone. Pyocyanin significantly elevated both methaemoglobin and total haem levels in homogenates of mouse lungs and increased the level of arginine-specific gingipain activity from mice inoculated with viable P. gingivalis cells plus pyocyanin compared with mice inoculated with P. gingivalis only. These findings indicate that pyocyanin, by promoting haem availability through methaemoglobin formation and stimulating of gingipain

  14. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment.

    PubMed

    Cugini, Carla; Stephens, Danielle N; Nguyen, Daniel; Kantarci, Alpdogan; Davey, Mary E

    2013-02-01

    The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.

  15. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    PubMed Central

    Olsen, Ingar; Progulske-Fox, Ann

    2015-01-01

    Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells. PMID:26329158

  16. Porphyromonas gingivalis causing brain abscess in patient with recurrent periodontitis.

    PubMed

    Rae Yoo, Jeong; Taek Heo, Sang; Kim, Miyeon; Lee, Chang Sub; Kim, Young Ree

    2016-06-01

    We report an extremely rare case of Porphyromonas gingivalis causing brain abscess in a patient with recurrent periodontitis. The patient presented with right-sided homonymous hemianopsia and right hemiparesis. Emergent surgical drainage was performed and antibiotics were administered. P. gingivalis was identified from the anaerobic culture of the abscess. The clinical course of the patient improved with full recovery of the neurologic deficit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Porphyromonas gingivalis genes isolated by screening for epithelial cell attachment.

    PubMed Central

    Duncan, M J; Emory, S A; Almira, E C

    1996-01-01

    Porphyromonas gingivalis is associated with chronic and severe periodontitis in adults. P. gingivalis and the other periodontal pathogens colonize and interact with gingival epithelial cells, but the genes and molecular mechanisms involved are unknown. To dissect the first steps in these interactions, a P. gingivalis expression library was screened for clones which bound human oral epithelial cells. Insert DNA from the recombinant clones did not contain homology to the P. gingivalis fimA gene, encoding fimbrillin, the subunit protein of fimbriae, but showed various degrees of homology to certain cysteine protease-hemagglutinin genes. The DNA sequence of one insert revealed three putative open reading frames which appeared to be in an operon. The relationship between P. gingivalis attachment to epithelial cells and the activities identified by the screen is discussed. PMID:8751909

  18. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    PubMed Central

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  19. Porphyromonas gingivalis Fim-A genotype distribution among Colombians

    PubMed Central

    Jaramillo, Adriana; Parra, Beatriz; Botero, Javier Enrique; Contreras, Adolfo

    2015-01-01

    Introduction: Porphyromonas gingivalis is associated with periodontitis and exhibit a wide array of virulence factors, including fimbriae which is encoded by the FimA gene representing six known genotypes. Objetive: To identify FimA genotypes of P. gingivalis in subjects from Cali-Colombia, including the co-infection with Aggregatibacter actinomycetemcomitans, Treponema denticola, and Tannerella forsythia. Methods: Subgingival samples were collected from 151 people exhibiting diverse periodontal condition. The occurrence of P. gingivalis, FimA genotypes and other bacteria was determined by PCR. Results: P. gingivalis was positive in 85 patients. Genotype FimA II was more prevalent without reach significant differences among study groups (54.3%), FimA IV was also prevalent in gingivitis (13.0%). A high correlation (p= 0.000) was found among P. gingivalis, T. denticola, and T. forsythia co-infection. The FimA II genotype correlated with concomitant detection of T. denticola and T. forsythia. Conclusions: Porphyromonas gingivalis was high even in the healthy group at the study population. A trend toward a greater frequency of FimA II genotype in patients with moderate and severe periodontitis was determined. The FimA II genotype was also associated with increased pocket depth, greater loss of attachment level, and patients co-infected with T. denticola and T. forsythia. PMID:26600627

  20. Evidence for the absence of hyaluronidase activity in Porphyromonas gingivalis.

    PubMed Central

    Grenier, D; Michaud, J

    1993-01-01

    The aim of the present study was to evaluate the ability of Porphyromonas gingivalis to degrade hyaluronic acid. No hyaluronidase activity was detected using a turbidimetric method, whereas a standard plate assay showed a positive reaction for P. gingivalis. We postulated that the high proteolytic activity of P. gingivalis may account for this observation. A modified plate assay was designed to avoid false-positive reactions caused by proteolytic bacteria. The new assay, based on the formation of a water-insoluble salt between hyaluronic acid and the polyanion cetylpyridinium chloride, indicated that P. gingivalis does not have hyaluronidase activity. By this modified plate method, it was found that among 24 different oral bacterial species tested, Propionibacterium acnes and Prevotella oris were the only species that possess hyaluronidase activity. Images PMID:8394379

  1. Porphyromonas gingivalis in periodontal pockets and heart valves

    PubMed Central

    Radwan-Oczko, Małgorzata; Jaworski, Aleksander; Duś, Irena; Plonek, Tomasz; Szulc, Malgorzata; Kustrzycki, Wojciech

    2014-01-01

    Background There is evidence that advanced infectious chronic periodontal inflammatory disease may have an impact on general health including cardiovascular diseases. The aim of this clinical study was to evaluate the ability of Porphyromonas gingivalis to colonize heart valves and, subsequently, to assess whether there is an association between the presence of the DNA of Porphyromonas gingivalis in periodontal pockets and in degenerated heart valves. Materials and Methods Thirty patients were enrolled in the study and 31 valve specimens harvested during cardiac surgery operations were examined. All patients underwent a periodontal examination. To evaluate the periodontal status of the patients the following clinical parameters were recorded: the pocket depth, bleeding on probing (BOP) and aproximal plaque index (API). The presence of P. gingivalis in heart valve specimens and samples from periodontal pockets was analyzed using a single–step PCR method. Results P. gingivalis DNA was detected in periodontal pockets of 15 patients (50%). However, the DNA of this periopathogen was found neither in the aortic nor in the mitral valve specimens. Conclusions This study suggests that P. gingivalis may not have an influence on the development of the degeneration of aortic and mitral valves. PMID:24705065

  2. FOXO responses to Porphyromonas gingivalis in epithelial cells

    PubMed Central

    Wang, Qian; Sztukowska, Maryta; Ojo, Akintunde; Scott, David A.; Wang, Huizhi; Lamont, Richard J.

    2015-01-01

    Summary Porphyromonas gingivalis is a prominent periodontal, and emerging systemic, pathogen that redirects host cell signalling pathways and modulates innate immune responses. In this study, we show that P. gingivalis infection induces the dephosphorylation and activation of forkhead box-O (FOXO)1, 3 and 4 in gingival epithelial cells. In addition, immunofluorescence showed that FOXO1 accumulated in the nucleus of P. gingivalis-infected cells. Quantitative reverse transcription PCR demonstrated that transcription of genes involved in protection against oxidative stress (Cat, Sod2, Prdx3), inflammatory responses (IL1β) and anti-apoptosis (Bcl-6) was induced by P. gingivalis, while small-interfering RNA (siRNA)-mediated knockdown of FOXO1 suppressed the transcriptional activation of these genes. P. gingivalis-induced secretion of interleukin (IL)-1β and inhibition of apoptosis were also impeded by FOXO1 knockdown. Neutralization of reactive oxygen species (ROS) by N-acetyl-l-cysteine blocked the activation of FOXO1 by P. gingivalis and concomitantly suppressed the activation of oxidative stress responses, anti-apoptosis programmes and IL-β production. Inhibition of c-Jun-N-terminal kinase (JNK) either pharmacologically or by siRNA, reduced FOXO1 activation and downstream FOXO1-dependent gene regulation in response to P. gingivalis. The results indicate that P. gingivalis-induced ROS activate FOXO transcription factors through JNK signalling, and that FOXO1 controls oxidative stress responses, inflammatory cytokine production and cell survival. These data position FOXO as an important signalling node in the epithelial cell–P. gingivalis interaction, with particular relevance to cell fate and dysbiotic host responses. PMID:25958948

  3. Porphyromonas gingivalis Lipids Inhibit Osteoblastic Differentiation and Function▿

    PubMed Central

    Wang, Yu-Hsiung; Jiang, Jin; Zhu, Qiang; AlAnezi, Amer Z.; Clark, Robert B.; Jiang, Xi; Rowe, David W.; Nichols, Frank C.

    2010-01-01

    Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites. PMID:20584977

  4. Tobacco-induced alterations to Porphyromonas gingivalis-host interactions

    PubMed Central

    Bagaitkar, Juhi; Williams, Lisa R.; Renaud, Diane E.; Bemakanakere, Manjunatha R.; Scott, David A.; Demuth, Donald R.

    2009-01-01

    SUMMARY Smokers are more susceptible than non-smokers to persistent infection by Porphyromonas gingivalis, a causative agent of periodontitis. Patients who smoke exhibit increased susceptibility to periodontitis and are more likely to display severe disease and be refractory to treatment. Paradoxically, smokers demonstrate reduced clinical inflammation. We show that P. gingivalis cells exposed to cigarette smoke extract (CSE) induce a lower pro-inflammatory response (TNF-α, IL-6, IL12 p40) from monocytes and PBMCs than do unexposed bacteria. This effect is reversed when CSE-exposed bacteria are subcultured in fresh medium without CSE. Using microarrays representative of the P. gingivalis genome, CSE-exposure resulted in differential regulation of 6.8% of P. gingivalis genes, including detoxification and oxidative stress-related genes; DNA repair genes; and multiple genes related to P. gingivalis virulence, including genes in the major fimbrial and capsular operons. Exposure to CSE also altered the expression of outer membrane proteins, most notably by inducing the virulence factors RagA and RagB, and a putative lipoprotein co-transcribed with the minor fimbrial antigen. Therefore, CSE represents an environmental stress to which P. gingivalis adapts by altering gene expression and outer membrane proteins. These changes may explain, in part, the altered virulence and host-pathogen interactions that have been documented in vivo in smokers with periodontal disease. PMID:19175666

  5. Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses

    PubMed Central

    Mitchell, Helen L.; Pyke, James S.; Meuric, Vincent; Slakeski, Nada; Cleal, Steven M.; Chambers, Jenny L.; McConville, Malcolm J.; Reynolds, Eric C.

    2014-01-01

    Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6∶1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono-culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up-regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P. gingivalis was stimulated by T. denticola conditioned medium and glycine supplementation of T. denticola medium increased final cell density 1.7-fold. Collectively these data show P. gingivalis and T. denticola respond metabolically to the presence of each other with T. denticola displaying responses that help explain enhanced virulence of co-infections. PMID:24603978

  6. Prevalence of Porphyromonas gingivalis four rag locus genotypes in patients of orthodontic gingivitis and periodontitis.

    PubMed

    Liu, Yi; Zhang, Yujie; Wang, Lili; Guo, Yang; Xiao, Shuiqing

    2013-01-01

    Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis and rag locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between Porphyromona.gingivalis/rag locus and clinical indices were analyzed. The prevalence of Porphyromonas gingivalis and rag locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (p<0.01). An obviously positive correlation was observed between the prevalence of Porphyromonas gingivalis/rag locus and gingival index. rag-3 and rag-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. Porphyromonas.gingivalis carrying rag-1 has the strong virulence and could be associated with severe periodontitis.

  7. Prevalence of Porphyromonas gingivalis Four rag Locus Genotypes in Patients of Orthodontic Gingivitis and Periodontitis

    PubMed Central

    Liu, Yi; Zhang, Yujie; Wang, Lili; Guo, Yang; Xiao, Shuiqing

    2013-01-01

    Porphyromonas gingivalis is considered as a major etiological agent in periodontal diseases and implied to result in gingival inflammation under orthodontic appliance. rag locus is a pathogenicity island found in Porphyromonas gingivalis. Four rag locus variants are different in pathogenicity of Porphyromonas gingivalis. Moreover, there are different racial and geographic differences in distribution of rag locus genotypes. In this study, we assessed the prevalence of Porphyromonas gingivalis and rag locus genotypes in 102 gingival crevicular fluid samples from 57 cases of gingivitis patients with orthodontic appliances, 25 cases of periodontitis patients and 20 cases of periodontally healthy people through a 16S rRNA-based PCR and a multiplex PCR. The correlations between Porphyromona.gingivalis/rag locus and clinical indices were analyzed. The prevalence of Porphyromonas gingivalis and rag locus genes in periodontitis group was the highest among three groups and higher in orthodontic gingivitis than healthy people (p<0.01). An obviously positive correlation was observed between the prevalence of Porphyromonas gingivalis/rag locus and gingival index. rag-3 and rag-4 were the predominant genotypes in the patients of orthodontic gingivitis and mild-to-moderate periodontitis in Shandong. Porphyromonas.gingivalis carrying rag-1 has the strong virulence and could be associated with severe periodontitis. PMID:23593379

  8. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles

    PubMed Central

    Meka, Archana; Bakthavatchalu, Vasudevan; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Verma, Raj K.; Wallet, Shannon M.; Bhattacharyya, Indraneel; Boyce, Brendan F.; Handfield, Martin; Lamont, Richard J.; Baker, Henry V.; Ebersole, Jeffrey L.; Lakshmyya, Kesavalu N.

    2010-01-01

    Introduction Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. The objectives of this investigation were to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. Methods P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip® arrays to provide a molecular profile of the events that occur following infection of these tissues. Results After P. gingivalis infection, 5517 and 1900 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P ≤ 0.05) and up-regulated. Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B cell receptor signaling, TGF-β cytokine family receptor signaling, and MHC class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T cell stimulation, and down regulation of antiviral and T cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. Conclusion This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes that differed between inflamed soft tissues and calvarial bone. PMID:20331794

  9. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles.

    PubMed

    Meka, A; Bakthavatchalu, V; Sathishkumar, S; Lopez, M C; Verma, R K; Wallet, S M; Bhattacharyya, I; Boyce, B F; Handfield, M; Lamont, R J; Baker, H V; Ebersole, J L; Kesavalu, L

    2010-02-01

    Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. This investigation aimed to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and was analysed for transcript profiles using Murine GeneChip((R)) arrays to provide a molecular profile of the events that occur following infection of these tissues. After P. gingivalis infection, 6452 and 2341 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B-cell receptor signaling, transforming growth factor-beta cytokine family receptor signaling, and major histocompatibility complex class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T-cell stimulation, and downregulation of antiviral and T-cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes, the profiles of which differed between inflamed soft tissues and calvarial bone.

  10. Intra- and inter-individual comparison of Porphyromonas gingivalis genotypes.

    PubMed

    Saarela, M; Stucki, A M; von Troil-Lindén, B; Alaluusua, S; Jousimies-Somer, H; Asikainen, S

    1993-03-01

    Genetic analysis of 31 clinical strains of Porphyromonas gingivalis isolated from nine subjects, 2-6 strains per subject, was performed by Southern hybridization. Chromosomal DNA was extracted by the method of Moncla et al. [1] and digested to completion with restriction endonucleases PstI, ClaI and BglI. The DNA fragments were separated electrophoretically on agarose gels, transferred to nylon membranes and hybridized to the non-radioactively labelled plasmid pKK 3535 which contains the rmB ribosomal RNA operon of the Escherichia coli chromosome. Of the three enzymes, BglI was the most suitable for the genetic analysis of P. gingivalis. With this enzyme, the intra-individual strains were shown to be identical in eight of the nine subjects, whereas inter-individual strains were different.

  11. Reducing the bioactivity of Tannerella forsythia lipopolysaccharide by Porphyromonas gingivalis.

    PubMed

    Kim, Young-Jae; Lee, Sung-Hoon

    2014-08-01

    Tannerella forsythia is considered a pathogen of periodontitis and forms a biofilm with multi-species bacteria in oral cavity. Lipopolysaccharide is a powerful immunostimulator and induces inflammation and shock. The purpose of this study was to investigate the characteristics of T. forsythia LPS in its co-cultivation with Fusobacterium nucleatum or Porphyromonas gingivalis. T. forsythia was co-cultured in the presence and absence of F. nucleatum and P. gingivalis and then T. forsythia LPS was extracted. The extracts were analyzed by SDS-PAGE and NF-κB reporter CHO cell lines. THP-1 cells were treated with the LPS and evaluated induction of cytokine expression by real-time RT-PCR and ELISA. For analysis of the bioactivity of T. forsythia LPS, the binding assay on LPS-binding protein (LBP) and CD14 was processed. The extracts did not contaminate other molecules except LPS and showed TLR4 agonists. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower level of induction of TNF-α, IL-1β, and IL-6 expression than single- or co-cultured T. forsythia LPS with F. nucleatum in the conditions of human serum. However, the three T. forsythia LPS did not show difference of cytokine induction in the serum free conditions. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower affinity to LBP and CD14 as binding site of O-antigen and attached at a lower level to THP-1 cells compared to single- or co-cultured T. forsythia LPS with F. nucleatum. The virulence of T. forsythia LPS was decreased by co-culturing with P. gingivalis and their affinity to LBP and CD14 was reduced, which may due to modification of O-antigen chain by P. gingivalis.

  12. Breaking bad: Manipulation of the host response by Porphyromonas gingivalis

    PubMed Central

    Hajishengallis, George; Lamont, Richard J.

    2014-01-01

    Recent metagenomic and mechanistic studies are consistent with a new model of periodontal pathogenesis. This model proposes that periodontal disease is initiated by a synergistic and dysbiotic microbial community rather than by a select few bacteria traditionally known as “periopathogens”. Low abundance bacteria with community-wide effects that are critical for the development of dysbiosis are now known as keystone pathogens, the best-documented example of which is Porphyromonas gingivalis. Here we review established mechanisms by which P. gingivalis interferes with host immunity and enables the emergence of dysbiotic communities. We integrate the role of P. gingivalis with that of other bacteria acting upstream and downstream in pathogenesis. Accessory pathogens act upstream to facilitate P. gingivalis colonization and coordinate metabolic activities, whereas commensals-turned-pathobionts act downstream and contribute to destructive inflammation. The recent concepts of keystone pathogens, along with polymicrobial synergy and dysbiosis (PSD), have profound implications for the development of therapeutic options for periodontal disease. PMID:24338806

  13. Protective immunization against experimental Bacteroides (Porphyromonas) gingivalis infection.

    PubMed Central

    Chen, P B; Davern, L B; Schifferle, R; Zambon, J J

    1990-01-01

    The effects of immunization in modulating the pathogenesis of Bacteroides (Porphyromonas) gingivalis infection in a murine model system were examined. BALB/c mice were immunized by intraperitoneal injection with B. gingivalis ATCC 53977 (one injection per week for 3 weeks), or with a lithium diiodosalicylate (LIS) extract (one injection per week for 3 weeks), or with lipopolysaccharide (LPS; one intravenous or intraperitoneal injection) from this same strain. Two weeks after the final immunization, the mice were challenged by subcutaneous injection of B. gingivalis ATCC 53977. Mice immunized with bacteria had no secondary lesions and no septicemia, whereas mice immunized with LIS extract had few secondary lesions and no septicemia. Mice immunized with LPS and nonimmunized mice demonstrated secondary abdominal lesions and septicemia after challenge. Bacterial cells and LIS extract, but not LPS, induced serum antibody and antigen reactive lymphocytes, as measured by enzyme-linked immunosorbent assay, immunoblot, Western immunoblot transfer, and in vitro lymphoproliferative responses. The present study suggests that immunization with a LIS extract or whole cells may induce a protective response against experimental B. gingivalis infection. Images PMID:2401568

  14. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles.

    PubMed

    Gui, M J; Dashper, S G; Slakeski, N; Chen, Y-Y; Reynolds, E C

    2016-10-01

    Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Genetic analysis of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in coronary plaque.

    PubMed

    Mahendra, Jaideep; Mahendra, Little; Felix, John; Romanos, Georgios E

    2014-08-01

    The objective of the present study was to detect the presence of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in the coronary plaque of patients with coronary artery disease. The study population consisted of 51 patients with chronic periodontitis undergoing coronary artery bypass grafting. DNA was extracted from subgingival and coronary atherosclerotic plaque samples. Polymerase chain reaction was used to amplify the part of 16S rRNA gene to detect the presence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis (fimA), Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis, Porphyromonas gingivalis (fimA), and Treponema denticola were detected in 0%, 31.4%, 45.1%, 39.2%, and 51% of the atherosclerotic plaque samples, respectively. In both subgingival and coronary atherosclerotic plaque samples, Tannerella forsythia was detected in 19.6%, Porphyromonas gingivalis in 39.2%, Porphyromonas gingivalis (fimA) in 33.3%, and Treponema denticola in 35.3% of the samples. The study confirmed the detection of red complex bacteria in coronary plaque samples. However Aggregatibacter actinomycetemcomitans could not be detected in these samples. © 2013 Wiley Publishing Asia Pty Ltd.

  16. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines

    PubMed Central

    Kim, Ji-Hye; Lee, Dong Eun; Kang, Si-Mook; Lee, So Yun; Choi, Lin; Sun, Ji Su; Kim, Seul Ki; Park, Wonse; Kim, Baek Il; Yoo, Yun-Jung; Chang, Inik; Shin, Dong Min

    2016-01-01

    Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET) is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs). ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  17. Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis.

    PubMed

    Pezzotti, Giuseppe; Bock, Ryan M; McEntire, Bryan J; Jones, Erin; Boffelli, Marco; Zhu, Wenliang; Baggio, Greta; Boschetto, Francesco; Puppulin, Leonardo; Adachi, Tetsuya; Yamamoto, Toshiro; Kanamura, Narisato; Marunaka, Yoshinori; Bal, B Sonny

    2016-03-29

    Organisms of Gram-negative phylum bacteroidetes, Porphyromonas gingivalis, underwent lysis on polished surfaces of silicon nitride (Si3N4) bioceramics. The antibacterial activity of Si3N4 was mainly the result of chemically driven principles. The lytic activity, although not osmotic in nature, was related to the peculiar pH-dependent surface chemistry of Si3N4. A buffering effect via the formation of ammonium ions (NH4(+)) (and their modifications) was experimentally observed by pH microscopy. Lysis was confirmed by conventional fluorescence spectroscopy, and the bacteria's metabolism was traced with the aid of in situ Raman microprobe spectroscopy. This latter technique revealed the formation of peroxynitrite within the bacterium itself. Degradation of the bacteria's nucleic acid, drastic reduction in phenilalanine, and reduction of lipid concentration were observed due to short-term exposure (6 days) to Si3N4. Altering the surface chemistry of Si3N4 by either chemical etching or thermal oxidation influenced peroxynitrite formation and affected bacteria metabolism in different ways. Exploiting the peculiar surface chemistry of Si3N4 bioceramics could be helpful in counteracting Porphyromonas gingivalis in an alkaline pH environment.

  18. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in young Chinese adults.

    PubMed

    Mombelli, A; Gmür, R; Frey, J; Meyer, J; Zee, K Y; Tam, J O; Lo, E C; Di Rienzo, J; Lang, N P; Corbet, E F

    1998-08-01

    The aim of this study was to determine the presence or absence of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in young Chinese adults and to examine the A. actinomycetemcomitans isolates from positive subjects with regard to the serotype distribution, presence of the leukotoxin gene lktA and the promoter for the leukotoxin operon as well as the incidence of phage Aa phi 23. Sixty subjects, working in a knitting factory in the Province of Guangzhou, People's Republic of China, were investigated. Subgingival microbial samples were taken from both upper first molars. They were cultured both anaerobically and in 5% CO2. P. gingivalis was found in 33 subjects. On average, it constituted 7% of the total anaerobic cultivable counts. A. actinomycetemcomitans was detected in 37 subjects of which seven yielded counts > 10(5). Twenty-one subjects were positive for both organisms. A. actinomycetemcomitans serotype a was found in 9 subjects, serotype c was found in 23 and serotype e in 5. A. actinomycetemcomitans serotypes b and d were not detected in any subjects. Presence of the leukotoxin gene lktA was demonstrated for all A. actinomycetemcomitans isolates; however, none of the A. actinomycetemcomitans strains from the present study had a deletion in the promoter region of the leukotoxin operon. The results of this investigation show a high frequency of the putative periodontal pathogens P. gingivalis and A. actinomycetemcomitans and corroborate the concept that there is variation in virulence and pathogenic potential among isolates from different subjects.

  19. Carbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target.

    PubMed

    Supuran, Claudiu T; Capasso, Clemente

    2017-07-15

    Periodontitis originates from a microbial synergy causing the development of a mouth microbial imbalance (dysbiosis), consisting of a microbial community composed of anaerobic bacteria. Most studies concerning the treatment of periodontitis have primarily take into account the Gram-negative bacterium Porphyromonas gingivalis, because it is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. Here, we focus our attention on the study of the carbonic anhydrases (CAs, EC 4.2.1.1) encoded in the genome of this pathogen as a possible drug target. Carbonic anhydrases are a superfamily of metalloenzymes, which catalyze the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Bacterial CAs have attracted significant attention for affecting the survival, invasion, and pathogenicity of many microorganisms. The P. gingivalis genome encodes for two CAs belonging to β-CA (PgiCAβ) and γ-CA (PgiCAγ) families. These two enzymes were cloned, heterologously expressed in Escherichia coli, and purified to homogeneity. Moreover, they were subject to extensive inhibition studies using the classical CA inhibitors (sulfonamides and anions) with the aim of identifying selective inhibitors of PgiCAβ and PgiCAγ to be used as pharmacological tools for P. gingivalis eradication.

  20. Lipopolysaccharide biosynthesis-related genes are required for colony pigmentation of Porphyromonas gingivalis.

    PubMed

    Sato, Keiko; Kido, Nobuo; Murakami, Yukitaka; Hoover, Charles I; Nakayama, Koji; Yoshimura, Fuminobu

    2009-04-01

    The periodontopathic bacterium Porphyromonas gingivalis forms pigmented colonies when incubated on blood agar plates as a result of accumulation of mu-oxo haem dimer on the cell surface. Gingipain-adhesin complexes are responsible for production of mu-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from P. gingivalis by Tn4351 transposon mutagenesis [Hoover & Yoshimura (1994), FEMS Microbiol Lett 124, 43-48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn4351 DNA in a gene homologous to the ugdA gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the rfa gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn4351 DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant (rfa) were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the rfa deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type P. gingivalis. A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type P. gingivalis in a dose-dependent manner. These results suggest that the rfa gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain-adhesin complexes.

  1. HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis.

    PubMed

    Smalley, John W; Byrne, Dominic P; Birss, Andrew J; Wojtowicz, Halina; Sroka, Aneta; Potempa, Jan; Olczak, Teresa

    2011-02-17

    Haem (iron protoporphyrin IX) is both an essential growth factor and virulence regulator for the periodontal pathogen Porphyromonas gingivalis, which acquires it mainly from haemoglobin via the sequential actions of the R- and K-specific gingipain proteases. The haem-binding lipoprotein haemophore HmuY and its cognate receptor HmuR of P. gingivalis, are responsible for capture and internalisation of haem. This study examined the role of the HmuY in acquisition of haem from haemoglobin and the cooperation between HmuY and gingipain proteases in this process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to wrest haem from immobilised methaemoglobin and deoxyhaemoglobin. Haem extraction from oxyhaemoglobin was facilitated after oxidation to methaemoglobin by pre-treatment with the P. gingivalis R-gingipain A (HRgpA). HmuY was also capable of scavenging haem from oxyhaemoglobin pre-treated with the K-gingipain (Kgp). This is the first demonstration of a haemophore working in conjunction with proteases to acquire haem from haemoglobin. In addition, HmuY was able to extract haem from methaemalbumin, and could bind haem, either free in solution or from methaemoglobin, even in the presence of serum albumin.

  2. Isolation and characterization of a minor fimbria from Porphyromonas gingivalis.

    PubMed Central

    Hamada, N; Sojar, H T; Cho, M I; Genco, R J

    1996-01-01

    We have discovered two distinctly different fimbriae expressed by the same Porphyromonas gingivalis strain. The construction of a fimA mutant of P. gingivalis ATCC 33277 has previously been reported by N. Hamada et al. (Infect. Immun. 62:1696-1704, 1994). Expression of fimbriae on the surface of the fimA mutant and the wild-type strain, ATCC 33277, were investigated by electron microscopy. The wild-type strain produced long fimbrial structures extending from the cell surface, whereas those structures were not observed on the fimA mutant. However, short fimbrial structures were seen on the surface of the fimA mutant. The short fimbrial protein was purified from the fimA mutant by selective protein precipitation and chromatography on DEAE Sepharose CL-6B. We have found that the second fimbrial structure of P. gingivalis ATCC 33277 is distinct from the 41-kDa (43-kDa) major fimbrial protein (FimA). We provisionally call this protein minor fimbriae. The molecular mass of the minor fimbriae is 67 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions after boiling at 100 degrees C. The component shows a ladder-like pattern at 80 degrees C under nonreducing conditions, suggesting a tendency to aggregate or polymerize. In immunoblotting analysis, anti-minor fimbria serum reacted with both the 100 degrees C- and the 80 degrees C-treated minor fimbriae. The anti-minor fimbria serum also reacts with the same-molecular-size fimbrial preparation from the wild-type strain. Immunogold electron microscopy showed that the anti-minor fimbria serum bound to the minor fimbria on the cell surface of the wild-type strain. This is the first report on the identification of the minor fimbria produced by P. gingivalis. These results suggest that the minor fimbriae appearing on the fimA mutant strain are produced together with numerous long major fimbriae on the wild-type strain. Moreover, the minor fimbriae are different in size and

  3. Antimicrobial Susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens spp. Isolated in Spain

    PubMed Central

    Andrés, María T.; Chung, Whasun O.; Roberts, Marilyn C.; Fierro, José F.

    1998-01-01

    The susceptibilities of 143 Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens isolates to 18 antimicrobial agents were tested. All P. gingivalis isolates were susceptible. In contrast, some Prevotella spp. (17%) were resistant to β-lactams, erythromycin, clindamycin, or tetracycline and carried resistance genes, ermF or tetQ, or β-lactamases. PMID:9797247

  4. Porphyromonas gingivalis-Host Interactions: Open War or Intelligent Guerilla Tactics?

    PubMed Central

    Hajishengallis, George

    2009-01-01

    This review summarizes and discusses virulence mechanisms whereby Porphyromonas gingivalis can persist in the oral cavity. It is proposed that that the virulence of P. gingivalis is dependent, at least in part, upon its ability to establish a complex host-pathogen molecular crosstalk which subverts innate immunity. The sophisticated stealth and sabotage tactics used by P. gingivalis may additionally benefit co-habiting organisms occupying the same niche PMID:19348960

  5. Dipeptide utilization by the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum.

    PubMed

    Takahashi, Nobuhiro; Sato, T

    2002-02-01

    Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum, which can frequently be isolated from periodontal pockets, preferentially utilize proteins and peptides as growth substrates. In this study, we determined the size of peptide that is preferentially utilized as a source of energy and material for cell growth by P. gingivalis, P. intermedia, P. nigrescens and F. nucleatum using various sizes of poly amino acids consisting of two to approximately 100 molecules of aspartate or glutamate. Resting cells of P. gingivalis, P. intermedia and P. nigrescens utilized aspartylaspartate, while cells of P. gingivalis and F. nucleatum utilized glutamylglutamate. The addition of aspartylaspartate to the culture medium increased the growth of P. gingivalis, P. intermedia and P. nigrescens, while the addition of glutamylglutamate promoted the growth of P. gingivalis and F. nucleatum. These results clearly indicate that dipeptides such as aspartylaspartate and glutamylglutamate can be utilized as growth substrates for P. gingivalis, P. intermedia, P. nigrescens and F. nucleatum.

  6. Selection and phenotypic characterization of nonhemagglutinating mutants of Porphyromonas gingivalis.

    PubMed Central

    Chandad, F; Mayrand, D; Grenier, D; Hinode, D; Mouton, C

    1996-01-01

    To further investigate the relationship between fimbriae and the hemagglutinating adhesin HA-Ag2 of Porphyromonas gingivalis, three spontaneous mutants of the type strain ATCC 33277 were selected by a hemadsorption procedure. They were characterized for hemagglutination, trypsin-like and lectin-binding activities, and hydrophobicity and for the presence of fimbriae. The presence of the 42-kDa (the fimbrilin subunit) and the 43- and 49-kDa (the HA-Ag2 components) polypeptides was investigated by immunoblotting using polyclonal and monoclonal antibodies directed to fimbriae and to the hemagglutinating adhesin HA-Ag2. Cells from two of the three mutants (M1 and M2) exhibited no or little hemagglutination activity and very low trypsin-like activity and did not show the 43- and 49-kDa polypeptides. Abnormal fimbriation in M1 was deduced from the following observations of cells grown for 18 h: absence of the 42-kDa polypeptide and of a 14-kDa polypeptide and no fimbriae visible on electron micrographs. While the cells of mutant M2, irrespective of the age of the culture, were found to lack the 43- and 49-kDa polypeptides and hemagglutination activity, the supernatants of cultures grown for 72 h had high hemagglutination and trypsin-like activities and revealed the presence of the 42-, 43-, and 49-kDa polypeptides. This suggests that M2 may be missing some molecules which anchor the components to the cell surface. Mutant M3 showed levels of activities similar to those of the parental strain but lacked the 43-kDa polypeptide. Other pleiotropic effects observed for the mutants included loss of dark pigmentation and lower hydrophobicity. The data from this study fuel an emerging consensus whereby fimbriation, hemagglutination, and proteolytic activities, as well as other functions in P. gingivalis, are intricate. PMID:8641806

  7. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis.

    PubMed

    Zenobia, Camille; Hajishengallis, George

    2015-01-01

    The oral bacterium Porphyromonas gingivalis has special nutrient requirements due to its asaccharolytic nature subsisting on small peptides cleaved from host proteins. Using proteases and other virulence factors, P. gingivalis thrives as a component of a polymicrobial community in nutritionally favorable inflammatory environments. In this regard, P. gingivalis has a number of strategies that subvert the host immune response in ways that promote its colonization and facilitate the outgrowth of the surrounding microbial community. The focus of this review is to discuss at the molecular level how P. gingivalis subverts leukocytes to create a favorable environment for a select community of bacteria that, in turn, adversely affects the periodontal tissues.

  8. Detection of Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, and Prevotella nigrescens in chronic endodontic infection.

    PubMed

    Tomazinho, Luiz Fernando; Avila-Campos, Mario J

    2007-02-01

    Black-pigmented anaerobic rods such as Prevotella spp. and Porphyromonas spp. are involved in the etiology and perpetuation of endodontic infections. The aim of this study was to evaluate the prevalence of these species in chronic endodontic infections by using culture and polymerase chain reaction (PCR) techniques. Samples of 100 patients with root canals displaying chronic endodontic infections were obtained by sterilized paper points. Bacterial identification was performed by using culture and PCR techniques. By culture, in 33% of the samples, P. intermedia-P. nigrescens (75.8%), P. gingivalis (27.3%), and P. endodontalis (9.1%) were identified, and by PCR 60% of the samples harbored P. nigrescens (43.3%), P. gingivalis (43.3%), P. intermedia (31.7%), and P. endodontalis (23.3%). The presence of these black-pigmented anaerobic rods alone or in association in chronic endodontic infections seems to be frequent. PCR is a very sensitive technique for detecting DNA from bacterial cells. Culturing is only able to reveal living bacteria and is less sensitive for the identification of low numbers of bacterial cells.

  9. Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis

    PubMed Central

    Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Orth, Rebecca K.; Mitchell, Helen L.; Dashper, Stuart G.

    2016-01-01

    Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals—P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa—for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis. Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. PMID:27354442

  10. Proteomic peptide scan of porphyromonas gingivalis fima type ii for searching potential b-cell epitopes

    PubMed Central

    LUCCHESE, A.; GUIDA, A.; CAPONE, G.; DONNARUMMA, G.; LAINO, L.; PETRUZZI, M.; SERPICO, R.; SILVESTRE, F.; GARGARI, M.

    2016-01-01

    SUMMARY Purpose To identify potential antigenic targets for Porphyromonas gingivalis vaccine development. Materials and methods In the present study, we analyzed the Porphyromonas gingivalis, fimA type II primary amino acid sequence and characterized the similarity to the human proteome at the pentapeptide level. Results We found that exact peptide-peptide profiling of the fimbrial antigen versus the human proteome shows that only 19 out of 344 fimA type II pentapeptides are uniquely owned by the bacterial protein. Conclusions The concept that protein immunogenicity is allocated in rare peptide sequences and the search the Porphyromonas gingivalis fimA type II sequence for peptides unique to the bacterial protein and absent in the human host, might be used in new therapeutical approaches as a significant adjunct to current periodontal therapies. PMID:28042435

  11. Functional differences of Porphyromonas gingivalis Fimbriae in determining periodontal disease pathogenesis: a literature review.

    PubMed

    Moreno, Sandra; Contreras, Adolfo

    2013-01-01

    Porphyromonas gingivalis is implicated in chronic and aggressive periodontitis. This bacterium has numerous virulence factors and one is the Fimbriae, which is quite important for bacterial colonization. Fimbriae are appendices that anchor to the bacterial wall and are comprised of the protein FimBriline encoded by the FimA gene. Thus far, six genotypes have been identified, FimA I to V and Ib. Genotypes II and IV are associated with periodontal disease, while genotype I is related to gingival health. Genotype identification of P. gingivalis FimA in periodontitis would be important to confirm the pathogenic genotypes and to establish risk at population level. This review is about the P. gingivalis FimA genotype prevalence worldwide. A systematic search using Pubmed, Hinary, and Science Direct within the following descriptors: Porphyromonas gingivalis, bacterial adhesion, periodontitis, Fimbriae, FimA, genotipification was performed to April 2011.

  12. Functional differences of Porphyromonas gingivalis Fimbriae in determining periodontal disease pathogenesis: a literature review

    PubMed Central

    Contreras, Adolfo

    2013-01-01

    Porphyromonas gingivalis is implicated in chronic and aggressive periodontitis. This bacterium has numerous virulence factors and one is the Fimbriae, which is quite important for bacterial colonization. Fimbriae are appendices that anchor to the bacterial wall and are comprised of the protein FimBriline encoded by the FimA gene. Thus far, six genotypes have been identified, FimA I to V and Ib. Genotypes II and IV are associated with periodontal disease, while genotype I is related to gingival health. Genotype identification of P. gingivalis FimA in periodontitis would be important to confirm the pathogenic genotypes and to establish risk at population level. This review is about the P. gingivalis FimA genotype prevalence worldwide. A systematic search using Pubmed, Hinary, and Science Direct within the following descriptors: Porphyromonas gingivalis, bacterial adhesion, periodontitis, Fimbriae, FimA, genotipification was performed to April 2011. PMID:24892323

  13. Genome Sequence of Porphyromonas gingivalis Strain A7A1-28

    PubMed Central

    Xie, Gary; Bélanger, Myriam; Kumar, Dibyendu; Whitlock, Joan A.; Liu, Li; Farmerie, William G.; Zeng, Collin L.; Daligault, Hajnalka E.; Han, Cliff S.; Brettin, Thomas S.

    2017-01-01

    ABSTRACT Porphyromonas gingivalis is an oral opportunistic pathogen. Sequenced P. gingivalis laboratory strains display limited diversity in antigens that modulate host responses. Here, we present the genome sequence of A7A1-28, a strain possessing atypical fimbrillin and capsule types, with a single contig of 2,249,024 bp and a G+C content of 48.58%. PMID:28280013

  14. Periodontitis and Porphyromonas gingivalis in Preclinical Stage of Arthritis Patients

    PubMed Central

    Hashimoto, Motomu; Yamazaki, Toru; Hamaguchi, Masahide; Morimoto, Takeshi; Yamori, Masashi; Asai, Keita; Isobe, Yu; Furu, Moritoshi; Ito, Hiromu; Fujii, Takao; Terao, Chikashi; Mori, Masato; Matsuo, Takashi; Yoshitomi, Hiroyuki; Yamamoto, Keiichi; Yamamoto, Wataru; Bessho, Kazuhisa; Mimori, Tsuneyo

    2015-01-01

    Purpose To determine whether the presence of periodontitis (PD) and Porphyromonas gingivalis (Pg) in the subgingival biofilm associates with the development of rheumatoid arthritis (RA) in treatment naïve preclinical stage of arthritis patients. Methods We conducted a prospective cohort study of 72 consecutive patients with arthralgia who had never been treated with any anti-rheumatic drugs or glucocorticoids. Periodontal status at baseline was assessed by dentists. PD was defined stringently by the maximal probing depth≧4 mm, or by the classification by the 5th European Workshop in Periodontology (EWP) in 2005 using attachment loss. Up to eight plaque samples were obtained from each patient and the presence of Pg was determined by Taqman PCR. The patients were followed up for 2 years and introduction rate of methotrexate (MTX) treatment on the diagnosis of RA was compared in patients with or without PD or Pg. Results Patients with PD (probing depth≧4mm) had higher arthritis activity (p = 0.02) and higher risk for future introduction of MTX treatment on the diagnosis of RA during the follow up than patients without PD (Hazard ratio 2.68, p = 0.03). Arthritis activity and risk for MTX introduction increased with the severity of PD assessed by EWP, although not statistically significant. On the other hand, presence of Pg was not associated with arthritis activity (p = 0.72) or the risk for MTX introduction (p = 0.45). Conclusion In treatment naïve arthralgia patients, PD, but not the presence of Pg, associates with arthritis activity and future requirement of MTX treatment on the diagnosis of RA. PMID:25849461

  15. Porphyromonas gingivalis: keeping the pathos out of the biont.

    PubMed

    Cugini, Carla; Klepac-Ceraj, Vanja; Rackaityte, Elze; Riggs, James E; Davey, Mary E

    2013-01-01

    The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of 'wounds that fail to heal'.

  16. Porphyromonas gingivalis: keeping the pathos out of the biont

    PubMed Central

    Cugini, Carla; Klepac-Ceraj, Vanja; Rackaityte, Elze; Riggs, James E.; Davey, Mary E.

    2013-01-01

    The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of ‘wounds that fail to heal’. PMID:23565326

  17. Oral Immunization with Recombinant Streptococcus gordonii Expressing Porphyromonas gingivalis FimA Domains

    PubMed Central

    Sharma, Ashu; Honma, Kiyonobu; Evans, Richard T.; Hruby, Dennis E.; Genco, Robert J.

    2001-01-01

    Porphyromonas gingivalis, a gram-negative anaerobe, is implicated in the etiology of adult periodontitis. P. gingivalis fimbriae are one of several critical surface virulence factors involved in both bacterial adherence and inflammation. P. gingivalis fimbrillin (FimA), the major subunit protein of fimbriae, is considered an important antigen for vaccine development against P. gingivalis-associated periodontitis. We have previously shown that biologically active domains of P. gingivalis fimbrillin can be expressed on the surface of the human commensal bacterium Streptococcus gordonii. In this study, we examined the effects of oral coimmunization of germfree rats with two S. gordonii recombinants expressing N (residues 55 to 145)- and C (residues 226 to 337)-terminal epitopes of P. gingivalis FimA to elicit FimA-specific immune responses. The effectiveness of immunization in protecting against alveolar bone loss following P. gingivalis infection was also evaluated. The results of this study show that the oral delivery of P. gingivalis FimA epitopes via S. gordonii vectors resulted in the induction of FimA-specific serum (immunoglobulin G [IgG] and IgA) and salivary (IgA) antibody responses and that the immune responses were protective against subsequent P. gingivalis-induced alveolar bone loss. These results support the potential usefulness of the S. gordonii vectors expressing P. gingivalis fimbrillin as a mucosal vaccine against adult periodontitis. PMID:11292708

  18. Prevalence of fimA genotypes of Porphyromonas gingivalis and other periodontal bacteria in a Spanish population with chronic periodontitis

    PubMed Central

    Puig-Silla, Miriam; Dasí-Fernánde, Francisco; Montiel-Company, José-María

    2012-01-01

    Objectives: The aim of this study was to determine the prevalence of the different fimA genotypes of Porphyromonas gingivalis in adult Spanish patients with chronic periodontitis, patients with gingivitis and periodontally healthy subjects, and the relationship between these genotypes and other periodontopathogenic bacteria. Study design: Samples of subgingival plaque were taken from 86 patients (33 with chronic periodontitis, 16 with gingivitis, and 37 periodontally healthy) in the course of a full periodontal examination. PCR was employed to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis (I-V and Ib) and of Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola. Results: Porphyromonas gingivalis fimA genotypes II and Ib were present in significantly higher percentages in periodontal patients (39.4% and 12.1% respectively) than in healthy or gingivitis subjects. The prevalence of Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis fimA genotype IV was significantly higher in the group that presented bleeding greater than 30%. A positive correlation was found between Porphyromonas gingivalis fimA genotype IV and Treponema denticola. Conclusions: A strong association between Porphyromonas gingivalis fimA genotypes II and Ib and chronic periodontitis exists in the Spanish population. The most prevalent genotype in periodontal patients is II. Key words:Periodontitis, Porphyromonas gingivalis, fimA genotype, periodontal bacteria, polymerase chain reaction. PMID:22549664

  19. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection.

    PubMed

    Kuboniwa, Masae; Houser, John R; Hendrickson, Erik L; Wang, Qian; Alghamdi, Samar A; Sakanaka, Akito; Miller, Daniel P; Hutcherson, Justin A; Wang, Tiansong; Beck, David A C; Whiteley, Marvin; Amano, Atsuo; Wang, Huizhi; Marcotte, Edward M; Hackett, Murray; Lamont, Richard J

    2017-09-18

    Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential (1) . Periodontitis, which is the sixth most prevalent infectious disease worldwide (2) , ensues from the action of dysbiotic polymicrobial communities (3) . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo (3,4) . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.Streptococcal para-amino benzoic acid enhances Porphyromonas gingivalis colonization while reducing virulence during polymicrobial oral infection.

  20. Positive correlations between presence of gram negative enteric rods and Porphyromonas gingivalis in subgingival plaque.

    PubMed

    Ardila, Carlos M; López, Mayra A; Guzmán, Isabel C

    2011-01-01

    The association between Gram negative enteric rods and Porphyromonas gingivalis in periodontal diseases has received little attention in the literature. Thus, the aim of this study was to investigate the associations between Gram negative enteric rods, Porphyromonas gingivalis and clinical parameters of periodontal disease. The prevalence of Gram-negative enteric rods and P. gingivalis were examined in patients with chronic periodontitis. Chi-square and Mann-Whitney tests were used to determine differences in clinical variables versus the presence or absence of both microorganisms. Correlations of both organisms and clinical data were determined using Spearman rank correlation coefficient. Gram-negative enteric rods and P. gingivalis were detected in 20 (26.3%) and 51 (67.1%) subjects, respectively. A total 17 (22.4%) individuals harbored both microorganisms studied. There were significantly positive correlations between enteric rods and presence of P. gingivalis (r=0.531, P<.0001). Both microorganisms were significantly and positively correlated with probing depth, clinical attachment level and bleeding on probing (P<0.0001). The mean probing depth (mm) of the sampled sites was significantly deeper in patients with presence of P. gingivalis and Gram-negative enteric rods. This study suggests that the presence of Gram negative enteric rods and P. gingivalis is related to adverse periodontal conditions. These results could have an impact on periodontal treatment and should be taken into account in the mechanical and antimicrobial treatment of periodontal disease in some populations.

  1. Experimental Porphyromonas gingivalis infection in nonimmune athymic BALB/c mice.

    PubMed Central

    Chen, P B; Davern, L B; Aguirre, A

    1991-01-01

    The purpose of this report was to study the role of T lymphocytes following injection of Porphyromonas gingivalis in a mouse abscess model. Three invasive P. gingivalis isolates (ATCC 53977, W83, and AJW4) were injected into athymic BALB/c mice and their heterozygous (nu/+) littermates. The athymic BALB/c (nu/nu) mice were able to localize the invasive P. gingivalis isolates at the injection site. By comparison, the heterozygous BALB/c (nu/+) littermates developed hemorrhagic secondary lesions within 24 h after subcutaneous injection of the same invasive P. gingivalis isolates. These results suggest that naive T lymphocytes may contribute to the pathology associated with P. gingivalis infection. PMID:1657788

  2. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis

    PubMed Central

    Zhang, Boxi; Sirsjö, Allan; Khalaf, Hazem; Bengtsson, Torbjörn

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis. PMID:26907358

  3. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis.

    PubMed

    Mao, Song; Park, Yoonsuk; Hasegawa, Yoshiaki; Tribble, Gena D; James, Chlöe E; Handfield, Martin; Stavropoulos, M Franci; Yilmaz, Ozlem; Lamont, Richard J

    2007-08-01

    Porphyromonas gingivalis can inhibit chemically induced apoptosis in primary cultures of gingival epithelial cells through blocking activation of the effector caspase-3. The anti-apoptotic phenotype of P. gingivalis is conserved across strains and does not depend on the presence of fimbriae, as fimbriae-deficient mutants and a naturally occurring non-fimbriated strain were able to impede apoptosis. To dissect the survival pathways modulated by P. gingivalis, protein and gene expression of a number of components of apoptotic death pathways were investigated. P. gingivalis infection of epithelial cells resulted in the phosphorylation of JAK1 and Stat3. Quantitative real-time reverse transcription polymerase chain reaction showed that expression of Survivin and Stat3 itself, targets of activated Stat3, were elevated in P. gingivalis-infected cells. siRNA knockdown of JAK1, in combination with knockdown of Akt, abrogated the ability of P. gingivalis to block apoptosis. In contrast, cIAP-1 and cIAP-2 were not differentially regulated at either the protein or mRNA levels by P. gingivalis. One mechanism by which P. gingivalis can block apoptotic pathways in gingival epithelial cells therefore is through manipulation of the JAK/Stat pathway that controls the intrinsic mitochondrial cell death pathways. Induction of a pro-survival phenotype may prevent programmed host cell death and aid survival of P. gingivalis within gingival epithelial cells.

  4. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis

    PubMed Central

    Mao, Song; Park, Yoonsuk; Hasegawa, Yoshiaki; Tribble, Gena D.; James, Chlöe E.; Handfield, Martin; Stavropoulos, M. Franci; Yilmaz, özlem; Lamont, Richard J.

    2010-01-01

    Summary Porphyromonas gingivalis can inhibit chemically induced apoptosis in primary cultures of gingival epithelial cells through blocking activation of the effector caspase-3. The anti-apoptotic phenotype of P. gingivalis is conserved across strains and does not depend on the presence of fimbriae, as fimbriae-deficient mutants and a naturally occurring non-fimbriated strain were able to impede apoptosis. To dissect the survival pathways modulated by P. gingivalis, protein and gene expression of a number of components of apoptotic death pathways were investigated. P. gingivalis infection of epithelial cells resulted in the phosphorylation of JAK1 and Stat3. Quantitative real-time reverse transcription polymerase chain reaction showed that expression of Survivin and Stat3 itself, targets of activated Stat3, were elevated in P. gingivalis-infected cells. siRNA knockdown of JAK1, in combination with knockdown of Akt, abrogated the ability of P. gingivalis to block apoptosis. In contrast, cIAP-1 and cIAP-2 were not differentially regulated at either the protein or mRNA levels by P. gingivalis. One mechanism by which P. gingivalis can block apoptotic pathways in gingival epithelial cells therefore is through manipulation of the JAK/Stat pathway that controls the intrinsic mitochondrial cell death pathways. Induction of a pro-survival phenotype may prevent programmed host cell death and aid survival of P. gingivalis within gingival epithelial cells. PMID:17419719

  5. In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts; role of the capsule.

    PubMed

    Irshad, Muhammad; van der Reijden, Wil A; Crielaard, Wim; Laine, Marja L

    2012-12-01

    Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium involved in periodontitis and peri-implantitis that can invade and survive inside host cells in vitro. P. gingivalis can invade human gingival fibroblasts (GF), but no data are available about the role of P. gingivalis' capsule in GF invasion. In the current study, we aimed to determine the ability of three strains of P. gingivalis (encapsulated wild type W83, non-encapsulated HG91 and the non-encapsulated insertional isogenic knockout mutant of W83, ΔEpsC) to invade GF and the ability of internalized P. gingivalis to survive in vitro antibiotic treatment. The ability of P. gingivalis strains to invade GF was tested using an antibiotic protection assay at multiplicity of infection (MOI) 100 and 1000. The survival of internalized P. gingivalis cells was further analyzed by subsequent in vitro treatment with either metronidazole or amoxicillin alone or a combination of metronidazole and amoxicillin and anaerobic culture viability counts. All strains of P. gingivalis used in this study were able to invade GFs. The non-encapsulated mutant of W83 (ΔEpsC mutant) was significantly more invasive than the wild type W83 at MOI 100 (p value 0.025) and MOI 1000 (p value 0.038). Furthermore, internalized P. gingivalis was able to resist in vitro antibiotic treatment. As demonstrated by the differences in invasion efficiencies of P. gingivalis strain W83 and its isogenic mutant ΔEpsC, the capsule of P. gingivalis makes it less efficient in invading gingival fibroblasts. Moreover, internalized P. gingivalis can survive antibiotic treatment in vitro.

  6. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis

    PubMed Central

    Gabarrini, Giorgio; de Smit, Menke; Westra, Johanna; Brouwer, Elisabeth; Vissink, Arjan; Zhou, Kai; A. Rossen, John W.; Stobernack, Tim; van Dijl, Jan Maarten; Jan van Winkelhoff, Arie

    2015-01-01

    Periodontitis is an infective process that ultimately leads to destruction of the soft and hard tissues that support the teeth (the periodontium). Periodontitis has been proposed as a candidate risk factor for development of the autoimmune disease rheumatoid arthritis (RA). Porphyromonas gingivalis, a major periodontal pathogen, is the only known prokaryote expressing a peptidyl arginine deiminase (PAD) enzyme necessary for protein citrullination. Antibodies to citrullinated proteins (anti-citrullinated protein antibodies, ACPA) are highly specific for RA and precede disease onset. Objective of this study was to assess P. gingivalis PAD (PPAD) gene expression and citrullination patterns in representative samples of P. gingivalis clinical isolates derived from periodontitis patients with and without RA and in related microbes of the Porphyromonas genus. Our findings indicate that PPAD is omnipresent in P. gingivalis, but absent in related species. No significant differences were found in the composition and expression of the PPAD gene of P. gingivalis regardless of the presence of RA or periodontal disease phenotypes. From this study it can be concluded that if P. gingivalis plays a role in RA, it is unlikely to originate from a variation in PPAD gene expression. PMID:26403779

  7. Humoral immune response to an antigen from Porphyromonas gingivalis 381 in periodontal disease.

    PubMed Central

    Kurihara, H; Nishimura, F; Nakamura, T; Nakagawa, M; Tanimoto, I; Nomura, Y; Kokeguchi, S; Kato, K; Murayama, Y

    1991-01-01

    The humoral immune responses of patients with periodontitis were evaluated to characterize the host response to Porphyromonas gingivalis. A sonic extract of P. gingivalis 381 from whole cells was fractionated by gel chromatography and ion-exchange chromatography. The fractionated extracts were evaluated by Western blot (immunoblot) analyses with patient sera. A dominant antigen was identified from the sonic extract with an apparent molecular mass of 53 kDa. The 53-kDa protein antigen (Ag53) was purified by affinity chromatography by using a monoclonal antibody. Ag53 was detected on the vesicle surface of P. gingivalis 381 by immunoelectron microscopy by using the monoclonal antibody and was detected as a major protein in the outer membrane and in vesicles by Western blot analysis. Monoclonal antibody cross-reactivity to Ag53 in the sonic extracts of P. gingivalis ATCC 33277, P. gingivalis 1021, and Porphyromonas endodontalis ATCC 35406 was revealed. Seventy-seven patients with periodontitis were examined for their responses to Ag53. Serum immunoglobulin G (IgG) from 54 patients reacted strongly to Ag53; however, serum IgG from the remaining 23 patients did not exhibit detectable reactivity at all to Ag53, even though the patients had high serum IgG titers to the sonic extract. Ag53 is a new marker that represents an interesting aspect of the humoral immune response to P. gingivalis in patients with periodontitis. Images PMID:1855992

  8. Distribution of Porphyromonas gingivalis fimA genotypes in primary endodontic infections.

    PubMed

    Rôças, Isabela N; Siqueira, José F

    2010-03-01

    Long fimbriae (FimA) are important virulence factors of Porphyromonas gingivalis. Based on the diversity of the fimA gene, this species is classified into 6 genotypes. This study surveyed samples from primary endodontic infections for the presence of these P. gingivalis fimA variants. Genomic DNA isolated from samples taken from 25 root canals of teeth with chronic apical periodontitis and 25 aspirates from acute apical abscess was used as template in polymerase chain reaction (PCR) assays directed toward the detection of the different P. gingivalis fimA genotypes. Porphyromonas gingivalis was detected by a 16S rRNA gene-based PCR in 36% of the total number of cases sampled (44% of chronic apical periodontitis and 28% of abscess aspirates). In cases of chronic apical periodontitis, P. gingivalis variant type IV was the most prevalent (24%), followed by types I (20%), II (16%), and III (8%). In acute abscess samples, variant type II was the most prevalent (12%), followed by types III and IV (8% of each) and type I (4%). Combinations of up to 3 different genotypes were detected in a few cases. No single fimA genotype variant or combination thereof was significantly associated with symptoms. Overall, fimA types IV (16%), II (14%), and I (12%) were the most prevalent. Findings demonstrated that different P. gingivalis fimA genotypes can be present in primary endodontic infections. Copyright 2010 Mosby, Inc. All rights reserved.

  9. [Effect of beryllium on the morphology and chemical elements of cell membrane of Porphyromonas gingivalis].

    PubMed

    Li, Wei-hong; Huang, Rui; Lin, Hua; Li, Qing-yan; Zheng, Xin-ying; Lv, Qiao; Gao, Ning

    2015-08-01

    To evaluate the effect of beryllium (Be²⁺) on the morphology and chemical elements on cell membrane of Porphyromonas gingivalis (P. gingivalis), thus to explore the microbiologic mechanisms of periodontal diseases. P. gingivalis was put into the culture with different Be²⁺ concentrations and anaerobically cultured for 24 hours. The morphologic change of P. gingivalis was observed under microscope and scanning electronic microscope (SEM), and chemical elements of cell membrane were observed by X-ray energy dispersion spectrum (EDS). The data was statistically analyzed with SPSS13.0 software package. The morphology of P.gingivalis altered obviously at the concentration greater than 2.5 mg/L, which was manifested by the sharpness of border and depression on the surface. With the increased concentration of beryllium, the Na and Ca peak descended on the surface of P. gingivalis. Beryllium can interfere with the morphology of P. gingivalis, and lead to the changes of chemical elements on cell membrane of P. gingivalis, which may result in a disturbance in the microecologic balance of subgingival microbes and eventually contribute to periodontal diseases.

  10. Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis

    PubMed Central

    Higuchi, Takuya; Nakajima, Masato; Fujimoto, Akie; Hanioka, Takashi; Hirofuji, Takao

    2016-01-01

    Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P. gingivalis ATCC 33277, W50, W83, and two clinical isolates were cultured in the presence or absence of E. faecium WB2000, and the emission of VSCs from spent culture medium was measured by gas chromatography. The number of P. gingivalis ATCC 33277 in mixed culture with E. faecium WB2000 decreased at 6 h, and the rate of decrease was higher than that in mixed cultures with the other lactic acid bacteria. The numbers of five P. gingivalis strains decreased at similar rates in mixed culture with E. faecium WB2000. The concentration of methyl mercaptan was lower in spent culture medium from P. gingivalis and E. faecium WB2000 cultures compared with that from P. gingivalis alone. Therefore, E. faecium WB2000 may reduce oral malodor by inhibiting the growth of P. gingivalis and neutralizing methyl mercaptan. PMID:27799940

  11. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells.

