Science.gov

Sample records for porphyry copper-gold deposit

  1. Reduced porphyry copper-gold deposits: A new variation on an old theme

    NASA Astrophysics Data System (ADS)

    Rowins, Stephen M.

    2000-06-01

    It is a widely accepted fact that porphyry Cu-Au deposits form from highly oxidized ore fluids. Despite this assertion, several otherwise typical porphyry Cu-Au deposits exhibit clear evidence of having formed from relatively reduced ore fluids. These “reduced” porphyry Cu-Au deposits lack primary hematite, magnetite, and sulfate minerals (i.e., anhydrite), but contain abundant hypogene pyrrhotite, commonly have carbonic-rich ore fluids with substantial CH4, and are associated with ilmenite-bearing, reduced I-type granitoids. Based on a synthesis of theoretical, experimental, and field data, a variation on the classic porphyry Cu model is proposed to explain the formation of reduced porphyry Cu-Au deposits and their relatively Cu-poor but Au-rich nature. The proposed reduced porphyry Cu-Au model does not contradict the current understanding of porphyry Cu-Au formation. Rather, it adds yet another variation on the theme of porphyry Cu-Au genesis.

  2. Platinum-group minerals in the Santo Tomas II (Philex) porphyry copper-gold deposit, Luzon Island, Philippines

    NASA Astrophysics Data System (ADS)

    Tarkian, M.; Koopmann, G.

    1995-02-01

    Mineralized quartz diorites of the Santo Tomas II porphyry copper-gold deposit, carry high Au contents (average: 1.8 ppm) as well as 160 ppb Pd and 38 ppb Pt. Values of other platinum-group elements (PGE) and rhenium are below the analytical detection limits. There is a significant positive correlation between Au and Cu. The highest Pd values were detected in the most Au- and Cu-rich rocks. Platinum-group minerals (PGM) occur exclusively as inclusions in chalcopyrite and bornite. Potential Pd and Pt contents in sulphide concentrates are estimated at 1.5 g/t and 0.4 g/t, respectively. The precious metal assemblages consist of merenskyite (main PGM), kotulskite, moncheite, native gold, electrum, hessite and petzite. Polyphase fluid inclusions in quartz veinlets, associated with a PGM-bearing bornite-chalcopyrite-magnetite assemblage, are characterized by high salinity (35 to > 60 eq. wt% NaCl) and high trapping temperatures (between 380 and 520 °C). They may represent primary magmatic-hydrothermal fluids, which have been responsible for the transport of Pd, Pt and Au as chloride complexes.

  3. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (<10 vol.% vapor) and co-existing low-salinity aqueous vapor (<20 vol.% liquid) inclusions. Results indicate that vapor inclusions have higher concentrations of Cu (typically 1000's of ppm; max. 7277 ppm) compared to brine inclusions (typically 100's of ppm). Brine inclusions also are much higher in Cl (Na), K, Ca, Mn, Zn, and Fe. Only Pb concentrations approach those in the vapor. Metal ratios such as Cu/Fe and Cu/Zn are 2 to 167 times higher in the vapor compared with the brine inclusions. Cu/Pb ratios are 2 to 15 times higher in the vapor than in the brine. PIXE microanalysis for the ~617 Ma 17 Mile Hill deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (<10 vol.%) bubble of carbonic fluid, and adjacent "carbonic" inclusions, which have a thin rim of aqueous liquid (<10 vol.%) wetting the

  4. Tectonic setting of the pebble and other copper-gold-molybdenum porphyry deposits within the evolving middle cretaceous continental margin of Northwestern North America

    USGS Publications Warehouse

    Goldfarb, Richard J.; Anderson, Eric; Hart, Craig J.R.

    2013-01-01

    The Pebble Cu-Au-Mo deposit in southwestern Alaska, containing the largest gold resource of any known porphyry in the world, developed in a tectonic setting significantly different from that of the present-day. It is one of a series of metalliferous middle Cretaceous porphyritic granodiorite, quartz monzonite, and diorite bodies, evolved from lower crust and metasomatized lithospheric mantle melts, which formed along much of the length of the North American craton suture with the Peninsular-Alexander-Wrangellia arc. The porphyry deposits were emplaced within the northernmost two of a series of ca. 130 to 80 Ma flysch basins that define the suture, as well as into arc rocks immediately seaward of the two basins. Deposits include the ca. 100 to 90 Ma Pebble, Neacola, and other porphyry prospects along the Kahiltna basin-Peninsula terrane boundary, and the ca. 115 to 105 Ma Baultoff, Carl Creek, Horsfeld, Orange Hill, Bond Creek, and Chisna porphyries along the Nutzotin basin-Wrangellia terrane boundary.The porphyry deposits probably formed along the craton margin more than 1,000 km to the south of their present latitude. Palinspastic reconstructions of plate kinematics from this period are particularly difficult because magmatism overlaps the 119 to 83 Ma Cretaceous Normal Superchron, a period when sea-floor magnetic data are lacking. Our favored scenario is that ore formation broadly overlaps the cessation of sedimentation and contraction and the transition to a transpressional continental margin regime, such that the remnant ocean basins were converted to strike-slip basins. The basins and outboard Peninsular-Alexander-Wrangellia composite superterrane, which are all located seaward of the deep crustal Denali-Farewell fault system, were subjected to northerly dextral transpression for as long as perhaps 50 m.y., beginning at ca. 95 ± 10 Ma. The onset of this transpression was marked by development of the mineralized bodies along fault segments on the seaward side

  5. Ultra-deep oxidation and exotic copper formation at the late pliocene boyongan and bayugo porphyry copper-gold deposits, surigao, philippines: Geology, mineralogy, paleoaltimetry, and their implications for Geologic, physiographic, and tectonic controls

    USGS Publications Warehouse

    Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Rye, R.O.; Waters, P.J.

    2009-01-01

    The Boyongan and Bayugo porphyry copper-gold deposits are part of an emerging belt of intrusion-centered gold-rich deposits in the Surigao district of northeast Mindanao, Philippines. Exhumation and weathering of these Late Pliocene-age deposits has led to the development of the world's deepest known porphyry oxidation profile at Boyongan (600 m), and yet only a modest (30-70 m) oxidation profile at adjacent Bayugo. Debris flows, volcanic rocks, and fluviolacustrine sediments accumulating in the actively extending Mainit graben subsequently covered the deposits and preserved the supergene profiles. At Boyongan and Bayugo, there is a vertical transition from shallower supergene copper oxide minerals (malachite + azurite + cuprite) to deeper sulfide-stable assemblages (chalcocite ?? hypogene sulfides). This transition provides a time-integrated proxy for the position of the water table at the base of the saturated zone during supergene oxidation. Contours of the elevation of the paleopotentiometric surface based on this min- eralogical transition show that the thickest portions of the unsaturated zone coincided with a silt-sand matrix diatreme breccia complex at Boyongan. Within the breccia complex, the thickness of the unsaturated zone approached 600 in, whereas outside the breccia complex (e.g., at Bayugo), the thickness averaged 50 m. Contours of the paleopotentiometric surface suggest that during weathering, groundwater flowed into the breccia complex from the north, south, and east, and exited along a high permeability zone to the west. The high relief (>550 m) on the elevation of the paleopotentiometric surface is consistent with an environment of high topographic relief, and the outflow zone to the west of the breccia complex probably reflects proximity to a steep scarp intersecting the western breccia complex margin. Stable isotope paleoaltimetry has enabled estimation of the elevation of the land surface, which further constrains the physiographic setting

  6. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    NASA Astrophysics Data System (ADS)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2016-08-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  7. Melt inclusions in veins: linking magmas and porphyry Cu deposits.

    PubMed

    Harris, Anthony C; Kamenetsky, Vadim S; White, Noel C; van Achterbergh, Esmé; Ryan, Chris G

    2003-12-19

    At a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.5 wt %, respectively. These unusually copper-rich inclusions are considered to be the most primitive ore fluid found thus far. Their preservation with coexisting melt allows for the direct quantification of important oreforming processes, including determination of bulk partition coefficients of metals from magma into ore-forming magmatic volatile phases. PMID:14684818

  8. Evaluating the Metal Source(s) of Iron Oxide-Copper-Gold (IOCG) Deposits (Invited)

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Bilenker, L.; Lundstrom, C.; Reich, M.; Barra, F.; Hanchar, J. M.; Westhues, A.

    2013-12-01

    Iron oxide - copper - gold deposits (IOCG) are characterized by high modal abundances of magnetite and/or hematite, ubiquitous and variable grades of Cu and Au, and, often, economic grades of other metals including REE, U, Ag, Mo and Zn. The largest deposits contain >1 billion tonnes of iron. There seems to be a general consensus that metals in IOCG deposits were transported by, and precipitated from, aqueous fluids. However, there is a lack of agreement for the source of the metal-bearing aqueous fluid(s) as well as the source of iron and other metals (i.e., magmatic or hydrothermal, or some combination of the two). Published fluid inclusion data indicate that metal-bearing aqueous fluids were trapped over a wide range of temperatures, with homogenization temperatures between 500 and 600 °C for inclusions associated with the precipitation of iron-oxide minerals, and between 300 and 500 °C for inclusions associated with main-stage sulfides (e.g., chalcopyrite, pyrite). The high trapping temperatures for fluid inclusions and the observation that some IOCG deposits appear to be related temporally and spatially to igneous intrusions, characteristics similar to those observed for porphyry-type ore deposits, have led some authors to propose that magmatic-hydrothermal aqueous fluids are responsible for IOCG formation. Others, however, favor a genetic model that invokes large-scale circulation of basinal brines, which are heated by magmatic intrusions and subsequently leach Fe and other metals from the crust. Evidence cited for this model includes the pervasive alkali metasomatism associated with some IOCG deposits, and the depletion of Fe, Cu and Au in some deposit wall rocks. Stable isotope evidence thus far is inconclusive. Published d34S values for IOCG deposits range from -30 to +30, but generally cluster around zero per mil. d18O ranges from ~0 to +10 per mil. Chlorine isotope values for fluids in inclusions liberated from quartz, calcite and apatite are

  9. Sulfide mineral paragenesis at the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi, South Mongolia

    NASA Astrophysics Data System (ADS)

    Sanjaa, M.; Fujimaki, H.

    2008-12-01

    Mineralogical studies of ore minerals have been conducted for the Hugo Dummett porphyry copper deposit. The Hugo Dummett porphyry copper gold deposit is located in the South Gobi region, Mongolia and currently being explored. This deposit divided into the Cu-rich South Hugo Dummett and the Cu-Au-rich North Hugo Dummett deposits. The Hugo Dummett deposits contain 1.08% copper (1.16 billion tonnes in total) and 0.23 g/t gold. Copper-gold mineralizations at this deposit are centered on a high-grade copper (typically > 2.5%) and gold (0.5-2 g/t) zone of intense quartz stockwork veining. The high grade copper and gold zone is mainly within the Late Devonian quartz monzodiorite intrusions and augite basalt, also locally occurs in dacitic rocks. Intense quartz veining forms a lens up to 100 m wide hosted by augite basalt and partly by quartz monzodiorite. Although many explorations have been carried out, but only a few scientific works were done in the Oyu Tolgoi mining area. Therefore the nature of copper-gold mineralization and orgin of the deposit is not fully understood. North Hugo Dummett and South Hugo Dummett porphyry copper-gold deposits are characterized by three mineralized stages based on our study: (1) early stage (2) middle stage and (3) late stage. The main copper- gold mineralization occurs in the early and middle stages, which is related to the quartz monzodiorite and dacitic rocks. Pyrite, chalcopyrite and bornite were continuously crystallized from early to late stage. The early stage of pyrite, chalcopyrite, bornite, molybdenite and sphalerite were replaced by middle stage of minerals. The middle stage minerals are sphalerite, tennantite, tetrahedrite, chalcocite, covellite, eugenite, galena, electrum, and gold, those are dominantly occur in the quartz monzodiorite. Additional pyrite, bornite and chalcopyrite were also deposited during this stage. In the late stage, pyrite, chalcopyrite and bornite are dominantly occurs as veins, veinlets and fracture

  10. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  11. Preliminary Model of Porphyry Copper Deposits

    USGS Publications Warehouse

    Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R., II

    2008-01-01

    The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.

  12. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  13. Porphyry deposits of the Canadian Cordillera

    USGS Publications Warehouse

    McMillan, W.J.; Thompson, J.F.H.; Hart, C.J.R.; Johnston, S.T.

    1996-01-01

    Porphyry deposits are intrusion-related, large tonnage low grade mineral deposits with metal assemblages that may include all or some of copper, molybdenum, gold and silver. The genesis of these deposits is related to the emplacement of intermediate to felsic, hypabyssal, generally porphyritic intrusions that are commonly formed at convergent plate margins. Porphyry deposits of the Canadian Cordillera occur in association with two distinctive intrusive suites: calc-alkalic and alkalic. In the Canadian Cordillera, these deposits formed during two separate time periods: Late Triassic to Middle Jurassic (early Mesozoic), and Late Cretaceous to Eocene (Mesozoic-Cenozoic). Deposits of the early Mesozoic period occur in at least three different arc terranes (Wrangellia, Stikinia and Quesnellia) with a single deposit occurring in the oceanic assemblage of the Cache Creek terrane. These terranes were located outboard from continental North America during formation of most of their contained early Mesozoic porphyry deposits. Some of the deposits of this early period may have been emplaced during terrane collisions. Metal assemblages in deposits of the calc-alkalic suite include Mo-Cu (Brenda), Cu-Mo (Highland Valley, Gibraltar), Cu-Mo-Au-Ag (Island Copper, Schaft Creek) and Cu-Au (Kemess, Kerr).The alkalic suite deposits are characterized by a Cu-Au assemblage (Copper Mountain, Afton-Ajax, Mt. Milligan, Mount Polley, Galore Creek). Although silver is recovered from calc-alkalic and alkalic porphyry copper mining operations, silver data are seldom included in the published reserve figures. Those available are in the range of 1-2 grams per tonne (g??t-1). Alkalic suite deposits are restricted to the early Mesozoic and display distinctive petrology, alteration and mineralization that suggest a similar tectonic setting for both Quesnellia and Stikinia in Early Jurassic time. The younger deposits, late Mesozoic to Cenozoic in age, formed in an intracontinental setting, after the

  14. Climax-Type Porphyry Molybdenum Deposits

    USGS Publications Warehouse

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  15. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  16. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia

    NASA Astrophysics Data System (ADS)

    Ismail, Roniza; Ciobanu, Cristiana L.; Cook, Nigel J.; Teale, Graham S.; Giles, David; Mumm, Andreas Schmidt; Wade, Benjamin

    2014-01-01

    The Hillside Cu-(Au) deposit, Yorke Peninsula, South Australia, is a recently-discovered ore system within the 1.6 Ga World-class Olympic iron oxide-copper-gold (IOCG) Province. The deposit is characterized by a skarn-style alteration zone. Analyses of feldspar, calcite, skarn minerals (garnet, pyroxene, clinozoisite and actinolite) and accessories (titanite, apatite and allanite), and grain-scale element mapping by laser-ablation inductively-coupled plasma mass spectrometry are used to assess the distributions of rare earth element (REE), incompatible and ore-forming elements in host rocks, prograde and retrograde skarn.

  17. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  18. Geochemical Data for Samples Collected in 2008 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    USGS Publications Warehouse

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2009-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molybdenum deposit. This report presents the analytical data collected in 2008. The Pebble deposit is world class in size, and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic rocks. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, is relatively undisturbed (except for exploration company drill holes), is a large mineral system, and is fairly well-constrained at depth by the drill hole geology and geochemistry. The goals of this study are to 1) determine whether the concealed deposit can be detected with surface samples, 2) better understand the processes of metal migration from the deposit to the surface, and 3) test and develop methods for assessing mineral resources in similar concealed terrains. The analytical data are presented as an integrated Microsoft Access 2003 database and as separate Excel files.

  19. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery. [copper/molybdenum porphyrys

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Three major tectonic provinces have been mapped by geologic photointerpretation of ERTS-1 imagery over the Ok Tedi test site. These areas can be characterized as follows: (1) A broad area of low relief and mature topography suggesting a history of relative tectonic stability. (2) A narrow belt of moderate to high relief, broad open folds and prominent linear features. The Mount Fubilan-type porphyry copper deposits and recent volcanic effusive centers occur in this province. (3) A heterogeneous zone of high relief and high drainage density suggestive of relative structural complexity.

  20. Sulfur isotopic zonation in the Cadia district, southeastern Australia: exploration significance and implications for the genesis of alkalic porphyry gold-copper deposits

    NASA Astrophysics Data System (ADS)

    Wilson, Alan J.; Cooke, David R.; Harper, Benjamin J.; Deyell, Cari L.

    2007-06-01

    The alkalic porphyry gold-copper deposits of the Cadia district occur in the eastern Lachlan Fold Belt of New South Wales, Australia. The district comprises four porphyry deposits (Ridgeway, Cadia Quarry, Cadia Hill, and Cadia East) and two iron-copper-gold skarn deposits (Big Cadia and Little Cadia). Almost 1,000 tonnes of contained gold and more than four million tonnes of copper have been discovered in these systems, making Cadia the world’s largest known alkalic porphyry district, in terms of contained gold. Porphyry gold-copper ore at Cadia is associated with quartz monzonite intrusive complexes, and is hosted by central stockwork and sheeted quartz-sulfide-(carbonate) vein systems. The Cadia porphyry deposits are characterized by cores of potassic and/or calc-potassic alteration assemblages, and peripheral halos of propylitic alteration, with late-stage phyllic alteration mostly restricted to fault zones. Hematite dusting is an important component of the propylitic alteration assemblage, and has produced a distinctive reddening of feldspar minerals in the volcanic wall rocks around the mineralized centers. Sulfide mineralization is strongly zoned at Ridgeway and Cadia East, with bornite-rich cores surrounded by chalcopyrite-rich halos and peripheral zones of pyrite mineralization. The Cadia Hill and Cadia Quarry deposits have chalcopyrite-rich cores and pyrite-rich halos, and Cadia Hill contains a high-level bornite-rich zone. Distinctive sulfur isotopic zonation patterns have been identified at Ridgeway, Cadia Hill, and Cadia East. The deposit cores are characterized by low δ34Ssulfide values (-10 to -4‰), consistent with sulfide precipitation from an oxidized (sulfate-predominant) magmatic fluid at 450 to 400°C. Pyrite grains that occur in the propylitic alteration halos typically have δ34Ssulfide values near 0‰. There is a gradual increase in δ34Ssulfide values outwards from the deposit cores through the propylitic halos. Water-rock interaction

  1. Porphyry molybdenum deposits in the Tianshan-Xingmeng orogenic belt, northern China

    NASA Astrophysics Data System (ADS)

    Zeng, Qingdong; Qin, Kezhang; Liu, Jianming; Li, Guangming; Zhai, Mingguo; Chu, Shaoxiong; Guo, Yunpeng

    2015-06-01

    Molybdenum (Mo) exploration activity in China has increased tremendously over the past decade, and China is now known to have the largest Mo reserves in the world. The Tianshan-Xingmeng orogenic belt, the second largest Mo metallogenic belt, possesses over 8.2 Mt of Mo reserves. Porphyry Mo deposits contain 99 % of the Mo reserves in the Tianshan-Xingmeng orogenic belt; other Mo deposits contain 1 % of the Mo reserves. Five subtypes of the porphyry Mo deposits can be distinguished by deposit associations, such as Mo, Mo-Cu, Mo-W, Mo-Pb-Zn-Ag, and Cu-Mo deposits. These porphyry Mo deposits are formed at different stages: during the Ordovician, Devonian, Carboniferous, Late Permian, Triassic, Jurassic, and Cretaceous Periods. The polystage porphyry Mo mineralizations indicate that polystage tectonic-magmatic activity occurred in the orogenic belt. The Ordovician-Carboniferous porphyry Cu-Mo deposits are formed in an island-arc setting; the Late Permian porphyry Mo deposits are formed in a syn-collisional tectonic setting; and the Triassic porphyry Mo deposits are formed in a syn-collisional to post-collisional tectonic setting. The Ordovician-Triassic porphyry deposits are related to the Paleo-Asian Ocean tectonic system. The Jurassic porphyry Mo deposits are formed at the eastern margin of the Asian continent and are associated with a Paleo-Pacific plate-subduction tectonic setting. Cretaceous porphyry Mo deposits are formed in a lithospheric thinning setting and are related to the rollback of the Paleo-Pacific subduction plate.

  2. The architecture of the porphyry-metal system as a prospecting stratagem in the Southern Rocky Mountains

    USGS Publications Warehouse

    Neuerburg, George J.

    1978-01-01

    A model of the porphyry-metal system characteristic of the consanguineous Cretaceous and Tertiary igneous rocks and associated ores of the southern Rocky Mountains is constructed from the bits and pieces exposed in the Colorado mineral belt and the San Juan volcanic field. Hydrothermally altered rocks in a part of the areas of mineralized rock associated with the Platoro caldera are matched against the model, to locate and to characterize latent mineral deposits for optimal prospecting and exploration. The latent deposits are two stockwork molybdenite deposits (porphyry-molybdenum) and one or two copper-gold-silver chimney deposits.

  3. Qian'echong low-F porphyry Mo deposits in the Dabie Mountains, central China

    NASA Astrophysics Data System (ADS)

    Mi, Mei; Li, Cong-ying; Sun, Wei-dong

    2015-12-01

    The Qian'echong Mo deposit is a large porphyry Mo deposit located in the northwest Dabie Mountains, central China, with proven Mo reserves of 741 Mt at 0.081%. Chondrite-normalized REE patterns of most zircon from samples QEC002, 003, 004 and 011 show HREE enrichment with distinctive positive Ce and moderately negative Eu anomalies, which are typical of magmatic zircon in porphyry deposits. Zircon grains from sample QEC001 are all hydrothermal in origin, whereas there are only several hydrothermal zircons in the other samples. The Ti-in-zircon thermometer yields temperatures of 700-740 °C for the magmatic zircon. The Ce4 +/Ce3 + calculated from the Ce anomaly is a sensitive and robust indicator of magmatic oxidation status. Magmatic zircon have Ce4 +/Ce3 + and (Eu/Eu*)N ratios ranging between 10-577 and 0.2-1.3, respectively. Compared to the Shapinggou deposit (Climax type) also in the Dabie Mountains, the Qian'echong zircon has systematically lower Ce4 +/Ce3 +. Apatite from the Qian'echong deposit belongs to the F-apatite variety, with fluorine concentrations varying between 2.13-4.50% and Cl concentrations between 0.01-0.28%. Whole rock samples of the porphyry from the Qian'echong deposit have F contents of 360-1230 ppm. The porphyry intrusion is consistently associated with calc-alkaline granitic to granodioritic porphyries, with lower F, Nb, and Ta concentrations, and systematically lower Mo contents than the Climax-type deposits. All these characteristics are similar to other low-F porphyry Mo deposits along the eastern Pacific margin. Fluorine is mainly hosted in phengite during plate subduction, which may decompose far beneath the surface of the subduction zone. Therefore, high F deposits may be interpreted as locating the farthermost position reached by the subducting slab. Nevertheless, the F contents of the Qian'echong deposit is much higher than in adjacent barren granites, and may have incorporated additional F from the subduction slab. Given that the

  4. El Salvador, Chile porphyry copper deposit revisited: Geologic and geochronologic framework

    USGS Publications Warehouse

    Cornejo, P.; Tosdal, R.M.; Mpodozis, C.; Tomlinson, A.J.; Rivera, O.; Fanning, C.M.

    1997-01-01

    The Eocene (42 to 41 Ma) El Salvador porphyry copper deposit in the Indio Muerto district, northern Chile (26?? 15??? S Lat.), formerly thought to have formed at the culmination of a 9-m.y. period of episodic magmatism, is shown by new mapping, U-Pb and K-Ar geochronology, and petrologic data to have formed during the younger of two distinct but superposed magmatic events - a Paleocene (???63 to 58 Ma) and an Eocene (44 to 41 Ma) event. In the district, high-K Paleocene volcano-plutonic activity was characterized by a variety of eruptive styles and magmatic compositions, including a collapse caldera associated with explosive rhyolitic magmatism (El Salvador trap-door caldera), a post-collapse rhyolite dome field (Cerro Indio Muerto), and andesitic-trachyandesitic stratovolcanos (Kilo??metro Catorce-Los Amarillos sequence). Precaldera basement faults were reactivated during Paleocene volcanism as part of the collapse margin of the caldera. Beneath Cerro Indio Muerto, where the porphyry Cu deposit subsequently formed, the intersection of two major basement faults and the NNE-striking rotational axis of tilted ignimbrites of the Paleocene El Salvador caldera localized emplacement of post-collapse rhyolite domes and peripheral dikes and sills. Subsequent Eocene rhyolitic and granodioritic-dacitic porphyries intruded ???14 m.y. after cessation of Paleocene magmatism along the same NNE-striking structural belt through Cerro Indio Muerto as did the post-collapse Paleocene rhyolite domes. Eocene plutonism over a 3-m.y. period was contemporaneous with NW-SE-directed shortening associated with regional sinistral transpression along the Sierra Castillo fault, lying ???10 km to the east. Older Eocene rhyolitic porphyries in the Indio Muerto district were emplaced between 44 and 43 Ma, and have a small uneconomic Cu center associated with a porphyry at Old Camp. The oldest granodioritic-dacitic porphyries also were emplaced at ???44 to 43 Ma, but their petrogenetic relation to

  5. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    USGS Publications Warehouse

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  6. Porphyry copper deposits of the world: database, map, and grade and tonnage models

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir Iosifovich; Moring, Barry C.

    2005-01-01

    Mineral deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits-thus we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of mineral deposit models is information about known deposits-the purpose of this publication is to make this kind of information available in digital form for porphyry copper deposits. This report is an update of an earlier publication about porphyry copper deposits. In this report we have added 84 new porphyry copper deposits and removed 12 deposits. In addition, some errors have been corrected and a number of deposits have had some information, such as grades, tonnages, locations, or ages revised. This publication contains a computer file of information on porphyry copper deposits from around the world. It also presents new grade and tonnage models for porphyry copper deposits and for three subtypes of porphyry copper

  7. Magma Mixing at Pulang Porphyry Copper Deposit, NW China: Petrographic, Geochemical and Geochronological evidence

    NASA Astrophysics Data System (ADS)

    Cao, D.; Wang, A.

    2009-12-01

    Pulang porphyry copper deposit, located in Zhongdian arc, NW China, was formed by the subduction process of eastern Paleo-Tethys Oceanic crust. Plenty of mafic microgranular enclaves (MME) were found in the granodiorite porphyries, which intruded in quartz monzonite porphyries, the wall rocks of copper orebodies. The enclaves are diorite in composition, and represent blobs of mafic magma injected into a felsic host magma. The MME have a mineral assemblage (plagioclase + amphibole + biotite ± quartz ± K-feldspar) almost identical to that of host granodiorite porphyries, but with different mineral proportions. The MME are strip-shaped with grouped and directional alignment, and some of them contact gradually with the host rocks. The characteristic petrographic features of the MME are the presence of mingling and quench textures, such as acicular apatites, quartz ocelli rimmed by mafic minerals, and K-feldspar poikilitically enclosing mafic minerals, etc. These evidences show magma mingling or mixing. For the MME and host rocks, main oxides or elements with SiO2, or Al2O3/MgO with SiO2/MgO display significant linear correlations. Characteristics of spidergrams and REE patterns of MME and host rocks are similar, the MME present negative Eu and Sr anomalies, and the host rocks show weak Eu and obvious Sr positive anomalies. According to these, we can conclude that elements transferred between the MME and host rocks, which indicates the existence of magma mixing. The SHRIMP U-Pb concordia ages of the MME, granodiorite porphyries and quartz monzonite porphyries are 213±1Ma, 211±1Ma and 213.1±1.7Ma respectively. Molybdenite Re-Os isochron age is 213±3.8Ma. All these ages indicated the events of magma mixing and copper mineralization were at the same period. Phenomena of magma mixing have been found at many large-scale porphyry copper deposits around the world. Pulang porphyry copper deposit will be a new object to study the role of mafic magmas in the generation of

  8. Metallogenic features of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed by Re-Os, 40Ar/39Ar, and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Schütte, Philip; Chiaradia, Massimo; Barra, Fernando; Villagómez, Diego; Beate, Bernardo

    2012-04-01

    Mineralization and alteration events at ten Miocene porphyry Cu and porphyry-related epithermal mineral deposits in southern, central, and northern Ecuador were dated by means of molybdenite Re-Os, biotite and alunite 40Ar/39Ar, and titanite U-Pb geochronology. Most of these hydrothermal events show a spatio-temporal correlation with porphyry intrusion emplacement as constrained by zircon U-Pb ages. The total age range for these events spans the 23.5-6.1 Ma period, without displaying systematic along- or across-arc age distribution trends. While epithermal deposits tend to be spatially associated with volcanic rocks of a similar age, porphyry Cu deposits in Ecuador are frequently spatially associated with deeper-seated basement units and batholith-scale precursor intrusive systems assembled over ≥5 m.y. time periods. In most cases, formation of the porphyry Cu deposits is related to the youngest magmatic (-hydrothermal) event in a given area, postdating batholith construction at a regional scale. The majority of Miocene deposits occurs in southern Ecuador where areally extensive, post-mineralization (late Miocene to recent) volcanic sequences with the potential to conceal mineralization at depth are lacking. Only few Miocene deposits occur in northern-central Ecuador, where they mainly crop out in the Western Cordillera, west of the productive present-day volcanic arc. The surface distribution of post-mineralization arc volcanism reflects along-arc variations in subducting slab geometry. Porphyry Cu and epithermal deposits in Ecuador define a Miocene metallogenic belt broadly continuous with its coeval counterpart in northern-central Peru. Although both belt segments were formed in an overall similar tectonomagmatic and metallogenic setting, their respective metal endowments differ significantly.

  9. Porphyry Cu indicator minerals in till as an exploration tool: Example from the giant pebble porphyry Cu-Au-Mo deposit, Alaska, USA

    USGS Publications Warehouse

    Kelley, Karen D.; Eppinger, Robert G.; Lang, J.; Smith, Steven M.; Fey, David L.

    2011-01-01

    Porphyry Cu indicator minerals are mineral species in clastic sediments that indicate the presence of mineralization and hydrothermal alteration associated with porphyry Cu and associated skarn deposits. Porphyry Cu indicator minerals recovered from shallow till samples near the giant Pebble Cu-Au-Mo porphyry deposit in SW Alaska, USA, include apatite, andradite garnet, Mn-epidote, visible gold, jarosite, pyrite, and cinnabar. Sulphide minerals other than pyrite are absent from till, most likely due to the oxidation of the till. The distribution of till samples with abundant apatite and cinnabar suggest sources other than the Pebble deposit. With three exceptions, all till samples up-ice of the Pebble deposit contain 40grains/10kg) are in close proximity to smaller porphyry and skarn occurrences in the region. The distribution of Mn-epidote closely mimics the distribution of garnet in the till samples and further supports the interpretation that these minerals most likely reflect skarns associated with the porphyry deposits. All but two till samples, including those up-ice from the deposit, contain some gold grains. However, tills immediately west and down-ice of Pebble contain more abundant gold grains, and the overall number of grains decreases in the down-ice direction. Furthermore, all samples in the immediate vicinity of Pebble contain more than 65% pristine and modified grains compared to mostly re-shaped grains in distal samples. The pristine gold in till reflects short transport distances and/or liberation of gold during in-situ weathering of transported chalcopyrite grains. Jarosite is also abundant (1-2 500 grains/10kg) in samples adjacent to and up to 7 km down-ice from the deposit. Most jarosite grains are rounded and preliminary Ar/Ar dates suggest the jarosite formed prior to glaciation and it implies that a supergene cap existed over Pebble West. Assuming this interpretation is accurate, it suggests a shallow level of erosion of the Pebble deposit by

  10. Fluid-Inclusion Petrology - Data from Porphyry Copper Deposits and Applications to Exploration

    USGS Publications Warehouse

    Nash, J. Thomas

    1976-01-01

    Fluid-inclusion studies of 37 porphyry copper deposits, mainly in the United States, demonstrate that all but 3 evolved through a hydrothermal stage characterized by very high salinities, generally in excess of about 35 weight percent NaCI equivalent. Temperatures of these fluids ranged from about 250 deg to 700 deg C for various stages and deposits. Most systems boiled. High salinities, shown by halite-bearing inclusions, and boiling, suggested by coexisting gas and liquid-rich inclusions, are considered to be diagnostic of epizonal intrusions which are the most favorable parents for porphyry copper mineralization. Depth of emplacement of many copper-bearing stocks is deduced from fluid inclusions to have been about 6,000 to 10,000 feet (1,800 to 3,000 metres); fluid pressures during mineralization are interpreted generally to be less than 500 bars. Moderate-salinity (less than about 12 percent) and moderate-temperature <350 deg C) fluids are noted in all porphyry copper deposits and were responsible for the deposition of most copper and molybdenum in deposits, such as Bagdad, Esperanza, Mineral Park, Morenci, Ray, Sierrita, in the Southwestern United States and several in southern British Columbia. However, with only three exceptions, highly saline fluids apparently were present at an early stage and also deposited metals. The relative amounts and economic importance of copper and molybdenum deposited from high- and moderate-salinity fluids varies within the porphyry deposit class. There is compelling geologic and geochemical evidence that chloride is important for transport of metals, but the porphyry coppers stand out as a class associated with fluids of especially high salinity during at least one stage of their formation. Halite cubes in fluid inclusions are an effective, although rough, indicator of those salinities and can be conveniently monitored during petrographic study of thin sections. Thus, fluid inclusions can be used to characterize favorable

  11. Geochemical Data for Samples Collected in 2007 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    USGS Publications Warehouse

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2008-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molydenum (Cu-Au-Mo) deposit in southwest Alaska. The Pebble deposit is extremely large and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic and volcaniclastic rocks. The deposit is presently being explored by Northern Dynasty Minerals, Ltd., and Anglo-American LLC. The USGS undertakes unbiased, broad-scale mineral resource assessments of government lands to provide Congress and citizens with information on national mineral endowment. Research on known deposits is also done to refine and better constrain methods and deposit models for the mineral resource assessments. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, it is relatively undisturbed (except for exploration company drill holes), it is a large mineral system, and it is fairly well constrained at depth by the drill hole geology and geochemistry. The goals of the USGS study are (1) to determine whether the concealed deposit can be detected with surface samples, (2) to better understand the processes of metal migration from the deposit to the surface, and (3) to test and develop methods for assessing mineral resources in similar concealed terrains. This report presents analytical results for geochemical samples collected in 2007 from the Pebble deposit and surrounding environs. The analytical data are presented digitally both as an integrated Microsoft 2003 Access? database and as Microsoft 2003 Excel? files. The Pebble deposit is located in southwestern Alaska on state lands about 30 km (18 mi) northwest of the village of Illiamna and 320 km (200 mi) southwest of Anchorage (fig. 1). Elevations in the Pebble area range from 287 m (940 ft) at Frying Pan Lake just south of the deposit to 1146 m (3760 ft) on Kaskanak Mountain about 5 km (5 mi) to the west. The deposit is in an area of

  12. Porphyry copper deposit model: Chapter B in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Ayuso, Robert A.; Barton, Mark D.; Blakely, Richard J.; Bodnar, Robert J.; Dilles, John H.; Gray, Floyd; Graybeal, Fred T.; Mars, John L.; McPhee, Darcy K.; Seal, Robert R., II; Taylor, Ryan D.; Vikre, Peter G.; John, David A.

    2010-01-01

    This report contains a revised descriptive model of porphyry copper deposits (PCDs), the world's largest source (about 60 percent) and resource (about 65 percent) of copper and a major source of molybdenum, gold and silver. Despite relatively low grades (average 0.44 percent copper in 2008), PCDs have significant economic and societal impacts due to their large size (commonly hundreds of millions to billions of metric tons), long mine lives (decades), and high production rates (billions of kilograms of copper per year). The revised model describes the geotectonic setting of PCDs, and provides extensive regional- to deposit-scale descriptions and illustrations of geological, geochemical, geophysical, and geoenvironmental characteristics. Current genetic theories are reviewed and evaluated, knowledge gaps are identified, and a variety of exploration and assessment guides are presented. A summary is included for users seeking overviews of specific topics.

  13. SEM-Cathodoluminescence and fluid inclusion study of quartz veins in Hugo Dummett porphyry Cu-Au deposit,South Mongolia

    NASA Astrophysics Data System (ADS)

    Sanjaa, M.; Fujimaki, H.; Ken-Ichiro, H.

    2010-12-01

    The Hugo Dummett porphyry copper-gold deposit in Oyu Tolgoi, South Mongolia is a high-sulfidation type deposit which consists of Cu-Au bearing quartz veins. Cathodoluminescence (CL) analysis using scanning electron microscope (SEM) and fluid inclusion microthermometer were performed to elucidate the relationship between CL structures, fluid inclusion microthermometer of different quartz generations, and ore forming process of the Hugo Dummett deposit. Hydrothermal quartz from quartz-sulfide veins in the porphyry Cu-Au deposit in Hugo Dummett, revealing the following textures: (1) euhedral growth zones (2) embayed and rounded CL-bright cores, with CL-dark and CL-gray overgrowths, (3) concentric and non concentric growth zones, and (4) CL dark/bright microfractures. These textures indicate that many veins have undergone fracturing, growth of quartz into fluid-filled space and quartz dissolution of quartz. SEM-CL imaging indicates vein quartz in the Hugo Dummett deposit, initially grew as individual CL-bright crystals 356 ± 10°C liquid-reservoir (average Th value for fluid inclusions in the crystal cores is 359°C). In contract, SEM-CL imaging shows the edges of the micron-scale growth zones of varying CL intensity, reflecting quartz precipitation at some later time, when the Hugo Dummett deposit hydrothermal system had cooled, when reservoir conditions were about 211 ± 25°C (average Th value of 212°C). Crystal growth is SEM-CL evidence of the vein quartz having been partly dissolved. Pressure change has a large effect on quartz solubility and may have been responsible for quartz dissolution and precipitation textures in the cooling hydrothermal system. CL-dark microfractures homogenization temperatures lower 169 ± 16°C (average Th value 170°C) than CL bright and CL gray. Temperature and pressure of the mineralized fluid estimates a pressure of formation of 0.3-0.5 kbar (lithostatic), was formed at approximately 2 km depth, as well as a formation temperature

  14. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback

    NASA Astrophysics Data System (ADS)

    Li, Cong-Ying; Zhang, Hong; Wang, Fang-Yue; Liu, Ji-Qiang; Sun, Ya-Li; Hao, Xi-Luo; Li, Yi-Liang; Sun, Weidong

    2012-10-01

    Nanling is the largest W-Sn mineralization belt in the world, the formation of which remains obscure. In contrast to most other deposits in the Nanling region, Dabaoshan is a polymetallic deposit, located in north Guangdong province, southeastern China. Porphyry Mo deposit was found in 2008 in the north part of Dabaoshan ore district. Here we report zircon and molybdenite ages and geochemistry results of zircon and apatite. Zircon U-Pb LA-ICP-MS dating shows that the porphyry Mo deposit formed at 167.0 ± 2.5 Ma (2σ), which is identical to the molybdenite Re-Os age for the ore deposit (166 ± 1 Ma) within error. These ages are marginally older than the major W-Sn mineralization event in the Nanling region (160 ± 5 Ma). Zircon grains associated with the Dabaoshan porphyry Mo deposit have high Ce(IV)/Ce(III) values (356-1300), which indicate high oxygen fugacity, likely associated with plate subduction. Apatite from the Dabaoshan porphyry has high and varied F with low Cl concentrations, suggesting that it formed in a F-enriched environment with high F/Cl components in the magma source. This is consistent with abundant high-F granites in the Nanling region. Chlorine is highly mobile at the early stage of plate subduction. In contrast, F is mainly hosted by minerals that are fairly stable at shallow depths, e.g., apatite, phengite, such that is much less mobile than Cl before phengite decomposition. Therefore, the F/Cl ratio increases with increasing distance from the subduction zone. Compared to the Dexing porphyry deposit to the northeast, the Dabaoshan porphyry has lower Ce(IV)/Ce(III) and high F/Cl. It is also about 5 Ma younger than the Dexing porphyry Cu deposits. All these phenomena can be plausibly interpreted by slab rollback of the obliquely subducted Pacific plate in the Jurassic. We propose that the subducting slab reached the Dabaoshan region before ~ 167 Ma, through a "flat" subduction regime, resulted in high oxygen fugacity in the magmas, which is

  15. Remanence, self-demagnetization and their ramifications for magnetic modelling of iron oxide copper-gold deposits: An example from Candelaria, Chile

    NASA Astrophysics Data System (ADS)

    Austin, James; Geuna, Silvana; Clark, David; Hillan, Dean

    2014-10-01

    Magnetic modelling can be a powerful tool for understanding the architecture of numerous types of mineralized systems; e.g., iron ore, IOCG and porphyry deposits. In such modelling, the induced component is generally assumed to be dominant, whereas remanent magnetization is often neglected and, furthermore, the effects of self-demagnetization are commonly ignored. We present rock property measurements (magnetic susceptibility and remanent magnetization) from the Candelaria IOCG deposit in northern Chile. The results demonstrate that remanence is relatively weak (< 20% of induced) and that the causative lithologies have very high magnetic susceptibilities (3-4 SI), which makes them highly prone to self-demagnetization. The rock property results were used to constrain a simplified forward model in which the causative bodies are modelled as a series of sub-horizontal highly magnetic sheets, corresponding to “mantos”. These “mantos” occur north and south of Candelaria, sub-perpendicular to a splay off the Atacama Fault Zone. We demonstrate that Candelaria's unusual magnetic anomaly is due to a combination of its highly magnetic sub-horizontal architecture, and self-demagnetization effects. A further simplified model was used to calculate two synthetic anomalies, one ignoring and the other incorporating the self-demagnetization effect. These synthetic anomalies demonstrate that the magnetic anomaly amplitude is suppressed by up to approximately 50% at Candelaria due to self-demagnetization, and that the induced magnetization is also slightly rotated from the regional inducing field towards the plane of the “mantos”. The dominant paleomagnetic component recorded by the Candelaria deposit and host rocks is a normal polarity remanence of moderate to high stability which is interpreted to have been acquired during the mid-Cretaceous alteration and mineralisation event(s) that generated the magnetic minerals (predominantly magnetite). However, the presence of a

  16. Porphyry copper deposits of the world: database, maps, and preliminary analysis

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2002-01-01

    Mineral deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Far too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits—thus we need mineral-deposit models. Globally based deposit models, such as those presented here, allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of mineral deposit models is information about known deposits—the purpose of this publication is to make this kind of information available in digital form for a group of porphyry copper deposits. This publication contains a computer file of information on porphyry copper deposits around the world. It also presents new grade and tonnage models for three subtypes of porphyry copper deposits, maps showing locations and general ages of these deposits, and a preliminary analysis with a number of figures summarizing many of the properties of these porphyry-style deposits. These summaries can be considered a new, quantified, form of most parts of descriptive models such as those in Cox and

  17. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States

    USGS Publications Warehouse

    Nadoll, Patrick; Mauk, Jeffrey L.; LeVeille, Richard A.; Koenig, Alan E.

    2015-01-01

    A combination of petrographic observations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and statistical data exploration was used in this study to determine compositional variations in hydrothermal and igneous magnetite from five porphyry Cu–Mo and skarn deposits in the southwestern United States, and igneous magnetite from the unmineralized, granodioritic Inner Zone Batholith, Japan. The most important overall discriminators for the minor and trace element chemistry of magnetite from the investigated porphyry and skarn deposits are Mg, Al, Ti, V, Mn, Co, Zn, and Ga—of these the elements with the highest variance for (I) igneous magnetite are Mg, Al, Ti, V, Mn, Zn, for (II) hydrothermal porphyry magnetite are Mg, Ti, V, Mn, Co, Zn, and for (III) hydrothermal skarn magnetite are Mg, Ti, Mn, Zn, and Ga. Nickel could only be detected at levels above the limit of reporting (LOR) in two igneous magnetites. Equally, Cr could only be detected in one igneous occurrence. Copper, As, Mo, Ag, Au, and Pb have been reported in magnetite by other authors but could not be detected at levels greater than their respective LORs in our samples. Comparison with the chemical signature of igneous magnetite from the barren Inner Zone Batholith, Japan, suggests that V, Mn, Co, and Ga concentrations are relatively depleted in magnetite from the porphyry and skarn deposits. Higher formation conditions in combination with distinct differences between melt and hydrothermal fluid compositions are reflected in Al, Ti, V, and Ga concentrations that are, on average, higher in igneous magnetite than in hydrothermal magnetite (including porphyry and skarn magnetite). Low Ti and V concentrations in combination with high Mn concentrations are characteristic features of magnetite from skarn deposits. High Mg concentrations (<1,000 ppm) are characteristic for magnetite from magnesian skarn and likely reflect extensive fluid/rock interaction. In porphyry deposits

  18. Porphyry copper deposit tract definition - A global analysis comparing geologic map scales

    USGS Publications Warehouse

    Raines, G.L.; Connors, K.A.; Chorlton, L.B.

    2007-01-01

    Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.

  19. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2008-01-01

    This report is an update of earlier publications about porphyry copper deposits (Singer, Berger, and Moring, 2002; Singer, D.A., Berger, V.I., and Moring, B.C., 2005). The update was necessary because of new information about substantial increases in resources in some deposits and because we revised locations of some deposits so that they are consistent with images in GoogleEarth. In this report we have added new porphyry copper deposits and removed a few incorrectly classed deposits. In addition, some errors have been corrected and a number of deposits have had some information, such as grades, tonnages, locations, or ages revised. Colleagues have helped identify places where improvements were needed. Mineral deposit models are important in exploration planning and quantitative resource assessments for a number of reasons including: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits?thus we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of

  20. Applications of soft computing in Mining Undiscovered Global Porphyry Copper Deposits

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.

    2011-12-01

    We demonstrate the efficacy of an unsupervised artificial neural network, called a self-organizing map (SOM), to facilitate modeling of undiscovered porphyry copper deposits at the global scale. Specifically, the SOM can provide relevant model input for quantifying the amounts of undiscovered metals, and predicting the economic feasibility of mining undiscovered deposits. In quantifying the amounts of metals, the SOM is used to estimate missing data values, estimate numbers of deposits, and evaluate grade and tonnage models. In predicting the economic feasibility of mining, the SOM is used to derive empirical equations. Examples are provided including the prediction of economic likelihood for mining a permissive tract in the Yukon Territory, Canada.

  1. Permissive tracts for iron oxide copper-gold deposits in Mauritania (phase V, deliverable 78 ): Chapter M1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  2. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits - applications to Central Europe

    USGS Publications Warehouse

    Drew, Lawrence J.

    2006-01-01

    A structural-tectonic model, which was developed to assess the occurrence of undiscovered porphyry copper deposits and associated polymetallic vein systems for the Matra Mountains, Hungary, has been expanded here and applied to other parts of central Europe. The model explains how granitoid stocks are emplaced and hydrothermal fluids flow within local strain features (duplexes) within strike-slip fault systems that develop in continental crust above subducting plates. Areas of extension that lack shear at the corners and along the edges of the fault duplexes are structural traps for the granitoid stocks associated with porphyry copper deposits. By contrast, polymetallic vein deposits are emplaced where shear and extension are prevalent in the interior of the duplexes. This model was applied to the Late Cretaceous-age porphyry copper and polymetallic vein deposits in the Banat-Timok-Srednogorie region of Romania-Serbia-Bulgaria and the middle Miocene-age deposits in Romania and Slovakia. In the first area, porphyry copper deposits are most commonly located at the corners, and occasionally along the edges, of strike-slip fault duplexes, and the few polymetallic vein deposits identified are located at interior sites of the duplexes. In the second area, the model accounts for the preferred sites of porphyry copper and polymetallic vein deposits in the Apuseni Mountains (Romania) and central Slovakian volcanic field (Slovakia).

  3. Why large porphyry Cu deposits like high Sr/Y magmas?

    PubMed

    Chiaradia, Massimo; Ulianov, Alexey; Kouzmanov, Kalin; Beate, Bernardo

    2012-01-01

    Porphyry systems supply most copper and significant gold to our economy. Recent studies indicate that they are frequently associated with high Sr/Y magmatic rocks, but the meaning of this association remains elusive. Understanding the association between high Sr/Y magmatic rocks and porphyry-type deposits is essential to develop genetic models that can be used for exploration purposes. Here we present results on a Pleistocene volcano of Ecuador that highlight the behaviour of copper in magmas with variable (but generally high) Sr/Y values. We provide indirect evidence for Cu partitioning into a fluid phase exsolved at depths of ~15 km from high Sr/Y (>70) andesitic magmas before sulphide saturation. This lends support to the hypothesis that large amounts of Cu- and S-bearing fluids can be accumulated into and released from a long-lived high Sr/Y deep andesitic reservoir to a shallower magmatic-hydrothermal system with the potential of generating large porphyry-type deposits.

  4. Why large porphyry Cu deposits like high Sr/Y magmas?

    PubMed Central

    Chiaradia, Massimo; Ulianov, Alexey; Kouzmanov, Kalin; Beate, Bernardo

    2012-01-01

    Porphyry systems supply most copper and significant gold to our economy. Recent studies indicate that they are frequently associated with high Sr/Y magmatic rocks, but the meaning of this association remains elusive. Understanding the association between high Sr/Y magmatic rocks and porphyry-type deposits is essential to develop genetic models that can be used for exploration purposes. Here we present results on a Pleistocene volcano of Ecuador that highlight the behaviour of copper in magmas with variable (but generally high) Sr/Y values. We provide indirect evidence for Cu partitioning into a fluid phase exsolved at depths of ~15 km from high Sr/Y (>70) andesitic magmas before sulphide saturation. This lends support to the hypothesis that large amounts of Cu- and S-bearing fluids can be accumulated into and released from a long-lived high Sr/Y deep andesitic reservoir to a shallower magmatic-hydrothermal system with the potential of generating large porphyry-type deposits. PMID:23008750

  5. Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption

    NASA Astrophysics Data System (ADS)

    Henley, Richard W.; King, Penelope L.; Wykes, Jeremy L.; Renggli, Christian J.; Brink, Frank J.; Clark, David A.; Troitzsch, Ulrike

    2015-03-01

    Porphyry copper deposits--the primary source of the world’s copper--are a consequence of the degassing of intrusion complexes in magmatic arcs associated with ancient subduction zones. They are characterized by copper and iron sulphides, commonly found with anhydrite (CaSO4), over scales of several kilometres through intensely altered and fractured rocks. The magmatic source of the metals is broadly understood, but the processes that transport and deposit the metals at the megaton scale are unclear. The hydrogen sulphide necessary for metal deposition is commonly assumed to form by a reaction between sulphur dioxide and water, but this reaction is inefficient and cannot explain the formation of economic-grade deposits. Here we use high-temperature laboratory experiments to show that a very rapid chemisorption reaction occurs between sulphur dioxide gas, a principal component of magmatic gas mixtures, and calcic feldspar, an abundant mineral in the arc crust. The chemisorption reaction generates the mineral anhydrite and hydrogen sulphide gas, and triggers deposition of metal sulphides. We use thermodynamic calculations to show that as magmatic gas cools and expands the concentration of hydrogen sulphide gas increases exponentially to drive efficient deposition of metal sulphides and consequent formation of economic-grade porphyry copper deposits.

  6. Mineral exploration potential of ERTS-1 data. [porphyry copper deposits in Arizona

    NASA Technical Reports Server (NTRS)

    Brewer, W. A. (Principal Investigator); Erskine, M. C., Jr.; Prindle, R. O.; Haenggi, W. T.

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery of an area approximately 15,000 square miles in Arizona was interpreted for regional structure and tectonic units. Eight fault systems were identified by trend, of which two, northeast and northwest, are considered to be related to porphyry copper mineralization. Nine tectonic units can be identified on the imagery as distinct geological identities. The boundaries between these units can be correlated with theoretical shear directions related to the San Andreas stress system. Fourier analysis of the N 50 W fault trend indicates a fundamental spacing between Fourier energy maxima that can be related to distances between copper deposits.

  7. Determining the Magma Genesis of Mo Porphyry Deposits

    NASA Astrophysics Data System (ADS)

    Gaynor, S.; Coleman, D. S.; Rosera, J.

    2015-12-01

    The high flux of magma associated with super eruptions is hypothesized to rebuild the deep crust, altering the source(s) of subsequent magmatism. Climax-type Mo deposits are commonly generated immediately after eruption of large ignimbrites within a volcanic field, and provide an opportunity to understand the evolution of magma sources following high flux events. The Questa caldera of the Latir volcanic field, NM exposes a 10 Ma long record of pre-, syn- and post-ignimbrite intrusive and extrusive rocks, and hosts the Questa Climax-type Mo deposit. New detailed geochronology and geochemistry from Questa (including extensive sampling of subsurface rocks in the mine) permit detailed reconstruction of the temporal evolution of magma sources through the waxing and waning stages of super eruption magmatism. Comparison of chemical and isotopic data waxing, ignimbrite, Mo-mineralizing and waning stage magmas reveals several patterns. Waxing and waning magmas (waxing: 29-25.7 Ma; waning: 24.5-19 Ma) have intermediate trace elements and radiogenic isotopes relative to other magmatism (87Sr/86Sri=0.7050 to 0.7070, ɛNd=-5.2 to -7.2). Ignimbrite magmatism (25.5 Ma) is depleted in incompatible elements, enriched in MREE and HREE's and has more evolved radiogenic isotopes (87Sr/86Sri=0.7095, ɛNd=-8.0). Molybdenum mineralizing magmas (24.9-24.5 Ma), are enriched in incompatible elements, depleted in MREE and HREE's and have distinct radiogenic isotopes (87Sr/86Sri=0.7055 to 0.7075, ɛNd=-4.2 to -5.7). We suggest the lower crustal source of magmas changed during ignimbrite generation, and as a result, subsequent mineralizing magmas incorporated more juvenile, mafic components. This mantle influence is the metallogenesis for Climax-type deposits and indicates that deep crustal hybridization, rather than upper crustal differentiation, is pivotal in their generation. These results indicate that a lower crustal source of magmatism for a volcanic field is altered due to super

  8. The present state of knowledge on the high-technology elements in porphyry copper deposit from Romania

    NASA Astrophysics Data System (ADS)

    Cioaca, M. E.; Munteanu, M.

    2012-04-01

    Porphyry copper deposits are the most important source of Cu in the world, but also a source of Mo, Au, Ag and Sn. Some "high-technology elements" (HTE), such as Re, In, W, Te and Se can reach economically-interesting concentrations in this type of deposits. Elevated platinum group elements (Pd and Pt) contents have been reported from several porphyry copper deposits from Balkan Peninsula and Pacific area. In Romania, numerous porphyry copper deposits occur in Banat (Southern Carpathians) and in Apuseni Mountains related to Alpine orogenesis. In Banat, they are classified as Cu-Mo type (Moldova Nouă, Sasca, Şopot, Bozovici, Teregova-Lăpuşnicel) [1] being associated with Laramian granodiorite/monzodiorite bodies of calc-alkaline affinity. The porphyry copper deposits from Apuseni Mountains are hosted mainly by microdiorite subvolcanic bodies and andesites of the Miocene calc-alkaline magmatism and can be divided in three types: Cu-Mo (Au) type (Deva, Roşia Poieni), Cu-Au type (Valea Morii, Bolcana, Rovina, Voia, Tălagiu, Larga, Trâmpoiele, Valea Tisei, Tarniţa) and Au-Cu porphyry (Colnic, Cireşata)[1,3]. The data on HTE of the porphyry-type deposits in Romania are scarce and they come only from a few deposits: Moldova Nouă, Valea Morii, Deva, Bucium-Tarniţa and Rovina [2]. The published contents of HTE in bulk rocks are generally low, but higher values were reported from Cu concentrates (e.g., 500 ppm Se at Deva, 500 ppm Te at Bucium-Tarniţa). There are no data on the platinum group elements contents. The presence of minerals of HTE in some porphyry copper deposits from Romania (e.g., germanium minerals at Bucium-Tarniţa, Roşia Poieni and Rovina) could be an indicator of the enrichment of such elements in the host intrusions. Considering the policy of the European Community towards the identification of new resources of HTE, more systematic investigations of these elements in the porphyry copper deposits of Romania is necessary. A new ongoing project

  9. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Ye, Huishou; Wang, Xiaoxia; Yang, Lei; Wang, Xiuyuan

    2014-01-01

    Jinduicheng deposit is a giant Mesozoic porphyry Mo system deposit in the East Qinling molybdenum belt, Shaanxi Province, China. The mineralization is associated with the I-type Jinduicheng granite porphyry. Both the porphyry stock and country rocks underwent intense hydrothermal alteration. The alteration, with increasing distance from the parent intrusion, changes from silicification, through potassic and phyllic assemblages, carbonation, to propylitic assemblages. Molybdenite, the dominant ore mineral, occurs in veinlets, most of which are hosted by the altered country rocks, with less than 25% of the ore in the porphyry body. The hydrothermal system comprises four stages, including pre-ore quartz and K-feldspar; two ore stages of quartz, K-feldspar, molybdenite, and Pb- And Zn-bearing sulfides; and post-ore quartz and carbonate. Six main types of primary fluid inclusions are present in hydrothermal quartz, including two-phase aqueous, one-phase aqueous, three-phase CO2-bearing, CO2-dominated fluid inclusions, gas inclusions, and melt inclusions. The homogenization temperatures of fluid inclusions range from 210 to 290 °C in the pre-ore stage, 150-310 °C in ore stage I, 150-360 °C in the ore stage II, and 195-325 °C in the post-ore stage quartz. Estimated salinities of the ore-forming fluids range from 6.9 to 13.5, 4.3 to 12.3, 6.2 to 12.4, and 3.4 to 9.9 wt.% NaCl equiv. in stages 1-4, respectively. The δ34S values of pyrite in the two ore stages range from 2.8‰ to 4.3‰, whereas the δ34S values of molybdenite range from 2.9‰ to 6.2‰. The data suggest both magmatic and crustal sources of sulfur. The δD and δ18O values for the hydrothermal fluids are -57.2‰ to -84.4‰ and 8.0‰ to -3.2‰, respectively. The fluid inclusion and stable data indicate that the pre-ore hydrothermal fluids were mostly of magmatic origin, but the fluids responsible for ore deposition were mixed magmatic and meteoric, and eventually meteoric water dominated the system

  10. Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan province, China: Implications for mineralization of the Zhongdian arc

    NASA Astrophysics Data System (ADS)

    Peng, Hui-juan; Mao, Jing-wen; Pei, Rong-fu; Zhang, Chang-qing; Tian, Guang; Zhou, Yunman; Li, Jianxin; Hou, Lin

    2014-01-01

    The Hongniu-Hongshan porphyry and skarn copper deposit is located in the Triassic Zhongdian island arc, northwestern Yunnan province, China. Single-zircon laser ablation inductively coupled plasma mass spectrometry U-Pb dating suggests that the diorite porphyry and the quartz monzonite porphyry in the deposit area formed at 200 Ma and 77 Ma, respectively. A Re-Os isotopic date of molybdenite from the ore is 78.9 Ma, which indicates that in addition to the known Triassic Cu-(Au) porphyry systems, a Late Cretaceous porphyry Cu-Mo mineralization event also exists in the Zhongdian arc. The quartz monzonite porphyry shows characteristics of a magnetite series intrusion, with a high concentration of Al, K, Rb, Ba, and Pb, low amount of Ta, Ti, Y, and Yb, and a high ratio of Sr/Y (average 26.42). The Cretaceous porphyry also shows a strong fractionation between light and heavy rare earth elements (average (La/Yb)N 37.9), which is similar to those of the Triassic subduction-related diorite porphyry in the Hongniu-Hongshan deposit and the porphyry hosting the Pulang copper deposit. However, in contrast to the older intrusions, the quartz monzonite porphyry contains higher concentrations of large ion lithophile elements and Co, and lesser Sr and Zr. Therefore, whereas the Triassic porphyry Cu-(Au) mineralization is related to slab subduction slab in an arc setting, the quartz monzonite porphyry in the Hongniu-Hongshan deposit formed by the remelting of the residual oceanic slab combined with contributions from subduction-modified arc lithosphere and continental crust, which provided the metals for the Late Cretaceous mineralization.

  11. Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya Area, western Yunnan Province, south China

    USGS Publications Warehouse

    Xu, X.-W.; Cai, X.-P.; Xiao, Q.-B.; Peters, S.G.

    2007-01-01

    The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite-K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400??ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5??Ma, between 25.5 to 32.5??Ma, and about 3.8??Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu-Au deposits, (2) magmatic Fe-Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu-Au and polymetallic skarn deposits are associated with quartz-albite porphyry bodies. The Fe-Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc. The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia. ?? 2006 Elsevier B.V. All rights reserved.

  12. Model of the porphyry copper and polymetallic vein family of deposits - Applications in Slovakia, Hungary, and Romania

    USGS Publications Warehouse

    Drew, L.J.

    2003-01-01

    A tectonic model useful in estimating the occurrence of undiscovered porphyry copper and polymetallic vein systems has been developed. This model is based on the manner in which magmatic and hydrothermal fluids flow and are trapped in fault systems as far-field stress is released in tectonic strain features above subducting plates (e.g. strike-slip fault systems). The structural traps include preferred locations for stock emplacement and tensional-shear fault meshes within the step-overs that localize porphyry- and vein-style deposits. The application of the model is illustrated for the porphyry copper and polymetallic vein deposits in the Central Slovakian Volcanic Field, Slovakia; the Ma??tra Mountains, Hungary; and the Apuseni Mountains, Romania.