    PubMed

    Chou, Hsin-Hua; Yumoto, Hiromichi; Davey, Michael; Takahashi, Yusuke; Miyamoto, Takanari; Gibson, Frank C; Genco, Caroline A

    2005-09-01

    Epidemiological and pathological studies have suggested that infection with the oral pathogen Porphyromonas gingivalis can potentiate atherosclerosis and human coronary heart disease. Furthermore, infection with invasive, but not noninvasive P. gingivalis has been demonstrated to accelerate atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice and to accelerate local inflammatory responses in aortic tissue. In the present study, using high-density oligonucleotide microarrays, we have defined the gene expression profile of human aortic endothelial cells (HAEC) after infection with invasive and noninvasive P. gingivalis. After infection of HAEC with invasive P. gingivalis strain 381, we observed the upregulation of 68 genes. Genes coding for the cytokines Gro2 and Gro3; the adhesion molecules intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM)-1, and ELAM-1 (E-selectin); the chemokine interleukin-8 (IL-8); and the proinflammatory molecules IL-6 and cyclooxygenase-2 were among the most highly upregulated genes in P. gingivalis 381-infected HAEC compared to uninfected HAEC control. Increased mRNA levels for signaling molecules, transcriptional regulators, and cell surface receptors were also observed. Of note, only 4 of these 68 genes were also upregulated in HAEC infected with the noninvasive P. gingivalis fimA mutant. Reverse transcription-PCR, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting analysis confirmed the expression of ICAM-1, VCAM-1, E-/P-selectins, IL-6, and IL-8 in HAEC infected with invasive P. gingivalis. We also demonstrated that increased expression of ICAM-1 and VCAM-1 in aortic tissue of ApoE(-/-) mice orally challenged with invasive P. gingivalis but not with the noninvasive P. gingivalis fimA mutant by immunohistochemical analysis. Taken together, these results demonstrate that P. gingivalis fimbria-mediated invasion upregulates inflammatory gene expression in HAEC and in aortic

  12. Polymerase chain reaction of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in primary endodontic infections.

    PubMed

    Gomes, Brenda P F A; Montagner, Francisco; Jacinto, Rogério Castilho; Zaia, Alexandre A; Ferraz, Caio Cezar Randi; Souza-Filho, Francisco J

    2007-09-01

    The aim of this study was to investigate the correlation between endodontic clinical signs and symptoms and the presence of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia or their association by nested polymerase chain reaction assay. Microbial samples were taken from 50 cases with necrotic pulp tissues in primary infections. DNA was extracted from the samples, which were analyzed for the presence of three endodontic pathogens by using species-specific primers. P gingivalis, T denticola, and T forsythia were detected in 46%, 38%, and 22% of the symptomatic cases, respectively. The bacterial complex composed by T forsythia, P gingivalis, and T denticola was found in 14% of the cases with spontaneous pain, tenderness to percussion, swelling, and pain on palpation. The high prevalence of P gingivalis, T denticola, and T forsythia in the samples examined suggests that these bacteria are related to the etiology of symptomatic periradicular diseases.

  13. Transposition of the Endogenous Insertion Sequence Element IS1126 Modulates Gingipain Expression in Porphyromonas gingivalis

    PubMed Central

    Simpson, Waltena; Wang, Chin-Yen; Mikolajczyk-Pawlinska, Jowita; Potempa, Jan; Travis, James; Bond, Vincent C.; Genco, Caroline Attardo

    1999-01-01

    We have previously reported on a Tn4351-generated mutant of Porphyromonas gingivalis (MSM-3) which expresses enhanced arginine-specific proteinase activity and does not utilize hemin or hemoglobin for growth (C. A. Genco et al., Infect. Immun. 63:2459–2466, 1995). In the process of characterizing the genetic lesion in P. gingivalis MSM-3, we have determined that the endogenous P. gingivalis insertion sequence element IS1126 is capable of transposition within P. gingivalis. We have also determined that IS1126 transposition modulates the transcription of the genes encoding the lysine-specific proteinase, gingipain K (kgp) and the arginine-specific proteinase, gingipain R2 (rgpB). Sequence analysis of P. gingivalis MSM-3 revealed that Tn4351 had inserted 60 bp upstream of the P. gingivalis endogenous IS element IS1126. Furthermore, P. gingivalis MSM-3 exhibited two additional copies of IS1126 compared to the parental strain A7436. Examination of the first additional IS1126 element, IS11261, indicated that it has inserted into the putative promoter region of the P. gingivalis kgp gene. Analysis of total RNA extracted from P. gingivalis MSM-3 demonstrated no detectable kgp transcript; likewise, P. gingivalis MSM-3 was devoid of lysine-specific proteinase activity. The increased arginine-specific proteinase activity exhibited by P. gingivalis MSM-3 was demonstrated to correlate with an increase in the rgpA and rgpB transcripts. The second additional IS1126 element, IS11262, was found to have inserted upstream of a newly identified gene, hmuR, which exhibits homology to a number of TonB-dependent genes involved in hemin and iron acquisition. Analysis of total RNA from P. gingivalis MSM-3 demonstrated that hmuR is transcribed, indicating that the insertion of IS1126 had not produced a polar effect on hmuR transcription. The hemin-hemoglobin defect in P. gingivalis MSM-3 is proposed to result from the inactivation of Kgp, which has recently been demonstrated to function

  14. Inflammatory response to Porphyromonas gingivalis partially requires interferon regulatory factor (IRF) 3

    PubMed Central

    Shaik-Dasthagirisaheb, Yazdani B.; Huang, Nasi; Gibson, Frank C.

    2013-01-01

    Innate immune activation with expression of pro-inflammatory molecules such as TNF-α is hallmark of the chronic inflammation associated with periodontal disease (PD). Porphyromonas gingivalis, a bacterium associated with PD, engages Toll-like receptors and activates MyD88-dependent and TIR-domain-containing adapter-inducing interferon- β (TRIF)-dependent signaling pathways. Interferon regulatory factor (IRF) 3 is activated in a TRIF-dependent manner and participates in production of cytokines such as TNF-α; however, little is known regarding IRF3 and the host response to PD pathogens. We speculated that IRF3 participated in the host inflammatory response to P. gingivalis. Our results show that bone marrow macrophages (MØ) from WT mice respond to P. gingivalis with activation and nuclear translocation of IRF3. As compared with WT, MØ from IRF3−/−, TRIF−/−, and TLR4−/− mice responded with reduced levels of TNF-α on P. gingivalis challenge. In addition, full expression of IL-6 and RANTES by MØ to P. gingivalis was dependent on IRF3. Lastly, employing MØ from IRF3−/− and IRF7−/− mice we observed a significant role for IRF3 and a modest role for IRF7 in the P. gingivalis-elicited TNF-α response. These studies identify a role for IRF3 in the inflammatory response by MØ to the periodontal pathogen P. gingivalis. PMID:23803413

  15. Lactobacillus rhamnosus could inhibit Porphyromonas gingivalis derived CXCL8 attenuation.

    PubMed

    Mendi, Ayşegül; Köse, Sevil; Uçkan, Duygu; Akca, Gülçin; Yilmaz, Derviş; Aral, Levent; Gültekin, Sibel Elif; Eroğlu, Tamer; Kiliç, Emine; Uçkan, Sina

    2016-01-01

    An increasing body of evidence suggests that the use of probiotic bacteria is a promising intervention approach for the treatment of inflammatory diseases with a polymicrobial etiology. P. gingivalis has been noted to have a different way of interacting with the innate immune response of the host compared to other pathogenic bacteria, which is a recognized feature that inhibits CXCL8 expression. The aim of the study was to determine if P. gingivalis infection modulates the inflammatory response of gingival stromal stem cells (G-MSSCs), including the release of CXCL8, and the expression of TLRs and if immunomodulatory L. rhamnosus ATCC9595 could prevent CXCL8 inhibition in experimental inflammation. G-MSSCs were pretreated with L. rhamnosus ATCC9595 and then stimulated with P. gingivalis ATCC33277. CXCL8 and IL-10 levels were investigated with ELISA and the TLR-4 and 2 were determined through flow cytometer analysis. CXCL8 was suppressed by P. gingivalis and L. rhamnosus ATCC9595, whereas incubation with both strains did not abolish CXCL8. L. rhamnosus ATCC9595 scaled down the expression of TLR4 and induced TLR2 expression when exposed to P. gingivalis stimulation (p<0.01). These findings provide evidence that L. rhamnosus ATCC9595 can modulate the inflammatory signals and could introduce P. gingivalis to immune systems by inducing CXCL8 secretion.

  16. Lactobacillus rhamnosus could inhibit Porphyromonas gingivalis derived CXCL8 attenuation

    PubMed Central

    Mendi, Ayşegül; Köse, Sevil; Uçkan, Duygu; Akca, Gülçin; Yilmaz, Derviş; Aral, Levent; Gültekin, Sibel Elif; Eroğlu, Tamer; Kiliç, Emine; Uçkan, Sina

    2016-01-01

    ABSTRACT An increasing body of evidence suggests that the use of probiotic bacteria is a promising intervention approach for the treatment of inflammatory diseases with a polymicrobial etiology. P. gingivalis has been noted to have a different way of interacting with the innate immune response of the host compared to other pathogenic bacteria, which is a recognized feature that inhibits CXCL8 expression. Objective The aim of the study was to determine if P. gingivalis infection modulates the inflammatory response of gingival stromal stem cells (G-MSSCs), including the release of CXCL8, and the expression of TLRs and if immunomodulatory L. rhamnosus ATCC9595 could prevent CXCL8 inhibition in experimental inflammation. Material and Methods G-MSSCs were pretreated with L. rhamnosus ATCC9595 and then stimulated with P. gingivalis ATCC33277. CXCL8 and IL-10 levels were investigated with ELISA and the TLR-4 and 2 were determined through flow cytometer analysis. Results CXCL8 was suppressed by P. gingivalis and L. rhamnosus ATCC9595, whereas incubation with both strains did not abolish CXCL8. L. rhamnosus ATCC9595 scaled down the expression of TLR4 and induced TLR2 expression when exposed to P. gingivalis stimulation (p<0.01). Conclusions These findings provide evidence that L. rhamnosus ATCC9595 can modulate the inflammatory signals and could introduce P. gingivalis to immune systems by inducing CXCL8 secretion. PMID:27008259

  17. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis

    PubMed Central

    Sheets, Shaun M.; Robles-Price, Antonette G.; McKenzie, Rachelle M. E.; Casiano, Carlos A.; Fletcher, Hansel M.

    2012-01-01

    Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence. PMID:18508429

  18. Draft Genome Sequence of Low-Passage Clinical Isolate Porphyromonas gingivalis MP4-504.

    PubMed

    To, Thao T; Liu, Quanhui; Watling, Michael; Bumgarner, Roger E; Darveau, Richard P; McLean, Jeffrey S

    2016-04-07

    We present the draft genome ofPorphyromonas gingivalisMP4-504, a low-passage clinical isolate obtained from a periodontitis patient. The genome is composed of 92 contigs for a length of 2,373,453 bp and a G+C of 48.3%. ThetraA-Qconjugative transfer locus is genetically distinct from W83 but highly similar to ATCC 33277.

  19. Draft Genome Sequence of Low-Passage Clinical Isolate Porphyromonas gingivalis MP4-504

    PubMed Central

    Liu, Quanhui; Watling, Michael; Bumgarner, Roger E.; Darveau, Richard P.

    2016-01-01

    We present the draft genome of Porphyromonas gingivalis MP4-504, a low-passage clinical isolate obtained from a periodontitis patient. The genome is composed of 92 contigs for a length of 2,373,453 bp and a G+C of 48.3%. The traA-Q conjugative transfer locus is genetically distinct from W83 but highly similar to ATCC 33277. PMID:27056232

  20. Altered antigenic profiling and infectivity of Porphyromonas gingivalis in smokers and non-smokers with periodontitis

    PubMed Central

    Zeller, Iris; Hutcherson, Justin A.; Lamont, Richard J.; Demuth, Donald R.; Gumus, Pinar; Nizam, Nejat; Buduneli, Nurcan; Scott, David A.

    2014-01-01

    Background Cigarette smokers are more susceptible to periodontal diseases and are more likely to be infected with Porphyromonas gingivalis than non-smokers. Furthermore, smoking is known to alter the expression of P. gingivalis surface components and to compromise IgG generation. The aim of this study was to evaluate whether IgG response to P. gingivalis is suppressed in smokers in vivo and whether previously established in vitro tobacco-induced phenotypic P. gingivalis changes would be reflected in vivo. Methods We examined the humoral response to several P. gingivalis strains as well as specific tobacco-regulated outer membrane proteins (FimA and RagB) by ELISA in biochemically-validated (salivary cotinine) smokers and non-smokers with chronic (CP, n = 13) or aggressive (AP, n = 20) periodontitis. We also monitored the local and systemic presence of P. gingivalis DNA by PCR. Results Smoking was associated with decreased total IgG responses against clinical (10512, 5607, and 10208C; all p < 0.05) but not laboratory (ATCC 33277, W83) P. gingivalis strains. Smoking did not influence IgG produced against specific cell surface proteins, although a non-significant pattern towards increased total FimA-specific IgG in CP subjects, but not AP subjects, was observed. Seropositive smokers were more likely to be infected orally and systemically with P. gingivalis (p < 0.001), as determined by 16S RNA analysis. Conclusions Smoking alters the humoral response against P. gingivalis, strengthening the evidence that mechanisms of periodontal disease progression in smokers may differ from non-smokers with the same disease classification. PMID:24147843

  1. Evidence that Porphyromonas (Bacteroides) gingivalis fimbriae function in adhesion to Actinomyces viscosus.

    PubMed Central

    Goulbourne, P A; Ellen, R P

    1991-01-01

    Porphyromonas (Bacteroides) gingivalis adheres to gram-positive bacteria, such as Actinomyces viscosus, when colonizing the tooth surface. However, little is known of the adhesins responsible for this interaction. A series of experiments were performed to determine whether P. gingivalis fimbriae function in its coadhesion with A. viscosus. Fimbriae typical of P. gingivalis were isolated from strain 2561 (ATCC 33277) by the method of Yoshimura et al. (F. Yoshimura, K. Takahashi, Y. Nodasaka, and T. Suzuki, J. Bacteriol. 160:949-957, 1984) in fractions enriched with a 40-kDa subunit, the fimbrillin monomer, P. gingivalis-A. viscosus coaggregation was inhibited by purified rabbit antifimbrial immunoglobulin G (IgG) at dilutions eightfold higher than those of preimmune IgG, providing indirect evidence implicating P. gingivalis fimbriae in coadhesion. Three types of direct binding assays further supported this observation. (i) Mixtures of isolated P. gingivalis fimbriae and A. viscosus WVU627 cells were incubated for 1 h, washed vigorously with phosphate-buffered saline (pH 7.2), and subjected to electrophoresis. Transblots onto nitrocellulose were probed with antifimbrial antiserum. Fimbrillin labeled positively on these blots. No reaction occurred with the control protein, porcine serum albumin, when blots were exposed to anti-porcine serum albumin, (ii) A. viscosus cells incubated with P. gingivalis fimbriae were agglutinated only after the addition of antifimbrial antibodies. (iii) Binding curves generated from an enzyme immunoassay demonstrated concentration-dependent binding of P. gingivalis fimbriae to A. viscosus cells. From these lines of evidence, P. gingivalis fimbriae appear to be capable of binding to A. viscosus and mediating the coadhesion of these species. Images PMID:1679428

  2. Phagocytosis of virulent Porphyromonas gingivalis by human polymorphonuclear leukocytes requires specific immunoglobulin G.

    PubMed Central

    Cutler, C W; Kalmar, J R; Arnold, R R

    1991-01-01

    No studies to date clearly define the interactions between Porphyromonas gingivalis and human peripheral blood polymorphonuclear leukocytes (PMN), nor has a protective role for antibody to P. gingivalis been defined. Using a fluorochrome phagocytosis microassay, we investigated PMN phagocytosis and killing of P. gingivalis as a function of P. gingivalis-specific antibody. Sera from a nonimmune rabbit and a healthy human subject were not opsonic for virulent P. gingivalis A7436, W83, and HG405; phagocytosis of these strains (but not 33277) required opsonization with hyperimmune antiserum (RaPg). Diluting RaPg with a constant complement source decreased proportionally the number of P. gingivalis A7436 cells phagocytosed per phagocytic PMN. Enriching for the immunoglobulin G fraction of RAPg A7436 enriched for opsonic activity toward A7436. An opsonic evaluation of 18 serum samples from adult periodontitis patients revealed that only 3 adult periodontitis sera of 17 with elevated immunoglobulin G to P. gingivalis A7436 were opsonic for A7436 and, moreover, that the serum sample with the highest enzyme-linked immunosorbent assay titer was most opsonic (patient 1). However, the opsonic activity of serum from patient 1 was qualitatively and not just quantitatively different from that of the nonopsonic human sera (but was less effective opsonin than RaPg). Strain variability was observed in resistance of P. gingivalis to phagocytosis, and opsonization was strain specific for some, but not all, strains tested. An evaluation of killing of A7436 revealed that serum killing and extracellular killing of P. gingivalis were less effective alone when compared with intracellular PMN killing alone. PMID:2037370

  3. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice.

    PubMed

    Lam, Roselind S; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Brammar, Gail C; Walsh, Katrina A; McNaughtan, Judith E; Rowler, Dennis K; Van Rooijen, Nico; Reynolds, Eric C

    2014-09-01

    The role of the macrophage in the immunopathology of periodontitis has not been well defined. In this study, we show that intraoral inoculation of mice with Porphyromonas gingivalis resulted in infection, alveolar bone resorption, and a significant increase in F4/80(+) macrophages in gingival and submandibular lymph node tissues. Macrophage depletion using clodronate-liposomes resulted in a significant reduction in F4/80(+) macrophage infiltration of gingival and submandibular lymph node tissues and significantly (p < 0.01) less P. gingivalis-induced bone resorption compared with controls in BALB/c and C57BL/6 mice. In both mouse strains, the P. gingivalis-specific IgG Ab subclass and serum cytokine [IL-4, IL-10, IFN-γ, and IL-12 (p70)] responses were significantly (p < 0.01) lower in the macrophage-depleted groups. Macrophage depletion resulted in a significant reduction in the level of P. gingivalis infection, and the level of P. gingivalis infection was significantly correlated with the level of alveolar bone resorption. M1 macrophages (CD86(+)), rather than M2 macrophages (CD206(+)), were the dominant macrophage phenotype of the gingival infiltrate in response to P. gingivalis infection. P. gingivalis induced a significant (p < 0.01) increase in NO production and a small increase in urea concentration, as well as a significant increase in the secretion of IL-1β, IL-6, IL-10, IL-12 (p70), eotaxin, G-CSF, GM-CSF, macrophage chemoattractant protein-1, macrophage inflammatory protein-α and -β, and TNF-α in isolated murine macrophages. In conclusion, P. gingivalis infection induced infiltration of functional/inflammatory M1 macrophages into gingival tissue and alveolar bone resorption. Macrophage depletion reduced P. gingivalis infection and alveolar bone resorption by modulating the host immune response.

  4. Relatively low invasive capacity of Porphyromonas gingivalis strains into human gingival fibroblasts in vitro.

    PubMed

    Jang, Ju Young; Baek, Keum Jin; Choi, Youngnim; Ji, Suk

    2017-08-16

    Bacterial invasion into host cells is a common strategy to escape the host immune system. Gingival fibroblasts (GFs) are the most predominant non-phagocytic cell type in gingival connective tissue. Therefore, invasion into GFs was thought to be the first strategy for the survival of Porphyromonas gingivalis. The present study compared the invasive ability of P. gingivalis into GFs with those of other red-complex and relatively less pathogenic bacterial strains, especially Fusobacterium nucleatum. Invasive ability of bacterial strains into GFs was measured using a flow cytometric invasion assay at a multiplicity of infection of 1000. The effect of dual infection with F. nucleatum CCUG 37843T on P. gingivalis ATCC 49417 invasion was investigated. The invasive ability of F. nucleatum and P. gingivalis was confirmed using confocal microscopy. The invasive ability of red-complex bacteria was markedly lower than that of F. nucleatum or Campylobacter gracilis. The invasive ability of 4 types and 10 clinical strains of P. gingivalis was less than 6%, and that of F. nucleatum strains was greater than 45%. Confocal analysis revealed that the percentage of bacteria invading GFs in the cell-treated P. gingivalis and F. nucleatum were 0.0068% and 1.22%, respectively. Dual infection with F. nucleatum increased the invasive ability of P. gingivalis. The invasive capacities of P. gingivalis into GFs were comparatively lower than those of relatively less pathogenic bacteria. Invasion into GFs cannot be the first strategy for survival of P. gingivalis in gingival connective tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Attenuation of Porphyromonas gingivalis oral infection by α-amylase and pentamidine.

    PubMed

    Li, Ying; Miao, Yu-Song; Fu, Yun; Li, Xi-Ting; Yu, Shao-Jie

    2015-08-01

    The Porphyromonas gingivalis bacterium is one of the most influential pathogens in oral infections. In the current study, the antimicrobial activity of α-amylase and pentamidine against Porphyromonas gingivalis was evaluated. Their in vitro inhibitory activity was investigated with the agar overlay technique, and the minimal inhibitory and bactericidal concentrations were determined. Using the bactericidal concentration, the antimicrobial actions of the inhibitors were investigated. In the present study, multiple techniques were utilized, including scanning electron microscopy (SEM), general structural analysis and differential gene expression analysis. The results obtained from SEM and bactericidal analysis indicated a notable observation; the pentamidine and α-amylase treatment destroyed the structure of the bacterial cell membranes, which led to cell death. These results were used to further explore these inhibitors and the mechanisms by which they act. Downregulated expression levels were observed for a number of genes coding for hemagglutinins and gingipains, and various genes involved in hemin uptake, chromosome replication and energy production. However, the expression levels of genes associated with iron storage and oxidative stress were upregulated by α-amylase and pentamidine. A greater effect was noted in response to pentamidine treatment. The results of the present study demonstrate promising therapeutic potential for α-amylases and pentamidine. These molecules have the potential to be used to develop novel drugs and broaden the availability of pharmacological tools for the attenuation of oral infections caused by Porphyromonas gingivalis.

  6. Susceptibility to various oral antiseptics of Porphyromonas gingivalis W83 within a biofilm.

    PubMed

    Bercy, Pierre; Lasserre, Jérôme

    2007-01-01

    The origin of chronic periodontal disease is strongly related to the nature and physiology of the subgingival bacterial biofilm, of which Porphyromonas gingivalis is a main protagonist. This study was conducted in vitro, to test the susceptibility of the W83 strain of P gingivalis to several oral antiseptics, bearing in mind its mode of growth as biofilm. To this end, the investigators inoculated a brain-heart infusion broth with Streptococcus gordonii, to which P gingivalis was added before perfusion for 7 d via a closed circuit containing a modified Robbins device. Then, various antiseptics were perfused through the circuit over 30 min, and their bactericidal effects were evaluated after culture by comparison of the mean proportion of bacteria killed. The average proportion of P gingivalis W83 killed after 15 min of contact with antiseptics was 90.51% (+/-4.78) for chlorhexidine 0.2%, 89.87% (+/-6.58) for povidone-iodine 1%, and 98.6% (+/-0.86) for Listerine (McNeil-PPC, Inc., Morris Plains, NJ). After 30 min of contact, survival of P gingivalis was nil, irrespective of the antimicrobial agent used. Preliminary results show that antiseptic mouth rinses, when used in pure concentrations in the traditional way, are effective in killing P gingivalis W83 within a biofilm. Furthermore, in light of these experiments, it appears that the best results are obtained when Listerine is used; however, new trials should be conducted to confirm this observation.

  7. Gingipains: critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis

    PubMed Central

    Benedyk, Małgorzata; Mydel, Piotr; Delaleu, Nicolas; Płaza, Karolina; Gawron, Katarzyna; Milewska, Aleksandra; Maresz, Katarzyna; Koziel, Joanna; Pyrc, Krzysztof; Potempa, Jan

    2015-01-01

    Aspiration pneumonia is a life-threatening infectious disease often caused by oral anaerobic and periodontal pathogens such as Porphyromonas gingivalis. This organism produces proteolytic enzymes, known as gingipains, which manipulate innate immune responses and promote chronic inflammation. Here, we challenged mice with P. gingivalis W83 and examined the role of gingipains in bronchopneumonia, lung abscess formation, and inflammatory responses. Although gingipains were not required for P. gingivalis colonization and survival in the lungs, they were essential for manifestation of clinical symptoms and infection-related mortality. Pathologies caused by wild-type (WT) P. gingivalis W83, including hemorrhage, necrosis, and neutrophil infiltration, were absent from lungs infected with gingipain-null isogenic strains or WT bacteria preincubated with gingipain-specific inhibitors. Damage to lung tissue correlated with systemic inflammatory responses, as manifested by elevated levels of TNF, IL-6, IL-17, and C-reactive protein. These effects were unequivocally dependent on gingipain activity. Gingipain activity was also implicated in the observed increase in IL-17 in lung tissues. Furthermore, gingipains increased platelet counts in the blood and activated platelets in the lungs. Arginine-specific gingipains made a greater contribution to P. gingivalis-related morbidity and mortality than lysine-specific gingipains. Thus, inhibiting gingipain may be a useful adjunct treatment for P. gingivalis-mediated aspiration pneumonia. PMID:26613585

  8. Gingipains: Critical Factors in the Development of Aspiration Pneumonia Caused by Porphyromonas gingivalis.

    PubMed

    Benedyk, Małgorzata; Mydel, Piotr Mateusz; Delaleu, Nicolas; Płaza, Karolina; Gawron, Katarzyna; Milewska, Aleksandra; Maresz, Katarzyna; Koziel, Joanna; Pyrc, Krzysztof; Potempa, Jan

    2016-01-01

    Aspiration pneumonia is a life-threatening infectious disease often caused by oral anaerobic and periodontal pathogens such as Porphyromonas gingivalis. This organism produces proteolytic enzymes, known as gingipains, which manipulate innate immune responses and promote chronic inflammation. Here, we challenged mice with P. gingivalis W83 and examined the role of gingipains in bronchopneumonia, lung abscess formation, and inflammatory responses. Although gingipains were not required for P. gingivalis colonization and survival in the lungs, they were essential for manifestation of clinical symptoms and infection-related mortality. Pathologies caused by wild-type (WT) P. gingivalis W83, including hemorrhage, necrosis, and neutrophil infiltration, were absent from lungs infected with gingipain-null isogenic strains or WT bacteria preincubated with gingipain-specific inhibitors. Damage to lung tissue correlated with systemic inflammatory responses, as manifested by elevated levels of TNF, IL-6, IL-17, and C-reactive protein. These effects were unequivocally dependent on gingipain activity. Gingipain activity was also implicated in the observed increase in IL-17 in lung tissues. Furthermore, gingipains increased platelet counts in the blood and activated platelets in the lungs. Arginine-specific gingipains made a greater contribution to P. gingivalis-related morbidity and mortality than lysine-specific gingipains. Thus, inhibition of gingipain may be a useful adjunct treatment for P. gingivalis-mediated aspiration pneumonia.

  9. Roles of the Host Oxidative Immune Response and Bacterial Antioxidant Rubrerythrin during Porphyromonas gingivalis Infection

    PubMed Central

    Yumoto, Hiromichi; Sztukowska, Maryta; Kubica, Malgorzata; Gibson, Frank C; Kurtz, Donald M; Travis, Jim; Collins, L. Vincent; Nguyen, Ky-Anh

    2006-01-01

    The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr) is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase–null) mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase–null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection. PMID:16895445

  10. Abrogation of Neuraminidase Reduces Biofilm Formation, Capsule Biosynthesis, and Virulence of Porphyromonas gingivalis

    PubMed Central

    Li, Chen; Kurniyati; Hu, Bo; Bian, Jiang; Sun, Jianlan; Zhang, Weiyan; Liu, Jun; Pan, Yaping

    2012-01-01

    The oral bacterium Porphyromonas gingivalis is a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide. P. gingivalis exhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence of P. gingivalis remain elusive. In this report, we found that P. gingivalis encodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed that PG0352 is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPg is an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that the PG0352 deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type, in vitro studies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement. In vivo studies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPg is an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity of P. gingivalis, and it can potentially serve as a new target for developing therapeutic agents against P. gingivalis infection. PMID:22025518

  11. Antimicrobial Efficacy of Various Essential Oils at Varying Concentrations against Periopathogen Porphyromonas gingivalis

    PubMed Central

    Grover, Harpreet Singh; Deswal, Himanshu; Agarwal, Preeti

    2016-01-01

    Introduction Porphyromonas gingivalis (P.gingivalis) is a notorious perio-pathogen with the ability to evade host defense mechanism and invade into the periodontal tissues. Many antimicrobial agents have been tested that curb its growth, although these agents tend to produce side effects such as antibiotic resistance and opportunistic infections. Therefore search for naturally occurring anti-microbials with lesser side effects is the need of the hour. Aim The aim of this study was to substantiate the antimicrobial activity of various essential oils; eucalyptus oil, chamomile oil, tea tree oil and turmeric oil against P. gingivalis. Materials and Methods Pure cultures of P. gingivalis were grown on selective blood agar. Antimicrobial efficacy of various concentrations of essential oils (0%, 25%, 50% and 100%) was assessed via disc diffusion test. Zone of inhibition were measured around disc after 48 hours in millimeters. Results Zones of inhibition were directly proportional to the concentration of essential oils tested. At 100% concentration all the tested oils possess antimicrobial activity against P.gingivalis with eucalyptus oil being most effective followed by tea tree oil, chamomile oil and turmeric oil. Conclusion All essential oils tested were effective against P.gingivalis. After testing for their clinical safety they could be developed into local agents to prevent and treat periodontitis. PMID:27790572

  12. Single gavage with Porphyromonas gingivalis reduces acute systemic nitric oxide response in mice.

    PubMed

    Nemec, A; Pavlica, Z; Sentjurc, M; Crossley, D A; Jerin, A; Erzen, D; Zdovc, I; Petelin, M; Skaleric, U

    2008-10-01

    Porphyromonas gingivalis, an important periodontal pathogen, can also induce host responses in distant tissues. P. gingivalis induces nitric oxide (NO) production in immune system cells and non-immune system cells, therefore NO might be involved in an acute systemic host response. Eighteen female BALB/c mice were perorally inoculated with 10(8) colony-forming units live P. gingivalis ATCC 33277. Plasma nitrite and nitrate (NOx) and NO production in lungs, aorta, heart, liver, spleen, kidneys, and brain were measured at intervals after inoculation and compared with levels in 11 control animals. NOx levels were significantly (P = 0.017) lower at 7, 13, and 25 h after P. gingivalis inoculation. A similar trend in NO production occurred in most tested organs, but never reached statistical significance. The correlation between NOx in plasma and NO in liver was positive (Spearman correlation coefficient = 0.81, P = 0.0025) and marginal for kidney (0.58, P = 0.059). Single peroral inoculation of mice with P. gingivalis reduces the acute systemic NO response. As NO is important for host defense, the reduction of NO levels after exposure is likely to delay the host response, increasing the chances that infection with P. gingivalis will become established.

  13. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells.

    PubMed

    Yilmaz, Ozlem; Verbeke, Philippe; Lamont, Richard J; Ojcius, David M

    2006-01-01

    Porphyromonas gingivalis, an important periodontal pathogen, is an effective colonizer of oral tissues. The organism successfully invades, multiplies in, and survives for extended periods in primary gingival epithelial cells (GECs). It is unknown whether P. gingivalis resides in the cytoplasm of infected cells throughout the infection or can spread to adjacent cells over time. We developed a technique based on flow cytofluorometry and fluorescence microscopy to study propagation of the organism at different stages of infection of GECs. Results showed that P. gingivalis spreads cell to cell and that the amount of spreading increases gradually over time. There was a very low level of propagation of bacteria to uninfected cells early in the infection (3 h postinfection), but there were 20-fold and 45-fold increases in the propagation rate after 24 h and 48 h, respectively, of infection. Immunofluorescence microscopy of infected cells suggested that intercellular translocation of P. gingivalis may be mediated through actin-based membrane protrusions, bypassing the need for release of bacteria into extracellular medium. Consistent with these observations, cytochalasin D treatment of infected cells resulted in significant inhibition of bacterial spreading. This study shows for the first time that P. gingivalis disseminates from cell to cell without passing through the extracellular space. This mechanism of spreading may allow P. gingivalis to colonize oral tissues without exposure to the humoral immune response.

  14. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis

    PubMed Central

    Mikuls, Ted R.; Payne, Jeffrey B.; Reinhardt, Richard A.; Thiele, Geoffrey M.; Maziarz, Eileen; Cannella, Amy C.; Holers, V. Michael; Kuhn, Kristine A.; O'Dell, James R.

    2009-01-01

    Summary Antibody titers to P. gingivalis are increased in patients with rheumatoid arthritis and are associated with disease-specific autoimmunity. Background Periodontitis (PD) has been implicated as a risk factor for rheumatoid arthritis (RA). We sought to characterize antibody titers to P. gingivalis (a pathogen in PD) in subjects with RA, PD, and in healthy controls and to examine their relationship with disease autoantibodies. Methods P. gingivalis antibody was measured in subjects with RA (n = 78), PD (n = 39), and in controls (n = 40). Group frequencies of bacterial titer elevations were compared using the Chi-square test and antibody titers were compared using non-parametric tests. Correlations of P. gingivalis titer with C-reactive protein (CRP), antibody to cyclic citrullinated peptide (anti-CCP), and rheumatoid factor (RF) were examined in those with RA while CRP and autoantibody concentrations were compared based on seropositivity to P. gingivalis. Results Antibody titers to P. gingivalis were highest in PD, lowest in controls, and intermediate in RA (p = 0.0003). Elevations in P. gingivalis (titer ≥ 800) were more common in RA and PD (67% and 77%, respectively) than in controls (40%) (p = 0.002). In RA, there were significant correlations with P. gingivalis titer with CRP, anti-CCP-IgM, and -IgG-2. CRP (p = 0.006), anti-CCP-IgM (p = 0.01) and -IgG2 (p = 0.04) concentrations were higher in RA cases with P. gingivalis titers ≥ 800 compared to cases with titers < 800. Conclusion Antibodies to P. gingivalis are more common in RA subjects than controls, although lower than that in PD. Associations of P. gingivalis titers with RA-related autoantibody and CRP concentrations suggests that infection with this organism plays a role in disease risk and progression in RA. PMID:18848647

  15. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages

    PubMed Central

    Agosto, Luis M.; Hirnet, Juliane B.; Michaels, Daniel H.; Shaik-Dasthagirisaheb, Yazdani B.; Gibson, Frank C.; Viglianti, Gregory; Henderson, Andrew J.

    2016-01-01

    Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism. PMID:27639573

  16. Monitoring of dnaK gene expression in Porphyromonas gingivalis by oxygen stress using DNA microarray.

    PubMed

    Araki, Makoto; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Abiko, Yoshimitsu

    2004-06-01

    Porphyromonas gingivalis, a Gram-negative anaerobe associated with adult periodontitis, expresses numerous potential virulence factors. dnaK, a member of the heat shock protein family, functions as a molecular chaperone and plays a role in microbial pathogenicity. However, little is known regarding its gene expression caused by oxygen stress in P. gingivalis. In the present study, a custom-made DNA microarray was designed and used to monitor dnaK gene expression in P. gingivalis caused by oxygen stress. The results demonstrated that dnaK mRNA was up-regulated in a short time, and the DNA microarray results were confirmed by real-time polymerase chain reaction analysis. These findings suggest that oxygen stress stimulates gene expression of dnaK and may have a relationship to the aerotolerance activity of this organism as well as its expression of pathogenesis.

  17. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana.

    PubMed

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future.

  18. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana

    PubMed Central

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137

  19. A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer.

    PubMed

    Hanley, S A; Aduse-Opoku, J; Curtis, M A

    1999-03-01

    A 55-kDa outer membrane protein of Porphyromonas gingivalis W50 is a significant target of the serum immunoglobulin G antibody response of periodontal disease patients and hence may play an important role in host-bacterium interactions in periodontal disease. The gene encoding the 55-kDa antigen (ragB, for receptor antigen B) was isolated on a 9.5-kb partial Sau3AI fragment of P. gingivalis W50 chromosomal DNA in pUC18 by immunoscreening with a monoclonal antibody to this antigen. The 1.6-kb open reading frame (ORF) encoding RagB was located via subcloning and nested-deletion analysis. Sequence analysis demonstrated the presence of an upstream 3.1-kb ORF (ragA) which is cotranscribed with ragB. A number of genetic characteristics suggest that the ragAB locus was acquired by a horizontal gene transfer event. These include a significantly reduced G+C content relative to that of the P. gingivalis chromosome (42 versus 48%) and the presence of mobility elements flanking this locus in P. gingivalis W50. Furthermore, Southern blotting and PCR analyses showed a restricted distribution of this locus in laboratory and clinical isolates of this bacterium. The association of ragAB+ P. gingivalis with clinical status was examined by PCR analysis of subgingival samples. ragAB+ was not detected in P. gingivalis-positive shallow pockets from periodontal disease patients but was present in 36% of the P. gingivalis-positive samples from deep pockets. These data suggest that the ragAB locus was acquired by certain P. gingivalis strains via horizontal gene transfer and that the acquisition of this locus may facilitate the survival of these strains at sites of periodontal destruction.

  20. Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis.

    PubMed

    Mantri, Chinmay K; Chen, Chin-Ho; Dong, Xinhong; Goodwin, Jeffery Shawn; Pratap, Siddharth; Paromov, Victor; Xie, Hua

    2015-02-01

    Porphyromonas gingivalis is a keystone periopathogen that plays an essential role in the progress of periodontitis. Like other gram-negative bacteria, the ability of P. gingivalis to produce outer membrane vesicles is a strategy used to interact with, and survive within its biological niches. Here we compared the protein components associated with vesicles derived from a fimbriated strain (33277) and an afimbriated strain (W83) of P. gingivalis using proteomic analyses. Some well-known virulence factors were identified in vesicles from both strains, such as gingipains and hemagglutinin. In contrast, FimC, FimD, and FimE, minor components of long fimbriae were found exclusively in 33277 vesicles, while proteins with a tetratricopeptide repeat (TPR) domain were unique to W83 vesicles. We found that significantly more 33277 than W83 vesicles were internalized into human oral keratinocytes and gingival fibroblasts. Interestingly, FimA, a well-known adhesin responsible for the attachment and invasion of P. gingivalis into host cells, was not essential for the invasive capabilities of P. gingivalis vesicles. Rather minor components of long fimbriae were required for an efficient invasive activity of vesicles. The most striking finding was that P. gingivalis strains lacking or having a reduced FimA expression showed a significant reduction in vesiculation. These results suggest that production and pathogenicity of P. gingivalis vesicles may largely depend on expression of the fim locus, and that the integration of vesicle production and pathogenicity with fimbrial expression may allow P. gingivalis to confer upon itself certain functional advantages. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Gingipain-dependent augmentation by Porphyromonas gingivalis of phagocytosis of Tannerella forsythia.

    PubMed

    Jung, Y-J; Jun, H-K; Choi, B-K

    2016-12-01

    In the pathogenesis of periodontitis, Porphyromonas gingivalis plays a role as a keystone pathogen that manipulates host immune responses leading to dysbiotic oral microbial communities. Arg-gingipains (RgpA and RgpB) and Lys-gingipain (Kgp) are responsible for the majority of bacterial proteolytic activity and play essential roles in bacterial virulence. Therefore, gingipains are often considered as therapeutic targets. This study investigated the role of gingipains in the modulation by P. gingivalis of phagocytosis of Tannerella forsythia by macrophages. Phagocytosis of T. forsythia was significantly enhanced by coinfection with P. gingivalis in a multiplicity of infection-dependent and gingipain-dependent manner. Mutation of either Kgp or Rgp in the coinfecting P. gingivalis resulted in attenuated enhancement of T. forsythia phagocytosis. Inhibition of coaggregation between the two bacterial species reduced phagocytosis of T. forsythia in mixed infection, and this coaggregation was dependent on gingipains. Inhibition of gingipain protease activities in coinfecting P. gingivalis abated the coaggregation and the enhancement of T. forsythia phagocytosis. However, the direct effect of protease activities of gingipains on T. forsythia seemed to be minimal. Although most of the phagocytosed T. forsythia were cleared in infected macrophages, more T. forsythia remained in cells coinfected with gingipain-expressing P. gingivalis than in cells coinfected with the gingipain-null mutant or infected only with T. forsythia at 24 and 48 h post-infection. Collectively, these results suggest that P. gingivalis, mainly via its gingipains, alters the clearance of T. forsythia, and provide some insights into the role of P. gingivalis as a keystone pathogen.

  2. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice.

    PubMed

    Cai, Yu; Chen, ZhiBin; Liu, Hao; Xuan, Yan; Wang, XiaoXuan; Luan, QingXian

    2015-12-01

    Porphyromonas gingivalis causes inflammation, and leads to the periodontitis in gingival tissue damage and bone resorption. Epigallocatechin-3-gallate (EGCG) is a major polyphenol extract from green tea with plenty of pharmacological functions. The aim of this study was to determine whether continuous oral intake of EGCG would alleviate P. gingivalis-induced periodontitis. Eight-week BALB/c mice were administered with EGCG (0.02%) or vehicle in drinking water. They were fed normal food and orally infected with P. gingivalis every 2days, up to a total of 20 times, and then sacrificed at 15weeks of age. The P. gingivalis-challenged group markedly increased alveolar bone resorption of the maxillae in BALB/c mice by Micro-CT detection, and administration of EGCG resulted in a significant reduction in bone loss. Inflammation cytokine antibody array and enzyme linked immunosorbent assay revealed that some inflammatory mediators in serum were increased by P. gingivalis infection, but were lowered after EGCG treatment. High positive areas of IL-17 and IL-1β in the gingival tissue were observed in the P. gingivalis-challenged mice, and were reduced by EGCG treatment. Real-time polymerase chain reaction (PCR) analyses also showed the expressions of IL-1β, IL-6, IL-17, IL-23, TNF-α and other mediators in gingival tissue were higher in P. gingivalis-challenged mice, and were down-regulated with EGCG treatment, except IL-23. Our results suggest that EGCG, as a natural healthy substance, probably alleviates P. gingivalis-induced periodontitis by anti-inflammatory effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fimbriae-mediated outer membrane vesicle production and invasion of Porphyromonas gingivalis

    PubMed Central

    Mantri, Chinmay K; Chen, Chin-Ho; Dong, Xinhong; Goodwin, Jeffery Shawn; Pratap, Siddharth; Paromov, Victor; Xie, Hua

    2015-01-01

    Porphyromonas gingivalis is a keystone periopathogen that plays an essential role in the progress of periodontitis. Like other gram-negative bacteria, the ability of P. gingivalis to produce outer membrane vesicles is a strategy used to interact with, and survive within its biological niches. Here we compared the protein components associated with vesicles derived from a fimbriated strain (33277) and an afimbriated strain (W83) of P. gingivalis using proteomic analyses. Some well-known virulence factors were identified in vesicles from both strains, such as gingipains and hemagglutinin. In contrast, FimC, FimD, and FimE, minor components of long fimbriae were found exclusively in 33277 vesicles, while proteins with a tetratricopeptide repeat (TPR) domain were unique to W83 vesicles. We found that significantly more 33277 than W83 vesicles were internalized into human oral keratinocytes and gingival fibroblasts. Interestingly, FimA, a well-known adhesin responsible for the attachment and invasion of P. gingivalis into host cells, was not essential for the invasive capabilities of P. gingivalis vesicles. Rather minor components of long fimbriae were required for an efficient invasive activity of vesicles. The most striking finding was that P. gingivalis strains lacking or having a reduced FimA expression showed a significant reduction in vesiculation. These results suggest that production and pathogenicity of P. gingivalis vesicles may largely depend on expression of the fim locus, and that the integration of vesicle production and pathogenicity with fimbrial expression may allow P. gingivalis to confer upon itself certain functional advantages. PMID:25524808

  4. Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia and Prevotella nigrescens in endodontic lesions detected by culture and by PCR.

    PubMed

    Gomes, B P F A; Jacinto, R C; Pinheiro, E T; Sousa, E L R; Zaia, A A; Ferraz, C C R; Souza-Filho, F J

    2005-08-01

    he aim of this study was to investigate the presence of four black-pigmented bacteria, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia and Prevotella nigrescens, in endodontic infections by culture and polymerase chain reaction (PCR) analyses. Microbial samples were obtained from 50 teeth with untreated necrotic pulps (primary infection) and from 50 teeth with failing endodontic treatment (secondary infection). Microbiological strict anaerobic techniques were used for serial dilution, plating, incubation, and identification. For PCR detection, the samples were analyzed using species-specific primers of 16S rDNA and the downstream intergenic spacer region. Culture and PCR detected the test species in 13/100 and 50/100 of the study teeth, respectively. The organisms were cultured from 11/50 (22%) of primarily infected root canal samples and from 2/50 (4%) of secondary root canal samples. PCR detection identified the target species in 32/50 (64%) and 18/50 (36%) of primary and secondary infections, respectively. P. gingivalis was rarely isolated by culture methods (1%), but was the most frequently identified test species by PCR (38%). Similarly, P. endodontalis was not recovered by culture from any tooth studied, but was detected by PCR in 25% of the sampled teeth. PCR-based identification also showed higher detection rates of P. intermedia (33%) and P. nigrescens (22%) than culture (13%). In conclusion, P. gingivalis, P. endodontalis, P. intermedia, and P. nigrescens were identified more frequently in teeth with necrotic pulp than in teeth with failing endodontic treatment. Also, a higher frequency of black-pigmented species was detected by PCR than by culture.

  5. Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease

    PubMed Central

    Verma, Raj K.; Rajapakse, Sunethra; Meka, Archana; Hamrick, Clayton; Pola, Sheela; Bhattacharyya, Indraneel; Nair, Madhu; Wallet, Shannon M.; Aukhil, Ikramuddin; Kesavalu, Lakshmyya

    2010-01-01

    Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease. PMID:20592756

  6. Rapid Myeloid Cell Transcriptional and Proteomic Responses to Periodontopathogenic Porphyromonas gingivalis

    PubMed Central

    Nares, Salvador; Moutsopoulos, Niki M.; Angelov, Nikola; Rangel, Zoila G.; Munson, Peter J.; Sinha, Neha; Wahl, Sharon M.

    2009-01-01

    Long-lived monocytes, macrophages, and dendritic cells (DCs) are Toll-like receptor-expressing, antigen-presenting cells derived from a common myeloid lineage that play key roles in innate and adaptive immune responses. Based on immunohistochemical and molecular analyses of inflamed tissues from patients with chronic destructive periodontal disease, these cells, found in the inflammatory infiltrate, may drive the progressive periodontal pathogenesis. To investigate early transcriptional signatures and subsequent proteomic responses to the periodontal pathogen, Porphyromonas gingivalis, donor-matched human blood monocytes, differentiated DCs, and macrophages were exposed to P. gingivalis lipopolysaccharide (LPS) and gene expression levels were measured by oligonucleotide microarrays. In addition to striking differences in constitutive transcriptional profiles between these myeloid populations, we identify a P. gingivalis LPS-inducible convergent, transcriptional core response of more than 400 annotated genes/ESTs among these populations, reflected by a shared, but quantitatively distinct, proteomic response. Nonetheless, clear differences emerged between the monocytes, DCs, and macrophages. The finding that long-lived myeloid inflammatory cells, particularly DCs, rapidly and aggressively respond to P. gingivalis LPS by generating chemokines, proteases, and cytokines capable of driving T-helper cell lineage polarization without evidence of corresponding immunosuppressive pathways highlights their prominent role in host defense and progressive tissue pathogenesis. The shared, unique, and/or complementary transcriptional and proteomic profiles may frame the context of the host response to P. gingivalis, contributing to the destructive nature of periodontal inflammation. PMID:19264901

  7. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice.

    PubMed

    Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andrés G; Gibson, Frank C; Hamilton, James A; Genco, Caroline A

    2011-03-01

    Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Apolipoprotein E-deficient (ApoE-/-) mice were orally infected with P. gingivalis, and magnetic resonance imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Porphyromonas gingivalis Accelerates Inflammatory Atherosclerosis in the Innominate Artery of ApoE Deficient Mice

    PubMed Central

    Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andres G.; Gibson, Frank C.; Hamilton, James A.; Genco, Caroline A.

    2011-01-01

    Objective Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Methods and Results Apolipoprotein E-deficient (ApoE−/−) mice were orally infected with P. gingivalis, and Magnetic Resonance Imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. Conclusions These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in-vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. PMID:21251656

  9. Evaluation of efficacy of probiotic (BIFILAC) on Porphyromonas gingivalis: In vitro study

    PubMed Central

    Elavarasu, Sugumari; Suthanthiran, Thangakumaran; Thangavelu, Arthiie; Kanagaraj, Shiva Shangkharii; Mohandas, Lakshmi; Sekar, Santhosh

    2016-01-01

    Background: Periodontitis is inflammation of the periodontium and causes destruction of the connective tissue attachment of the teeth and alveolar bone. Porphyromonas gingivalis is the primary pathogen for the destructive periodontal diseases. The aim of the study is to evaluate the efficacy of probiotic on P. gingivalis. Materials and Methods: An in vitro study was done to analyze the effectiveness of probiotic BIFILAC on P. gingivalis was determined using disc diffusion method. The minimum inhibitory concentration for BIFILAC lozenges was also determined using microdilution method. Results: In disc diffusion method, the antibacterial activity of BIFILAC was analyzed using various concentrations such as 2.5, 5, 10, and 20 μg/ml, of which 20 μg/ml was proved to have a maximum inhibitory zone of 22 mm. In microdilution method, concentration ranging from 7.25 to 100 μg/ml was used and 25 μg/ml was found to have the minimum inhibitory effect on P. gingivalis. Conclusion: The present in vitro study confirms that probiotic BIFILAC has an antimicrobial effect against P. gingivalis. Thus, proving that BIFILAC probiotic can be used as an adjunctive therapeutic modality in periodontitis. PMID:27829746

  10. Porphyromonas gingivalis and E. coli Lipopolysaccharide Exhibit Different Systemic but Similar Local Induction of Inflammatory Markers

    PubMed Central

    Liu, Rongkun; Desta, Tesfahun; Raptis, Markos; Darveau, Richard P.; Graves, Dana T.

    2009-01-01

    Background Porphyromonas gingivalis is a gram-negative bacterium that is an important etiologic agent of human adult periodontitis. The goal of the study was to test the hypothesis that two different isoforms, PgLPS1435/1449 and PgLPS1690 exhibit differences in their capacity to stimulate systemic versus local responses compared to E. coli LPS. Methods Lipopolysaccharide (LPS) was inoculated into the scalp of mice and the response was measured locally at the site of site of inoculation and systemically in the heart/aorta. VCAM-1 was assessed at the protein level by ELISA and VCAM-1, E-selectin, and ICAM-1 at the RNA level of RNase protection assay. Serum TNF-α levels were also measured. Results E. coli LPS and both isoforms of P. gingivalis LPS groups were relatively potent in stimulating expression of inflammatory markers with E. coli LPS being somewhat more potent. In contrast, when the systemic response was measured in the heart/aorta, E. coli but not P. gingivalis LPS significantly induced inflammatory markers. At moderate to low doses (1 and 10 ug per injection) serum TNF–α levels were minimally induced by P. gingivalis LPS compared to E. coli LPS. Conclusion The results indicate that both forms of P. gingivalis LPS stimulate an inflammatory response when injected into connective tissue but are minimally stimulatory when a systemic response is measured. In contrast E. coli LPS is a potent stimulus at both the systemic and local level. PMID:18597607

  11. Role of vimA in cell surface biogenesis in Porphyromonas gingivalis

    PubMed Central

    Osbourne, Devon O.; Aruni, Wilson; Roy, Francis; Perry, Christopher; Sandberg, Lawrence; Muthiah, Arun; Fletcher, Hansel M.

    2010-01-01

    The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins. PMID:20378652

  12. Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway.

    PubMed

    Takeuchi, Hiroki; Furuta, Nobumichi; Morisaki, Ichijiro; Amano, Atsuo

    2011-05-01

    Gingival epithelial cells function as an innate host defence system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well-known periodontal pathogen, can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. However, it is poorly understood how this pathogen exits from infected cells for further transcellular spreading. The present study was performed to elucidate the cellular machinery exploited by P. gingivalis to exit from immortalized human gingival epithelial cells. P. gingivalis was shown to be internalized with early endosomes positive for the FYVE domain of EEA1 and transferrin receptor, and about half of the intracellular bacteria were then sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms were sorted to Rab11- and RalA-positive recycling endosomes. Inhibition experiments revealed that bacterial exit was dependent on actin polymerization, lipid rafts and microtubule assembly. Dominant negative forms and RNAi knockdown of Rab11, RalA and exocyst complex subunits (Sec5, Sec6 and Exo84) significantly disturbed the exit of P. gingivalis. These results strongly suggest that the recycling pathway is exploited by intracellular P. gingivalis to exit from infected cells to neighbouring cells as a mechanism of cell-to-cell spreading. © 2011 Blackwell Publishing Ltd.

  13. Lactoferrin inhibits Porphyromonas gingivalis proteinases and has sustained biofilm inhibitory activity.

    PubMed

    Dashper, Stuart G; Pan, Yu; Veith, Paul D; Chen, Yu-Yen; Toh, Elena C Y; Liu, Sze Wei; Cross, Keith J; Reynolds, Eric C

    2012-03-01

    Porphyromonas gingivalis is a bacterial pathogen associated with chronic periodontitis that results in destruction of the tooth's supporting tissues. The major virulence determinants of P. gingivalis are its cell surface Arg- and Lys-specific cysteine proteinases, RgpA/B and Kgp. Lactoferrin (LF), an 80-kDa iron-binding glycoprotein found in saliva and gingival crevicular fluid, is believed to play an important role in innate immunity. In this study, bovine milk LF displayed proteinase inhibitory activity against P. gingivalis whole cells, significantly inhibiting both Arg- and Lys-specific proteolytic activities. LF inhibited the Arg-specific activity of purified RgpB, which lacks adhesin domains, and also inhibited the same activity of the RgpA/Kgp proteinase-adhesin complexes in a time-dependent manner, with a first-order inactivation rate constant (k(inact)) of 0.023 min(-1) and an inhibitor affinity constant (K(I)) of 5.02 μM. LF inhibited P. gingivalis biofilm formation by >80% at concentrations above 0.625 μM. LF was relatively resistant to hydrolysis by P. gingivalis cells but was cleaved into two major polypeptides (53 and 33 kDa) at R(284) to S(285), as determined by in-source decay mass spectrometry; however, these polypeptides remained associated with each other and retained inhibitory activity. The biofilm inhibitory activity of LF against P. gingivalis was not attributed to direct antibacterial activity, as LF displayed little growth inhibitory activity against planktonic cells. As the known RgpA/B and Kgp inhibitor N-α-p-tosyl-l-lysine chloromethylketone also inhibited P. gingivalis biofilm formation, the antibiofilm effect of LF may at least in part be attributable to its antiproteinase activity.

  14. Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis.

    PubMed

    Cai, Yu; Kurita-Ochiai, Tomoko; Hashizume, Tomomi; Yamamoto, Masafumi

    2013-02-01

    The purpose of this study was to determine whether epigallocatechin-3-gallate (EGCG) ameliorates Porphyromonas gingivalis-induced atherosclerosis. EGCG is a polyphenol extract from green tea with health benefits and P. gingivalis is shown here to accelerate atheroma formation in a murine model. Apolipoprotein E knockout mice were administered EGCG or vehicle in drinking water; they were then fed high-fat diets and injected with P. gingivalis three times a week for 3 weeks. Mice were then killed at 15 weeks. Atherosclerotic plaques in the proximal aorta were determined by Oil Red O staining. Atherosclerosis risk factors in serum, liver or aorta were analysed using cytokine antibody arrays, enzyme-linked immunosorbent assay and real-time PCR. Atherosclerotic lesion areas of the aortic sinus caused by P. gingivalis infection decreased in EGCG-treated groups, wherein EGCG reduced the production of C-reactive protein, monocyte chemoattractant protein-1, and oxidized low-density lipoprotein (LDL), and slightly lowered LDL/very LDL cholesterol in P. gingivalis-challenged mice serum. Furthermore, the increase in CCL2, MMP-9, ICAM-1, HSP60, CD44, LOX-1, NOX-4, p22phox and iNOS gene expression levels in the aorta of P. gingivalis-challenged mice were reduced in EGCG-treated mice. However, HO-1 mRNA levels were elevated by EGCG treatment, suggesting that EGCG, as a natural substance, inhibits P. gingivalis-induced atherosclerosis through anti-inflammatory and antioxidative effects. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Lactoferrin Inhibits Porphyromonas gingivalis Proteinases and Has Sustained Biofilm Inhibitory Activity

    PubMed Central

    Dashper, Stuart G.; Pan, Yu; Veith, Paul D.; Chen, Yu-Yen; Toh, Elena C. Y.; Liu, Sze Wei; Cross, Keith J.