  13. An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska

    USGS Publications Warehouse

    Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D.; Giles, S.A.

    2009-01-01

    Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.

  14. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Monteiro, Lena V. S.; Xavier, Roberto P.; de Carvalho, Emerson R.; Hitzman, Murray W.; Johnson, Craig A.; de Souza Filho, Carlos Roberto; Torresi, Ignácio

    2008-02-01

    The Sossego iron oxide-copper-gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista-Sequeirinho-Baiano and Sossego-Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW-ESE-striking shear zone that defines the contact between metavolcano-sedimentary units of the ˜2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ˜2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista-Sequeirinho-Baiano orebodies have undergone regional sodic (albite-hematite) alteration and later sodic-calcic (actinolite-rich) alteration associated with the formation of massive magnetite-(apatite) bodies. Both these alteration assemblages display ductile to ductile-brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego-Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic-sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite-quartz-epidote-chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego-Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with subsidiary siegenite, and millerite

  15. A review of the geological characteristics and geodynamic setting of Late Paleozoic porphyry copper deposits in the Junggar region, Xinjiang Uygur Autonomous Region, Northwest China

    NASA Astrophysics Data System (ADS)

    Yang, Fuquan; Mao, Jingwen; Pirajno, Franco; Yan, Shenghao; Liu, Guoren; Zhou, Gang; Zhang, Zhixin; Liu, Feng; Geng, Xinxia; Guo, Chunli

    2012-04-01

    In this review, we describe the geological characteristics of porphyry copper deposits in Junggar region, Xinjiang, and place these into their metallogenic-tectonic context. These porphyry copper deposits are mainly found in four metallogenic belts: (1) a Late Silurian to Early Devonian Cu-Mo metallogenic belt in the Qiongheba area; (2) the Late Devonian Kalaxiange'er Cu metallogenic belt; (3) the Early Carboniferous Xilekuduke-Suoerkuduke porphyry-skarn Cu-Mo metallogenic belt; and (4) the Late Carboniferous Baogutu porphyry Cu metallogenic belt. The ages of mineralization can be divided into three broad intervals: <427-409 Ma, 378-374 Ma and 327-310 Ma. Homogenization temperatures of fluid inclusions in the porphyry copper deposits range mainly from 300 to 180 °C. Salinity ranges from 0.5 to 21.7 wt.% NaCl equiv and 28.9 to 66.76 wt.% NaCl equiv. Ore-forming fluids in the Baogutu and Yunyingshan deposits in the Baogutu and Qiongheba belts, were mainly derived from magmatic fluids, whereas those in the Halasu, Yulekenhalasu and Xilekuduke deposits in the Kalaxiange'er and Xilekuduke-Suoerkuduke belts were mainly derived from magmatic fluids, with some contributions from meteoric water. Sulfur isotope compositions of some porphyry copper deposits cluster around 0‰, indicating that the sulfur was probably derived from mantle-related magmas. The ore-forming processes in all porphyry copper deposits are closely related to the emplacement of intermediate, intermediate-felsic and felsic porphyry intrusions. Porphyry copper deposits in Junggar region developed in a range of tectonic regimes including continental arc, ocean island arc and post collisional settings.

  16. A Long-Lived Porphyry Ore Deposit and Associated Upper Crustal Silicic Magma Body, Bajo de la Alumbrera, Argentina

    NASA Astrophysics Data System (ADS)

    Harris, A. C.; Allen, C. M.; Reiners, P. W.; Dunlap, W. J.; Cooke, D. R.; Campbell, I. H.; White, N. C.

    2004-05-01

    Porphyry Cu deposits form within and adjacent to small porphyritic intrusions that are apophyses to larger silicic magma bodies that reside in the upper parts of the Earth's crusts. Centred on these intrusions are hydrothermal systems of exsolved magmatic fluid with a carapace of convectively circulating meteoric water. We have applied several different dating techniques to assess the longevity of the magmatic-hydrothermal system and to define the cooling history of porphyry intrusions at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. The closure temperatures of these techniques range from 800oC (zircon U-Pb) to ~70oC (apatite (U-Th)/He; Fig. 1). The resulting cooling history indicates that the magmatic-hydrothermal system cooled to ca. 200oC by ~1.5 m.y. after the last porphyry intrusion (i.e., 6.96±0.09 Ma; U-Pb zircon age). Based on (U-Th)/He apatite data (closure temperature ~60-70oC), exposure and cessation of the system occurred before 4 Ma. The longevity of the magmatic-hydrothermal system indicated by these results is inconsistent with accepted mechanisms for porphyry Cu deposit formation. Depending on wallrock permeability, depth and cooling method, a 2 km wide by 3 km high intrusion has been predicted to cool between 0.01 to 0.1 m.y. (marked as the grey interval; Cathles et al., 1997 Economic Geology). We have obtained numerous age determinations younger than the U-Pb zircon age of the last known intrusion at Bajo de la Alumbrera. These imply that simple cooling of the small, mineralized porphyries did not happen. For the magmatic-hydrothermal system to have been sustained for longer than 0.1 m.y., either 1) younger small intrusions have been episodically emplaced below the youngest known intrusions, thus prolonging heat flow, or 2) fluids derived from a deeper and larger parental intrusion have been episodically discharged through the ore deposit long after the porphyry intrusion had lost its available heat. In either case, the longevity of

  17. Use of ERTS-1 images in the search for porphyry copper deposits in Pakistani Baluchistan

    NASA Technical Reports Server (NTRS)

    Schmidt, R. G.

    1973-01-01

    Geomorphic features related to a known porphyry copper deposit at Saindak, western Chagai District, Pakistan, are easily distinguished on ERTS-1 images. New geologic information from the images was used in conjunction with known geology to evaluate one previously known prospect area and to suggest two additional ones, but no new prospects were recognized on the basis of the images alone. The study also showed that Saindak-type deposits are not likely to be present in some extensive areas of the Chagai District. The Saindak deposit is in an area of relatively easily eroded folded sedimentary and volcanic rocks. The deposit is characterized by an elongate zone of easily eroded sulfide-rich rock surrounded by this rim and the central sulfide-rich valley are conspicuous features on the images. Swarms of dikes are probably useful for distinguishing real rims from other resistant rock types, but there is no expression of them on the image, although they are easily seen on aerial photographs of the Saindak rim.

  18. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that ~125,895 porphyrycopper deposits were formed during Phanerozoic time, that only~47,789 of these remain at various crustal depths, and that thesecontain ~1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, ~0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  19. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  20. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    USGS Publications Warehouse

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (<5 Ma), Fiji) indicate that the fluids from which these minerals precipitated were of mixed magmatic and non-magmatic sources. The non-magmatic component of the fluid from the island arc deposits (Koloula, Waisoi) was ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  1. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    NASA Astrophysics Data System (ADS)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  2. SHRIMP U-Pb dating of the Antucoya porphyry copper deposit: new evidence for an Early Cretaceous porphyry-related metallogenic epoch in the Coastal Cordillera of northern Chile

    NASA Astrophysics Data System (ADS)

    Maksaev, Victor; Munizaga, Francisco; Fanning, Mark; Palacios, Carlos; Tapia, José

    2006-10-01

    The Antucoya porphyry copper deposit (300 Mt at 0.45% total Cu) is one of the largest deposits of a poorly known Early Cretaceous porphyry belt in the Coastal Cordillera of northern Chile. It is related to a succession of granodioritic and tonalitic porphyritic stocks and dikes that were emplaced within Jurassic andesitic rocks of the La Negra Formation immediately west of the N-S trending sinistral strike-slip Atacama Fault Zone. New zircon SHRIMP U-Pb data indicate that the porphyries of Antucoya crystallized within the time span from 142.7 ± 1.6 to 140.6 ± 1.5 Ma (±2 σ), and late, unmineralized, NW-SE trending dacite dikes with potassic alteration and internal deformation crystallized at 141.9 ± 1.4 Ma. The Antucoya porphyry copper system appears to be formed after a change of stress conditions along the magmatic arc from extensional in the Late Jurassic to transpressive during the Early Cretaceous and provides support for an Early Cretaceous metallogenic episode of porphyry-type mineralization along the Coastal Cordillera of northern Chile.

  3. Hydrothermal alteration and its effects on the magnetic properties of Los Pelambres, a large multistage porphyry copper deposit

    NASA Astrophysics Data System (ADS)

    Tapia, Joseline; Townley, Brian; Córdova, Loreto; Poblete, Fernando; Arriagada, César

    2016-09-01

    The Los Pelambres porphyry copper deposit is located 190 km north of Santiago, Chile. A paleomagnetic and mineralogical study was conducted at this deposit to determine the effects of hydrothermal alteration on the magnetic properties and minerals of rocks within the deposit when compared to the surrounding country rock. In the Los Pelambres deposit, magnetic properties of rocks are carried by titano-hematite and titano-magnetite solid solution minerals, where the former commonly indicates the exsolution of rutile. Magnetic minerals of intrusive rocks from the greater Los Pelambres region show that magmatic titano-magnetites and magnetites are the main magnetization carriers. The hydrothermal fluid associated with rutile exsolution textures could have played an important role in the mineralization of Cu in this deposit. The paleomagnetic properties in the Los Pelambres deposit can be divided in three main groups: (i) HMRG (high magnetic remanence group), (ii) HMSG (high magnetic susceptibility group), and (iii) LMSG (low magnetic susceptibility/remanence group). In-situ magnetic properties of the HMSG and LMSG are similar to the formations and units present regionally, however HRMG samples clearly differ from the country rocks. The high variability of in-situ magnetic properties presented in the Los Pelambres deposit has also been characteristic of other porphyry copper deposits in Chile (e.g., Chuquicamata and El Teniente). Regarding the field of exploration geophysics and porphyry copper deposits, this study suggests that phyllic, chloritic, and potassic alterations are related to low, intermediate, and high in-situ NRM, respectively, suggesting that geophysical methods must target a noisy magnetic signal depending on the scale of the study. The knowledge and results obtained are especially meaningful because magnetic surveys conducted for exploration do not commonly allow for the detection of ore mineralization.

  4. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances

    NASA Astrophysics Data System (ADS)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian

    2016-03-01

    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  5. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.

    PubMed

    Delannoy, Laurent; Thrimurthulu, Gode; Reddy, Padigapati S; Méthivier, Christophe; Nelayah, Jaysen; Reddy, Benjaram M; Ricolleau, Christian; Louis, Catherine

    2014-12-28

    Oxide supported copper and gold catalysts are active for the selective hydrogenation of polyunsaturated hydrocarbons but their low activity compared to palladium catalysts and the deactivation of copper catalysts limit their use. There are only a very limited number of studies concerned with the use of bimetallic Au-Cu catalysts for selective hydrogenation reactions and the aim of this work was to prepare TiO2-supported monometallic Au and Cu and bimetallic AuCu (Cu/Au atomic ratio of 1 and 3) catalysts and to evaluate their catalytic performance in the selective hydrogenation of butadiene. Small gold, copper and gold-copper nanoparticles (average particle size < 2 nm) were obtained on TiO2 using the preparation method of deposition-precipitation with urea followed by reduction under H2 at 300 °C. Very small clusters were observed for Cu/TiO2 (∼1 nm) which might result from O2 induced copper redispersion, as also supported by the XPS analyses. The alloying of copper with gold was found to inhibit its redispersion and also limits its reoxidation, as attested by XPS. The bimetallic character of the AuCu nanoparticles was confirmed by XPS and EDX-HAADF. Cu/TiO2 was initially more active than Au/TiO2 in the selective hydrogenation of butadiene at 75 °C but it deactivated rapidly during the first hours of reaction whereas the gold catalyst was very stable up to 20 hours of reaction. The bimetallic AuCu/TiO2 catalysts displayed an activation period during the first hours of the reaction, which was very pronounced for the sample containing a higher Cu/Au atomic ratio. This initial gain in activity was tentatively assigned to copper segregation at the surface of the bimetallic nanoparticles, induced by the reactants. When the AuCu/TiO2 catalysts were pre-exposed to air at 75 °C before butadiene hydrogenation, surface copper segregation occurred, leading to higher initial activity and the suppression of the activation period. Under the same conditions, Cu/TiO2 totally

  6. Copper deposition during quartz dissolution by cooling magmatic hydrothermal fluids: The Bingham porphyry

    NASA Astrophysics Data System (ADS)

    Landtwing, Marianne R.; Pettke, Thomas; Halter, Werner E.; Heinrich, Christoph A.; Redmond, Patrick B.; Einaudi, Marco T.; Kunze, Karsten

    2005-06-01

    Scanning electron microscope cathodoluminescence imaging is used to map successive generations of fluid inclusions in texturally complex quartz veinlets representing the main stage of ore metal introduction into the porphyry Cu-Au-Mo deposit at Bingham, Utah. Following conventional fluid inclusion microthermometry, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) is applied to quantify copper and other major and trace-element concentrations in the evolving fluid, with the aim of identifying the ore-forming processes. Textures visible in cathodoluminescence consistently show that the bulk of vein quartz (Q1), characterized by bright luminescence, crystallized early in the vein history. Cu-Fe-sulfides are precipitated later in these veins, in a microfracture network finally filled with a second generation of dull-luminescing Q2 quartz. Mapping of brine and vapor inclusion assemblages in these successive quartz generations in combination with LA-ICPMS microanalysis shows that the fluids trapped before and after Cu-Fe-sulfide precipitation are very similar with respect to their major and minor-element composition, except for copper. Copper concentrations in inclusions associated with ore formation drop by two orders of magnitude, in a tight pressure-temperature interval between 21 and 14 MPa and 425-350 °C, several hundred degrees below the temperature of fluid exsolution from the magma. Copper deposition occurs within a limited P- T region, in which sulfide solubility shows strong normal temperature dependence while quartz solubility is retrograde. This permits copper sulfide deposition while secondary vein permeability is generated by quartz dissolution. The brittle-to-ductile transition of the quartz-feldspar-rich host rocks occurs in the same temperature range, which further enhances vein reactivation and promotes cooling and expansion of fluids ascending across the transition from lithostatic to hydrostatic conditions.

  7. Landsat-4 thematic mapper and thematic mapper simulator data for a porphyry copper deposit

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1984-01-01

    Aircraft thematic mapper (TM) data were analyzed to evaluate the potential utility of the Landsat-4 thematic mapper for geologic mapping and detection of hydrothermal alteration zones in the Silver Bell porphyry copper deposit in southern Arizona. The data allow a comparison between aircraft TV simulator data and the Landsat-4 TM satellite data which possess similar spectral bands. A color rationcomposite of 30-m pixels was resampled, in order to clearly define a number of hydroxyl bearing minerals, (kaolinite, sericite, white mica), pyrite and iron oxide/hydroxide minerals. The iron oxide minerals have diagnostic absorption bands in the 0.45 and 0.85 micron regions of the spectrum, and the hydrous minerals are characterized by an absorption in the 2.2 micron region. The position of the spectral bands allow the TM to identify regions of hydrothermal alteration without resorting to a data processing algorithm. The comparison of the aircraft and Landsat-4 TM data showed considerable agreement, and confirmed the utility of TM data for identifying hydrothermal alteration zones. Samples of some color TM images are provided.

  8. Hydrogeochemical prospecting for porphyry copper deposits in the tropical-marine climate of Puerto Rico

    USGS Publications Warehouse

    Miller, W.R.; Ficklin, W.H.; Learned, R.E.

    1982-01-01

    A hydrogeochemical survey utilizing waters from streams and springs was conducted in the area of two known porphyry copper deposits in the tropical-marine climate of westcentral Puerto Rico. The most important pathfinder for regional hydrogeochemical surveys is sulfate which reflects the associated pyrite mineralization. Because of increased mobility due to intense chemical weathering and the low pH environment, dissolved copper can also be used as a pathfinder for regional surveys and has the advantage of distinguishing barren pyrite from pyrite associated with copper mineralization. For follow-up surveys, the most important pathfinders are copper, sulfate, pH, zinc, and fluoride. High concentrations of dissolved copper and moderate concentrations of sulfate is a diagnostic indication of nearby sources of copper minerals. An understanding of the geochemical processes taking place in the streambeds and the weathering environment, such as the precipitation of secondary copper minerals, contributes to the interpretation of the geochemical data and the selection of the most favorable areas for further exploration. ?? 1982.

  9. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Blundy, Jon; Mavrogenes, John; Tattitch, Brian; Sparks, Steve; Gilmer, Amy

    2014-05-01

    Porphyry copper deposits (PCDs) are characterised by a close spatial and temporal association with small, hypabyssal intrusions of silicic magmas in volcanic arcs. PCD formation requires elevated chlorine and water to concentrate copper in magmatic hypersaline liquids (or brines), and elevated sulphur to precipitate copper-rich sulphides. These twin requirements are hard to reconcile with experimental and petrological evidence that voluminous chlorine-rich, hydrous silicic magmas, of the variety favourable to copper enrichment, lack sufficient sulphur to precipitate directly the requisite quantities of sulphides. These features are, however, consistent with observations of active volcanic arcs whereby PCDs can be viewed as roots of dome volcanoes above shallow reservoirs where silicic magmas accumulate over long time spans. During protracted periods of dormancy metal-enriched dense brines accumulate in and above the silicic reservoir through slow, low-pressure degassing. Meanwhile cogenetic volatile-rich mafic magmas and their exsolved, sulphur and CO2-rich fluids accumulate in deeper reservoirs. Periodic destabilisation of these reservoirs leads to short-lived bursts of volcanism liberating sulphurous gases, which react with the shallow-stored brines to form copper-rich sulphides and acidic vapours. We test this hypothesis with a novel set of 'porphyry in a capsule' experiments designed to simulate low-pressure (1-2 kbar) interaction of basalt-derived, sulphur-rich gases with brine-saturated, copper-bearing, but sulphur-free, granite. Experiments were run at 720-850 ° C in cold-seal apparatus with basaltic andesite, loaded with H2O and S, situated below dacite, loaded with H2O, Cl and Cu. At run conditions both compositions are substantially degassed and crystallized. S-rich gas from the basaltic andesite ascends to react with Cu-rich brines exsolved from the dacite, Our experiments reveal the direct precipitation of copper-sulphide minerals, in vugs and veins

  10. The El Galeno and Michiquillay porphyry Cu-Au-Mo deposits: geological descriptions and comparison of Miocene porphyry systems in the Cajamarca district, northern Peru

    NASA Astrophysics Data System (ADS)

    Davies, R. Charlie; Williams, Patrick J.

    2005-12-01

    El Galeno and Michiquillay are early to middle Miocene Cu-Au-Mo porphyry-related deposits located in the auriferous Cajamarca district of northern Peru. The El Galeno deposit (486 Mt at 0.57% Cu, 0.14 g/t Au and 150 ppm Mo) is associated with multiple dioritic intrusions hosted within Lower Cretaceous quartzites and shales. Emplacement of the porphyry stocks (17.5-16.5 Ma) in a hanging wall anticline was structurally controlled by oblique faults superimposed on early WNW-trending fold-thrust structures. Early K-feldspar-biotite-magnetite (potassic) alteration was associated with pyrite and chalcopyrite mineralisation. A quartz-magnetite assemblage that occurs at depth has completely replaced potassically altered rocks. Late- and post-mineralisation stocks are spatially and temporally related to weak quartz-muscovite (phyllic) alteration. High Au grades are associated with early intrusive phases located near the centre of the deposit. Highest Cu grades (~0.9% Cu) are mostly associated with a supergene enrichment blanket, whilst high Mo grades are restricted to contacts with the metasedimentary rocks. The Michiquillay Cu-Au-Mo deposit (631 Mt at 0.69% Cu, 0.15 g/t Au, 100-200 ppm Mo) is associated with a Miocene (20.0-19.8 Ma) dioritic complex that was emplaced within the hanging wall of a back thrust fault. The intrusive complex is hosted in quartzites and limestones. The NE-trending deposit is crosscut by NNW-trending prospect-scale faults that influenced both alteration and metal distribution. In the SW and NE of the deposit, potassic alteration zones contain moderate hypogene grades (0.14 g/t Au and 0.8% Cu) and are characterised by chalcopyrite and pyrite mineralisation. The core of the deposit is defined by a lower grade (0.08 g/t Au and 0.57% Cu) phyllic alteration that overprinted early potassic alteration. Michiquillay contains a supergene enrichment blanket of 45-80 m thickness with an average Cu grade of 1.15%, which is overlain by a deep leached cap (up

  11. Sequential extraction techniques applied to a porphyry copper deposit in the basin and range province

    USGS Publications Warehouse

    Filipek, L.H.; Theobald, P.K.

    1981-01-01

    Samples of minus-80-mesh (<180 ??m) stream sediment, rock containing exposed fracture coatings, and jarosite and chrysocolla were collected from an area surrounding the North Silver Bell porphyry Cu deposit near Tucson, Arizona. The samples were subjected to a series of extractions in a scheme originally designed for use on samples from humid or sub-humid environments, in which the following fractions can effectively be separated: (1) carbonates and exchangeable metals; (2) Mn oxides; (3) organic compounds and sulfides; (4) hydrous Fe oxides; and (5) residual crystalline minerals. Jarosite and chrysocolla, two major minerals of the North Silver Bell area, were found to dissolve over two or more steps of the extraction scheme. The results represent only a limited number of samples from one copper deposit. Nevertheless, they do suggest that in a semiarid to arid environment, where mechanical dispersion of such minerals predominates, uncritical assignment of unique phases, such as Mn oxides or organics to a given extraction would lead to false interpretations of weathering processes. However, the relative proportions of elements dissolved in each step of the jarosite and chrysocolla extractions could be used as a "fingerprint" for recognition of the presence of these two minerals in the stream-sediment and rock samples. The relative abundance of hydrous Fe oxide and jarosite and the alteration zoning could be mapped using data from jarosite and chrysocolla extractions. Manganese oxides were also found to have a greater influence on Zn than on Cu or Pb during supergene alteration. The rapid change in relative importance of the first (1M-acetic acid) extraction for Cu, Zn, and Pb near the mineralized zone suggested the occurrence of minor hydromorphic processes within the stream sediments. Thus, the acetic acid extraction proved the most effective for pinpointing mineralization in sediments. In contrast, the residual fraction had the longest dispersion train, suggesting

  12. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhou, Lian; Gao, Shan; Li, Jian-Wei; Hu, Zhi-Fang; Yang, Lu; Hu, Zhao-Chu

    2016-02-01

    We present Mo isotopic ratios of molybdenite from five porphyry molybdenum deposits (Chagele, Sharang, Jiru, Qulong, and Zhuonuo) and one quartz-molybdenite vein-type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau. These deposits represent a sequence of consecutive events of the India-Asia collision at different periods. Additional molybdenite samples from the Henderson Mo deposit (USA), the oceanic subduction-related El Teniente (Chile), and Bingham (USA) porphyry Cu-(Mo) deposits were analyzed for better understanding the controls on the Mo isotope systematics of molybdenite. The results show that molybdenite from Sharang, Jiru, Qulong, and Zhuonuo deposits have similar δ97Mo (˜0 ‰), in agreement with the values of the Henderson Mo deposit (-0.10 ‰). In contrast, samples from the Changle and Jigongcun deposit have δ97Mo of 0.85 ‰ to 0.88 ‰ and -0.48 %, respectively. Molybdenite from the El Teniente and Bingham deposits yields intermediate δ97Mo of 0.27 and 0.46 ‰, respectively. The Mo isotopes, combined with Nd isotope data of the ore-bearing porphyries, indicate that source of the ore-related magmas has fundamental effects on the Mo isotopic compositions of molybdenite. Our study indicates that molybdenite related to crustal-, and mantle-derived magmas has positive or negative δ97Mo values, respectively, whereas molybdenite from porphyries formed by crust-mantle mixing has δ97Mo close to 0 ‰. It is concluded that the Mo isotope composition in the porphyry system is a huge source signature, without relation to the tectonic setting under which the porphyry deposits formed.

  13. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

    2012-03-01

    The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin

  14. Remote sensing evaluation of the regional chemistry and element dispersion of porphyry copper deposits in the Silver Bell Mountains, Arizona

    NASA Astrophysics Data System (ADS)

    Jaramillo-Nieves, Lorna G.

    Porphyry copper deposits in southeastern Arizona belong to a cluster of 38 mineralized centers covering a region extending from northern Mexico to western New Mexico and southern Arizona. Presently, some of these deposits are being actively mined and the rest are prospects or abandoned mining sites. As a result of the large number of porphyry copper deposits in this region, research on the interaction between mineralized centers and the environment is important; in particular, the dispersion characteristics of acid-generating metal-enriched materials at the shallow alluvial margins of these centers. The present research uses remote sensing techniques, groundwater chemistry, trace element, and mineralogical analysis to characterize dispersion chemistry surrounding porphyry copper deposits in the Silver Bell Mountains. Hyperspectral imagery obtained by the Airborne Visible/Infrared Spectrometer and HyMap are used to map supergene minerals by analyzing their spectral profiles in the visible and short wave infrared regions of the electromagnetic spectrum. Reflectance profiles are characteristic of each mineral and shifts in absorption features within one mineral are a result of differences in cation content. Image reflectance profiles are compared with stream sediment mineralogy and reflectance spectral profiles to better outline concentrations of Fe, S, K, Na, Ca, Mg, Cu, and Al. In addition, groundwater modeling in the Silver Bell Mountains is considered for various flow paths within shallow aquifers in the region and compared to actual groundwater chemistry and surface lithology. The Silver Bell Mountains serve as a case study for element mobility and concentration distribution in other areas where undisturbed deposits, historic and present-day excavation activity occurs, where semi-arid climate and a deep vadose zone are variables that influence element mobility and concentration. Results obtained from hyperspectral image processing indicate the possible enrichment

  15. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount

  16. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece

    NASA Astrophysics Data System (ADS)

    Melfos, Vasilios; Vavelidis, Michael; Christofides, Georgios; Seidel, Eberhard

    2002-08-01

    The Maronia copper-molybdenum deposit is hosted by a porphyritic microgranite, located 30 km south-east of Komotini in Thrace (north-eastern Greece) in the Rhodope metallogenic province. The geology of the area is dominated by metamorphosed Mesozoic sedimentary and volcanic rocks, and Tertiary plutonic and subvolcanic intrusions. The metamorphic rocks belong to the Makri Unit of the Circum Rhodope Belt and consist mainly of marbles and calc-schists in the lower part and schists in the upper part. The marbles and schists of the Makri Unit are intruded by the Oligocene Maronia pluton of gabbroic-monzogabbroic-monzonitic composition and a younger porphyry microgranite, which is the host of the copper-molybdenum mineralisation. Three hydrothermal alteration zones have been recognised in the porphyritic microgranite: an argillic zone, a phyllic zone, and a propylitic zone which extends into the surrounding rocks. Additionally, three highly silicified zones crop out at the north-eastern, south-eastern and southern parts of the microgranite. Chalcopyrite-pyrite-molybdenite mineralisation, concentrated mainly in the silicified zones and associated with areas of phyllic and propylitic alteration, occurs as disseminations, veinlets and segregations. Surface samples of altered rock contain as much as 7,600 ppm Mo, 5,460 ppm Cu and 1 ppm Au. Geochemical data from a drill core revealed a 10-m-thick horizon containing as much as 12 ppm Au, 17 ppm Ag and 2.00% Cu. Argillic and phyllic alteration zones are characterised by relatively low REE abundances (average total: 88 and 95 ppm respectively) and negative Eu anomalies, compared to rocks in the propylitic alteration zone where REE contents are higher (average total: 177 ppm) and there is a positive Eu anomaly. The ore-related mineral assemblage consists of sulphides (pyrite, chalcopyrite, cubanite, pyrrhotite, pentlandite, molybdenite, sphalerite, galena and bismuthinite), sulphosalts (tetrahedrite, tennantite, zinkenite

  17. Ore formation in porphyry-type deposits during incrementally built magma chamber and fluid sparging

    NASA Astrophysics Data System (ADS)

    Vigneresse, J. L.; Bachmann, O.; Huber, C.; Parmigiani, A.; Dufek, J.; Campos, E.

    2012-04-01

    Porphyry-type mineralizations are commonly associated with an underlying magma chamber from which a volatile phase exsolves from the crystallizing magma. We suggest a model of fluid sparging during multiple successive intrusions yielding metals concentration within the gas phase. Metals enrichment by 3-4 orders of magnitude takes place during the magmatic stage prior to hydrothermal effects, resulting from a competition between diffusion and advection of the volatile phase. The model explains why a single intrusion is not efficient enough to lead to economically viable ore deposit, though it also involves a gas phase percolating within a crystalline mush. During multiple intrusions, metals segregate from the new melt to the gas phase by diffusion, as long as the gas has not overcome a critical saturation level (about 20 % gas). Adding gas exsolved, about 4 % at each new magma recharge, overcomes this level. Then, the diffusion process switches toward advection, since the bubbles get interconnected, enhancing the transport of a gas phase enriched in metals. Once advected, the enriched gas phase turns into hydrothermal circulation during which metals condensate. Two non-dimensional numbers, Péclet and Stefan numbers, respectively rule diffusion and advection of elements while heat is lost through cooling. The model also examines the total duration of the process that re-establishes after 4-6 recharges in magma. It also provides an explanation why intrusions are barren or enriched, although they result from similar conditions of magma genesis. Development of a zoned alteration pattern may serve as a guide for prospection.

  18. Early Paleozoic magmatism and metallogeny in Northeast China: a record from the Tongshan porphyry Cu deposit

    NASA Astrophysics Data System (ADS)

    Hu, Xinlu; Yao, Shuzhen; Ding, Zhenju; He, Mouchun

    2016-04-01

    The Tongshan Cu deposit is located in the northern segment of the Great Xing'an Range and represents one of the few early Paleozoic porphyry Cu deposits in northeastern China. The granitic rocks in the Tongshan Cu deposit include concealed granodiorite and exposed tonalite, which yield LA-ICP-MS zircon U-Pb ages of 478 ± 3 Ma and 214 ± 3 Ma, respectively. The granodiorite has relatively high SiO2 (60.5-63.5 wt%) and Sr (596-786 ppm) contents, low Yb (1.21-1.53 ppm) and Y (9.81-13.0 ppm) contents, and initial 87Sr/86Sr ratios (0.7038-0.7040), suggesting adakitic affinity. Combined with its positive ɛNd(t) values (3.5-5.4), low Mg# values (41-50), and low contents of Cr (18.6-29.0 ppm) and Ni (7.3-9.1 ppm), we propose an origin by partial melting of a juvenile mafic lower crust in a post-collisional setting after the amalgamation of the Erguna and Xing'an Blocks. The tonalite is characterized by high SiO2 (63.1-65.9 wt%) and Al2O3 (16.0-16.3 wt%) contents, low (87Sr/86Sr) i ratios (0.7041-0.7042), positive ɛNd(t) values (2.6-3.0), along with LILE and LREE enrichments and Nb-Ta-Ti depletions, suggesting an origin by partial melting of juvenile mafic lower crust, coupled with fractional crystallization, in a post-orogenic setting after the collision between the Xing'an and Songnen Blocks. The δD values of ore-forming fluids range from -100 to -93 ‰, and the δ18O values calculated from hydrothermal quartz are between -3 and 10 ‰. The δ34S values of sulfides vary from -2.6 to -1.1 ‰. Field observations, as well as the geochronological and H-O-S isotopic data, suggest that the Cu mineralization at Tongshan was genetically linked with the granodiorite.

  19. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    USGS Publications Warehouse

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in

  20. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  1. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    NASA Astrophysics Data System (ADS)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2016-04-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  2. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, HongDi

    2015-12-01

    Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21-0.79 wt.%). The δ13CvPDB values of the whole rocks (-23.1 to -25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ13CvPDB values of CH4 (-28.2 to -36.0 ‰) and CO2 (-6.8 to -20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ13CCO2-CH4 values (8.2-25.0 ‰) at elevated temperatures (294-830 °C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log fO2 > FMQ + 1 in the magma stage, to log fO2 < FMQ as a consequence of country rocks assimilation-contamination, to log fO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that

  3. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    Geoenvironmental concerns are generally low because of low volumes of sulfide minerals. Most deposits are marginally acid-generating to non-acid-generating with drainage waters being near-neutral pH because of the acid generating potential of pyrite being partially buffered by late-stage calcite-bearing veins. The low ore content results in a waste:ore ratio of nearly 1:1 and large tailings piles from the open-pit method of mining.

  4. Fluid inclusion evidence for hydrothermal fluid evolution in the Darreh-Zar porphyry copper deposit, Iran

    NASA Astrophysics Data System (ADS)

    Nateghi, Arash; Hezarkhani, Ardeshir

    2013-09-01

    The Darreh-Zar porphyry copper deposit is associated with a quartz monzonitic-granodioritic-porphyritic stock hosted by an Eocene volcanic sedimentary complex in which magmatic hydrothermal fluids were introduced and formed veins and alteration. Within the deepest quartz-rich and chalcopyrite-poor group A veins, LVHS2 inclusions trapped high salinity, high temperature aqueous fluids exsolved directly from a relatively shallow magma (0.5 kbar). These late fluids were enriched in NaCl and reached halite saturation as a result of the low pressure of magma crystallization and fluid exsolution. These fluids extracted Cu from the crystallizing melt and transported it to the hydrothermal system. As a result of ascent, the temperature and pressure of these fluids decreased from 600 to 415 °C, and approximately 500-315 bars. At these conditions, K-feldspar and biotite were stabilized. Type A veins were formed at a depth of ∼1.2 km under conditions of lithostatic pressure and abrupt cooling. Upon cooling and decompressing, the fluid intersected with the liquid-vapor field resulting in separation of immiscible liquid and vapor. This stage was recorded by formation of LVHS1, LVHS3 and VL inclusions. These immiscible fluids formed chalcopyrite-pyrite-quartz veins with sericitic alteration envelopes (B veins) under the lithostatic-hydrostatic pressure regime at temperatures between 415 and 355 °C at 1.3 km below the paleowater table. As the fluids ascended, copper contents decreased and these fluids were diluted by mixing with the low salinity-external fluid. Therefore, pyrite-dominated quartz veins were formed in purely hydrostatic conditions in which pressure decreased from 125 bars to 54 bars and temperature decreased from 355 to 298 °C. During the magmatic-hydrothermal evolution, the composition and P-T regime changed drastically and caused various types of veins and alterations. The abundance of chalcopyrite precipitation in group B veins suggests that boiling and

  5. Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit, Heilongjiang Province, NE China

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Huang, Xiao-Wen; Cui, Bin; Wang, Bo-Chao; Yin, Yi-Fan; Wang, Jing-Rui

    2016-11-01

    The Jinchang Cu-Au deposit in Northeast China contains more than 76 tons of Au and 4683 tons of Cu with average ore grades of 11.34 g/t Au and 1.44% Cu. The deposit is typical of porphyry types and consists of gold orebodies mainly hosted in a ∼113 Ma granitic porphyry and breccia pipes within the porphyry intrusion. Mineralization is closely associated with early potassic alteration and late phyllic alteration. Pyrite is the main Au-bearing mineral and contains 1.48-18.9 ppb Re and 11.4-38 ppt common Os. Extremely low common Os concentrations and high Re/Os ratios are indicative of derivation of ore-forming materials from the crust. Low Re in pyrite from the Jinchang deposit may indicate a mixing source of mantle and crust or a crustal source. Five Re-Os isotopic analyses yield a model 1 isochron age of 114 ± 22 Ma (2σ, MSWD = 0.15), similar to the age of the host porphyry. Pyrite contains detectable Co, Ni, Cu, Zn, As, Ag, Au, Sb, Pb and Bi. Pyrite has Co/Ni ratios similar to that of volcanogenic and hydrothermal sulfide deposits, indicating a magmatic-hydrothermal origin, and has Au and As contents similar to that of porphyry-epithermal systems. Pyrite grains from potassic and phyllic alteration stages have different trace element contents, reflecting the evolution of ore-forming fluids from magmatic dominated to magmatic mixed with meteoric water. In combination with regional geology, our new results are suggestive of origin of the Jinchang Cu-Au deposit from contemporary intrusions of granitic porphyries related to the Early Cretaceous subduction of the Paleo-Pacific plate.

  6. Geochemical, microtextural and petrological studies of the Samba prospect in the Zambian Copperbelt basement: a metamorphosed Palaeoproterozoic porphyry Cu deposit.

    NASA Astrophysics Data System (ADS)

    Master, Sharad; Mirrander Ndhlovu, N.

    2015-04-01

    Ever since Wakefield (1978, IMM Trans., B87, 43-52) described a porphyry-type meta-morphosed Cu prospect, the ca 50 Mt, 0.5% Cu Samba deposit (12.717°S, 27.833°E), hosted by porphyry-associated quartz-sericite-biotite schists in northern Zambia, there has been controversy about its origin and significance. This is because it is situated in the basement to the world's largest stratabound sediment-hosted copper province, the Central African Copperbelt, which is hosted by rocks of the Neoproterozoic Katanga Supergroup. Mineralization in the pre-Katangan basement has long played a prominent role in ore genetic models, with some authors suggesting that basement Cu mineralization may have been recycled into the Katangan basin through erosion and redeposition, while others have suggested that the circulation of fluids through Cu-rich basement may have leached out the metals which are found concentrated in the Katangan orebodies. On the basis of ca 490-460 Ma Ar-Ar ages, Hitzman et al. (2012, Sillitoe Vol., SEG Spec. Publ., 16, 487-514) suggested that Samba represents late-stage impregnation of copper mineralization into the basement, and that it was one of the youngest copper deposits known in the Central African Copperbelt. If the Samba deposit really is that young, then it would have post-dated regional deformation and metamorphism (560-510 Ma), and it ought to be undeformed and unmetamorphosed. The Samba mineralization consists of chalcopyrite and bornite, occurring as disseminations, stringers and veinlets, found in a zone >1 km along strike, in steeply-dipping lenses up to 10m thick and >150m deep. Our new major and trace element XRF geochemical data (14 samples) show that the host rocks are mainly calc-alkaline metadacites. Cu is correlated with Ag (Cu/Ag ~10,000:1) with no Au or Mo. Our study focused on the microtextures and petrology of the Samba ores. We confirm that there is alteration of similar style to that accompanying classical porphyry Cu mineralization

  7. Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Fang; Wang, Yin-Hong; Liu, Jia-Jun; Wang, Jian-Ping; Zhao, Chun-Bo; Song, Zhi-Wei

    2016-03-01

    The Wunugetushan porphyry Cu-Mo deposit is located in the southeastern margin of the Mongol-Okhotsk Orogenic Belt and in the northwestern segment of the Great Xing'an Range, NE China. The orebodies of this deposit are mainly hosted in the monzogranitic porphyry stock and in contact with the granitic porphyry dyke and biotite granite batholith. The SHRIMP zircon U-Pb dating of the granitic porphyry dyke yielded ages of 201.4 ± 3.1 Ma (2σ, MSWD = 1.5). These results indicate that the magmatism in the Wunugetushan area might have occurred at ca. 201 Ma in the early Jurassic, and that the mineralization age (ca. 181 Ma) of this deposit is later than the age of intrusive granitic porphyry in the area. Geochemically, the Wunugetushan granitoids belong to high-K calc-alkaline and shoshonitic series, enriched in K, Rb, Nd, and Pb, and depleted in Sr, Nb, Ti and P, with negative Eu anomalies. In situ Hf isotopic analyses of zircons using LA-MC-ICP-MS indicate that the εHf(t) values for zircons from a granitic porphyry sample vary from +2.4 to +11.8 and that the corresponding crustal model ages (TDMC) vary from 483 to 1088 Ma. The least-altered monzogranitic porphyry, granitic porphyry and biotite granite yielded relatively uniform εNd(t) values from -1.0 to +0.6 and low (87Sr/86Sr)i ratios ranging from 0.704387 to 0.708385. The geochemical and Sr-Nd-Hf isotopic data for the granitoids indicate that the source magma for these rocks could be derived from a juvenile lower crust. The δ34S values of sulfides show a narrow range (+0.76‰ to +3.20‰) similar to those of magmatic sulfur, further implying a lower crust origin. Based on the results of this study and the regional geodynamic evolution, it is proposed that the formation of the Wunugetushan deposit and associated granitoids should be linked to the southeastward subduction of the Mongol-Okhotsk oceanic plate beneath the Erguna Massif during the early Jurassic, and that the monzogranitic porphyry intrusions in

  8. Quantitative Mineral Resource Assessment of Copper, Molybdenum, Gold, and Silver in Undiscovered Porphyry Copper Deposits in the Andes Mountains of South America

    USGS Publications Warehouse

    Cunningham, Charles G.; Zappettini, Eduardo O.; Vivallo S., Waldo; Celada, Carlos Mario; Quispe, Jorge; Singer, Donald A.; Briskey, Joseph A.; Sutphin, David M.; Gajardo M., Mariano; Diaz, Alejandro; Portigliati, Carlos; Berger, Vladimir I.; Carrasco, Rodrigo; Schulz, Klaus J.

    2008-01-01

    Quantitative information on the general locations and amounts of undiscovered porphyry copper resources of the world is important to exploration managers, land-use and environmental planners, economists, and policy makers. This publication contains the results of probabilistic estimates of the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) in undiscovered porphyry copper deposits in the Andes Mountains of South America. The methodology used to make these estimates is called the 'Three-Part Form'. It was developed to explicitly express estimates of undiscovered resources and associated uncertainty in a form that allows economic analysis and is useful to decisionmakers. The three-part form of assessment includes: (1) delineation of tracts of land where the geology is permissive for porphyry copper deposits to form; (2) selection of grade and tonnage models appropriate for estimating grades and tonnages of the undiscovered porphyry copper deposits in each tract; and (3) estimation of the number of undiscovered porphyry copper deposits in each tract consistent with the grade and tonnage model. A Monte Carlo simulation computer program (EMINERS) was used to combine the probability distributions of the estimated number of undiscovered deposits, the grades, and the tonnages of the selected model to obtain the probability distributions for undiscovered metals in each tract. These distributions of grades and tonnages then can be used to conduct economic evaluations of undiscovered resources in a format usable by decisionmakers. Economic evaluations are not part of this report. The results of this assessment are presented in two principal parts. The first part identifies 26 regional tracts of land where the geology is permissive for the occurrence of undiscovered porphyry copper deposits of Phanerozoic age to a depth of 1 km below the Earth's surface. These tracts are believed to contain most of South America's undiscovered resources of copper. The

  9. The discovery and geophysical response of the Atlántida Cu-Au porphyry deposit, Chile

    NASA Astrophysics Data System (ADS)

    Hope, Matthew; Andersson, Steve

    2016-03-01

    The discovery of the Atlántida Cu-Au-Mo porphyry deposit, which is unconformably overlain by 25-80 m of gravels, is a recent example of exploration success under cover in a traditional mining jurisdiction. Early acquisition of geophysics was a key tool in the discovery, and in later guiding further exploration drilling throughout the life of the project. Detailed review of the geophysical response of the deposit, with respect to the distribution of lithologies and alteration, coupled with their petrophysical properties has allowed full characterisation, despite no exposure at the surface of host rock nor porphyry-style mineralisation. Data acquired over the project include induced polarisation, magnetotellurics, ground and airborne magnetics, ground-based gravimetry, and petrophysical sampling. The distribution of the key geological features of the deposit has been inferred via acquisition of petrophysical properties and interpretation of surface geophysical datasets. Magnetic susceptibility is influenced strongly by both alteration and primary lithology, whilst density variations are dominated by primary lithological control. Several studies have shown that electrical properties may map the footprint of the hydrothermal system and associated mineralisation, via a combination of chargeability and resistivity. These properties are observed in geophysical datasets acquired at surface and allow further targeting and sterilisation at the deposit and project scale. By understanding these geophysical characteristics in a geological context, these data can be used to infer distribution of lithological units, depth to exploration targets and the potential for high grade mineralisation. Future exploration will likely be increasingly reliant on the understanding of the surface manifestations of buried deposits in remotely acquired data. This review summarises the application and results of these principles at the Atlántida project of northern Chile. Geophysical data can be

  10. USGS exploration geochemistry studies at the Pebble porphyry Cu-Au-Mo deposit, Alaska-pdf of presentation

    USGS Publications Warehouse

    Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Minsley, Burke J.; Smith, Steven M.

    2010-01-01

    From 2007 through 2010, scientists in the U.S. Geological Survey (USGS) have been conducting exploration-oriented geochemical and geophysical studies in the region surrounding the giant Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The Cretaceous Pebble deposit is concealed under tundra, glacial till, and Tertiary cover rocks, and is undisturbed except for numerous exploration drill holes. These USGS studies are part of a nation-wide research project on evaluating and detecting concealed mineral resources. This report focuses on exploration geochemistry and comprises illustrations and associated notes that were presented as a case study in a workshop on this topic. The workshop, organized by L.G. Closs and R. Glanzman, is called 'Geochemistry in Mineral Exploration and Development,' presented by the Society of Economic Geologists at a technical conference entitled 'The Challenge of Finding New Mineral Resources: Global Metallogeny, Integrative Exploration and New Discoveries,' held at Keystone, Colorado, October 2-5, 2010.

  11. Silurian U-Pb zircon age (LA-ICP-MS) of granitoids from the Zelenodol Cu-porphyry deposit, Southern Urals

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Shardakova, G. Yu.; Azovskova, O. B.; Gerdes, A.

    2016-01-01

    The Zelenodol porphyry Cu-(Au, Mo) deposit located about 65 km SSW of the city of Chelyabinsk is confined to the western part of the West Uralian Volcanogenic Megazone. The concordant U-Pb age of zircons from ore-bearing island-arc diorite porphyryis 418.3 Â ± 2.9 Ma.

  12. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik

    2014-06-01

    We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be

  13. GIS database model for development of mining information system for the Skarn/Porphyry type ore deposit

    NASA Astrophysics Data System (ADS)

    Roh, T.; Choi, Y.; Park, H.

    2009-12-01

    This study presents a prototype of GIS database model for development of mining information system for the Skarn/Porphyry type ore deposit. Database table was established for the analysis of collected datum from mining activity and geological investigation of mine development. Also structure and property of geological/mining information elements composing each table were defined and specified. For each mine, mine shaft, line and point, independent ID code were assigened. Database is also designed to keep the graphic data of Stereophotogrammetry from mining working face and of geophysical and boring investigation. After combining existing mine map and digital elevation map, sample data was inputed to the database. Finally, database system model that can be used for additional development of mining information system was constructed in this study.

  14. Inverse solution for crystal fractionation in a periodically tapped magma chamber, Sierrita porphyry copper deposit, Arizona

    SciTech Connect

    Anthony, E.Y.; Titley, S.R.

    1985-01-01

    Inversion techniques have been used to simultaneously solve for the initial concentrations, distribution coefficients, and degrees of crystallization for a suite of Laramide rocks related to subduction and porphyry copper mineralization. The suite includes diorite, andesite, and granodiorite. The granodiorite has differentiated in place to a granite core and it is this granite which immediately precedes mineralization. To perform the inversion one must verify that the rocks are genetically related by crystallization or melting. Their comagmatic nature is suggested by the similarity throughout the suite in the ratios of incompatible elements and in the few available isotopic determinations. The geochemical path of crystallization is indicated by the decrease in compatible elements and increase in incompatible elements. Inversion of the trace element data yields high initial concentrations for elements such as Ba and Ce and low concentrations for the transition metals, which is consistent with crustal melting. Thus, there was s substantial magma chamber at depth from which the more felsic liquids the authors sample have separated. The residence time of this chamber was not less than 6 million years. Such a prolonged history has been observed in other porphyry systems for which 10 million years of igneous activity and 2 million years of intermittent mineralization are recorded.

  15. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.

    2004-01-01

    The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in

  16. Geological analysis of aeromagnetic data from southwestern Alaska: implications for exploration in the area of the Pebble porphyry Cu-Au-Mo deposit

    USGS Publications Warehouse

    Anderson, Eric D.; Hitzman, Murray W.; Monecke, Thomas; Bedrosian, Paul A.; Shah, Anjana K.; Kelley, Karen D.

    2013-01-01

    Aeromagnetic data are used to better understand the geology and mineral resources near the Late Cretaceous Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The reduced-to-pole (RTP) transformation of regional-scale aeromagnetic data shows that the Pebble deposit is within a cluster of magnetic anomaly highs. Similar to Pebble, the Iliamna, Kijik, and Neacola porphyry copper occurrences are in magnetic highs that trend northeast along the crustal-scale Lake Clark fault. A high-amplitude, short- to moderate-wavelength anomaly is centered over the Kemuk occurrence, an Alaska-type ultramafic complex. Similar anomalies are found west and north of Kemuk. A moderate-amplitude, moderate-wavelength magnetic low surrounded by a moderate-amplitude, short-wavelength magnetic high is associated with the gold-bearing Shotgun intrusive complex. The RTP transformation of the district-scale aeromagnetic data acquired over Pebble permits differentiation of a variety of Jurassic to Tertiary magmatic rock suites. Jurassic-Cretaceous basalt and gabbro units and Late Cretaceous biotite pyroxenite and granodiorite rocks produce magnetic highs. Tertiary basalt units also produce magnetic highs, but appear to be volumetrically minor. Eocene monzonite units have associated magnetic lows. The RTP data do not suggest a magnetite-rich hydrothermal system at the Pebble deposit. The 10-km upward continuation transformation of the regional-scale data shows a linear northeast trend of magnetic anomaly highs. These anomalies are spatially correlated with Late Cretaceous igneous rocks and in the Pebble district are centered over the granodiorite rocks genetically related to porphyry copper systems. The spacing of these anomalies is similar to patterns shown by the numerous porphyry copper deposits in northern Chile. These anomalies are interpreted to reflect a Late Cretaceous magmatic arc that is favorable for additional discoveries of Late Cretaceous porphyry copper systems in southwestern

  17. Petrogenesis of Paleocene-Eocene porphyry deposit-related granitic rocks in the Yaguila-Sharang ore district, central Lhasa terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhao, Junxing; Li, Guangming; Evans, Noreen J.; Qin, Kezhang; Li, Jinxiang; Zhang, Xia'nan

    2016-11-01

    The Paleocene-Eocene ore deposits in the Gangdese Metallogenic Belt, Tibet, are thought to have been formed during the main period of India-Asia continental collision. This paper reports the whole-rock major element, trace element, and Sr-Nd-Hf isotopic compositions and zircon trace element contents of volcanic and intrusive rocks from the Paleocene Yaguila skarn Pb-Zn-Ag deposit and adjacent Eocene Sharang porphyry Mo deposit in the central Lhasa terrane, Tibet. Geochemical signatures and Nd-Hf isotopic compositions indicate that the Yaguila Cretaceous rhyolitic rocks were formed by the melting of ancient continental crust, whereas the Paleocene causative granite porphyry may have resulted from the interaction between mantle-derived and crustal-derived materials when continental collision was initiated. The dramatic increase of εNd(t) values between emplacement of the granite porphyry and later porphyritic biotite granite suggests a greater involvement of mantle materials during the crystallization of the barren biotite granite stock. The post-ore Miocene granodiorite porphyry has a similar geochemical signature to the Sharang Miocene dykes, suggesting they were both generated from melting of enriched lithospheric mantle. Nd-Hf mixing calculations indicate an increasing contribution of mantle materials in Paleocene to Eocene intrusions, consistent with the regional tectonic model of Neo-Tethyan oceanic slab roll-back and break-off. Zircons from both the Yaguila and Sharang ore-related porphyries have higher Ce anomalies than those from the barren granitoids, suggesting that Mo mineralization was closely related to highly oxidized and differentiated magma. The fertile intrusions in the Yaguila-Sharang district contain EuN/EuN∗ values from 0.3 to 0.6, higher than the non-mineralized intrusions. The processes of early crystallization of plagioclase and/or SO2-degassing from underlying magma can explain the observed negative Eu anomalies in zircon.

  18. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A

  19. Hydrothermal Evolution of the Giant Cenozoic Kadjaran porphyry Cu-Mo deposit, Tethyan metallogenic belt, Armenia, Lesser Caucasus: mineral paragenetic, cathodoluminescence and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé

    2016-04-01

    The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in

  20. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    NASA Astrophysics Data System (ADS)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.

    2013-04-01

    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  1. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios <1.1 (0.94-0.97), LILEs (e.g., Rb) enriched, HFSEs (e.g., Nb, Ta, Ti, and P) depleted, and have low Sr and Yb concentrations, classifying these rocks as fractionated I-type granites. The Taibudai granitoids have negative εNd (t) values ranging from -2.2 to -1.6 and relatively low initial 87Sr/86Sr ratios from 0.70536 to 0.70581. In situ Hf isotopic analyses on zircons using LA-MC-ICP-MS show variable positive εHf (t) values ranging from +0.80 to +13.55, corresponding to relatively young two-stage Hf model ages from 801 to 942 Ma (excluding one spot). These mineralogical, geochemical, and isotopic features strongly suggest that the primary magmas of the Taibudai granitoids were derived mainly from the partial remelting of Neoproterozoic juvenile crustal material, with no remarkable modification through incorporation of continental or subduction-related material. Re-Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature

  2. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Shen, Yuanchao; Pan, Hongdi; Li, Xian-hua; Dong, Lianhui; Wang, Jingbin; Zhu, Heping; Dai, Huawu; Guan, Weina

    2012-04-01

    The Baogutu copper deposit, a newly-discovered middle-sized porphyry copper deposit, is located in the West Junggar region of Xinjiang, NW China. Baogutu is associated with a Late Carboniferous intrusive complex that was emplaced into Lower Carboniferous volcano-sedimentary strata. The intrusive complex comprises main-stage diorites and minor late-stage diorite porphyries. Their intrusive activity occurred in 313.0 ± 2.2 Ma to 312.3 ± 2.2 Ma based on U-Pb zircon SIMS analyses. Molybdenite separated from ore-bearing quartz veins yields Re-Os model ages from 309.4 ± 4.4 Ma to 314.1 ± 4.5 Ma with a weighted mean age of 312.4 ± 1.8 Ma. Biotites, separated from fresh diorite and hydrothermal breccias in main-stage diorites, yield 40Ar/39Ar plateau ages of 308.26 ± 1.88 and 305.69 ± 1.76 Ma, respectively. These dates obtained from three independent dating techniques constrain the ore-forming age of the Baogutu deposit. Stable isotopes (H, O, S) and radiogenic isotope (Pb) have been used to discriminate the sources of the ore-forming fluid at Baogutu. The δ18O (1.14-1.74‰) and δD (-74‰ to -98‰) data indicate that the water of the ore-forming fluids was derived from magmatic water. The δ34S values (-0.24‰ to +0.4‰) show that the sulfur isotope composition of the ore fluids is characterized by magma sulfur. Lead isotope compositions (206Pb/204Pb = 17.92-18.89, 207Pb/204Pb = 15.45-15.62, 208Pb/204Pb = 37.68-38.36) indicate that the lead of the ore fluids is derived from the mantle. These data confirm the occurrence of a Cu-Au-Mo mineralizing event at Late Carboniferous in the Baogutu region and the ore-forming fluids are mainly derived from the mantle. The event is inferred to be associated with Late Carboniferous Junggar oceanic crust subduction.

  3. Double-layer mode of acid intrusive rocks from Xiuwacu Porphyry Mo deposit, Northwestern Yunnan SW China: U-Pb geochronology evidence

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Wenchang

    2016-04-01

    Recent research infer that, the south-north extension of the Xiuwacu-Tongchanggou acidic intrusive belt along the Geza island arc have been developed of intense molybdenum-mutimetallic mineralization(Li et al., 2012, 2013; Yu et al., 2015). The northern section of this intrusive belt exposed widly and occur much monzonitic granite, biotite-granite, granodiorite, biotite-monzogranite; while in southern section, intrusions are cocealed. The Tongchanggou district in south section have been obtained large breakthrough of porphyry-skarn type molybdenum-multimetallic deposits exploration recent years(Yu et al., 2014), the Mo-W mineral resources also increased year after year in north section of the belt. The Mo-mineral resouree potential of porphyry-skarn type Mo-mutimetallic deposits in whole area are tremendous. Xiuwacu Porphyry molybdenum deposit was explored in Geza island arc, and widespread Biotite granite and monzonitic granite that is closely related to mineralization. We have understood poorly about this ore deposit for the harsh geographical circumstance, through, some referential result in chronology have accumulated, it still lack of systematic lithogeochemical study and reliable chronology data about intrusions. We yield biotite granite and monzonitic zircons U-Pb ages(200.93±0.65Ma, 83.57±0.32Ma, respectively) of Xiuwacu. There are two periods of intermediate-acid intrusive rocks of Xiuwacu area. Indosinian Biotite granite and Yanshanian monzonitic granite were formed as superposition phenomenon.

  4. Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia

    NASA Astrophysics Data System (ADS)

    Soloviev, Serguei G.; Kryazhev, Sergey G.; Dvurechenskaya, Svetlana S.

    2013-06-01

    The Novogodnee-Monto oxidized Au-(Cu) skarn and porphyry deposit is situated in the large metallogenic belt of magnetite skarn and Cu-Au porphyry deposits formed along the Devonian-Carboniferous Urals orogen. The deposit area incorporates nearly contemporaneous Middle-Late Devonian to Late Devonian-Early Carboniferous calc-alkaline (gabbro to diorite) and potassic (monzogabbro, monzodiorite- to monzonite-porphyry, also lamprophyres) intrusive suites. The deposit is represented by magnetite skarn overprinted by amphibole-chlorite-epidote-quartz-albite and then sericite-quartz-carbonate assemblages bearing Au-sulfide mineralization. This mineralization includes early high-fineness (900-990 ‰) native Au associated mostly with cobaltite as well as with chalcopyrite and Co-pyrite, intermediate-stage native Au (fineness 830-860 ‰) associated mostly with galena, and late native Au (760-830 ‰) associated with Te minerals. Fluid inclusion and stable isotope data indicate an involvement of magmatic-hydrothermal high-salinity (>20 wt.% NaCl-equiv.) chloride fluids. The potassic igneous suite may have directly sourced fluids, metals, and/or sulfur. The abundance of Au mineralization is consistent with the oxidized character of the system, and its association with Co-sulfides suggests elevated sulfur fugacity.

  5. Exploration for porphyry copper deposits in Pakistan using digital processing of Landsat-1 data

    NASA Technical Reports Server (NTRS)

    Schmidt, R. G.

    1976-01-01

    Rock-type classification by digital-computer processing of Landsat-1 multispectral scanner data has been used to select 23 prospecting targets in the Chagai District, Pakistan, five of which have proved to be large areas of hydrothermally altered porphyry containing pyrite. Empirical maximum and minimum apparent reflectance limits were selected for each multispectral scanner band in each rock type classified, and a relatively unrefined classification table was prepared. Where the values for all four bands fitted within the limits designated for a particular class, a symbol for the presumed rock type was printed by the computer at the appropriate location. Drainage channels, areas of mineralized quartz diorite, areas of pyrite-rich rock, and the approximate limit of propylitic alteration were very well delineated on the computer-generated map of the test area. The classification method was used to evaluate 2,100 sq km in the Mashki Chah region. The results of the experiment show that outcrops of hydrothermally altered and mineralized rock can be identified from Landsat-1 data under favorable conditions.

  6. Mapping hydrothermal alteration using aircraft VNIR scanners at the Rosemont porphyry copper deposit. [Visible-Near Infrared

    NASA Technical Reports Server (NTRS)

    Sadowski, R. M.; Abrams, M. J.

    1983-01-01

    Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.

  7. Geological, geochronological, geochemical, and Sr-Nd-O-Hf isotopic constraints on origins of intrusions associated with the Baishan porphyry Mo deposit in eastern Tianshan, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Yinhong; Xue, Chunji; Liu, Jiajun; Zhang, Fangfang

    2016-10-01

    The Baishan porphyry Mo deposit (0.72 Mt; 0.06 % Mo) is located in the interior of the eastern Tianshan orogenic belt in Xinjiang, NW China. The deposit comprises 15 orebodies that are associated with monzogranite and granite porphyry stocks and are structurally controlled by roughly EW-trending faults. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating of the monzogranite and granite porphyry yielded the Middle Triassic age (228 ± 2 to 227 ± 2 Ma), which coincide with the molybdenite Re-Os model ages ranging from 226 ± 3 to 228 ± 3 Ma. The Triassic monzogranite and granite porphyry belong to high-K calc-alkaline series and are characterized by high SiO2 and Al2O3 and low MgO, TiO2, and P2O5 concentrations, with negative Eu anomalies (δEu = 0.55-0.91). The least-altered monzogranite and granite porphyry yield uniform ɛ Nd( t) values from +1.6 to +3.6, and wide (87Sr/86Sr) i ratios ranging between 0.7035 and 0.7071, indicating that they were derived from the lower crust. In situ O-Hf isotopic analyses on zircon using SIMS and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) indicate that the δ18O and ɛ Hf( t) values of zircon from a monzogranite sample vary from 6.1 to 7.3 ‰ and +8.0 to +11.7, respectively, whereas zircon from a granite porphyry sample vary from 6.2 to 6.9 ‰ and +7.3 to +11.2, respectively. The geochemical and isotopic data imply that the primary magmas of the Baishan granite were likely derived from partial melts from the lower crust involving some mantle components. The Baishan Mo deposit and granitic emplacement were proposed to be most likely related to post-orogenic lithospheric extension and magmatic underplating. An extensional event coupled with the rising of hot mantle-derived melts triggered partial melting of the lower crust, as well as provided metals (Mo).