    2012-01-01

    Porphyromonas gingivalis is a bacterial pathogen associated with chronic periodontitis that results in destruction of the tooth's supporting tissues. The major virulence determinants of P. gingivalis are its cell surface Arg- and Lys-specific cysteine proteinases, RgpA/B and Kgp. Lactoferrin (LF), an 80-kDa iron-binding glycoprotein found in saliva and gingival crevicular fluid, is believed to play an important role in innate immunity. In this study, bovine milk LF displayed proteinase inhibitory activity against P. gingivalis whole cells, significantly inhibiting both Arg- and Lys-specific proteolytic activities. LF inhibited the Arg-specific activity of purified RgpB, which lacks adhesin domains, and also inhibited the same activity of the RgpA/Kgp proteinase-adhesin complexes in a time-dependent manner, with a first-order inactivation rate constant (kinact) of 0.023 min−1 and an inhibitor affinity constant (KI) of 5.02 μM. LF inhibited P. gingivalis biofilm formation by >80% at concentrations above 0.625 μM. LF was relatively resistant to hydrolysis by P. gingivalis cells but was cleaved into two major polypeptides (53 and 33 kDa) at R284 to S285, as determined by in-source decay mass spectrometry; however, these polypeptides remained associated with each other and retained inhibitory activity. The biofilm inhibitory activity of LF against P. gingivalis was not attributed to direct antibacterial activity, as LF displayed little growth inhibitory activity against planktonic cells. As the known RgpA/B and Kgp inhibitor N-α-p-tosyl-l-lysine chloromethylketone also inhibited P. gingivalis biofilm formation, the antibiofilm effect of LF may at least in part be attributable to its antiproteinase activity. PMID:22214780

  16. Expression patterns of genes induced by oxidative stress in Porphyromonas gingivalis.

    PubMed

    Meuric, V; Gracieux, P; Tamanai-Shacoori, Z; Perez-Chaparro, J; Bonnaure-Mallet, M

    2008-08-01

    Porphyromonas gingivalis, a gram-negative anaerobic bacterium, is a major periopathogen whose transmission from host to host involves exposure to atmospheric oxygen. P. gingivalis contains genetic factors that function in an oxidative stress response, but their expression has not been analyzed during exposure to atmospheric oxygen. The aim of this study was to obtain a better understanding of atmospheric adaptation of P. gingivalis. The aerotolerance of wild-type and oxyR mutant P. gingivalis strains were determined, and quantitative polymerase chain reaction was performed to analyze gene expression patterns in response to exposure to atmospheric oxygen. The analyzed P. gingivalis genes encoded proteins involved in oxidative response (oxyR, ahpC-F, batA, dps, ftn, tpx) as well as several major virulence factors (hagA, hagB, hagE, rgpA, rgpB, hem). Our results demonstrated a critical role for the oxyR gene in the aerotolerance of P. gingivalis. The ahpC-F, batA, and hem genes were slightly overexpressed (between 1.65-fold and 2-fold) after exposure to atmospheric oxygen compared to anaerobic conditions. The level of transcription of dps, ftn, tpx, and rgpA genes increased more than 2.5-fold, and the expression of ahpC-F, dps, ftn, and tpx was partially or completely OxyR-dependent. A different transcription pattern of P. gingivalis genes was observed, depending on the stimulus of oxidative stress. We present new evidence that the expression of tpx, encoding a thiol peroxidase, is partially OxyR-dependent and is induced after atmospheric oxygen exposure.

  17. Adhesion of Actinomyces viscosus to Porphyromonas (Bacteroides) gingivalis-coated hexadecane droplets.

    PubMed Central

    Rosenberg, M; Buivids, I A; Ellen, R P

    1991-01-01

    Interbacterial adhesion (coadhesion) is considered a major determinant of dental plaque ecology. In this report, we studied several aspects of the adhesion of Porphyromonas (Bacteroides) gingivalis to hexadecane in order to use the liquid hydrocarbon as a convenient substratum for coadhesion assays. Washed suspensions of hydrophobic P. gingivalis 2561 cells were vortexed with hexadecane to yield highly stable cell-coated droplets. Kinetics of coadhesion between Actinomyces viscosus cells and P. gingivalis-coated hexadecane droplets (PCHD) was subsequently studied. Aliquots of PCHD were added to A. viscosus suspensions, and the mixtures were gently rotated. Avid adhesion of A. viscosus cells to the immobilized P. gingivalis layer could be readily measured by the decrease in turbidity in the aqueous phase, following phase separation. Despite the ability of A. viscosus cells to adsorb to hexadecane following vigorous mixing, gentle mixing did not appreciably promote adhesion to bare hexadecane. Moreover, extensive microscopic examinations revealed that A. viscosus cells adhered exclusively to the bound P. gingivalis cells rather than to exposed areas of hexadecane. Coadhesion of A. viscosus to the PCHD appeared to follow first-order kinetics, attaining 80% levels within 30 min. Electron micrographs revealed A. viscosus cells adhering to the P. gingivalis cell layer adsorbed at the hexadecane-water interface. Interestingly, P. gingivalis cells did not appear to penetrate the hexadecane. A viscosus mutants lacking type 1 or type 2 fimbriae or both were still able to bind to the PCHD. No obvious correlation was observed between relative hydrophobicity of A. viscosus strains and their binding to PCHD. However, defatted bovine serum albumin, an inhibitor of hydrophobic interactions, was the most potent inhibitor among those tested. The data suggest that this approach provides a simple, quantitative technique for studying kinetics of bacterial coadhesion which is amenable

  18. Autoantibodies From Single Circulating Plasmablasts React With Citrullinated Antigens and Porphyromonas gingivalis in Rheumatoid Arthritis.

    PubMed

    Li, Song; Yu, Yangsheng; Yue, Yinshi; Liao, Hongyan; Xie, Wanqin; Thai, Jessica; Mikuls, Ted R; Thiele, Geoffrey M; Duryee, Michael J; Sayles, Harlan; Payne, Jeffrey B; Klassen, Lynell W; O'Dell, James R; Zhang, Zhixin; Su, Kaihong

    2016-03-01

    Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA). However, the molecular basis for ACPA production is still unclear. The purpose of this study was to determine if circulating plasmablasts from RA patients produce ACPAs and whether Porphyromonas gingivalis facilitates the generation of ACPAs. Using a single-cell antibody cloning approach, we generated 217 and 110 monoclonal recombinant antibodies from circulating plasmablasts from 7 RA patients and 4 healthy controls, respectively. Antibody reactivity with citrullinated antigens was tested by a second-generation anti-cyclic citrullinated peptide (anti-CCP) kit and by enzyme-linked immunosorbent assays (ELISAs) against citrullinated human antigens. Antibody reactivity with P gingivalis was tested by ELISAs against outer membrane antigens (OMAs) and citrullinated enolase from P gingivalis. Approximately 19.5% of plasmablast-derived antibodies from anti-CCP-positive RA patients, but none from 1 anti-CCP-negative RA patient or the healthy controls, specifically recognized citrullinated antigens. The immunoglobulin genes encoding these ACPAs were highly mutated, with increased ratios of replacement mutations to silent mutations, suggesting the involvement of active antigen selection in ACPA generation. Interestingly, 63% of the ACPAs cross-reacted with OMAs and/or citrullinated enolase from P gingivalis. The reactivity of ACPAs against citrullinated proteins from P gingivalis was confirmed by immunoblotting and mass spectrometry. Furthermore, some germline-reverted ACPAs retained their reactivity with P gingivalis antigens but completely lost their reactivity with citrullinated human antigens. These results suggest that circulating plasmablasts in RA patients produce ACPAs and that this process may be facilitated by anti-P gingivalis immune responses. © 2016, American College of Rheumatology.

  19. Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis

    PubMed Central

    Lenzo, Jason C.; Fong, Shao B.; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Tissue macrophages are amongst the first immune cells to respond to bacteria and depending on the cytokine profile at the infection site, macrophages are primed to react to infection in different ways. Priming of naive macrophages with IFN-γ produces a classical pro-inflammatory, antibacterial M1 macrophage after TLR ligation, whereas priming with IL-4 induces an anti-inflammatory tissue-repair M2 phenotype. Previous work has shown that M1 are preferentially generated in gingival tissue following infection with P. gingivalis. However, few studies have investigated the interactions of macrophage subsets with P. gingivalis cells. The aim of this study was to determine the ability of naive, M1 and M2 macrophages to phagocytose P. gingivalis and investigate how this interaction affects both the bacterial cell and the macrophage. M1 and M2 macrophages were both found to have enhanced phagocytic capacity compared with that of naive macrophages, however only the naive and M1 macrophages were able to produce a respiratory burst in order to clear the bacteria from the phagosome. P. gingivalis was found to persist in naive and M2, but not M1 macrophages for 24 hours. Phagocytosis of P. gingivalis also induced high levels of TNF-α, IL-12 and iNOS in M1 macrophages, but not in naive or M2 macrophages. Furthermore, infection of macrophages with P. gingivalis at high bacteria to macrophage ratios, while inducing an inflammatory response, was also found to be deleterious to macrophage longevity, with high levels of apoptotic cell death found in macrophages after infection. The activation of M1 macrophages observed in this study may contribute to the initiation and maintenance of a pro-inflammatory state during chronic periodontitis. PMID:27383471

  20. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    PubMed

    Zhou, Wei; Zhang, Xuan; Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    "Perioceutics" including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential "perioceutics" treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence factors (kgp, rgpA, rgpB, hag

  1. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    PubMed

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Case of a cerebral abscess caused by Porphyromonas gingivalis in a subject with periodontitis

    PubMed Central

    Grisar, Koenraad; Maes, Honorine; Politis, Constantinus

    2017-01-01

    We report the case of a 65-year-old man presenting with generalised seizures after developing a right frontal brain abscess. Stereotactic aspiration and subsequent matrix assisted laser desorption/ionisation time-of-flight analyzer (MALDI-TOF) spectrometry revealed Porphyromonas gingivalis as the only causative anaerobe microorganism. Secondary incision and drainage was required due to neurological deterioration with increased dimensions of the abscess, intracranial pressure and formation of a subdural occipitoparietal empyema. Oral imaging was positive for apical periodontitis of multiple elements; therefore, the remaining dentition was removed. Targeted antibiotic treatment included intravenous ceftriaxone and ornidazole. The patient was discharged to our revalidation unit 59 days after admission to make a full recovery. To the best of our knowledge, this is the sixth reported case of P. gingivalis causing an intracranial abscess and the third case of a true intracerebral parenchymal abscess caused by this bacterium. PMID:28228396

  3. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line

    PubMed Central

    How, Kah Yan; Song, Keang Peng; Chan, Kok Gan

    2016-01-01

    Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity. PMID:26903954

  4. Interaction of a trypsin-like enzyme of Porphyromonas gingivalis W83 with antithrombin III.

    PubMed

    Curtis, M A; Slaney, J M; Carman, R J; Pemberton, P A

    1993-04-01

    We have previously observed that trypsin-like activity in Porphyromonas gingivalis culture supernatants is inhibitable by the plasma arg-serpin antithrombin III (ATIII). This report demonstrates that a partially purified P. gingivalis trypsin-like enzyme (M(r) 47,000) is inhibited by ATIII with an association rate constant (k(ass)) of 5.65 x 10(4) M-1 s-1 but does not form SDS-stable complexes. Heparin enhances the k(ass) and stabilizes the complexes but in either case such inhibition is temporary and results in ATIII inactivation by reactive centre proteolysis between R393-S394. In the absence of heparin this is accompanied by N-terminal cleavage between K39-I40.

  5. Case of a cerebral abscess caused by Porphyromonas gingivalis in a subject with periodontitis.

    PubMed

    Van der Cruyssen, Frederic; Grisar, Koenraad; Maes, Honorine; Politis, Constantinus

    2017-02-22

    We report the case of a 65-year-old man presenting with generalised seizures after developing a right frontal brain abscess. Stereotactic aspiration and subsequent matrix assisted laser desorption/ionisation time-of-flight analyzer (MALDI-TOF) spectrometry revealed Porphyromonas gingivalis as the only causative anaerobe microorganism. Secondary incision and drainage was required due to neurological deterioration with increased dimensions of the abscess, intracranial pressure and formation of a subdural occipitoparietal empyema. Oral imaging was positive for apical periodontitis of multiple elements; therefore, the remaining dentition was removed. Targeted antibiotic treatment included intravenous ceftriaxone and ornidazole. The patient was discharged to our revalidation unit 59 days after admission to make a full recovery. To the best of our knowledge, this is the sixth reported case of P. gingivalis causing an intracranial abscess and the third case of a true intracerebral parenchymal abscess caused by this bacterium. 2017 BMJ Publishing Group Ltd.

  6. Hyperlipidemia Impaired Innate Immune Response to Periodontal Pathogen Porphyromonas gingivalis in Apolipoprotein E Knockout Mice

    PubMed Central

    Yan, Fuhua; Xiao, Yin

    2013-01-01

    A finely-tuned innate immune response plays a pivotal role in protecting host against bacterial invasion during periodontal disease progression. Hyperlipidemia has been suggested to exacerbate periodontal health condition. However, the underlying mechanism has not been addressed. In the present study, we investigated the effect of hyperlipidemia on innate immune responses to periodontal pathogen Porphyromonas gingivalis infection. Apolipoprotein E-deficient and wild-type mice at the age of 20 weeks were used for the study. Peritoneal macrophages were isolated and subsequently used for the study of viable P. gingivalis infection. ApoE−/− mice demonstrated inhibited iNOS production and impaired clearance of P. gingivalis in vitro and in vivo; furthermore, ApoE−/− mice displayed disrupted cytokine production pattern in response to P. gingivalis, with a decreased production of tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1. Microarray data demonstrated that Toll-like receptor (TLR) and NOD-like receptor (NLR) pathway were altered in ApoE−/− mice macrophages; further analysis of pattern recognition receptors (PRRs) demonstrated that expression of triggering receptors on myeloid cells-1 (TREM-1), an amplifier of the TLR and NLR pathway, was decreased in ApoE−/− mice macrophages, leading to decreased recruitment of NF-κB onto the promoters of the TNF-α and IL-6. Our data suggest that in ApoE−/− mice hyperlipidemia disrupts the expression of PRRs, and cripples the host’s capability to generate sufficient innate immune response to P. gingivalis, which may facilitate immune evasion, subgingival colonization and establishment of P. gingivalis in the periodontal niche. PMID:23977160

  7. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors

    PubMed Central

    Dashper, Stuart G.; Mitchell, Helen L.; Seers, Christine A.; Gladman, Simon L.; Seemann, Torsten; Bulach, Dieter M.; Chandry, P. Scott; Cross, Keith J.; Cleal, Steven M.; Reynolds, Eric C.

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (KgpcatI and KgpcatII) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors. PMID:28184216

  8. Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: disparate diseases with commonalities in pathogenesis through TLRs.

    PubMed

    Gibson, Frank C; Genco, Caroline A

    2007-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. Furthermore hyperlipidemic mice deficient in TLR2, TLR4, and MyD88 signaling exhibit diminished inflammatory responses and decreased atherosclerosis. Accumulating evidence has implicated specific infectious agents including the periodontal disease pathogen Porphyromonas gingivalis in the progression of atherosclerosis. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen P. gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. We have established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate immune signaling in the context of local and distant chronic inflammation induced by this pathogen. We have demonstrated that P. gingivalis requires TLR2 to induce oral inflammatory bone lose in mice. Furthermore, we have demonstrated that P. gingivalis infection accelerates atherosclerosis in hyperlipidemic mice with an associated increase in expression of TLR2 and TLR4 in atherosclerotic lesions. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. Improved understanding of the mechanisms driving infection, and chronic inflammation during atherosclerosis may ultimately provide new targets for therapy.

  9. Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota.

    PubMed

    Kramer, Carolyn D; Simas, Alexandra M; He, Xianbao; Ingalls, Robin R; Weinberg, Ellen O; Genco, Caroline Attardo

    2017-06-01

    Mounting evidence in humans supports an etiological role for the microbiota in inflammatory atherosclerosis. Atherosclerosis is a progressive disease characterized by accumulation of inflammatory cells and lipids in vascular tissue. While retention of lipoprotein into the sub-endothelial vascular layer is believed to be the initiating stimulus leading to the development of atherosclerosis, activation of multiple pathways related to vascular inflammation and endothelial dysfunction sustain the process by stimulating recruitment of leukocytes and immune cells into the sub-endothelial layer. The Gram-negative oral pathogen Porphyromonas gingivalis has been associated with the development and acceleration of atherosclerosis in humans and these observations have been validated in animal models. It has been proposed that common mechanisms of immune signaling link stimulation by lipids and pathogens to vascular inflammation. Despite the common outcome of P. gingivalis and lipid feeding on atherosclerosis progression, we established that these pro-atherogenic stimuli induced distinct gene signatures in the ApoE(-/-) mouse model of atherosclerosis. In this study, we further defined the distinct roles of dietary lipids and P. gingivalis infection on atherosclerosis progression and the gut microbiota. We demonstrate that diet-induced lipid lowering resulted in less atherosclerotic plaque in ApoE(-/-) mice compared to ApoE(-/-) mice continuously fed a Western diet. However, the effect of diet-induced lipid lowering on plaque accumulation was blunted by P. gingivalis infection. Using principal component analysis and hierarchical clustering, we demonstrate that dietary intervention as well as P. gingivalis infection result in distinct bacterial communities in fecal and cecal samples of ApoE(-/-) mice as compared to ApoE(-/-) mice continuously fed either a Western diet or a normal chow diet. Collectively, we identified distinct microbiota changes accompanying atherosclerotic

  10. Neutrophils alter epithelial response to Porphyromonas gingivalis in a gingival crevice model

    PubMed Central

    Bondy-Carey, Jessica L.; Galicia, Johnah; Bagaitkar, Juhi; Potempa, Jan S.; Potempa, Barbara; Kinane, Denis F.; Veillard, Florian; Scott, David A.

    2012-01-01

    Summary A gingival crevice model (epithelial cell- Porphyromonas gingivalis – neutrophil) was established and used to profile gingipain, matrix metalloproteinase, MMP mediators (NGAL and TIMP-1) and cytokine networks. Smoking is the primary environmental risk factor for periodontitis. Therefore, the influence of cigarette smoke extract (CSE) was also monitored in the same model. P. gingivalis alone induced low levels of IL-1β and IL-8 from epithelial cells, but high levels of both cytokines were produced on the addition of neutrophils. CSE-exposure (100 and 1000 ng/ml nicotine equivalency) significantly compromised P. gingivalis-induced cytokine secretion (both p < 0.05). P. gingivalis induced impressive secretion of NGAL (p < 0.05) which was not influenced by CSE. The influence of CSE on gingipains production was strain-specific. Purified gingipains effectively and rapidly degraded both TIMP-1 and MMP-9. Induction of large amounts of NGAL, degradation of TIMP-1, and increased gingipain activity would each be expected to prolong collagen degradation and promote disease progression. However, gingipains also degrade MMP-9. Thus, P. gingivalis exerts a complex influence on the proteolytic balance of a gingival crevice model. CSE-exposure reduces the pro-inflammatory cytokine burden, which may be expected to promote P. gingivalis survival. In addition to novel findings that provide mechanistic insight into periodontal disease progression, these results are in keeping with the recognized clinical dogma of decreased inflammation / increased disease in smokers. Thus, this straightforward gingival crevice model is established as a suitable vehicle for the elucidation of mechanisms that contribute to susceptibility to periodontitis. PMID:23193955

  11. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia.

    PubMed

    Wakabayashi, Hiroyuki; Yamauchi, Koji; Kobayashi, Tetsuo; Yaeshima, Tomoko; Iwatsuki, Keiji; Yoshie, Hiromasa

    2009-08-01

    Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with >or=130 microg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and >or=6 microg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (>or=8 microg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.

  12. The core genome of the anaerobic oral pathogenic bacterium Porphyromonas gingivalis

    PubMed Central

    2010-01-01

    Background The Gram negative anaerobic bacterium Porphyromonas gingivalis has long been recognized as a causative agent of periodontitis. Periodontitis is a chronic infectious disease of the tooth supporting tissues eventually leading to tooth-loss. Capsular polysaccharide (CPS) of P. gingivalis has been shown to be an important virulence determinant. Seven capsular serotypes have been described. Here, we used micro-array based comparative genomic hybridization analysis (CGH) to analyze a representative of each of the capsular serotypes and a non-encapsulated strain against the highly virulent and sequenced W83 strain. We defined absent calls using Arabidopsis thaliana negative control probes, with the aim to distinguish between aberrations due to mutations and gene gain/loss. Results Our analyses allowed us to call aberrant genes, absent genes and divergent regions in each of the test strains. A conserved core P. gingivalis genome was described, which consists of 80% of the analyzed genes from the sequenced W83 strain. The percentage of aberrant genes between the test strains and control strain W83 was 8.2% to 13.7%. Among the aberrant genes many CPS biosynthesis genes were found. Most other virulence related genes could be found in the conserved core genome. Comparing highly virulent strains with less virulent strains indicates that hmuS, a putative CobN/Mg chelatase involved in heme uptake, may be a more relevant virulence determinant than previously expected. Furthermore, the description of the 39 W83-specific genes could give more insight in why this strain is more virulent than others. Conclusion Analyses of the genetic content of the P. gingivalis capsular serotypes allowed the description of a P. gingivalis core genome. The high resolution data from three types of analysis of triplicate hybridization experiments may explain the higher divergence between P. gingivalis strains than previously recognized. PMID:20920246

  13. Sialidase and Sialoglycoproteases Can Modulate Virulence in Porphyromonas gingivalis ▿ †

    PubMed Central

    Aruni, Wilson; Vanterpool, Elaine; Osbourne, Devon; Roy, Francis; Muthiah, Arun; Dou, Yuetan; Fletcher, Hansel M.

    2011-01-01

    The Porphyromonas gingivalis recombinant VimA can interact with the gingipains and several other proteins, including a sialidase. Sialylation can be involved in protein maturation; however, its role in virulence regulation in P. gingivalis is unknown. The three sialidase-related proteins in P. gingivalis showed the characteristic sialidase Asp signature motif (SXDXGXTW) and other unique domains. To evaluate the roles of the associated genes, randomly chosen P. gingivalis isogenic mutants created by allelic exchange and designated FLL401 (PG0778::ermF), FLL402 (PG1724::ermF), and FLL403 (PG0352::ermF-ermAM) were characterized. Similar to the wild-type strain, FLL402 and FLL403 displayed a black-pigmented phenotype in contrast to FLL401, which was not black pigmented. Sialidase activity in P. gingivalis FLL401 was reduced by approximately 70% in comparison to those in FLL402 and FLL403, which were reduced by approximately 42% and 5%, respectively. Although there were no changes in the expression of the gingipain genes, their activities were reduced by 60 to 90% in all the isogenic mutants compared to that for the wild type. Immunoreactive bands representing the catalytic domains for RgpA, RgpB, and Kgp were present in FLL402 and FLL403 but were missing in FLL401. While adhesion was decreased, the capacity for invasion of epithelial cells by the isogenic mutants was increased by 11 to 16% over that of the wild-type strain. Isogenic mutants defective in PG0778 and PG0352 were more sensitive to hydrogen peroxide than the wild type. Taken together, these results suggest that the P. gingivalis sialidase activity may be involved in regulating gingipain activity and other virulence factors and may be important in the pathogenesis of this organism. PMID:21502589

  14. Porphyromonas gingivalis gingipain is involved in the detachment and aggregation of Aggregatibacter actinomycetemcomitans biofilm.

    PubMed

    Haraguchi, A; Miura, M; Fujise, O; Hamachi, T; Nishimura, F

    2014-06-01

    Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are major periodontal pathogens that cause several types of periodontal disease. Our previous study suggested that P. gingivalis gingipains secreted in the subgingival environment are related to the detachment of A.actinomycetemcomitans biofilms. However, it remains unclear whether arginine-specific cysteine proteinase (Rgp) and lysine-specific proteinase (Kgp) play different roles in the detachment of A. actinomycetemcomitans biofilm. The aim of this study was to investigate possible disruptive roles of Kgp and Rgp in the aggregation and attachment of A. actinomycetemcomitans. While P. gingivalis ATCC33277 culture supernatant has an ability to decrease autoaggregation and coaggregation of A. actinomycetemcomitans cells, neither the boiled culture supernatant of ATCC33277 nor the culture supernatant of KDP136 showed this ability. The addition of KYT-1 and KYT-36, specific inhibitors of Rgp and Kgp, respectively, showed no influence on the ability of P. gingivalis culture supernatant. The result of gelatin zymography suggested that other proteases processed by gingipains mediated the decrease of A. actinomycetemcomitans aggregations. We also examined the biofilm-destructive effect of gingipains by assessing the detachment of A. actinomycetemcomitans from polystyrene surfaces. Scanning electron microscope analysis indicated that A. actinomycetemcomitans cells were detached by P. gingivalis Kgp. The quantity of A. actinomycetemcomitans in biofilm was decreased in co-culture with P. gingivalis. However, this was not found after the addition of KYT-36. These findings suggest that Kgp is a critical component for the detachment and decrease of A. actinomycetemcomitans biofilms.

  15. Honey - a potential agent against Porphyromonas gingivalis: an in vitro study.

    PubMed

    Eick, Sigrun; Schäfer, Gesine; Kwieciński, Jakub; Atrott, Julia; Henle, Thomas; Pfister, Wolfgang

    2014-03-25

    Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 - 20 mg/l, and for propolis 20 mg/l - 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component.

  16. Porphyromonas gingivalis displays a competitive advantage over Aggregatibacter actinomycetemcomitans in co-cultured biofilm.

    PubMed

    Takasaki, K; Fujise, O; Miura, M; Hamachi, T; Maeda, K

    2013-06-01

    Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Periodontal disease, Porphyromonas gingivalis, and rheumatoid arthritis: what triggers autoimmunity and clinical disease?

    PubMed

    Scher, Jose U; Abramson, Steven B

    2013-01-01

    Rheumatoid arthritis, currently regarded as a complex multifactorial disease, was initially characterized as such at the turn of the 19th century. Ever since, multiple lines of investigation have attempted to elucidate the etiological factor(s) involved in disease incidence. Genes--including those risk alleles within HLA-DR4--have been implicated but are insufficient to explain the vast majority of cases. Several environmental factors, therefore, are being studied. Among them, the role of periodontal disease and Porphyromonas gingivalis in the pathogenesis of rheumatoid arthritis has attracted both clinical and bench interest given supportive epidemiologic and mechanistic data.

  18. Separation of the outer membrane and identification of major outer membrane proteins from Porphyromonas gingivalis.

    PubMed

    Murakami, Yukitaka; Imai, Masashi; Nakamura, Hiroshi; Yoshimura, Fuminobu

    2002-04-01

    The outer membrane of Porphyromonas gingivalis, an oral strict anaerobe, was isolated by sucrose density gradient centrifugation. The outer membrane obtained by the differential detergent extraction method, previously reported, showed an essentially similar protein pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), confirming that the latter method is suitable for the study of outer membrane proteins in this organism. N-terminal amino acid sequence analysis revealed that major outer membrane proteins in this organism included Arg-gingipain, Lys-gingipain, RagA (a TonB-linked receptor), and putative porins that were homologous to Escherichia coli OmpA.

  19. Detection of Porphyromonas gingivalis and Streptococcus intermedius in chronic periodontitis patients by multiplex PCR.

    PubMed

    De La Garza-Ramos, Myriam A; Galán-Wong, Luis J; Caffesse, Raúl G; González-Salazar, Francisco; Pereyra-Alférez, Benito

    2008-01-01

    A Multiplex PCR assay for the detection of Porphyromonas gingivalis and Streptococcus intermedius in chronic periodontitis is presented. A total of 180 samples from 65 adults with untreated periodontitis and 17 healthy volunteers were taken and processed in a simple boiling step. Cell lysates were used as DNA source for multiplex PCR assays. Primers were designed from 16S rRNA gene sequences from the GenBank-EMBL database showing specificity for target pathogens. This multiplex PCR system could detect 8.2 P gingivalis and S. intermedius cells. In untreated periodontitis patients, only 78.5% were positive for one or both bacteria; 37% were positive for P gingivalis only, 17% for S. intermedius and 24.5% for both. P. gingivalis was detected in 23.5% of healthy volunteers, while S. intermedius was not detected in the same patients. The distribution of these bacteria was related to the periodontal probing depth, while 95.23% of patients with pockets wih 6 to 7 mm deep were positive for either or both, only 70.45% of of them with 4 to 5 mm pockets were positive.

  20. α-Amylase is a potential growth inhibitor of Porphyromonas gingivalis, a periodontal pathogenic bacterium.

    PubMed

    Ochiai, A; Harada, K; Hashimoto, K; Shibata, K; Ishiyama, Y; Mitsui, T; Tanaka, T; Taniguchi, M

    2014-02-01

    Porphyromonas gingivalis is a major etiological agent in the development and progression of periodontal diseases. In this study, we isolated a cell growth inhibitor against P. gingivalis species from rice protein extract. The cell growth inhibitor active against P. gingivalis was purified from polished rice extract using a six-step column chromatography process. Its antimicrobial properties were investigated through microscope analysis, spectrum of activity and general structure. The inhibitor was identified as AmyI-1, an α-amylase, and showed significant cell growth inhibitory activity against P. gingivalis species. Scanning electron microscopy micrograph analysis and bactericidal assay indicated an intriguing possibility that the inhibitor compromises the cell membrane structure of the bacterial cells and leads to cell death. Moreover, α-amylases from human saliva and porcine pancreas showed inhibitory activity similar to that of AmyI-1. This is the first study to report that α-amylases cause cell death of periodontal pathogenic bacteria. This finding highlights the potential importance and therapeutic potential of α-amylases in treating periodontal diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion.

    PubMed

    Tribble, Gena D; Mao, Song; James, Chloe E; Lamont, Richard J

    2006-07-18

    Haloacid dehalogenase (HAD) family phosphatases are widespread in prokaryotes and are generally involved in metabolic processes. Porphyromonas gingivalis, an invasive periodontal pathogen, secretes the HAD family phosphoserine phosphatase SerB653 when in contact with gingival epithelial cells. Here we characterize the structure and enzymatic activity of SerB653 and show that a SerB653 allelic replacement mutant of P. gingivalis is deficient in internalization and persistence in gingival epithelial cells. In contrast, mutation of a second HAD family serine phosphatase of P. gingivalis (SerB1170), or of a serine transporter, did not affect invasion. A pull-down assay identified GAPDH and heat-shock protein 90 as potential substrates for SerB653. Furthermore, exogenous phosphatase regulated microtubule dynamics in host cells. These data indicate that P. gingivalis has adapted a formerly metabolic enzyme to facilitate entry into host cells by modulating host cytoskeletal architecture. Our findings define a virulence-related role of a HAD family phosphatase and reveal an invasin of an important periodontal pathogen.

  2. Inhibitory effects of incadronate on the progression of rat experimental periodontitis by porphyromonas gingivalis infection.

    PubMed

    Tani-Ishii, Nobuyuki; Minamida, Genshi; Saitoh, Daisuke; Chieda, Keiko; Omuro, Hiromasa; Sugaya, Akira; Hamada, Nobushiro; Takahashi, Yusuke; Kiyohara, Shiro; Kashima, Isamu; Teranaka, Toshio; Umemotot, Toshio

    2003-05-01

    Incadronate (YM175, disodium cycloheptylaminomethylenediphosphonate monohydrate), a bisphosphonate, has been suggested to prevent the bone resorption associated with periodontitis by inhibiting osteoclast activity. The purpose of this study was to investigate the effect of incadronate in preventing periodontal destruction in rats with Porphyromonas gingivalis-induced periodontitis. Periodontitis was induced in 35 Wister rats by inoculating P. gingivalis into the oral cavity and feeding the rats a soft diet for 4 weeks. Incadronate or placebo was administered to the oral cavity of the rats 2 days per week for 2, 4, or 8 weeks. P. gingivalis infection resulted in destruction of the periodontal ligament, reduced bone density, and caused inflammatory cell migration. Radiographic, morphometric, and histological results showed that incadronate had the ability to increase the bone mineral density (quantum level score; cortex 518.9 [placebo 612.8]; sponge 579.8 [placebo 672.0]) and to prevent periodontal ligament destruction (width 0.16 mm [placebo 0.20 mm]; area 0.36 mm2 [placebo 0.54 mm2]) after 8 weeks' administration. Furthermore, the polymorphonuclear leukocyte (PMN) infiltration in gingival tissue was significantly decreased. These results showed that incadronate inhibits bone resorption and PMN migration in P. gingivalis-induced periodontitis.

  3. Comparison of inherently essential genes of Porphyromonas gingivalis identified in two transposon-sequencing libraries.

    PubMed

    Hutcherson, J A; Gogeneni, H; Yoder-Himes, D; Hendrickson, E L; Hackett, M; Whiteley, M; Lamont, R J; Scott, D A

    2016-08-01

    Porphyromonas gingivalis is a Gram-negative anaerobe and keystone periodontal pathogen. A mariner transposon insertion mutant library has recently been used to define 463 genes as putatively essential for the in vitro growth of P. gingivalis ATCC 33277 in planktonic culture (Library 1). We have independently generated a transposon insertion mutant library (Library 2) for the same P. gingivalis strain and herein compare genes that are putatively essential for in vitro growth in complex media, as defined by both libraries. In all, 281 genes (61%) identified by Library 1 were common to Library 2. Many of these common genes are involved in fundamentally important metabolic pathways, notably pyrimidine cycling as well as lipopolysaccharide, peptidoglycan, pantothenate and coenzyme A biosynthesis, and nicotinate and nicotinamide metabolism. Also in common are genes encoding heat-shock protein homologues, sigma factors, enzymes with proteolytic activity, and the majority of sec-related protein export genes. In addition to facilitating a better understanding of critical physiological processes, transposon-sequencing technology has the potential to identify novel strategies for the control of P. gingivalis infections. Those genes defined as essential by two independently generated TnSeq mutant libraries are likely to represent particularly attractive therapeutic targets.

  4. Use of in vivo-induced antigen technology (IVIAT) to identify virulence factors of Porphyromonas gingivalis.

    PubMed

    Wallet, Shannon M; Chung, Jin; Handfield, Martin

    2010-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. The pathogenicity of P. gingivalis is multifaceted and the infection process is influenced by both microbial and host factors. It is generally accepted that genes of a pathogen that are specifically expressed during infection are likely to be important for pathogenicity. Numerous technologies have been developed to identify these genes. A novel strategy known as in vivo-induced antigen technology (IVIAT) avoids the use of animal models and utilizes serum from patients who have experienced disease caused by the pathogen of interest. While a number of putative virulence factors have been described for P. gingivalis, the identity, relevance, and mechanisms of action of virulence factors that actually provide a selective advantage to the organism in the oral cavity of diseased patients is still unclear. Here we describe the IVIAT protocol for identification of in vivo-induced genes of P. gingivalis, which can be adapted with few modifications to any microbial pathogen.

  5. Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production.

    PubMed

    Hasegawa, Yoshiaki; Tribble, Gena D; Baker, Henry V; Mans, Jeffrey J; Handfield, Martin; Lamont, Richard J

    2008-06-01

    The SerB protein of Porphyromonas gingivalis is a HAD family serine phosphatase that plays a critical role in entry and survival of the organism in gingival epithelial cells. SerB is secreted by P. gingivalis upon contact with epithelial cells. Here it is shown by microarray analysis that SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving the actin cytoskeleton and cytokine production among those significantly overpopulated with differentially regulated genes. Consistent with the transcriptional profile, a SerB mutant of P. gingivalis exhibited defective remodeling of actin in epithelial cells. Interaction between gingival epithelial cells and isolated SerB protein resulted in actin rearrangement and an increase in the F/G actin ratio. SerB protein was also required for P. gingivalis to antagonize interleukin-8 accumulation following stimulation of epithelial cells with Fusobacterium nucleatum. SerB is thus capable of modulating host cell signal transduction that impacts the actin cytoskeleton and cytokine production.

  6. Role of Porphyromonas gingivalis SerB in Gingival Epithelial Cell Cytoskeletal Remodeling and Cytokine Production▿

    PubMed Central

    Hasegawa, Yoshiaki; Tribble, Gena D.; Baker, Henry V.; Mans, Jeffrey J.; Handfield, Martin; Lamont, Richard J.

    2008-01-01

    The SerB protein of Porphyromonas gingivalis is a HAD family serine phosphatase that plays a critical role in entry and survival of the organism in gingival epithelial cells. SerB is secreted by P. gingivalis upon contact with epithelial cells. Here it is shown by microarray analysis that SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving the actin cytoskeleton and cytokine production among those significantly overpopulated with differentially regulated genes. Consistent with the transcriptional profile, a SerB mutant of P. gingivalis exhibited defective remodeling of actin in epithelial cells. Interaction between gingival epithelial cells and isolated SerB protein resulted in actin rearrangement and an increase in the F/G actin ratio. SerB protein was also required for P. gingivalis to antagonize interleukin-8 accumulation following stimulation of epithelial cells with Fusobacterium nucleatum. SerB is thus capable of modulating host cell signal transduction that impacts the actin cytoskeleton and cytokine production. PMID:18391005

  7. In Situ Anabolic Activity of Periodontal Pathogens Porphyromonas gingivalis and Filifactor alocis in Chronic Periodontitis

    PubMed Central

    Spooner, Ralee; Weigel, Kris M.; Harrison, Peter L.; Lee, KyuLim; Cangelosi, Gerard A.; Yilmaz, Özlem

    2016-01-01

    Porphyromonas gingivalis and Filifactor alocis are fastidious anaerobic bacteria strongly associated with chronic forms of periodontitis. Our understanding of the growth activities of these microorganisms in situ is very limited. Previous studies have shown that copy numbers of ribosomal-RNA precursor (pre-rRNA) of specific pathogen species relative to genomic-DNA (gDNA) of the same species (P:G ratios) are greater in actively growing bacterial cells than in resting cells. The method, so-called steady-state pre-rRNA-analysis, represents a novel culture-independent approach to study bacteria. This study employed this technique to examine the in situ growth activities of oral bacteria in periodontitis before and after non-surgical periodontal therapy. Sub-gingival paper-point samples were taken at initial and re-evaluation appointments. Pre-rRNA and gDNA levels of P. gingivalis and F. alocis were quantified and compared using reverse-transcriptase qPCR. The results indicate significantly reduced growth activity of P. gingivalis, but not F. alocis, after therapy. The P:G ratios of P. gingivalis and F. alocis were compared and a low-strength, but statistically significant inter-species correlation was detected. Our study demonstrates that steady-state pre-rRNA-analysis can be a valuable culture-independent approach to studying opportunistic bacteria in periodontitis. PMID:27642101

  8. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    SciTech Connect

    Svintradze, David V.; Peterson, Darrell L.; Collazo-Santiago, Evys A.; Lewis, Janina P.; Wright, H. Tonie

    2013-10-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

  9. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer's disease.

    PubMed

    Olsen, Ingar; Taubman, Martin A; Singhrao, Sim K

    2016-01-01

    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer's disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host's adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD(+)cells and its ligand PD-L1 on CD11b(+)-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood-brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of

  10. A Peptide Domain on Gingipain R Which Confers Immunity against Porphyromonas gingivalis Infection in Mice

    PubMed Central

    Genco, Caroline Attardo; Odusanya, Basil Michael; Potempa, Jan; Mikolajczyk-Pawlinska, Jowita; Travis, James

    1998-01-01

    The cysteine proteinases referred to as gingipains R (gingipain R1 and gingipain R2) and gingipain K produced by Porphyromonas gingivalis are virulence factors of this periodontal pathogen which likely act by interrupting host defense mechanisms and by participating in the penetration and destruction of host connective tissue. To examine the effect of immunization with gingipains R on the ability of P. gingivalis to colonize and invade in the mouse chamber model, BALB/c mice were immunized intraperitoneally with the 95-kDa gingipain R1, the 50-kDa gingipain R2, or multiple antigenic peptide (MAP)-conjugated gingipain R-derived peptides and then challenged with P. gingivalis. Immunization of mice with the 95-kDa gingipain R1, the 50-kDa gingipain R2, or a peptide derived from the N-terminal sequence of the catalytic domain of gingipains R (peptide A) followed by challenge with P. gingivalis A7436 resulted in protection from P. gingivalis invasion. In contrast, immunization with peptides corresponding to either a sequence encompassing the catalytic cysteine residue of gingipains R (peptide B) or an identical sequence within the catalytic domains of gingipain R1 and gingipain K (peptide C), followed by challenge with P. gingivalis, did not protect animals, nor did immunization with a peptide corresponding to sequences within the adhesion/hemagglutinin domain of gingipain R1 (peptide D) which have been shown to be directly involved in the hemagglutinin activity of gingipain R1. However, the immunoglobulin G (IgG) titer obtained following immunization with peptide D was comparable to that obtained following immunization with the N-terminal peptide (peptide A). Competitive enzyme-linked immunosorbent assays, using either the 95-kDa gingipain R1 or gingipain K as the competing soluble antigen, indicated that 42 and 53% of the antibodies induced by immunization with heat-killed bacteria recognize gingipain R1 and gingipain K, respectively; however, even at very high

  11. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease

    PubMed Central

    Olsen, Ingar; Taubman, Martin A.; Singhrao, Sim K.

    2016-01-01

    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies, including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses, specifically T cells and B cells in periodontitis and related conditions. In periodontitis, this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces the inflammatory responses related to T- and B-cell activation, and subsequent IFN-γ secretion by a subset of T cells. The T cells further suppress upregulation of programmed cell death-1 (PD-1)-receptor on CD+cells and its ligand PD-L1 on CD11b+-subset of T cells. IL-2 downregulates genes regulated by immune response and induces a cytokine pattern in which the Th17 lineage is favored, thereby modulating the Th17/T-regulatory cell (Treg) imbalance. The suppression of IFN-γ-stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes triggers distinct T cell responses and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis, P. gingivalis reduces Tregs, transforms growth factor beta-1 (TGFβ-1), and causes imbalance in the Th17 lineage of the Treg population. In AD, P. gingivalis may affect the blood–brain barrier permeability and inhibit local IFN-γ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in AD neuropathology implies P. gingivalis infection of the brain likely causing impaired clearance of insoluble amyloid and inducing immunosuppression. By the effective manipulation of the armory of

  12. Periodontitis and Porphyromonas gingivalis in Patients with Rheumatoid Arthritis

    PubMed Central

    Mikuls, Ted R.; Payne, Jeffrey B.; Yu, Fang; Thiele, Geoffrey M.; Reynolds, Richard J.; Cannon, Grant W.; Markt, Jeffrey; McGowan, David; Kerr, Gail S.; Redman, Robert S.; Reimold, Andreas; Griffiths, Garth; Beatty, Mark; Gonzalez, Shawneen; Bergman, Debra A.; Hamilton, Bartlett C.; Erickson, Alan R.; Sokolove, Jeremy; Robinson, William; Walker, Clay; Chandad, Fatiha; O’Dell, James R.

    2014-01-01

    Purpose To examine the degree to which shared risk factors explain the relationship of periodontitis (PD) with rheumatoid arthritis (RA) and to examine associations of PD and Porphyomonas gingivalis (Pg) with disease features. Methods RA cases (N=287) and controls (N=330) underwent a standardized periodontal examination. HLA-DRB1 status was imputed using SNPs from the extended MHC. Circulating anti-Pg antibody was measured using ELISA and subgingival plaque was assessed for the presence of Pg using PCR. Associations of PD with RA were examined using multivariable regression. Results PD was more common in RA (35%, p = 0.022) and aCCP positive RA (n=240; 37%; p = 0.006) vs. controls (26%). There were no RA-control differences in anti-Pg or the frequency of Pg positivity by PCR. Anti-Pg antibody showed weak but statistically significant associations with both anti-CCP (r=0.14, p=0.022) and RF (r=0.19, p=0.001). PD was associated with increased swollen joint counts (p=0.004), DAS-28-CRP (p=0.045), total Sharp scores (p=0.015), aCCP (p=0.011), and RF (p<0.001). Select anti-citrullinated peptide antibody (ACPA; including antibody to citrullinated filaggrin) were higher in patients with subgingival Pg and higher anti-Pg antibody levels irrespective of smoking. Associations of PD with established seropositive RA were independent of all covariates examined including evidence of Pg infection. Conclusions Both PD and Pg appear to shape RA-related autoreactivity in RA. In addition, PD demonstrates an independent relationship with established seropositive RA. PMID:24782175

  13. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity.

    PubMed

    Bielecka, Ewa; Scavenius, Carsten; Kantyka, Tomasz; Jusko, Monika; Mizgalska, Danuta; Szmigielski, Borys; Potempa, Barbara; Enghild, Jan J; Prossnitz, Eric R; Blom, Anna M; Potempa, Jan

    2014-11-21

    Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.

  14. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states

    PubMed Central

    Sánchez, MC.; Ribeiro-Vidal, H.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz, M.

    2017-01-01

    Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression. PMID:28369099

  15. Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance

    PubMed Central

    McKenzie, Rachelle M. E.; Henry, Leroy G.; Boutrin, Marie-Claire; Ximinies, Alexia

    2016-01-01

    Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential − 10 region at − 3 nt and a − 35 region at − 39 nt. Isogenic P. gingivalis mutants FLL273 (PG1777 : : ermF-ermAM) and FLL293 (PG1779 : : ermF-ermAM) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. P. gingivalis FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO4 and Fe(NH4)2(SO4).6H2O. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the grpE-dnaJ-PG1777-PG1778-PG1779 transcriptional unit may play an important role in oxidative stress resistance in P. gingivalis via its ability to protect against DNA damage. PMID:26581883

  16. Effects of Porphyromonas gingivalis LipopolysaccharideTolerized Monocytes on Inflammatory Responses in Neutrophils

    PubMed Central

    Chen, Yang; Cheng, Xiao-fan; Qiu, Jia-ying; Xu, Yan; Sun, Ying

    2016-01-01

    Periodontitis is a chronic inflammatory disease induced by bacteria. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, which is termed endotoxin tolerance. The role and mechanism of lipopolysaccharide (LPS)–tolerized monocytes in inflammatory responses in neutrophils are currently unclear. Here, conditioned supernatants were collected from THP-1 cells treated with or without repeated 1 μg/ml Porphyromonas gingivalis (P.gingivalis) LPS. The chemotactic response of freshly isolated neutrophils recruited by supernatants was determined by a transwell migration assay, which demonstrated a reduced migration of neutrophils stimulated with supernatants from tolerized THP-1 cells in comparison to non-tolerized THP-1 cells. In addition, there was a marked increase in reactive oxygen species (ROS) generation and a significant decrease in Caspase 3 activities in neutrophils treated with supernatants from THP-1 cells that were treated repeatedly with P.gingivalis LPS in comparison to single treatment. A cytokine antibody array was then used to assess cytokine expression patterns in THP-1 cells. In tolerized THP-1 cells, 43 cytokine (43/170) expression levels were decreased, including chemokine ligand 23 (CCL23) and IFN-γ, while 11 cytokine (11/170) expression levels were increased, such as death receptor 6 (DR6). Furthermore, there was decreased production of IFN-γ and epithelial neutrophil activating peptide-78 (ENA-78) in THP-1 cells after stimulation with repeated P. gingivalis LPS in comparison to single challenge, which was confirmed by ELISA. Therefore, P.gingivalis LPS- tolerized THP-1 cells were able to depress neutrophil chemotaxis and apoptosis, and contribute to respiratory burst, which might be related to the changes in cytokine expression patterns in THP-1 cells. PMID:27536946

  17. In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response

    PubMed Central

    Stephen, Abish S.; Millhouse, Emma; Sherry, Leighann; Aduse-Opoku, Joseph; Culshaw, Shauna; Ramage, Gordon; Bradshaw, David J.; Burnett, Gary R.; Allaker, Robert P.

    2016-01-01

    Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodontal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum are key oral microbial species that produce methanethiol via methionine gamma lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingivalis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with gas chromatographic head space analysis confirming lack of methanethiol production. 10-species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregatibacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were analysed using a multiplex bead immunoassay for cytokines. Significant population differences were observed between mutant and wild type biofilms; V. dispar proportions increased (p<0.001), whilst A. naeslundii (p<0.01) and Streptococcus spp. (p<0.05) decreased in mutant biofilms. Keratinocytes produced less IL-8, IL-6 and IL-1α when stimulated with the mutant biofilms compared to wild type. Lack of mgl in P. gingivalis has been shown to affect microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more pro-inflammatory cytokine response from the keratinocytes observed. A possible role for methanethiol in biofilm formation

  18. Divergence of the systemic immune response following oral infection with distinct strains of Porphyromonas gingivalis.

    PubMed

    Marchesan, J T; Morelli, T; Lundy, S K; Jiao, Y; Lim, S; Inohara, N; Nunez, G; Fox, D A; Giannobile, W V

    2012-12-01

    Periodontitis is a polymicrobial oral infection characterized by the destruction of tooth-supporting structures that can be linked to systemic diseases such as cardiovascular disease, diabetes or rheumatoid arthritis. Porphyromonas gingivalis, a bacterium implicated in the etiology of periodontitis, has shown variation in inducing T-cell responses among different strains. Therefore, in this study we investigated the strain-specific immune response using a murine experimental model of periodontitis. Periodontitis was induced by P. gingivalis strains A7A1-28, W83 and W50, and later confirmed by the presence of P. gingivalis in the oral microflora and by alveolar bone resorption. Splenocytes were evaluated for gene expression, cellular proteins and cytokine expression. Dendritic cells were stimulated in vitro for T helper cell-cytokine profiling. Results showed that P. gingivalis had the ability to alter the systemic immune response after bacterial exposure. Strains W50 and W83 were shown to induce alveolar bone loss, whereas the A7A1-28 strain did not significantly promote bone resorption in mice. Splenocytes derived from mice infected with strains W50 and W83 induced expression of high levels of interleukin-4 (IL-4) but A7A1-28 stimulated increased IL-10. Stimulation of dendritic cells in vitro showed a similar pattern of cytokine expression of IL-12p40, IL-6 and transforming growth factor-β among strains. A distinct systemic response in vivo was observed among different strains of P. gingivalis, with IL-10 associated with the least amount of alveolar bone loss. Evaluation of pathogen-driven systemic immune responses associated with periodontal disease pathogenesis may assist in defining how periodontitis may impact other diseases.

  19. Divergence of the systemic immune response following oral infection with distinct strains of Porphyromonas gingivalis

    PubMed Central

    Marchesan, J.T.; Morelli, T.; Lundy, S.K.; Jiao, Y.; Lim, S.; Inohara, N.; Nunez, G.; Fox, D.A.; Giannobile, W.V.

    2014-01-01

    SUMMARY Periodontitis is a polymicrobial oral infection characterized by the destruction of tooth-supporting structures that can be linked to systemic diseases such as cardiovascular disease, diabetes or rheumatoid arthritis. Porphyromonas gingivalis, a bacterium implicated in the etiology of periodontitis, has shown variation in inducing T-cell responses among different strains. Therefore, in this study we investigated the strain-specific immune response using a murine experimental model of periodontitis. Periodontitis was induced by P. gingivalis strains A7A1-28, W83 and W50, and later confirmed by the presence of P. gingivalis in the oral microflora and by alveolar bone resorption. Splenocytes were evaluated for gene expression, cellular proteins and cytokine expression. Dendritic cells were stimulated in vitro for T helper cell–cytokine profiling. Results showed that P. gingivalis had the ability to alter the systemic immune response after bacterial exposure. Strains W50 and W83 were shown to induce alveolar bone loss, whereas the A7A1-28 strain did not significantly promote bone resorption in mice. Splenocytes derived from mice infected with strains W50 and W83 induced expression of high levels of interleukin-4 (IL-4) but A7A1-28 stimulated increased IL-10. Stimulation of dendritic cells in vitro showed a similar pattern of cytokine expression of IL-12p40, IL-6 and transforming growth factor-β among strains. A distinct systemic response in vivo was observed among different strains of P. gingivalis, with IL-10 associated with the least amount of alveolar bone loss. Evaluation of pathogen-driven systemic immune responses associated with periodontal disease pathogenesis may assist in defining how periodontitis may impact other diseases. PMID:23134613

  20. Interferon Regulatory Factor 6 Promotes Keratinocyte Differentiation in Response to Porphyromonas gingivalis.

    PubMed

    Huynh, Jennifer; Scholz, Glen M; Aw, Jiamin; Reynolds, Eric C

    2017-05-01

    We recently demonstrated that the expression of the interferon regulatory factor 6 (IRF6) transcription factor in oral keratinocytes was stimulated by the periodontal pathogen Porphyromonas gingivalis Here, we have established that IRF6 promotes the differentiation of oral keratinocytes in response to P. gingivalis This was evidenced by the IRF6-dependent upregulation of specific markers of keratinocyte terminal differentiation (e.g., involucrin [IVL] and keratin 13 [KRT13]), together with additional transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 (GRHL3) and Ovo-like zinc finger 1 (OVOL1). We have previously established that the transactivator function of IRF6 is activated by receptor-interacting protein kinase 4 (RIPK4). Consistently, the silencing of RIPK4 inhibited the stimulation of IVL, KRT13, GRHL3, and OVOL1 gene expression. IRF6 was shown to also regulate the stimulation of transglutaminase-1 (TGM1) gene expression by P. gingivalis, as well as that of small proline-rich proteins (e.g., SPRR1), which are covalently cross-linked by TGM1 to other proteins, including IVL, during cornification. The expression of the tight junction protein occludin (OCLN) was found to also be upregulated in an IRF6-dependent manner. IRF6 was demonstrated to be important for the barrier function of oral keratinocytes; specifically, silencing of IRF6 increased P. gingivalis-induced intercellular permeability and cell invasion. Taken together, our findings potentially position IRF6 as an important mediator of barrier defense against P. gingivalis. Copyright © 2017 American Society for Microbiology.

  1. Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation.

    PubMed

    Nakao, Ryoma; Senpuku, Hidenobu; Watanabe, Haruo

    2006-11-01

    Porphyromonas gingivalis is a crucial component of complex plaque biofilms that form in the oral cavity, resulting in the progression of periodontal disease. To elucidate the mechanism of periodontal biofilm formation, we analyzed the involvement of several genes related to the synthesis of polysaccharides in P. gingivalis. Gene knockout P. gingivalis mutants were constructed by insertion of an ermF-ermAM cassette; among these mutants, the galE mutant showed some characteristic phenotypes involved in the loss of GalE activity. As expected, the galE mutant accumulated intracellular carbohydrates in the presence of 0.1% galactose and did not grow in the presence of galactose at a concentration greater than 1%, in contrast to the parental strain. Lipopolysaccharide (LPS) analysis indicated that the length of the O-antigen chain of the galE mutant was shorter than that of the wild type. It was also demonstrated that biofilms generated by the galE mutant had an intensity 4.5-fold greater than those of the wild type. Further, the galE mutant was found to be significantly susceptible to some antibiotics in comparison with the wild type. In addition, complementation of the galE mutation led to a partial recovery of the parental phenotypes. We concluded that the galE gene plays a pivotal role in the modification of LPS O antigen and biofilm formation in P. gingivalis and considered that our findings of a relationship between the function of the P. gingivalis galE gene and virulence phenotypes such as biofilm formation may provide clues for understanding the mechanism of pathogenicity in periodontal disease.

  2. Peptidyl Arginine Deiminase from Porphyromonas gingivalis Abolishes Anaphylatoxin C5a Activity*

    PubMed Central

    Bielecka, Ewa; Scavenius, Carsten; Kantyka, Tomasz; Jusko, Monika; Mizgalska, Danuta; Szmigielski, Borys; Potempa, Barbara; Enghild, Jan J.; Prossnitz, Eric R.; Blom, Anna M.; Potempa, Jan

    2014-01-01

    Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis. PMID:25324545

  3. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems

    PubMed Central

    Burmistrz, Michał; Dudek, Bartosz; Staniec, Dominika; Rodriguez Martinez, Jose Ignacio; Bochtler, Matthias; Potempa, Jan

    2015-01-01

    ABSTRACT The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system provides prokaryotic cells with an adaptive and heritable immune response to foreign genetic elements, such as viruses, plasmids, and transposons. It is present in the majority of Archaea and almost half of species of Bacteria. Porphyromonas gingivalis is an important human pathogen that has been proven to be an etiological agent of periodontitis and has been linked to systemic conditions, such as rheumatoid arthritis and cardiovascular disease. At least 95% of clinical strains of P. gingivalis carry CRISPR arrays, suggesting that these arrays play an important function in vivo. Here we show that all four CRISPR arrays present in the P. gingivalis W83 genome are transcribed. For one of the arrays, we demonstrate in vivo activity against double-stranded DNA constructs containing protospacer sequences accompanied at the 3′ end by an NGG protospacer-adjacent motif (PAM). Most of the 44 spacers present in the genome of P. gingivalis W83 share no significant similarity with any known sequences, although 4 spacers are similar to sequences from bacteria found in the oral cavity and the gastrointestinal tract. Four spacers match genomic sequences of the host; however, none of these is flanked at its 3′ terminus by the appropriate PAM element. IMPORTANCE The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system is a unique system that provides prokaryotic cells with an adaptive and heritable immunity. In this report, we show that the CRISPR-Cas system of P. gingivalis, an important human pathogen associated with periodontitis and possibly also other conditions, such as rheumatoid arthritis and cardiovascular disease, is active and provides protection from foreign genetic elements. Importantly, the data presented here may be useful for better understanding the communication between cells in larger bacterial

  4. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.

    PubMed

    Burmistrz, Michał; Dudek, Bartosz; Staniec, Dominika; Rodriguez Martinez, Jose Ignacio; Bochtler, Matthias; Potempa, Jan; Pyrc, Krzysztof

    2015-08-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system provides prokaryotic cells with an adaptive and heritable immune response to foreign genetic elements, such as viruses, plasmids, and transposons. It is present in the majority of Archaea and almost half of species of Bacteria. Porphyromonas gingivalis is an important human pathogen that has been proven to be an etiological agent of periodontitis and has been linked to systemic conditions, such as rheumatoid arthritis and cardiovascular disease. At least 95% of clinical strains of P. gingivalis carry CRISPR arrays, suggesting that these arrays play an important function in vivo. Here we show that all four CRISPR arrays present in the P. gingivalis W83 genome are transcribed. For one of the arrays, we demonstrate in vivo activity against double-stranded DNA constructs containing protospacer sequences accompanied at the 3' end by an NGG protospacer-adjacent motif (PAM). Most of the 44 spacers present in the genome of P. gingivalis W83 share no significant similarity with any known sequences, although 4 spacers are similar to sequences from bacteria found in the oral cavity and the gastrointestinal tract. Four spacers match genomic sequences of the host; however, none of these is flanked at its 3' terminus by the appropriate PAM element. The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system is a unique system that provides prokaryotic cells with an adaptive and heritable immunity. In this report, we show that the CRISPR-Cas system of P. gingivalis, an important human pathogen associated with periodontitis and possibly also other conditions, such as rheumatoid arthritis and cardiovascular disease, is active and provides protection from foreign genetic elements. Importantly, the data presented here may be useful for better understanding the communication between cells in larger bacterial communities and

  5. The effect of spiramycin on Porphyromonas gingivalis and other "classic" periopathogens.

    PubMed

    Chiappe, Verónica; Gómez, Mariel; Fernández-Canigia, Liliana; Romanelli, Hugo

    2011-01-01

    In clinical trials, Spiramycin has shown additional benefit overscaling and root planing on pocket depth reduction, but its effect on periodontal microbiota was evaluated only by darkfield microscopy. Therefore, this study was conducted to determine the effect of Spiramycin administration on Porphyromonas gingivalis and other periodontopathic bacteria using 16S rARN PCR technique. Thirty two non-smoker adults with untreated periodontitis and pocket depth > or = 7 mm. were evaluated to participate in this randomized placebo-controlled clinical trial. Clinical measurements were performed on day -15, 15, 30 and 90 from baseline. Subgingival samples were analyzed for detection of Porphyromonas gingivalis (Pg), Tannerella forsythia (TJ), Treponema denticola (Td) and Aggregatibacter actinomycetemcomitans (Aa) on days -15, 30 and 90. On day 0, 25 Pg positive subjects were randomly assigned to receive either systemically administered Spiramycinfor 7 days (Test group SP) or identical placebo tablets (Placebo group PL). After Spiramycin administration Pg, Tf and Td were suppressed showingstatistically significant difference (p<0.05) with the Placebo group. None of the groups showed changes in Aa detection. These data indicate that bacteria currently associated with advanced periodontitis (Pg, Tf and Td) are suppressed after 7 days of systemic administration of Spiramycin.