  8. Abiogenic Fischer-Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; Jin, LuYing

    2014-09-01

    Methane is widely developed in hydrothermal fluids from reduced porphyry copper deposits, but its origin remains enigmatic. The occurrence of methane in fluid inclusions at the Late Carboniferous Baogutu reduced porphyry copper deposit in western Junggar, Xinjiang, NW-China, presents an excellent opportunity to address this problem. A systematic study including fluid inclusion Laser-Raman and CO2-CH4 carbon isotope analyses, igneous and hydrothermal mineral H-O isotope analyses, and in situ major, trace element and Sr isotopic analyses of hydrothermal epidote was conducted to constrain the origin of CH4 and CH4-rich fluids. The δ2H and δ18O of water in equilibrium with igneous biotite ranges from -65.0‰ to -66.0‰ and +7.2‰ to +7.4‰, respectively, indicating notable degassing of probably supercritical fluids in the magma chamber. The wide range of δ2H (-58.0‰ to -107.0‰, n = 23) for water within quartz suggests the existence of significant hydrothermal fluid boiling. Water-rock interaction is the most likely mechanism leading to the wide range of δ18O values for water in vein quartz with water/rock ratios (wt.% in O) of 0.15 to 0.75 and 0.13 to 0.46 for a closed and open system, respectively. Detailed Laser-Raman analyses indicate CO2 in apatite included in granodiorite porphyry phenocrystic biotite that records the carbon species of the early stage magmatic stage, whereas later hydrothermal fluids containing CH4 with trace or without CO2 are found in inclusions of vein quartz. We propose that CH4 is probably transformed from CO2 by Fischer-Tropsch type reactions at 500 °C, assumed from CO2-CH4 C isotope equilibrium. The (87Sr/86Sr)i of hydrothermal epidote yields values of 0.70369-0.70404, consistent with that reported for the whole rocks. The δ13CCH4 (-28.6‰ to -22.6‰) and δ2HCH4 (-108.0‰ to -59.5‰) are characteristic of abiogenic methane. The measured δ13CCO2 shows a slightly depleted 13C (-13.5‰ to -7.2‰) relative to upper mantle

  9. Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective

    NASA Astrophysics Data System (ADS)

    Simmonds, Vartan; Moazzen, Mohssen; Mathur, Ryan

    2016-04-01

    The Sungun porphyry copper deposit (PCD) is located in NW Iran, neighbouring several other PCDs and prospects in the region and the Lesser Caucasus (south Armenia). It lies on the Urumieh-Dokhtar magmatic arc (UDMA), which formed through the northeast-ward subduction of the Neo-Tethyan oceanic crust beneath the Central Iranian plate during late-Mesozoic and early-Cenozoic [1], and hosts the porphyry copper metallogenic belt of Iran. The Sungun PCD is the second largest deposit in Iran with ore reserves of about 850 Mt at 0.62 wt% Cu and 0.01 wt% Mo and probable reserves over 1Gt. The monzonitic to quartz monzonitic porphyry stock intruded the upper Cretaceous carbonates and Eocene volcano-sedimentary rocks. It produced a skarn-type mineralization at its contact zone with the carbonate rocks, as well as vast hydrothermal alteration zones and porphyry-type Cu and Mo mineralization. The zircon U-Pb age of the host porphyry stock is about 22.5±0.4 to 20.1±0.4 Ma [2]. Re-Os dating of four molybdenite separates from this PCD shows ages ranging between 22.9±0.2 to 21.7±0.2 Ma, with an average of 22.57±0.2 Ma, corresponding to the early Miocene (Aquitanian). These ages indicate that both the porphyry stock and the Cu-Mo mineralization are post-collisional events, similar to many other deposits and prospects in NW and central Iran and south Armenia, and the mineralization occurred shortly after the emplacement of the host stock, corresponding better to the ages obtained from the marginal parts of the stock. Magmatism and mineralization in Sungun coincides with the third metallogenic epoch in the Lesser Caucasus (Eocene to Miocene; [3]), though it is considerably younger than all of the dated PCDs and prospects in the south Armenia. It also postdates Cu-Mo mineralizations in the Saheb Divan (35 Ma), Qaradagh batholith (31.22±0.28 to 25.19±0.19 Ma), as well as Haft Cheshmeh PCD (28.18±0.42 to 27.05±0.37 Ma) in NW Iran, while it seems to be coeval with the Kighal

  10. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: Implication for the formation of the Dexing porphyry copper deposit, Southeastern China

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Li, Qiu-Li; Yang, Yue-Heng; Liu, Yongsheng

    2012-10-01

    The Dexing copper deposit in southeastern China is a typical non-arc porphyry deposit, the origin of which has been a topic of debate for several decades. Here we present new results from U-Pb geochronology, whole-rock chemistry and Sr-Nd-Hf-O isotopic investigations on the ore-forming granodioritic porphyry. LA-ICPMS zircon U-Pb data suggest that the granodioritic porphyry was formed in the Middle Jurassic (ca. 172.5 Ma) probably associated with lithospheric thinning driven by either sub-continental lithospheric mantle delamination or asthenospheric upwelling. The porphyry displays both arc-like and adakitic trace element signatures. The adakitic features suggest that HREE (heavy rare earth elements)-rich minerals such as garnet and hornblende, in the absence of plagioclase resided in the source region. The arc-like signatures are broadly comparable with those of the proximal Neoproterozoic island arc rocks including the keratophyre from Shuangxiwu Group and associated granitoids indicating a potential genetic relationship. The porphyry has chondritic ɛNd(t) of - 0.28 to 0.25 and radiogenic ɛHf(t) of 2 to 7, and correspondingly, uniform two stage depleted mantle Nd model ages of 940-980 Ma and Hf model ages of 800-1100 Ma (mean ~ 920 Ma). On Nd and Hf isotopic evolution diagrams, these values are markedly similar to those of the adjacent Neoproterozoic arc rocks when calculated forward to the Mid-Jurassic. Zircons of the porphyry show mantle-like oxygen isotope characters with δ18O values clustering in the range of 4.7-5.9‰, similar to the values for the Neoproterozoic arc rocks mentioned above. The geochemical and isotopic features recorded in our study suggest mantle-derived magmas with no significant supracrustal input for the source of the porphyry. With regard to the source of the Cu ore, we consider a model involving the remelting of sulfide-bearing arc-related lower crustal source. Furthermore, the occurrence of a Neoproterozoic VMS (volcanic massive

  11. Scanning electron microscope cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana

    NASA Astrophysics Data System (ADS)

    Rusk, Brian; Reed, Mark

    2002-08-01

    Scanning electron microscope cathodoluminescence (SEM-CL) analysis of quartz reveals textures that cannot be observed using optical microscopy or backscattered electrons. These cryptic textures yield insight into timing and physical conditions of quartz growth, especially in environments with multiple quartz-precipitation events. Hydrothermal quartz from quartz-sulfide veins in the porphyry copper deposit in Butte, Montana, was analyzed by SEM-CL, revealing the following textures: euhedral growth zones, wide nonluminescing bands that cut across multiple quartz grains, rounded luminescent quartz grain cores with euhedral overgrowths, nonluminescing “splatters” of quartz connected by networks of cobweb-like nonluminescing quartz in otherwise luminescent quartz, concentric growth zones, and wide nonluminescent grain boundaries. These textures indicate that many veins have undergone fracturing, dilation, growth of quartz into fluid-filled space, quartz dissolution, and recrystallization of quartz. Precipitation and dissolution textures indicate that early quartz-molybdenite veins formed as a result of pressure fluctuations between lithostatic and hydrostatic at high temperatures, and later pyrite-quartz veins formed near hydrostatic pressure in response to temperature decrease through and beyond the field of retrograde quartz solubility.

  12. Integrated geophysical imaging of a concealed mineral deposit: a case study of the world-class Pebble porphyry deposit in southwestern Alaska

    USGS Publications Warehouse

    Shah, Anjana K.; Bedrosian, Paul A.; Anderson, Eric D.; Kelley, Karen D.; Lang, James

    2013-01-01

    We combined aeromagnetic, induced polarization, magnetotelluric, and gravity surveys as well as drillhole geologic, alteration, magnetic susceptibility, and density data for exploration and characterization of the Cu-Au-Mo Pebble porphyry deposit. This undeveloped deposit is almost completely concealed by postmineralization sedimentary and volcanic rocks, presenting an exploration challenge. Individual geophysical methods primarily assist regional characterization. Positive chargeability and conductivity anomalies are observed over a broad region surrounding the deposit, likely representing sulfide minerals that accumulated during multiple stages of hydrothermal alteration. The mineralized area occupies only a small part of the chargeability anomaly because sulfide precipitation was not unique to the deposit, and mafic rocks also exhibit strong chargeability. Conductivity anomalies similarly reflect widespread sulfides as well as water-saturated glacial sediments. Mineralogical and magnetic susceptibility data indicate magnetite destruction primarily within the Cu-Au-Mo mineralized area. The magnetic field does not show a corresponding anomaly low but the analytic signal does in areas where the deposit is not covered by postmineralization igneous rocks. The analytic signal shows similar lows over sedimentary rocks outside of the mineralized area, however, and cannot uniquely distinguish the deposit. We find that the intersection of positive chargeability anomalies with analytic signal lows, indicating elevated sulfide concentrations but low magnetite at shallow depths, roughly delineates the deposit where it is covered only by glacial sediments. Neither chargeability highs nor analytic signal lows are present where the deposit is covered by several hundred meters of sedimentary and volcanic rocks, but a 3D resistivity model derived from magnetotelluric data shows a corresponding zone of higher conductivity. Gravity data highlight geologic features within the

  13. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; Hollings, Pete; Jin, LuYing

    2016-03-01

    The Baogutu porphyry Cu deposit is a typical reduced porphyry Cu deposit, likely related to ilmenite-series I-type granitoids. However, the nature of the granitoids (ilmenite-series or magnetite-series) and the genesis of the Baogutu deposit are still under debate. In order to resolve these issues, whole-rock magnetic susceptibility, geochemistry and Sr-Nd-Pb isotopic, zircon U-Pb dating and Hf-O isotopic compositions were carried out. Three different intrusive phases are recognized within the deposit, from oldest to youngest, they are diorite with trace gabbro, diorite-granodiorite porphyry, and hornblende diorite porphyry, all of which were emplaced in the Late Carboniferous (320-306 Ma) and show a metaluminous, calc-alkaline I-type granitoid character with typical supra-subduction zone geochemical affinities. The intrusions are characterized by widespread primary pyrrhotite without anhydrite and hematite, dominant ilmenite over magnetite, low whole rock magnetic susceptibility (< 1 × 10- 4 emu g- 1 oe- 1 or < 3 × 10- 3 SI unit) and low whole rock Fe2O3/FeO ratios (< 0.4), indicating that the granitoids are ilmenite- rather than magnetite-series I-type granitoids. Whole rock Sr-Nd-Pb isotopic compositions show limited variation but slightly enriched characteristics with (87Sr/86Sr)i values of 0.70357-0.70404, εNd (t) of + 6.3 to + 7.8, 206Pb/204Pb of 18.20-19.54 and 208Pb/204Pb of 37.97-39.55. Zircon Hf-O isotopic compositions show εHf (t) values of + 10.7 to + 15.8 and δ18O of 5.3-7.4‰. Zircon and apatite saturation thermometries yield temperatures of 720 to 920 °C with relatively higher temperatures for the porphyries than for the diorite. Limited variations in Sr-Nd-Pb-Hf-O isotopic compositions and extremely young whole rock T2DM (Nd) (430 to 570 Ma) and zircon TDMC (Hf) (310 to 640 Ma) do not indicate significant crustal contamination during magma ascent or emplacement. Rather the Baogutu ilmenite-series I-type granitoids were probably formed by

  14. Palaeoproterozoic porphyry Cu-Au, intrusion-hosted Au and ultramafic Cu-Ni deposits in the Fennoscandian Shield: Temporal constraints using U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Bejgarn, Therese; Söderlund, Ulf; Weihed, Pär; Årebäck, Hans; Ernst, Richard E.

    2013-08-01

    The Skellefte district, northern Sweden, is known for the occurrence of 1.89 Ga Palaeoproterozoic volcanogenic massive sulphide (VMS) deposits. The deposits are hosted by the older part of a volcanosedimentary succession, which was intruded at 1.88-1.86 Ga by multiple phases of the syn-volcanic, early orogenic Jörn intrusive complex (JIC). The oldest phase of the JIC hosts different styles of mineralisation, among them porphyry Cu-Mo-Au, intrusion-related Au, and mafic-hosted Fe and Cu-Ni deposits. To discriminate between the different intrusive and ore related events, U-Pb ages of zircons have been obtained for nine intrusive phases and from Na-Ca alteration spatially related to mineralisation, while U-Pb ages of baddeleyite (ZrO2) have been used to constrain intrusive ages of three mineralised and barren mafic-ultramafic intrusive rocks. The two main JIC intrusive phases of a granodioritic-tonalitic composition in the southern study area intruded at 1887 ± 3 Ma and 1886 ± 3 Ma, respectively, and were succeeded by the intrusion of layered mafic-ultramafic intrusive rocks in the northern and southern study area at 1879 ± 1 Ma and 1884 ± 2 Ma, respectively. Emplacement of porphyry dykes took place at ca. 1877 Ma in the southern, western and northern JIC. The dykes are spatially and temporally associated with formation of porphyry style mineralisation, alteration and Au-mineralisation, as inferred from 1879 ± 5 Ma zircons in adjacent Na-Ca alteration zones. High SiO2 and Al2O3 contents together with high Sr/Y ratios, mingling structures, mafic xenoliths and hornblende phenocrysts in the porphyry dykes suggest that the magma originated from hydrated partial melts, possibly from the base of the crust at a mature stage of subduction. Local extension resulted in intrusion of mafic-ultramafic rocks around 1.88 Ga prior to and after, the porphyry dykes and associated mineralisation, approximately 10 Ma after the formation of the spatially related 1.89 Ga VMS deposits

  15. Re-Os geochronology of the El Salvador porphyry Cu-Mo deposit, Chile: Tracking analytical improvements in accuracy and precision over the past decade

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Stein, Holly J.; Morgan, John W.; Markey, Richard J.; Watanabe, Yasushi

    2014-04-01

    Sulfide minerals from the El Salvador porphyry Cu-Mo deposit, Chile, were dated by Re-Os geochronology to clarify the timing and duration of mineralization. As these data are collected over the past 10 years, they chronicle the evolution of Re-Os analytical procedures and improvements in spike-sample equilibration, mass spectrometry and data reduction. Included in the data is the first tennantite-pyrite Re-Os isochron along with tennantite-enargite-pyrite Os tracing of ore metals based on initial osmium systematics (187Os/188Osi). Porphyry-associated mineralization follows the traditional early (A), transitional (B), and late (D) stage classification of relative timing of vein formation. Most Cu- and Mo-bearing sulfides were deposited during stages A and B. Field relationships clearly show the B-stage veins are older than the D-stage veins. Samples analyzed with Carius tube digestion and mixed-double spike indicate B-stage molybdenite mineralization between 41.8 and 41.2 Ma. These ages best represent the timing of main-stage mineralization at El Salvador. A five-point 187Re-187Os isochron for pyrite-tennantite from the latest D-stage veins yields an age of 42.37 ± 0.45 Ma. The isochron age, while older, is within error of early analyses of molybdenite by alkaline fusion digestion using single Re and Os spikes (42.4-42.0 Ma). A separate pyrite and tennantite-enargite pair containing significant common Os yields an initial 187Os/188Os ratio of 0.134 ± 0.042, compatible with a predominantly mantle origin. We appreciate the early analyses for their historical significance while emphasize the geological implications of the 41.8-41.2 Ma molybdenite ages. Temperature estimates by sulfur thermometry and fluid inclusions are 390-510 °C for the B-stage molybdenites and 230-240 °C for the latest D-stage pyrite and tennantite. Analyses based on Carius tube digestion and updated spike calibrations suggest a ∼0.6 m.y. duration (∼41.8 to 41.2 Ma) in-line with published

  16. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wu, Guang; Li, Yuan; Zhu, Mingtian; Zhong, Wei

    2012-04-01

    The Duobaoshan porphyry deposit, located in the northwestern part of the Lesser Hinggan Range, is one of the biggest porphyry Cu (Mo) deposits in the Central Asian orogenic belt in China. The Duobaoshan porphyry deposit occurs in granodiorite and volcanic rocks of the Middle Ordovician Duobaoshan Formation. Six types of veins have been identified in three ore-forming stages as follows: a quartz-potassic feldspar vein in the early ore-forming stage, an early stage quartz-molybdenite vein, late stage quartz-molybdenite and quartz-chalcopyrite-pyrite veins in the middle ore-forming stage, and quartz-pyrite and calcite-quartz veins in the late ore-forming stage. The following four types of fluid inclusions are distinguished from various quartz veins: two-phase aqueous, pure gas phase, CO2-bearing and daughter mineral-bearing inclusions. The ore-forming fluid for the early ore-forming stage belongs to the H2O-CO2-NaCl system, which is characterized by high temperatures (>550 °C), intermediate salinities (16.2-18.1 wt% NaCl eqv.) and high CO2 content. The ore-forming fluid from the middle ore-forming stage evolved to the H2O-CO2-NaCl system, which is characterized by intermediate to high temperatures (230-450 °C) and high/low salinities (0.8 to >65.3 wt% NaCl eqv.) and is also rich in CO2 and metals. The ore-forming fluid finally reached cool temperatures (110-200 °C), low salinities (3.9-8.4 wt% NaCl eqv.) and was CO2-poor. Intensive fluid immiscibility or boiling occurred when the ore-forming fluid with temperatures of 230-450 °C and pressures of 10-41 MPa ascended to 4.1 km, inducing the escape of CO2, depressing the solubility of fluid, and depositing abundant metal sulfides. The total Re and Os concentrations of chalcopyrite and pyrite range from 0.15 to 2.95 μg/g and 0.74 to 15.01 ng/g, respectively. Analyses of seven chalcopyrite and pyrite samples yielded isochron ages of 482-486 Ma, and the model age of one molybdenite sample is 485.6 ± 3.7 Ma. The

  17. Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi mineral district, Mongolia

    NASA Astrophysics Data System (ADS)

    Khashgerel, Bat-Erdene; Kavalieris, Imants; Hayashi, Ken-Ichiro

    2008-11-01

    Advanced argillic (AA) alteration is developed over a vertical interval of 500 m, above (and enclosing) Late Devonian quartz monzodiorite intrusions that accompany porphyry-style Cu-Au mineralization at the Hugo Dummett deposit. The AA alteration is mainly in basaltic rocks and locally extends into the overlying dacitic ash-flow tuff for about 100 m. The AA zone overprints porphyry-style quartz veins associated with quartz monzodiorite intrusions, but at least partly precedes high-grade porphyry-style bornite mineralization. Mineralogically, it consists of andalusite, corundum, residual quartz, titanium oxides, diaspore, alunite, aluminum phosphate-sulfate (APS) minerals, zunyite, pyrophyllite, topaz, kaolinite, and dickite, as well as anhydrite and gypsum, but is dominated by residual quartz and pyrophyllite. Alteration zonation is not apparent, except for an alunite-bearing zone that occurs approximately at the limit of strong quartz veining. Whole-rock geochemistry shows that the AA alteration removes most major elements except Si, Al, Ti, and P, and removes the trace elements Sc, Cs, and Rb. V, Zr, Hf, Nb, Ta, U, and Th are relatively immobile, whilst light REEs (La to Nd), Sr, Ba, and Ga can be enriched. Middle REEs (Sm to Gd) are moderately depleted; Y and heavy REEs (Tb to Lu) are strongly depleted except in two unusual samples where middle to heavy REEs are enriched.

  18. The Mesozoic Caosiyao giant porphyry Mo deposit in Inner Mongolia, North China and Paleo-Pacific subduction-related magmatism in the northern North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Zhang, Lianchang; Pirajno, Franco; Shu, Qihai; Zhang, Min; Zhu, Mingtian; Xiang, Peng

    2016-09-01

    The Caosiyao giant porphyry Mo deposit is located in the Wulanchabu area of Inner Mongolia, within the northern North China Craton (NCC). It contains more than 2385 Mt of ore with an average grade of 0.075% Mo. In the Caosiyao mining district, Mo mineralization occurs mainly in a Mesozoic granite porphyry as disseminations and stockworks, with some Mo distributed in Archean metamorphic rocks and diabase as stockworks and veins. The host granite porphyry is composed of two different phases that can be distinguished based on mineral assemblages and textures: one phase contains large and abundant phenocrysts (coarse-grained), while the other phase is characterized by fewer and smaller phenocrysts (medium-grained). Zircon U-Pb-Hf analyses of the former phase yielded a concordant 206Pb/238U age of 149.8 ± 2.4 Ma with a 206Pb/238U weighted mean age of 149.9 ± 2.4 Ma and εHf(t) values ranging from -12.2 to 18.3, while the latter phase gave a concordant 206Pb/238U age of 149.0 ± 2.2 Ma with a 206Pb/238U weighted mean age of 149.0 ± 2.1 Ma and εHf(t) values ranging from -13.1 to 17.7. Five samples of disseminated molybdenite have a 187Re-187Os isochron age of 149.5 ± 5.3 Ma with a weighted average age of 149.0 ± 1.8 Ma, whereas six veinlet-type molybdenite samples have a well-constrained 187Re-187Os isochron age of 146.9 ± 3.1 Ma and a weighted average age of 146.5 ± 0.8 Ma. Thus, it is suggested that the Mo mineralization of the Caosiyao deposit occurred during the Late Jurassic (ca. 147-149 Ma), almost coeval with the emplacement of the host granite porphyry (ca. 149-150 Ma). The host granite porphyry is characterized by high silica (SiO2 = 71.52-74.10 wt%), relatively high levels of oxidation (Fe2O3/FeO = 0.32-0.94 wt%) and high alkali element concentrations (Na2O + K2O = 8.21-8.76 wt%). The host granite porphyry also shows enrichments in U and K, and depletion in Ba, Sr, P, Eu, and Ti, suggesting strong fractional crystallization of plagioclase, biotite, and

  19. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  20. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  1. Geophysical and geochemical data from the area of the Pebble Cu-Au-Mo porphyry deposit, southwestern Alaska: Contributions to assessment techniques for concealed mineral resources

    USGS Publications Warehouse

    Anderson, E.D.; Smith, S.M.; Giles, S.A.; Granitto, Matthew; Eppinger, R.G.; Bedrosian, P.A.; Shah, A.K.; Kelley, K.D.; Fey, D.L.; Minsley, B.J.; Brown, P.J.

    2011-01-01

    In 2007, the U.S. Geological Survey began a multidisciplinary study in southwest Alaska to investigate the setting and detectability of mineral deposits in concealed volcanic and glacial terranes. The study area hosts the world-class Pebble porphyry Cu-Au-Mo deposit, and through collaboration with the Pebble Limited Partnership, a range of geophysical and geochemical investigations was carried out in proximity to the deposit. The deposit is almost entirely concealed by tundra, glacial deposits, and post-mineralization volcanic rocks. The discovery of mineral resources beneath cover is becoming more important because most of the mineral resources at the surface have already been discovered. Research is needed to identify ways in which to assess for concealed mineral resources. This report presents the uninterpreted geophysical measurements and geochemical and mineralogical analytical data from samples collected during the summer field seasons from 2007 to 2010, and makes the data available in a single Geographic Information System (GIS) database.

  2. The giant Dexing porphyry Cu-Mo-Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting

    NASA Astrophysics Data System (ADS)

    Hou, Zengqian; Pan, Xiaofei; Li, Qiuyun; Yang, Zhiming; Song, Yucai

    2013-12-01

    The Dexing porphyry Cu-Mo-Au deposit in east China (1,168 Mt at 0.45 % Cu) is located in the interior of the South China Craton (SCC), made up of two lithospheric blocks, the Yangtze and Cathaysia blocks. The Cu-Mo-Au mineralization is associated with mid-Jurassic granodioritic porphyries with three high-level intrusive centers, controlled by a series of lineaments at the southeastern edge of the Yangtze block. Available age data define a short duration (172-170 Ma) of the felsic magmatism and the mineralization (171 ± 1 Ma). The deposit shows broad similarities with deposits in volcanoplutonic arcs, although it was formed in an intracontinental setting. Porphyries associated with mineralization are mainly granodiorites, which contain abundant phenocrysts (40-60 %) and carry contemporaneous microgranular mafic enclaves (MMEs). They are mainly high-K calc-alkaline and show geochemical affinities with adakite, characterized by relatively high MgO, Cr, Ni, Th, and Th/Ce ratios. The least-altered porphyries yielded relatively uniform ɛ Nd( t) values from -0.9 to +0.6, and wide (87Sr/86Sr)i range between 0.7046 and 0.7058 partially overlapping with the Sr-Nd isotopic compositions of the MMEs and mid-Jurassic mafic rocks in the SCC. Zircons from the porphyries have positive ɛ Hf( t) values (3.4 to 6.9), and low δ18O values (4.7 to 6.3 ‰), generally close to those of depleted mantle. All data suggest an origin by partial melting of a thickened juvenile lower crust involving mantle components (e.g., Neoproterozoic mafic arc magmas), triggered by invasion of contemporaneous mafic melts at Dexing. The MMEs show textural, mineralogical, and chemical evidence for an origin as xenoliths formed by injection of mafic melts into the felsic magmas. These MMEs usually contain magmatic chalcopyrite, and have original, variable contents of Cu (up to 500 ppm). Their geochemical characteristics suggest that they were derived from an enriched mantle source, metasomatized by

  3. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of ~ 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a ~ 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc

  4. The large Bystrinskoe Cu-Au-Fe deposit (Eastern Trans-Baikal Region): Russia's first example of a skarn-porphyry ore-forming system related to adakite

    NASA Astrophysics Data System (ADS)

    Kovalenker, V. A.; Abramov, S. S.; Kiseleva, G. D.; Krylova, T. L.; Yazykova, Yu. I.; Bortnikov, N. S.

    2016-06-01

    The Bystrinskoe skarn-porphyry Cu-Au-Fe deposit (Eastern Trans-Baikal Region) is confined to skarn zones, which were formed along the contact of granitoids referred to the Shakhtama intrusive complex (J2-3), with terrigenous-carbonate sedimentary rocks. Commercial (Cu-Au-Fe ± W, Mo) mineralization was formed due to the regional postcollision development involving the intrusion of porphyritic granitoids, the derivatives of oxidized adakite highly magnesian magmas enriched in water, sulfur, and metals, which could develop under melting of garnet-bearing amphibolite in the mafic lower crustal arc.

  5. Geologic and environmental characteristics of porphyry copper deposits with emphasis on potential future development in the Bristol Bay Watershed, Alaska

    USGS Publications Warehouse

    Seal, Robert R., II

    2012-01-01

    Pebble; Big Chunk is approximately 30 miles (48 km) north-northwest of Pebble; and Shotgun is approximately 110 miles (177 km) northwest of Pebble. The H and D Block prospects, west of Pebble, represent additional porphyry copper exploration targets in the watershed.

  6. U-Pb zircon, geochemical and Sr-Nd-Hf-O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu-Au deposit in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan

    2016-02-01

    Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan

  7. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types

    NASA Astrophysics Data System (ADS)

    Dupuis, Céline; Beaudoin, Georges

    2011-04-01

    Magnetite and hematite are common minerals in a range of mineral deposit types. These minerals form partial to complete solid solutions with magnetite, chromite, and spinel series, and ulvospinel as a result of divalent, trivalent, and tetravalent cation substitutions. Electron microprobe analyses of minor and trace elements in magnetite and hematite from a range of mineral deposit types (iron oxide-copper-gold (IOCG), Kiruna apatite-magnetite, banded iron formation (BIF), porphyry Cu, Fe-Cu skarn, Fe-Ti, V, Cr, Ni-Cu-PGE, Cu-Zn-Pb volcanogenic massive sulfide (VMS) and Archean Au-Cu porphyry and Opemiska Cu veins) show compositional differences that can be related to deposit types, and are used to construct discriminant diagrams that separate different styles of mineralization. The Ni + Cr vs. Si + Mg diagram can be used to isolate Ni-Cu-PGE, and Cr deposits from other deposit types. Similarly, the Al/(Zn + Ca) vs. Cu/(Si + Ca) diagram can be used to separate Cu-Zn-Pb VMS deposits from other deposit types. Samples plotting outside the Ni-Cu-PGE and Cu-Zn-Pb VMS fields are discriminated using the Ni/(Cr + Mn) vs. Ti + V or Ca + Al + Mn vs. Ti + V diagrams that discriminate for IOCG, Kiruna, porphyry Cu, BIF, skarn, Fe-Ti, and V deposits.

  8. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    USGS Publications Warehouse

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  9. Copper-Gold Exploration and Discovery in the Timok Magmatic Complex, Serbia

    NASA Astrophysics Data System (ADS)

    Banjesević, Miodrag; Ingram, Simon; Large, Duncan

    2014-05-01

    including: 291.3m @ 7.17% CuEq (5.13% Cu, 3.4g/t Au) and 160m @ 10.16% CuEq (6.92% Cu and 5g/t Au). Continued drilling at Čukaru Peki area has returned mineralogy and alteration typical of both epithermal high sulphidation systems and porphyry style mineralization. High sulphidation copper-gold "massive sulphide" mineralization consists of covellite with bornite, enargite and chalcocite in zones, blebs, veins, hydrothermal breccias and replacements hosted by strongly altered (advance argillic and argillic) andesite. Porphyry style chalcopyrite-pyrite veins or blebs with rare molybdenite have been intersected in the deeper intervals, often with a later overprint of covellite with argillic alteration. New geological models prepared by Company geologists from the drilling announced to date will be discussed in the presentation.