  6. Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase

    PubMed Central

    Goulas, Theodoros; Mizgalska, Danuta; Garcia-Ferrer, Irene; Kantyka, Tomasz; Guevara, Tibisay; Szmigielski, Borys; Sroka, Aneta; Millán, Claudia; Usón, Isabel; Veillard, Florian; Potempa, Barbara; Mydel, Piotr; Solà, Maria; Potempa, Jan; Gomis-Rüth, F. Xavier

    2015-01-01

    Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants. PMID:26132828

  7. Variability of the fimA gene in Porphyromonas gingivalis isolated from periodontitis and non-periodontitis patients

    PubMed Central

    León, Rubén; Blanc, Vanessa; Herrera, David; Sanz, Mariano

    2013-01-01

    Objective: The goal of this study was to determine the genetic variability of the fimA gene in Porphyromonas gingivalis isolates from Spanish patients. Study Design: Pooled subgingival samples were taken, processed and cultured in non-selective blood agar medium. Pure cultures of one to six isolates per patient were obtained and PCR and PCR-RFLP were used for fimbrillin gene (fimA) type determination of the extracted genomic (DNA). Results: Two hundred and twenty four Porphyromonas gingivalis isolates from 65 patients were analyzed consisting of 15 non-periodontitis patients (66 isolates) and 50 with periodontitis (158 isolates). Genotype II was the most prevalent (50.9%), while the other types of fimbriae did not exceed fifteen percent of prevalence. Isolates with types II and IV of fimbriae were significantly more prevalent in periodontitis patients than isolates with genotype I. Co-infection was observed in 17.65% of the patients analyzed. Conclusion: The results suggest that in this population Porphyromonas gingivalis with type II of fimbriae are significantly more predominant in periodontitis patients than genotype I. Key words:Fimbriae, genotype, porphyromonas gingivalis, periodontitis. PMID:23229246

  8. Loop-mediated isothermal amplification combined with PCR and immunohistochemistry for detecting Porphyromonas gingivalis in periapical periodontitis.

    PubMed

    Kitano, Taiichi; Mikami, Yoshikazu; Iwase, Takashi; Asano, Masatake; Komiyama, Kazuo

    2016-01-01

    Porphyromonas gingivalis is important in the development of marginal periodontitis. However, the precise role and localization of P. gingivalis in chronic periapical periodontitis remain unclear. Thus, methods that can detect P. gingivalis in formalin-fixed and paraffin-embedded (FFPE) tissue samples are needed. We assessed a technique combining loop-mediated isothermal amplification (LAMP) with PCR (PCR-LAMP) for detection of P. gingivalis, using 110 FFPE tissue samples of chronic apical periodontitis. PCR-LAMP specifically detected P. gingivalis with high sensitivity in FFPE tissue samples, and the sensitivity of the technique was higher than that of PCR or LAMP alone. The results of immunohistochemistry (IHC) confirmed the specificity of PCR-LAMP. IHC showed that P. gingivalis was localized in a granular layer of chronic apical periodontitis, a region that correlated with the localization of macrophages. This is the first study to describe the localization of P. gingivalis in human periapical periodontitis. In conclusion, PCR-LAMP was an effective tool for detecting P. gingivalis in periapical periodontitis. In addition, IHC results improve our understanding of the role of P. gingivalis in the progression of periapical periodontitis. (J Oral Sci 58, 163-169, 2016).

  9. The Unique hmuY Gene Sequence as a Specific Marker of Porphyromonas gingivalis

    PubMed Central

    Mackiewicz, Paweł; Radwan-Oczko, Małgorzata; Kantorowicz, Małgorzata; Chomyszyn-Gajewska, Maria; Frąszczak, Magdalena; Bielecki, Marcin; Olczak, Mariusz; Olczak, Teresa

    2013-01-01

    Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires heme from host hemoproteins using the HmuY hemophore. The aim of this study was to develop a specific P. gingivalis marker based on a hmuY gene sequence. Subgingival samples were collected from 66 patients with chronic periodontitis and 40 healthy subjects and the entire hmuY gene was analyzed in positive samples. Phylogenetic analyses demonstrated that both the amino acid sequence of the HmuY protein and the nucleotide sequence of the hmuY gene are unique among P. gingivalis strains/isolates and show low identity to sequences found in other species (below 50 and 56%, respectively). In agreement with these findings, a set of hmuY gene-based primers and standard/real-time PCR with SYBR Green chemistry allowed us to specifically detect P. gingivalis in patients with chronic periodontitis (77.3%) and healthy subjects (20%), the latter possessing lower number of P. gingivalis cells and total bacterial cells. Isolates from healthy subjects possess the hmuY gene-based nucleotide sequence pattern occurring in W83/W50/A7436 (n = 4), 381/ATCC 33277 (n = 3) or TDC60 (n = 1) strains, whereas those from patients typically have TDC60 (n = 21), W83/W50/A7436 (n = 17) and 381/ATCC 33277 (n = 13) strains. We observed a significant correlation between periodontal index of risk of infectiousness (PIRI) and the presence/absence of P. gingivalis (regardless of the hmuY gene-based sequence pattern of the isolate identified [r = 0.43; P = 0.0002] and considering particular isolate pattern [r = 0.38; P = 0.0012]). In conclusion, we demonstrated that the hmuY gene sequence or its fragments may be used as one of the molecular markers of P. gingivalis. PMID:23844074

  10. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis

    PubMed Central

    2013-01-01

    Introduction Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model. Methods DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression. Results Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA

  11. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis.

    PubMed

    Marchesan, Julie Teresa; Gerow, Elizabeth Ann; Schaff, Riley; Taut, Andrei Dan; Shin, Seung-Yun; Sugai, James; Brand, David; Burberry, Aaron; Jorns, Julie; Lundy, Steven Karl; Nuñez, Gabriel; Fox, David A; Giannobile, William V

    2013-11-12

    Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model. DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression. Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA/CII group and IL-1β, tumor necrosis

  12. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis

    SciTech Connect

    Li, N.; Yun, P.; Nadkarni, M.A.; Ghadikolaee, N.B.; Nguyen, K.A.; Lee, M.; Hunter, N.; Collyer, C.A.

    2010-08-27

    Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a 'jelly-roll' fold with two anti-parallel {beta}-sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions of K2 were investigated. K2 induced haemolysis of erythrocytes in a dose-dependent manner that was augmented by the blocking of anion transport. Further, cysteine-activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.

  13. Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel.

    PubMed

    Zhang, Dan; Ren, Ling; Zhang, Yang; Xue, Nan; Yang, Ke; Zhong, Ming

    2013-05-01

    To evaluate the possibility of an alternative to the traditional orthodontic stainless steel implants, the antibacterial activity against Porphyromonas gingivalis (P. gingivalis) and the related cytotoxicity of a type 304 Cu bearing antibacterial stainless steel were studied. The results indicated that the antibacterial stainless steel showed excellent antibacterial property against P. gingivalis, compared with the control steel (a purchased medical grade 304 stainless steel). Compared to the control steel, there were fewer bacteria on the surface of the antibacterial stainless steel, with significant difference in morphology. The cytotoxicities of the antibacterial stainless steel to both MG-63 and KB cells were all grade 1, the same as those of the control steel. There were no significant differences in the apoptosis rates on MG-63 and KB cells between the antibacterial stainless steel and the control steel. This study demonstrates that the antibacterial stainless steel is possible to reduce the incidence of implant-related infections and can be a more suitable material for the micro-implant than the conventional stainless steel in orthodontic treatment.

  14. Comprehensive Transcriptome Analysis of the Periodontopathogenic Bacterium Porphyromonas gingivalis W83

    PubMed Central

    Høvik, Hedda; Yu, Wen-Han; Olsen, Ingar

    2012-01-01

    High-density tiling microarray and RNA sequencing technologies were used to analyze the transcriptome of the periodontopathogenic bacterium Porphyromonas gingivalis. The compiled P. gingivalis transcriptome profiles were based on total RNA samples isolated from three different laboratory culturing conditions, and the strand-specific transcription profiles generated covered the entire genome, including both protein coding and noncoding regions. The transcription profiles revealed various operon structures, 5′- and 3′-end untranslated regions (UTRs), differential expression patterns, and many novel, not-yet-annotated transcripts within intergenic and antisense regions. Further transcriptome analysis identified the majority of the genes as being expressed within operons and most 5′ and 3′ ends to be protruding UTRs, of which several 3′ UTRs were extended to overlap genes carried on the opposite/antisense strand. Extensive antisense RNAs were detected opposite most insertion sequence (IS) elements. Pairwise comparative analyses were also performed among transcriptome profiles of the three culture conditions, and differentially expressed genes and metabolic pathways were identified. With the growing realization that noncoding RNAs play important biological functions, the discovery of novel RNAs and the comprehensive transcriptome profiles compiled in this study may provide a foundation to further understand the gene regulation and virulence mechanisms in P. gingivalis. The transcriptome profiles can be viewed at and downloaded from the Microbial Transcriptome Database website, http://bioinformatics.forsyth.org/mtd. PMID:22037400

  15. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis

    PubMed Central

    Maekawa, Tomoki; Krauss, Jennifer L.; Abe, Toshiharu; Jotwani, Ravi; Triantafilou, Martha; Triantafilou, Kathy; Hashim, Ahmed; Hoch, Shifra; Curtis, Michael A.; Nussbaum, Gabriel; Lambris, John D.; Hajishengallis, George

    2014-01-01

    SUMMARY Certain low-abundance bacterial species, such as the periodontitis-associated oral bacterium Porphyromonas gingivalis can subvert host immunity to remodel a normally symbiotic microbiota into a dysbiotic, disease-provoking state. However, such pathogens also exploit inflammation to thrive in dysbiotic conditions. How these bacteria evade immunity while maintaining inflammation is unclear. As previously reported, P. gingivalis remodels the oral microbiota into a dysbiotic state by exploiting complement. Now we show that in neutrophils P. gingivalis disarms a host-protective TLR2-MyD88 pathway via proteasomal degradation of MyD88, whereas it activates an alternate TLR2-Mal-PI3K pathway. This alternate TLR2-Mal-PI3K pathway blocks phagocytosis, provides ‘bystander’ protection to otherwise susceptible bacteria, and promotes dysbiotic inflammation in vivo. This mechanism to disengage bacterial clearance from inflammation required an intimate crosstalk between TLR2 and the complement receptor C5aR, and can contribute to the persistence of microbial communities that drive dysbiotic diseases. PMID:24922578

  16. Phenotypic characterization of human and animal biotypes within the species Porphyromonas gingivalis.

    PubMed

    Fournier, D; Mouton, C

    1993-01-01

    Ninety-nine strains of Gram-negative black-pigmented anaerobic rods, grown on Todd-Hewitt blood agar plates, were identified and characterized according to a typing scheme including UV fluorescence, catalase, trypsin-like and haemagglutinating activities, biochemical tests with the ATB 32A kit, and gas-liquid chromatography. To determine the taxonomic position of the Porphyromonas gingivalis biotypes, 68 strains (31 of human origin and 37 of animal origin) were compared to 31 strains of closely related species or of uncertain generic status. Most animal strains were isolated in our laboratory by subculturing samples from the oral cavity of five mammalian species (bear, cat, coyote, dog and wolf). Those strains differed from human P. gingivalis strains in that they were positive for catalase, beta-galactosidase and glutamyl-glutamic acid arylamidase; from Bacteroides macacae by more rapid pigmentation, positive haemagglutination, failure to produce propionic acid, and negative alpha-galactosidase; and from Bacteroides salivosus by more rapid pigmentation, positive haemagglutination and failure to produce propionic acid. These data demonstrate that phenotypic heterogeneity within the taxon P. gingivalis can be resolved into two biotypes, each corresponding to a human source or an animal source.

  17. High in vitro antibacterial activity of Pac-525 against Porphyromonas gingivalis biofilms cultured on titanium.

    PubMed

    Li, Ji-yin; Wang, Xue-jin; Wang, Li-na; Ying, Xiao-xia; Ren, Xiang; Liu, Hui-ying; Xu, Li; Ma, Guo-wu

    2015-01-01

    In order to investigate the potential of short antimicrobial peptides (AMPs) as alternative antibacterial agents during the treatment of peri-implantitis, the cytotoxic activity of three short AMPs, that is, Pac-525, KSL-W, and KSL, was determined using the MTT assay. The antimicrobial activity of these AMPs, ranging in concentration from 0.0039 mg/mL to 0.5 mg/mL, against the predominant planktonic pathogens, including Streptococcus sanguis, Fusobacterium nucleatum, and Porphyromonas gingivalis, involved in peri-implantitis was investigated. Furthermore, 2-day-old P. gingivalis biofilms cultured on titanium surfaces were treated with Pac-525 and subsequently observed and analysed using confocal laser scanning microscopy (CLSM). The average cell proliferation curve indicated that there was no cytotoxicity due to the three short AMPs. The minimum inhibitory concentration and minimum bactericidal concentration values of Pac-525 were 0.0625 mg/mL and 0.125 mg/mL, respectively, for P. gingivalis and 0.0078 mg/mL and 0.0156 mg/mL, respectively, for F. nucleatum. Using CLSM, we confirmed that compared to 0.1% chlorhexidine, 0.5 mg/mL of Pac-525 caused a significant decrease in biofilm thickness and a decline in the percentage of live bacteria. These data indicate that Pac-525 has unique properties that might make it suitable for the inhibition the growth of pathogenic bacteria around dental implants.

  18. VimA mediates multiple functions that control virulence in Porphyromonas gingivalis

    PubMed Central

    Aruni, A. Wilson; Robles, A.; Fletcher, H.M.

    2013-01-01

    SUMMARY Porphyromonas gingivalis, a black-pigmented, gram-negative anaerobe, is an important etiological agent of periodontal disease. Its ability to survive in the periodontal pocket and orchestrate the microbial/host activities that can lead to disease suggest that P. gingivalis possesses a complex regulatory network involving transcriptional and post-transcriptional mechanisms. The vimA (virulence modulating) gene is part of the 6.15-kb bcp-recA-vimA-vimE-vimF-aroG locus and plays a role in oxidative stress resistance. In addition to the glycosylation and anchorage of several surface proteins including the gingipains, VimA can also modulate sialylation, acetyl coenzyme A transfer, lipid A and its associated proteins and may be involved in protein sorting and transport. In this review, we examine the multifunctional role of VimA and discuss its possible involvement in a major regulatory network important for survival and virulence regulation in P. gingivalis. It is postulated that the multifunction of VimA is modulated via a post-translational mechanism involving acetylation. PMID:23279905

  19. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis

    PubMed Central

    Gomes-Filho, I. S.; Meyer, R.; Olczak, T.; Xavier, M. T.; Trindade, S. C.

    2016-01-01

    Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical “keystone pathogens,” affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy. PMID:27403039

  20. Identification of an O-antigen chain length regulator, WzzP, in Porphyromonas gingivalis

    PubMed Central

    Shoji, Mikio; Yukitake, Hideharu; Sato, Keiko; Shibata, Yasuko; Naito, Mariko; Aduse-Opoku, Joseph; Abiko, Yoshimitsu; Curtis, Michael A; Nakayama, Koji

    2013-01-01

    The periodontal pathogen Porphyromonas gingivalis has two different lipopolysaccharides (LPSs) designated O-LPS and A-LPS, which are a conventional O-antigen polysaccharide and an anionic polysaccharide that are both linked to lipid A-cores, respectively. However, the precise mechanisms of LPS biosynthesis remain to be determined. In this study, we isolated a pigment-less mutant by transposon mutagenesis and identified that the transposon was inserted into the coding sequence PGN_2005, which encodes a hypothetical protein of P. gingivalis ATCC 33277. We found that (i) LPSs purified from the PGN_2005 mutant were shorter than those of the wild type; (ii) the PGN_2005 protein was located in the inner membrane fraction; and (iii) the PGN_2005 gene conferred Wzz activity upon an Escherichia coli wzz mutant. These results indicate that the PGN_2005 protein, which was designated WzzP, is a functional homolog of the Wzz protein in P. gingivalis. Comparison of amino acid sequences among WzzP and conventional Wzz proteins indicated that WzzP had an additional fragment at the C-terminal region. In addition, we determined that the PGN_1896 and PGN_1233 proteins and the PGN_1033 protein appear to be WbaP homolog proteins and a Wzx homolog protein involved in LPS biosynthesis, respectively. PMID:23509024

  1. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis

    PubMed Central

    Sochalska, Maja; Potempa, Jan

    2017-01-01

    The pathogenesis of the chronic periodontal disease is associated with a skewed host inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis, that accounts for the majority of periodontal tissue damage. Neutrophils are the most abundant leukocytes in periodontal pockets and depending on the stage of the disease, also plentiful PMNs are present in the inflamed gingival tissue and the gingival crevice. They are the most efficient phagocytes and eliminate pathogens by a variety of means, which are either oxygen-dependent or -independent. However, these secretory lethal weapons do not strictly discriminate between pathogens and host tissue. Current studies describe conflicting findings about neutrophil involvement in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils are the main immune cell type responsible for this observed tissue damage and disease progression. Deregulation of neutrophil survival and functions, such as chemotaxis, migration, secretion of antimicrobial peptides or enzymes, and production of reactive oxygen species, contribute to observed tissue injury and the clinical signs of periodontal disease. On the other hand neutrophils deficiencies in patients and mice also result in periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that manipulates the immune responses of PMNs, employing several virulence factors, such as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up studies devoted to understanding different strategies utilized by P. gingivalis to manipulate PMNs survival and functions in order to inhibit killing by a granular content, prolong inflammation, and gain access to nutrient resources. PMID:28589098

  2. VimA – dependent modulation of the secretome in Porphyromonas gingivalis

    PubMed Central

    Osbourne, D.; Aruni, A.Wilson; Dou, Y.; Perry, C.; Boskovic, D.S.; Roy, F.; Fletcher, H. M.

    2012-01-01

    The VimA protein of Porphyromonas gingivalis is a multifunctional protein involved in cell surface biogenesis. To further determine if its acetyl coenzyme A (acetyl-CoA) transfer and putative sorting functions can affect the secretome, its role in peptidoglycan biogenesis and effects on the extracellular proteins of P. gingivalis FLL92, a vimA-defective mutant, were evaluated. There were structural and compositional differences in the peptidoglycan of P. gingivalis FLL92 compared to the wild-type strain. Sixty-eight proteins were present only in the extracellular fraction of FLL92. Fifteen proteins present in the extracellular fraction of the parent strain were missing in the vimA-defective mutant. These proteins had protein sorting characteristics which included a C terminal motif with a common consensus Gly-Gly – Cterm pattern and polar tail consisting of aromatic amino acid residues. These observations suggest that the VimA protein is likely involved in peptidoglycan synthesis, and corroborates our previous report, which suggests a role in protein sorting. PMID:23134608

  3. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis.

    PubMed

    Maekawa, Tomoki; Krauss, Jennifer L; Abe, Toshiharu; Jotwani, Ravi; Triantafilou, Martha; Triantafilou, Kathy; Hashim, Ahmed; Hoch, Shifra; Curtis, Michael A; Nussbaum, Gabriel; Lambris, John D; Hajishengallis, George

    2014-06-11

    Certain low-abundance bacterial species, such as the periodontitis-associated oral bacterium Porphyromonas gingivalis, can subvert host immunity to remodel a normally symbiotic microbiota into a dysbiotic, disease-provoking state. However, such pathogens also exploit inflammation to thrive in dysbiotic conditions. How these bacteria evade immunity while maintaining inflammation is unclear. As previously reported, P. gingivalis remodels the oral microbiota into a dysbiotic state by exploiting complement. Now we show that in neutrophils P. gingivalis disarms a host-protective TLR2-MyD88 pathway via proteasomal degradation of MyD88, whereas it activates an alternate TLR2-Mal-PI3K pathway. This alternate TLR2-Mal-PI3K pathway blocks phagocytosis, provides "bystander" protection to otherwise susceptible bacteria, and promotes dysbiotic inflammation in vivo. This mechanism to disengage bacterial clearance from inflammation required an intimate crosstalk between TLR2 and the complement receptor C5aR and can contribute to the persistence of microbial communities that drive dysbiotic diseases.

  4. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection

    PubMed Central

    Meresta, Anna; Folkert, Justyna; Gaber, Timo; Miksch, Korneliusz; Buttgereit, Frank; Detert, Jacqueline; Pischon, Nicole; Gurzawska, Katarzyna

    2017-01-01

    Background Bioengineered plant-derived Rhamnogalacturonan-Is (RG-Is) from pectins are potential candidates for surface nanocoating of medical devices. It has recently been reported that RG-I nanocoatings may prevent bacterial infection and improve the biocompatibility of implants. The aim of the study was to evaluate in vitro impact of bioengineered RG-I nanocoatings on osteogenic capacity and proinflammatory cytokine response of murine osteoblasts following Porphyromonas gingivalis infection. Methods Murine MC3T3-E1 osteoblasts and isolated primary calvarial osteoblasts from C57BL/6J (B6J osteoblasts) mice were infected with P. gingivalis and incubated on tissue culture polystyrene plates with or without nanocoatings of unmodified RG-Is isolated from potato pulps (PU) or dearabinanated RG-Is (PA). To investigate a behavior of infected osteoblasts cultured on RG-Is cell morphology, proliferation, metabolic activity, mineralization and osteogenic and pro-inflammatory gene expression were examined. Results Following P. gingivalis infection, PA, but not PU, significantly promoted MC3T3-E1 and BJ6 osteoblasts proliferation, metabolic activity, and calcium deposition. Moreover, Il-1b, Il-6, TNF-α, and Rankl gene expressions were downregulated in cells cultured on PU and to a higher extent on PA as compared to the corresponding control, whereas Runx, Alpl, Col1a1, and Bglap gene expressions were upregulated vice versa. Conclusion Our data clearly showed that pectin RG-Is nanocoating with high content of galactan (PA) reduces the osteoblastic response to P. gingivalis infection in vitro and may, therefore, reduce a risk of inflammation especially in immunocompromised patients with rheumatoid or periodontal disorders. PMID:28138240

  5. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis.

    PubMed

    Hashino, E; Kuboniwa, M; Alghamdi, S A; Yamaguchi, M; Yamamoto, R; Cho, H; Amano, A

    2013-12-01

    The effects of sugar alcohols such as erythritol, xylitol, and sorbitol on periodontopathic biofilm are poorly understood, though they have often been reported to be non-cariogenic sweeteners. In the present study, we evaluated the efficacy of sugar alcohols for inhibiting periodontopathic biofilm formation using a heterotypic biofilm model composed of an oral inhabitant Streptococcus gordonii and a periodontal pathogen Porphyromonas gingivalis. Confocal microscopic observations showed that the most effective reagent to reduce P. gingivalis accumulation onto an S. gordonii substratum was erythritol, as compared with xylitol and sorbitol. In addition, erythritol moderately suppressed S. gordonii monotypic biofilm formation. To examine the inhibitory effects of erythritol, we analyzed the metabolomic profiles of erythritol-treated P. gingivalis and S. gordonii cells. Metabolome analyses using capillary electrophoresis time-of-flight mass spectrometry revealed that a number of nucleic intermediates and constituents of the extracellular matrix, such as nucleotide sugars, were decreased by erythritol in a dose-dependent manner. Next, comparative analyses of metabolites of erythritol- and sorbitol-treated cells were performed using both organisms to determine the erythritol-specific effects. In P. gingivalis, all detected dipeptides, including Glu-Glu, Ser-Glu, Tyr-Glu, Ala-Ala and Thr-Asp, were significantly decreased by erythritol, whereas they tended to be increased by sorbitol. Meanwhile, sorbitol promoted trehalose 6-phosphate accumulation in S. gordonii cells. These results suggest that erythritol has inhibitory effects on dual species biofilm development via several pathways, including suppression of growth resulting from DNA and RNA depletion, attenuated extracellular matrix production, and alterations of dipeptide acquisition and amino acid metabolism. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Hemoglobinase Activity of the Lysine Gingipain Protease (Kgp) of Porphyromonas gingivalis W83

    PubMed Central

    Lewis, Janina P.; Dawson, Janet A.; Hannis, James C.; Muddiman, David; Macrina, Francis L.

    1999-01-01

    Porphyromonas gingivalis, an important periodontal disease pathogen, forms black-pigmented colonies on blood agar. Pigmentation is believed to result from accumulation of iron protoporphyrin IX (FePPIX) derived from erythrocytic hemoglobin. The Lys-X (Lys-gingipain) and Arg-X (Arg-gingipain) cysteine proteases of P. gingivalis bind and degrade erythrocytes. We have observed that mutations abolishing activity of the Lys-X-specific cysteine protease, Kgp, resulted in loss of black pigmentation of P. gingivalis W83. Because the hemagglutinating and hemolytic potentials of mutant strains were reduced but not eliminated, we hypothesized that this protease played a role in acquisition of FePPIX from hemoglobin. In contrast to Arg-gingipain, Lys-gingipain was not inhibited by hemin, suggesting that this protease played a role near the cell surface where high concentrations of hemin confer the black pigmentation. Human hemoglobin contains 11 Lys residues in the α chain and 10 Lys residues in the β chain. In contrast, there are only three Arg residues in each of the α and β chains. These observations are consistent with human hemoglobin being a preferred substrate for Lys-gingipain but not Arg-gingipain. The ability of the Lys-gingipain to cleave human hemoglobin at Lys residues was confirmed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of hemoglobin fragments resulting from digestion with the purified protease. We were able to detect several of the predicted hemoglobin fragments rendered by digestion with purified Lys-gingipain. Thus, we postulate that the Lys-gingipain of P. gingivalis is a hemoglobinase which plays a role in heme and iron uptake by effecting the accumulation of FePPIX on the bacterial cell surface. PMID:10438761

  7. Por Secretion System-Dependent Secretion and Glycosylation of Porphyromonas gingivalis Hemin-Binding Protein 35

    PubMed Central

    Shoji, Mikio; Sato, Keiko; Yukitake, Hideharu; Kondo, Yoshio; Narita, Yuka; Kadowaki, Tomoko; Naito, Mariko; Nakayama, Koji

    2011-01-01

    The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study. PMID:21731719

  8. Chronic ingestion of Porphyromonas gingivalis induces systemic nitric oxide response in mice.

    PubMed

    Nemec, A; Pavlica, Z; Crossley, D A; Sentjurc, M; Jerin, A; Erzen, D; Vrecl, M; Majdic, G; Zdovc, I; Petelin, M; Skaleric, U

    2009-06-01

    Porphyromonas gingivalis induces nitric oxide (NO) production in various cells, systemic NO elevation being expected in chronic oral challenge. Groups of BALB/c mice were inoculated orally with either live P. gingivalis ATCC 33277 or sterile broth on days 0, 2 and 4, with or without later administration of the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Plasma and tissues were harvested on day 42 for assays of tumor necrosis factor-alpha (TNF-alpha), nitrite and nitrate (NOx) and tissue NO, or histology and iNOS immunohistochemistry. No signs of gingivitis were observed, but plasma NOx was significantly elevated (P = 0.028) as was TNF-alpha (P = 0.079) in P. gingivalis-inoculated animals compared with controls, NOx being reduced when 1400W was used. NO production in organs showed a similar trend, with significant elevation in liver (P = 0.017) and kidneys (P = 0.027), whereas concomitant treatment of inoculated animals with 1400W caused significant reductions in NO in aorta (P = 0.008) and kidneys (P = 0.046). Sham-inoculated 1400W-treated animals had significantly increased plasma NOx (P = 0.004) and liver NO (P = 0.04). NOx in plasma correlated significantly with NO production in lungs (0.35, P = 0.032) and kidneys (0.47, P = 0.003). Immunohistochemistry demonstrated iNOS activity in many tissues in all groups. Repeated oral administration of P. gingivalis induced systemic NO and NOx production in mice, probably by activating iNOS as suggested by the response to 1400W.

  9. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics

    PubMed Central

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563

  10. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection.

    PubMed

    Meresta, Anna; Folkert, Justyna; Gaber, Timo; Miksch, Korneliusz; Buttgereit, Frank; Detert, Jacqueline; Pischon, Nicole; Gurzawska, Katarzyna

    2017-01-01

    Bioengineered plant-derived Rhamnogalacturonan-Is (RG-Is) from pectins are potential candidates for surface nanocoating of medical devices. It has recently been reported that RG-I nanocoatings may prevent bacterial infection and improve the biocompatibility of implants. The aim of the study was to evaluate in vitro impact of bioengineered RG-I nanocoatings on osteogenic capacity and proinflammatory cytokine response of murine osteoblasts following Porphyromonas gingivalis infection. Murine MC3T3-E1 osteoblasts and isolated primary calvarial osteoblasts from C57BL/6J (B6J osteoblasts) mice were infected with P. gingivalis and incubated on tissue culture polystyrene plates with or without nanocoatings of unmodified RG-Is isolated from potato pulps (PU) or dearabinanated RG-Is (PA). To investigate a behavior of infected osteoblasts cultured on RG-Is cell morphology, proliferation, metabolic activity, mineralization and osteogenic and pro-inflammatory gene expression were examined. Following P. gingivalis infection, PA, but not PU, significantly promoted MC3T3-E1 and BJ6 osteoblasts proliferation, metabolic activity, and calcium deposition. Moreover, Il-1b, Il-6, TNF-α, and Rankl gene expressions were downregulated in cells cultured on PU and to a higher extent on PA as compared to the corresponding control, whereas Runx, Alpl, Col1a1, and Bglap gene expressions were upregulated vice versa. Our data clearly showed that pectin RG-Is nanocoating with high content of galactan (PA) reduces the osteoblastic response to P. gingivalis infection in vitro and may, therefore, reduce a risk of inflammation especially in immunocompromised patients with rheumatoid or periodontal disorders.

  11. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83.

    PubMed

    Lewis, J P; Dawson, J A; Hannis, J C; Muddiman, D; Macrina, F L

    1999-08-01

    Porphyromonas gingivalis, an important periodontal disease pathogen, forms black-pigmented colonies on blood agar. Pigmentation is believed to result from accumulation of iron protoporphyrin IX (FePPIX) derived from erythrocytic hemoglobin. The Lys-X (Lys-gingipain) and Arg-X (Arg-gingipain) cysteine proteases of P. gingivalis bind and degrade erythrocytes. We have observed that mutations abolishing activity of the Lys-X-specific cysteine protease, Kgp, resulted in loss of black pigmentation of P. gingivalis W83. Because the hemagglutinating and hemolytic potentials of mutant strains were reduced but not eliminated, we hypothesized that this protease played a role in acquisition of FePPIX from hemoglobin. In contrast to Arg-gingipain, Lys-gingipain was not inhibited by hemin, suggesting that this protease played a role near the cell surface where high concentrations of hemin confer the black pigmentation. Human hemoglobin contains 11 Lys residues in the alpha chain and 10 Lys residues in the beta chain. In contrast, there are only three Arg residues in each of the alpha and beta chains. These observations are consistent with human hemoglobin being a preferred substrate for Lys-gingipain but not Arg-gingipain. The ability of the Lys-gingipain to cleave human hemoglobin at Lys residues was confirmed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of hemoglobin fragments resulting from digestion with the purified protease. We were able to detect several of the predicted hemoglobin fragments rendered by digestion with purified Lys-gingipain. Thus, we postulate that the Lys-gingipain of P. gingivalis is a hemoglobinase which plays a role in heme and iron uptake by effecting the accumulation of FePPIX on the bacterial cell surface.

  12. Impaired immune tolerance to Porphyromonas gingivalis lipopolysaccharide promotes neutrophil migration and decreased apoptosis.

    PubMed

    Zaric, Svetislav; Shelburne, Charles; Darveau, Richard; Quinn, Derek J; Weldon, Sinéad; Taggart, Clifford C; Coulter, Wilson A

    2010-10-01

    Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-α) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF-α production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.

  13. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  14. Arg-Gingipain A DNA Vaccine Induces Protective Immunity against Infection by Porphyromonas gingivalis in a Murine Model

    PubMed Central

    Yonezawa, Hideo; Ishihara, Kazuyuki; Okuda, Katsuji

    2001-01-01

    Arginine-specific cysteine proteinases (RgpA and RgpB) produced by the periodontal pathogen Porphyromonas gingivalis are suspected virulence factors and are involved in interrupting host defense mechanisms as well as in penetrating and destroying periodontal connective tissues. To induce a protective immune response against P. gingivalis, we constructed an rgpA DNA vaccine. BALB/c mice were immunized intradermally by Gene Gun with plasmid DNA carrying rgpA. Antibody responses against P. gingivalis were determined by an enzyme-linked immunosorbent assay. The rgpA DNA vaccine induced high levels of serum antibodies against P. gingivalis. Sera from the rgpA DNA vaccine-immunized mice diminished the proteolytic activity of RgpA and RgpB and inhibited the binding of P. gingivalis to a type I collagen sponge. Moreover, the sera effectively reduced the hemagglutination of P. gingivalis, indicating that the hemagglutinin activity of the organism is associated with RgpA. We found with a murine abscess model that mice immunized with the rgpA DNA vaccine were resistant to an invasive P. gingivalis W50 challenge. These results suggest that the rgpA DNA vaccine induced specific antibodies against the enzyme and that this vaccine could confer protective immunity against P. gingivalis infection. PMID:11292699

  15. Honey – a potential agent against Porphyromonas gingivalis: an in vitro study

    PubMed Central

    2014-01-01

    Background Honey has been discussed as a therapeutic option in wound healing since ancient time. It might be also an alternative to the commonly used antimicrobials in periodontitis treatment. The in-vitro study was aimed to determine the antimicrobial efficacy against Porphyromonas gingivalis as a major periodontopathogen. Methods One Manuka and one domestic beekeeper honey have been selected for the study. As a screening, MICs of the honeys against 20 P. gingivalis strains were determined. Contents of methylglyoxal and hydrogen peroxide as the potential antimicrobial compounds were determined. These components (up to 100 mg/l), propolis (up to 200 mg/l) as well as the two honeys (up to 10% w/v) were tested against four P. gingivalis strains in planktonic growth and in a single-species biofilm. Results 2% of Manuka honey inhibited the growth of 50% of the planktonic P. gingivalis, the respective MIC50 of the German beekeeper honey was 5%. Manuka honey contained 1.87 mg/kg hydrogen peroxide and the domestic honey 3.74 mg/kg. The amount of methylglyoxal was found to be 2 mg/kg in the domestic honey and 982 mg/kg in the Manuka honey. MICs for hydrogen peroxide were 10 mg/l - 100 mg/l, for methylglyoxal 5 – 20 mg/l, and for propolis 20 mg/l – 200 mg/l. 10% of both types of honey inhibited the formation of P. gingivalis biofilms and reduced the numbers of viable bacteria within 42 h-old biofilms. Neither a total prevention of biofilm formation nor a complete eradication of a 42 h-old biofilm by any of the tested compounds and the honeys were found. Conclusions Honey acts antibacterial against P. gingivalis. The observed pronounced effects of Manuka honey against planktonic bacteria but not within biofilm can be attributed to methylglyoxal as the characteristic antimicrobial component. PMID:24666777

  16. Porphyromonas (Bacteroides) gingivalis fimbrillin: size, amino-terminal sequence, and antigenic heterogeneity.

    PubMed Central

    Lee, J Y; Sojar, H T; Bedi, G S; Genco, R J

    1991-01-01

    Bacterial fimbriae mediate cell adhesion and are important in colonization. Fimbrial proteins from strains of Porphyromonas (Bacteroides) gingivalis isolated from different individuals were compared for their size, amino-terminal sequence, and antigenic diversity. Two major protein components of the crude fimbrial preparations differed in apparent molecular mass, ranging from 41 to 49 kDa for the fimbrillin monomer and from 61 to 78 kDa for the other major protein. The amino-terminal sequence of the antigenically related group of proteins of the fimbrillin monomer in the 41- to 49-kDa range showed significant homology; however, minor sequence heterogeneity was observed, mainly in residues 4 to 6. One of the observed amino-terminal sequences, AFGVGDDESKVAKLTVMVYNG, resembled the deduced sequence of P. gingivalis 381 (D.P. Dickinson, M. K. Kubiniec, F. Yoshimura, and R.J. Genco, J. Bacteriol. 170:1658-1665, 1988). Fimbriae from all the strains of P. gingivalis showing this sequence contained a fimbrillin monomer of 43 kDa and showed a strong reaction with both polyclonal and monoclonal antibodies directed to the fimbriae from P. gingivalis 2561 (381). Fimbriae from strains showing amino-terminal sequence variations in residues 4 to 6 (i.e., substitution of VGD with either E or NAG) were more diverse in their molecular sizes. Most of these variant fimbriae showed weak reactions with the polyclonal antibodies and no reaction with the monoclonal antibodies induced to the fimbriae of strain 2561. No correlation could be established between the molecular size and immunological reactivity of the fimbrillin monomer of P. gingivalis strains. Strains 9-14K-1 and HG 564 not only showed markedly different sequences from the other three amino-terminal sequences but also did not react with either polyclonal or monoclonal antibodies to the fimbriae of strain 2561. Strains W50, W83, and AJW 5 failed to show any immunological reactivity with the antibodies to fimbrillin or fimbriae

  17. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    SciTech Connect

    Wojtowicz, Halina; Wojaczynski, Jacek; Olczak, Mariusz; Kroliczewski, Jaroslaw; Latos-Grazynski, Lechoslaw; Olczak, Teresa

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  18. Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel

    2013-01-01

    Periodontitis is an inflammatory process of infectious origin that affects the gums and, in severe cases, destroys connective tissue, leading to loss of the dental organ. Gram-negative Porphyromonas gingivalis bacteria are recovered from patients with chronic periodontitis. The polysaccharide obtained from these bacteria induces the expression of interleukin (IL)-1 beta, tumor necrosis factor, and IL-6. Flavonoids are molecules that participate in the control of inflammatory processes. We studied the role of the flavonoids fisetin, luteolin, myricetin, and morin in inhibiting the activation of mitogen-activated protein kinase (MAPK) and AKT as well as their role in lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2) transcription. All four of these flavonoids were found to inhibit MAPK and AKT. Fisetin and luteolin blocked the activation of MAPK and AKT to levels below basal levels. All of these flavonoids also blocked LPS-mediated COX-2 expression.

  19. Crystallization and preliminary X-ray crystallographic studies of dipeptidyl peptidase 11 from Porphyromonas gingivalis

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    Dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) preferentially cleaves substrate peptides with Asp and Glu at the P1 position [NH2–P2–P1(Asp/Glu)–P1′–P2′…]. For crystallographic studies, PgDPP11 was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data to 1.82 Å resolution were collected from an orthorhombic crystal form belonging to space group C2221, with unit-cell parameters a = 99.33, b = 103.60, c = 177.33 Å. Structural analysis by the multi-wavelength anomalous diffraction method is in progress. PMID:25664797

  20. Comparison of Real-Time PCR and Culture for Detection of Porphyromonas gingivalis in Subgingival Plaque Samples

    PubMed Central

    Boutaga, Khalil; van Winkelhoff, Arie Jan; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2003-01-01

    Porphyromonas gingivalis is a major pathogen in destructive periodontal disease in humans. Detection and quantification of this microorganism are relevant for diagnosis and treatment planning. The prevalence and quantity of P. gingivalis in subgingival plaque samples of periodontitis patients were determined by anaerobic culture and real-time PCR amplification of the 16S small-subunit rRNA gene. The PCR was performed with primers and a fluorescently labeled probe specific for the P. gingivalis 16S rRNA gene. By the real-time PCR assay, as few as 1 CFU of P. gingivalis could be detected. Subgingival plaque samples from 259 adult patients with severe periodontitis were analyzed. P. gingivalis was detected in 111 (43%) of the 259 subgingival plaque samples by culture and in 138 (53%) samples by PCR. The sensitivity, specificity, and positive and negative predictive values of the real-time PCR were 100, 94, 94, and 100%, respectively. We conclude that real-time PCR confirms the results of quantitative culture of P. gingivalis and offers significant advantages with respect to the rapidity and sensitivity of detection of P. gingivalis in subgingival plaque samples. PMID:14605122

  1. Characterization of Innate Immune Responses of Human Endothelial Cells Induced by Porphyromonas gingivalis and Their Derived Outer Membrane Vesicles

    PubMed Central

    Ho, Meng-Hsuan; Guo, Zhong-Mao; Chunga, Julio; Goodwin, J. Shawn; Xie, Hua

    2016-01-01

    Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most common causes of morbidity and mortality world-wide. Involvement of Porphyromonas gingivalis in atherosclerosis is supported by observations from epidemiological, clinical, immunological, and molecular studies. Previously we reported that P. gingivalis vesicles have a much higher invasive efficiency than their originating cells. Here, we further compare the role of P. gingivalis cells and their vesicles in expression of chemoattractant proteins including CXCL1, CXCL2, and CXCL8, and adhesive molecules such as E-selectin in human umbilical vein endothelial cells (HUVECs). Both P. gingivalis 33277 cells and vesicles were able to up-regulate expression of these molecules, while the vesicles acted as more potent inducers of the inflammatory response associated with the development of atherosclerosis, consequently resulting in significant monocyte adhesion to a monolayer of HUVECs. Interestingly, we found that elevated expression of CXCL8 and E-selectin in endothelial cells induced by P. gingivalis correlated with the invasive ability of P. gingivalis cells and vesicles. Non-invasive bacterial cells and vesicles had no effect on expression of these genes. This study highlights the potential risk of P. gingivalis cells and vesicles in initiation of atherosclerosis and provides a potential target for the development of novel therapeutics against bacteria-associated atherosclerosis. PMID:27826542

  2. Innate immune-stimulatory activity of Porphyromonas gingivalis fimbriae is eliminated by phase separation using Triton X-114.

    PubMed

    Nozoe, Kohji; Sanui, Terukazu; Takeshita, Masaaki; Fukuda, Takao; Haraguchi, Akira; Aida, Yoshitomi; Nishimura, Fusanori

    2017-02-01

    Fimbriae are virulence factors of Porphyromonas gingivalis (P. gingivalis). In this study, the action of fimbriae on neutrophil respiratory burst and cytokine production by mononuclear cells (MNC) were investigated. Native or denatured form of purified P. gingivalis fimbriae contained endotoxin at an equivalence of 1-3μglipopolysaccharides(LPS)/mg protein. The endotoxin could be reduced to the equivalent of 1ng-LPS/mg protein by phase separation using Triton X-114. Unfractionated fimbriae caused serum-dependent priming of neutrophils for enhanced respiratory burst, but both native and denatured forms of Triton X-114-fractionated fimbriae were not active at 100μg/mL. Unfractionated fimbriae induced serum-dependent production of IL-1β by MNC. Triton X-114-fractionated fimbriae (10μg/mL)-induced production of IL-1β, IL-8 or TNF-α was much lower than that induced by unfractionated fimbriae or 10ng/mL P. gingivalis-LPS preparation. Triton X-114-fractionated fimbriae immobilized on polystyrene tubes induced adhesion-stimulated superoxide release by LPS-primed neutrophils in a β2 integrin-dependent manner. P. gingivalis cells caused priming of neutrophils; however, Toll-like receptor (TLR) 4 antagonists did not affect this response. Thus, P. gingivalis fimbriae were ineffective in inducing innate immune response in leukocytes; however, they induced β2 integrin-mediated response by neutrophils. Immune-stimulatory components of P. gingivalis might be recognized by receptors other than TLR4.

  3. Characterization of Innate Immune Responses of Human Endothelial Cells Induced by Porphyromonas gingivalis and Their Derived Outer Membrane Vesicles.

    PubMed

    Ho, Meng-Hsuan; Guo, Zhong-Mao; Chunga, Julio; Goodwin, J Shawn; Xie, Hua

    2016-01-01

    Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most common causes of morbidity and mortality world-wide. Involvement of Porphyromonas gingivalis in atherosclerosis is supported by observations from epidemiological, clinical, immunological, and molecular studies. Previously we reported that P. gingivalis vesicles have a much higher invasive efficiency than their originating cells. Here, we further compare the role of P. gingivalis cells and their vesicles in expression of chemoattractant proteins including CXCL1, CXCL2, and CXCL8, and adhesive molecules such as E-selectin in human umbilical vein endothelial cells (HUVECs). Both P. gingivalis 33277 cells and vesicles were able to up-regulate expression of these molecules, while the vesicles acted as more potent inducers of the inflammatory response associated with the development of atherosclerosis, consequently resulting in significant monocyte adhesion to a monolayer of HUVECs. Interestingly, we found that elevated expression of CXCL8 and E-selectin in endothelial cells induced by P. gingivalis correlated with the invasive ability of P. gingivalis cells and vesicles. Non-invasive bacterial cells and vesicles had no effect on expression of these genes. This study highlights the potential risk of P. gingivalis cells and vesicles in initiation of atherosclerosis and provides a potential target for the development of novel therapeutics against bacteria-associated atherosclerosis.

  4. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells

    PubMed Central

    Geng, Fengxue; Liu, Junchao; Guo, Yan; Li, Chen; Wang, Hongyang; Wang, Hongyan; Zhao, Haijiao; Pan, Yaping

    2017-01-01

    Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with

  5. vimA Gene Downstream of recA Is Involved in Virulence Modulation in Porphyromonas gingivalis W83

    PubMed Central

    Abaibou, Hafid; Chen, Zhuo; Olango, G. Jon; Liu, Yi; Edwards, Jessica; Fletcher, Hansel M.

    2001-01-01

    A 0.9-kb open reading frame encoding a unique 32-kDa protein was identified downstream of the recA gene of Porphyromonas gingivalis. Reverse transcription-PCR and Northern blot analysis showed that both the recA gene and this open reading frame are part of the same transcriptional unit. This cloned fragment was insertionally inactivated using the ermF-ermAM antibiotic resistance cassette to create a defective mutant by allelic exchange. When plated on Brucella blood agar, the mutant strain, designated P. gingivalis FLL92, was non-black pigmented and showed significant reduction in beta-hemolysis compared with the parent strain, P. gingivalis W83. Arginine- and lysine-specific cysteine protease activities, which were mostly soluble, were approximately 90% lower than that of the parent strain. Expression of the rgpA, rgpB, and kgp protease genes was the same in P. gingivalis FLL92 as in the wild-type strain. In contrast to the parent strain, P. gingivalis FLL92 showed increased autoaggregration in addition to a significant reduction in hemagglutinating and hemolysin activities. In in vivo experiments using a mouse model, P. gingivalis FLL92 was dramatically less virulent than the parent strain. A molecular survey of this mutant and the parent strain using all known P. gingivalis insertion sequence elements as probes suggested that no intragenomic changes due to the movement of these elements have occurred in P. gingivalis FLL92. Taken together, these results suggest that the recA downstream gene, designated vimA (virulence-modulating gene), plays an important role in virulence modulation in P. gingivalis W83, possibly representing a novel posttranscriptional or translational regulation of virulence factors in P. gingivalis. PMID:11119521

  6. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors

    PubMed Central

    Barbosa, Graziela Murta; Colombo, Andrea Vieira; Rodrigues, Paulo Henrique; Simionato, Maria Regina Lorenzetti

    2015-01-01

    It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P

  7. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors.

    PubMed

    Barbosa, Graziela Murta; Colombo, Andrea Vieira; Rodrigues, Paulo Henrique; Simionato, Maria Regina Lorenzetti

    2015-01-01

    It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P

  8. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  9. Role of Porphyromonas gingivalis FeoB2 in Metal Uptake and Oxidative Stress Protection

    PubMed Central

    He, Jia; Miyazaki, Hiroshi; Anaya, Cecilia; Yu, Fan; Yeudall, W. Andrew; Lewis, Janina P.

    2006-01-01

    Porphyromonas gingivalis, a gram-negative anaerobic bacterium, is a recognized periodontopathogen. It exhibits a high degree of aerotolerance and is able to survive in host cells, indicating that efficient oxidative stress protection mechanisms must be present in this organism. Manganese homeostasis plays a major role in oxidative stress protection in a variety of organisms; however, the transport and role of this metal in P. gingivalis is not well understood. Analysis of the genome of P. gingivalis W83 revealed the presence of two genes encoding homologs of a ferrous iron transport protein, FeoB1 and FeoB2. FeoB2 has been implicated in manganese accumulation in P. gingivalis. We sought to determine the role of the FeoB2 protein in metal transport as well as its contribution to resistance to oxygen radicals. Quantitative reverse transcriptase PCR analyses demonstrated that expression of feoB2 is induced in the presence of oxygen. The role of FeoB2 was investigated using an isogenic mutant strain deficient in the putative transporter. We characterized the FeoB2-mediated metal transport using 55Fe2+ and 54Mn2+. The FeoB2-deficient mutant had dramatically reduced rates of manganese uptake (0.028 pmol/min/107 bacteria) compared with the parental strain (0.33 pmol/min/107 bacteria) (after 20 min of uptake using 50 nM of 54Mn2+). The iron uptake rates, however, were higher in the mutant strain (0.75 pmol/min/107 bacteria) than in the wild type (0.39 pmol/min/107 bacteria). Interestingly, reduced survival rates were also noted for the mutant strain after exposure to H2O2 and to atmospheric oxygen compared to the parental strain cultured under the same conditions. In addition, in vitro infection of host cells with the wild type, the FeoB2-deficient mutant, and the same-site revertant revealed that the mutant had a significantly decreased capability for intracellular survival in the host cells compared to the wild-type strain. Our results demonstrate that feoB2 encodes a

  10. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  11. IS195, an Insertion Sequence-Like Element Associated with Protease Genes in Porphyromonas gingivalis

    PubMed Central

    Lewis, Janina P.; Macrina, Francis L.

    1998-01-01

    Porphyromonas gingivalis is recognized as an important etiologic agent in adult and early-onset periodontal disease. Proteases produced by this organism contribute to its virulence in mice. Protease-encoding genes have been shown to contain multiple copies of repeated nucleotide sequences. These conserved sequences have also been found in hemagglutinin genes. In the process of studying the genetic loci containing the conserved repeated sequences, we have characterized a prtP gene homolog from P. gingivalis W83 encoding a cysteine protease with Lys-X specificity. However, this prtP gene was interrupted by an insertion sequence-like element which we designated IS195. Furthermore, IS195 and another element, IS1126, were present downstream of prtP gene homologs (kgp) found in P. gingivalis H66 and 381. IS195, a 1,068-bp insertion sequence-like element, contained 11-bp inverted repeats at its termini and was bordered by 9-bp direct repeats presumed to be a transposition-mediated target site duplication. Its central region contained one large open reading frame encoding a predicted 300-amino-acid protein which appeared to be a transposase. We isolated two naturally occurring variants of P. gingivalis W83, one carrying IS195 within the coding region of the prtP gene and another containing an intact prtP gene. Biochemical characterization revealed a lack of trypsin-like Lys-X specific proteolytic activity in the P. gingivalis W83 variant carrying the disrupted prtP gene. Studies using a mouse model revealed a reduction of virulence resulting from insertion of IS195 into the coding region of the prtP gene. An allelic-exchange mutant defective in the prtP gene also was constructed and tested in vivo. It displayed intermediate virulence compared to that of the wild-type and prtP::IS195 mutant strains. We conclude that the Lys-X cysteine protease contributes to virulence in soft tissue infections. PMID:9632563

  12. Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas gingivalis Infection.

    PubMed

    Huck, Olivier; Al-Hashemi, Jacob; Poidevin, Laetitia; Poch, Olivier; Davideau, Jean-Luc; Tenenbaum, Henri; Amar, Salomon

    2017-03-01

    MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P

  13. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat.

    PubMed

    Kunnen, A; van Pampus, M G; Aarnoudse, J G; van der Schans, C P; Abbas, F; Faas, M M

    2014-09-01

    Periodontitis, mostly associated with Porphyromonas gingivalis, has frequently been related to adverse pregnancy outcomes. We therefore investigated whether lipopolysaccharides of P. gingivalis (Pg-LPS) induced pregnancy complications in the rat. Experiment 1: pregnant rats (day 14) received increasing Pg-LPS doses (0.0-50.0 μg kg(-1) bw; n = 2/3 p per dose). Maternal intra-aortic blood pressure, urinary albumin excretion, placental and foetal weight and foetal resorptions were documented. Experiment 2: 10.0 μg kg(-1) bw (which induced the highest blood pressure together with decreased foetal weight in experiment 1) or saline was infused in pregnant and non-pregnant rats (n = 7/9 p per group). Parameters of experiment 1 and numbers of peripheral leucocytes as well as signs of inflammation in the kidney and placenta were evaluated. Pg-LPS infusion in pregnant rats increased maternal systolic blood pressure, reduced placental weight (dose dependently) and decreased foetal weight and induced foetal resorptions. It, however, did not induce proteinuria or a generalised inflammatory response. No effects of Pg-LPS were seen in non-pregnant rats. Pg-LPS increased maternal blood pressure, induced placental and foetal growth restriction, and increased foetal resorptions, without inducing proteinuria and inflammation. Pg-LPS may therefore play a role in pregnancy complications induced by periodontitis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis

    PubMed Central

    Stone, Victoria N.; Parikh, Hardik I.; El-rami, Fadi; Ge, Xiuchun; Chen, Weihau; Zhang, Yan; Kellogg, Glen E.; Xu, Ping

    2015-01-01

    Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a “druggable” essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivalis was first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials. PMID:26544875

  15. Distribution of Porphyromonas gingivalis biotypes defined by alleles of the kgp (Lys-gingipain) gene.

    PubMed

    Nadkarni, Mangala A; Nguyen, Ky-Anh; Chapple, Cheryl C; DeCarlo, Arthur A; Jacques, Nicholas A; Hunter, Neil

    2004-08-01

    Paired subgingival plaque samples representing the most-diseased and least-diseased sites were collected from 34 adult patients with diagnosed chronic periodontitis. The percentage of Porphyromonas gingivalis relative to the total anaerobic and gram-negative bacterial load at each site was determined by real-time PCR. Based on variations in the noncatalytic C terminus of the Lys-gingipain (Kgp), it was reasoned that DNA sequence variation in the 3'-coding region of the kgp gene might determine functional biotypes. Perusal of the available sequence information in GenBank indicated three such forms of the kgp gene corresponding to P. gingivalis strains HG66, 381, and W83. Analysis of patient samples revealed the presence of a fourth genotype (W83v) that showed duplication of a sequence recognized by the W83 reverse primer. The four biotypes, HG66, 381, W83, and W83v, were present in the study group in the ratio 8:11:6:5, respectively. Each subject was colonized by one predominant biotype, and only three patients were colonized by a trace amount of a second biotype.

  16. Pyrano-isoflavans from Glycyrrhiza uralensis with antibacterial activity against Streptococcus mutans and Porphyromonas gingivalis.

    PubMed

    Villinski, Jacquelyn R; Bergeron, Chantal; Cannistra, Joseph C; Gloer, James B; Coleman, Christina M; Ferreira, Daneel; Azelmat, Jabrane; Grenier, Daniel; Gafner, Stefan

    2014-03-28

    Continuing investigation of fractions from a supercritical fluid extract of Chinese licorice (Glycyrrhiza uralensis) roots has led to the isolation of 12 phenolic compounds, of which seven were described previously from this extract. In addition to these seven metabolites, four known components, 1-methoxyerythrabyssin II (4), 6,8-diprenylgenistein, gancaonin G (5), and isoglycyrol (6), and one new isoflavan, licorisoflavan C (7), were characterized from this material for the first time. Treatment of licoricidin (1) with palladium chloride afforded larger amounts of 7 and also yielded two new isoflavans, licorisoflavan D (8), which was subsequently detected in the licorice extract, and licorisoflavan E (9). Compounds 1-9 were evaluated for their antibacterial activities against the cariogenic Streptococcus mutans and the periodontopathogenic Porphyromonas gingivalis. Licoricidin (1), licorisoflavan A (2), and 7-9 showed antibacterial activity against P. gingivalis (MICs of 1.56-12.5 μg/mL). The most potent activity against S. mutans was obtained with 7 (MIC of 6.25 μg/mL), followed by 1 and 9 (MIC of 12.5 μg/mL). This study provides further evidence for the therapeutic potential of licorice extracts for the treatment and prevention of oral infections.

  17. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay.

    PubMed

    Yilmaz, Ozlem

    2008-10-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues.

  18. Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer's Disease

    PubMed Central

    Singhrao, Sim K.; Harding, Alice; Poole, Sophie; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease (PD) and Alzheimer's disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) which have an immune armoury that can circumvent host's immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition. PMID:26063967

  19. Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer's Disease.

    PubMed

    Singhrao, Sim K; Harding, Alice; Poole, Sophie; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease (PD) and Alzheimer's disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) which have an immune armoury that can circumvent host's immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition.

  20. Periodontitis, pathogenesis and progression: miRNA-mediated cellular responses to Porphyromonas gingivalis

    PubMed Central

    Olsen, Ingar; Singhrao, Sim K.; Osmundsen, Harald

    2017-01-01

    ABSTRACT Porphyromonas gingivalis is considered a keystone pathogen in periodontitis, a disease typically driven by dysbiosis of oral inflammophilic polymicrobial pathobionts. To combat infectious agents, the natural defense response of the host is to switch on inflammatory signaling cascades, whereby microRNA (miRNA) species serve as alternative genetic inhibitory transcriptional endpoints. miRNA profiles from diseased sites differ from those detected in disease-free tissues. miRNA profiles could therefore be harnessed as potential diagnostic/prognostic tools. The regulatory role of some miRNA species (miRNA-128, miRNA-146, miRNA-203, and miRNA-584) in the innate immune system suggests these molecular signatures also have potential in therapy. P. gingivalis–associated miRNAs are likely to influence the innate immune response, whereas its lipopolysaccharide may affect the nature of host miRNAs and their mRNA targets. This mini review discusses miRNA-dependent transcriptional and regulatory phenomena ensuing immune signaling cascade switch-on with development and progression of periodontitis initiated by P. gingivalis exposure. PMID:28748037

  1. Acute Toxicity and the Effect of Andrographolide on Porphyromonas gingivalis-Induced Hyperlipidemia in Rats

    PubMed Central

    Al-Bayaty, Fouad; Al-Obaidi, Mazen M. Jamil; Abdulla, Mahmood A.

    2013-01-01

    The aim of the current study is to evaluate the effect of andrographolide on hyperlipidemia induced by Porphyromonas gingivalis in rats. Thirty male Sprague Dawley (SD) rats were divided into five groups as follows: group 1 (vehicle) and four experimental groups (groups 2, 3, 4, and 5) were challenged orally with P. gingivalis ATCC 33277 (0.2 mL of 1.5 ×1012 bacterial cells/mL in 2% carboxymethylcellulose (CMC) with phosphate-buffered saline (PBS)) five times a week for one month to induce hyperlipidemia. Then, group 3 received a standard oral treatment with simvastatin 100 mg/kg, and groups 4 and 5 received oral treatment with andrographolide 20 mg/kg and 10 mg/kg, respectively, for another month. The results showed that total cholesterol (TC), low-density lipoprotein (LDL-C), and triglycerides (TG) were reduced significantly in groups treated with andrographolide. The malondialdehyde (MDA) level was low in treated groups, while antioxidant enzymes, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly increased in these groups (P < 0.05). Liver tissues of the groups treated with andrographolide reduce the accumulation of lipid droplets in hepatic tissue cells. An acute toxicity test did not show any toxicological symptoms in rats. PMID:23844365

  2. Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries

    PubMed Central

    Mougeot, J-L. C.; Stevens, C. B.; Paster, B. J.; Brennan, M. T.; Lockhart, P. B.; Mougeot, F. K. B

    2017-01-01

    ABSTRACT An association between oral bacteria and atherosclerosis has been postulated. A limited number of studies have used 16S RNA gene sequencing-based metagenomics approaches to identify bacteria at the species level from atherosclerotic plaques in arterial walls. The objective of this study was to establish detailed oral microbiome profiles, at both genus and species level, of clinically healthy coronary and femoral artery tissues from patients with atherosclerosis. Tissue specimens were taken from clinically non-atherosclerotic areas of coronary or femoral arteries used for attachment of bypass grafts in 42 patients with atherosclerotic cardiovascular disease. Bacterial DNA was sequenced using the MiSeq platform, and sequence reads were screened in silico for nearly 600 oral species using the HOMINGS ProbeSeq species identification program. The number of sequence reads matched to species or genera were used for statistical analyses. A total of 230 and 118 species were detected in coronary and femoral arteries, respectively. Unidentified species detected by genus-specific probes consisted of 45 and 30 genera in coronary and in femoral artery tissues, respectively. Overall, 245 species belonging to 95 genera were detected in coronary and femoral arteries combined. The most abundant species were Porphyromonas gingivalis, Enterococcus faecalis, and Finegoldia magna based on species probes. Porphyromonas, Escherichia, Staphylococcus, Pseudomonas, and Streptococcus genera represented 88.5% mean relative abundance based on combined species and genus probe detections. Porphyromonas was significantly more abundant than Escherichia (i.e. 46.8% vs. 19.3%; p = 0.0005). This study provides insight into the presence and types of oral microbiome bacterial species found in clinically non-atherosclerotic arteries. PMID:28326156

  3. Role of the Porphyromonas gingivalis ECF sigma factor, SigH

    PubMed Central

    Yanamandra, Sai S.; Sarrafee, Sara S.; Anaya-Bergman, Cecilia; Jones, Kevin; Lewis, Janina P.

    2012-01-01

    Little is known about the regulatory mechanisms that allow Porphyromonas gingivalis to survive in the oral cavity. Here we characterize the sigma factor SigH, one of six extracytoplasmic (ECF) sigma (σ) factors encoded in the P. gingivalis genome. Our results indicate that sigH expression is upregulated by exposure to molecular oxygen, suggesting that sigH plays a role in adaptation of P. gingivalis to oxygen. Furthermore, several genes involved in oxidative stress protection, such as sod, trx, tpx, ftn, feoB2 and the hemin uptake hmu locus, are downregulated in mutant deficient in SigH designated as V2948. ECF σ consensus sequences were identified upstream of the transcriptional start sites of these genes, consistent with the SigH-dependent regulation of these genes. Growth of V2948 was inhibited in the presence of 6% oxygen when compared to the wild-type W83 strain, while in anaerobic conditions both strains were able to grow. In addition, reduced growth of V2948 was observed in the presence of peroxide and thiol-oxidizing reagent, diamide when compared to the W83 strain. The SigH-deficient strain V2948 also exhibited reduced hemin uptake, consistent with the observed reduced expression of genes involved in hemin uptake. Finally, survival of V2948 was reduced in the presence of host cells compared to the wild-type W83 strain. Collectively, our studies demonstrate that SigH is a positive regulator of gene expression required for survival of the bacterium in the presence of oxygen and oxidative stress, hemin uptake, and virulence. PMID:22520389

  4. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis.

    PubMed

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A

    2008-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  5. Molecular Interactions of Porphyromonas gingivalis Fimbriae with Host Proteins: Kinetic Analyses Based on Surface Plasmon Resonance

    PubMed Central

    Amano, Atsuo; Nakamura, Takayuki; Kimura, Shigenobu; Morisaki, Ichijiro; Nakagawa, Ichiro; Kawabata, Shigetada; Hamada, Shigeyuki

    1999-01-01

    Fimbriae of Porphyromonas gingivalis are thought to play an important role in the colonization and invasion of periodontal tissues. In this study, we analyzed the interactions of P. gingivalis fimbriae with human hemoglobin, fibrinogen, and salivary components (i.e., proline-rich protein [PRP], proline-rich glycoprotein [PRG], and statherin) based on surface plasmon resonance (SPR) spectroscopy with a biomolecular interaction analyzing system (BIAcore). The real-time observation showed that the fimbriae interacted more quickly with hemoglobin and PRG than with other proteins and more intensely with fibrinogen. The significant association constant (ka) values obtained by BIAcore demonstrated that the interactions between fimbriae and these host proteins are specific. These estimated Ka values were not too different; however, the Ka values for hemoglobin (2.43 × 106) and fibrinogen (2.16 × 106) were statistically greater than those for the salivary proteins (1.48 × 106 to 1.63 × 106). The Ka value of anti-fimbriae immunoglobulin G for fimbriae was estimated to be 1.22 × 107, which was 6.55-fold higher than the mean Ka value of the host proteins. Peptide PRP-C, a potent inhibitor of PRP-fimbriae interaction, dramatically inhibited fimbrial association to PRP and PRG and was also inhibitory against other host proteins by BIAcore. The binding of fimbriae to these proteins was also evaluated by other methods with hydroxyapatite beads or polystyrene microtiter plates. The estimated binding abilities differed considerably, depending on the assay method that was used. It was noted that the binding capacity of PRP was strongly diminished by immobilization on a polystyrene surface. Taken together, these findings suggest that P. gingivalis fimbriae possess a strong ability to interact with the host proteins which promote bacterial adherence to the oral cavity and that SPR spectroscopy is a useful method for analyzing specific protein-fimbriae interactions. PMID:10225901

  6. Effects of a Porphyromonas gingivalis infection on inflammatory mediator response and pregnancy outcome in hamsters.

    PubMed Central

    Collins, J G; Windley, H W; Arnold, R R; Offenbacher, S

    1994-01-01

    This study examines the effects of various localized, nondissemination challenges of Porphyromonas gingivalis on inflammatory mediator production and pregnancy outcome in the golden hamster. Live or heat-killed (HK) organisms were inoculated into a previously implanted subcutaneous tissue chamber on the 8th day of gestation to determine the effects on fetal weight, viability, and resorption. In one group of animals, HK organisms were inoculated prior to mating to determine the effects of previous exposure on day-8 gestational challenges. Chamber contents were assayed at 1 and 5 days after challenge for prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-alpha). All P. gingivalis challenges caused a significant increase in chamber PGE2 and TNF-alpha at P < 0.01 in the following order of potency: HK < Live < HK+Live. For example, following the HK+Live challenge, PGE2 levels increased from 4.7 pg/ml at baseline to 362 pg/ml at day 5 and TNF-alpha increased from 26.4 pg/ml to 724 pg/ml at day 5. The same order of potency of the various challenges was maintained with regard to the toxic effects of P. gingivalis on pregnancy outcome. For the HK+Live challenge, fetal weight was decreased 24%; embryolethality increased to 26.5% and the percent fetal resorption increased to 10.6% compared with control animal levels. There was a statistically significant association between increasing levels of both PGE2 and TNF-alpha and fetal growth retardation and embryolethality at P < 0.001. These data suggest that infections with gram-negative periodontal pathogens can elicit adverse pregnancy outcomes and that the levels of PGE2 and TNF-alpha produced as a result of challenge are associated with the severity of fetal effect. PMID:7927695

  7. Identification of Porphyromonas gingivalis lipopolysaccharide-binding proteins in human saliva.

    PubMed

    Choi, Seulggie; Baik, Jung Eun; Jeon, Jun Ho; Cho, Kun; Seo, Deog-Gyu; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2011-09-01

    Porphyromonas gingivalis causes periodontal diseases and its lipopolysaccharide (LPS) is considered as a major virulence factor responsible for pathogenesis. Since initial recognition of P. gingivalis LPS (Pg.LPS) in the oral cavity might be crucial for the host response, we identified Pg.LPS-binding proteins (Pg.LPS-BPs) using Pg.LPS-immobilized beads and a high-resolution mass spectrometry. LPS purified from P. gingivalis was conjugated onto N-hydroxysuccinimidyl-Sepharose(®) 4 Fast Flow beads. Notably, Pg.LPS-conjugated beads could stimulate Toll-like receptor 2 (TLR2) as determined by a TLR2-depdendent reporter expression system using CHO/CD14/TLR2. In addition, the Pg.LPS-conjugated beads induced the production of inflammatory mediators such as nitric oxide and interferon-gamma-inducible protein-10 in the macrophage cell-line, RAW 264.7. These results imply that Pg.LPS retained its immunological properties during the conjugation process. Then, the Pg.LPS-conjugated beads were mixed with a pool of saliva obtained from nine human subjects to capture Pg.LPS-BPs and molecular identities were determined by LTQ-Orbitrap hybrid fourier transform mass spectrometry. Pg.LPS-BPs captured at high frequencies included alpha-amylase, cystatin, prolactin-inducible protein, lysozyme C, immunoglobulin components, serum albumin, lipocalin-1, and submaxillary gland androgen-regulated protein 3B. These proteins are known to be involved in bacterial adhesion and colonization, anti-microbial functions or modulation of immune responses.

  8. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis.

    PubMed

    Kerr, Jennifer E; Abramian, Jared R; Dao, Doan-Hieu V; Rigney, Todd W; Fritz, Jamie; Pham, Tan; Gay, Isabel; Parthasarathy, Kavitha; Wang, Bing-yan; Zhang, Wenjian; Tribble, Gena D

    2014-01-01

    Porphyromonas gingivalis is a gram-negative anaerobic bacterium, a member of the human oral microbiome, and a proposed "keystone" pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.

  9. Synthesis of Sphingolipids Impacts Survival of Porphyromonas gingivalis and the Presentation of Surface Polysaccharides

    PubMed Central

    Moye, Zachary D.; Valiuskyte, Kornelija; Dewhirst, Floyd E.; Nichols, Frank C.; Davey, Mary E.

    2016-01-01

    Bacteria alter the biophysical properties of their membrane lipids in response to environmental cues, such as shifts in pH or temperature. In essence, lipid composition determines membrane structure, which in turn influences many basic functions, such as transport, secretion, and signaling. Like other members of the phylum Bacteroidetes, the oral anaerobe Porphyromonas gingivalis possesses the ability to synthesize a variety of novel membrane lipids, including species of dihydroceramides that are distinct, yet similar in structure to sphingolipids produced by the human host. The role of dihydroceramides in the physiology and pathogenic potential of the human microbiota is only beginning to be explored; yet there is increasing data indicating that these lipids play a role in human diseases, such as periodontitis and multiple sclerosis. Here, we report on the identification of a gene (PG1780) in the chromosome of P. gingivalis strain W83 encoding a putative serine palmitoyltransferase, the enzyme that catalyzes the first step in sphingolipid biosynthesis. While we were able to detect dihydroceramides in whole lipid extracts of P. gingivalis cells as well as crude preparations of outer membrane vesicles, sphingolipids were absent in the PG1780 mutant strain. Moreover, we show that the synthesis of sphingolipids plays an essential role in the long-term survival of the organism as well as its resistance to oxidative stress. Further, a PG1780 mutant displayed much lower activity of cell-associated arginine and lysine gingipains, yet slightly higher activity in the corresponding culture supernates, which we hypothesize is due to altered membrane properties and anchoring of these proteases to the cell surface. In addition, we determined that sphingolipid production is critical to the presentation of surface polysaccharides, with the mutant strain displaying less K-antigen capsule and more anionic polysaccharide (APS). Overall, we have discovered that, in addition to their

  10. Genetic Exchange of Fimbrial Alleles Exemplifies the Adaptive Virulence Strategy of Porphyromonas gingivalis

    PubMed Central

    Kerr, Jennifer E.; Abramian, Jared R.; Dao, Doan-Hieu V.; Rigney, Todd W.; Fritz, Jamie; Pham, Tan; Gay, Isabel; Parthasarathy, Kavitha; Wang, Bing-yan; Zhang, Wenjian; Tribble, Gena D.

    2014-01-01

    Porphyromonas gingivalis is a gram–negative anaerobic bacterium, a member of the human oral microbiome, and a proposed “keystone” pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions. PMID:24626479

  11. Expression, purification and characterization of enoyl-ACP reductase II, FabK, from Porphyromonas gingivalis

    SciTech Connect

    Hevener, Kirk E.; Mehboob, Shahila; Boci, Teuta; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E.

    2012-10-25

    The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agent of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP{sup +} during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.

  12. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells.

    PubMed

    Wunsch, Christopher M; Lewis, Janina P

    2015-12-17

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal

  13. Porphyromonas gingivalis-stimulated macrophage subsets exhibit differential induction and responsiveness to interleukin-10.

    PubMed

    Foey, Andrew D; Habil, Neama; Al-Shaghdali, Khalid; Crean, StJohn

    2017-01-01

    Oral mucosal macrophages (Mϕs) determine immune responses; maintaining tolerance whilst retaining the capacity to activate defences against pathogens. Mϕ responses are determined by two distinct subsets; pro-inflammatory M1- and anti-inflammatory/regulatory M2-Mϕs. Tolerance induction is driven by M2 Mϕs, whereas M1-like Mϕs predominate in inflammation, such as that exhibited in chronic Porphyromonas gingivalis (PG) periodontal infection. Mϕ responses can be suppressed to benefit either the host or the pathogen. Chronic stimulation by pathogen associated molecular patterns (PAMPs), such as LPS, is well established to induce tolerance. The aim of this study was to investigate the P. gingivalis-driven induction of and responsiveness to the suppressive, anti-inflammatory cytokine, IL-10, by Mϕ subsets. M1- and M2-like Mϕs were generated in vitro from the THP-1 monocyte cell line by differentiation with PMA and Vitamin D3, respectively. Mϕ subsets were stimulated by PG-LPS in the presence or absence of IL-10. PG-LPS differentially induced IL-10 secretion and endogenous IL-10 activity in M1- and M2-like subsets. In addition, these subsets exhibited differential sensitivity to IL-10-mediated suppression of TNFα, where M2 Mϕs where sensitive to IL-10 and M1 Mϕs were refractory to suppression. In addition, this differential responsiveness to IL-10 was independent of IL-10-binding and expression of the IL-10 receptor signal transducing subunit, IL-10Rβ, but was in fact dependent on activation of STAT-3. P.gingivalis selectively tolerises regulatory M2 Mϕs with little effect on pro-inflammatory M1 Mϕs; differential suppression facilitating immunopathology at the expense of immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells.

    PubMed

    Takahashi, Yusuke; Davey, Michael; Yumoto, Hiromichi; Gibson, Frank C; Genco, Caroline Attardo

    2006-05-01

    Epidemiological studies support that chronic periodontal infections are associated with an increased risk of cardiovascular disease. Previously, we reported that the periodontal pathogen Porphyromonas gingivalis accelerated atherosclerotic plaque formation in hyperlipidemic apoE-/- mice, while an isogenic fimbria-deficient (FimA-) mutant did not. In this study, we utilized 41 kDa (major) and 67 kDa (minor) fimbria mutants to demonstrate that major fimbria are required for efficient P. gingivalis invasion of human aortic endothelial cells (HAEC). Enzyme-linked immunosorbent assay (ELISA) revealed that only invasive P. gingivalis strains induced HAEC production of pro-inflammatory molecules interleukin (IL)-1beta, IL-8, monocyte chemoattractant protein (MCP)-1, intracellular adhesion molecule (ICAM)-1, vascular cellular adhesion molecule (VCAM)-1 and E-selectin. The purified native forms of major and minor fimbria induced chemokine and adhesion molecule expression similar to invasive P. gingivalis, but failed to elicit IL-1beta production. In addition, the major and minor fimbria-mediated production of MCP-1 and IL-8 was inhibited in a dose-dependent manner by P. gingivalis lipopolysaccharide (LPS). Both P. gingivalis LPS and heat-killed organisms failed to stimulate HAEC. Treatment of endothelial cells with cytochalasin D abolished the observed pro-inflammatory MCP-1 and IL-8 response to invasive P. gingivalis and both purified fimbria, but did not affect P. gingivalis induction of IL-1beta. These results suggest that major and minor fimbria elicit chemokine production in HAEC through actin cytoskeletal rearrangements; however, induction of IL-1beta appears to occur via a separate mechanism. Collectively, these data support that invasive P. gingivalis and fimbria stimulate endothelial cell activation, a necessary initial event in the development of atherogenesis.

  15. VimA-Dependent Modulation of Acetyl Coenzyme A Levels and Lipid A Biosynthesis Can Alter Virulence in Porphyromonas gingivalis

    PubMed Central

    Aruni, A. Wilson; Lee, J.; Osbourne, D.; Dou, Y.; Roy, F.; Muthiah, A.; Boskovic, D. S.

    2012-01-01

    The Porphyromonas gingivalis VimA protein has multifunctional properties that can modulate several of its major virulence factors. To further characterize VimA, P. gingivalis FLL406 carrying an additional vimA gene and a vimA-defective mutant in a different P. gingivalis genetic background were evaluated. The vimA-defective mutant (FLL451) in the P. gingivalis ATCC 33277 genetic background showed a phenotype similar to that of the vimA-defective mutant (FLL92) in the P. gingivalis W83 genetic background. In contrast to the wild type, gingipain activity was increased in P. gingivalis FLL406, a vimA chimeric strain. P. gingivalis FLL451 had a five times higher biofilm-forming capacity than the parent strain. HeLa cells incubated with P. gingivalis FLL92 showed a decrease in invasion, in contrast to P. gingivalis FLL451 and FLL406, which showed increases of 30 and 40%, respectively. VimA mediated coenzyme A (CoA) transfer to isoleucine and reduced branched-chain amino acid metabolism. The lipid A content and associated proteins were altered in the vimA-defective mutants. The VimA chimera interacted with several proteins which were found to have an LXXTG motif, similar to the sorting motif of Gram-positive organisms. All the proteins had an N-terminal signal sequence with a putative sorting signal of L(P/T/S)X(T/N/D)G and two unique signatures of EXGXTX and HISXXGXG, in addition to a polar tail. Taken together, these observations further confirm the multifunctional role of VimA in modulating virulence possibly through its involvement in acetyl-CoA transfer and lipid A synthesis and possibly by protein sorting. PMID:22144476

  16. A Dual Role for P2X7 Receptor during Porphyromonas gingivalis Infection

    PubMed Central

    Ramos-Junior, E.S.; Morandini, A.C.; Almeida-da-Silva, C.L.C.; Franco, E.J.; Potempa, J.; Nguyen, K.A.; Oliveira, A.C.; Zamboni, D.S.; Ojcius, D.M.; Scharfstein, J.

    2015-01-01

    Emerging evidence suggests a role for purinergic signaling in the activation of multiprotein intracellular complexes called inflammasomes, which control the release of potent inflammatory cytokines, such as interleukin (IL) -1β and -18. Porphyromonas gingivalis is intimately associated with periodontitis and is currently considered one of the pathogens that can subvert the immune system by limiting the activation of the NLRP3 inflammasome. We recently showed that P. gingivalis can dampen eATP-induced IL-1β secretion by means of its fimbriae in a purinergic P2X7 receptor–dependent manner. Here, we further explore the role of this purinergic receptor during eATP-induced IL-1β processing and secretion by P. gingivalis–infected macrophages. We found that NLRP3 was necessary for eATP-induced IL-1β secretion as well as for caspase 1 activation irrespective of P. gingivalis fimbriae. Additionally, although the secretion of IL-1β from P. gingivalis–infected macrophages was dependent on NLRP3, its adaptor protein ASC, or caspase 1, the cleavage of intracellular pro-IL-1β to the mature form was found to occur independently of NLRP3, its adaptor protein ASC, or caspase 1. Our in vitro findings revealed that P2X7 receptor has a dual role, being critical not only for eATP-induced IL-1β secretion but also for intracellular pro-IL-1β processing. These results were relevant in vivo since P2X7 receptor expression was upregulated in a P. gingivalis oral infection model, and reduced IFN-γ and IL-17 were detected in draining lymph node cells from P2rx7-/- mice. Furthermore, we demonstrated that P2X7 receptor and NLRP3 transcription were modulated in human chronic periodontitis. Overall, we conclude that the P2X7 receptor has a role in periodontal immunopathogenesis and suggest that targeting of the P2X7/NLRP3 pathway should be considered in future therapeutic interventions in periodontitis. PMID:26152185

  17. Assessment of outer membrane vesicles of periodontopathic bacterium Porphyromonas gingivalis as possible mucosal immunogen.

    PubMed

    Nakao, Ryoma; Hasegawa, Hideki; Dongying, Bai; Ohnishi, Makoto; Senpuku, Hidenobu

    2016-08-31

    Periodontitis is the most prevalent infectious disease and related to oral and systemic health, therefore novel prophylaxis to prevent the disease is highly desirable. Here, we assessed the outer membrane vesicles (OMVs) of a keystone periodontal pathogen, Porphyromonas gingivalis, as a candidate mucosal immunogen and adjuvant for a periodontitis vaccine. The structural and functional stability of OMVs, demonstrated by proteinase K resistance and ability to withstand long-term storage, are considered advantageous for carrying the OMV components into the host immune system. Intranasal vaccination of OMVs in mice elicited production of P. gingivalis-specific antibodies in blood and saliva by OMVs in a dose-dependent manner, which was dramatically enhanced by addition of a TLR3 agonist, Poly(I:C). Serum samples from mice immunized with OMVs plus Poly(I:C) adjuvant [OMV+Poly(I:C)] showed significant inhibition of gingipain proteolytic activity of not only the vaccine strain, but also heterologous strains. The viability of P. gingivalis was also decreased by preincubation with OMV+Poly(I:C)-immunized sera, while the killing effect was partially blocked by heat-inactivation of the sera. Saliva samples from mice immunized with OMV+Poly(I:C) enhanced bacterial agglutination of both the vaccine and heterologous strains. In an oral infection mouse model, the numbers of P. gingivalis in the oral cavity were significantly decreased in mice intranasally immunized with OMV+Poly(I:C) as compared to mock (only Poly[I:C])-immunized mice. The high levels of serum IgG (including IgG1 and IgG2a) and salivary S-IgA were elicited in mice intranasally immunized with OMV+Poly(I:C), which were maintained for at least 28 and 18weeks, respectively, after immunization. An experiment examining the accumulation of OMVs after intranasal immunization in proximal organs and an intracerebral injection experiment confirmed the safety of OMVs. Based on our results, we propose that intranasal

  18. Porphyromonas gingivalis Type IX Secretion Substrates Are Cleaved and Modified by a Sortase-Like Mechanism

    PubMed Central

    Chen, Dina; Seers, Christine A.; Mitchell, Helen A.; Chen, Yu-Yen; Glew, Michelle D.; Dashper, Stuart G.; Reynolds, Eric C.

    2015-01-01

    The type IX secretion system (T9SS) of Porphyromonas gingivalis secretes proteins possessing a conserved C-terminal domain (CTD) to the cell surface. The C-terminal signal is essential for these proteins to translocate across the outer membrane via the T9SS. On the surface the CTD of these proteins is cleaved prior to extensive glycosylation. It is believed that the modification on these CTD proteins is anionic lipopolysaccharide (A-LPS), which enables the attachment of CTD proteins to the cell surface. However, the exact site of modification and the mechanism of attachment of CTD proteins to the cell surface are unknown. In this study we characterized two wbaP (PG1964) mutants that did not synthesise A-LPS and accumulated CTD proteins in the clarified culture fluid (CCF). The CTDs of the CTD proteins in the CCF were cleaved suggesting normal secretion, however, the CTD proteins were not glycosylated. Mass spectrometric analysis of CTD proteins purified from the CCF of the wbaP mutants revealed the presence of various peptide/amino acid modifications from the growth medium at the C-terminus of the mature CTD proteins. This suggested that modification occurs at the C-terminus of T9SS substrates in the wild type P. gingivalis. This was confirmed by analysis of CTD proteins from wild type, where a 648 Da linker was identified to be attached at the C-terminus of mature CTD proteins. Importantly, treatment with proteinase K released the 648 Da linker from the CTD proteins demonstrating a peptide bond between the C-terminus and the modification. Together, this is suggestive of a mechanism similar to sortase A for the cleavage and modification/attachment of CTD proteins in P. gingivalis. PG0026 has been recognized as the CTD signal peptidase and is now proposed to be the sortase-like protein in P. gingivalis. To our knowledge, this is the first biochemical evidence suggesting a sortase-like mechanism in Gram-negative bacteria. PMID:26340749

  19. Clonal diversity of the taxon Porphyromonas gingivalis assessed by random amplified polymorphic DNA fingerprinting.

    PubMed Central

    Ménard, C; Mouton, C

    1995-01-01

    A total of 97 strains of the periopathogen Porphyromonas gingivalis were collected. This collection included laboratory strains and clinical isolates of human origin with diverse clinical and geographical origins. Biological diversity was further increased by including 32 strains isolated from the oral cavities of nine different animal species. Genomic fingerprints of the 129 strains were generated as random amplified polymorphic DNAs (RAPDs) by the technique of PCR amplification with a single primer of arbitrary sequence. Four nonameric oligonucleotides were used as single primers, and the banding patterns of the DNA products separated on agarose gels were compared after ethidium ethidium bromide staining. Distance coeffients based on the positions of the major DNA fragments were calculated, and dendrograms were generated. We identified 102 clonal types (CTs) that could be assembled into three main groups by cluster analysis by the unweighted pair group method with mathematic averages. Group I (n = 79 CTs) included all 97 human strains and 6 monkey isolates. The strains in group II (n = 22 CTs) and III (n = 1 CT) were strongly differentiated from those in group I and included only strains of animal origin; they likely represent two cryptic species within the present P. gingivalis taxon. We observed that strains from Old World monkeys clustered together with the human genotype, whereas strains from New World monkeys clustered with the animal genotype. Our results with human strains also indicated that (i) the population structure is basically clonal, (ii) no dominant or widespread CT could be observed, and (iii) no relationship could be established between specific clusters of CTs and the periodontal status of the host. Our results corroborate previous findings by B. G. Loos, D. W. Dyer, T. S. Whittam, and R. K. Selander (Infect. Immun. 61:204-212, 1993) and suggest that P. gingivalis should be considered a commensal of the oral cavity acting as an opportunistic

  20. Porphyromonas gingivalis Facilitates the Development and Progression of Destructive Arthritis through Its Unique Bacterial Peptidylarginine Deiminase (PAD)

    PubMed Central

    Maresz, Katarzyna J.; Hellvard, Annelie; Sroka, Aneta; Adamowicz, Karina; Bielecka, Ewa; Koziel, Joanna; Gawron, Katarzyna; Mizgalska, Danuta; Marcinska, Katarzyna A.; Benedyk, Malgorzata; Pyrc, Krzysztof; Quirke, Anne-Marie; Jonsson, Roland; Alzabin, Saba; Venables, Patrick J.; Nguyen, Ky-Anh

    2013-01-01

    Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis. PMID:24068934

  1. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study.

    PubMed

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S; Shivanaikar, Sachin

    2015-01-01

    Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  2. The profile of Porphyromonas gingivalis kgp biotype and fimA genotype mosaic in subgingival plaque samples.

    PubMed

    Nadkarni, Mangala A; Chhour, Kim-Ly; Chapple, Cheryl C; Nguyen, Ky-Anh; Hunter, Neil

    2014-12-01

    Combined analysis of allelic variation of the virulence-associated, strain-specific lys-gingipain gene (kgp) and major fimbrial gene (fimA) of Porphyromonas gingivalis was undertaken in 116 subgingival plaque samples to understand the kgp biotype and fimA genotype profile in a subject-specific manner. Allelic variation in the polyadhesin domain of kgp from P. gingivalis strains 381 (ATCC 33277), HG66 and W83 generated four isoforms corresponding to four biotypes of P. gingivalis. Similarly, variation in the fimA subunit of the fimA gene cluster of P. gingivalis resulted in six fimA genotypes. Strain-specific differential PCR was performed for kgp and fimA using DNA isolated from subgingival plaque samples. Our findings demonstrate that all of the P. gingivalis kgp biotypes detected in this study were predominantly associated with the fimA II genotype. Dominance of kgp biotypes 381 or HG66 combined with fimA II fimbriae could imply an adaptive strategy by P. gingivalis to generate the fittest strains for survival in the host environment.

  3. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD).

    PubMed

    Maresz, Katarzyna J; Hellvard, Annelie; Sroka, Aneta; Adamowicz, Karina; Bielecka, Ewa; Koziel, Joanna; Gawron, Katarzyna; Mizgalska, Danuta; Marcinska, Katarzyna A; Benedyk, Malgorzata; Pyrc, Krzysztof; Quirke, Anne-Marie; Jonsson, Roland; Alzabin, Saba; Venables, Patrick J; Nguyen, Ky-Anh; Mydel, Piotr; Potempa, Jan

    2013-09-01

    Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis.

  4. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S.; Shivanaikar, Sachin

    2015-01-01

    Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans. PMID:26681854

  5. Porphyromonas gingivalis Peptidylarginine Deiminase, a Key Contributor in the Pathogenesis of Experimental Periodontal Disease and Experimental Arthritis

    PubMed Central

    Gully, Neville; Bright, Richard; Marino, Victor; Marchant, Ceilidh; Cantley, Melissa; Haynes, David; Butler, Catherine; Dashper, Stuart; Reynolds, Eric; Bartold, Mark

    2014-01-01

    Objectives To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. Methods A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. Results The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. Conclusion This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now

  6. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk.

    PubMed

    El-Awady, Ahmed R; Miles, Brodie; Scisci, Elizabeth; Kurago, Zoya B; Palani, Chithra D; Arce, Roger M; Waller, Jennifer L; Genco, Caroline A; Slocum, Connie; Manning, Matthew; Schoenlein, Patricia V; Cutler, Christopher W

    2015-02-01

    Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.

  7. Porphyromonas gingivalis Evasion of Autophagy and Intracellular Killing by Human Myeloid Dendritic Cells Involves DC-SIGN-TLR2 Crosstalk

    PubMed Central

    El-Awady, Ahmed R.; Miles, Brodie; Scisci, Elizabeth; Kurago, Zoya B.; Palani, Chithra D.; Arce, Roger M.; Waller, Jennifer L.; Genco, Caroline A.; Slocum, Connie; Manning, Matthew; Schoenlein, Patricia V.; Cutler, Christopher W.

    2015-01-01

    Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs. PMID:25679217

  8. Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae.

    PubMed

    Sojar, Hakimuddin T; Genco, Robert J

    2005-07-01

    Binding of Porphyromonas gingivalis to the host cells is an essential step in the pathogenesis of periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are thought to be involved in this process. In our earlier studies, two major epithelial cell components of 40 and 50 kDa were identified as potential fimbrial receptors. Sequencing of a cyanogen bromide digestion fragment of the 50-kDa component resulted in an internal sequence identical to keratin I molecules, and hence this cytokeratin represents one of the epithelial cell receptors for P. gingivalis fimbriae. In this study, the 40-kDa component of KB cells was isolated and its amino-terminal sequence determined. The N-terminal amino sequence was found to be GKVKVGVNGF and showed perfect homology with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, purified P. gingivalis fimbriae were found to bind to rabbit muscle GAPDH. Antibodies directed against internal peptide 49-68 and 69-90 of fimbrillin were shown to inhibit the binding of P. gingivalis and of fimbriae to epithelial cells. Antibodies against these peptides also inhibited the binding of fimbriae to GAPDH. Our results confirmed that the amino-terminal domain corresponding to amino residues 49-68 of the fimbrillin protein is the major GAPDH binding domain. These studies point to GAPDH as a major receptor for P. gingivalis major fimbriae and, as such, GAPDH likely plays a role in P. gingivalis adherence and colonization of the oral cavity, as well as triggering host cell processes involved in the pathogenesis of P. gingivalis infections.

  9. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis.

    PubMed

    Gully, Neville; Bright, Richard; Marino, Victor; Marchant, Ceilidh; Cantley, Melissa; Haynes, David; Butler, Catherine; Dashper, Stuart; Reynolds, Eric; Bartold, Mark

    2014-01-01

    To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now needed to elucidate the mechanisms

  10. Periodontal treatment decreases levels of antibodies to Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and periodontitis.

    PubMed

    Okada, Moe; Kobayashi, Tetsuo; Ito, Satoshi; Yokoyama, Tomoko; Abe, Asami; Murasawa, Akira; Yoshie, Hiromasa

    2013-12-01

    Porphyromonas gingivalis has been implicated as an etiologic agent of rheumatoid arthritis (RA) because of the expression of peptidylarginine deiminase. The present study evaluates whether periodontal treatment may affect serum antibodies to P. gingivalis and citrulline levels in relation to disease activity of RA. Fifty-five patients with RA were randomly assigned to receive oral hygiene instruction and supragingival scaling (treatment group, n = 26) or no periodontal treatment (control group, n = 29). Periodontal and rheumatologic parameters and serum levels of cytokine and inflammatory markers citrulline and immunoglobulin (Ig)G to P. gingivalis were examined at baseline and 8 weeks later. Both groups did not differ statistically in any parameters except percentage of sites with probing depth and clinical attachment level ≥ 4 mm at baseline. The treatment group exhibited a significantly greater decrease in disease activity score including 28 joints using C-reactive protein (DAS28-CRP) (P = 0.02), serum levels of IgG to P. gingivalis hemin binding protein (HBP)35 (P = 0.04), and citrulline (P = 0.02) than the control group. Serum levels of IgG to P. gingivalis HBP35 were significantly correlated positively with those of anti-cyclic citrullinated peptide antibodies (P = 0.0002). The same correlation was obtained between serum levels of IgG to P. gingivalis-sonicated extracts and those of rheumatoid factor (P = 0.02). These results suggest that supragingival scaling decreases DAS28-CRP and serum levels of IgG to P. gingivalis HBP35 and citrulline in patients with RA. These observations may reflect a role of P. gingivalis in the protein citrullination, which is related to the pathogenesis of RA.

  11. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii.

    PubMed

    Daep, Carlo Amorin; Novak, Elizabeth A; Lamont, Richard J; Demuth, Donald R

    2011-01-01

    The interaction of the minor fimbrial antigen (Mfa) with streptococcal antigen I/II (e.g., SspB) facilitates colonization of the dental biofilm by Porphyromonas gingivalis. We previously showed that a 27-mer peptide derived from SspB (designated BAR) resembles the nuclear receptor (NR) box protein-protein interacting domain and potently inhibits this interaction in vitro. Here, we show that the EXXP motif upstream of the NR core α-helix contributes to the Mfa-SspB interaction and that BAR reduces P. gingivalis colonization and alveolar bone loss in vivo in a murine model of periodontitis. Substitution of Gln for Pro(1171) or Glu(1168) increased the α-helicity of BAR and reduced its inhibitory activity in vitro by 10-fold and 2-fold, respectively. To determine if BAR prevents P. gingivalis infection in vivo, mice were first infected with Streptococcus gordonii and then challenged with P. gingivalis in the absence and presence of BAR. Animals that were infected with either 10(9) CFU of S. gordonii DL-1 or 10(7) CFU of P. gingivalis 33277 did not show a statistically significant increase in alveolar bone resorption over sham-infected controls. However, infection with 10(9) CFU of S. gordonii followed by 10(7) CFU of P. gingivalis induced significantly greater bone loss (P < 0.01) than sham infection or infection of mice with either organism alone. S. gordonii-infected mice that were subsequently challenged with 10(7) CFU of P. gingivalis in the presence of BAR exhibited levels of bone resorption similar to those of sham-infected animals. Together, these results indicate that both EXXP and the NR box are important for the Mfa-SspB interaction and that BAR peptide represents a potential therapeutic that may limit colonization of the oral cavity by P. gingivalis.

  12. Sequence Diversity and Antigenic Variation at the rag Locus of Porphyromonas gingivalis

    PubMed Central

    Hall, Lucinda M. C.; Fawell, Stuart C.; Shi, Xiaoju; Faray-Kele, Marie-Claire; Aduse-Opoku, Joseph; Whiley, Robert A.; Curtis, Michael A.

    2005-01-01

    The rag locus of Porphyromonas gingivalis W50 encodes RagA, a predicted tonB-dependent receptor protein, and RagB, a lipoprotein that constitutes an immunodominant outer membrane antigen. The low G+C content of the locus, an association with mobility elements, and an apparent restricted distribution in the species suggested that the locus had arisen by horizontal gene transfer. In the present study, we have demonstrated that there are four divergent alleles of the rag locus. The original rag allele found in W50 was renamed rag-1, while three novel alleles, rag-2 to rag-4, were found in isolates lacking rag-1. The three novel alleles encoded variants of RagA with 63 to 71% amino acid identity to RagA1 and each other and variants of RagB with 43 to 56% amino acid identity. The RagA/B proteins have homology to numerous Bacteroides proteins, including SusC/D, implicated in polysaccharide uptake. Monoclonal and polyclonal antibodies raised against RagB1 of P. gingivalis W50 did not cross-react with proteins from isolates carrying different alleles. In a laboratory collection of 168 isolates, 26% carried rag-1, 36% carried rag-2, 25% carried rag-3, and 14% carried rag-4 (including the type strain, ATCC 33277). Restriction profiles of the locus in different isolates demonstrated polymorphism within each allele, some of which is accounted for by the presence or absence of insertion sequence elements. By reference to a previously published study on virulence in a mouse model (M. L. Laine and A. J. van Winkelhoff, Oral Microbiol. Immunol. 13:322-325, 1998), isolates that caused serious disease in mice were significantly more likely to carry rag-1 than other rag alleles. PMID:15972517

  13. Isolation and characterization of fimbriae from a sparsely fimbriated strain of Porphyromonas gingivalis.

    PubMed Central

    Sojar, H T; Hamada, N; Genco, R J

    1997-01-01

    Porphyromonas gingivalis W50 (ATCC 53978) possesses the gene for fimbriae; however, the surface-expressed fimbriae are sparse and have not been previously isolated and characterized. We purified fimbriae from strain W50 to homogeneity by ammonium sulfate precipitation and reverse-phase high-performance liquid chromatography [H. T. Sojar, N. Hamada, and R. J. Genco, Protein Expr. Purif. 9(1):49-52, 1997]. Negative staining of purified fimbriae viewed by electron microscopy revealed that the fimbriae were identical in diameter to fimbriae of other P. gingivalis strains, such as 2561, but were shorter in length. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, the apparent molecular weight of isolated fimbrillin from strain W50 was found to be identical to that of the fimbrillin molecule of strain 2561. Unlike 2561 fimbriae, W50 fimbriae, under reducing condition, exhibited a monomeric structure on SDS-PAGE at room temperature. However, under nonreduced conditions, even at 100 degrees C, no monomer was observed. In immunoblot analysis as well as immunogold labeling of isolated fimbriae, polyclonal antibodies against 2561 fimbriae, as well as antibodies against peptide I (V-V-M-A-N-T-G-A-M-E-V-G-K-T-L-A-E-V-K-Cys) and peptide J (A-L-T-T-E-L-T-A-E-N-Q-E-A-A-G-L-I-M-T-A-E-P-Cys), reacted. However, antifimbrial antibodies against strain 2561 reacted very weakly compared to anti-peptide I and anti-peptide J. Negative staining of whole W50 cells, as well as immunogold electron microscopy with anti-peptide I and anti-peptide J, showed fimbriae shorter in length and very few in number compared to those of strain 2561. Purified fimbriae showed no hemagglutinating activity. Amino acid composition was very similar to that of previously reported fimbriae of the 2561 strain. PMID:9172351

  14. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Lysine acetylation is a common post-translational modification of key metabolic pathway enzymes of the anaerobe Porphyromonas gingivalis.

    PubMed

    Butler, Catherine A; Veith, Paul D; Nieto, Matthew F; Dashper, Stuart G; Reynolds, Eric C

    2015-10-14

    Porphyromonas gingivalis is a Gram-negative anaerobe considered to be a keystone pathogen in the development of the bacterial-associated inflammatory oral disease chronic periodontitis. Although post-translational modifications (PTMs) of proteins are commonly found to modify protein function in eukaryotes and prokaryotes, PTMs such as lysine acetylation have not been examined in P. gingivalis. Lysine acetylation is the addition of an acetyl group to a lysine which removes this amino acid's positive charge and can induce changes in a protein's secondary structure and reactivity. A proteomics based approach combining immune-affinity enrichment with high sensitivity Orbitrap mass spectrometry identified 130 lysine acetylated peptides from 92 P. gingivalis proteins. The majority of these peptides (71) were attributed to 45 proteins with predicted metabolic activity; these proteins could be mapped to several P. gingivalis metabolic pathways where enzymes catalysing sequential reactions within the same pathway were often found acetylated. In particular, the catabolic pathways of complex anaerobic fermentation of amino acids to produce energy had 12 enzymes lysine acetylated. The results suggest that lysine acetylation may be an important mechanism in metabolic regulation in P. gingivalis, which is vital for P. gingivalis survival and adaptation of its metabolism throughout infection. Statement of significance. Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The ability of the pathogen to induce dysbiosis and disease is related to an array of specific virulence factors and metabolic regulation that enables the bacterium to proliferate in an inflamed periodontal pocket. The mechanisms P. gingivalis uses to adapt to a changing and hostile environment are poorly understood and here we show, for the first time, that enzymes of critical metabolic pathways for energy

  16. Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources.

    PubMed

    Ohara-Nemoto, Yuko; Shimoyama, Yu; Kimura, Shigenobu; Kon, Asako; Haraga, Hiroshi; Ono, Toshio; Nemoto, Takayuki K

    2011-11-04

    Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.

  17. Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia.

    PubMed

    Byrne, D P; Potempa, J; Olczak, T; Smalley, J W

    2013-06-01

    Haem (iron protoporphyrin IX) is both an essential growth factor and a virulence regulator of the periodontal pathogens Porphyromonas gingivalis and Prevotella intermedia, which acquire it through the proteolytic degradation of haemoglobin and other haem-carrying plasma proteins. The haem-binding lipoprotein HmuY haemophore and the gingipain proteases of P. gingivalis form a unique synthrophic system responsible for capture of haem from haemoglobin and methaemalbumin. In this system, methaemoglobin is formed from oxyhaemoglobin by the activities of gingipain proteases and serves as a facile substrate from which HmuY can capture haem. This study examined the possibility of cooperation between HmuY and the cysteine protease interpain A (InpA) of Pr. intermedia in the haem acquisition process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to be resistant to proteolysis and so able to cooperate with InpA to extract haem from haemoglobin, which was proteolytically converted to methaemoglobin by the protease. Spectroscopic pH titrations showed that both the iron(II) and iron(III) protoporphyrin IX-HmuY complexes were stable over the pH range 4-10, demonstrating that the haemophore could function over a range of pH that may be encountered in the dental plaque biofilm. This is the first demonstration of a bacterial haemophore working in conjunction with a protease from another bacterial species to acquire haem from haemoglobin and may represent mutualism between P. gingivalis and Pr. intermedia co-inhabiting the periodontal pocket.

  18. Subcutaneous vaccination with Porphyromonas gingivalis ameliorates periodontitis by modulating Th17/Treg imbalance in a murine model.

    PubMed

    Wang, Linyuan; Guan, Ning; Jin, Ying; Lin, Xiaoping; Gao, Hong

    2015-03-01

    To date, Porphyromonas gingivalis (P. gingivalis) vaccination has been studied only in animals, and no effective prophylactic human periodontal vaccine has been developed, with the reason for the failure of prophylactic human periodontal vaccines unknown. T helper 17 cell (Th17)/regulatory T (Treg) cell responses play an important role in the development of periodontitis, and a Th17/Treg imbalance causes the pathogenesis of periodontitis. However, whether vaccination with P. gingivalis can prevent periodontitis through modulation of the Th17/Treg imbalance remains unknown. In this study, mice were subcutaneously vaccinated with formalin-killed P. gingivalis and then orally challenged with P. gingivalis. The vaccination protected the mice from alveolar bone resorption and inflammation. These protective effects might be ascribed to downregulation of Th17 cells and interleukin (IL)-17A production, upregulation of Treg and receptor activator of nuclear factor-kappa B ligand (RANKL)(+)CD4(+)T cells, and IL-10 and transforming growth factor-β1 production, and inhibition of lymphocyte proliferation. Our findings may provide a direction for the development of a vaccine or therapy against periodontitis by alteration of the Th17/Treg imbalance.

  19. The capacity of Porphyromonas gingivalis to multiply under iron-limiting conditions correlates with its pathogenicity in an animal model.

    PubMed

    Grenier, D; Goulet, V; Mayrand, D

    2001-07-01

    Isolates of Porphyromonas gingivalis have various abilities to induce infections in an animal model. The hypothesis of this study was that pathogenic strains of P. gingivalis could multiply under iron-limiting conditions, while non-pathogenic strains could not. Three pathogenic strains (W50, W83, and ATCC 49417) grew to a final optical density (660 nm) > 2 in horse serum, while the growth of the 3 non-pathogenic strains (ATCC 33277, LB13D-2, and HW24D-1) was negligible. When an excess of hemin or ferric chloride was added to the serum, significant growth of the non-pathogenic strains occurred. Under iron-limiting conditions, the pathogenic strains of P. gingivalis had a much lower requirement for human iron-loaded transferrin and hemin than the non-pathogenic strains. Proteolytic degradation of transferrin, which may be associated with the release of iron, was not markedly different for pathogenic and non-pathogenic strains. In addition, no relationship could be established between the level of 55Fe uptake from 55Fe-transferrin and the pathogenicity of strains. Our study provided evidence that the ability of P. gingivalis to multiply in vitro under iron-limiting conditions may be correlated with its ability to induce infections in an animal model. Isolates of P. gingivalis possessing a low requirement for iron are likely to have a higher potential for initiating periodontal infections.

  20. Degradation of Host Heme Proteins by Lysine- and Arginine-Specific Cysteine Proteinases (Gingipains) of Porphyromonas gingivalis

    PubMed Central

    Sroka, Aneta; Sztukowska, Maryta; Potempa, Jan; Travis, James; Genco, Caroline Attardo

    2001-01-01

    Porphyromonas gingivalis can use hemoglobin bound to haptoglobin and heme complexed to hemopexin as heme sources; however, the mechanism by which hemin is released from these proteins has not been defined. In the present study, using a variety of analytical methods, we demonstrate that lysine-specific cysteine proteinase of P. gingivalis (gingipain K, Kgp) can efficiently cleave hemoglobin, hemopexin, haptoglobin, and transferrin. Degradation of hemopexin and transferrin in human serum by Kgp was also detected; however, we did not observe extensive degradation of hemoglobin in serum by Kgp. Likewise the β-chain of haptoglobin was partially protected from degradation by Kgp in a haptoglobin-hemoglobin complex. Arginine-specific gingipains (gingipains R) were also found to degrade hemopexin and transferrin in serum; however, this was observed only at relatively high concentrations of these enzymes. Growth of P. gingivalis strain A7436 in a minimal media with normal human serum as a source of heme correlated not only with the ability of the organism to degrade hemoglobin, haptoglobin, hemopexin, and transferrin but also with an increase in gingipain K and gingipain R activity. The ability of gingipain K to cleave hemoglobin, haptoglobin, and hemopexin may provide P. gingivalis with a useable source of heme for growth and may contribute to the proliferation of P. gingivalis within periodontal pockets in which erythrocytes are abundant. PMID:11544223

  1. HcpR of Porphyromonas gingivalis Is Required for Growth under Nitrosative Stress and Survival within Host Cells

    PubMed Central

    Yanamandra, Sai S.; Anaya-Bergman, Cecilia

    2012-01-01

    Although the Gram-negative, anaerobic periodontopathogen Porphyromonas gingivalis must withstand nitrosative stress, which is particularly high in the oral cavity, the mechanisms allowing for protection against such stress are not known in this organism. In this study, microarray analysis of P. gingivalis transcriptional response to nitrite and nitric oxide showed drastic upregulation of the PG0893 gene coding for hybrid cluster protein (Hcp), which is a putative hydroxylamine reductase. Although regulation of hcp has been shown to be OxyR dependent in Escherichia coli, here we show that in P. gingivalis its expression is dependent on the Fnr-like regulator designated HcpR. Growth of the isogenic mutant V2807, containing an ermF-ermAM insertion within the hcpR (PG1053) gene, was significantly reduced in the presence of nitrite (P < 0.002) and nitric oxide-generating nitrosoglutathione (GSNO) (P < 0.001), compared to that of the wild-type W83 strain. Furthermore, the upregulation of PG0893 (hcp) was abrogated in V2807 exposed to nitrosative stress. In addition, recombinant HcpR bound DNA containing the hcp promoter sequence, and the binding was hemin dependent. Finally, V2807 was not able to survive with host cells, demonstrating that HcpR plays an important role in P. gingivalis virulence. This work gives insight into the molecular mechanisms of protection against nitrosative stress in P. gingivalis and shows that the regulatory mechanisms differ from those in E. coli. PMID:22778102

  2. Proliferation of smooth muscle cells stimulated by Porphyromonas gingivalis is inhibited by apple polyphenol.

    PubMed

    Inaba, Hiroaki; Tagashira, Motoyuki; Kanda, Tomomasa; Amano, Atsuo

    2011-11-01

    Porphyromonas gingivalis (Pg) is thought to be involved in the progression of occlusive arterial lesions, whereas vascular smooth muscle cell (SMC) proliferation is considered to be involved in occlusive arterial disease. We previously showed that bacteremia caused by Pg infection induced proliferation of mouse aortic SMCs. Furthermore, human SMCs stimulated with human plasma incubated with Pg showed a marked transformation from the contractile to proliferative phenotype. In the present study, we examine the involvement of Pg gingipains and fimbriae in induction of the SMC transformation and proliferation, and effective inhibitors. Pg strains including gingipain- and fimbria-null mutants were incubated in human plasma, after which the bacteria were removed and the supernatants were added to cultured SMCs. To evaluate the effects of inhibitors, Pg organisms were incubated in plasma in the presence of apple polyphenol (AP), epigallocatechin gallate, KYT-1 (Arg-gingipain inhibitor), and KYT-36 (Lys-gingipain inhibitor). Plasma supernatants from wild-type and fimbria-mutant cultures markedly stimulated cellular proliferation, whereas those containing gingipain-null mutants showed negligible effects. SMC proliferation was also induced by plasma treated with trypsin. Furthermore, plasma supernatants cultured in the presence of KYT-1/KYT-36 and AP showed significant inhibitory effects on SMC proliferation, whereas cultures with epigallocatechin gallate did not. Our results suggest that Pg gingipains are involved in the induction of SMC transformation and proliferation, whereas this was inhibited by AP.

  3. Comparison of Experimental Diabetic Periodontitis Induced by Porphyromonas gingivalis in Mice

    PubMed Central

    Zhang, Peng; Aprecio, Ray; Zhang, Dongjiao; Li, Hao; Ji, Ning; Mohamed, Omaima; Zhang, Wu; Li, Yiming

    2016-01-01

    Periodontitis is one of the severe complications in diabetic patients and gingival epithelium plays an initial role on the onset and progression of this disease. However the potential mechanism is yet sufficiently understood. Meanwhile, the research on the correlational experimental animal models was also insufficient. Here, we established periodontitis with type 2 diabetes in db/db and Tallyho/JngJ (TH) mice and periodontitis with type 1 diabetes in streptozotocin induced diabetes C57BL/6J (STZ-C57) mice by oral infection of periodontal pathogen Porphyromonas gingivalis W50. We demonstrated that periodontal infected mice with high blood glucose levels showed dramatically more alveolar bone loss than their counterparts, in which infected db/db mice exhibited the most bone defects. No contrary impact could be observed between this periodontal infection and onset and severity of diabetes. The expressions of PTPN2 were inhibited whereas the expression of JAK1, STAT1, and STAT3 increased dramatically in gingival epithelia and the serum TNF-α also significantly increased in the mice with diabetic periodontitis. Our results indicated that the variations of inflammation-related protein expressions in gingival epithelia might lead to the phenotype differences in the mice with diabetic periodontitis. PMID:27995146

  4. Role of Superoxide Dismutase Activity in the Physiology of Porphyromonas gingivalis

    PubMed Central

    Lynch, Michael C.; Kuramitsu, Howard K.

    1999-01-01

    Porphyromonas gingivalis is a gram-negative, obligate anaerobe strongly associated with chronic adult periodontitis. A previous study has demonstrated that this organism requires superoxide dismutase (SOD) for its modest aerotolerance. In this study, we have constructed a mutant deficient in SOD activity by insertional inactivation as well as a sod::lacZ reporter translational fusion construct to study the regulation of expression of this gene. We have confirmed that SOD is essential for tolerance to atmospheric oxygen but does not appear to be protective against hydrogen peroxide or exogenously generated reactive oxygen species. Furthermore, the sod mutant appeared to be no more sensitive to killing by neutrophils than the parental strain 381. SOD appears to be protective against oxygen-dependent DNA damage as measured by increased mutation to rifampin resistance by the sod mutant. Use of the sod::lacZ construct confirmed that SOD expression is maximal at mid-log phase and is influenced by oxygen, temperature, and pH. However, expression does not appear to be significantly affected by iron depletion, osmolarity, or nutrient depletion. The transcription start site of the sod gene was determined to be 315 bp upstream of the sod start codon and to be within an upstream open reading frame. Our studies demonstrate the essential role that SOD plays in aerotolerance of this organism as well as the selective induction of this enzyme by environmental stimuli. PMID:10377114

  5. Rapid detection of Actinobacillus actinomycetemcomitans, Prevotella intermedia and Porphyromona gingivalis by multiplex PCR.

    PubMed

    García, L; Tercero, J C; Legido, B; Ramos, J A; Alemany, J; Sanz, M

    1998-01-01

    The identification of specific periodontal pathogens by conventional methods, mainly anaerobic cultivation, is difficult, time consuming and even sometimes unreliable. Therefore, a multiplex PCR method for simultaneous detection of Actinobacillus actinomycetemcomitans (A.a.), Porphyromona gingivalis (P.g.) and Prevotella intermedia (P.i.) was developed for rapid and easy identification of these specific bacterial pathogens in subgingival plaque samples. In this paper, there is a detailed description of the oligonucleotide primer selection, DNA extraction and PCR conditions and the sequencing of the amplified products. The locus chosen to be amplified is a highly variable region in the 16S ribosomal DNA. For the development of this technique ATCC cultures and pure cultures from subgingival plaque samples taken from periodontitis patients were used. As an internal positive control a recombinant plasmid was developed. This simple DNA extraction procedure and the DNA amplification and visualization of the amplified product permits the detection of the bacteria in a working day. Thus, this multiplex PCR method is a rapid and effective detection method for specific periodontal pathogens.

  6. The bactericidal effects of dental ultrasound on Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. An in vitro investigation.

    PubMed

    O'Leary, R; Sved, A M; Davies, E H; Leighton, T G; Wilson, M; Kieser, J B

    1997-06-01

    This study investigated the possible bactericidal acoustic effects of the dental ultrasonic scaler. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis suspensions, were subjected to the vibrations of a Cavitron P1 insert for 2.5 and 5.0 min in an acoustically-simulated pocket model and the survivors enumerated. The extent of any cavitation occurring within the pocket model to which the statistically significant bactericidal activity observed might be attributed, was determined by 'sonoluminescence', which was then investigated by photomultiplication techniques. However, these failed to detect any sonoluminescence within the pocket space and, moreover, the necessary deflection of the water coolant away from the insert tip, to avoid flooding of the experimental pocket, proved to result in temperatures of 47.6 degrees C and 52.3 degrees C at the respective time intervals, and thereby constituted an alternative possible bactericidal mechanism. Examination of the effects of such temperature changes on the target bacteria then revealed statistically significant differences in the viable counts of both microorganisms after 5.0-min periods, and as such were comparable to those previously detected in relation to the pocket model. Whilst it must be presumed that the bacteriolytic effect observed in the main investigation was due to the incidental temperature changes, in the absence of acoustic cavitation the influence of any associated acoustic microstreaming cannot be discounted. Further investigations to assess the bactericidal potential of acoustic phenomena using a modified experimental to exclude any hyperthermic effects are therefore necessary.

  7. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  8. Occurrence of porphyromonas gingivalis and its antibacterial susceptibility to metronidazole and tetracycline in patients with chronic periodontitis.

    PubMed

    Gamboa, Fredy; Acosta, Adriana; García, Dabeiba-Adriana; Velosa, Juliana; Araya, Natalia; Ledergerber, Roberto

    2014-01-01

    Chronic periodontitis is a multifactorial infectious disease associated with Gram-negative strict anaerobes which are immersed in the subgingival biofilm. Porphyromonas gingivalis, an important periodontal pathogen, is frequently detected in patients with chronic periodontitis. Although isolates of P. gingivalis tend to be susceptible to most antimicrobial agents, relatively little information is available on its in vitro antimicrobial susceptibility. The aim of this study was to determine the frequency of P. gingivalis in patients with chronic periodontitis and to assess antimicrobial susceptibility in terms of minimum inhibitory concentration (MIC) of clinical isolates to metronidazole and tetracycline. A descriptive, observational study was performed including 87 patients with chronic periodontitis. Samples were taken from the periodontal pocket using paper points, which were placed in thioglycollate broth. Samples were incubated for 4 hours at 37°C in anaerobic conditions and finally replated on Wilkins-Chalgren anaerobic agar (Oxoid). Bacteria were identified using the RapIDTMANAII system (Remel) and antimicrobial susceptibility was determined with the M.I.C. Evaluator test (MICE, Oxoid). P. gingivalis was identified in 30 of the 87 patients with chronic periodontitis, which represents a frequency of 34.5%. All 30 isolates (100%) were sensitive to metronidazole, with MIC values ranging from 0015-4ug/ml. Regarding tetracycline, 27 isolates (90%) were sensitive, with MIC values ranging from <0.015 to 4 ug /ml, the remaining three isolates (10%) were resistant to tetracycline with MIC values of 8ug/ ml. There was no statistically significant difference in age, gender, pocket depth, clinical attachment level and severity of periodontitis between the group of patients with chronic periodontitis and P. gingivalis and the group of patients with chronic periodontitis without P. gingivalis. In conclusion, P. gingivalis was found at a frequency of 34.5% in patients

  9. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation.

    PubMed

    Tsai, Tzung-Hsun; Huang, Wen-Cheng; Ying, How-Ting; Kuo, Yueh-Hsiung; Shen, Chien-Chang; Lin, Yin-Ku; Tsai, Po-Jung

    2016-04-06

    Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.

  10. Influence of periodontal disease, Porphyromonas gingivalis and cigarette smoking on systemic anti-citrullinated peptide antibody titres.