  10. SHRIMP U-Pb and Ar-Ar geochronology of major porphyry and skarn Cu deposits in the Balkhash Metallogenic Belt, Central Asia, and geological implications

    NASA Astrophysics Data System (ADS)

    Chen, Xuanhua; Seitmuratova, Eleonora; Wang, Zhihong; Chen, Zhengle; Han, Shuqin; Li, Yong; Yang, Yi; Ye, Baoying; Shi, Wei

    2014-01-01

    The Balkhash Metallogenic Belt (BMB) in Kazakhstan, Central Asia, with the occurrence of the super-large Kounrad and Aktogai, the large Borly porphyry Cu-Mo deposits, and the large Sayak skarn polymetallic ore-field, is one of the central regions of the Paleozoic Central Asian metallogenic domain and orogenic belt. In this study, newly obtained SHRIMP zircon U-Pb ages of nine samples and 40Ar/39Ar ages of six mineral samples (inclding hornblende, biotite and K-feldspar) give more detailed constraints on the timing of the granitic intrusions and their metallogeny. Porphyritic monzonite granite and tonalite porphyry from the Kounrad deposit yield U-Pb zircon SHRIMP ages of 327.3 ± 2.1 Ma and 308.7 ± 2.2 Ma, respectively. Quartz diorite and porphyritic granodiorite from the Aktogai deposit yield U-Pb SHRIMP ages of 335.7 ± 1.3 Ma and 327.5 ± 1.9 Ma, respectively. Porphyritic granodiorite and granodiorite from the Borly deposit yield U-Pb SHRIMP ages of 316.3 ± 0.8 Ma and 305 ± 3 Ma, respectively. Diorite, granodiorite, and monzonite from the Sayak ore-field yield U-Pb SHRIMP ages of 335 ± 2 Ma, 308 ± 10 Ma, and 297 ± 3 Ma, respectively. Hornblende, biotite, and K-feldspar from the Aktogai deposit yield 40Ar/39Ar cooling ages of 310.6 Ma, 271.5 Ma, and 274.9 Ma, respectively. Hornblende, biotite, and K-feldspar from the Sayak ore-field yield 40Ar/39Ar cooling ages of 287.3 ± 2.8 Ma, 307.9 ± 1.8 Ma, and 249.8 ± 1.6 Ma, respectively. The new ages constrain the timing of Late Paleozoic felsic magmatism to ˜336 to ˜297 Ma. Skarn mineralization in the Sayak ore-field formed at ˜335 and ˜308 Ma. Porphyry Cu-Mo mineralization in the Kounrad deposit and the Aktogai deposit formed at ˜327 Ma, and in the Borly deposit at ˜316 Ma. The Late Paleozoic regional cooling in the temperature range of ˜600 °C to ˜150 °C occurred from ˜307 to ˜257 Ma.

  11. Cathodoluminescence investigation and fluid inclusion analyses of hydrothermal quartz in the Erdenetiin Ovoo porphyry Cu-Mo deposit in Northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cha, B.; Lee, I.; Seo, J.; Moon, I.

    2012-12-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) reveals textures in quartz that are not apparent with other methods such as optical microscopy or backscattered electron images. Hydrothermal quartz from quartz-sulfide veins in the Erdenetiin Ovoo porphyry Cu-Mo deposit, Mongolia was analyzed by SEM-CL. They reveal euhedral growth zones with CL-bright and gray, wide CL-dull bands that cut across multiple quartz grains, CL-dark splatters of quartz connected by networks of cobweb-shaped CL-dark quartz with decreasing in luminescence along splatters and grain boundaries, and recrystallization of CL-bright quartz to CL-gray quartz. These cryptic textures indicate that a single vein of molybdenite-quartz vein has undergone at least 4 events: (1) precipitation of CL-bright and CL-gray quartz with euhedral quartz, (2) fracturing and following growth of CL-dull quartz, (3) dissolution along microfractures and following CL-dark precipitation with decreasing in luminescence intensity along microfractures and grain boundaries, and (4) precipitation of pyrite-quartz vein cutting the molybdenite-quartz vein. Fluid inclusions in molybdenite-quartz veins are presented by liquid type, liquid-vapor type (vapor occupies 20 volume %), and liquid-vapor type bearing a solid phase. The liquid-vapor type inclusions within CL-gray quartz of the first event show their homogenization temperatures ranging from 204 to 312°C. Typical homogenization temperatures of porphyry deposits range from 250 to 800°C. Molybdenite-quartz vein in the Erdenetiin Ovoo porphyry system formed through the low temperature hydrothermal processes. Keywords: Erdenetiin Ovoo, hydrothermal, quartz, veins, cathodoluminescence, fluid inclusions

  12. Rhenium in ores of the Mikheevskoe porphyry Cu-Mo deposit, South Urals

    NASA Astrophysics Data System (ADS)

    Plotinskaya, O. Yu.; Grabezhev, A. I.; Seltmann, R.

    2015-03-01

    The distribution of Re in ores of the Mikheevskoe Mo-Cu deposit in the South Urals is studied. It is established that the grade of Re in the ores usually does not exceed 0.5 g/t. A positive correlation between concentrations of Re and Mo (correlation coefficient 0.94), and Re and Cu (correlation coefficient 0.52) is found. EMPA of individual flakes of molybdenite showed that a Re content higher than the detection limit has been measured in most flakes studied, as a rule as high as 0.4-0.5 wt %, but occasionally reaching 1.34 wt %. Re within flakes of molybdenite is irregularly distributed. Patchy, linear, and concentric-zoned patterns of zones with elevated Re content (usually 0.5-1 wt % Re, sometimes higher) are found against the lower content (up to 0.2 wt % Re) that is regularly distributed within the flake. Later hydrothermal processes and mechanical deformation of flakes result in epigenetic Re redistribution in molybdenite that leads to homogenization of molybdenite composition and smoothing of primary pattern, or removal of Re from molybdenite.

  13. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones

    NASA Astrophysics Data System (ADS)

    Yang, Zhiming; Hou, Zengqian; Chang, Zhaoshan; Li, Qiuyun; Liu, Yunfei; Qu, Huanchun; Sun, Maoyu; Xu, Bo

    2016-02-01

    Jiru is a poorly studied Cu deposit located in the west segment of the Gangdese porphyry Cu belt (GPCB), 200 km west of Lhasa. The deposit consists of both collisional- and postcollisional-stage porphyry-type Cu systems, which are genetically associated with the early Eocene granitoid batholith and the Miocene Jiru porphyry stock, respectively. In this study, we present zircon U-Pb LA-ICP-MS dates and Hf isotopes, whole rock geochemical and Pb isotope geochemical data for the main intrusions in the Jiru deposit. The early Eocene granitoid samples (~ 49 Ma) are characterized by magmatic arc geochemical features, slightly concave REE patterns and well-developed negative Eu anomalies. These geochemical characteristics suggest that the granitoid melts were generated by partial melting of a metasomatized mantle, and that the melt had undergone fractional crystallization of amphibole and plagioclase. In contrast, the Miocene porphyry intrusions (16.4-15.5 Ma) at Jiru are characterized by high K contents, adakitic affinities (e.g., high Sr/Y and La/Yb ratios), subduction signatures (e.g., enriched Cs, Rb, Ba and depleted Nb, Ta, Ti), positive zircon εHf(t) values (1-6) and variable 208Pb/204Pb ratios (38.5-39.0), similar to other post-collisional porphyry intrusions in the Gangdese belt. Based on the above features, we propose that the Miocene porphyry intrusions at Jiru were generated by partial melting of subduction-modified lower crust. Well-developed negative Eu anomalies and low Sr/Y ratios (generally < 20) of the least fractionated samples of the Early Eocene granitoids indicate that water content of the primitive collision-related magma was < 4 wt.%, but increased to over 4 wt.% with fractional crystallization, as evidenced by very weak negative Eu anomalies and relatively high Sr/Y ratios (~ 40) for some samples with SiO2 contents of ~ 67 wt.%. Upper crustal differentiation, which would increase water content of residual magma, is thought to be a key step in the

  14. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous

  15. Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte District, Bulgaria: the paired Vlaykov Vruh and Elshitsa deposits

    NASA Astrophysics Data System (ADS)

    Kouzmanov, Kalin; Moritz, Robert; von Quadt, Albrecht; Chiaradia, Massimo; Peytcheva, Irena; Fontignie, Denis; Ramboz, Claire; Bogdanov, Kamen

    2009-08-01

    Vlaykov Vruh-Elshitsa represents the best example of paired porphyry Cu and epithermal Cu-Au deposits within the Late Cretaceous Apuseni-Banat-Timok-Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition. At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic Cu-Bi-Te-Pb-Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two compositionally different types of ores—massive pyrite and copper-pyrite bodies. Vlaykov Vruh shares features with typical porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart, respectively. The magmatic-hydrothermal system at Vlaykov Vruh-Elshitsa produced much smaller deposits than similar complexes in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of

  16. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints

    USGS Publications Warehouse

    Monteiro, Lena V.S.; Xavier, R.P.; Carvalho, E.R.; Hitzman, M.W.; Johnson, C.A.; Souza, Filho C.R.; Torresi, I.

    2008-01-01

    The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with

  17. Porphyry-Cu-Mo Stockwork Formation by Dynamic, Transient Hydrothermal Pulses: Mineralogic Insights From the Deposit at Butte, Montana

    NASA Astrophysics Data System (ADS)

    Mercer, C. N.; Reed, M. H.

    2011-12-01

    The temperature profile in magmatic-hydrothermal systems directly affects the chemical behavior and pressure regime of hydrothermal fluids and the resulting diversity of mineralization. We combine textural observations of igneous and hydrothermal minerals using SEM-CL and -BSE images with three independent mineral thermobarometers to better understand the thermal profile at the porphyry-Cu-Mo deposit in Butte, Montana. We apply the two most recent (and controversial) forms of the Ti-in-quartz thermobarometer from Thomas et al. (2010) and Huang and Audétat (2011), the Zr-in-rutile thermobarometer of Tomkins et al. (2007), and the XMg-Ti-in-biotite thermometer of Henry et al. (2005) to estimate the formation temperatures of these magmatic and hydrothermal minerals. In a comparison of isobaric temperature distributions from Ti-in-quartz (Thomas et al., 2010) and Zr-in-rutile we find that the Thomas et al. calibration consistently yields temperatures that are 50 to 200°C lower than those from Zr-in-rutile. These quartz temperatures are unreasonably low for quartz phenocrysts and are considerably lower than previous estimates for vein quartz. Temperature estimates from the Zr-in-rutile and XMg-Ti-in-biotite thermobarometers agree well with each other and with previous temperature estimates. We conclude that application of the Ti-in-quartz thermobarometer of Thomas et al. is not appropriate for this natural system. Quartz temperatures calculated using the calibration of Huang and Audétat (2011) are closer to those from rutile and biotite. Application of the Ti-in-quartz thermobarometer of Huang and Audétat to hydrothermal samples yields maximum temperature estimates, however, and requires evaluation of trace element abundances (e.g., Ti, Al) and other crystal lattice impurities (e.g., fluid inclusions) in growth zones as a means to determine whether growth zones represent slow or fast-growing quartz. Using thermobarometry from rutile, biotite, and quartz (Huang and

  18. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Carten, R.B.; Geraghty, E.P.; Walker, B.M.

    1988-01-01

    The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors

  19. Exploration case study using indicator minerals in till at the giant Pebble porphyry Cu-Au-Mo deposit, southwest Alaska, USA

    USGS Publications Warehouse

    Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Smith, Steven G.

    2011-01-01

    The Pebble deposit in southwest Alaska (Fig. 1) contains one of the largest resources of copper and gold in the world. It includes a measured and indicated resource of 5,942 million tonnes (Mt) at 0.42% Cu, 0.35 g/t Au, and 250 ppm Mo (0.30% copper equivalent, CuEQ, cut off) and contains significant concentrations of Ag, Pd, and Re (Northern Dynasty Minerals 2011). The deposit remains open at depth. The Pebble West zone was discovered in 1989 by Cominco American. In 2005, Northern Dynasty Minerals Ltd. (NDM) discovered Pebble East, and in July 2007, NDM partnered with Anglo American to form the Pebble Limited Partnership (PLP). The U.S. Geological Survey began collaborative investigations with PLP in 2007 to identify techniques that will improve mineral exploration in covered terranes. The Pebble deposit is an ideal location for such a study because the deposit is undisturbed (except for drilling), is almost entirely concealed by post-mineral volcanic rocks and glacial deposits, and because its distribution is well constrained in the subsurface by PLP’s drill-hole geology and geochemistry. An exploration method developed by Averill (2007) that utilizes porphyry copper indicator minerals (PCIMR) in glacial till samples was applied at Pebble; samples were collected up- and down-ice (of former glaciers) from the deposit. The distribution of several PCIMs identifies the deposit, which suggests that PCIMs may be useful in exploration for other concealed porphyry deposits in the region. In this study, we compare the efficacy of PCIMs relative to that of pond and stream sediments also collected in the deposit area. The Pebble deposit is located 380 km southwest of Anchorage, in the Bristol Bay region of southwest Alaska. There is no road network and access to the study area is by helicopter. The deposit is situated in a broad glacially sculpted topographic low at the head of three drainages, Talarik Creek, North Fork Koktuli River, and the South Fork Koktuli River (Fig

  20. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  1. Geochronology, geochemistry and Sr-Nd-Pb isotopic constraints on the origin of the Qian’echong porphyry Mo deposit, Dabie orogen, east China

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Mao, Jingwen; Ye, Huishou; Li, Faling; Li, Yongfeng; Luo, Zhengzhuan; Xiong, Bikang; Meng, Fang

    2014-05-01

    The giant Qian’echong porphyry molybdenum deposit is located in the Dabie orogen, east China. The molybdenum mineralization mainly occurs as molybdenite-bearing quartz veins hosted by the Devonian Nanwan Formation in the external contact zone of the Qian’echong stock. The Qian’echong stock comprises an earlier formed monzogranite and a later formed granite porphyry. Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb dating constrains the timing of crystallization of the monzogranite and granite porphyry to 130 ± 2 and 129 ± 2 Ma, respectively. The Re-Os model ages of six molybdenite samples range from 127.9 ± 1.9 to 129.7 ± 1.9 Ma with an isochron age of 129.4 ± 1.5 Ma, which are all consistent within errors with the zircon U-Pb ages, indicating an Early Cretaceous magmatic and mineralization event. The Qian’echong granites have moderate negative Eu anomalies and are relatively enriched in light rare earth elements (REE), but depleted in heavy REE, Y, and high field strength elements (HFSE; e.g., Nb, Ta, and Ti). The Qian’echong granites are I-type rather than A- or S-type, and they have high (87Sr/86Sr)i (0.706771-0.710326) and low ɛNd(t) (-25.5 to -16.8). Two-stage Nd model ages (T2DM) vary between 2.29 and 2.99 Ga. Sr-Nd-Pb isotopic data suggest that the Qian’echong granites were not derived from the North China Craton (NCC), but rather were generated from the Yangtze Craton (YC) lower crust. Paleoproterozoic inherited zircon age and whole-rock chemical and Sr-Nd-Pb isotopic data suggest that the Qian’echong granites were derived mainly from partial melting of ultrahigh pressure eclogites, with incorporation of some Paleoproterozoic to Archean YC crustal materials at lower crustal levels. Delamination or foundering of eclogitic lower crust, which extensively occurred in the Dabie orogen during the Early Cretaceous, had not taken place beneath the Qian’echong deposit when it formed. The Qian’echong molybdenum deposit formed in

  2. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  3. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  4. A mixture of mantle and crustal derived He-Ar-C-S ore-forming fluids at the Baogutu reduced porphyry Cu deposit, western Junggar

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; He, HuaiYu; Jin, LuYing

    2015-02-01

    Most large to huge porphyry Cu deposits (PCDs) are oxidized, making the Baogutu reduced porphyry Cu deposit (RPCD) a relative rarity. CH4-bearing ore-forming fluids formed at several hydrothermal stages, however, their source is still unclear. To address this issue, isotopic investigations of sulfide He-Ar-S and calcite C were conducted. Fluid inclusions hosted in sulfides (arsenopyrite, chalcopyrite and pyrite) showed 3He/4He ratios of 0.06-0.30 Ra (Ra is the 3He/4He ratio of air = 1.39 × 10-6), 40Ar/36Ar of 311-405, 40Ar∗/4He of 0.06-1.01, and F4He ratios of 902-11,074 (sample BGT-Py 2 yielded a ratio of 100), indicating a predominantly crustal source for the fluids with minor mantle input (less than 5%). The δ13C values of carbonate yielded a value of -7.8‰ (n = 3), implying that CO2 was probably sourced from mantle or juvenile lower crust. According to the restricted sulfide δ34S values, the total S isotopic composition of the hydrothermal system was estimated to be 0.0-0.5‰, suggesting that the sulfur was derived from mantle or lower crust magmatic source. According to the published granitoids Nd isotopic compositions at the Baogutu RPCD, fairly young TDM model ages (450-650 Ma) suggest that the granitoids were derived from partial melting of a juvenile basaltic lower crust. Thus, we propose that small proportion of mantle-derived fluids (less than 5%), probably rise up and then mix with the fluids of juvenile lower crust under an extensional tectonic setting, forming the mantle-derived Sr-Nd-Pb-S-C but crustal He-Ar isotopic compositions.

  5. Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Wu, Guang; Chen, Yuchuan; Li, Zongyan; Liu, Jun; Yang, Xinsheng; Qiao, Cuijie

    2014-01-01

    The Yinjiagou Mo-Cu-pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit's mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz-molybdenite, quartz-calcite-pyrite-chalcopyrite-bornite-sphalerite, and calcite-galena-sphalerite in the sulfide episode, and chalcedony-limonite in the supergene episode. Re-Os and 40Ar-39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O-CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4-44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz-molybdenite veins is 382-416 °C, and the salinity is 3.6-40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz-calcite-pyrite-chalcopyrite-bornite-sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6-42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz-molybdenite stockworks is in a range of 321-411 °C, and the salinity is 6.3-16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz-sericite-pyrite is in a range of 326-419 °C, and the salinity is 4.7-49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O-NaCl-KCl ± CO2 system. The δ18OH2O values of ore

  6. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/ 39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Li, Jinxiang; Qin, Kezhang; Li, Guangming; Xiao, Bo; Zhao, Junxing; Chen, Lei

    2011-06-01

    The Duolong gold-rich porphyry copper deposit was recently discovered and represents a giant prospect (inferred resources of 4-5 Mt fine-Cu with a grade of 0.72% Cu; 30-50 t fine-gold with a grade of 0.23 g/t Au) in the Bangongco metallogenic belt, Tibet. Zircon SHRIMP and LA-ICP-MS U-Pb geochronology shows that the multiple porphyritic intrusions were emplaced during two episodes, the first at about 121 Ma (Bolong mineralized granodiorite porphyry (BMGP) and barren granodiorite porphyry (BGP)) and the second about 116 Ma (Duobuza mineralized granodiorite porphyry (DMGP)). Moreover, the basaltic andesites also have two episodes at about 118 Ma and 106 Ma, respectively. One andesite yields an U-Pb zircon age of 111.9 ± 1.9 Ma, indicating it formed after the multiple granodiorite porphyries. By contrast, the 40Ar/ 39Ar age of 115.2 ± 1.1 Ma (hydrothermal K-feldspar vein hosted in DMGP) reveals the close temporal relationship of ore-bearing potassic alteration to the emplacement of the DMGP. The sericite from quartz-sericite vein (hosted in DMGP) yields a 40Ar/ 39Ar age of 115.2 ± 1.2 Ma. Therefore, the ore-forming magmatic-hydrothermal evolution probably persisted for 6 m.y. Additionally, the zircon U-Pb ages (106-121 Ma) of the volcanic rocks and the porphyries suggest that the Neo-Tethys Ocean was still subducting northward during the Early Cretaceous.

  7. Microgranular enclaves in island-arc andesites: A possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobo; Xue, Chunji; Symons, David T. A.; Zhang, Zhaochong; Wang, Honggang

    2014-05-01

    The successful exploration for porphyry copper deposit in western Tianshan, Xinjiang, faces great challenge. Tulasu basin is an important epithermal gold ore cluster in western Tianshan, which was formed in a southwest-Pacific-type island-arc setting during the late Paleozoic by the southward subduction of the North Tianshan ocean beneath the Yili plate. Porphyry Cu-Au deposits are possibly to be found at depth or adjacent to these epithermal gold deposits. Some sulfide-mineralized microgranular enclaves of monzonite porphyry and microdiorite were found in andesites of the Tawuerbieke gold district, Tulasu basin. The enclaves are randomly distributed, with generally round or subangular shape and commonly clearly defined within their host andesite, and have a chilled surrounding margin of andesite. The monzonite porphyry enclaves (MPE) exhibit porphyritic texture with the phenocrysts of plagioclase and K-feldspar. The microdiorite enclaves (MDE) are mainly composed of plagioclase and hornblende with an aplitic texture and massive structure. The host andesites show porphyritic texture, with the phenocrysts major of plagioclase, minor of hornblende and clinopyroxene. The groundmass consists of short-column plagioclase and minor clinopyroxene with a hyalopilitic texture. Zircon grains from a MPE sample yield a weighted 206Pb/238U age of 356.2 ± 4.3 Ma (n = 13, MSWD = 1.11), which is effectively coincident with the 360.5 ± 3.4 Ma (n = 20, MSWD = 0.61) of an andesite sample within analytical error, indicating that they were coeval. In addition, the MPE, MDE and the andesite samples share similar normalized incompatible element and rare earth element patterns that are characterized by a pronounced enrichment of large ion lithophile elements and a deficit of high field strength elements. Moreover, the samples show similar Nd isotope compositions to the contemporary andesites and basaltic andesites. Detailed petrology, geochronology and geochemistry studies suggest that

  8. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    NASA Astrophysics Data System (ADS)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  9. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    USGS Publications Warehouse

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  10. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the Middle-Lower Yangtze River Valley metallogenic belt, eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; Cooke, David R.; Zhang, Lejun; Fu, Bin; White, Noel C.

    2016-05-01

    Porphyry Cu deposits can form in intracontinental or post-collision settings; however, both the genesis of fertile magmas and the mechanism of metal enrichment remain controversial. The Shujiadian porphyry Cu deposit is located in the Tongling area of the Middle-Lower Yangtze River Valley metallogenic belt. It is hosted by the Shujiadian complex, which mainly consists of quartz diorite porphyry (143.7 ± 1.7 Ma) and pyroxene diorite (139.8 ± 1.6 Ma). They both belong to the calc-alkaline series, with enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in high field-strength elements (HFSE) and heavy rare earth elements (HREE), and slightly negative Eu anomalies. Both quartz diorite porphyry and pyroxene diorite have geochemical affinities with adakite, and their low MgO (1.5-3.7 wt%), and Ni (3.7-6.9 ppm), Cr (2.0-44 ppm), and Th/Ce contents (0.06-0.11) indicate that the intrusive rocks have some characteristics of adakite-like rocks derived from thickened lower crust and melts from metabasaltic rocks and eclogites. Plagioclases from the quartz diorite porphyry are andesine (An value = 31.8-40.5) and from the pyroxene diorite are felsic albite and oligoclase with large-scale zones and variable An value (An value = 8.9-18.3), Fe and Sr contents, which indicate that mixing of mafic and felsic magma may have occurred in the shallow magma chamber. Compared to the barren quartz diorite porphyry, relatively lower SiO2 contents (49.5-55.2 wt.%), higher εNd(t) values (- 7.4 to - 6.9), εHf(t) values (- 11.0 to - 9.1) compositions, Ti-in-zircon temperatures (714-785 °C), and variations of HREE contents of the mineralization-related pyroxene diorite suggest mixing with high-temperature mafic magma. Calculated Ce4 +/Ce3 + values of pyroxene diorite plot between the Ni-NiO buffer (NNO) and magnetite-hematite buffer (MH), and barren quartz diorite porphyry samples plot below the Ni-NiO buffer (NNO). Geochemical features of

  11. Early Carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: Slab melting and implications for porphyry copper mineralization

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Wang, Jian-Ping; Yang, Jun-Tao; Zhang, Fang-Fang; Zhao, Ze-Nan; Zhao, Yun-Jiang; Liu, Bin

    2015-05-01

    Existing geochronological and geochemical data for the Early Carboniferous magmatic rocks in the eastern Tianshan, Xinjiang, have been interpreted in a variety of theories regarding petrogenesis and geodynamic setting. The proposed settings include rift, back-arc basin, passive continental margin, island arc, ridge subduction, and post-collisional environment. To evaluate these possibilities, we present new SHRIMP zircon U-Pb geochronology and geochemical data, whole-rock geochemical, Hf isotope, and S isotope data for tonalitic rocks and ores associated with the Tuwu porphyry copper deposit located in the center of the late Paleozoic Dananhu-Tousuquan arc, eastern Tianshan. SHRIMP zircon U-Pb dating indicates that the magmatic activity and thus associated copper mineralization occurred ca.332 Ma. The tonalitic rocks are calc-alkaline granites with A/CNK values ranging from 1.16 to 1.58; are enriched in K, Rb, Sr, and Ba; and are markedly depleted in Nb, Ta, Ti, and Th. They show geochemical affinities similar to adakites, with high Sr, Al2O3, and Na2O contents and La/Yb ratios; low Y and Yb contents; and slight positive Eu anomalies. In situ Hf isotopic analyses of zircons yielded positive initial εHf(t) values ranging from 6.9 to 17.2. The δ34S values of the ore sulfides range from -3.0‰ to +1.7‰, reflecting a deep sulfur source. Our results indicate that the paleo-Tianshan oceanic slab was being simultaneously subducted northward beneath the Dananhu-Tousuquan arc, and southward beneath the Aqishan-Yamansu arc during the Early Carboniferous. The Tuwu adakitic tonalitic rocks were derived from the partial melting of the subducted paleo-Tianshan oceanic slab, which was subsequently hybridized by mantle wedge peridotites. The slab-derived magmas have considerably high copper contents and are highly oxidized, thus leading to porphyry copper mineralization. Such Early Carboniferous tonalitic rocks that are widespread in the eastern Tianshan define a province

  12. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  13. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  14. Late Cretaceous porphyry copper mineralization in Sonora, Mexico: Implications for the evolution of the Southwest North America porphyry copper province

    NASA Astrophysics Data System (ADS)

    Barra, Fernando; Valencia, Victor A.

    2014-10-01

    Two porphyry Cu-Mo prospects in northern Sonora, Mexico (Fortuna del Cobre and Los Humos) located within the southwestern North American porphyry province have been dated in order to constrain the timing of crystallization and mineralization of these ore deposits. In Fortuna del Cobre, the pre-mineralization granodiorite porphyry yielded an U-Pb zircon age of 76.5 ± 2.3 Ma, whereas two samples from the ore-bearing quartz feldespathic porphyry were dated at 74.6 ± 1.3 and 75.0 ± 1.4 Ma. Four molybdenite samples from Los Humos porphyry Cu prospect yielded a weighted average Re-Os age of 73.5 ± 0.2 Ma, whereas two samples from the ore-bearing quartz monzonite porphyry gave U-Pb zircon ages of 74.4 ± 1.1 and 74.5 ± 1.3 Ma, showing a Late Cretaceous age for the emplacement of this ore deposit. The results indicate that Laramide porphyry Cu mineralization of Late Cretaceous age is not restricted to northern Arizona as previously thought and provide evidence for the definition of NS trending metallogenic belts that are parallel to the paleo-trench. Porphyry copper mineralization follows the inland migration trend of the magmatic arc as a result of the Farallon slab flattening during the Laramide orogeny.

  15. Environmental behavior of two molybdenum porphyry systems

    USGS Publications Warehouse

    Tuttle, M.L.W.; Wanty, R.B.; Berger, B.R.

    2004-01-01

    Our study focuses on the geology, hydrology, and geochemistry of a variety of molybdenum (Mo) porphyry systems. The systems are either high fluorine, granite, Climax-type, systems (e.g. Mount Emmons/ Redwell Mo deposit, Colorado and Questa Mo deposit, New Mexico) or low fluorine granodiorite systems (e.g. Buckingham Stockwork Mo deposit, Battle Mountain, Nevada and Cannivan Gulch Mo deposit, Montana). The water quality of streams, natural springs, mine discharge, and ground water from drill holes were assessed in the region of these deposits. The ultimate goal of our study is to understand the environmental behavior of these Mo porphyry systems in the context of geologic setting, hydrologic regime, and climate.

  16. Estimation of undiscovered deposits in quantitative mineral resource assessments-examples from Venezuela and Puerto Rico

    USGS Publications Warehouse

    Cox, D.P.

    1993-01-01

    Quantitative mineral resource assessments used by the United States Geological Survey are based on deposit models. These assessments consist of three parts: (1) selecting appropriate deposit models and delineating on maps areas permissive for each type of deposit; (2) constructing a grade-tonnage model for each deposit model; and (3) estimating the number of undiscovered deposits of each type. In this article, I focus on the estimation of undiscovered deposits using two methods: the deposit density method and the target counting method. In the deposit density method, estimates are made by analogy with well-explored areas that are geologically similar to the study area and that contain a known density of deposits per unit area. The deposit density method is useful for regions where there is little or no data. This method was used to estimate undiscovered low-sulfide gold-quartz vein deposits in Venezuela. Estimates can also be made by counting targets such as mineral occurrences, geophysical or geochemical anomalies, or exploration "plays" and by assigning to each target a probability that it represents an undiscovered deposit that is a member of the grade-tonnage distribution. This method is useful in areas where detailed geological, geophysical, geochemical, and mineral occurrence data exist. Using this method, porphyry copper-gold deposits were estimated in Puerto Rico. ?? 1993 Oxford University Press.

  17. Partial melting of subducted paleo-Pacific plate during the early Cretaceous: Constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit, Lower Yangtze River Belt

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Li, Shuang; Gu, Huangling; Mastoi, Abdul Shakoor; Sun, Weidong

    2016-10-01

    A large porphyry Cu-Au deposit associated with early Cretaceous intrusive rocks has been discovered and explored in the Shaxi area, Lower Yangtze River Belt (LYRB), eastern China. We studied two types of intrusive rocks in the Shaxi area: Cu-Au mineralization related diorites and quartz-diorites (adakitic rocks), and newly found high Sr/Y ratio biotite-gabbros. They were formed almost simultaneously with crystallization ages of ca. 130 to 129 Ma, younger than the early stage shoshonitic rocks (Longmenyuan, Zhuanqiao and Shuangmiao Fm.) in the Luzong volcanic basin, ~ 10 km south of the Shaxi area. These intrusive rocks show similar distribution patterns of trace elements (enriched in LILEs and depleted in HFSEs) and REEs (enriched in LREEs and depleted in HREEs, no Eu negative anomaly, flat HREE patterns). The diorites and quartz-diorites are adakitic rocks with calc-alkaline affinity, distinguished from other adakitic rocks in the LYRB which are high-K calc-alkaline series. The biotite-gabbros are not adakitic rocks, although they are characterized by high Sr/Y ratios. Shaxi adakitic rocks show positive zircon εHf(t) values, which may be attributed to the contribution of subducted oceanic crust, while the εHf(t) values of the biotite-gabbros are mostly negative, indicating the involvement of old crustal materials. Although Sr-Nd-Pb isotopes of Shaxi adakitic rocks are more depleted than those of other adakitic rocks in the LYRB, they are still slightly enriched, similar to continental arc adakites in the Andean Austral Volcanic Zone. The Shaxi adakitic rocks are characterized by high Sr contents and Sr/Y ratios, medium (La/Yb)N, MgO contents and Mg#, and low K2O/Na2O ratios, decoupling of Sr/Y and (La/Yb)N, low Th/U values, exhibiting characteristics of slab-derived adakitic rocks. They were not produced by fractional crystallization of basaltic magmas like adakitic rocks in Edong-Jiurui and Tongling but originally generated from partial melting of subducted

  18. Late Archean-Early Proterozoic timing for an Andean-style porphyry Cu-Mo deposit at Malanjkhand, Central Indian Tectonic Zone: implications for a Late Archean supercontinent

    NASA Astrophysics Data System (ADS)

    Stein, H. J.; Zimmerman, A.; Hannah, J. L.; Markey, R. J.