    PubMed

    Lappin, David F; Apatzidou, Danae; Quirke, Anne-Marie; Oliver-Bell, Jessica; Butcher, John P; Kinane, Denis F; Riggio, Marcello P; Venables, Patrick; McInnes, Iain B; Culshaw, Shauna

    2013-10-01

    Anti-citrullinated protein antibody (ACPA) responses may precede clinical onset of rheumatoid arthritis. Porphyromonas gingivalis peptidylarginine deiminase can citrullinate proteins possibly inducing autoimmunity in susceptible individuals. To determine whether periodontitis, carriage of P. gingivalis, smoking and periodontal therapy influence ACPA titres. Serum and plaque samples were collected from 39 periodontitis patients before and after non-surgical periodontal treatment, and from 36 healthy subjects. Carriage of P. gingivalis was determined by PCR of plaque DNA. ACPA was determined by anti-cyclic citrullinated peptide (CCP) enzyme-linked immunosorbent assay (ELISA). Anti-P. gingivalis titres were determined by ELISA. Untreated periodontitis patients had higher anti-CCP antibody titres than healthy controls [three patients (8%) greater than manufacturer suggested assay diagnostic threshold (5 Assay Units/AU) versus none (0%); mean ± SEM: 1.37 ± 0.23 versus 0.40 ± 0.10 AU, p < 0.0001]. Periodontitis patients who smoked demonstrated lower anti-P. gingivalis (15956 ± 4385 versus 2512 ± 1290 Units/ml, p < 0.05), but similar anti-CCP than non-smoking periodontitis patients (smokers: 1.31 ± 0.35; non-smokers: 1.41 ± 0.32 AU). Healthy smokers demonstrated elevated anti-CCP titres (0.75 ± 0.19 AU), at levels between healthy non-smokers (0.15 ± 0.05 AU) and non-smoker periodontitis patients. Six months after periodontal treatment, there were significant reductions in anti-CCP (non-smokers p < 0.05) and anti-P. gingivalis (all participants p < 0.01). In subjects with periodontitis, P. gingivalis infection may be responsible for inducing autoimmune responses that characterize rheumatoid arthritis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice

    PubMed Central

    Nagashima, Hidekazu; Honda, Kuniya; Kamio, Noriaki; Watanabe, Masahiro; Suzuki, Tatsuro; Sugano, Naoyuki; Sato, Shuichi; Iwata, Koichi

    2017-01-01

    Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of periodontitis established by the ligation of the tooth cervix of a maxillary second molar and inoculation with Porphyromonas gingivalis (P. gingivalis). Infiltration of inflammatory cells into gingival tissue was not observed following the inoculation. Under light anesthesia, the mechanical head withdrawal threshold (MHWT) on the buccal gingiva was measured using an electronic von Frey anesthesiometer. No significant changes in MHWT were observed in the mice with P. gingivalis-induced periodontitis during the experimental period. Continuous administration of CXCR4 neutralizing antibody to the gingival tissue significantly decreased MHWT and increased the number of gingival CXCR4 immunoreactive macrophages in the periodontitis group. Nitric oxide metabolites in the gingival tissue were significantly increased after the inoculation of P. gingivalis and were reduced by gingival CXCR4 neutralization. Gingival L-arginine administration induced gingival mechanical allodynia in naive animals. Moreover, the decrease in MHWT after treatment with P. gingivalis and CXCR4 neutralization was partially reversed by nitric oxide synthase inhibition in the gingival tissue. Nuclear factor-kappa B was expressed in infiltrating macrophages after inoculation of P. gingivalis and administration of the nuclear factor-kappa B activator betulinic acid induced gingival mechanical allodynia in naive mice. Conclusions These findings suggest that CXCR4 signaling inhibits nitric oxide release from infiltrating macrophages and is involved in modulation of the mechanical sensitivity in the periodontal tissue

  12. Porphyromonas gingivalis Outer Membrane Vesicles Induce Selective Tumor Necrosis Factor Tolerance in a Toll-Like Receptor 4- and mTOR-Dependent Manner

    PubMed Central

    Waller, Tobias; Kesper, Laura; Hirschfeld, Josefine; Dommisch, Henrik; Kölpin, Johanna; Oldenburg, Johannes; Uebele, Julia; Hoerauf, Achim; Deschner, James; Jepsen, Sören

    2016-01-01

    Porphyromonas gingivalis is an important member of the anaerobic oral flora. Its presence fosters growth of periodontal biofilm and development of periodontitis. In this study, we demonstrated that lipophilic outer membrane vesicles (OMV) shed from P. gingivalis promote monocyte unresponsiveness to live P. gingivalis but retain reactivity to stimulation with bacterial DNA isolated from P. gingivalis or AIM2 ligand poly(dA·dT). OMV-mediated tolerance of P. gingivalis is characterized by selective abrogation of tumor necrosis factor (TNF). Neutralization of interleukin-10 (IL-10) during OMV challenge partially restores monocyte responsiveness to P. gingivalis; full reactivity to P. gingivalis can be restored by inhibition of mTOR signaling, which we previously identified as the major signaling pathway promoting Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4)-mediated tolerance in monocytes. However, despite previous reports emphasizing a central role of TLR2 in innate immune recognition of P. gingivalis, our current findings highlight a selective role of TLR4 in the promotion of OMV-mediated TNF tolerance: only blockade of TLR4—and not of TLR2—restores responsiveness to P. gingivalis. Of further note, OMV-mediated tolerance is preserved in the presence of cytochalasin B and chloroquine, indicating that triggering of surface TLR4 is sufficient for this effect. Taking the results together, we propose that P. gingivalis OMV contribute to local immune evasion of P. gingivalis by hampering the host response. PMID:26857578

  13. Melatonin Receptor Agonists as the “Perioceutics” Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response

    PubMed Central

    Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    Aim “Perioceutics” including antimicrobial therapy and host modulatory therapy has emerged as a vital adjunctive treatment of periodontal disease. Melatonin level was significantly reduced in patients with periodontal diseases suggesting melatonin could be applied as a potential “perioceutics” treatment of periodontal diseases. This study aims to investigate the effects of melatonin receptor agonists (melatonin and ramelteon) on Porphyromonas gingivalis virulence and Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation. Methods Effects of melatonin receptor agonists on Porphyromonas gingivalis planktonic cultures were determined by microplate dilution assays. Formation, reduction, and viability of Porphyromonas gingivalis biofilms were detected by crystal violet staining and MTT assays, respectively. Meanwhile, biofilms formation was also observed by confocal laser scanning microscopy (CLSM). The effects on gingipains and hemolytic activities of Porphyromonas gingivalis were evaluated using chromogenic peptides and sheep erythrocytes. The mRNA expression of virulence and iron/heme utilization was assessed using RT-PCR. In addition, cell viability of melatonin receptor agonists on human gingival fibroblasts (HGFs) was evaluated by MTT assays. After pretreatment of melatonin receptor agonists, HGFs were stimulated with Pg-LPS and then release of cytokines (IL-6 and lL-8) was measured by enzyme-linked immunosorbent assay (ELISA). Results Melatonin and ramelteon did exhibit antimicrobial effects against planktonic culture. Importantly, they inhibited biofilm formation, reduced the established biofilms, and decreased biofilm viability of Porphyromonas gingivalis. Furthermore, they at sub-minimum inhibitory concentration (sub-MIC) concentrations markedly inhibited the proteinase activities of gingipains and hemolysis in a dose-dependent manner. They at sub-MIC concentrations significantly inhibited the mRNA expression of virulence

  14. Assessing the Antimicrobial Effect of the Essential Oil of Myrtus communis on the Clinical Isolates of Porphyromonas gingivalis: An in vitro Study

    PubMed Central

    Hedayati, Azita; Khosropanah, Hengameh; Bazargani, Abdollah; Abed, Molud; Emami, Amir

    2013-01-01

    Background One of the major diseases affecting the oral health is periodontal disease. Various therapeutic methods have been introduced to eliminate the periodonto-pathic subgingival microflora. Among these, Porphyromonas gingivalis (P. gingivalis) has a major role in the pathogenesis of different forms of periodontal diseases. Objectives The present study investigated the antimicrobial effect of the essential oil of Myrtus communis on Porphyromonas gingivalis (P. gingivalis) as the most destructive periodontal pathogens. Materials and Methods The subjects included 27 male and 3 female patients with advanced chronic periodontitis. The mean age of the patients was 47.6 ± 2.0 years old. P. gingivalis was isolated from the samples and identified by various diagnostic tests, including Gram staining, Indol test, and fluorescent test. Minimum inhibitory concentration (MIC) of the essential oil against isolated P. gingivalis was determined by broth micro-dilution method. Results In this study, 0.12 - 64 μL/mL Myrtus communis essence were used for 30 P. gingivalis isolates and the MIC50 and MIC90 concentration of Myrtus communis essence against the isolates was equal to 1 and 8 μL/mL respectively. Conclusions The results showed that Myrtus communis has antimicrobial effects against P. gingivalis. Further studies are suggested to include this essence in therapeutic protocols of periodontal disease. PMID:24624208

  15. Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice

    PubMed Central

    Kohlgraf, Karl G; Ackermann, Abbey; Lu, Xiaoying; Burnell, Kindra; Bélanger, Myriam; Cavanaugh, Joseph E; Xie, Hua; Progulske-Fox, Ann; Brogden, Kim A

    2010-01-01

    Aim Our aim is to assess the ability of human neutrophil peptide α-defensins (HNPs) and human β-defensins (HBDs) to attenuate proinflammatory cytokine responses and enhance antibody responses to recombinant hemagglutinin B (rHagB) or recombinant fimbrillin A (rFimA) from Porphyromonas gingivalis 381 in mice. Materials & methods In the first study, C57BL/6 mice were given 10 μg rHagB or rFimA without and with 1 μg HNP1, HNP2, HBD1, HBD2 or HBD3. At 24 h, mice were euthanized and cytokine concentrations were determined in nasal wash fluid (NWF), bronchoalveolar lavage fluids, saliva and serum. In the second study, C57BL/6 mice were given 10 μg rHagB or rFimA without and with 1 μg HNPs or HBDs similarly on days 0, 7 and 14. At 21 days, mice were euthanized and rHagB- and rFimA-specific antibody responses were determined in NWF, bronchoalveolar lavage fluids, saliva and serum. Results Mice given rHagB + HNP2, rHagB + HBD1 and rHagB + HBD3 produced significantly lower (p < 0.05) IL-6 responses than mice given rHagB alone. Mice given rHagB + HNP1, rHagB + HNP2, rHagB + HBD1 and rHagB + HBD3 produced significantly lower (p < 0.05) keratinocyte-derived chemokine responses than mice given rHagB alone. Mice given rFimA produced very low levels of IL-6 and only moderate levels of keratinocyte-derived chemokine in NWF that were not attenuated by prior incubation of rFimA with any defensin. Mice given rHagB + HNP1 produced a significantly higher (p < 0.05) serum IgG antibody response than mice given rHagB alone and mice given rFimA + HNP2 produced a higher, but not significant, antibody response. Conclusion The ability of HNPs and HBDs to attenuate proinflammatory cytokine responses in murine NWF and enhance IgG antibody responses in serum was dependent upon both the defensin and antigen of P. gingivalis. PMID:20020833

  16. Efficiency of Nanotube Surface-Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis.

    PubMed

    Ferreira, Cimara Fortes; Babu, Jegdish; Hamlekhan, Azhang; Patel, Sweetu; Shokuhfar, Tolou

    The prevalence of peri-implant infection in patients with dental implants has been shown to range from 28% to 56%. A nanotube-modified implant surface can deliver antibiotics locally and suppress periodontal pathogenic bacterial growth. The aim of this study was to evaluate the deliverability of antibiotics via a nanotube-modified implant. Dental implants with a nanotube surface were fabricated and loaded with doxycycline. Afterward, each dental implant with a nanotube surface was placed into 2-mL tubes, removed from solution, and placed in a fresh solution daily for 28 days. Experimental samples from 1, 2, 4, 16, 24, and 28 days were used for this evaluation. The concentration of doxycycline was measured using spectrophotometric analysis at 273-nm absorbance. The antibacterial effect of doxycycline was evaluated by supplementing Porphyromonas gingivalis (P gingivalis) growth media with the solution collected from the dental implants at the aforementioned time intervals for a period of 48 hours under anaerobic conditions. A bacterial viability assay was used to evaluate P gingivalis growth at 550-nm absorbance. Doxycycline concentration varied from 0.33 to 1.22 μg/mL from day 1 to day 28, respectively. A bacterial viability assay showed the highest P gingivalis growth at day 1 (2 nm) and the lowest at day 4 (0.17 nm), with a gradual reduction from day 1 to day 4 of approximately 87.5%. The subsequent growth pattern was maintained and slightly increased from baseline in approximately 48.3% from day 1 to day 24. The final P gingivalis growth measured at day 28 was 29.4% less than the baseline growth. P gingivalis growth was suppressed in media supplemented with solution collected from dental implants with a nanotube surface loaded with doxycycline during a 28-day time interval.

  17. The Periodontal Pathogen Porphyromonas gingivalis Preferentially Interacts with Oral Epithelial Cells in S Phase of the Cell Cycle

    PubMed Central

    Al-Taweel, Firas B.; Douglas, C. W. Ian

    2016-01-01

    Porphyromonas gingivalis, a key periodontal pathogen, is capable of invading a variety of cells, including oral keratinocytes, by exploiting host cell receptors, including alpha-5 beta-1 (α5β1) integrin. Previous studies have shown that P. gingivalis accelerates the cell cycle and prevents apoptosis of host cells, but it is not known whether the cell cycle phases influence bacterium-cell interactions. The cell cycle distribution of oral keratinocytes was characterized by flow cytometry and BrdU (5-bromo-2-deoxyuridine) staining following synchronization of cultures by serum starvation. The effect of cell cycle phases on P. gingivalis invasion was measured by using antibiotic protection assays and flow cytometry, and these results were correlated with gene and surface expression levels of α5 integrin and urokinase plasminogen activator receptor (uPAR). There was a positive correlation (R = 0.98) between the number of cells in S phase and P. gingivalis invasion, the organism was more highly associated with cells in S phase than with cells in G2 and G1 phases, and S-phase cells contained 10 times more bacteria than did cells that were not in S phase. Our findings also show that α5 integrin, but not uPAR, was positively correlated with cells in S phase, which is consistent with previous reports indicating that P. gingivalis invasion of cells is mediated by α5 integrin. This study shows for the first time that P. gingivalis preferentially associates with and invades cells in the S phase of the cell cycle. The mechanism of targeting stable dividing cells may have implications for the treatment of periodontal diseases and may partly explain the persistence of this organism at subgingival sites. PMID:27091929

  18. Relationship between serum antibody titres to Porphyromonas gingivalis and hs-CRP levels as inflammatory markers of periodontitis.

    PubMed

    Miyashita, Hirotaka; Honda, Tomoyuki; Maekawa, Tomoki; Takahashi, Naoki; Aoki, Yukari; Nakajima, Takako; Tabeta, Koichi; Yamazaki, Kazuhisa

    2012-06-01

    The present study was designed to investigate whether titres of antibody to two strains of Porphyromonas gingivalis, FDC381 and SU63, are associated with serum high-sensitivity C-reactive protein (hs-CRP) levels in Japanese periodontitis patients. Forty-nine patients with moderate to advanced periodontitis and 40 periodontally healthy control subjects were included in this study. hs-CRP levels and antibody titres to P. gingivalis were measured at baseline and reassessment 3-4 months after periodontal treatment in periodontitis patients as well as at the time of examination in the periodontally healthy subjects. Further, the effect of periodontal therapy, including surgical treatment and use of antibacterials on both markers, was analysed in patients. hs-CRP levels and antibody titres to P. gingivalis were higher in periodontitis patients than in control subjects, and they significantly decreased following periodontal treatment (p < 0.005). Also, a significant decrease in hs-CRP levels as a result of periodontal treatment was found in patients with hs-CRP levels >1 mgl(-1) at baseline (p < 0.005). Probing depth, clinical attachment level, and alveolar bone loss in patients were significantly associated with a higher antibody titre to both strains of P. gingivalis (p < 0.05), but were not related to hs-CRP levels. No relationship was observed between hs-CRP levels and tertiles as defined by titres of antibody to P. gingivalis strains FDC381 and SU63. Our data indicate that hs-CRP levels were independent of antibody titres to P. gingivalis in Japanese periodontitis patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Porphyromonas gingivalis induces CCR5-dependent transfer of infectious HIV-1 from oral keratinocytes to permissive cells

    PubMed Central

    Giacaman, Rodrigo A; Asrani, Anil C; Gebhard, Kristin H; Dietrich, Elizabeth A; Vacharaksa, Anjalee; Ross, Karen F; Herzberg, Mark C

    2008-01-01

    Background Systemic infection with HIV occurs infrequently through the oral route. The frequency of occurrence may be increased by concomitant bacterial infection of the oral tissues, since co-infection and inflammation of some cell types increases HIV-1 replication. A putative periodontal pathogen, Porphyromonas gingivalis selectively up-regulates expression of the HIV-1 coreceptor CCR5 on oral keratinocytes. We, therefore, hypothesized that P. gingivalis modulates the outcome of HIV infection in oral epithelial cells. Results Oral and tonsil epithelial cells were pre-incubated with P. gingivalis, and inoculated with either an X4- or R5-type HIV-1. Between 6 and 48 hours post-inoculation, P. gingivalis selectively increased the infectivity of R5-tropic HIV-1 from oral and tonsil keratinocytes; infectivity of X4-tropic HIV-1 remained unchanged. Oral keratinocytes appeared to harbor infectious HIV-1, with no evidence of productive infection. HIV-1 was harbored at highest levels during the first 6 hours after HIV exposure and decreased to barely detectable levels at 48 hours. HIV did not appear to co-localize with P. gingivalis, which increased selective R5-tropic HIV-1 trans infection from keratinocytes to permissive cells. When CCR5 was selectively blocked, HIV-1 trans infection was reduced. Conclusion P. gingivalis up-regulation of CCR5 increases trans infection of harbored R5-tropic HIV-1 from oral keratinocytes to permissive cells. Oral infections such as periodontitis may, therefore, increase risk for oral infection and dissemination of R5-tropic HIV-1. PMID:18371227

  20. Antibodies to porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives.

    PubMed

    Hitchon, Carol A; Chandad, Fatiha; Ferucci, Elizabeth D; Willemze, Annemiek; Ioan-Facsinay, Andreea; van der Woude, Diane; Markland, Janet; Robinson, David; Elias, Brenda; Newkirk, Marianna; Toes, Rene M; Huizinga, Tom W J; El-Gabalawy, Hani S

    2010-06-01

    Anticitrullinated protein antibodies (ACPA) are relatively specific for rheumatoid arthritis (RA), and predate disease. The oral pathogen Porphyromonas gingivalis may play a role in breaking immune tolerance to citrullinated antigens. We studied a cohort of patients with RA and their relatives looking for associations between anti-P. gingivalis antibodies and ACPA. Patients with RA (n = 82) and their relatives (n = 205) from a North American Native (NAN) population were studied, along with 47 NAN and 60 non-NAN controls. IgM and IgA rheumatoid factor (RF) were tested by nephelometry and ELISA. Second-generation anticyclic citrullinated peptide (anti-CCP2) isotypes and IgG anti-P. gingivalis lipopolysaccharides were tested by ELISA. HLA-DRB1 typing was performed by sequencing. Oral hygiene and smoking habits were assessed by questionnaires. Autoantibody frequency in patients with RA and relatives: ACPA 91% vs 19%, respectively; IgM RF 82% vs 17%; IgA RF 48% vs 22%. Anti-P. gingivalis levels were higher in patients with RA compared to relatives and controls (p = 0.005) and higher in ACPA-positive patients with RA than in ACPA-negative patients with RA (p = 0.04) and relatives (p < 0.001), but comparable in RF-positive and RF-negative patients and relatives. Poor oral hygiene and smoking were prevalent, but with no clear association with autoantibodies. Relatives with 2 shared-epitope alleles were more likely to be ACPA-positive (OR 2.5, p = 0.02). In a genetically predisposed population of NAN patients with RA and their relatives, anti-P. gingivalis antibodies were associated with ACPA. These findings suggest that immune responses to P. gingivalis may be involved in breaking immune tolerance to citrullinated antigens.

  1. Prevalence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in Japanese patients with generalized chronic and aggressive periodontitis.

    PubMed

    Tomita, Sachiyo; Komiya-Ito, Akiyo; Imamura, Kentaro; Kita, Daichi; Ota, Koki; Takayama, Saori; Makino-Oi, Asako; Kinumatsu, Takashi; Ota, Mikio; Saito, Atsushi

    2013-01-01

    This study aimed to investigate the prevalence and levels of major periodontal pathogens, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in subgingival plaque samples of a group of Japanese patients with aggressive periodontitis (AgP) and chronic periodontitis (CP). A total of 40 patients with clinical diagnosis of AgP or CP and 10 periodontally healthy volunteers were subjected to clinical and microbiological analysis. Subgingival plaque samples were analyzed for A. actinomycetemcomitans, P. gingivalis and T. forsythia with a real-time polymerase chain reaction (PCR) technique. The prevalence of P. gingivalis and T. forsythia was relatively high in patients with periodontitis: over 60% of AgP or CP patients harbored these pathogens whereas they were not detected in the subgingival plaque samples from periodontally healthy individuals. P. gingivalis and T. forsythia were relatively frequently detected together in AgP and CP patients. No significant differences in the prevalence or level of the 3 pathogens were found between periodontitis groups. The proportion of T. forsythia was approximately 4-fold higher in CP group than in AgP group (P = 0.02). In periodontitis patients, a significant positive correlation was found between periodontal parameters (probing depth and clinical attachment level) and the numbers of total bacteria, P. gingivalis and T. forsythia. No distinct pattern of the subgingival profile of these pathogens was discerned between the two disease entities, except for the difference in the proportion of T. forsythia. The red complex bacteria, P. gingivalis and T. forsythia were highly prevalent in this population of Japanese AgP and CP patients, collaborating their roles in periodontitis.

  2. Quantification of Porphyromonas gingivalis in chronic periodontitis patients associated with diabetes mellitus using real-time polymerase chain reaction

    PubMed Central

    Padmalatha, GV; Bavle, Radhika M; Satyakiran, Gadavalli Vera Venkata; Paremala, K; Sudhakara, M; Makarla, Soumya

    2016-01-01

    Introduction: Periodontal diseases, if left untreated, can lead to tooth loss and affect at least one tooth in 80% of adults worldwide, with the main cause being a bacterial plaque. Among subgingival plaque bacterial species, Porphyromonas gingivalis has been implicated as a major etiological agent causing tooth loss. Diabetics and smokers are two patient groups at high risk for periodontal disease. The increase in the number of this organism with the coexistence of other pathogenic microbes leads to rapid destruction of the periodontium, premature loss of teeth and also because of its virulence has implications in systemic pathology. Our aim was to observe the involvement of P. gingivalis in diabetes mellitus (DM) patients associated with periodontitis with and without tobacco-associated habits and to compare them with periodontitis patients having no other systemic pathologies. Materials and Methods: Subgingival plaque samples from a total of seventy subjects were included in the study. DNA was isolated from the collected sample and was quantified using spectrophotometer for standardizing the polymerase chain reaction. The quantity of the isolated DNA was checked in a ultraviolet-visible spectrophotomer. Statistics: One-way ANOVA and Tukey's multiple post hoc procedures were carried out. Results: The maximum score of P. gingivalis was seen in periodontitis patients having DM, whereas the least score was seen in periodontitis patients having DM with tobacco smoking habit compared to the other groups. Conclusion: P. gingivalis count is significantly reduced in periodontitis patients having DM with smoking habit; it is concluded that P. gingivalis might not be a key causative organism responsible for the periodontal destruction in case of smokers despite the DM condition. The decrease in counts may be attributed to change in the local environment like chemical (tobacco nitrosamines) and physical changes preventing the growth of P. gingivalis. PMID:27721606

  3. Quantification of Porphyromonas gingivalis in chronic periodontitis patients associated with diabetes mellitus using real-time polymerase chain reaction.

    PubMed

    Padmalatha, G V; Bavle, Radhika M; Satyakiran, Gadavalli Vera Venkata; Paremala, K; Sudhakara, M; Makarla, Soumya

    2016-01-01

    Periodontal diseases, if left untreated, can lead to tooth loss and affect at least one tooth in 80% of adults worldwide, with the main cause being a bacterial plaque. Among subgingival plaque bacterial species, Porphyromonas gingivalis has been implicated as a major etiological agent causing tooth loss. Diabetics and smokers are two patient groups at high risk for periodontal disease. The increase in the number of this organism with the coexistence of other pathogenic microbes leads to rapid destruction of the periodontium, premature loss of teeth and also because of its virulence has implications in systemic pathology. Our aim was to observe the involvement of P. gingivalis in diabetes mellitus (DM) patients associated with periodontitis with and without tobacco-associated habits and to compare them with periodontitis patients having no other systemic pathologies. Subgingival plaque samples from a total of seventy subjects were included in the study. DNA was isolated from the collected sample and was quantified using spectrophotometer for standardizing the polymerase chain reaction. The quantity of the isolated DNA was checked in a ultraviolet-visible spectrophotomer. One-way ANOVA and Tukey's multiple post hoc procedures were carried out. The maximum score of P. gingivalis was seen in periodontitis patients having DM, whereas the least score was seen in periodontitis patients having DM with tobacco smoking habit compared to the other groups. P. gingivalis count is significantly reduced in periodontitis patients having DM with smoking habit; it is concluded that P. gingivalis might not be a key causative organism responsible for the periodontal destruction in case of smokers despite the DM condition. The decrease in counts may be attributed to change in the local environment like chemical (tobacco nitrosamines) and physical changes preventing the growth of P. gingivalis.

  4. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility.

    PubMed

    Nakayama, K

    2015-02-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria.

  5. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    PubMed Central

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces. PMID:23867843

  6. Detection of Porphyromonas gingivalis and Treponema denticola in chronic and aggressive periodontitis patients: A comparative polymerase chain reaction study

    PubMed Central

    Kumawat, Ramniwas M.; Ganvir, Sindhu M.; Hazarey, Vinay K.; Qureshi, Asifa; Purohit, Hemant J.

    2016-01-01

    Background: The detection frequency of Porphyromonas gingivalis and Treponema denticola in chronic periodontitis (CP) and aggressive periodontitis (AgP) is not explored well in Indian population. Aim: The study was undertaken to detect P. gingivalis and T. denticola in CP as well as in AgP patients using polymerase chain reaction (PCR), and to determine the relationship between the frequency of these two microorganisms and the severity of clinical periodontal parameters. Materials and Methods: Subgingival plaque samples were collected from ninety participants (thirty CP patients, thirty AgP patients, and thirty healthy participants) and the aforementioned two microorganisms were detected using PCR. Results: However, when CP and AgP were compared for the detection frequency of two microorganisms, no statistically significant difference was noted. A statistically significant increase in the number of bacteria-positive sites increased as the score of plaque index (PI), gingival index (GI), and clinical attachment level of CP and AgP patients increased. Coexistence of P. gingivalis and T. denticola was frequently observed in deep periodontal pockets. Conclusions: Study findings suggest that P. gingivalis and T. denticola are significantly associated with the severity of periodontal tissue destruction. Statistically significant association exists between clinical periodontal parameters such as PI, GI, periodontal pocket depth (PPD), and clinical attachment loss and presence of both the microorganisms. PMID:27994415

  7. Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling.

    PubMed

    Rea, Dean; Van Elzen, Roos; De Winter, Hans; Van Goethem, Sebastiaan; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Van Der Veken, Pieter; Augustyns, Koen; De Meester, Ingrid; Fülöp, Vilmos; Lambeir, Anne-Marie

    2017-10-20

    The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions.

    PubMed

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-09-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  9. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility

    PubMed Central

    Nakayama, K

    2015-01-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073

  10. [Cloning of the fimA gene of Porphyromonas gingivalis and its expression and purification in Escherichia coli].

    PubMed

    Liu, Wei; Yu, Fei; Chen, Wei-Min; He, Wei

    2009-12-01

    OBJECTIVE; To clone the fimA gene of Porphyromonas gingivalis (P. gingivalis) and detect its expression in Escherichia coli (E. coli). The fimA gene was obtained by PCR from the genome of P. gingivalis to construct a prokaryotic expression plasmid pT-BAD/fimA. pT-BAD/fimA was transformed into E. coli BL21 (DE3) competent cells and the recombination protein was characterized by means of matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. The bound protein was eluted with different concentrations of imidazole (250, 200, 150, 100, 50 micromol x L(-1)) respectively. DNA sequencing showed that the fragment was 99.9% consistent with that of the published. After induction with L-arabinose, a new 3.8 x 10(4) protein appeared on SDS-PAGE gel. The protein was further identified by MALDI-TOF-MS. Purity of 95% of the target protein was purified by Ni-NTA Purification System after eluted with 100 micromol x L(-1) imidazole. The fimA gene of P. gingivalis was cloned successfully and its protein was expressed correctly in E. coli. A high purity of protein FimA was obtained and it could be applied for follow-up researches.

  11. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE– / – mice brains

    PubMed Central

    Singhrao, Sim K.; Chukkapalli, Sasanka; Poole, Sophie; Velsko, Irina; Crean, St John; Kesavalu, Lakshmyya

    2017-01-01

    ABSTRACT This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity. PMID:28326151

  12. Punica granatum L. (Pomegranate) Extract: In Vivo Study of Antimicrobial Activity against Porphyromonas gingivalis in Galleria mellonella Model

    PubMed Central

    Aparecida Procópio Gomes, Livia; Alves Figueiredo, Lívia Mara; Corrêa Geraldo, Barbara Maria; Isler Castro, Kelly Cristine; Ruano de Oliveira Fugisaki, Luciana; Olavo Cardoso Jorge, Antônio; Dias de Oliveira, Luciane; Campos Junqueira, Juliana

    2016-01-01

    Due to the increase of bacterial resistance, medicinal alternatives are being explored. Punica granatum L. is an effective herbal extract with broad spectrum of action and bactericidal, antifungal, anthelmintic potential and being able to modulate the immune response. The aim was to evaluate the antimicrobial activity of pomegranate glycolic extract (PGE) against the periodontal pathogen Porphyromonas gingivalis by using Galleria mellonella as in vivo model. Fifteen larvae were used per group. Injection of high concentration (200, 100, and 25 mg/mL) of PGE showed a toxic effect, leading them to death. A suspension of P. gingivalis (106 cells/mL) was inoculated in the left last proleg and PGE (12.5, 6.25, 3.1, and 2.5 mg/mL) were injected into the right proleg. The larvae were then kept at 37°C under the dark. Injection of PGE at any dose statistically improved larvae survival rates. The data were analysed (log-rank test, Mantel-Cox, P < 0.05) and showed that all concentrations of PGE (12.5, 6.25, 3.1, and 2.5 mg/mL) presented higher larval survival rates, with significant statistical difference in relation to control group (P. gingivalis). In conclusion, the PGE had antimicrobial action against P. gingivalis in vivo model using G. mellonella. PMID:27668280

  13. Porphyromonas gingivalis within Placental Villous Mesenchyme and Umbilical Cord Stroma Is Associated with Adverse Pregnancy Outcome

    PubMed Central

    Vanterpool, Sizzle F.; Been, Jasper V.; Houben, Michiel L.; Nikkels, Peter G. J.; De Krijger, Ronald R.; Zimmermann, Luc J. I.; Kramer, Boris W.; Progulske-Fox, Ann; Reyes, Leticia

    2016-01-01

    Intrauterine presence of Porphyromonas gingivalis (Pg), a common oral pathobiont, is implicated in preterm birth. Our aim was to determine if the location of Pg within placental and/or umbilical cord sections was associated with a specific delivery diagnosis at preterm delivery (histologic chorioamnionitis, chorioamnionitis with funisitis, preeclampsia, and preeclampsia with HELLP-syndrome, small for gestational age). The prevalence and location of Pg within archived placental and umbilical cord specimens from preterm (25 to 32 weeks gestation) and term control cohorts were evaluated by immunofluorescent histology. Detection of Pg was performed blinded to pregnancy characteristics. Multivariate analyses were performed to evaluate independent effects of gestational age, being small for gestational age, specific preterm delivery diagnosis, antenatal steroids, and delivery mode, on the odds of having Pg in the preterm tissue. Within the preterm cohort, 49 of 97 (51%) placentas and 40 of 97 (41%) umbilical cord specimens were positive for Pg. Pg within the placenta was significantly associated with shorter gestation lengths (OR 0.63 (95%CI: 0.48–0.85; p = 0.002) per week) and delivery via caesarean section (OR 4.02 (95%CI: 1.15–14.04; p = 0.03), but not with histological chorioamnionitis or preeclampsia. However, the presence of Pg in the umbilical cord was significantly associated with preeclampsia: OR 6.73 (95%CI: 1.31–36.67; p = 0.02). In the term cohort, 2 of 35 (6%) placentas and no umbilical cord term specimens were positive for Pg. The location of Pg within the placenta was different between preterm and term groups in that Pg within the villous mesenchyme was only detected in the preterm cohort, whereas Pg associated with syncytiotrophoblasts was found in both preterm and term placentas. Taken together, our results suggest that the presence of Pg within the villous stroma or umbilical cord may be an important determinant in Pg-associated adverse pregnancy

  14. Porphyromonas gingivalis within Placental Villous Mesenchyme and Umbilical Cord Stroma Is Associated with Adverse Pregnancy Outcome.

    PubMed

    Vanterpool, Sizzle F; Been, Jasper V; Houben, Michiel L; Nikkels, Peter G J; De Krijger, Ronald R; Zimmermann, Luc J I; Kramer, Boris W; Progulske-Fox, Ann; Reyes, Leticia

    2016-01-01

    Intrauterine presence of Porphyromonas gingivalis (Pg), a common oral pathobiont, is implicated in preterm birth. Our aim was to determine if the location of Pg within placental and/or umbilical cord sections was associated with a specific delivery diagnosis at preterm delivery (histologic chorioamnionitis, chorioamnionitis with funisitis, preeclampsia, and preeclampsia with HELLP-syndrome, small for gestational age). The prevalence and location of Pg within archived placental and umbilical cord specimens from preterm (25 to 32 weeks gestation) and term control cohorts were evaluated by immunofluorescent histology. Detection of Pg was performed blinded to pregnancy characteristics. Multivariate analyses were performed to evaluate independent effects of gestational age, being small for gestational age, specific preterm delivery diagnosis, antenatal steroids, and delivery mode, on the odds of having Pg in the preterm tissue. Within the preterm cohort, 49 of 97 (51%) placentas and 40 of 97 (41%) umbilical cord specimens were positive for Pg. Pg within the placenta was significantly associated with shorter gestation lengths (OR 0.63 (95%CI: 0.48-0.85; p = 0.002) per week) and delivery via caesarean section (OR 4.02 (95%CI: 1.15-14.04; p = 0.03), but not with histological chorioamnionitis or preeclampsia. However, the presence of Pg in the umbilical cord was significantly associated with preeclampsia: OR 6.73 (95%CI: 1.31-36.67; p = 0.02). In the term cohort, 2 of 35 (6%) placentas and no umbilical cord term specimens were positive for Pg. The location of Pg within the placenta was different between preterm and term groups in that Pg within the villous mesenchyme was only detected in the preterm cohort, whereas Pg associated with syncytiotrophoblasts was found in both preterm and term placentas. Taken together, our results suggest that the presence of Pg within the villous stroma or umbilical cord may be an important determinant in Pg-associated adverse pregnancy

  15. Porphyromonas gingivalis infection exacerbates the onset of rheumatoid arthritis in SKG mice.

    PubMed

    Yamakawa, M; Ouhara, K; Kajiya, M; Munenaga, S; Kittaka, M; Yamasaki, S; Takeda, K; Takeshita, K; Mizuno, N; Fujita, T; Sugiyama, E; Kurihara, H

    2016-11-01

    Epidemiological studies have linked periodontitis to rheumatoid arthritis (RA). Porphyromonas gingivalis (Pg) was reported recently to produce citrullinated protein (CP) and increase anti-cyclic CP antibody (ACPA), both of which have been identified as causative factors of RA. In the present study, we determined the effects of Pg infection on the exacerbation of RA in a mouse model. RA model mice (SKG mice) were established by an intraperitoneal (i.p.) injection of laminarin (LA). Mice were divided into six groups, Ctrl (PBS injection), LA (LA injection), Pg/LA (Pg + LA injection), Pg (Pg injection), Ec/LA (Escherichia coli and LA injection) and Ec (E. coli injection). In order to evaluate RA, joint swelling by the arthritis score, bone morphology by microcomputed tomography (microCT), haematoxylin and eosin staining, ACPA, matrix metalloproteinase-3 (MMP-3) and cytokine level in serum by enzyme-linked immunosorbent assay were determined. Osteoclast differentiation from bone marrow mononuclear cells (BMCs) was examined to clarify the underlying mechanisms of RA. The presence of Pg and CP in joint tissue was also investigated. The arthritis score was threefold higher in the Pg/LA group than in the LA group. Severe bone destruction was observed in joint tissue of the Pg/LA group. A microCT analysis of the Pg/LA group revealed a decrease in bone density. ACPA, MMP-3, interleukin (IL)-2, IL-6, CXCL1 and macrophage inflammatory protein (MIP)-1α levels from the Pg/LA group were the highest. The osteoclastogenesis of BMCs was enhanced in the Pg/LA group. Furthermore, large amounts of Pg components and CP were detected in the Pg/LA group. In conclusion, Pg infection has the potential to exacerbate RA. © 2016 British Society for Immunology.

  16. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    PubMed Central

    Zhang, Xinwen; Ni, Junjun; Yu, Weixian; Nakanishi, Hiroshi

    2013-01-01

    We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g.) LPS. The expression of Toll-like receptor 2 (TLR2), TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis. PMID:24363500

  17. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    PubMed

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  18. Effects of Intravenous Injection of Porphyromonas gingivalis on Rabbit Inflammatory Immune Response and Atherosclerosis

    PubMed Central

    Lin, Gengbing; Chen, Shuai; Lei, Lang; You, Xiaoqing; Huang, Min; Luo, Lan; Li, Yanfen; Zhao, Xin; Yan, Fuhua

    2015-01-01

    The effects of intravenous injection of Porphyromonas gingivalis (Pg) on rabbit inflammatory immune response and atherosclerosis were evaluated by establishing a microamount Pg bacteremia model combined with high-fat diet. Twenty-four New Zealand rabbits were randomly divided into Groups A-D (n = 6). After 14 weeks, levels of inflammatory factors (C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1)) in peripheral blood were detected by ELISA. The aorta was subjected to HE staining. Local aortic expressions of toll-like receptor-2 (TLR-2), TLR-4, TNF-α, CRP, IL-6, matrix metallopeptidase-9, and MCP-1 were detected by real-time PCR, and those of nuclear factor-κB (NF-κB) p65, phospho-p38 mitogen-activated protein kinase (MAPK), and phospho-c-Jun N-terminal kinase (JNK) proteins were detected by Western blot. Intravenous injection of Pg to the bloodstream alone induced atherosclerotic changes and significantly increased systemic and local aortic expressions of inflammatory factors, NF-κB p65, phospho-p38-MAPK, and JNK, especially in Group D. Injection of microamount Pg induced inflammatory immune response and accelerated atherosclerosis, in which the NF-κB p65, p38-MAPK, and JNK signaling pathways played important roles. Intravenous injection of Pg is not the same as Pg from human periodontitis entering the blood stream. Therefore, our results cannot be extrapolated to human periodontitis. PMID:26063970

  19. Inhibition of Osteoblastic Cell Differentiation by Lipopolysaccharide Extract from Porphyromonas gingivalis

    PubMed Central

    Kadono, Hiroyuki; Kido, Jun-Ichi; Kataoka, Masatoshi; Yamauchi, Noriyuki; Nagata, Toshihiko

    1999-01-01

    Lipopolysaccharide from Porphyromonas gingivalis (P-LPS), an important pathogenic bacterium, is closely associated with inflammatory destruction of periodontal tissues. P-LPS induces the release of cytokines and local factors from inflammatory cells, stimulates osteoclastic-cell differentiation, and causes alveolar bone resorption. However, the effect of P-LPS on osteoblastic-cell differentiation remains unclear. In this study, we investigated the effect of P-LPS extract prepared by the hot-phenol–water method, on the differentiation of primary fetal rat calvaria (RC) cells, which contain a subpopulation of osteoprogenitor cells, into osteoblastic cells. P-LPS extract significantly inhibited bone nodule (BN) formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker, in a dose-dependent manner (0 to 100 ng of P-LPS extract per ml). P-LPS extract (100 ng/ml) significantly decreased BN formation to 27% of the control value and inhibited ALPase activity to approximately 60% of the control level on days 10 to 21 but did not affect RC cell proliferation and viability. P-LPS extract time-dependently suppressed the expression of ALPase mRNA, with an inhibitory pattern similar to that of enzyme activity. The expression of mRNAs for osteocalcin and osteopontin, matrix proteins related to bone metabolism, was markedly suppressed by P-LPS extract. Furthermore, P-LPS extract increased the expression of mRNAs for CD14, LPS receptor, and interleukin-1β in RC cells. These results indicate that P-LPS inhibits osteoblastic-cell differentiation and suggest that LPS-induced bone resorption in periodontal disease may be mediated by effects on osteoblastic as well as osteoclastic cells. PMID:10338489

  20. Porphyromonas gingivalis fimbriae dampen P2X7-dependent IL-1β secretion

    PubMed Central

    Morandini, Ana Carolina; Ramos-Junior, Erivan S.; Potempa, Jan; Nguyen, Ky-Anh; Oliveira, Ana Carolina; Bellio, Maria; Ojcius, David M.; Scharfstein, Julio; Coutinho-Silva, Robson

    2014-01-01

    Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-IL-1β synthesis but not mature IL-1β secretion, unless the P2X7 receptor is activated by extracellular ATP. Here, we investigated the role of Pg fimbriae in eATP-induced IL-1β release. Bone marrow derived macrophages (BMDMs) from wild type (WT) or P2X7-deficient mice were infected with Pg (strain 381) or isogenic fimbriae deficient (strain DPG3) with or without subsequent eATP stimulation. DPG3 induced higher IL-1β secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent of K+ efflux and Ca2+-iPLA2 activity. Accordingly, non-fimbriated Pg failed to inhibit apoptosis via eATP/P2X7-pathway. Furthermore, Pg-driven stimulation of IL-1β was TLR2- and MyD88-dependent, and irrespective of fimbriae expression. Fimbriae-dependent down-modulation of IL-1β was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of Pg stimulation which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a markedly foci formation. Collectively, these data demonstrate that eATP-induced IL-1β secretion is impaired by Pg fimbriae in a P2X7-dependent manner. PMID:24925032

  1. Gingipain-specific IgG in the sera of patients with periodontal disease is necessary for opsonophagocytosis of Porphyromonas gingivalis.

    PubMed

    Gibson, Frank C; Savelli, Juan; Van Dyke, Thomas E; Genco, Caroline Attardo

    2005-10-01

    Porphyromonas gingivalis is a primary etiologic agent of generalized aggressive periodontitis (GAgP), and gingipains, a group of cysteine proteinases, are critical virulence factors expressed by this organism. GAgP patients develop specific antibodies to gingipains; however, the function of these antibodies in the clearance of P. gingivalis infection is poorly understood. In this study, we defined the levels of gingipain-specific antibodies in GAgP patient sera and examined the ability of gingipain-specific antibodies to facilitate opsonophagocytosis of P. gingivalis by human polymorphonuclear leukocytes (PMNs) using a fluorescent phagocytosis assay. GAgP patient sera possessed elevated levels of P. gingivalis-, arginine-gingipain (Rgp)A-, RgpB-, and lysine-gingipain (Kgp)-specific IgG (Kgp > RgpA > P. gingivalis > RgpB). Adsorption of GAgP sera with P. gingivalis whole organisms, RgpA, RgpB, and Kgp conjugated to sepharose beads reduced opsonophagocytosis of P. gingivalis by PMNs. Our studies demonstrate that GAgP patient sera possess elevated levels of P. gingivalis- and gingipain-specific IgG. Furthermore, we show that gingipain antibodies promote uptake of P. gingivalis by PMNs, and our data suggest that gingipain-specific antibodies may be important for the control of P. gingivalis infections.

  2. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis.

    PubMed

    Fournier-Larente, Jade; Morin, Marie-Pierre; Grenier, Daniel

    2016-05-01

    A number of studies have brought evidence that green tea catechins may contribute to periodontal health. The objective of this study was to investigate the ability of a green tea extract and its principal constituent epigallocatechin-3-gallate (EGCG) to potentiate the antibacterial effects of antibiotics (metronidazole, tetracycline) against Porphyromonas gingivalis, and to modulate the adherence to oral epithelial cells and expression of genes coding for virulence factors and the high temperature requirement A (HtrA) stress protein in P. gingivalis. A broth microdilution assay was used to determine the antibacterial activity of the green tea extract and EGCG. The synergistic effects of either compounds in association with metronidazole or tetracycline were evaluated using the checkerboard technique. A fluorescent assay was used to determine bacterial adherence to oral epithelial cells. The modulation of gene expression in P. gingivalis was evaluated by quantitative RT-PCR. The Vibrio harveyi bioassay was used for monitoring quorum sensing inhibitory activity. The MIC values of the green tea extract on P. gingivalis ranged from 250 to 1000 μg/ml, while those of EGCG ranged from 125 to 500 μg/ml. A marked synergistic effect on P. gingivalis growth was observed for the green tea extract or EGCG in combination with metronidazole. Both the green tea extract and EGCG caused a dose-dependent inhibition of P. gingivalis adherence to oral epithelial cells. On the one hand, green tea extract and EGCG dose-dependently inhibited the expression of several P. gingivalis genes involved in host colonization (fimA, hagA, hagB), tissue destruction (rgpA, kgp), and heme acquisition (hem). On the other hand, both compounds increased the expression of the stress protein htrA gene. The ability of the green tea extract and EGCG to inhibit quorum sensing may contribute to the modulation of gene expression. This study explored the preventive and therapeutic potential of green tea

  3. Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis.

    PubMed

    Sandal, Indra; Karydis, Anastasios; Luo, Jiwen; Prislovsky, Amanda; Whittington, Karen B; Rosloniec, Edward F; Dong, Chen; Novack, Deborah V; Mydel, Piotr; Zheng, Song Guo; Radic, Marko Z; Brand, David D

    2016-10-26

    The linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies. To explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production. Exposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice. Exposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease

  4. Antibacterial Effect of an Herbal Product Persica on Porphyromonas Gingivalis and Aggregatibacter Actinomycetemcomitans: An In-Vitro Study

    PubMed Central

    Jelvehgaran Esfahani, Zahra; Kadkhoda, Zeinab; Eshraghi, Seyed Saeed; Salehi Surmaghi, Mohammad Hossein

    2014-01-01

    Objective: The plant Salvadora persica is used for oral hygiene in many parts of the world. It has been suggested that it has antibacterial properties, in addition to its ability to mechanically remove plaques. The aim of this study was to assess the antimicrobial activity of the herbal product Persica containing Salvadora persica against periodontopathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in vitro. Materials and Methods: Fifty patients with moderate and severe periodontitis were recruited. Using paper points, subgingival plaque samples were taken from pockets with attachment loss ≥ 3mm. The samples were subjected to microbial culture to yield P. gingivalis and A. actinomycetemcomitans. The ditch plate method was used for antimicrobial susceptibility testing of the bacteria to Persica compared to chlorhexidine and distilled water. The growth inhibition zones of microorganisms around the ditches were measured in millimeters. The data were analyzed using SPSS 16. Freidman test and Wilcoxon signed ranks test with Bonferroni adjustment were used for analysis of variance with 5% significance level. P<0.05 for main comparisons and P< 0.017 for multiple comparisons were considered statistically significant. Results: P. gingivalis was sensitive to chlorhexidine and persica. There was a significant difference (P=0.001) between antimicrobial activity of chlorhexidine (mean 28.733mm, SD 5.216) and Persica (mean 16.333mm, SD 5.259) compared to water against P. gingivalis. There was a significant difference (P< 0.001) between the antimicrobial activity of chlorhexidine (24.045mm, SD 3.897) and Persica (0.545mm, SD 2.558) with respect to A. actinomycetemcomitans. There was no significant difference (P=0.317) between the antimicrobial activity of Persica and water against A. actinomycetemcomitans. Conclusion: The herbal product Persica had significant antimicrobial activity against P. gingivalis and negligible antimicrobial activity against A

  5. Characterization of Wheat Germ Agglutinin Lectin-Reactive Glycosylated OmpA-Like Proteins Derived from Porphyromonas gingivalis

    PubMed Central

    Hasegawa, Yoshiaki; Nagano, Keiji; Yoshimura, Fuminobu

    2014-01-01

    Glycosylation is one of the common posttranslational modifications in eukaryotes. Recently, glycosylated proteins have also been identified in prokaryotes. A few glycosylated proteins, including gingipains, have been identified in Porphyromonas gingivalis, a major pathogen associated with chronic periodontitis. However, no other glycosylated proteins have been found. The present study identified glycoproteins in P. gingivalis cell lysates by lectin blotting. Whole-cell lysates reacted with concanavalin A (ConA), Lens culinaris agglutinin (LCA), Phaseolus vulgaris erythroagglutinin (PHA-E4), and wheat germ agglutinin (WGA), suggesting the presence of mannose-, N-acetylgalactosamine-, or N-acetylglucosamine (GlcNAc)-modified proteins. Next, glycoproteins were isolated by ConA-, LCA-, PHA-E4-, or WGA-conjugated lectin affinity chromatography although specific proteins were enriched only by the WGA column. Mass spectrometry analysis showed that an OmpA-like, heterotrimeric complex formed by Pgm6 and Pgm7 (Pgm6/7) was the major glycoprotein isolated from P. gingivalis. Deglycosylation experiments and Western blotting with a specific antibody indicated that Pgm6/7 was modified with O-GlcNAc. When whole-cell lysates from P. gingivalis mutant strains with deletions of Pgm6 and Pgm7 were applied to a WGA column, homotrimeric Pgm7, but not Pgm6, was isolated. Heterotrimeric Pgm6/7 had the strongest affinity for fibronectin of all the extracellular proteins tested, whereas homotrimeric Pgm7 showed reduced binding activity. These findings suggest that the heterotrimeric structure is important for the biological activity of glycosylated WGA-binding OmpA-like proteins in P. gingivalis. PMID:25135681

  6. Differential inflammasome activation by Porphyromonas gingivalis and cholesterol crystals in human macrophages and coronary artery endothelial cells.

    PubMed

    Champaiboon, Chantrakorn; Poolgesorn, Mahatana; Wisitrasameewong, Wichaya; Sa-Ard-Iam, Noppadol; Rerkyen, Pimprapa; Mahanonda, Rangsini

    2014-07-01

    Observational evidence suggests association between periodontitis and atherosclerotic vascular disease (ASVD), however the cause-effect remains unclear. In this study, we investigated the mechanistic link of the two diseases by measuring production of interleukin (IL)-1β, a potent inflammatory cytokine, induced via inflammasome activation by a key periodontal pathogen--Porphyromonas gingivalis LPS and cholesterol crystals (CC). An in vitro model of primary human monocyte-derived macrophages (M1 and M2 macrophages) and coronary artery endothelial cells (HCAEC) was employed as a source of inflammasome product-IL-1β. Both cell types are essential in initial inflammatory process of ASVD. As inflammasome activation requires 2 signals, P. gingivalis LPS was used as a signal1 and CC as a signal2. We found markedly release of IL-1β from P. gingivalis LPS-primed M1 and M2 macrophages treated with CC. Unlike macrophages, HCAEC showed no release of IL-1β in response to P. gingivalis LPS priming and subsequent treatment with either CC or extracellular danger molecule adenosine-5'-triphosphate (signal2). However, HCAEC, which were primed with pro-inflammatory cytokine TNF-α (signal1) and treated with adenosine-5'-triphosphate, consistently secreted minimal IL-1β. The amount of IL-1β released from activated HCAEC was much lower than that from M1 or M2 macrophages. P. gingivalis LPS and CC induced a differential activation of the inflammasome between human macrophages and HCAEC. The mechanistic role of periodontal infection in inflammasome activation as a cause of ASVD requires further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Experimental periodontitis induced by Porphyromonas gingivalis does not alter the onset or severity of diabetes in mice.

    PubMed

    Li, H; Yang, H; Ding, Y; Aprecio, R; Zhang, W; Wang, Q; Li, Y

    2013-10-01

    Diabetes mellitus is believed to increase the risk and severity of periodontitis. However, less evidence is available on the converse effects of periodontitis on diabetes. The objective of the study was to investigate to what degree experimental periodontitis induced by Porphyromonas gingivalis might influence the onset and severity of diabetes in different mouse models. Twenty-eight male Tallyho/JngJ mice (type 2 diabetes), 20 male streptozotocin-induced diabetes C57BL/6J mice (type 1 diabetes) and 20 male C57BL/6J mice at 4 wks of age were evenly divided into two groups: periodontal infection and sham infection. Periodontitis was induced by Porphyromonas gingivalis W50 (P. gingivalis) oral inoculation before the development of diabetes. Sham-infected mice received vehicle as control. P. gingivalis in the oral cavity were identified by quantitative polymerase chain reaction. Fasting glucose, body weight and food intake levels were monitored and glucose tolerance tests were performed to assess glucose homeostasis for the onset and progression of diabetes. The level of alveolar bone loss and tumor necrosis factor-alpha were determined in week 20 when mice were killed. Mice in the infection groups developed more alveolar bone loss than those in sham-infection groups (Tallyho p = 0.021; C57-STZ p = 0.014; C57 p = 0.035). Hyperglycemic mice exhibited significantly more bone loss compared to those normal glucose mice (Tallyho vs. C57 p = 0.029; C57-STZ vs. C57 p = 0.024). The level of tumor necrosis factor-alpha was consistent with that of periodontal bone loss and hyperglycemia. There was no significant effect of mouse species on the amount of bone loss at the same level of blood glucose. No statistically significant difference or trend in glucose metabolism was found between the infection and sham-infection group. Diabetes enhanced the risk for periodontal disease induced by P. gingivalis. However, no converse impact was found between this periodontal

  8. Inhibitory Effect of Dodonaea viscosa var. angustifolia on the Virulence Properties of the Oral Pathogens Streptococcus mutans and Porphyromonas gingivalis

    PubMed Central

    Owotade, Foluso John

    2013-01-01

    Aim. This study investigated the effect of Dodonaea viscosa var. angustifolia (DVA) on the virulence properties of cariogenic Streptococcus mutans and Porphyromonas gingivalis implicated in periodontal diseases. Methods. S. mutans was cultured in tryptone broth containing a crude leaf extract of DVA for 16 hours, and the pH was measured after 10, 12, 14, and 16 h. Biofilms of S. mutans were grown on glass slides for 48 hours and exposed to plant extract for 30 minutes; the adherent cells were reincubated and the pH was measured at various time intervals. Minimum bactericidal concentration of the extracts against the four periodontal pathogens was determined. The effect of the subinhibitory concentration of plant extract on the production of proteinases by P. gingivalis was also evaluated. Results. DVA had no effect on acid production by S. mutans biofilms; however, it significantly inhibited acid production in planktonic cells. Periodontal pathogens were completely eliminated at low concentrations ranging from 0.09 to 0.02 mg/mL of crude plant extracts. At subinhibitory concentrations, DVA significantly reduced Arg-gingipain (24%) and Lys-gingipain (53%) production by P. gingivalis (P ≤ 0.01). Conclusions. These results suggest that DVA has the potential to be used to control oral infections including dental caries and periodontal diseases. PMID:24223061

  9. Porphyromonas gingivalis Lipid A Phosphatase Activity Is Critical for Colonization and Increasing the Commensal Load in the Rabbit Ligature Model

    PubMed Central

    Zenobia, Camille; Hasturk, Hatice; Nguyen, Daniel; Van Dyke, Thomas E.; Kantarci, Alpdogan

    2014-01-01

    Periodontitis is a disease of polymicrobial etiology characterized by inflammation, degradation of host tissue, and bone that irreversibly destroys the supporting apparatus of teeth. Porphyromonas gingivalis contains lipid A with structural heterogeneity that has been postulated to contribute to the initiation of dysbiosis in oral communities by modulating the host response, thereby creating a permissive environment for its growth. We examined two P. gingivalis lipid A phosphatase mutants which contain different “locked” lipid A structures that induce different host cellular responses for their ability to induce dysbiosis and periodontitis in rabbits. Lipopolysaccharide (LPS) preparations obtained from these strains were also examined. After repeated applications of all strains and their respective LPS preparations, P. gingivalis wild type, but not the lipid A mutants, had a significant impact on both the oral commensal microbial load and composition. In contrast, in rabbits exposed to the mutant strains or the LPS preparations, the microbial load did not increase, and yet significant changes in the oral microbial composition were observed. All strains and their respective LPS preparations induced periodontitis. Therefore, the ability to alter the lipid A composition in response to environmental conditions by lipid A phosphatases is required for both colonization of the rabbit and increases in the microbial load. Furthermore, the data demonstrate that multiple dysbiotic oral microbial communities can elicit periodontitis. PMID:24478080

  10. Porphyromonas gingivalis lipid A phosphatase activity is critical for colonization and increasing the commensal load in the rabbit ligature model.

    PubMed

    Zenobia, Camille; Hasturk, Hatice; Nguyen, Daniel; Van Dyke, Thomas E; Kantarci, Alpdogan; Darveau, Richard P

    2014-02-01

    Periodontitis is a disease of polymicrobial etiology characterized by inflammation, degradation of host tissue, and bone that irreversibly destroys the supporting apparatus of teeth. Porphyromonas gingivalis contains lipid A with structural heterogeneity that has been postulated to contribute to the initiation of dysbiosis in oral communities by modulating the host response, thereby creating a permissive environment for its growth. We examined two P. gingivalis lipid A phosphatase mutants which contain different "locked" lipid A structures that induce different host cellular responses for their ability to induce dysbiosis and periodontitis in rabbits. Lipopolysaccharide (LPS) preparations obtained from these strains were also examined. After repeated applications of all strains and their respective LPS preparations, P. gingivalis wild type, but not the lipid A mutants, had a significant impact on both the oral commensal microbial load and composition. In contrast, in rabbits exposed to the mutant strains or the LPS preparations, the microbial load did not increase, and yet significant changes in the oral microbial composition were observed. All strains and their respective LPS preparations induced periodontitis. Therefore, the ability to alter the lipid A composition in response to environmental conditions by lipid A phosphatases is required for both colonization of the rabbit and increases in the microbial load. Furthermore, the data demonstrate that multiple dysbiotic oral microbial communities can elicit periodontitis.

  11. Clinical correlations with Porphyromonas gingivalis antibody responses in patients with early rheumatoid arthritis

    PubMed Central

    2013-01-01

    Introduction Prior studies have demonstrated an increased frequency of antibodies to Porphyromonas gingivalis (Pg), a leading agent of periodontal disease, in rheumatoid arthritis (RA) patients. However, these patients generally had long-standing disease, and clinical associations with these antibodies were inconsistent. Our goal was to examine Pg antibody responses and their clinical associations in patients with early RA prior to and after disease-modifying antirheumatic drug (DMARD) therapy. Methods Serum samples from 50 DMARD-naïve RA patients were tested using an enzyme-linked immunosorbent assay with whole-Pg sonicate. For comparison, serum samples were tested from patients with late RA, patients with other connective tissue diseases (CTDs), age-similar healthy hospital personnel and blood bank donors. Pg antibody responses in early RA patients were correlated with standard RA biomarkers, measures of disease activity and function. Results At the time of enrollment, 17 (34%) of the 50 patients with early RA had positive immunoglobulin G (IgG) antibody responses to Pg, as did 13 (30%) of the 43 patients with late RA. RA patients had significantly higher Pg antibody responses than healthy hospital personnel and blood bank donors (P < 0.0001). Additionally, RA patients tended to have higher Pg antibody reactivity than patients with other CTDs (P = 0.1), and CTD patients tended to have higher Pg responses than healthy participants (P = 0.07). Compared with Pg antibody-negative patients, early RA patients with positive Pg responses more often had anti-cyclic citrullinated peptide (anti-CCP) antibody reactivity, their anti-CCP levels were significantly higher (P = 0.03) and the levels of anti-Pg antibodies correlated directly with anti-CCP levels (P < 0.01). Furthermore, at the time of study entry, the Pg-positive antibody group had greater rheumatoid factor values (P = 0.04) and higher inflammatory markers (erythrocyte sedimentation rate, or ESR) (P = 0.05), and

  12. Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis

    PubMed Central

    2010-01-01

    Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg) is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM) from young (2-months) and aged (1-year and 2-years) mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC), macrophage colony stimulating factor (MCP)-1, macrophage inflammatory protein (MIP)-1α and regulated upon activation normal T cell expressed and secreted (RANTES), as well as nitric oxide (NO, measured as nitrite), and prostaglandin E2 (PGE2) from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3), we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the periodontal pathogen Pg

  13. Association of Anti-Porphyromonas gingivalis Antibody Titers With Nonsmoking Status in Early Rheumatoid Arthritis: Results From the Prospective French Cohort of Patients With Early Rheumatoid Arthritis.

    PubMed

    Seror, Raphaèle; Le Gall-David, Sandrine; Bonnaure-Mallet, Martine; Schaeverbeke, Thierry; Cantagrel, Alain; Minet, Jacques; Gottenberg, Jacques-Eric; Chanson, Philippe; Ravaud, Philippe; Mariette, Xavier

    2015-07-01

    To investigate the possible link between Porphyromonas gingivalis infection and rheumatoid arthritis (RA), according to antibody profile, genetic and environmental factors, and RA severity. For assessing P gingivalis infection, serum levels of antibodies directed against P gingivalis lipopolysaccharide were measured in 694 patients with early RA who were not exposed to steroids or disease-modifying antirheumatic drugs. Anti-P gingivalis antibody titers were compared between patients with early RA and various control groups, and according to various patient characteristics. Anti-P gingivalis antibody titers did not significantly differ between patients with RA and controls and did not significantly differ with anti-citrullinated protein antibody (ACPA), rheumatoid factor (RF), or HLA shared epitope status. Anti-P gingivalis antibody titers were significantly higher among patients who had never smoked compared to patients who had ever smoked (P = 0.0049). Among nonsmokers, high anti-P gingivalis antibody levels were associated with a higher prevalence of erosive change (47.5% versus 33.3% with modified Sharp/van der Heijde score erosion subscale ≥1; P = 0.0135). In this large early RA cohort, we did not detect any association of anti-P gingivalis antibodies with RA or with ACPA status. These results suggest that the association of periodontitis and RA could be linked to bacterial species other than P gingivalis or to a mechanism other than citrullination. Nevertheless, we found higher anti-P gingivalis antibody titers in nonsmokers. In addition, in this population of nonsmokers, high anti-P gingivalis antibody titers were associated with more severe disease. We hypothesize that the role of tobacco in RA pathogenesis is so high that the effect of P gingivalis could be revealed only in a population not exposed to tobacco. © 2015, American College of Rheumatology.

  14. Carbohydrates act as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis: a study of bacterial binding to glycolipids.

    PubMed

    Hellström, Ulrika; Hallberg, Eva C; Sandros, Jens; Rydberg, Lennart; Bäcker, Annika E

    2004-06-01

    In this study we show for the first time the use of carbohydrate chains on glycolipids as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis. Previous studies have shown that this bacterium has the ability to adhere to and invade the epithelial lining of the dental pocket. Which receptor(s) the adhesin of P. gingivalis exploit in the adhesion to epithelial cells has not been shown. Therefore, the binding preferences of this specific bacterium to structures of carbohydrate origin from more than 120 different acid and nonacid glycolipid fractions were studied. The bacteria were labeled externally with (35)S and used in a chromatogram binding assay. To enable detection of carbohydrate receptor structures for P. gingivalis, the bacterium was exposed to a large number of purified total glycolipid fractions from a variety of organs from different species and different histo-blood groups. P. gingivalis showed a preference for fractions of human and pig origin for adhesion. Both nonacid and acid glycolipids were used by the bacterium, and a preference for shorter sugar chains was noticed. Bacterial binding to human acid glycolipid fractions was mainly obtained in the region of the chromatograms where sulfated carbohydrate chains usually are found. However, the binding pattern to nonacid glycolipid fractions suggests a core chain of lactose bound to the ceramide part as a tentative receptor structure. The carbohydrate binding of the bacterium might act as a first step in the bacterial invasion process of the dental pocket epithelium, subsequently leading to damage to periodontal tissue and tooth loss.

  15. Increased levels of Porphyromonas gingivalis are associated with ischemic and hemorrhagic cerebrovascular disease in humans: an in vivo study

    PubMed Central

    GHIZONI, Janaina Salomon; TAVEIRA, Luís Antônio de Assis; GARLET, Gustavo Pompermaier; GHIZONI, Marcos Flávio; PEREIRA, Jefferson Ricardo; DIONÍSIO, Thiago José; BROZOSKI, Daniel Thomas; SANTOS, Carlos Ferreira; SANT'ANA, Adriana Campos Passanezi

    2012-01-01

    Objective: This study investigated the role of periodontal disease in the development of stroke or cerebral infarction in patients by evaluating the clinical periodontal conditions and the subgingival levels of periodontopathogens. Material and Methods: Twenty patients with ischemic (I-CVA) or hemorrhagic (H-CVA) cerebrovascular episodes (test group) and 60 systemically healthy patients (control group) were evaluated for: probing depth, clinical attachment level, bleeding on probing and plaque index. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were both identified and quantified in subgingival plaque samples by conventional and real-time PCR, respectively. Results: The test group showed a significant increase in each of the following parameters: pocket depth, clinical attachment loss, bleeding on probing, plaque index and number of missing teeth when compared to control values (p<0.05, unpaired t-test). Likewise, the test group had increased numbers of sites that were contaminated with P. gingivalis (60%x10%; p<0.001; chi-squared test) and displayed greater prevalence of periodontal disease, with an odds ratio of 48.06 (95% CI: 5.96-387.72; p<0.001). Notably, a positive correlation between probing depth and the levels of P. gingivalis in ischemic stroke was found (r=0.60; p=0.03; Spearman's rank correlation coefficient test). A. actinomycetemcomitans DNA was not detected in any of the groups by conventional or real-time PCR. Conclusions: Stroke patients had deeper pockets, more severe attachment loss, increased bleeding on probing, increased plaque indexes, and in their pockets harbored increased levels of P. gingivalis. These findings suggest that periodontal disease is a risk factor for the development of cerebral hemorrhage or infarction. Early treatment of periodontitis may counteract the development of cerebrovascular episodes. PMID:22437687

  16. Characterization of human-type monoclonal antibodies against reduced form of hemin binding protein 35 from Porphyromonas gingivalis.

    PubMed

    Shibata, Y; Okano, S; Shiroza, T; Tahara, T; Nakazawa, K; Kataoka, S; Ishida, I; Kobayashi, T; Yoshie, H; Abiko, Y

    2011-12-01

    The gram-negative anaerobe Porphyromonas gingivalis has been implicated as an important pathogen in the development of adult periodontitis, and its colonization of subgingival sites is critical in the pathogenic process. We previously identified a 35 kDa surface protein (hemin binding protein 35; HBP35) from P. gingivalis that exhibited coaggregation activity, while additional analysis suggested that this protein possessed an ability to bind heme molecules. For development of passive immunotherapy for periodontal diseases, human-type monoclonal antibodies have been prepared using HBP35 as an antigen in TransChromo mice. In the present study, we focused on a single antibody, TCmAb-h13, which is known to inhibit heme binding to recombinant HBP35. The aim of our investigation was to clarify the redox-related function of HBP35 and consider the benefits of human-type monoclonal antibodies. To examine the antigen recognition capability of TCmAbs with immunoblotting and Biacore techniques, we used the native form as well as several Cys-to-Ser variants of recombinant HBP35. We found that the redox state of recombinant HBP35 was dependent on two Cys residues, (48) C and (51) C, in the thioredoxin active center (WCGxCx). Furthermore, TCmAb-h13 recognized the reduced forms of recombinant HBP35, indicating its inhibitory effect on P. gingivalis growth. Hemin binding protein 35 appears to be an important molecule involved in recognition of the redox state of environmental conditions. In addition, TCmAb-h13 had an inhibitory effect on heme binding to recombinant HBP35, thereby interfering with P. gingivalis growth. © 2011 John Wiley & Sons A/S.

  17. LuxS-Based Signaling in Streptococcus gordonii: Autoinducer 2 Controls Carbohydrate Metabolism and Biofilm Formation with Porphyromonas gingivalis

    PubMed Central

    McNab, Roderick; Ford, Suzannah K.; El-Sabaeny, Azza; Barbieri, Bruno; Cook, Guy S.; Lamont, Richard J.

    2003-01-01

    Communication based on autoinducer 2 (AI-2) is widespread among gram-negative and gram-positive bacteria, and the AI-2 pathway can control the expression of genes involved in a variety of metabolic pathways and pathogenic mechanisms. In the present study, we identified luxS, a gene responsible for the synthesis of AI-2, in Streptococcus gordonii, a major component of the dental plaque biofilm. S. gordonii conditioned medium induced bioluminescence in an AI-2 reporter strain of Vibrio harveyi. An isogenic mutant of S. gordonii, generated by insertional inactivation of the luxS gene, was unaffected in growth and in its ability to form biofilms on polystyrene surfaces. In contrast, the mutant strain failed to induce bioluminescence in V. harveyi and was unable to form a mixed species biofilm with a LuxS-null strain of the periodontal pathogen Porphyromonas gingivalis. Complementation of the luxS mutation in S. gordonii restored normal biofilm formation with the luxS-deficient P. gingivalis. Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo-β-d-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase. However, S. gordonii cell surface expression of SspA and SspB proteins, previously implicated in mediating adhesion between S. gordonii and P. gingivalis, was unaffected by inactivation of luxS. The results suggest that S. gordonii produces an AI-2-like signaling molecule that regulates aspects of carbohydrate metabolism in the organism. Furthermore, LuxS-dependent intercellular communication is essential for biofilm formation between nongrowing cells of P. gingivalis and S. gordonii. PMID:12486064

  18. Defining the role of Porphyromonas gingivalis peptidylarginine deiminase (PPAD) in rheumatoid arthritis through the study of PPAD biology.

    PubMed

    Konig, Maximilian F; Paracha, Alizay S; Moni, Malini; Bingham, Clifton O; Andrade, Felipe

    2015-11-01

    Antibodies to citrullinated proteins are a hallmark of rheumatoid arthritis (RA). Porphyromonas gingivalis peptidylarginine deiminase (PPAD) has been implicated in the initiation of RA by generating citrullinated neoantigens and due to its ability to autocitrullinate. To define the citrullination status and biology of PPAD in P gingivalis and to characterise the anti-PPAD antibody response in RA and associated periodontal disease (PD). PPAD in P gingivalis cells and culture supernatant were analysed by immunoblotting and mass spectrometry to detect citrullination. Recombinant PPAD (rPPAD), inactive mutant PPAD (rPPAD(C351S)), and N-terminal truncated PPAD (rPPAD(Ntx)) were cloned and expressed in Escherichia coli. Patients with RA and healthy controls were assayed for IgG antibodies to citrullinated rPPAD and unmodified rPPAD(C351S) by ELISA. Anti-PPAD antibodies were correlated with anti-cyclic citrullinated peptide (third-generation) antibody levels, RA disease activity and PD status. PPAD from P gingivalis is truncated at the N-terminal and C-terminal domains and not citrullinated. Only when artificially expressed in E coli, full-length rPPAD, but not truncated (fully active) rPPAD(Ntx), is autocitrullinated. Anti-PPAD antibodies show no heightened reactivity to citrullinated rPPAD, but are exclusively directed against the unmodified enzyme. Antibodies against PPAD do not correlate with anti-cyclic citrullinated peptide levels and disease activity in RA. By contrast, anti-PPAD antibody levels are significantly decreased in RA patients with PD. PPAD autocitrullination is not the underlying mechanism linking PD and RA. N-terminal processing protects PPAD from autocitrullination and enhances enzyme activity. Anti-PPAD antibodies may have a protective role for the development of PD in patients with RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis.

    PubMed

    Daep, Carlo Amorin; Novak, Elizabeth A; Lamont, Richard J; Demuth, Donald R

    2010-12-01

    The interaction of the periodontal pathogen, Porphyromonas gingivalis, with oral streptococci such as Streptococcus gordonii precedes colonization of the subgingival pocket and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide (designated BAR) derived from the antigen I/II protein of S. gordonii was a potent competitive inhibitor of P. gingivalis adherence to S. gordonii and subsequent biofilm formation. Here we show that despite its inhibitory activity, BAR is rapidly degraded by intact P. gingivalis cells in vitro. However, in the presence of soluble Mfa protein, the P. gingivalis receptor for BAR, the peptide is protected from proteolytic degradation suggesting that the affinity of BAR for Mfa is higher than for P. gingivalis proteases. The rate of BAR degradation was reduced when the P. gingivalis lysine-specific gingipain was inhibited using the specific protease inhibitor, z-FKcK, or when the gene encoding the Lys-gingipain was inactivated. In addition, substituting d-Lys for l-Lys residues in BAR prevented degradation of the peptide when incubated with the Lys-gingipain and increased its specific adherence inhibitory activity in a S. gordonii-P. gingivalis dual species biofilm model. These results suggest that Lys-gingipain accounts in large part for P. gingivalis-mediated degradation of BAR and that more effective peptide inhibitors of P. gingivalis adherence to streptococci can be produced by introducing modifications that limit the susceptibility of BAR to the Lys-gingipain and other P. gingivalis associated proteases.

  20. Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis

    PubMed Central

    Daep, Carlo Amorin; Novak, Elizabeth A.; Lamont, Richard J.; Demuth, Donald R.

    2010-01-01

    The interaction of the periodontal pathogen, Porphyromonas gingivalis with oral streptococci such as Streptococcus gordonii precedes colonization of the subgingival pocket and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide (designated BAR) derived from the antigen I/II protein of S. gordonii was a potent competitive inhibitor of P. gingivalis adherence to S. gordonii and subsequent biofilm formation. Here we show that despite its inhibitory activity, BAR is rapidly degraded by intact P. gingivalis cells in vitro. However, in the presence of soluble Mfa protein, the P. gingivalis receptor for BAR, the peptide is protected from proteolytic degradation suggesting that the affinity of BAR for Mfa is higher than for P. gingivalis proteases. The rate of BAR degradation was reduced when the P. gingivalis lysine-specific gingipain was inhibited using the specific protease inhibitor, z-FKcK, or when the gene encoding the Lys-gingipain was inactivated. In addition, substituting D-Lys for L-Lys residues in BAR prevented degradation of the peptide when incubated with the Lys-gingipain and increased its specific adherence inhibitory activity in a S. gordonii-P. gingivalis dual species biofilm model. These results suggest that Lys-gingipain accounts in large part for P. gingivalis-mediated degradation of BAR and that more effective peptide inhibitors of P. gingivalis adherence to streptococci can be produced by introducing modifications that limit the susceptibility of BAR to the Lys–gingipain and other P. gingivalis associated proteases. PMID:20800634

  1. Porphyromonas gingivalis Outer Membrane Vesicles Induce Selective Tumor Necrosis Factor Tolerance in a Toll-Like Receptor 4- and mTOR-Dependent Manner.

    PubMed

    Waller, Tobias; Kesper, Laura; Hirschfeld, Josefine; Dommisch, Henrik; Kölpin, Johanna; Oldenburg, Johannes; Uebele, Julia; Hoerauf, Achim; Deschner, James; Jepsen, Sören; Bekeredjian-Ding, Isabelle

    2016-04-01

    Porphyromonas gingivalis is an important member of the anaerobic oral flora. Its presence fosters growth of periodontal biofilm and development of periodontitis. In this study, we demonstrated that lipophilic outer membrane vesicles (OMV) shed from P. gingivalis promote monocyte unresponsiveness to live P. gingivalis but retain reactivity to stimulation with bacterial DNA isolated from P. gingivalis or AIM2 ligand poly(dA·dT). OMV-mediated tolerance of P. gingivalis is characterized by selective abrogation of tumor necrosis factor (TNF). Neutralization of interleukin-10 (IL-10) during OMV challenge partially restores monocyte responsiveness toP. gingivalis; full reactivity toP. gingivalis can be restored by inhibition of mTOR signaling, which we previously identified as the major signaling pathway promoting Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4)-mediated tolerance in monocytes. However, despite previous reports emphasizing a central role of TLR2 in innate immune recognition of P. gingivalis, our current findings highlight a selective role of TLR4 in the promotion of OMV-mediated TNF tolerance: only blockade of TLR4-and not of TLR2-restores responsiveness toP. gingivalis Of further note, OMV-mediated tolerance is preserved in the presence of cytochalasin B and chloroquine, indicating that triggering of surface TLR4 is sufficient for this effect. Taking the results together, we propose that P. gingivalis OMV contribute to local immune evasion of P. gingivalis by hampering the host response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Thymus-expressed chemokine enhances Porphyromonas gingivalis LPS-induced osteoclast formation via NFATc1 activation.

    PubMed

    Usui, Michihiko; Okamatsu, Yoshimasa; Sato, Tsuyoshi; Hanatani, Tomoya; Moritani, Yuki; Sano, Kotaro; Yamamoto, Matsuo; Nakashima, Keisuke

    2016-06-01

    P. gingivalis is a gram-negative anaerobic bacterium and a major periodontal pathogen. LPS produced by P. gingivalis promotes osteoclast formation. TECK is a CC chemokine whose expression is increased in gingival epithelial cells exposed to P. gingivalis LPS. In this study, we investigated the effect of TECK in osteoclastogenesis induced by P. gingivalis LPS. Real time reverse transcriptase polymerase chain reaction (RTPCR) analysis and western blotting were performed to confirm TECK in MG63, human osteoblast cell line and primary murine osteoblasts and CCR9 in RAW 264.7 cells and murine bone marrow macrophages (BMMs) as osteoclast precursors. P. gingivalis LPS-treated BMMs and Raw 264.7 cells were cultured with or without TECK or TECK antibody to examine the effect of TECK on osteoclast formation. Cocultures with murine osteoblasts and bone marrow cells were also treated with or without TECK or TECK antibody. Luciferase assay and western blotting were used to determine whether TECK-CCR9 induced osteoclastogenesis was mediated through NFATc1 or NF-kB signaling. TECK was shown to be expressed by osteoblasts, and its receptor, CCR9, by osteoclast precursors. TECK increased P. gingivalis LPS-induced osteoclast numbers in an in vitro osteoclast formation assay using osteoclast precursors. The enhanced osteoclast formation by TECK was mediated by NFATc1, but not by NF-kB signaling. TECK may be a novel regulator of osteoclast formation induced by P. gingivalis LPS in periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  4. [Pathogenic potential of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, the red bacterial complex associated with periodontitis].

    PubMed

    Bodet, C; Chandad, F; Grenier, D

    2007-01-01

    Periodontitis are mixed bacterial infections leading to destruction of tooth-supporting tissues, including periodontal ligament and alveolar bone. Among over 500 bacterial species living in the oral cavity, a bacterial complex named "red complex" and made of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia has been strongly related to advanced periodontal lesions. While periodontopathogenic bacteria are the primary etiologic factor of periodontitis, tissue destruction essentially results from the host immune response to the bacterial challenge. Members of the red complex are Gram negative anaerobic bacteria expressing numerous virulence factors allowing bacteria to colonize the subgingival sites, to disturb the host defense system, to invade and destroy periodontal tissue as well as to promote the immunodestructive host response. This article reviews current knowledge of the pathogenic mechanisms of bacteria of the red complex leading to tissue and alveolar bone destruction observed during periodontitis.

  5. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    PubMed Central

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-01-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility. PMID:27457788

  6. Roles of oral bacteria in cardiovascular diseases--from molecular mechanisms to clinical cases: Porphyromonas gingivalis is the important role of intimal hyperplasia in the aorta.

    PubMed

    Hokamura, Kazuya; Umemura, Kazuo

    2010-01-01

    It has been reported that DNA of oral bacterial species, such as Porphyromonas gingivalis and Streptococcus mutans, was detected frequently in specimens of arteriosclerotic vessels. However, the source of DNA, whether from live intact bacteria or a part of the bacteria, has not been identified yet. Moreover, there was no precise evidence concerning involvement of oral bacteria in the progression of arteriosclerosis. We tried to clarify the involvement of P. gingivalis on the mechanisms of development of aortic intimal hyperplasia. Intravenous administration of P. gingivalis dramatically induced intimal hyperplasia in the mouse model with photochemical impairment of the femoral artery. However there were no changes identified in the mice without aortic impairment, even with the P. gingivalis infection. Concomitantly, S100 calcium-binding protein A9 (S100A9) and the embryonic isoform of myosin heavy chain (SMemb), a proliferative phenotypic marker of smooth muscle cells, were significantly overexpressed on the surfaces of smooth muscle cells present in the injured blood vessels. Similarly, increased expressions of S100A9 and SMemb proteins were observed in aneurismal specimens obtained from P. gingivalis-infected patients. We found that bacteremia induced by P. gingivalis leads to intimal hyperplasia associated with overexpressions of S100A9 and SMemb. Our results strongly suggest that oral-hematogenous spreading of P. gingivalis is a causative event in the development of aortic hyperplasia in periodontitis patients.

  7. Determination of Active Phagocytosis of Unopsonized Porphyromonas gingivalis by Macrophages and Neutrophils Using the pH-Sensitive Fluorescent Dye pHrodo.

    PubMed

    Lenzo, Jason C; O'Brien-Simpson, Neil M; Cecil, Jessica; Holden, James A; Reynolds, Eric C

    2016-06-01

    Phagocytosis of pathogens is an important component of the innate immune system that is responsible for the removal and degradation of bacteria as well as their presentation via the major histocompatibility complexes to the adaptive immune system. The periodontal pathogen Porphyromonas gingivalis exhibits strain heterogeneity, which may affect a phagocyte's ability to recognize and phagocytose the bacterium. In addition, P. gingivalis is reported to avoid phagocytosis by antibody and complement degradation and by invading phagocytic cells. Previous studies examining phagocytosis have been confounded by both the techniques employed and the potential of the bacteria to invade the cells. In this study, we used a novel, pH-sensitive dye, pHrodo, to label live P. gingivalis strains and examine unopsonized phagocytosis by murine macrophages and neutrophils and human monocytic cells. All host cells examined were able to recognize and phagocytose unopsonized P. gingivalis strains. Macrophages had a preference to phagocytose P. gingivalis strain ATCC 33277 over other strains and clinical isolates in the study, whereas neutrophils favored P. gingivalis W50, ATCC 33277, and one clinical isolate over the other strains. This study revealed that all P. gingivalis strains were capable of being phagocytosed without prior opsonization with antibody or complement.

  8. Effect of Porphyromonas gingivalis and Lactobacillus acidophilus on secretion of IL1B, IL6, and IL8 by gingival epithelial cells.

    PubMed

    Zhao, Jun-jun; Feng, Xi-ping; Zhang, Xiu-li; Le, Ke-yi

    2012-08-01

    Porphyromonas gingivalis alters cytokine expression in gingival epithelial cells, stimulating inflammatory responses that may lead to periodontal disease. This study explored the effect of Lactobacillus acidophilus on the specific expressions of the interleukins (ILs) IL1B, IL6, and IL8 induced by the pathogen. Human gingival epithelial cells were co-cultured with P. gingivalis, L. acidophilus, or L. acidophilus + P. gingivalis; the control group consisted of the cells alone. Protein and gene expression levels of the ILs were detected using ELISA and qRT-PCR, respectively. The supernatant from the P. gingivalis group held significantly higher protein and mRNA levels of IL1B, IL6, and IL8, compared to the control group. In the mixed bacterial group (L. acidophilus + P. gingivalis), the levels of all three ILs decreased with increasing concentrations of L. acidophilus and were significantly different from the P. gingivalis group. This suggests that in gingival cells, L. acidophilus offsets the P. gingivalis-induced secretion of these ILs in a dose-dependent manner.

  9. Determination of Active Phagocytosis of Unopsonized Porphyromonas gingivalis by Macrophages and Neutrophils Using the pH-Sensitive Fluorescent Dye pHrodo

    PubMed Central

    Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Cecil, Jessica; Holden, James A.

    2016-01-01

    Phagocytosis of pathogens is an important component of the innate immune system that is responsible for the removal and degradation of bacteria as well as their presentation via the major histocompatibility complexes to the adaptive immune system. The periodontal pathogen Porphyromonas gingivalis exhibits strain heterogeneity, which may affect a phagocyte's ability to recognize and phagocytose the bacterium. In addition, P. gingivalis is reported to avoid phagocytosis by antibody and complement degradation and by invading phagocytic cells. Previous studies examining phagocytosis have been confounded by both the techniques employed and the potential of the bacteria to invade the cells. In this study, we used a novel, pH-sensitive dye, pHrodo, to label live P. gingivalis strains and examine unopsonized phagocytosis by murine macrophages and neutrophils and human monocytic cells. All host cells examined were able to recognize and phagocytose unopsonized P. gingivalis strains. Macrophages had a preference to phagocytose P. gingivalis strain ATCC 33277 over other strains and clinical isolates in the study, whereas neutrophils favored P. gingivalis W50, ATCC 33277, and one clinical isolate over the other strains. This study revealed that all P. gingivalis strains were capable of being phagocytosed without prior opsonization with antibody or complement. PMID:27021243

  10. Gingipains from Porphyromonas gingivalis play a significant role in induction and regulation of CXCL8 in THP-1 cells.

    PubMed

    Jayaprakash, Kartheyaene; Khalaf, Hazem; Bengtsson, Torbjörn

    2014-07-18

    Porphyromonas gingivalis is an important bacterial etiological agent involved in periodontitis. The bacterium expresses two kinds of cysteine proteases called gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). This study evaluated the interaction between P. gingivalis and THP-1 cells, a widely used monocytic cell line, in vitro with a focus on CXCL8 at the gene and protein levels and its fate thereafter in cell culture supernatants. THP-1 cells were stimulated with viable and heat-killed wild-type strains ATCC 33277 or W50 or viable isogenic gingipain mutants of W50, E8 (Rgp mutant) or K1A (Kgp mutant), for 24 hours. ELISA and qPCR results show an elevated CXCL8 expression and secretion in THP-1 cells in response to P. gingivalis, where the heat-killed ATCC33277 and W50 induced higher levels of CXCL8 in comparison to their viable counterparts. Furthermore, the Kgp-deficient mutant K1A caused a higher CXCL8 response compared to the Rgp-deficient E8. Chromogenic quantification of lipopolysaccharide (LPS) in supernatant showed no significant differences between viable and heat killed bacteria except that W50 shed highest levels of LPS. The wild-type strains secreted relatively more Rgp during the co-culture with THP-1 cells. The CXCL8 degradation assay of filter-sterilized supernatant from heat-killed W50 treated cells showed that Rgp was most efficient at CXCL8 hydrolysis. Of all tested P. gingivalis strains, adhesion and internalization in THP-1 cells was least conspicuous by Rgp-deficient P. gingivalis (E8), as demonstrated by confocal imaging. W50 and its Kgp mutant K1A exhibit a higher immunogenic and proteolytic function in comparison to the Rgp mutant E8. Since K1A differs from E8 in the expression of Rgp, it is rational to conclude that Rgp contributes to immunomodulation in a more dynamic manner in comparison to Kgp. Also, W50 is a more virulent strain when compared to the laboratory strain ATCC33277.

  11. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors.

    PubMed

    Veith, Paul D; Chen, Yu-Yen; Gorasia, Dhana G; Chen, Dina; Glew, Michelle D; O'Brien-Simpson, Neil M; Cecil, Jessica D; Holden, James A; Reynolds, Eric C

    2014-05-02

    Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces outer membrane vesicles (OMVs) that carry a cargo of virulence factors. In this study, the proteome of OMVs was determined by LC-MS/MS analyses of SDS-PAGE fractions, and a total of 151 OMV proteins were identified, with all but one likely to have originated from either the outer membrane or periplasm. Of these, 30 exhibited a C-terminal secretion signal known as the CTD that localizes them to the cell/vesicle surface, 79 and 27 were localized to the vesicle membrane and lumen respectively while 15 were of uncertain location. All of the CTD proteins along with other virulence factors were found to be considerably enriched in the OMVs, while proteins exhibiting the OmpA peptidoglycan-binding motif and TonB-dependent receptors were preferentially retained on the outer membrane of the cell. Cryo-transmission electron microscopy analysis revealed that an electron dense surface layer known to comprise CTD proteins accounted for a large proportion of the OMVs' volume providing an explanation for the enrichment of CTD proteins. Together the results show that P. gingivalis is able to specifically concentrate and release a large number of its virulence factors into the environment in the form of OMVs.

  12. Effects of biphenyl sulfonylamino methyl bisphosphonic acids on Porphyromonas gingivalis and cytokine secretion by oral epithelial cells.

    PubMed

    Zhao, Lei; Marquis, Annie; La, Vu Dang; Agamennone, Mariangela; Loiodice, Fulvio; Tortorella, Paolo; Grenier, Daniel

    2013-09-01

    Bisphosphonate drugs are well known to inhibit osteoclastic activity and have been proposed for the management of bone diseases, including periodontitis which is associated with alveolar bone destruction. In this study, we evaluated the effects of four arylsulfonamide bisphosphonates on growth of the periodontopathogenic bacterium Porphyromonas gingivalis as well as their capacity to reduce cytokine secretion by lipopolysaccharide (LPS)-stimulated oral epithelial cells. The growth of P. gingivalis was inhibited by (4'-Chloro-biphenyl-4-sulfonylamino)methyl-1,1- bisphosphonic acid while the three other arylsulfonamide bisphosphonates ((4-Methoxy-phenylsulfonylamino)methyl-1,1- bisphosphonic acid, (4-Nitro-phenylsulfonylamino)methyl-1,1-bisphosphonic acid, and (Biphenyl-4-sulfonylamino) methyl-1,1-bisphosphonic acid) had no effect. Growth inhibition was more pronounced under an iron-restricted condition. All four arylsulfonamide bisphosphonates decreased the production of the pro-inflammatory cytokines IL-6 and IL-8 by Aggregatibacter actinomycetemcomitans LPS-stimulated oral epithelial cells. In conclusion, we uncovered additional properties of bisphosphonates that may be beneficial for the treatment of periodontal diseases. In particular, (4'-Chlorobiphenyl- 4-sulfonylamino)methyl-1,1-bisphosphonic acid combines the already disclosed antiresoptive activity with antiinflammatory and antibacterial properties.

  13. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Torras-Ceballos, Alfredo; Gómez-Mora, Juan Arturo; Fernández-Rojas, Berenice

    2017-01-01

    One of the microorganisms from dental plaque associated with severe inflammatory responses in infectious endocarditis is Porphyromonas gingivalis. It is a Gram-negative bacteria harvested from chronic periodontitis patients. Lipopolysaccharide (LPS) obtained from P. gingivalis promotes the expressions of interleukin-1 (IL-1), IL-6 and tumor necrosis factor alpha (TNF-α). Flavonoids are thought to participate in processes that control inflammation, such as the expression of cyclooxygenase-2 (COX-2). We investigated the effects of luteolin, quercetin, genistein and quercetagetin on cardiomyoblasts treated with LPS alone or in combination with following inhibitors p38 (SB203580), ERK (PD98059), JNK (SP600125) and PKC (Calphostin C) for 1 h. The kinase activation and COX-2 expression levels were determined at the gene and protein levels. These flavonoids are considered to inhibit the activation of mitogen-activated protein kinase (MAPK) and the degradation of inhibitor of kappa B-alpha (IκB-α). They also play a role in COX-2 expression. We conclude that the tested flavonoids inhibit inflammatory responses induced by LPS in H9c2 cells.

  14. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts

    PubMed Central

    Herath, Thanuja D. K.; Darveau, Richard P.; Seneviratne, Chaminda J.; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  15. [Cloning of the glyceraldehydes 3-phosphate dehydrogenase gene of porphyromonas gingivalis and its expression in E. coli].

    PubMed

    Li, Ang; Xu, Hong-Yan; Shi, Jian-Feng; Zhu, Chun-Hui; Rao, Guo-Zhou; Gou, Jian-Zhong

    2011-04-01

    To clone the glyceraldehydes 3-phosphate dehydrogenase (GAPDH) gene of Porphyromonas gingivalis (P. gingivalis) and to induce its fusion expression in E. coli. GAPDH was obtained by PCR and was inserted into cloning vector pMD-18-T to construct clone recon. Double enzymes digest the recon pMD18-T-GAPDH and the prokaryotic expression vector pET-32a and then connect to get the expressing recon pET-32a-GAPDH. The recombinant expression plasmid which had been confirmed by enzymes digestion was transformed to E. coli competent cells BL21 and induced the expression of GAPDH with isopropyl beta-D-1-thiogalactopyranoside (IPTG) of different density. DNA sequencing showed that the fragment was 99.802% the same to the sequence published in NCBI. Under the best density, IPTG could be highly expressed. The GAPDH had been successfully cloned and expressed in E. coli which gets ready for the following experiment to study the immunity of GAPDH and the homologues antibody preparation.

  16. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis

    PubMed Central

    Quirke, Anne-Marie; Lugli, Elena Birgitta; Wegner, Natalia; Hamilton, Bart C; Charles, Peter; Chowdhury, Muslima; Ytterberg, A Jimmy; Zubarev, Roman A; Potempa, Jan; Culshaw, Shauna; Guo, Yonghua; Fisher, Benjamin A; Thiele, Geoffrey; Mikuls, Ted R; Venables, Patrick JW

    2014-01-01

    Background Rheumatoid arthritis (RA) is characterised by autoimmunity to citrullinated proteins, and there is increasing epidemiologic evidence linking Porphyromonas gingivalis to RA. P gingivalis is apparently unique among periodontal pathogens in possessing a citrullinating enzyme, peptidylarginine deiminase (PPAD) with the potential to generate antigens driving the autoimmune response. Objectives To examine the immune response to PPAD in patients with RA, individuals with periodontitis (PD) and controls (without arthritis), confirm PPAD autocitrullination and identify the modified arginine residues. Methods PPAD and an inactivated mutant (C351A) were cloned and expressed and autocitrullination of both examined by immunoblotting and mass spectrometry. ELISAs using PPAD, C351A and another P gingivalis protein arginine gingipain (RgpB) were developed and antibody reactivities examined in patients with RA (n=80), individuals with PD (n=44) and controls (n=82). Results Recombinant PPAD was a potent citrullinating enzyme. Antibodies to PPAD, but not to Rgp, were elevated in the RA sera (median 122 U/ml) compared with controls (median 70 U/ml; p<0.05) and PD (median 60 U/ml; p<0.01). Specificity of the anti-peptidyl citrullinated PPAD response was confirmed by the reaction of RA sera with multiple epitopes tested with synthetic citrullinated peptides spanning the PPAD molecule. The elevated antibody response to PPAD was abolished in RA sera if the C351A mutant was used on ELISA. Conclusions The peptidyl citrulline-specific immune response to PPAD supports the hypothesis that, as a bacterial protein, it might break tolerance in RA, and could be a target for therapy. PMID:23463691

  17. Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils.

    PubMed

    Castro, Sowmya A; Collighan, Russell; Lambert, Peter A; Dias, Irundika Hk; Chauhan, Parbata; Bland, Charlotte E; Milic, Ivana; Milward, Michael R; Cooper, Paul R; Devitt, Andrew

    2017-03-02

    Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.

  18. Fur homolog regulates Porphyromonas gingivalis virulence under low-iron/heme conditions through a complex regulatory network.

    PubMed

    Ciuraszkiewicz, J; Smiga, M; Mackiewicz, P; Gmiterek, A; Bielecki, M; Olczak, M; Olczak, T

    2014-12-01

    Porphyromonas gingivalis is a key pathogen responsible for initiation and progression of chronic periodontitis. Little is known about the regulatory mechanisms of iron and heme uptake that allow P. gingivalis to express virulence factors and survive in the hostile environment of the oral cavity, so we initiated characterization of a P. gingivalis Fur homolog (PgFur). Many Fur paralogs found in microbial genomes, including Bacteroidetes, confirm that Fur proteins have a tendency to be subjected to a sub- or even neofunctionalization process. PgFur revealed extremely high sequence divergence, which could be associated with its functional dissimilarity in comparison with other Fur homologs. A fur mutant strain constructed by insertional inactivation exhibited retarded growth during the early growth phase and a significantly lower tendency to form a homotypic biofilm on abiotic surfaces. The mutant also showed significantly weaker adherence and invasion to epithelial cells and macrophages. Transcripts of many differentially regulated genes identified in the fur mutant strain were annotated as hypothetical proteins, suggesting that PgFur can play a novel role in the regulation of gene expression. Inactivation of the fur gene resulted in decreased hmuY gene expression, increased expression of other hmu components and changes in the expression of genes encoding hemagglutinins and proteases (mainly gingipains), HtrA, some extracytoplasmic sigma factors and two-component systems. Our data suggest that PgFur can influence in vivo growth and virulence, at least in part by affecting iron/heme acquisition, allowing efficient infection through a complex regulatory network.

  19. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis.

    PubMed

    Quirke, Anne-Marie; Lugli, Elena Birgitta; Wegner, Natalia; Hamilton, Bart C; Charles, Peter; Chowdhury, Muslima; Ytterberg, A Jimmy; Zubarev, Roman A; Potempa, Jan; Culshaw, Shauna; Guo, Yonghua; Fisher, Benjamin A; Thiele, Geoffrey; Mikuls, Ted R; Venables, Patrick Jw

    2014-01-01

    Rheumatoid arthritis (RA) is characterised by autoimmunity to citrullinated proteins, and there is increasing epidemiologic evidence linking Porphyromonas gingivalis to RA. P gingivalis is apparently unique among periodontal pathogens in possessing a citrullinating enzyme, peptidylarginine deiminase (PPAD) with the potential to generate antigens driving the autoimmune response. To examine the immune response to PPAD in patients with RA, individuals with periodontitis (PD) and controls (without arthritis), confirm PPAD autocitrullination and identify the modified arginine residues. PPAD and an inactivated mutant (C351A) were cloned and expressed and autocitrullination of both examined by immunoblotting and mass spectrometry. ELISAs using PPAD, C351A and another P gingivalis protein arginine gingipain (RgpB) were developed and antibody reactivities examined in patients with RA (n=80), individuals with PD (n=44) and controls (n=82). Recombinant PPAD was a potent citrullinating enzyme. Antibodies to PPAD, but not to Rgp, were elevated in the RA sera (median 122 U/ml) compared with controls (median 70 U/ml; p<0.05) and PD (median 60 U/ml; p<0.01). Specificity of the anti-peptidyl citrullinated PPAD response was confirmed by the reaction of RA sera with multiple epitopes tested with synthetic citrullinated peptides spanning the PPAD molecule. The elevated antibody response to PPAD was abolished in RA sera if the C351A mutant was used on ELISA. The peptidyl citrulline-specific immune response to PPAD supports the hypothesis that, as a bacterial protein, it might break tolerance in RA, and could be a target for therapy.

  20. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains.

    PubMed

    Poole, Sophie; Singhrao, Sim K; Chukkapalli, Sasanka; Rivera, Mercedes; Velsko, Irina; Kesavalu, Lakshmyya; Crean, StJohn

    2015-01-01

    Periodontal disease is a polymicrobial inflammatory disease that leads to chronic systemic inflammation and direct infiltration of bacteria/bacterial components, which may contribute to the development of Alzheimer's disease. ApoE-/- mice were orally infected (n = 12) with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum as mono- and polymicrobial infections. ApoE-/- mice were sacrificed following 12 and 24 weeks of chronic infection. Bacterial genomic DNA was isolated from all brain tissues except for the F. nucleatum mono-infected group. Polymerase chain reaction was performed using universal 16 s rDNA primers and species-specific primer sets for each organism to determine whether the infecting pathogens accessed the brain. Sequencing amplification products confirmed the invasion of bacteria into the brain during infection. The innate immune responses were detected using antibodies against complement activation products of C3 convertase stage and the membrane attack complex. Molecular methods demonstrated that 6 out of 12 ApoE-/- mice brains contained P. gingivalis genomic DNA at 12 weeks (p = 0.006), and 9 out of 12 at 24 weeks of infection (p = 0.0001). Microglia in both infected and control groups demonstrated strong intracellular labeling with C3 and C9, due to on-going biosynthesis. The pyramidal neurons of the hippocampus in 4 out of 12 infected mice brains demonstrated characteristic opsonization with C3 activation fragments (p = 0.032). These results show that the oral pathogen P. gingivalis was able to access the ApoE-/- mice brain and thereby contributed to complement activation with bystander neuronal injury.

  1. The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83.

    PubMed

    Johnson, N A; McKenzie, R M E; Fletcher, H M

    2011-02-01

    The ability of Porphyromonas gingivalis to overcome oxidative stress in the inflammatory environment of the periodontal pocket is critical for its survival. We have previously demonstrated that the recA locus, which carries the bacterioferritin co-migratory protein (bcp) gene and has a unique genetic architecture, plays a role in virulence regulation and oxidative stress resistance in P. gingivalis. To further characterize the bcp gene, which was confirmed to be part of the bcp-recA-vimA-vimE-vimF operon, we created a P. gingivalis bcp-defective isogenic mutant (FLL302) by allelic exchange. Compared with the wild-type, FLL302 had a similar growth rate, black pigmentation, β-hemolysis and UV sensitivity. Although there was no change in the distribution of gingipain activity, there was a 30% reduction in both Arg-X and Lys-X activities in the mutant strain compared with the wild-type. When exposed to 0.25 mm hydrogen peroxide, P. gingivalis FLL302 was more sensitive than the wild-type. In addition, the cloned P. gingivalis bcp gene increased resistance to 0.25 mm hydrogen peroxide in a bcp-defective Escherichia coli mutant. The mutant also demonstrated decreased aerotolerance when compared with the wild-type. Porphyromonas gingivalis FLL302 and the wild-type strain had similar virulence profiles in a mouse model of virulence. These observations suggest that the bcp gene may play a role in oxidative stress resistance but has a decreased functional significance in the pathogenic potential of P. gingivalis. © 2010 John Wiley & Sons A/S.

  2. Induction of antibody response in the oral cavity of dogs following intraocular (eye drop) immunization with Porphyromonas gingivalis cell lysate incorporated in pH-sensitive fusogenic polymer-modified liposomes

    PubMed Central

    SHIMIZU, Yosuke; IWASAKI, Tadashi; TAJIMA, Tomoko; YUBA, Eiji; KONO, Kenji; WATARAI, Shinobu

    2016-01-01

    Induction of mucosal immune responses against Porphyromonas gingivalis within the oral cavity of dogs was studied by immunizing with pH-sensitive fusogenic polymer (MGluPG)-modified liposome-associated cell lysate. Dogs immunized with P. gingivalis cell lysate-containing MGluPG-modified liposomes by intraocular (eye drop) route displayed significant levels of P. gingivalis cell lysate-specific serum IgG and IgA as well as mucosal IgA antibodies in saliva secretion. Serum and salivary antibodies generated by intraocularly immunized with MGluPG-modified liposome-associated P. gingivalis cell lysate revealed a significant aggregation activity against P. gingivalis, whereas serum and saliva from dogs receiving MGluPG-modified liposomes unentrapping P. gingivalis cell lysate did not show the aggregation activity against P. gingivalis. Furthermore, P. gingivalis-specific antibodies in saliva of immunized dogs inhibited the adherence of P. gingivalis to cultured HeLa cells. More importantly, salivary antibodies induced by intraocular immunization with P. gingivalis cell lysate-containing MGluPG-modified liposomes significantly inhibited the coaggregation of P. gingivalis with Actinomyces naeslundii and the cell damage activity of P. gingivalis against FaDu cells, an oral epithelial cell. These results suggest that intraocularly administered P. gingivalis cell lysate-containing MGluPG-modified liposomes should be an effective mucosal vaccine against P. gingivalis infection in dogs and may be an important tool for the prevention of periodontitis. PMID:27916762

  3. Induction of antibody response in the oral cavity of dogs following intraocular (eye drop) immunization with Porphyromonas gingivalis cell lysate incorporated in pH-sensitive fusogenic polymer-modified liposomes.

    PubMed

    Shimizu, Yosuke; Iwasaki, Tadashi; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji; Watarai, Shinobu

    2017-02-14

    Induction of mucosal immune responses against Porphyromonas gingivalis within the oral cavity of dogs was studied by immunizing with pH-sensitive fusogenic polymer (MGluPG)-modified liposome-associated cell lysate. Dogs immunized with P. gingivalis cell lysate-containing MGluPG-modified liposomes by intraocular (eye drop) route displayed significant levels of P. gingivalis cell lysate-specific serum IgG and IgA as well as mucosal IgA antibodies in saliva secretion. Serum and salivary antibodies generated by intraocularly immunized with MGluPG-modified liposome-associated P. gingivalis cell lysate revealed a significant aggregation activity against P. gingivalis, whereas serum and saliva from dogs receiving MGluPG-modified liposomes unentrapping P. gingivalis cell lysate did not show the aggregation activity against P. gingivalis. Furthermore, P. gingivalis-specific antibodies in saliva of immunized dogs inhibited the adherence of P. gingivalis to cultured HeLa cells. More importantly, salivary antibodies induced by intraocular immunization with P. gingivalis cell lysate-containing MGluPG-modified liposomes significantly inhibited the coaggregation of P. gingivalis with Actinomyces naeslundii and the cell damage activity of P. gingivalis against FaDu cells, an oral epithelial cell. These results suggest that intraocularly administered P. gingivalis cell lysate-containing MGluPG-modified liposomes should be an effective mucosal vaccine against P. gingivalis infection in dogs and may be an important tool for the prevention of periodontitis.

  4. Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties.

    PubMed

    Ha, Na Hee; Woo, Bok Hee; Kim, Da Jeong; Ha, Eun Sin; Choi, Jeom Il; Kim, Sung Jo; Park, Bong Soo; Lee, Ji Hye; Park, Hae Ryoun

    2015-12-01

    Periodontitis is the most common chronic inflammatory condition occurring in the human oral cavity, but our knowledge on its contribution to oral cancer is rather limited. To define crosstalk between chronic periodontitis and oral cancer, we investigated whether Porphyromonas gingivalis, a major pathogen of chronic periodontitis, plays a role in oral cancer progression. To mimic chronic irritation by P. gingivalis in the oral cavity, oral squamous cell carcinoma (OSCC) cells were infected with P. gingivalis twice a week for 5 weeks. Repeated infection of oral cancer cells by P. gingivalis resulted in morphological changes of host cancer cells into an elongated shape, along with the decreased expression of epithelial cell markers, suggesting acquisition of an epithelial-to-mesenchymal transition (EMT) phenotype. The prolonged exposure to P. gingivalis also promoted migratory and invasive properties of OSCC cells and provided resistance against a chemotherapeutic agent, all of which are described as cellular characteristics undergoing EMT. Importantly, long-term infection by P. gingivalis induced an increase in the expression level of CD44 and CD133, well-known cancer stem cell markers, and promoted the tumorigenic properties of infected cancer cells compared to non-infected controls. Furthermore, increased invasiveness of P. gingivalis-infected OSCC cells was correlated with enhanced production of matrix metalloproteinase (MMP)-1 and MMP-10 that was stimulated by interleukin-8 (IL-8) release. This is the first report demonstrating that P. gingivalis can increase the aggressiveness of oral cancer cells via epithelial-mesenchymal transition-like changes and the acquisition of stemness, implicating P. gingivalis as a potential bacterial risk modifier.

  5. LptO (PG0027) Is Required for Lipid A 1-Phosphatase Activity in Porphyromonas gingivalis W50.

    PubMed

    Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; McPhail, Graham; Luklinska, Zofia; Haurat, M Florencia; Feldman, Mario F; Curtis, Michael A

    2017-06-01

    Porphyromonas gingivalis produces outer membrane vesicles (OMVs) rich in virulence factors, including cysteine proteases and A-LPS, one of the two lipopolysaccharides (LPSs) produced by this organism. Previous studies had suggested that A-LPS and PG0027, an outer membrane (OM) protein, may be involved in OMV formation. Their roles in this process were examined by using W50 parent and the ΔPG0027 mutant strains. Inactivation of PG0027 caused a reduction in the yield of OMVs. Lipid A from cells and OMVs of P. gingivalis W50 and the ΔPG0027 mutant strains were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lipid A from W50 cells contained bis-P-pentaacyl, mono-P-pentaacyl, mono-P-tetraacyl, non-P-pentaacyl, and non-P-tetraacyl species, whereas lipid A from ΔPG0027 mutant cells contained only phosphorylated species; nonphosphorylated species were absent. MALDI-TOF/TOF tandem MS of mono-P-pentaacyl (m/z 1,688) and mono-P-tetraacyl (m/z 1,448) lipid A from ΔPG0027 showed that both contained lipid A 1-phosphate, suggesting that the ΔPG0027 mutant strain lacked lipid A 1-phosphatase activity. The total phosphatase activities in the W50 and the ΔPG0027 mutant strains were similar, whereas the phosphatase activity in the periplasm of the ΔPG0027 mutant was lower than that in W50, supporting a role for PG0027 in lipid A dephosphorylation. W50 OMVs were enriched in A-LPS, and its lipid A did not contain nonphosphorylated species, whereas lipid A from the ΔPG0027 mutant (OMVs and cells) contained similar species. Thus, OMVs in P. gingivalis are apparently formed in regions of the OM enriched in A-LPS devoid of nonphosphorylated lipid A. Conversely, dephosphorylation of lipid A through a PG0027-dependent process is required for optimal formation of OMVs. Hence, the relative proportions of nonphosphorylated and phosphorylated lipid A appear to be crucial for OMV formation in this organism.IMPORTANCE Gram

  6. Antibodies to Porphyromonas gingivalis Indicate Interaction Between Oral Infection, Smoking, and Risk Genes in Rheumatoid Arthritis Etiology.

    PubMed

    Kharlamova, Nastya; Jiang, Xia; Sherina, Natalia; Potempa, Barbara; Israelsson, Lena; Quirke, Anne-Marie; Eriksson, Kaja; Yucel-Lindberg, Tülay; Venables, Patrick J; Potempa, Jan; Alfredsson, Lars; Lundberg, Karin

    2016-03-01

    To investigate the role of the periodontal pathogen Porphyromonas gingivalis in the etiology of rheumatoid arthritis (RA) by analyzing the antibody response to the P gingivalis virulence factor arginine gingipain type B (RgpB) in relation to anti-citrullinated protein antibodies (ACPAs), smoking, and HLA-DRB1 shared epitope (SE) alleles in patients with periodontitis, patients with RA, and controls. Anti-RgpB IgG was measured by enzyme-linked immunosorbent assay in 65 periodontitis patients and 59 controls without periodontitis, and in 1,974 RA patients and 377 controls without RA from the Swedish population-based case-control Epidemiological Investigation of Rheumatoid Arthritis (EIRA) study. Autoantibody status, smoking habits, and genetic data were retrieved from the EIRA database. Differences in antibody levels were examined using the Mann-Whitney U test. Unconditional logistic regression was used to calculate odds ratios (ORs) with 95% confidence intervals (95% CIs) for the association of anti-RgpB IgG with different subsets of RA patients. Anti-RgpB antibody levels were significantly elevated in periodontitis patients compared to controls without periodontitis, in RA patients compared to controls without RA, and in ACPA-positive RA patients compared to ACPA-negative RA patients. There was a significant association between anti-RgpB IgG and RA (OR 2.96 [95% CI 2.00, 4.37]), which was even stronger than the association between smoking and RA (OR 1.37 [95% CI 1.07, 1.74]), and in ACPA-positive RA there were interactions between anti-RgpB antibodies and both smoking and the HLA-DRB1 SE. Our study suggests that the previously reported link between periodontitis and RA could be accounted for by P gingivalis infection, and we conclude that P gingivalis is a credible candidate for triggering and/or driving autoimmunity and autoimmune disease in a subset of RA patients. © 2016, American College of Rheumatology.

  7. Vitamin D reduces the inflammatory response by Porphyromonas gingivalis infection by modulating human β-defensin-3 in human gingival epithelium and periodontal ligament cells.

    PubMed

    De Filippis, Anna; Fiorentino, Margherita; Guida, Luigi; Annunziata, Marco; Nastri, Livia; Rizzo, Antonietta

    2017-04-03

    Periodontitis is a multifactorial polymicrobial infection characterized by a destructive inflammatory process. Porphyromonas gingivalis, a Gram-negative black-pigmented anaerobe, is a major pathogen in the initiation and progression of periodontitis; it produces several virulence factors that stimulate human gingival epithelium (HGE) cells and human periodontal ligament (HPL) cells to produce various inflammatory mediators. A variety of substances, such as vitamin D, have growth-inhibitory effects on some bacterial pathogens and have shown chemo-preventive and anti-inflammatory activity. We used a model with HGE and HPL cells infected with P. gingivalis to determine the influence of vitamin D on P. gingivalis growth and adhesion and the immunomodulatory effect on TNF-α, IL-8, IL-12 and human-β-defensin 3 production. Our results demonstrated, firstly, the lack of any cytotoxic effect on the HGE and HPL cells when treated with vitamin D; in addition, vitamin D inhibited P. gingivalis adhesion and infectivity in HGE and HPL cells. Our study then showed that vitamin D reduced TNF-α, IL-8, IL-12 production in P. gingivalis-infected HGE and HPL cells. In contrast, a significant upregulation of the human-β-defensin 3 expression in HGE and HPL cells induced by P. gingivalis was demonstrated. Our results indicate that vitamin D specifically enhances the production of the human-β-defensin 3 antimicrobial peptide and exerts an inhibitory effect on the pro-inflammatory cytokines, thus suggesting that vitamin D may offer possible therapeutic applications for periodontitis.

  8. Detection of Porphyromonas gingivalis fimA Type I Genotype in Gingivitis by Real-Time PCR–A Pilot Study

    PubMed Central

    Krishnan, Mahalakshmi; Chandrasekaran, S.C.

    2016-01-01

    Introduction Published literature till date reveals a high prevalence of Porphyromonas gingivalis fimA type I genotype among healthy subjects. Quite a few studies have reported its prevalence also in periodontitis patients. Nevertheless incidence of this genotype in gingivitis is lacking in adult population. Aim The present study was chosen to detect P. gingivalis fimA type I genotype among chronic gingivitis patients. Materials and Methods A total of 46 subgingival plaque samples collected from chronic marginal gingivitis (n=23) and chronic periodontitis subjects (control group) (n=23) were subjected to Real-Time Polymerase Chain Reaction to detect the P. gingivalis fimA type I gene. Statistical analysis was performed using chi-square test. Results Prevalence of P. gingivalis fimA type I gene among chronic periodontitis and chronic gingivitis patients were 8.7% and 30.4% respectively. P. gingivalis fimA type I genotype prevalence was found to be statistically insignificant between the two study groups (p=0.135). Conclusion The avirulent P. gingivalis fimA type I genotype, occurred in high prevalence among chronic gingivitis patients, while its presence was low in chronic periodontitis patients. Presence of this avirulent genotype in chronic marginal gingivitis signifies its reversible condition. PMID:27504406

  9. In situ visualization of plasma cells producing antibodies reactive to Porphyromonas gingivalis in periodontitis: the application of the enzyme-labeled antigen method

    PubMed Central

    Mizutani, Y; Tsuge, S; Takeda, H; Hasegawa, Y; Shiogama, K; Onouchi, T; Inada, K; Sawasaki, T; Tsutsumi, Y

    2014-01-01

    Porphyromonas gingivalis is a keystone periodontal pathogen. Histologocally, the gingival tissue in periodontitis shows dense infiltration of plasma cells. However, antigens recognized by antibodies secreted from the immunocytes remain unknown. The enzyme-labeled antigen method was applied to detecting plasma cells producing P. gingivalis-specific antibodies in biopsied gingival tissue of periodontitis. N-terminally biotinylated P. gingivalis antigens, Ag53 and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro and Lys-hgp) were prepared by the cell-free protein synthesis system using wheatgerm extract. With these five labeled proteins as probes, 20 lesions of periodontitis were evaluated. With the AlphaScreen method, antibodies against any one of the five P. gingivalis antigens were detected in 11 (55%) serum samples and 17 (85%) tissue extracts. Using the enzyme-labeled antigen method on paraformaldehyde-fixed frozen sections of gingival tissue, plasma cells were labeled with any one of the five antigens in 17 (94%) of 18 specimens, in which evaluable plasma cells were detected. The positivity rates in periodontitis were significantly higher than those found previously in radicular cysts (20% in sera and 33% in tissue extracts with the AlphaScreen method, and 25% with the enzyme-labeled antigen method). Our findings directly indicate that antibodies reactive to P. gingivalis are locally produced in the gingival lesions, and that inflammatory reactions against P. gingivalis are involved in periodontitis. PMID:24698402

  10. Dual Action of Myricetin on Porphyromonas gingivalis and the Inflammatory Response of Host Cells: A Promising Therapeutic Molecule for Periodontal Diseases

    PubMed Central

    Grenier, Daniel; Chen, Huangqin; Ben Lagha, Amel; Fournier-Larente, Jade; Morin, Marie-Pierre

    2015-01-01

    Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis. PMID:26121135

  11. The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the mu-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide.

    PubMed

    Smalley, J W; Birss, A J; Silver, J

    2000-02-01

    The major haem component in the black pigment of Porphyromonas gingivalis is the mu-oxo bishaem of iron protoporphyrin IX and formation and cell-surface binding of this haem species is proposed as an extracellular buffer against reactive oxidants [Smalley, J.W. et al. (1998) Biochem. J. 331, 681-685]. P. gingivalis cells grown in the presence of the mu-oxo bishaem were protected against H(2)O(2) compared to control cells grown without it. When added to the growth medium, soluble mu-oxo bishaem inactivated H(2)O(2) and supported cell growth. Cells carrying a surface layer of mu-oxo bishaem were less susceptible to peroxidation by H(2)O(2). Cell-surface haems were slowly destroyed during reaction with H(2)O(2). Binding of mu-oxo bishaem by P. gingivalis may aid survival during neutrophil attack through inactivation of hydrogen peroxide.

  12. Porphyromonas gingivalis Stimulates Bone Resorption by Enhancing RANKL (Receptor Activator of NF-κB Ligand) through Activation of Toll-like Receptor 2 in Osteoblasts*

    PubMed Central

    Kassem, Ali; Henning, Petra; Lundberg, Pernilla; Souza, Pedro P. C.; Lindholm, Catharina; Lerner, Ulf H.