    2003-04-01

    Eight Re-Os ages from six molybdenite samples representative of Cu-Mo mineralization in a highly deformed quartz reef and granite host rock comprising the large Malanjkhand deposit were obtained using ID-NTIMS. These data provide a clear Late Archean-Early Proterozoic age for this recently discovered deposit and by implication a minimum age for its hosting terrane, the Central Indian Tectonic Zone (CITZ), a continental scale structure separating peninsular India from northern India. The CITZ was previously inferred to be Middle Proterozoic or younger. Molybdenite dating indicates that stringer mineralization in the quartz reef and disseminated mineralization in the granite were contemporaneous at 2493 ± 8 Ma (2493.1 ± 1.4 Ma based on regression without uncertainty in the 187Re decay constant, MSWD = 0.5, n = 5). Additional molybdenite was precipitated during at least two pulses of reworking (ěrb1 12480 and ěrb1 12450 Ma) that we suggest configured the elongate quartz reef as the CITZ developed in response to NW-directed oblique convergence of a landmass from the south. Previously unrecognized petrographic evidence coupled with high Re concentrations for molybdenites (400-650 ppm) suggest that Malanjkhand is a porphyry Cu-Mo deposit of classic Andean-type, forming in a subduction-accretionary setting that includes involvement of mantle. We suggest that the CITZ may provide a median segment of an extensive and continuous Late Archean-Early Proterozoic orogenic belt that may include portions of the Moyar, Bhavani, Palghat, and Cauvery shear zones in southern India, the Eastern Ghats orogenic belt along the eastern side of India, and connecting to the Aravalli-Delhi belt extending through northwest India. This now folded orogenic belt could be related to the assembly of a Late Archean supercontinent whose eastward margin included East Antartica (Napier complex) at 2.5 Ga. In addition, we suggest that the Vestfold Hills complex (East Antartica) was part of this

  19. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Mercer, Celestine N.; Hofstra, Albert H.; Todorov, Todor I.; Roberge, Julie; Burgisser, Alain; Adams, David T.; Cosca, Michael A.

    2015-01-01

    The Hideaway Park tuff is the only preserved extrusive volcanic unit related to the Red Mountain intrusive complex, which produced the world-class Henderson porphyry Mo deposit. Located within the Colorado Mineral Belt, USA, Henderson is the second largest Climax-type Mo deposit in the world, and is therefore an excellent location to investigate magmatic processes leading to Climax-type Mo mineralization. We combine an extensive dataset of major element, volatile, and trace element abundances in quartz-hosted melt inclusions and pumice matrix glass with major element geochemistry from phenocrysts to reconstruct the pre-eruptive conditions and the source and evolution of metals within the magma. Melt inclusions are slightly peraluminous topaz rhyolitic in composition and are volatile-charged (≤6 wt % H2O, ≤600 ppm CO2, ∼0·3–1·0 wt % F, ∼2300–3500 ppm Cl) and metal-rich (∼7–24 ppm Mo, ∼4–14 ppm W, ∼21–52 ppm Pb, ∼28–2700 ppm Zn, <0·1–29 ppm Cu, ∼0·3–1·8 ppm Bi, ∼40–760 ppb Ag, ∼690–1400 ppm Mn). Melt inclusion and pumice matrix glass chemistry reveal that the Hideaway Park magma evolved by large degrees of fractional crystallization (≤60–70%) during quartz crystallization and melt inclusion entrapment at pressures of ≤300 MPa (≤8 km depth), with little to no crystallization upon shallow ascent and eruption. Filter pressing, crystal settling, magma recharge and mixing of less evolved rhyolite melt, and volatile exsolution were important processes during magma evolution; the low estimated viscosities (∼105–1010 Pa s) of these H2O- and F-rich melts probably enhanced these processes. A noteworthy discrepancy between the metal contents in the pumice matrix glass and in the melt inclusions suggests that after quartz crystallization ceased upon shallow magma ascent and eruption, the Hideaway Park magma exsolved an aqueous fluid into which Mo, Bi, Ag, Zn, Mn, Cs, and Y strongly

  20. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes

    NASA Astrophysics Data System (ADS)

    Chiaradia, Massimo; Vallance, Jean; Fontboté, Lluis; Stein, Holly; Schaltegger, Urs; Coder, Joshua; Richards, Jeremy; Villeneuve, Mike; Gendall, Ian

    2009-05-01

    New U-Pb, Re-Os, and 40Ar/39Ar dates are presented for magmatic and hydrothermal mineral phases in skarn- and porphyry-related ores from the Nambija and Pangui districts of the Subandean zone, southeastern Ecuador. Nambija has been one of the main gold-producing centers of Ecuador since the 1980s due to exceptionally high-grade ores (average 15 g/t, but frequently up to 300 g/t Au). Pangui is a recently discovered porphyry Cu-Mo district. The geology of the Subandean zone in southeastern Ecuador is dominated by the I-type, subduction-related, Jurassic Zamora batholith, which intrudes Triassic volcanosedimentary rocks. The Zamora batholith is in turn cut by porphyritic stocks, which are commonly associated with skarn formation and/or porphyry-style mineralization. High precision U-Pb and Re-Os ages for porphyritic stocks (U-Pb, zircon), associated prograde skarn (U-Pb, hydrothermal titanite), and retrograde stage skarn (Re-Os, molybdenite from veins postdating gold deposition) of the Nambija district are all indistinguishable from each other within error (145 Ma) and indicate a Late Jurassic age for the gold mineralization. Previously, gold mineralization at Nambija was considered to be Early Tertiary based on K-Ar ages obtained on various hydrothermal minerals. The new Jurassic age for the Nambija district is slightly younger than the 40Ar/39Ar and Re-Os ages for magmatic-hydrothermal minerals from the Pangui district, which range between 157 and 152 Ma. Mineralization at Nambija and Pangui is associated with porphyritic stocks that represent the last known episodes of a long-lived Jurassic arc magmatism (˜190 to 145 Ma). A Jurassic age for mineralization at Nambija and Pangui suggests that the Northern Andean Jurassic metallogenic belt, which starts in Colombia at 3° N, extends down to 5° S in Ecuador. It also adds a new mineralization style (Au-skarn) to the metal endowment of this belt.

  1. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The database of known deposits, significant prospects, and prospects includes an inventory of mineral resources in two known porphyry copper deposits, as well as key characteristics derived from available exploration reports for 70 significant porphyry copper prospects and 86 other prospects. Resource and exploration and development activity are updated with information current through February 2013.

  2. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    USGS Publications Warehouse

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The assessment includes a discussion of the tectonic and geologic setting of porphyry copper deposits in western Central Asia (chapter 1), an application of remote sensing data for hydrothermal alteration mapping as a tool for porphyry copper assessment in the region (chapter 2), and a probabilistic assessment of undiscovered porphyry copper resources in four areas that represent Ordovician and Late Paleozoic (Carboniferous-Permian) magmatic arcs (chapter 3). The principal litho-tectonic terrane concept used to delineate permissive tracts was that of a magmatic arc that formed in the subduction boundary zone above a subducting plate. Eight permissive tracts are delineated on the basis of mapped and inferred subsurface distributions of igneous rocks assigned to magmatic arcs of specified age ranges that define areas where the occurrence of porphyry copper deposits within 1 kilometer of the Earth’s surface is possible. These tracts range in area from about 8,000 to 200,000 square kilometers and host 18 known porphyry copper deposits that contain about 54 million metric tons of copper. Available data included geologic maps, the distribution of significant porphyry copper occurrences and potentially related deposit types, the distribution of hydrothermal alteration patterns that are consistent with porphyry copper mineralization, and information on possible subsurface extensions of permissive rocks. On the basis of analyses of these data, the assessment team estimated a mean of 25 undis

  3. Origin of the ore-forming fluids of the Tongchang porphyry Cu-Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: Constraints from He, Ar and S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Jiang, Guohao; Qi, Youqiang

    2014-01-01

    The Jinshajiang-Red River alkaline igneous belt with abundant Cu-Mo-Au mineralization, in the eastern Indian-Asian collision zone, is an important Cenozoic magmatic belt formed under an intra-continental strike-slip system in southwestern (SW) China. The Tongchang deposit is a representative porphyry Cu-Mo deposit in southern segment of the Jinshajiang-Red River alkaline igneous belt, with 8621 t Cu @ 1.24 wt.% and 17,060 t Mo @ 0.218 wt.%. In this study, He, Ar and S isotopic compositions of the Tongchang deposit were determined. He and Ar isotopic compositions suggest that the ore-forming fluids, with 3He/4He ratios varying from 0.17 to 1.50 Ra and 40Ar/36Ar ratios from 299.1 to 347.3 for the deposit, are a mixture between a crust-derived fluid (MASW) with near atmospheric Ar and crustal He, and a mantle-derived fluid. However, the δ34S values of the hydrothermal pyrite samples ranging from 1.0‰ to 1.5‰ with an average of 1.2‰, indicate that the sulfur in the ore-forming fluids of the Tongchang deposit was primarily derived from the magma or indirectly mantle-derived without assimilation of crustal sulfur. In combination with previously published He and Ar isotopic data of the Yulong and Machangqing deposits in northern and central segments of the Jinshajiang-Red River alkaline igneous belt, respectively, the ore-forming fluids of the Yulong and Machangqing deposits are obviously richer in 3He and 40Ar, and poorer in 36Ar in comparison with the Tongchang deposit, implying that more mantle-derived fluids were involved in the ore-forming fluids of the Yulong and Machangqing deposits than those for the Tongchang deposit. This might be one of the most important factors producing larger scales of mineralization in the Yulong and Machangqing deposits than the Tongchang deposit.

  4. Timescales of Porphyry Cu Formation: Bajo de la Alumbrera, NW Argentina

    NASA Astrophysics Data System (ADS)

    Buret, Y.; Von Quadt, A.; Heinrich, C. A.; Peytcheva, I.

    2014-12-01

    Using high-precision U-Pb dating we are potentially able to determine timescales of porphyry emplacement and ore formation. Previous studies have suggested timescales of porphyry Cu formation ranging from <100 yr, based on modelling diffusive equilibrium between fluids and altered rocks [1], to as much as 1 Ma using U-Pb LA-ICP-MS and SHRIMP dating techniques on zircons [2], [3]. In contrast recent numerical simulations suggest Cu precipitation occurs in the range of 50-100 ka [4]. Therefore in order to better constrain timescales of porphyry Cu formation, we apply high precision U-Pb zircon geochronology, using the youngest zircon date to estimate the emplacement age of each porphyry [5].This study focuses on the ~7 Ma Bajo de la Alumbrera Cu-Au deposit, NW Argentina. The deposit consists of a composite stock of dacitic porphyries. The relative timing of each porphyry intrusion is established based on clear cross-cutting relationships between different porphyry intrusions, which include the pre-mineralisation P2 porphyry, pre-syn-minerlisation EP3 porphyry, and the post-mineralisation LP3 and P4 porphyries.Single zircon crystals from individual porphyry intrusions (P2, EP3, LP3, P4) in the Alumbrera deposit have been dated using CA-ID-TIMS, employing the ET2535 tracer solution for maximum precision and accuracy. All porphyries display protracted zircon crystal growth over 100-200 ka timescales. Using the youngest zircons from each of the porphyry intrusions, Cu mineralisation occurred on 10 ka timescales, similar to those proposed by recent numerical predictions [4]. Trace element and Hf isotopic analyses may reveal geochemical distinctions within the porphyry intrusions and record temporal changes in the magmatic evolution. References: [1] Cathles and Shannon (2007) EPSL 262:92-108; [2] Ballard et al. (2001) Geology 29:383-386; [3] Harris et al. (2008) Min Dep 43: 295-314; [4] Weis et al. (2012) Science 338: 1613-1616; [5] von Quadt et al. (2011) Geology 39: 731-734.

  5. 3D inversion of magnetic and electrical resistivity-induced polarization data for an epithermal Au-Ag and underlying porphyry deposit: A case study from British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Abbassi, B.; Huebert, J.; Liu, L.; Lee, B.; Cheng, L.; Richards, J. P.; Unsworth, M. J.; Oldenburg, D.

    2013-12-01

    The Newton property is an epithermal Au-Ag deposit containing precious metals in association with disseminated sulfide minerals such as pyrite. This type of deposit often shows variable geological patterns, so it is important to find fast and cost-efficient methods for their exploration. Aeromagnetic surveys and ground electrical resistivity-induced polarization methods were applied over the Newton property. From preliminary 3D inversion of ZTEM and aeromagnetic data, and joint 3D inversion of electrical resistivity-induced polarization data, we show that low-resistivity and high-chargeability regions are signatures of disseminated sulfide mineralization. Potassic alteration, characterized by hydrothermal biotite (now mostly chloritized) and magnetite is also present locally, and may be related to underlying porphyry-type mineralization. This type of alteration can be identified from its magnetic signature, but the occurrence of other magnetic formations in the deposit area made interpretations of magnetic data difficult. We show that filtering geological noises related to background magnetic anomalies is an essential step in focusing on potassic alteration zones. We used electrical resistivity and induced polarization chargeability models to remove the signals of barren magnetic zones to focus on the susceptibilities pertaining to deep potassic alterations. In order to test the credibility of these interpretations, extensive petrophysical measurements (magnetic susceptibility, electrical resistivity, and gamma ray spectra) were collected on drill-core samples. We show that potassic alteration can also be characterized accurately from high levels of potassium to thorium ratio (K/Th) in gamma ray spectrometric measurements, and that this correlation is stronger than the magnetic signal (likely because hydrothermal magnetite is variable in abundance). Therefore, we focused on magnetic susceptibility values correlated with high K/Th ratios in order to reduce the

  6. Disseminated pyrite in a latite porphyry at Texan Mountain, Hudspeth County, Texas

    USGS Publications Warehouse

    Mullens, Thomas E.

    1973-01-01

    A pyrite-bearing latite porphyry that contains fragments of syenite and a quartz porphyry intruded into the Cretaceous Cox Sandstone are well exposed in a roadcut at Texan Mountain, Hudspeth County, Tex. The pyrite, which occurs along tiny fractures as well as disseminated, and the multiple episodes of intrusion, coupled with copper minerals in veins in the overlying Cox Sandstone, indicate a slight potential for porphyry-type copper or molybdenum deposits at depth.

  7. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  8. Porphyry copper assessment of British Columbia and Yukon Territory, Canada: Chapter C in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Bookstrom, Arthur A.; Frost, Thomas P.; Ludington, Steve

    2011-01-01

    Western Canada has been thoroughly explored for porphyry copper deposits. The total estimated copper contained in known deposits is about 66.8 Mt (based on 2010 data), as compared to a 49 Mt mean of estimated copper in undiscovered deposits and a 34 Mt median of estimated copper in undiscovered deposits. The copper contained in known porphyry copper deposits represents about 58 percent of the total of known and undiscovered porphyry copper deposits (based on mean values). About 86 percent of the increase in estimated copper resources between 1993 and 2009 resulted from the discovery of extensions to known deposits. Nevertheless, exploration for undiscovered deposits continues, especially in and around significant prospects and in parts of permissive tracts that are mostly hidden beneath younger volcanic, sedimentary, or vegetated surficial cover.

  9. Geochemical and fluid zonation in the skarn environment at the tomboy-minnie gold deposits, Lander County, Nevada

    USGS Publications Warehouse

    Theodore, T.G.; Howe, S.S.; Blake, D.W.; Wotruba, P.R.

    1986-01-01

    The Tomboy-Minnie gold deposits are related to the middle Tertiary porphyry copper system centered at Copper Canyon. Gold-silver ores in the deposits occur mostly in a pyrrhotite- and pyrite-rich basal 30-m-thick sequence of altered calcareous conglomerate belonging to the Middle Pennsylvanian Battle Formation. The entire mineralized system contained at least 3.3 million troy oz gold before large-scale mining operations began. Alteration in the Tomboy-Minnie deposits includes actinolite- and chlorite-dominant assemblages, in marked contrast to the skarn, potassic, and phyllic assemblages characterizing the copper-gold-silver deposits of the system. Introduction of gold occurred penecontemporaneously with replacement of early diopside-alteration assemblages by actinolite and chlorite. Metals are zoned strongly in the Copper Canyon system: the West and East ore bodies occur in a copper-gold-silver zone that is followed outward by a gold-silver zone which includes the Tomboy deposit and in turn, is succeeded by a lead-zinc-silver zone. Locations of drill holes that have Au/Ag assay ratios of ??? 1 clearly outline the Tomboy-Minnie deposits within an area of rocks with Au/Ag ratios of ??? 0.5. Fluid-inclusion studies suggest wide variations in temperature and chemistry prevailed in the fluids associated with mineralization at the Tomboy. Early fluids associated with diopsidequartz assemblages probably were dominantly CaCl2-rich brines and were boiling at temperatures higher than 500??C. These fluids were progressively enriched in sodium and potassium over time, and during the hydrosilicate stages, temperatures probably ranged from 320 to 500??C at the time actinolite formed, and from 220 to 320??C at the time chlorite was dominant. Sulfur isotopic data suggest that sulfur, mostly from a magmatic or deep-seated crustal source, was transported by hydrothermal fluids as aqueous H2S with a ?? 34S of about 4 ?? 1??? to the West, East, and Tomboy deposits. ?? 1986.

  10. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Peng, Hui-juan; Zhang, Chang-qing; Mao, Jing-wen; Santosh, M.; Zhou, Yun-man; Hou, Lin

    2015-05-01

    The Late Cretaceous Hongniu-Hongshan porphyry-skarn copper deposit is located in the Zhongdian area of northwestern Yunnan Province, China. Garnets from the deposit have compositions that range from Adr14Grs86 to almost pure andradite (Adr98Grs2) and display two different styles of zoning. The garnets are predominantly of magmatic-hydrothermal origin, as is evidenced by their 18Ofluid (5.4-6.9‰) and low Dfluid (-142‰ to -100‰) values, both of which likely result from late-stage magmatic open-system degassing. Three generations of garnet have been identified in this deposit: (1) Al-rich garnets (Grt I; Adr22-57Grs78-43) are anisotropic, have sector dodecahedral twinning, are slightly enriched in light rare earth elements (LREEs) compared with the heavy rare earth elements (HREEs), have negative or negligible Eu anomalies, and contain high concentrations of F. Fluid inclusions within these Al-rich garnets generally have salinities of 12-39 wt.% NaCl eq. and have liquid-vapor homogenization temperatures (Th) of 272-331 °C. The Grt I are most likely associated with low- to medium-salinity fluids that were generated by the contraction of an ascending vapor phase and that formed during diffusive metasomatism caused by pore fluids equilibrating with the host rocks at low W/R (water/rock) ratios. These garnets formed as a result of the high F activity of the system, which increased the solubility of Al within the magmato-hydrothermal fluids in the system. (2) Fe-rich garnets (Adr75-98Grs25-2) have trapezohedral faces, and are both anisotropic with oscillatory zoning and isotropic. These second-generation Fe-rich garnets (Grt II) have high ΣREE concentrations, are LREE-enriched and HREE-depleted, and generally have positive but variable Eu anomalies. All of the Fe-rich garnets contain high-salinity fluid inclusions with multiple daughter minerals with salinities of 33-80 wt.% NaCl eq. Some of them show higher temperatures of halite dissolution (465-591 °C) than

  11. Magmatic to hydrothermal evolution of the Deva porphyry Cu-Au complex, Apuseni mts, Romania

    NASA Astrophysics Data System (ADS)

    Ivascanu, P. M.; Rosu, E.; Kouzmanov, K.; Pettke, T.; Heinrich, C. A.; Udubasa, G.

    2003-04-01

    Geological processes in magma chambers and subvolcanic conduits -- such as saturation of a sulphide melt or a magmatic volatile phase, or simply increasing copper contents with progressive melt fractionation -- drastically influence whether or not a rich porphyry-type ore deposit may form. The aim of this study is to constrain the magma chamber processes involved in the genesis of an economic porphyry-type Cu-Au deposit. Our study focuses on the Deva porphyry ore-related magmatic system, which belongs to the South Apuseni calk-alkaline Miocene magmatic-metallogenic district. This district includes several similar magmatic structures (e.g., Deva, Rosia Poieni-Rosia Montana, Brad-Barza, Bolcana). Clear field relationships and minimal epithermal overprint make the Deva system very suitable for an extensive petrologic study of the role of magmatic chamber processes in the formation of porphyry-type ore deposits. Three types of andesites with variable Hbl to Bt+Hbl abundances forming subvolcanic bodies and plugs can be distinguished within the 10 km sized structure. K-Ar dating demonstrates development of the magmatic system within a relatively short period (12.8--11.8 Ma). The porphyry Cu-Au deposit has a central position and is related to the younger biotite-rich andesite. Specific processes such as magmatic fractionation, magma mixing, melt - phenocryst re-equilibration, or the exsolution of a sulphide melt and a magmatic volatile phase are well recorded as textural and microchemical features in phenocrysts in mineralized and barren intrusions. These include sieve textures of plagioclase and amphibole, coexisting melt and fluid inclusion assemblages in plagioclase and early hydrothermal quartz, core to rim chemical variations and sometimes inverse zonation of phenocrysts. In-situ EMP and LA-ICP-MS analyses of major to trace elements of melt and fluid inclusions and their host phenocrysts combined with detailed petrographic mapping will be used to reconstruct the

  12. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  13. Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Strashimirov, Strashimir; Petrunov, Rumen; Kanazirski, Milko

    2002-08-01

    The porphyry-copper systems in the central part of the Srednogorie zone (Bulgaria) are represented by three major deposits (Elatsite, Medet and Assarel) and several smaller deposits and occurrences, all of them within the Panagyurishte ore district. The hydrothermal systems are related to Late Cretaceous calc-alkaline igneous complexes. Ore mineralisation is developed predominantly in the apical parts of subvolcanic and intrusive bodies as well as within the volcanic and basement metamorphic rocks. Several of the porphyry systems are spatially associated with shallow-level intermediate and high-sulphidation volcanic-hosted epithermal deposits of economic importance, such as the major gold-copper mine at Chelopech located 10 km from the Elatsite porphyry-copper deposit. Mineralisation processes in the porphyry deposits start with intensive hydrothermal alteration of the wall rocks. K-silicate alteration is characteristic for pre-ore hydrothermal activity in all of them, and it is located mostly in their central parts. Propylitic alteration is prominent in the Medet and Assarel deposits. The Assarel deposit is located in the central part of a palaeovolcanic structure and shows a large spectrum of pre-ore alterations, including propylitic, sericitic, and advanced argillic assemblages. The initial stages of the hydrothermal systems are characterised by high temperatures (>550-500 °C) and highly saline (50-20 wt% NaCl equiv.) and vapour-rich fluids of likely magmatic origin. The composition of the fluids gradually changes from H2O-NaCl±FeCl2 to H2O-NaCl-KCl and H2O-NaCl-dominated as the fluids cool, react with wall rocks, and may become diluted with meteoric water. Fe-Ti-oxide mineral associations were formed early in all deposits, later followed, in the Elatsite deposit, by an assemblage of bornite, chalcopyrite, platinum group element (PGE) phases, Co-Ni thiospinels, Ag- and Bi-tellurides, and selenides. The main ore stage in all deposits is dominated by

  14. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    USGS Publications Warehouse

    Robinson,, Gilpin R.; Menzie, W. David

    2012-01-01

    One implication of the economic filter results for undiscovered copper resources is that global copper supply will continue to be dominated by production from a small number of giant deposits. This domination of resource supply by a small number of producers may increase in the future, because an increasing proportion of new deposit discoveries are likely to occur in remote areas and be concealed deep beneath covering rock and sediments. Extensive mineral exploration activity will be required to meet future resource demand, because these deposits will be harder to find and more costly to mine than near-surface deposits located in more accessible areas. Relatively few of the new deposit discoveries in these high-cost settings will have sufficient tonnage and grade characteristics to assure positive economic returns on development and exploration costs.

  15. Structural control of the emplacement of the Portrerillos porphyry copper, central Andes of Chile

    NASA Astrophysics Data System (ADS)

    Niemeyer, Hans; Munizaga, Rodrigo

    2008-11-01

    The Potrerillos porphyry is located in the Late Eocene-Oligocene metallogenic belt of porphyry copper deposits of Chile, Cordillera de Domeyko, central Andes. It is formed of a porphyritic biotite-hornblende monzonite that was emplaced at less than 1000 m depth. The intrusion has a cylindrical vertical form at depth, whereas its uppermost section resembles a mushroom whose stem is inclined 20-25° to the northwest. The location of the Potrerillos porphyry coincides with a major facies and east-west thickness change in Jurassic to Late Cretaceous marine sedimentary and Tertiary volcanic host rocks. Structurally, the porphyry was emplaced at the intersection between the northeast-oriented Potrerillos fold-and-thrust belt, and a system of northwest-trending strike-slip faults of the Ciénaga fault system. Both structural elements are related to a sinistral regional transpression that was active during the Middle to Late Eocene. The north-northeast trending Sierra Castillo-Agua Amarga fault system was trench-linked with an oblique subduction along the Peru-Chile trench in the southwestern part of South America at this time. One of the main structural elements of the Potrerillos fold-and-thrust belt is the eastward verging Potrerillos Mine reverse fault. We demonstrate a syntectonic relationship between the Potrerillos porphyry emplacement and the onset of the Potrerillos Mine fault. The control at the shallowest levels of the Potrerillos porphyry emplacement was studied by means of a structural analysis of folds, cleavage and deformed oolites in the country rock. This analysis suggests that the porphyry occupied the core of an anticline. The form of this anticline was modeled as a fault-propagation-fold taking into account a 200 m displacement along the basal fault and a local shortening of 45.5% occurred. This model is compatible with a limited displacement along the Potrerillos Mine fault under hot, ductile conditions. The remaining displacement of 1600 m would have

  16. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    USGS Publications Warehouse

    Ludington, Steve; Hammarstrom, Jane M.; Robinson,, Gilpin R.; Mars, John L.; Miller, Robert J.

    2012-01-01

    Assessment results, presented in tables and graphs, show mean expected amounts of metal and rock in undiscovered deposits at different quantile levels, as well as the arithmetic mean for each tract. This assessment estimated a mean of 39 undiscovered porphyry copper deposits within the assessed permissive tracts on the Tibetan Plateau. This represents nearly four times the number of known deposits (11) already discovered. Predicted mean (arithmetic) resources that could be associated with the undiscovered deposits are about 145,000,000 t of copper and about 4,900 t of gold, as well as byproduct molybdenum and silver. Reliable reports of the identified resources in the 11 known deposits total about 27,000,000 t of copper and about 800 t of gold. Therefore, based on the assessments of undiscovered Tibetan Plateau resources in this report, about six times as much copper may occur in undiscovered porphyry copper deposits as has been identified to date.

  17. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson,, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    This assessment includes an overview of the assessment results with summary tables. Detailed descriptions of each tract are included in appendixes, with estimates of numbers of undiscovered deposits, and probabilistic estimates of amounts of copper, molybdenum, gold, and silver that could be contained in undiscovered deposits for each permissive tract. A geographic information system (GIS) that accompanies the report includes tract boundaries and a database of known porphyry copper deposits and significant prospects.

  18. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    USGS Publications Warehouse

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    Detailed descriptions of each permissive tract, including the rationales for delineation and assessment, are given in appendixes, along with a geographic information system (GIS) that includes permissive tract boundaries, point locations of known porphyry copper deposits and significant occurrences, and hydrothermal alteration data based on analysis of remote sensing data.

  19. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson,, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    On a regional basis, both the Indochina Peninsula area and the Indonesian-Malaysian Islands area are estimated to contain about 10 times as much in place copper in undiscovered porphyry copper deposits as has been identified to date. For the New Guinea Island areas, the ratio of undiscovered to identified copper resources is about 2. Some parts of the region have a long history of porphyry exploration cycles and mine development, interrupted at times by political and social unrest, environmental concerns, and natural disasters. Changes in mining laws within the region and the recent high price of gold on the world market have prompted renewed inter

  20. Audio-magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size, resistivity, and skin depth of the polarizable mineral deposit concealed beneath thick overburden, a regional east-west audio-magnetotelluric sounding profile was acquired. The purpose of this report is to release the audio-magnetotelluric sounding data collected along that east-west profile. No interpretation of the data is included.

  1. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to Magmatism

    USGS Publications Warehouse

    John, D.A.

    2001-01-01

    Numerous important Miocene and early Pliocene epithermal Au-Ag deposits are present in the northern Great Basin. Most deposits are spatially and temporally related to two magmatic assemblages: bimodal basalt-rhyolite and western andesite. These magmatic assemblages are petrogenetic suites that reflect variations in tectonic environment of magma generation. The bimodal assemblage is a K-rich tholeiitic series formed during continental rifting. Rocks in the bimodal assemblage consist mostly of basalt to andesite and rhyolite compositions that generally contain anhydrous and reduced mineral assemblages (e.g., quartz + fayalite rhyolites). Eruptive forms include mafic lava flows, dikes, cinder and/or spatter cones, shield volcanoes, silicic flows, domes, and ash-flow calderas. Fe-Ti oxide barometry indicates oxygen fugacities between the magnetite-wustite and fayalite-magnetite-quartz oxygen buffers for this magmatic assemblage. The western andesite assemblage is a high K calc-alkaline series that formed a continental-margin are related to subduction of oceanic crust beneath the western coast of North America. In the northern Great Basin, most of the western andesite assemblage was erupted in the Walker Lane belt, a zone of transtension and strike-slip faulting. The western andesite assemblage consists of stratovolcanoes, dome fields, and subvolcanic plutons, mostly of andesite and dacite composition. Biotite and hornblende phenocrysts are abundant in these rocks. Oxygen fugacities of the western andesite assemblage magmas were between the nickel-nickel oxide and hematite-magnetite buffers, about two to four orders of magnitude greater than magmas of the bimodal assemblage. Numerous low-sulfidation Au-Ag deposits in the bimodal assemblage include deposits in the Midas (Ken Snyder), Sleeper, DeLamar, Mule Canyon, Buckhorn, National, Hog Ranch, Ivanhoe, and Jarbidge districts; high-sulfidation gold and porphyry copper-gold deposits are absent. Both high- and low

  2. Late Carboniferous porphyry copper mineralization at La Voluntad, Neuquén, Argentina: Constraints from Re-Os molybdenite dating

    NASA Astrophysics Data System (ADS)

    Garrido, Mirta; Barra, Fernando; Domínguez, Eduardo; Ruiz, Joaquin; Valencia, Victor A.