    2015-01-01

    Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease. PMID:26085099

  13. Porphyromonas gingivalis Infection during Pregnancy Increases Maternal Tumor Necrosis Factor Alpha, Suppresses Maternal Interleukin-10, and Enhances Fetal Growth Restriction and Resorption in Mice

    PubMed Central

    Lin, Dongming; Smith, Mary Alice; Champagne, Catherine; Elter, John; Beck, James; Offenbacher, Steven

    2003-01-01

    Epidemiological studies have shown a potential association between maternal periodontitis and pregnancy complications. We used a pregnant murine model to study the effect of infection with the periodontal pathogen Porphyromonas gingivalis on pregnancy outcomes. Female BALB/c mice were inoculated with heat-killed P. gingivalis (109 CFU) in a subcutaneous chamber and mated 2 weeks later. At gestation day (GD) 7.5, mice were challenged with live P. gingivalis (107 CFU) (n = 20) or broth (control; n = 8) and sacrificed at GD 16.5. Fetal growth restriction (FGR, <0.46 g) was defined as fetuses with weights 2 standard deviations (SD) smaller than controls (0.56 ± 0.05 g [mean ± SD]). Among the 20 challenged mice, 8 had both normal-weight (0.51 ± 0.11 g) and FGR (0.34 ± 0.1 g) fetuses within the same litter. All other challenged dams had normal-weight fetuses (0.57 ± 0.04 g). Maternal liver, uterus, and spleen samples were examined for P. gingivalis DNA using a PCR technique. Of the eight challenged mice with FGR fetuses, three had PCR signals for P. gingivalis in liver and uterus, but not in the spleen. Liver, uterus, and spleen were negative for P. gingivalis DNA among all other challenged and control mice. In serum of dams with FGR fetuses, tumor necrosis factor alpha levels were elevated significantly, while interluekin-10 levels were significantly reduced compared to levels in dams with normal fetuses. P. gingivalis-specific serum immunoglobulin G levels were significantly elevated in dams with FGR fetuses compared to dams without any FGR fetuses. These data demonstrate that P. gingivalis-induced murine FGR is associated with systemic dissemination of the organism and activated maternal immune and inflammatory responses. PMID:12933859

  14. Structure and Mechanism of Cysteine Peptidase Gingipain K (Kgp), a Major Virulence Factor of Porphyromonas gingivalis in Periodontitis*

    PubMed Central

    de Diego, Iñaki; Veillard, Florian; Sztukowska, Maryta N.; Guevara, Tibisay; Potempa, Barbara; Pomowski, Anja; Huntington, James A.; Potempa, Jan; Gomis-Rüth, F. Xavier

    2014-01-01

    Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys477-His444-Asp388, rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates. PMID:25266723

  15. Unique Structure and Stability of HmuY, a Novel Heme-Binding Protein of Porphyromonas gingivalis

    PubMed Central

    Wójtowicz, Halina; Guevara, Tibisay; Tallant, Cynthia; Olczak, Mariusz; Sroka, Aneta; Potempa, Jan; Solà, Maria; Olczak, Teresa; Gomis-Rüth, F. Xavier

    2009-01-01

    Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-β fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection. PMID:19424422

  16. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate

    PubMed Central

    Lewis, Janina P.; Iyer, Divya; Anaya-Bergman, Cecilia

    2009-01-01

    Porphyromonas gingivalis, previously classified as a strict anaerobe, can grow in the presence of low concentrations of oxygen. Microarray analysis revealed alteration in gene expression in the presence of 6 % oxygen. During the exponential growth phase, 96 genes were upregulated and 79 genes were downregulated 1.4-fold. Genes encoding proteins that play a role in oxidative stress protection were upregulated, including alkyl hydroperoxide reductase (ahpCF), superoxide dismutase (sod) and thiol peroxidase (tpx). Significant changes in gene expression of proteins that mediate oxidative metabolism, such as cytochrome d ubiquinol oxidase-encoding genes, cydA and cydB, were detected. The expression of genes encoding formate uptake transporter (PG0209) and formate tetrahydrofolate ligase (fhs) was drastically elevated, which indicates that formate metabolism plays a major role under aerobic conditions. The concomitant reduction of expression of a gene encoding the lactate transporter PG1340 suggests decreased utilization of this nutrient. The concentrations of both formate and lactate were assessed in culture supernatants and cells, and they were in agreement with the results obtained at the transcriptional level. Also, genes encoding gingipain protease secretion/maturation regulator (porR) and protease transporter (porT) had reduced expression in the presence of oxygen, which also correlated with reduced protease activities under aerobic conditions. In addition, metal transport was affected, and while iron-uptake genes such as the genes encoding the haemin uptake locus (hmu) were downregulated, expression of manganese transporter genes, such as feoB2, was elevated in the presence of oxygen. Finally, genes encoding putative regulatory proteins such as extracellular function (ECF) sigma factors as well as small proteins had elevated expression levels in the presence of oxygen. As P. gingivalis is distantly related to the well-studied model organism Escherichia coli

  17. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases

    PubMed Central

    Veillard, Florian; Sztukowska, Maryta; Mizgalska, Danuta; Ksiazek, Mirosław; Houston, John; Potempa, Barbara; Enghild, Jan J.; Thogersen, Ida B.; Gomis-Rüth, F. Xavier; Nguyen, Ky-Anh; Potempa, Jan

    2013-01-01

    Background Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments. Methods Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis. Results PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2 nM to 0.85 nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-L-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex. Conclusion Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains. General significance Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity. PMID:23583629

  18. Involvement of an Skp-Like Protein, PGN_0300, in the Type IX Secretion System of Porphyromonas gingivalis

    PubMed Central

    Taguchi, Yuko; Sato, Keiko; Yukitake, Hideharu; Inoue, Tetsuyoshi; Nakayama, Masaaki; Naito, Mariko; Kondo, Yoshio; Kano, Konami; Hoshino, Tomonori; Nakayama, Koji; Takashiba, Shogo

    2015-01-01

    The oral Gram-negative anaerobic bacterium Porphyromonas gingivalis is an important pathogen involved in chronic periodontitis. Among its virulence factors, the major extracellular proteinases, Arg-gingipain and Lys-gingipain, are of interest given their abilities to degrade host proteins and process other virulence factors. Gingipains possess C-terminal domains (CTDs) and are translocated to the cell surface or into the extracellular milieu by the type IX secretion system (T9SS). Gingipains contribute to the colonial pigmentation of the bacterium on blood agar. In this study, Omp17, the PGN_0300 gene product, was found in the outer membrane fraction. A mutant lacking Omp17 did not show pigmentation on blood agar and showed reduced proteolytic activity of the gingipains. CTD-containing proteins were released from bacterial cells without cleavage of the CTDs in the omp17 mutant. Although synthesis of the anionic polysaccharide (A-LPS) was not affected in the omp17 mutant, the processing of and A-LPS modification of CTD-containing proteins was defective. PorU, a C-terminal signal peptidase that cleaves the CTDs of other CTD-containing proteins, was not detected in any membrane fraction of the omp17 mutant, suggesting that the defective maturation of CTD-containing proteins by impairment of Omp17 is partly due to loss of function of PorU. In the mouse subcutaneous infection experiment, the omp17 mutant was less virulent than the wild type. These results suggested that Omp17 is involved in P. gingivalis virulence. PMID:26502912

  19. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides.

    PubMed

    Nemoto, Takayuki K; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-03-11

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser(615) and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm(-1) s(-1), optimal pH was 7-8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met(16)-Glu(101)). Three-dimensional modeling revealed the three domain structures (residues Met(16)-Ala(126), which has no similar homologue with known structure; residues Leu(127)-Met(495) (β-propeller domain); and residues Ala(496)-Phe(736) (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides.

  20. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  1. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides*

    PubMed Central

    Nemoto, Takayuki K.; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-01-01

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser615 and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm−1 s−1, optimal pH was 7–8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met16–Glu101). Three-dimensional modeling revealed the three domain structures (residues Met16–Ala126, which has no similar homologue with known structure; residues Leu127–Met495 (β-propeller domain); and residues Ala496–Phe736 (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides. PMID:26733202

  2. Serine Lipids of Porphyromonas gingivalis Are Human and Mouse Toll-Like Receptor 2 Ligands

    PubMed Central

    Clark, Robert B.; Cervantes, Jorge L.; Maciejewski, Mark W.; Farrokhi, Vahid; Nemati, Reza; Yao, Xudong; Anstadt, Emily; Fujiwara, Mai; Wright, Kyle T.; Riddle, Caroline; La Vake, Carson J.; Salazar, Juan C.; Finegold, Sydney

    2013-01-01

    The total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/− mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced by P. gingivalis that likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate. PMID:23836823

  3. Porphyromonas gingivalis infection modifies oral microcirculation and aortic vascular function in the stroke-prone spontaneously hypertensive rat (SHRSP).

    PubMed

    Funaki, Seiko; Tokutomi, Fumiaki; Wada-Takahashi, Satoko; Yoshino, Fumihiko; Yoshida, Ayaka; Maehata, Yojiro; Miyamoto, Chihiro; Toyama, Toshizo; Sato, Takenori; Hamada, Nobushiro; Lee, Masaichi Chang-il; Takahashi, Shun-suke

    2016-03-01

    The functional modulation of vascular endothelial cells associated with stroke and periodontal disease has not yet been clarified. The objective of this study is to analyze the vascular endothelial function of periodontitis and stroke animal models. We examined endothelial function and gingival blood flow in oral microcirculation in vivo and measured the isometric tension in vitro of the aorta in animal models for lifestyle-related diseases, such as periodontitis and stroke. Gingival reactive hyperemia (GRH) was measured using laser Doppler flowmetry. Wistar Kyoto rats (WKY) were used as control animals; Porphyromonas gingivalis (P. gingivalis) infected WKY (WKY + Pg) as the periodontitis model; stroke-prone spontaneously hypertensive rat (SHRSP) as the stroke model; and a final group consisting of P. gingivalis infected SHRSP (SHRSP + Pg). Furthermore, for each group, the relaxation of descending aortic ring preparations was measured using a force transducer. The GRH was estimated by maximum response (peak), time taken for the maximum response to fall to one half (T1/2), and increased total amount of blood flow (mass). The relative change in T1/2 and mass increased in SHRSP + Pg compared to WKY. However, mass significantly increased in WKY (758.59 ± 88.21 ml/min/100 g s to 1755.55 ± 226.10 ml/min/100 g s) and SHRSP (1214.87 ± 141.61 ml/min/100 g s to 2674.32 ± 675.48 ml/min/100 g s) after treatment with acetylcholine. In addition, T1/2 and mass significantly increased in WKY + Pg (624.18 ± 96.36 ml/min/100 g s to 2629.90 ± 612.01 ml/min/100 g s) and SHRSP + Pg (1116.36 ± 206.24 ml/min/100 g s to 1952.76 ± 217.39 ml/min/100 g s) after treatment with nitroglycerin. Furthermore, the endothelium-dependent relaxation of ring preparations, evoked by acetylcholine, was attenuated in SHRSP compared with WKY, but not in SHRSP + Pg. This attenuation effect in SHRSP could be prevented by superoxide dismutase pretreatment. Our results suggest altered endothelial

  4. Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis

    PubMed Central

    Køllgaard, Tania; Enevold, Christian; Bendtzen, Klaus; Hansen, Peter R.; Givskov, Michael; Holmstrup, Palle; Nielsen, Claus H.

    2017-01-01

    Cholesterol deposits and pro-inflammatory cytokines play an essential role in the pathogenesis of atherosclerosis, a predominant cause of cardiovascular disease (CVD). Epidemiological evidence has linked periodontal disease (PD) with atherosclerotic CVD. Accordingly, viable periodontal pathogens, including Porphyromonas gingivalis, have been found in atherosclerotic plaques in humans and mice. We aimed to determine whether cholesterol crystals (CHCs) and oral bacteria synergize in the stimulation of human monocytes. Incubation of human monocytes with CHCs induced secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8. Moreover, CHCs markedly enhanced secretion of IL-1β by monocytes stimulated with the toll-like receptor (TLR) 4 agonist Escherichia coli lipopolysaccharide (LPS), and the TLR2 agonist Staphylococcus aureus lipoteichoic acid. Notably, CHCs also enhanced IL-1β secretion induced by P. gingivalis LPS and IL-1β secretion induced by whole P. gingivalis bacteria. This enhancement was abrogated by the NLRP3 inflammasome inhibitors Z-YVAD-FMK and glibenclamide. CHCs had no effect on cytokine production induced by P. gingivalis gingipains. Taken together, our findings support that CHCs, via stimulation of NLRP3 inflammasomes, act in synergy with the periodontal pathogen P. gingivalis to promote monocyte secretion of pro-atherogenic cytokines. PMID:28235036

  5. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR.

    PubMed

    Liu, Xinyan; Olczak, Teresa; Guo, Hwai-Chen; Dixon, Dabney W; Genco, Caroline Attardo

    2006-02-01

    We have previously identified and characterized a heme/hemoglobin receptor, HmuR, in Porphyromonas gingivalis. To analyze the conserved amino acid residues of HmuR that may be involved in hemin/hemoprotein binding and utilization, we constructed a series of P. gingivalis A7436 hmuR mutants with amino acid replacements and characterized the ability of these mutants to utilize hemin and hemoproteins. Site-directed mutagenesis was employed to introduce mutations H95A, H434A, H95A-H434A, YRAP420-423YAAA, and NPDL442-445NAAA into HmuR in both P. gingivalis and Escherichia coli. Point mutations at H95 and H434 and in the NPDL motif of HmuR resulted in decreased binding to hemin, hemoglobin, and human serum albumin-hemin complex. Notably, mutations of these conserved sites and motifs led to reduced growth of P. gingivalis when human serum was used as the heme source. Analysis using a three-dimensional homology model of HmuR indicated that H95, H434, and the NPDL motif are present on apical or extracellular loops of HmuR, while the YRAP motif is present on the barrel wall. Taken together, these results support a role for H95, H434, and the NPDL motif of the P. gingivalis HmuR protein in heme binding and utilization of serum hemoproteins and the HmuR YRAP motif in serum hemoprotein utilization.

  6. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with gingipains.

    PubMed

    de Oliveira Caleare, Angelo; Hensel, Andreas; Mello, João Carlos Palazzo; Pinha, Andressa Blainski; Panizzon, Gean Pier; Lechtenberg, Matthias; Petereit, Frank; Nakamura, Celso Vataru

    2017-04-01

    Porphyromonas gingivalis is a pathogen strongly involved in chronic and aggressive forms of periodontitis. Natural products, mainly polyphenols, have been described for advanced treatment of periodontitis by inhibition of the bacterial adhesion of P. gingivalis to the epithelial host cells. An acetone:water extract (LBE) from the rhizomes of Limonium brasiliense (Boiss.) Kuntze was tested under in vitro conditions for potential antiadhesive effects against P. gingivalis to human KB cells and for inhibition of the proteolytic activity of gingipains, the main virulence factor of P. gingivalis. LBE≤100μg/mL had no cytotoxicity against the bacteria and did not influence the cell physiology of human epithelial KB cells. At 100μg/mL LBE reduced the adhesion of P. gingivalis to KB cells significantly by about 80%. LBE at 20μg/mL reduced the proteolytic activity of the arginin-specific Rgp gingipain by about 75%. Chemical profiling of LBE indicated the presence of gallic acid, epigallocatechin-3-O-gallate and samarangenins A and B as lead compounds. UHPLC by using MS and UV detection displays a suitable method for quality control of the extract for identification and quantification of the lead compounds.

  7. Prostaglandin E2 secretion from gingival fibroblasts treated with interleukin-1beta: effects of lipid extracts from Porphyromonas gingivalis or calculus.

    PubMed

    Nichols, F C; Levinbook, H; Shnaydman, M; Goldschmidt, J

    2001-06-01

    Complex lipids of Porphyromonas gingivalis have been identified in lipid extracts from calculus-contaminated root surfaces and in diseased gingival tissues. However, little is known about the biological effects of these complex lipids on host cells. The purpose of this study was to evaluate the effects of P. gingivalis or calculus lipids on prostaglandin secretion from gingival fibroblasts. Lipids were extracted from paired subgingival plaque and teeth samples, and calculus-contaminated root surfaces before and after scaling and root planing, in order to determine the relevant levels of lipid extracts for the treatment of gingival fibroblasts in culture. Primary cultures of gingival fibroblasts were exposed to lipid extracts from either P. gingivalis or calculus/teeth for a period of 7 days. Control and lipid-treated cultures were exposed to human recombinant interleukin-1beta for 48 h and prostaglandin secretion from interleukin-1beta-treated fibroblasts was compared with control and lipid-treated fibroblasts without interleukin-1beta treatment. These experiments demonstrated that P. gingivalis lipids or calculus-tooth lipids potentiate interleukin-1beta-mediated prostaglandin secretory responses from gingival fibroblasts. Additionally, P. gingivalis or calculus-tooth lipid extracts were readily taken up by gingival fibroblasts as measured by bacterial fatty acid recovery in lipid extracts of cultured fibroblasts. These results indicate that bacterial lipid penetration into gingival tissues in combination with a chronic inflammatory response may substantially potentiate prostaglandin secretion from gingival fibroblasts, thereby promoting tissue destructive processes associated with adult periodontitis.

  8. Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by porphyromonas gingivalis.

    PubMed

    Aruni, A Wilson; Roy, Francis; Fletcher, H M

    2011-10-01

    Filifactor alocis, a Gram-positive anaerobic rod, is one of the most abundant bacteria identified in the periodontal pockets of periodontitis patients. There is a gap in our understanding of its pathogenicity and ability to interact with other periodontal pathogens. To evaluate the virulence potential of F. alocis and its ability to interact with Porphyromonas gingivalis W83, several clinical isolates of F. alocis were characterized. F. alocis showed nongingipain protease and sialidase activities. In silico analysis revealed the molecular relatedness of several virulence factors from F. alocis and P. gingivalis. In contrast to P. gingivalis, F. alocis was relatively resistant to oxidative stress and its growth was stimulated under those conditions. Biofilm formation was significantly increased in coculture. There was an increase in adherence and invasion of epithelial cells in coculture compared with P. gingivalis or F. alocis monocultures. In those epithelial cells, endocytic vesicle-mediated internalization was observed only during coculture. The F. alocis clinical isolate had an increased invasive capacity in coculture with P. gingivalis compared to the ATCC 35896 strain. In addition, there was variation in the proteomes of the clinical isolates compared to the ATCC 35896 strain. Hypothetical proteins and those known to be important virulence factors in other bacteria were identified. These results indicate that F. alocis has virulence properties that may enhance its ability to survive and persist in the periodontal pocket and may play an important role in infection-induced periodontal disease.

  9. Effects of Porphyromonas gingivalis lipopolysaccharide on the expression of key genes involved in cholesterol metabolism in macrophages

    PubMed Central

    Liu, Fen; Wang, Yi; Xu, Jing; Liu, Fangqiang

    2016-01-01

    Introduction Cardiovascular diseases are positively correlated with periodontal disease. However, the molecular mechanisms linking atherosclerosis and periodontal infection are not clear. This study aimed to determine whether Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) altered the expression of genes regulating cholesterol metabolism in macrophages in the presence of low-density lipoprotein (LDL). Material and methods THP-1-derived macrophages were exposed to different concentrations (0.1, 1, 10 µg/ml) of LPS in the presence of 50 µg/ml native LDL. Macrophages were also incubated with 1 µg/ml LPS for varying times (0, 24, 48, or 72 h) in the presence of native LDL. Foam cell formation was determined by oil red O staining and cholesterol content quantification. CD36, lectin-like oxidized LDL receptor-1 (LOX-1), ATP-binding cassette G1 (ABCG1), and acetyl CoA acyltransferase 1 (ACAT1) expression levels were measured by western blot and qRT-PCR. Results Foam cell formation was induced in a time- and concentration-dependent manner as assessed by both morphological and biochemical criteria. Pg-LPS caused downregulation of CD36 and ABCG1 but upregulation of ACAT1, while LOX-1 expression was not affected (p = 0.137). Conclusions Pg-LPS appears to be an important link in the development of atherosclerosis by mechanisms targeting cholesterol homeostasis, namely, excess cholesterol ester formation via ACAT1 and reduced cellular cholesterol efflux via ABCG1. PMID:27695485

  10. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response

    PubMed Central

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-01-01

    Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600

  11. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    NASA Astrophysics Data System (ADS)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  12. Phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis clinical strains reveals a clear species clustering.

    PubMed

    Kuhnert, Peter; Frey, Joachim; Lang, Niklaus P; Mayfield, Lisa

    2002-07-01

    Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis are oral pathogens from the family Bacteroidaceae, regularly isolated from cases of gingivitis and periodontitis. In this study, the phylogenetic variability of these three bacterial species was investigated by means of 16S rRNA (rrs) gene sequence comparisons of a set of epidemiologically and geographically diverse isolates. For each of the three species, the rrs gene sequences of 11 clinical isolates as well as the corresponding type strains was determined. Comparison of all rrs sequences obtained with those of closely related species revealed a clear clustering of species, with only a little intraspecies variability but a clear difference in the rrs gene with respect to the next related taxon. The results indicate that the three species form stable, homogeneous genetic groups, which favours an rrs-based species identification of these oral pathogens. This is especially useful given the 7% sequence divergence between Prevotella intermedia and Prevotella nigrescens, since phenotypic distinction between the two Prevotella species is inconsistent or involves techniques not applicable in routine identification.

  13. Systemic up-regulation of sTNFR2 and IL-6 in Porphyromonas gingivalis pneumonia in mice.

    PubMed

    Petelin, Milan; Naruishi, Koji; Shiomi, Nobuyuki; Mineshiba, Junji; Arai, Hideo; Nishimura, Fusanori; Takashiba, Shogo; Murayama, Yoji

    2004-02-01

    Aspiration pneumonia is a common cause of death in older people, and the pathophysiology is a chronic respiratory failure with a mild airway inflammation. In this study, we established a mild inflammatory pneumonia model using Porphyromonas gingivalis (Pg) pathogen-infected mice. It elucidated the effects of Pg-infected pneumonia on proinflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin-6 (IL-6), and IL-1beta production in both lung tissue and serum. We also elucidated production of soluble (s) TNF receptor (R) s, because TNF-alpha is considered to be a dominant inflammatory mediator. Lung TNF-alpha levels significantly increased at 2 h after infection, and rapidly returned to basal level at 24 h. Consistent with increase of TNF-alpha, remarkable increase of sTNFR2 but not sTNFR1 was detected in lung tissue from 2 to 72 h. Interestingly, sTNFR2/sTNFR1 ratio was significantly enhanced at 2 h in serum. In addition, lung IL-1beta and IL-6 levels also significantly increased from 2 to 24 h. Importantly, we found that IL-6 levels in serum reflected its local level. These results may suggest that systemically produced sTNFR2 and IL-6 could be a key role to modulate proinflammatory activities of TNF-alpha in Pg-induced lung inflammation simulated aspiration pneumonia.

  14. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589

  15. Porphyromonas gingivalis Participates in Pathogenesis of Human Abdominal Aortic Aneurysm by Neutrophil Activation. Proof of Concept in Rats

    PubMed Central

    Delbosc, Sandrine; Alsac, Jean-Marc; Journe, Clement; Louedec, Liliane; Castier, Yves; Bonnaure-Mallet, Martine; Ruimy, Raymond; Rossignol, Patrick; Bouchard, Philippe; Michel, Jean-Baptiste; Meilhac, Olivier

    2011-01-01

    Background Abdominal Aortic Aneurysms (AAAs) represent a particular form of atherothrombosis where neutrophil proteolytic activity plays a major role. We postulated that neutrophil recruitment and activation participating in AAA growth may originate in part from repeated episodes of periodontal bacteremia. Methods and Findings Our results show that neutrophil activation in human AAA was associated with Neutrophil Extracellular Trap (NET) formation in the IntraLuminal Thrombus, leading to the release of cell-free DNA. Human AAA samples were shown to contain bacterial DNA with high frequency (11/16), and in particular that of Porphyromonas gingivalis (Pg), the most prevalent pathogen involved in chronic periodontitis, a common form of periodontal disease. Both DNA reflecting the presence of NETs and antibodies to Pg were found to be increased in plasma of patients with AAA. Using a rat model of AAA, we demonstrated that repeated injection of Pg fostered aneurysm development, associated with pathological characteristics similar to those observed in humans, such as the persistence of a neutrophil-rich luminal thrombus, not observed in saline-injected rats in which a healing process was observed. Conclusions Thus, the control of periodontal disease may represent a therapeutic target to limit human AAA progression. PMID:21533243

  16. Subchronic Infection of Porphyromonas gingivalis and Tannerella forsythia Stimulates an Immune Response but Not Arthritis in Experimental Murine Model.

    PubMed

    Hernández-Aguas, Jorday; Montiel-Hernández, José Luis; De La Garza-Ramos, Myriam A; Ruiz-Ramos, Rosa Velia; Escamilla García, Erandi; Guzmán-García, Mario Alberto; Ayón-Haro, Esperanza Raquel; Garza-Elizondo, Mario Alberto

    2017-01-01

    Studies have proposed that Porphyromonas gingivalis (Pg) and Tannerella forsythia (Tf) promote a nonspecific inflammatory response that could produce systemic disease. Oral inoculation of Pg and Tf on the immune and arthritis response was evaluated in BALB/C mice divided into four groups: (1) sham; (2) food contaminated with Pg/Tf; (3) complete Freund's adjuvant (CFA) + Pg/Tf; and (4) CFA alone. CFA was administered subcutaneously on days 1 and 14. The arthritis response was monitored for 21 days after day 14 of CFA administration. IL-1β and IL-6 were determined in serum. T cell activation was evaluated by CD25 in salivary lymph nodes or mouse spleen. Pad inflammation appeared by day 19 in the CFA group, but animals with bacteria inoculation presented a delay. A significant increase in IL-6 was found in Groups 3 and 4, but not with respect to IL-1β. We observed an increase in CD25 in cells derived from cervical nodes and in animals with bacteria inoculation and CFA. A local immune response was observed in mice inoculated with Pg and Tf (T cell activation); a systemic response was observed with CFA. Since pad inflammation was delayed by bacterial inoculation this suggests that local T cell activation could decrease pad inflammation.

  17. Subchronic Infection of Porphyromonas gingivalis and Tannerella forsythia Stimulates an Immune Response but Not Arthritis in Experimental Murine Model

    PubMed Central

    Hernández-Aguas, Jorday; Montiel-Hernández, José Luis; Ruiz-Ramos, Rosa Velia; Escamilla García, Erandi; Guzmán-García, Mario Alberto; Ayón-Haro, Esperanza Raquel; Garza-Elizondo, Mario Alberto

    2017-01-01

    Studies have proposed that Porphyromonas gingivalis (Pg) and Tannerella forsythia (Tf) promote a nonspecific inflammatory response that could produce systemic disease. Oral inoculation of Pg and Tf on the immune and arthritis response was evaluated in BALB/C mice divided into four groups: (1) sham; (2) food contaminated with Pg/Tf; (3) complete Freund's adjuvant (CFA) + Pg/Tf; and (4) CFA alone. CFA was administered subcutaneously on days 1 and 14. The arthritis response was monitored for 21 days after day 14 of CFA administration. IL-1β and IL-6 were determined in serum. T cell activation was evaluated by CD25 in salivary lymph nodes or mouse spleen. Pad inflammation appeared by day 19 in the CFA group, but animals with bacteria inoculation presented a delay. A significant increase in IL-6 was found in Groups 3 and 4, but not with respect to IL-1β. We observed an increase in CD25 in cells derived from cervical nodes and in animals with bacteria inoculation and CFA. A local immune response was observed in mice inoculated with Pg and Tf (T cell activation); a systemic response was observed with CFA. Since pad inflammation was delayed by bacterial inoculation this suggests that local T cell activation could decrease pad inflammation. PMID:28676826

  18. Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells

    PubMed Central

    Khalaf, Hazem; Sirsjö, Allan; Bengtsson, Torbjörn

    2015-01-01

    Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease. PMID:26283334

  19. Baicalin Downregulates Porphyromonas gingivalis Lipopolysaccharide-Upregulated IL-6 and IL-8 Expression in Human Oral Keratinocytes by Negative Regulation of TLR Signaling

    PubMed Central

    Luo, Wei; Wang, Cun-Yu; Jin, Lijian

    2012-01-01

    Periodontal (gum) disease is one of the main global oral health burdens and severe periodontal disease (periodontitis) is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS) is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs). Cells were pre-treated with baicalin (0–80 µM) for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR) signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling. PMID:23239998

  20. Association between anti-Porphyromonas gingivalis or anti-α-enolase antibody and severity of periodontitis or rheumatoid arthritis (RA) disease activity in RA.

    PubMed

    Lee, Joo Youn; Choi, In Ah; Kim, Jin-Hee; Kim, Kyoung-Hwa; Lee, Eun Young; Lee, Eun Bong; Lee, Yong-Moo; Song, Yeong Wook

    2015-08-12

    Periodontitis (PD) has been reported to be associated with rheumatoid arthritis (RA). Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium that is recognized as one of the major pathogenic organisms in PD and is the only bacterium known to express peptidylarginine deiminase (PAD). Antibody against human α-enolase (ENO1) is one of the autoantibodies in RA. ENO1 is a highly conserved protein, and could be a candidate molecule for molecular mimicry between bacterial and human proteins. In the present study, we measured serum antibody against P. gingivalis and human ENO1 in patients with RA and investigated their association with the severity of PD or disease activity of RA. Two hundred, forty-eight patients with RA and 85 age- and sex-matched healthy controls were evaluated by rheumatologic and periodontal examinations. The serum levels of anti-P. gingivalis and anti-ENO1 antibodies were measured by an enzyme-linked immunosorbent assay (ELISA). Patients with RA had significantly higher levels of anti-P. gingivalis and anti-ENO1 antibody titers than the controls (p = 0.002 and 0.0001, respectively). Anti-P. gingivalis antibody titers significantly correlated with anti-ENO1 antibody titers in RA patients (r = 0.30, p < 0.0001). There were significant correlations between anti-P. gingivalis antibody titers and the gingival index (GI), probing pocket depth (PPD), bleeding on probing (BOP) and clinical attachment level (CAL) (p = 0.038, 0.004, 0.004 and 0.002, respectively) in RA. Anti-P. gingivalis antibody titers were not correlated with disease activity score 28 (DAS28) or anti-CCP titer. However, anti-ENO1 antibody titers were significantly correlated not only with the periodontal indices, such as PPD, BOP, and CAL (p = 0.013, 0.023 and 0.017, respectively), but also RA clinical characteristics, such as DAS28, anti-CCP titer, and ESR (p = 0.009, 0.015 and 0.001, respectively). Anti-P. gingivalis and anti-ENO1 antibody

  1. Interleukin-8 and Intercellular Adhesion Molecule 1 Regulation in Oral Epithelial Cells by Selected Periodontal Bacteria: Multiple Effects of Porphyromonas gingivalis via Antagonistic Mechanisms

    PubMed Central

    Huang, George T.-J.; Kim, Daniel; Lee, Jonathan K.-H.; Kuramitsu, Howard K.; Haake, Susan Kinder

    2001-01-01

    Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalis or its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8

  2. Defining essential genes and identifying virulence factors of Porphyromonas gingivalis by massively-parallel sequencing of transposon libraries (Tn-seq)

    PubMed Central

    Klein, Brian A.; Duncan, Margaret J.; Hu, Linden T.

    2016-01-01

    Summary Porphyromonas gingivalis is a keystone pathogen in the development and progression of periodontal disease. Obstacles to the development of saturated transposon libraries have previously limited transposon mutant-based screens as well as essential gene studies. We have developed a system for efficient transposon mutagenesis of P. gingivalis using a modified mariner transposon. Tn-seq is a technique that allows for quantitative assessment of individual mutants within a transposon mutant library by sequencing the transposon-genome junctions and then compiling mutant presence by mapping to a base genome. Using Tn-seq, it is possible to quickly define all the insertional mutants in a library and thus identify non-essential genes under the conditions in which the library was produced. Identification of fitness of individual mutants under specific conditions can be performed by exposing the library to selective pressures. PMID:25636611

  3. Degradation of plasma proteins by the trypsin-like enzyme of Porphyromonas gingivalis and inhibition of protease activity by a serine protease inhibitor of human plasma.

    PubMed

    Fishburn, C S; Slaney, J M; Carman, R J; Curtis, M A

    1991-08-01

    The interaction between Porphyromonas gingivalis culture supernatant and human serum was examined. Hydrolysis of the major serum proteins was thiol-dependent and correlated with the trypsin-like activity of the sample. Transferrin and IgG light chains were less susceptible to degradation than albumin and IgG heavy chains and partially degraded IgG retained antigen-binding capability. Serum inhibited the trypsin-like activity in a fluorimetric assay. The inhibition was shown to be independent of the level of IgG antibody reactive with whole cells of P. gingivalis. Purified preparations of antithrombin III, a serine protease inhibitor, but not alpha 1-antitrypsin nor alpha 2-macroglobulin inhibited the trypsin-like activity in the fluorometric assay.

  4. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    PubMed Central

    Gorasia, Dhana G.; Veith, Paul D.; Hanssen, Eric G.; Glew, Michelle D.; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C.

    2016-01-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  5. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    PubMed

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  6. Prevalence of Porphyromonas gingivalis fimA genotypes in the peri-implant sulcus of Koreans assessed using a new primer

    PubMed Central

    2016-01-01

    Purpose Porphyromonas gingivalis fimA is a virulence factor associated with periodontal diseases, but its role in the pathogenesis of peri-implantitis remains unclear. We aimed to evaluate the relationship between the condition of peri-implant tissue and the distribution of P. gingivalis fimA genotypes in Koreans using a new primer. Methods A total of 248 plaque samples were taken from the peri-implant sulci of 184 subjects. The control group consisted of sound implants with a peri-implant probing depth (PD) of 5 mm or less with no bleeding on probing (BOP). Test group I consisted of implants with a peri-implant PD of 5 mm or less and BOP, and test group II consisted of implants with a peri-implant PD of more than 5 mm and BOP. DNA was extracted from each sample and analyzed a using a polymerase chain reaction (PCR) with P. gingivalis-specific primers, followed by an additional PCR assay to differentiate the fimA genotypes in P. gingivalis-positive subjects. Results The Prevalence of P. gingivalis in each group did not significantly differ (P>0.05). The most predominant fimA genotype in all groups was type II. The prevalence of type Ib fimA was significantly greater in test group II than in the control group (P<0.05). Conclusions The fimA type Ib genotype of P. gingivalis was found to play a critical role in the destruction of peri-implant tissue, suggesting that it may be a distinct risk factor for peri-implantitis. PMID:26937292

  7. Specific Antibodies to Porphyromonas gingivalis Lys-Gingipain by DNA Vaccination Inhibit Bacterial Binding to Hemoglobin and Protect Mice from Infection

    PubMed Central

    Kuboniwa, Masae; Amano, Atsuo; Shizukuishi, Satoshi; Nakagawa, Ichiro; Hamada, Shigeyuki

    2001-01-01

    Lys-gingipain (KGP), a lysine-specific cysteine proteinase, is one of the major virulence factors of Porphyromonas gingivalis. Here we examined the involvement of the catalytic domain of KGP (KGPcd) in hemoglobin binding by P. gingivalis, using a specific immunoglobulin G (IgG) elicited by the administration of plasmid DNA encoding KGPcd or the catalytic domain of Arg-gingipain (RGPcd). The pSeq2A/kgpcd and pSeq2B/rgpcd plasmids were constructed by the ligation of kgpcd and rgpcd DNA fragments, respectively. Female BALB/c mice were immunized with each of these plasmids. pSeq2A/kgpcd elicited a strong response to recombinant KGPcd (rKGPcd), as well as to comparably produced rRGPcd-reactive antibodies. The serum antibodies elicited by pSecTag2B/rgpcd also cross-reacted with rKGPcd as well as rRGPcd. Anti-KGPcd IgG significantly inhibited hemoglobin binding by P. gingivalis. Furthermore, the inhibition of hemoglobin binding was markedly enhanced by a combination of anti-KGPcd and anti-fimbriae. Anti-RGPcd IgG showed a negligible inhibitory effect, while both anti-KGPcd and anti-RGPcd IgGs showed significant inhibitory effects on Lys- and Arg-specific proteolytic activities and on the growth of P. gingivalis under iron-restricted conditions where supplemented hemoglobin was the sole iron source. Immunized mice were challenged by intraperitoneal inoculation with P. gingivalis. All nonimmunized mice died within 72 h; however, vaccination with pSeq2A/kgpcd and pSeq2B/rgpcd prevented inflammatory responses and prolonged the survival rate of immunized mice by 43 and 27%, respectively. These results suggest that KGPcd acts as a hemoglobin-binding protein and can also be useful as an immunogen inducing a protective response to P. gingivalis infection. PMID:11292714

  8. Modulation of stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 in Porphyromonas gingivalis-induced periodontal inflammation.

    PubMed

    Sun, Jiang; Nemoto, Eiji; Hong, Guang; Sasaki, Keiichi

    2016-07-22

    The production of chemokines by tissue resident cells during inflammation is considered one of the main mechanisms involved in the formation of inflammatory infiltrates. Fibroblasts are the main resident cell type in gingival and periodontal ligament tissues, and their ability to produce chemokine stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 under stimulation by gram negative bacteria, Porphyromonas gingivalis, commonly found in periodontal infections was investigated. Western blots were used to assess SDF-1α and CXCR4 protein expression levels in human gingival fibroblast cells (HGF-1) induced by Lipopolysaccharide (LPS) from P. gingivalis in the presence or absence of LY294002, a highly selective inhibitor of PI-3K/Akt. RT-PCR and quantitative Real-time PCR was performed using gingival mRNAs from periodontitis patients. Immunohistochemistry was performed to analyze the expression and subcellular localization of SDF-1α and CXCR4, together with NF-kβ phosphorylation, in specimens from patients with periodontitis and in an experimental rat periodontitis model. We found that P. gingivalis LPS up-regulated SDF-1α and CXCR4 protein levels and elevated phosphorylation of the SDF-1α-responsive NF-kβ and Akt at 24 h in HGF-1 cells. SDF-1α and CXCR4 mRNA and protein expression levels were high in all patients with periodontitis. In the P. gingivalis-induced rat experimental periodontitis model, SDF-1α and CXCR4 immunoreactivity was higher in gingival and periodontal ligament tissues compared to the control. Our data showed that PI-3K/Akt is an upstream participant in the P. gingivalis LPS-mediated induction of SDF-1α. Taken together, these results suggest that the chemokine SDF-1α and its receptor CXCR4 contribute to P. gingivalis-induced periodontal inflammation.

  9. Induction of lethal shock and tolerance by Porphyromonas gingivalis lipopolysaccharide in D-galactosamine-sensitized C3H/HeJ mice.

    PubMed

    Tanamoto, K

    1999-07-01

    Lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis was found to exhibit marked lethal toxicity in galactosamine-sensitized C3H/HeJ mice. Although no lethality was observed in mice intraperitoneally challenged with 1 mg of P. gingivalis LPS without galactosamine, when they were sensitized with 30 mg of galactosamine, challenge with 1 and 10 micrograms of LPS resulted in 67 and 100% lethality, respectively. The lethal dose of LPS was almost the same in LPS-responsive C57BL/6 mice and non-LPS-responsive C3H/HeJ mice. Furthermore, when 1 microgram of P. gingivalis LPS was administered to each mouse 90 min before the challenge with the same LPS with galactosamine, tolerance to the lethal action of LPS was induced, and the mice were completely protected from death, even at a dose 100-fold greater than the lethal dose of LPS. Neither a lethal effect nor induction of tolerance to the lethality of P. gingivalis LPS was exhibited by Salmonella LPS in galactosamine-sensitized C3H/HeJ mice. A protein-LPS complex derived from Pseudomonas aeruginosa, which exhibited strong lethality and induced tolerance to a subsequent challenge with a lethal dose of LPS in galactosamine-sensitized LPS-responsive mice, did not exhibit lethal toxicity in galactosamine-sensitized C3H/HeJ mice and failed to induce tolerance in these mice to the lethality of P. gingivalis LPS. These results indicate that P. gingivalis LPS plays the central role in the activation of non-LPS-responsive C3H/HeJ mice.

  10. Crystallization and preliminary X-ray analysis of the C-terminal fragment of PorM, a subunit of the Porphyromonas gingivalis type IX secretion system

    PubMed Central

    Stathopulos, Julien; Cambillau, Christian; Cascales, Eric; Roussel, Alain; Leone, Philippe

    2015-01-01

    PorM is a membrane protein involved in the assembly of the type IX secretion system (T9SS) from Porphyromonas gingivalis, a major bacterial pathogen responsible for periodontal disease in humans. The periplasmic domain of PorM was overexpressed in Escherichia coli and purified. A fragment of the purified protein was obtained by limited proteolysis. Crystals of this fragment belonged to the tetragonal space group P43212. Native and MAD data sets were recorded to 2.85 and 3.1 Å resolution, respectively, using synchrotron radiation. PMID:25615973

  11. HmuY is an important virulence factor for Porphyromonas gingivalis growth in the heme-limited host environment and infection of macrophages.

    PubMed

    Olczak, Teresa; Sosicka, Paulina; Olczak, Mariusz

    2015-11-27

    Porphyromonas gingivalis, the main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis, is a haem auxotroph, and the uptake of this compound is essential for its survival and the ability to establish an infection. The aim of this study was to examine the role of a hemophore-like HmuY protein in P. gingivalis growth and infection of macrophages. Inactivation of the hmuY gene caused reduced P. gingivalis growth in vitro in the presence of serum as a heme sole source, as well as in vivo co-cultures with THP-1-derived macrophages. This resulted in diminished invasion efficiency of macrophages by live bacteria lacking functional hmuY gene. Both features were partially restored after addition of the purified HmuY protein, which was internalized when added either together with the hmuY mutant strain or alone to macrophage cultures. We conclude that HmuY is an important virulence factor of P. gingivalis for infection of macrophages in a heme-limited host environment.

  12. The Capsule of Porphyromonas gingivalis Leads to a Reduction in the Host Inflammatory Response, Evasion of Phagocytosis, and Increase in Virulence ▿ †

    PubMed Central

    Singh, Amrita; Wyant, Tiana; Anaya-Bergman, Cecilia; Aduse-Opoku, Joseph; Brunner, Jorg; Laine, Marja L.; Curtis, Michael A.; Lewis, Janina P.

    2011-01-01

    Periodontal disease is a chronic oral inflammatory disease that is triggered by bacteria such as Porphyromonas gingivalis. P. gingivalis strains exhibit great heterogeneity, with some strains being encapsulated while others are nonencapsulated. Although the encapsulated strains have been shown to be more virulent in a mouse abscess model, so far the role of the capsule in P. gingivalis interactions with host cells is not well understood and its role in virulence has not been defined. Here, we investigated the contribution of the capsule to triggering a host response following microbial infection, as well as its protective role following bacterial internalization by host phagocytic cells with subsequent killing, using the encapsulated P. gingivalis strain W50 and its isogenic nonencapsulated mutant, PgC. Our study shows significant time-dependent upregulation of the expression of various groups of genes in macrophages challenged with both the encapsulated and nonencapsulated P. gingivalis strains. However, cells infected with the nonencapsulated strain showed significantly higher upregulation of 9 and 29 genes at 1 h and 8 h postinfection, respectively, than cells infected with the encapsulated strain. Among the genes highly upregulated by the nonencapsulated PgC strain were ones coding for cytokines and chemokines. Maturation markers were induced at a 2-fold higher rate in dendritic cells challenged with the nonencapsulated strain for 4 h than in dendritic cells challenged with the encapsulated strain. The rates of phagocytosis of the nonencapsulated P. gingivalis strain by both macrophages and dendritic cells were 4.5-fold and 7-fold higher, respectively, than the rates of phagocytosis of the encapsulated strain. On the contrary, the survival of the nonencapsulated P. gingivalis strain was drastically reduced compared to the survival of the encapsulated strain. Finally, the encapsulated strain exhibited greater virulence in a mouse abscess model. Our results

  13. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis.

    PubMed

    Jayaprakash, K; Demirel, I; Khalaf, H; Bengtsson, T

    2015-10-01

    Neutrophils are regarded as the sentinel cells of innate immunity and are found in abundance within the gingival crevice. Discovery of neutrophil extracellular traps (NETs) within the gingival pockets prompted us to probe the nature of the interactions of neutrophils with the prominent periopathogen Porphyromonas gingivalis. Some of the noted virulence factors of this Gram-negative anaerobe are gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). The aim of this study was to evaluate the role of gingipains in phagocytosis, formation of reactive oxygen species, NETs and CXCL8 modulation by using wild-type strains and isogenic gingipain mutants. Confocal imaging showed that gingipain mutants K1A (Kgp) and E8 (RgpA/B) induced extracellular traps in neutrophils, whereas ATCC33277 and W50 were phagocytosed. The viability of both ATCC33277 and W50 dwindled as the result of phagocytosis and could be salvaged by cytochalasin D, and the bacteria released high levels of lipopolysaccharide in the culture supernatant. Porphyromonas gingivalis induced reactive oxygen species and CXCL8 with the most prominent effect being that of the wild-type strain ATCC33277, whereas the other wild-type strain W50 was less effective. Quantitative real-time polymerase chain reaction revealed a significant CXCL8 expression by E8. All the tested P. gingivalis strains increased cytosolic free calcium. In conclusion, phagocytosis is the primary neutrophil response to P. gingivalis, although NETs could play an accessory role in infection control. Although gingipains do not seem to directly regulate phagocytosis, NETs or oxidative burst in neutrophils, their proteolytic properties could modulate the subsequent outcomes such as nutrition acquisition and survival by the bacteria.

  14. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    PubMed

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of Porphyromonas gingivalis peptidylarginine deiminase.

    PubMed

    Zhao, Chenxiao; Ling, Baoping; Dong, Lihua; Liu, Yongjun

    2017-08-01

    Porphyromonas gingivalis peptidylarginine deiminase (PPAD) catalyzes the citrullination of peptidylarginine, which plays a critical role in the rheumatoid arthritis (RA) and gene regulation. For a better understanding of citrullination mechanism of PPAD, it is required to establish the protonation states of active site cysteine, which is still a controversial issue for the members of guanidino-group-modifying enzyme superfamily. In this work, we first explored the transformation between the two states: State N (both C351 and H236 are neutral) and State I (both residues exist as a thiolate-imidazolium ion pair), and then investigated the citrullination reaction of peptidylarginine, using a combined QM/MM approach. State N is calculated to be more stable than State I by 8.46 kcal/mol, and State N can transform to State I via two steps of substrate-assisted proton transfer. Citrullination of the peptidylarginine contains deamination and hydrolysis. Starting from State N, the deamination reaction corresponds to an energy barrier of 18.82 kcal/mol. The deprotonated C351 initiates the nucleophilic attack to the substrate, which is the key step for deamination reaction. The hydrolysis reaction contains two chemical steps. Both the deprotonated D238 and H236 can act as the bases to activate the hydrolytic water, which correspond to similar energy barriers (∼17 kcal/mol). On the basis of our calculations, C351, D238, and H236 constitute a catalytic triad, and their protonation states are critical for both the deamination and hydrolysis processes. In view of the sequence similarity, these findings may be shared with human PAD1-PAD4 and other guanidino-group-modifying enzymes. Proteins 2017; 85:1518-1528. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Biochemical characterization of the arginine-specific proteases of Porphyromonas gingivalis W50 suggests a common precursor.

    PubMed Central

    Rangarajan, M; Smith, S J; U, S; Curtis, M A

    1997-01-01

    Extracellular proteases of Porphyromonas gingivalis specific for arginyl peptide bonds are considered to be important virulence factors in periodontal disease. In order to determine the number, inter-relationship and kinetic properties of these proteases, extracellular enzymes with this peptide-bond specificity were purified and characterized from P. gingivalis W50. Three forms, which we denote RI, RI-A and RI-B, accounted for all of the activity in the supernatant. All three enzymes contain an alpha chain of approximately 54 kDa with the same N-terminal amino acid sequence. RI is a heterodimer of non-covalently linked alpha and beta chains which migrate to the same position on SDS/PAGE but which can be resolved by 8 M urea/PAGE. RI-A and RI-B are both monomeric, but the molecular mass of RI-B (70-80 kDa) is significantly increased due to post-translational modification with lipopolysaccharide. All forms show absolute specificity for peptide bonds with Arg in the P1 position and are also capable of hydrolysing N-terminal Arg and C-terminal Arg-Arg peptide bonds. Thus they show limited amino- and carboxy-peptidase activity. For the hydrolysis of Nalpha-benzoyl-L-Arg-p-nitroanilide, the pH optimum is 8.0 at 30 degrees C. The Vmax for all three enzymes is controlled by ionization of two residues with apparent pKas at 30 degrees C of 6. 5+/-0.05 and 9.7+/-0.05, and DeltaH values of approximately 29 kJ/mol and approximately 24 kJ/mol in the enzyme-substrate complex. By analogy with papain, the pKa of 6.5 could be ascribed to a Cys and the pKa of 9.7 to a His residue. E-64 [L-trans-epoxysuccinyl-leucylamide-4-(4-guanidino)butane] is a competitive inhibitor of RI, RI-A and RI-B. Based on physical properties and kinetic behaviour, RI-A appears to be analogous to gingipain from P. gingivalis HG66. However the alpha/beta structure of RI differs significantly from that of the high-molecular-mass multimeric complex of gingipain containing four haemagglutinins described by

  17. Anti-inflammatory effect of (-)-epigallocatechin-3-gallate on Porphyromonas gingivalis lipopolysaccharide-stimulated fibroblasts and stem cells derived from human periodontal ligament

    PubMed Central

    Jung, Im-Hee; Lee, Dong-Eun; Yun, Jeong-Ho; Cho, Ah-Ran; Kim, Chang-Sung; You, Yoon-Jeong; Kim, Sung-Jo

    2012-01-01

    Purpose (-)-epigallocatechin-3-gallate (EGCG) has been reported to exert anti-inflammatory and antibacterial effects in periodontitis. However, its exact mechanism of action has yet to be determined. The present in vitro study evaluated the anti-inflammatory effects of EGCG on human periodontal ligament fibroblasts (hPDLFs) and human periodontal ligament stem cells (hPDLSCs) affected by bacterial lipopolysaccharide (LPS) extracted from Porphyromonas gingivalis. Methods hPDLFs and hPDLSCs were extracted from healthy young adults and were treated with EGCG and/or P. gingivalis LPS. After 1, 3, 5, and 7 days from treatment, cytotoxic and proliferative effects were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine assay, respectively. And then, the gene expressions of hPDLFs and hPDLSCs were observed for interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and RANKL/OPG using real-time polymerase chain reaction (PCR) at 0, 6, 24, and 48 hours after treatment. The experiments were performed with the following groups for hPDLFs and hPDLSCs; 1) No treat, 2) EGCG alone, 3) P. gingivalis LPS alone, 4) EGCG+P. gingivalis LPS. Results The 20 µM of EGCG and 20 µg/mL of P. gingivalis LPS had the lowest cytotoxic effects, so those concentrations were used for further experiments. The proliferations of hPDLFs and hPDLSCs increased in all groups, though the 'EGCG alone' showed less increase. In real-time PCR, the hPDLFs and hPDLSCs of 'EGCG alone' showed similar gene expressions to those cells of 'no treat'. The gene expressions of 'P. gingivalis LPS alone' in both hPDLFs and hPDLSCs were highly increased at 6 hours for IL-1β, IL-6, TNF-α, RANKL, and RANKL/OPG, except the RANKL/OPG in hPDLSCs. However, those increased gene expressions were down-regulated in 'EGCG+P. gingivalis LPS' by the additional treatment of EGCG. Conclusions

  18. Relationship between quantitative measurement of Porphyromonas gingivalis on dental plaque with periodontal status of patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Dwiyanti, Stephani; Soeroso, Yuniarti; Sunarto, Hari; Radi, Basuni

    2017-02-01

    Coronary heart disease is a narrowing of coronary artery due to plaque build-up. [1] Chronic periodontitis increases risk of cardiovascular disease. P.gingivalis is linked to both diseases. Objective: to analyse quantitative difference of P.gingivalis on dental plaque and its relationship with periodontal status of CHD patient and control. Methods: Periodontal status of 66 CHD patient and 40 control was checked. Subgingival plaque was isolated and P.gingivalis was measured using real-time PCR. Result: P.gingivalis of CHD patient differs from control. P.gingivalis is linked to pocket depth of CHD patient. Conclusion: P.gingivalis count of CHD patient is higher than control. P.gingivalis count is not linked to any periodontal status, except for pocket depth of CHD patient.

  19. Blue LED inhibits the growth of Porphyromonas gingivalis by suppressing the expression of genes associated with DNA replication and cell division.

    PubMed

    Chui, Chanthoeun; Hiratsuka, Koichi; Aoki, Akira; Takeuchi, Yasuo; Abiko, Yoshimitsu; Izumi, Yuichi

    2012-12-01

    Blue light has been employed or investigated in both the medical and dental fields. Many studies have so far been reported a bactericidal effect of blue light emitting diodes (LED). However, it is still unclear whether exposure to blue LED kills or inhibits the growth of bacteria. We therefore investigated the effect of blue LED irradiation on the growth of Porphyromonas gingivalis compared with the effects of red LED. P. gingivalis cell suspensions were irradiated with blue or red LED (135 J/cm2) anaerobically, incubated for various lengths of time, and then the total RNAs were isolated. The RNA degradation and gene expression levels of stress-related proteins in blue or red LED-irradiated samples were examined using the RNA integrity number (RIN) and RT-PCR, respectively. Quantitative RT-PCR was done to investigate the gene expression profiles associated with chromosome replication and cell division. Exposure to blue LED delayed the growth of P. gingivalis, while red LED did not. The RIN value indicated no RNA degradation in either the blue or red LED-irradiated samples. In addition, the gene expression levels of stress-related molecules remained either constant or increased 15 minutes after the blue LED irradiation compared to that before irradiation, thus suggesting that blue LED may not kill P. gingivalis cells. However, the blue LED irradiation did lead to a remarkably decreased expression of genes associated with chromosomal DNA replication and cell division after 5 minutes; exposure to the red LED did not. The inhibition of the growth of P. gingivalis by blue LED may therefore be induced not by a bactericidal effect, but instead due to a bacteriostatic effect mediated by the suppression of the genes associated with chromosomal DNA replication and cell division at the transcriptional level. Copyright © 2012 Wiley Periodicals, Inc.

  20. Role of gallium and silver from phosphate-based glasses on in vitro dual species oral biofilm models of Porphyromonas gingivalis and Streptococcus gordonii.

    PubMed

    Valappil, Sabeel P; Coombes, Marc; Wright, Lucy; Owens, Gareth J; Lynch, Richard J M; Hope, Christopher K; Higham, Susan M

    2012-05-01

    Phosphate-based glasses (PBGs) are excellent controlled delivery agents for antibacterial ions such as silver and gallium. The aim of this study was to assess the potential utility of novel PBGs combining both gallium and silver for use in periodontal therapy. To this end, an in vitro biofilm model with the putative periodontal pathogen, Porphyromonas gingivalis, and an initial colonizer, Streptococcus gordonii, was established. The effect of increasing calcium content in gallium-silver-doped PBG on the susceptibility of P. gingivalis was examined. A decrease in degradation rates (30.34, 25.19, 21.40 μg mm(-2) h(-1)) with increasing PBG calciumcontent (10, 11, 12 mol.% respectively) was observed, correlating well with gallium and silver ion release and antimicrobial activity against planktonic P. gingivalis (approximately 5.4log(10) colony-forming units (CFU) reduction after 24h by the C10 glass compared with controls) and S. gordonii (total growth inhibition after 32h by C10, C11 and C12 glasses compared with controls). The most potent PBG (C10) was evaluated for its ability to inhibit the biofilm growth of P. gingivalis in a newly established constant-depth film fermentor model. The simultaneous release of silver and gallium from the glass reduced P. gingivalis biofilm growth with a maximum effect (1.92log(10) CFU reduction) after 168 h. Given the emergence of antibiotic-resistant bacteria and dearth of new antibiotics in development, the glasses, especially C10, would offer effective alternatives to antibiotics or may complement current therapies through controlled, localized delivery of gallium and silver ions at infected sites in the oral cavity. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Lethal effect of blue light-activated hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on the viability of Porphyromonas gingivalis and Fusobacterium nucleatum

    PubMed Central

    Habiboallh, Ghanbari; Mahbobeh, Naderi Nasab; Mina, Zareian Jahromi; Majid, Zakeri; Nooshin, Arjmand

    2015-01-01

    Objectives: Recently, photodynamic therapy (PDT) has been introduced as a new modality in oral bacterial decontamination. Current research aims to evaluate the effect of photodynamic killing of visible blue light in the presence of hydrogen peroxide, curcumin and erythrosine as potential oral photosensitizers on Porphyromonas gingivalis associated with periodontal bone loss and Fusobacterium nucleatum associated with soft tissue inflammation. Materials and methods: Standard suspension of P. gingivalis and F. nucleatum were exposed to Light Emitting Diode (LED) (440–480 nm) in combination with erythrosine (22 µm), curcumin (60 µM) and hydrogen peroxide (0.3 mM) for 5 min. Bacterial samples from each treatment groups (radiation-only group, photosensitizer-only group and blue light-activated photosensitizer group) were subcultured onto the surface of agar plates. Survival of these bacteria was determined by counting the number of colony forming units (CFU) after incubation. Results: Results for antibacterial assays on P. gingivalis confirmed that curcumin, Hydrogen peroxide and erythrosine alone exerted a moderate bactericidal effect which enhanced noticeably in conjugation with visible light. The survival rate of P. gingivalis reached zero present when the suspension exposed to blue light-activated curcumin and hydrogen peroxide for 2 min. Besides, curcumin exerted a remarkable antibacterial activity against F. nucleatum in comparison with erythrosine and hydrogen peroxide (P=0.00). Furthermore, the bactericidal effect of visible light alone on P. gingivalis as black-pigmented bacteria was significant. Conclusion: Our result suggested that visible blue light in the presence of erythrosine, curcumin and hydrogen peroxide would be consider as a potential approach of PDT to kill the main gramnegative periodontal pathogens. From a clinical standpoint, this regimen could be established as an additional minimally invasive antibacterial treatment of plaque induced

  2. Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis.

    PubMed

    Turunen, S Pauliina; Kummu, Outi; Wang, Chunguang; Harila, Kirsi; Mattila, Riikka; Sahlman, Marjo; Pussinen, Pirkko J; Hörkkö, Sohvi

    2015-05-01

    Periodontal infections increase the risk of atherosclerotic vascular disease via partly unresolved mechanisms. Of the natural IgM Abs that recognize molecular mimicry on bacterial epitopes and modified lipid and protein structures, IgM directed against oxidized low-density lipoprotein (LDL) is associated with atheroprotective properties. Here, the effect of natural immune responses to malondialdehyde-modified LDL (MDA-LDL) in conferring protection against atherosclerosis, which was accelerated by the major periodontopathogen Porphyromonas gingivalis, was investigated. LDL receptor-deficient (LDLR(-/-)) mice were immunized with mouse MDA-L