    2008-07-01

    The La Voluntad porphyry Cu-Mo deposit in Neuquén, Argentina, is one of several poorly known porphyry-type deposits of Paleozoic to Early Jurassic age in the central and southern Andes. Mineralization at La Voluntad is related to a tonalite porphyry from the Chachil Plutonic Complex that intruded metasedimentary units of the Piedra Santa Complex. Five new Re-Os molybdenite ages from four samples representing three different vein types (i.e., quartz-molybdenite, quartz-sericite-molybdenite and quartz-sericite-molybdenite ± chalcopyrite-pyrite) are identical within error and were formed between ~312 to ~316 Ma. Rhenium and Os concentrations range between 34 to 183 ppm and 112 to 599 ppb, respectively. The new Re-Os ages indicate that the main mineralization event at La Voluntad, associated to sericitic alteration, was emplaced during a time span of 1.7 ± 3.2 Ma and that the deposit is Carboniferous in age, not Permian as previously thought. La Voluntad is the oldest porphyry copper deposit so far recognized in the Andes and indicates the presence of an active magmatic arc, with associated porphyry style mineralization, at the proto-Pacific margin of Gondwana during the Early Pennsylvanian.

  3. Porphyry of Russian Empires in Paris

    NASA Astrophysics Data System (ADS)

    Bulakh, Andrey

    2014-05-01

    Porphyry of Russian Empires in Paris A. G. Bulakh (St Petersburg State University, Russia) So called "Schokhan porphyry" from Lake Onega, Russia, belongs surely to stones of World cultural heritage. One can see this "porphyry" at facades of a lovely palace of Pavel I and in pedestal of the monument after Nicolas I in St Petersburg. There are many other cases of using this stone in Russia. In Paris, sarcophagus of Napoleon I Bonaparte is constructed of blocks of this stone. Really, it is Proterozoic quartzite. Geology situation, petrography and mineralogical characteristic will be reported too. Comparison with antique porphyre from the Egyptian Province of the Roma Empire is given. References: 1) A.G.Bulakh, N.B.Abakumova, J.V.Romanovsky. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p.

  4. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    NASA Astrophysics Data System (ADS)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  5. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet

    NASA Astrophysics Data System (ADS)

    Hou, Zengqian; Zheng, Yuanchuan; Yang, Zhiming; Rui, Zongyao; Zhao, Zhidan; Jiang, Sihong; Qu, Xiaoming; Sun, Qinzhong

    2013-02-01

    Most porphyry Cu-Mo-Au deposits are found in magmatic arcs worldwide, and are associated with hydrous, high- fO2, calc-alkaline magmas, derived from a mantle wedge that was metasomatized by the fluids from a subducted oceanic slab. Recently, such deposits have been documented as occurring widely in collisional settings, where they are associated with potassic magmas generated during the collisional process, but the genesis of the fertile magmas and the mechanism of metallic enrichment remain controversial. Here we present new geochemical and Sr-Nd-Hf isotopic data from the post-collisional fertile and barren porphyries of the Miocene Gangdese porphyry belt in the Tibetan orogen, an orogen formed by the collision of India and Asia in the early Cenozoic. Both types of porphyry are characterized by high K2O contents, and have geochemical affinities with adakite, but the fertile magmas were most likely derived from the melting of a thickened juvenile mafic lower-crust, formed by the underplating of earlier asthenospheric melts at the base of crust, whereas the derivation of the barren magmas involved variable amounts of old lower-crust in Tibet. The melting of sulfide-bearing phases in the juvenile mantle components of the Tibetan lower-crust probably provided Cu, Au, and S to the fertile magmas. The breakdown of amphibole during melting at the source released the fluids necessary for the formation of the porphyry Cu deposits in Tibet. The thickened crust (up to 70-80 km), due to collision, is thought to be responsible for a decrease in the fO2 of the fertile magmas during their ascent to the upper crust, thus preventing the generation of more porphyry Cu-Au and epithermal Au deposits in this collisional zone.

  6. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    NASA Astrophysics Data System (ADS)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  7. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization

    USGS Publications Warehouse

    Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E.

    2006-01-01

    Far field features of ore deposits include mineralogical, geochemical, or biological attributes that can be recognized beyond the obvious limits of the deposits. They can be primary, if formed in association with mineralization or alteration processes, or secondary, if formed from the interaction of ore deposits with the hydrosphere and biosphere. This paper examines a variety of far field features of different ore deposit types and considers novel applications to exploration and discovery. Primary far field features include mineral and rock chemistry, isotopic or element halos, fluid pathways and thermal anomalies in host-rock sequences. Examples include the use of apatite chemistry to distinguish intrusive rocks permissive for iron oxide copper gold (IOCG) and porphyry deposits; resistate mineral (e.g., rutile, tourmaline) chemistry in exploration for volcanogenic massive sulfide (VMS), orogenic gold, and porphyry deposits; and pyrite chemistry to vector toward sedimentary exhalative (sedex) deposits. Distinctive whole-rock geochemical signatures also can be recognized as a far field feature of porphyry deposits. For example, unique Sr/Y ratios in whole-rock samples, used to distinguish barren versus fertile magmas for Cu mineralization, result from the differentiation of oxidized hydrous melts. Anomalous concentrations of halogen elements (Cl, Br, and I) have been found for distances of up to 200 m away from some mineralized centers. Variations in isotopic composition between ore-bearing and barren intrusions and/or systematic vertical and lateral zonation in sulfur, carbon, or oxygen isotope values have been documented for some deposit types. Owing to the thermal aureole that extends beyond the area of mineralization for some deposits, detection of paleothermal effects through methods such as conodont alteration indices, vitrinite or bitumen reflectance, illite crystallinity, and apatite or zircon thermochronology studies also can be valuable, particularly for

  8. Regional mapping of hydrothermally altered igneous rocks along the Urumieh-Dokhtar, Chagai, and Alborz Belts of western Asia using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operators: a tool for porphyry copper exploration and assessment: Chapter O in Global mineral resource assessment

    USGS Publications Warehouse

    Mars, John L.; Zientek, M.L.; Hammarstrom, J.M.; Johnson, K.M.; Pierce, F.W.

    2014-01-01

    The ASTER alteration map and corresponding geologic maps were used to select circular to elliptical patterns of argillic- and phyllic-altered volcanic and intrusive rocks as potential porphyry copper sites. One hundred and seventy eight potential porphyry copper sites were mapped along the UDVB, and 23 sites were mapped along the CVB. The potential sites were selected to assist in further exploration and assessments of undiscovered porphyry copper deposits.

  9. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  10. Porphyry copper assessment of Europe, exclusive of the Fennoscandian Shield: Chapter K in Global mineral resource assessment

    USGS Publications Warehouse

    Sutphin, David M.; Hammarstrom, Jane M.; Drew, Lawrence J.; Large, Duncan E.; Berger, Byron R.; Dicken, Connie L.; DeMarr, Michael W.; with contributions from Billa, Mario; Briskey, Joseph A.; Cassard, Daniel; Lips, Andor; Pertold, Zdeněk; Roşu, Emilian

    2013-01-01

    The assessment includes an overview with summary tables. Detailed descriptions of each tract, including the rationales for delineation and assessment, are given in appendixes A–G. Appendix H describes a geographic information system (GIS) that includes tract boundaries and point locations of known porphyry copper deposits and significant prospects.

  11. Isotopic and geochemical studies of a Pliocene porphyry-Mo system, Rico, Colorado

    SciTech Connect

    Wareham, C.D.

    1991-01-01

    The historic mining district of Rico in southern Colorado Mineral Belt contains a Pliocene porphyry-Mo deposit and peripheral epithermal Pb-Zn-Ag deposits, and hot-springs. The porphyry-Mo mineralization is confined almost exclusively to Precambrian greenstone. The epithermal mineralization is hosted by a Paleozoic and Mesozoic sequence dominated by carbonates, but containing evaporites. The system is geologically complex and focused on a resurgent dome which is cored by a horst of Precambrian strata, and cut by reactivated Precambrian basement shears. The shears have controlled the emplacement of the Laramide and Pliocene granitoids in area. The mineralization is associated with more evolved members of the latter suite. Sr-Nd-Pb-O isotope and minor element data on the granitoid intrusions indicate that they are not simply differentiates of mantle magmas. However, Nd model ages indicate that they are not purely remelts of 1800Ma Precambrian crust. Realistically it is impossible to quantify the relative proportions of crust and mantle material involved in the genesis of the intrusions. Notwithstanding this, the Rico granitoids are isotopically distinct from those associated with Climax-type porphyry-Mo deposits in Colorado. Sd-Nd-Pb isotope and trace element data on a lamprophyre suite in the area suggest two episodes of mafic magmatism; a period whereby the source was predominantly, OIB-type, asthenospheric mantle. [sigma][sup 34]S data and ore deposit paragenesis indicate that the sulphide S has an igneous origin and that the sulphate S was derived by mobilization of Pennsylvanian evaporites. Modelling of the S isotopic data indicates a common S source for the epithermal and porphyry mineralization. The sulphate and sulphide S reservoirs remained essentially decoupled during mineralization. [sigma][sup 34]C data are compatible with the hydrothermal C having been derived by the dissolution and re-precipitation of host sequence carbonate.

  12. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  13. Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines.

    PubMed

    De la Torre, Joseph Benjamin B; Claveria, Rene Juna R; Perez, Rubee Ellaine C; Perez, Teresita R; Doronila, Augustine I

    2016-01-01

    The ability of some plants to take up metal contaminants in the soil has been of increasing interest as an environmental approach to pollution clean-up. This study aimed to assess the ability of Pteris melanocaulon for copper(Cu) uptake by determining the Cu levels in the fern vis-à-vis surrounding soil and the location of Cu accumulation within its biomass. It also aimed to add information to existing literature as P. melanocaulon are found to be less documented compared to other fern metal accumulators, such as P. vittata. The P. melanocaulon found in the Suyoc Pit of a Copper-Gold mine in Placer, Surigao del Norte, Philippines exhibited a high Bioaccumulation Factor(BF) of 4.04 and a low Translocation Factor(TF) of 0.01, suggesting more Cu accumulation in the roots (4590.22 ± 385.66 µg g(-1) Cu). Noteworthy was the Cu concentration in the rhizome which was also high (3539.44 ± 1696.35 µg g(-1) Cu). SEM/EDX analyses of the Cu content in the roots indicated high elemental %Cu in the xylem (6.95%) than in the cortex (2.68%). The high Cu content in the roots and rhizomes and the localization of Cu in the xylem manifested a potential utilization of the fern as a metallophyte for rhizofiltration and phytostabilization. PMID:26555556

  14. Porphyry copper assessment of Central America and the Caribbean Basin: Chapter I in Global mineral resource assessment

    USGS Publications Warehouse

    Gray, Floyd; Hammarstrom, Jane M.; Ludington, Stephen; Zürcher, Lukas; Nelson, Carl E.; Robinson,, Gilpin R.; Miller, Robert J.; Moring, Barry C.

    2014-01-01

    This assessment estimated a total mean of 37 undiscovered porphyry copper deposits within the assessed permissive tracts in Central America and the Caribbean Basin. This represents more than five times the seven known deposits. Predicted mean (arithmetic) resources that could be associated with these undiscovered deposits are about 130 million metric tons of copper and about 5,200 metric tons of gold, as well as byproduct molybdenum and silver. The reported identified resources for the seven known deposits total about 39 million metric tons of copper and about 930 metric tons of gold. The assessment area is estimated to contain nearly four times as much copper and six times as much gold in undiscovered porphyry copper deposits as has been identified to date.

  15. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Robinson,, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    This report includes a brief overview of porphyry copper deposits in Mexico, a description of the assessment process used, a summary of results, and appendixes. Appendixes A through K contain summary information for each tract, as follows: location, the geologic feature assessed, the rationale for tract delineation, tables and descriptions of known deposits and significant prospects, exploration history, model selection, rationale for the estimates, assessment results, and references. The accompanying digital map files (shapefiles) provide permissive tract outlines, assessment results, and data for deposits and prospects in a GIS format (appendix L).

  16. Age of Supergene oxidation and enrichment in the chilean porphyry copper province

    USGS Publications Warehouse

    Sillitoe, R.H.; McKee, E.H.

    1996-01-01

    Twenty-five samples of supergene alunite collected from deeply developed supergene profiles in porphyry copper deposits and prospects between latitudes 20?? and 27?? S in northern Chile yield K/Ar ages ranging from about 34 to 14 Ma. Therefore supergene oxidation and enrichment processes were active from the early Oligocene to the middle Miocene, a minimum of 20 m.y. Supergene activity at individual deposits lasted for at least 0.4 to 6.2 m.y. The early Oligocene supergene activity affected deposits in the Paleocene porphyry copper belt, whereas early and middle Miocene supergene processes are documented in the Early Cretaceous, Paleocene, and late Eocene to early Oligocene porphyry copper belts. Middle Miocene oxidation also affected the oldest epithermal gold-silver deposits in the Maricunga belt farther east. Supergene activity commenced no less than 11 m.y. after generation of each porphyry copper deposit because of the time required to unroof the copper-bearing parts of the system. Supergene activity throughout northern Chile ceased at -14 Ma. The geologic features of deposits and prospects and their morphotectonic positions, present latitudes, and present elevations display no obvious correlations with the supergene chronology. Exploration for major cumulative enrichment blankets should not be carried out either beneath thick sequences of piedmont gravels (?? ignimbrites) of Oligocene through middle Miocene age unless their accumulation is demonstrably late in the documented history of supergene activity, or in porphyry copper provinces, such as those of central Chile and northwestern Argentina, which formed after ??? 14 Ma. The uplift responsible for efficient cumulative copper enrichment is difficult to correlate convincingly with the brief pulses of compressive tectonism postulated for northern Chile and contiguous areas unless their effects were much more prolonged. Intensifying aridity is confirmed as the likely reason for the cessation of supergene

  17. Ecosystem Health in Mineralized Terrane-Data from Podiform Chromite (Chinese Camp Mining District, California), Quartz Alunite (Castle Peak and Masonic Mining Districts, Nevada/California), and Mo/Cu Porphyry (Battle Mountain Mining District, Nevada) Deposits

    USGS Publications Warehouse

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts. The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  18. Gold metallogeny and the copper-gold association of the Australian Proterozoic

    NASA Astrophysics Data System (ADS)

    Davidson, G. J.; Large, R. R.

    1994-07-01

    Australian Proterozoic gold-producing deposits, emplaced mainly at 1.55 2.00 Ga, are divided into the following categories: (1) iron oxide-dominated, brecciahosted, Cu-U±Au replacement deposits spatially associated with felsic intrusions (273t Au); (2) stratabound Au±Cu-bearing iron formations (152.4t Au); (3) unconformity-style U ±Cu/PGM/Au deposits (53t Au); (4) Iron oxide-dominated Au±Cu mineralisation hosted within elements of ductile deformation (146.7t Au); (5) Broken Hill and volcanic-hosted massive sulphides (150t Au); (6) iron-sulphide-dominated veins and replacement zones spatially related to felsic intrusions (150.7t Au), and (7) iron-sulphide-dominated veins and replacement zones spatially related to elements of regional deformation (159.9t Au). Categories (1) to (4) are mainly confined to Proterozoic rocks, constituting an association in which Au and Cu are commonly present together, with variable amounts of U, Bi, Co, W, Se, Te and REE. Most examples in categories 1 4 fall into either of two groups: Cu-Aumagnetite ±hematite types formed at relatively high temperature (300 450 °C), and Cu-U±Au-hematite types formed at 150 300 °C. We postulate that these ores formed from a common high salinity (15 35 wt. % NaCl equiv.), low total sulphur (aΣ S = 10-3 to 10-2), high fO2 fluid-type, in which metal transport was dominated by chloride-complexing. The most effective method of metal deposition was fluid mixing, achieving a synchronous decrease in fO2 and temperature. This unusual oxidised fluid association was favoured in high heat-flow extensional settings containing oxidised and/or oxidised-evaporitic sedimentary sequences. The intrusion of oxidised fractionated granites, which are commonly temporally associated with metal emplacement, acted in some places to heat and focus basinal fluids, and in others was the ultimate source of metals.

  19. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    USGS Publications Warehouse

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.

    2015-11-18

    The assessment estimates that the Tethys region contains 47 undiscovered deposits within 1 kilometer of the surface. Probabilistic estimates of numbers of undiscovered deposits were combined with grade and tonnage models in a Monte Carlo simulation to estimate probable amounts of contained metal. The 47 undiscovered deposits are estimated to contain a mean of 180 million metric tons (Mt) of copper distributed among the 18 tracts for which probabilistic estimates were made, in addition to the 62 Mt of copper already identified in the 42 known porphyry deposits in the study area. Results of Monte Carlo simulations show that 80 percent of the estimated undiscovered porphyry copper resources in the Tethys region are located in four tracts or sub-tracts.

  20. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    USGS Publications Warehouse

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.

    2015-01-01

    The assessment estimates that the Tethys region contains 47 undiscovered deposits within 1 kilometer of the surface. Probabilistic estimates of numbers of undiscovered deposits were combined with grade and tonnage models in a Monte Carlo simulation to estimate probable amounts of contained metal. The 47 undiscovered deposits are estimated to contain a mean of 180 million metric tons (Mt) of copper distributed among the 18 tracts for which probabilistic estimates were made, in addition to the 62 Mt of copper already identified in the 42 known porphyry deposits in the study area. Results of Monte Carlo simulations show that 80 percent of the estimated undiscovered porphyry copper resources in the Tethys region are located in four tracts or sub-tracts.

  1. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    NASA Astrophysics Data System (ADS)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a

  2. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon

  3. Porphyry copper assessment of eastern Australia: Chapter L in Global mineral resource assessment

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Len, Richard A.; Hammarstrom, Jane M.; Robinson,, Gilpin R.; Zientek, Michael L.; Drenth, Benjamin J.; Jaireth, Subhash; Cossette, Pamela M.; Wallis, John C.

    2014-01-01

    This assessment estimates that 15 undiscovered deposits contain an arithmetic mean of ~21 million metric tons or more of copper in four tracts, in addition to the 24 known porphyry copper deposits that contain identified resources of ~16 million metric tons of copper. In addition to copper, the mean expected amount of undiscovered byproduct gold predicted by the simulation is ~1,500 metric tons. The probability associated with these arithmetic means is on the order of 30 percent. Median expected amounts of metals predicted by the simulations may be ~50 percent lower than mean e

  4. Porphyry copper assessment of eastern Australia: Chapter L in Global mineral resource assessment

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Len, Richard A.; Hammarstrom, Jane M.; Robinson,, Gilpin R.; Zientek, Michael L.; Drenth, Benjamin J.; Jaireth, Subhash; Cossette, Pamela M.; Wallis, John C.

    2014-01-01

    This assessment estimates that 15 undiscovered deposits contain an arithmetic mean of ~21 million metric tons or more of copper in four tracts, in addition to the 24 known porphyry copper deposits that contain identified resources of ~16 million metric tons of copper. In addition to copper, the mean expected amount of undiscovered byproduct gold predicted by the simulation is ~1,500 metric tons. The probability associated with these arithmetic means is on the order of 30 percent. Median expected amounts of metals predicted by the simulations may be ~50 percent lower than mean estimates.

  5. Noble gas and halogen constraints on fluid sources in iron oxide-copper-gold mineralization: Mantoverde and La Candelaria, Northern Chile

    NASA Astrophysics Data System (ADS)

    Marschik, Robert; Kendrick, Mark A.

    2015-03-01

    The noble gas (Ar, Kr, Xe) and halogen (Cl, Br, I) composition of fluid inclusions in hydrothermal quartz and calcite related to the hypogene iron oxide-copper-gold (IOCG) mineralization at Mantoverde and Candelaria, Chile, have been investigated to provide new insights of fluid and salinity sources in Andean IOCG deposits. A combination of mechanical extraction by crushing and thermal decrepitation methods was applied and collectively indicate that fluid inclusions with salinities ranging from 3.4 up to 64 wt% NaCl equivalent have molar Br/Cl and I/Cl ratios of between 0.5 × 10-3 and 3.0 × 10-3 and I/Cl of between 8 × 10-6 and 25 × 10-6 in the majority of samples, with maximum values of 5.2 × 10-3 obtained for Br/Cl and 64 × 10-6 for I/Cl in fluid inclusions within individual samples. The fluid inclusions have age-corrected 40Ar/36Ar ratios ranging from the atmospheric value of 296 up to 490 ± 45, indicating the presence of crustal- or mantle-derived excess 40Ar in the fluid inclusions of most samples. The fluid inclusions have 84Kr/36Ar and 130Xe/36Ar ratios intermediate of air and air-saturated water. However, 40Ar/36Ar is not correlated with either 84Kr/36Ar or 130Xe/36Ar, and the fluid inclusion 36Ar concentrations of 0.2-3.5 × 10-10 mol/g (calculated from measured Cl/36Ar and thermometric salinity measurements) extend below the seawater value of 0.34 × 10-10 mol/g, suggesting that contamination with modern air is a minor artifact. The range of fluid inclusion Br/Cl and I/Cl ratios overlap those previously documented for the mantle and magmatic-hydrothermal ore deposits, and the fluids' unusually low 36Ar concentration is consistent with the involvement of magmatic-hydrothermal fluids. Input of additional non-magmatic fluid components is suggested by the spread in Br/Cl and I/Cl to values characteristic of bittern brine sedimentary formation waters and near atmospheric 40Ar/36Ar. These data are compatible with mixing of magmatic-hydrothermal fluids

  6. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district, South Qinling, central China, and implications for regional metallogeny

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Wang, Ruiting; Ren, Tao; Li, Jianbi; Da, Junzhi

    2015-05-01

    The newly discovered porphyry Cu deposits in the South Qinling Belt (SQB) have not been well researched as compared with the large porphyry Mo province in the southern North China Block (S-NCB), and the origin of granitoids associated with porphyry Cu mineralization in the Zha-Shan district, SQB is poorly constrained. Here, we present detailed zircon U-Pb geochronological, whole rock elemental and Sr-Nd isotopic data for important Late Mesozoic granitoid stocks associated with porphyry Cu deposits in the Zha-Shan district; these data are used to constrain the age and the source of magmas that formed these granitoids, and implication of regional metallogeny. The new zircon LA-ICPMS U-Pb ages presented here indicate that the granitoids related to porphyry Cu system at Chigou, Beishagou, Shuangyuangou and Yuanjiagou developed at 148-144 Ma, 144 Ma, 145-144 Ma and 146 Ma, respectively. These rocks are high-K calc-alkaline I-type granitoids, which are enriched in large ion lithophile elements (e.g., Th, U, and Pb) and light rare earth elements, are depleted in Nb, Ta and Ti, characterizing by wide variations in initial εNd(t) (-3.8 to -9.5), and moderate radiogenic Sr isotopes ((87Sr/86Sr)i = 0.7046 to 0.7093). These features indicate that the magmas that formed the granitoids related to porphyry Cu system in the Zha-Shan district formed as a result of variable degrees of mixing between crustal and metasomatic lithospheric mantle. The new zircon LA-ICPMS U-Pb ages in this study, combined with previous published data, suggest that regional-scale Late Jurassic to Early Cretaceous granitoid stocks, and associated porphyry Cu and Mo systems in both the S-NCB and SQB formed almost contemporaneously, with 147-139 Ma porphyry Mo deposits in the S-NCB and 148-145 Ma porphyry Cu deposits in the SQB. The Cu-related intrusions contained a greater contribution of lithospheric mantle component than the Mo-related intrusions in the East Qinling Orogeny.

  7. Re-Os and U-Pb geochronology of the Laochang Pb-Zn-Ag and concealed porphyry Mo mineralization along the Changning-Menglian suture, SW China: implications for ore genesis and porphyry Cu-Mo exploration

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Dong; Li, Jian-Wei; Zhao, Xin-Fu; Wang, Hong-Qiang; Qi, Liang

    2016-02-01

    Numerous polymetallic volcanogenic massive sulfide (VMS), vein, and replacement deposits are distributed along the Changning-Menglian suture zone in Sanjiang Tethyan metallogenic province, SW China. Laochang is the largest Pb-Zn-Ag vein and replacement deposit in this area, with a proven reserve of 0.51 Mt Pb, 0.34 Mt Zn, and 1,737 t Ag. Its age and relationship to magmatic events and VMS deposits in the region, however, have long been debated. In this paper, we present pyrite Re-Os and titanite U-Pb ages aiming to provide significant insights into the timing and genesis of the Pb-Zn-Ag mineralization. Pyrite grains in textural equilibrium with galena, sphalerite, and chalcopyrite from stratabound Pb-Zn-Ag and Cu-bearing Pb-Zn-Ag orebodies have a Re-Os isochron age of 45.7 ± 3.1 Ma (2 σ, mean square weighted deviation (MSWD) = 0.45), whereas titanite grains intergrown with sulfide minerals yield a weighted mean 206Pb/238U age of 43.4 ± 1.2 Ma (2 σ, n = 8). A Mo-mineralized granitic porphyry intersected by recent drilling below the Laochang Pb-Zn-Ag ores yields a zircon U-Pb age of 44.4 ± 0.4 Ma (2 σ, n = 12). Within analytical uncertainties, the ages of the Pb-Zn-Ag deposit and the concealed Mo-mineralized porphyry are indistinguishable, indicating that they are products of a single magmatic hydrothermal system. The results show that Laochang Pb-Zn-Ag deposit is significantly younger than the host mafic volcanic rock (zircon U-Pb age of 320.8 ± 2.7 Ma; 2 σ, n = 12) and Silurian VMS deposits along the Changning-Menglian suture zone, arguing against its origin as a Carboniferous VMS deposit as many researchers claimed. The initial 187Os/188Os ratio (0.540 ± 0.012) obtained from the pyrite Re-Os isochron suggests that metals were likely derived from the granitic porphyry that formed from a hybrid magma due to mixing of crustal- and mantle-derived melts, rather than from the mafic volcanic host rocks as previously thought. Our results favor that the Laochang

  8. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update

    NASA Astrophysics Data System (ADS)

    Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I.

    2014-06-01

    New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8 ± 0.1 Ma and 13.4 ± 0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2 ± 0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65 ± 0.03 Ma and 5.35 ± 0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5-2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70 ± 0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36 ± 0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.

  9. Geochemical and Sr-Pb-Nd isotopic characteristics of the Shakhtama porphyry Mo-Cu system (Eastern Transbaikalia, Russia)

    NASA Astrophysics Data System (ADS)

    Berzina, A. P.; Berzina, A. N.; Gimon, V. O.

    2014-01-01

    The Shakhtama Mo-Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol-Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741-0.70782), relatively radiogenic Pb isotopic compositions, ɛNd(T) values close to CHUR (-2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.

  10. Evaluation of single liquid primers with organic sulfur compound for bonding between indirect composite material and silver-palladium-copper-gold alloy.

    PubMed

    Shimoe, Saiji; Tanoue, Naomi; Satoda, Takahiro; Murayama, Takeshi; Nikawa, Hiroki; Matsumura, Hideo

    2010-01-01

    The purpose of this study was to evaluate the effect of primers on bonding between a silver-palladium-copper-gold alloy and an indirect composite material. Cast disks were air-abraded with alumina, conditioned with one of five primers (Alloy Primer, Luna-Wing Primer, Metal Primer II, Metaltite, M.L. Primer), and bonded with a light-activated indirect composite. Shear bond strengths were determined after 20,000 times of thermocycling. The results showed that four of the primers, except the Luna-Wing Primer, were effective in enhancing the bond strength as compared with the unprimed control group. Of these four primers, Alloy Primer, Metal Primer II, and M.L. Primer exhibited significantly greater bond strengths. It can be concluded that the effectiveness of primers varies considerably according to the organic sulfur compounds added to the solvent, and that care must be taken in selecting priming agents for bonding the composite material and the silver-palladium-copper-gold alloy.

  11. Isotope geology of the bakircay porphyry copper prospect, northern turkey

    NASA Astrophysics Data System (ADS)

    Taylor, R. P.

    1981-10-01

    Isotopic data for the Bakircay granodiorite porphyry, MediaObjects/126_2005_BF01798964_f1.tif give a Late Eocene age for the development of the porphyry copper system. They suggest a close temporal and genetic relationship between igneous and hydrothermal activity, and indicate that magmatic-hydrothermal fluids produced potassic alteration and that meteoric fluids enriched in radiogenic87Sr were responsible for propylitic alteration. The granodiorite porphyry is petrologically similar to porphyry copper-related intrusions from island arc and continental margin settings, which form a group with initial87Sr/86Sr ratios of less than 0. 7043, representing magmas produced in tectonic environments lacking any important component of old (i. e. Precambrian) continental material.

  12. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    USGS Publications Warehouse

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    This report includes an overview of the assessment results and summary tables. Descriptions of each tract are included in appendixes, with estimates of numbers of undiscovered deposits, and probabilistic estimates of amounts of copper, molybdenum, gold, and silver that could be contained in undiscovered deposits for each permissive tract. A geographic information system that accompanies the report includes tract boundaries and a database of known porphyry copper deposits and prospects.

  13. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan: Chapter P in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Demarr, Michael W.; Dicken, Connie L.; Ludington, Stephen; Robinson,, Gilpin R.; Zientek, Michael L.

    2014-01-01

    Descriptions of the geologic basis for delineating each tract, the data used, the geologic criteria and rationale for the assessment, and results of the assessment are included in appendixes along with the description of a geographic information system (GIS) that includes tract boundaries, known porphyry copper deposits and significant prospects, and assessment results.

  14. The Dala (Älvdalen) Porphyries from Sweden

    NASA Astrophysics Data System (ADS)

    Wikström, Anders; Pereira, Lola; Lundqvist, Thomas; Cooper, Barry

    2014-05-01

    The Dala (Älvdalen) Porphyries from Sweden Anders Wikström (retired from Geological Survey of Sweden) Lola Pereira (University of Salamanca, Spain) Thomas Lundqvist (retired from Geological Survey of Sweden) Barry Cooper (University of South Australia) The commercial stone industry in Älvdalen, about 350 km northwest of Stockholm, commenced in the second half of the 18th century, as a consequence of social need. The region had been plagued by severe famine and there was an urgent need for additional wealth-generating industry. At that time it was already known that the porphyry in the area was similar to the "porfido rosso antico" from Egypt which had played an important role in the Roman culture. Many ups and downs followed. During one period in the 19th century, the Swedish Royal family owned the industry. At the same time, several "porphyry" objects were presented to different courts around Europe (e.g. a 4 metre tall vase to the Russian czar, although of a more granitic variety). Otherwise most products have been smaller objects like urns, vases, candelabras, etc. The very hard stone (with variable red or black colours) can be highly polished. Many of the porphyry varieties were sourced from glacial boulders. These had been "mechanically tested" by nature and were free from joints which otherwise was a problem in the associated quarries. Comagmatic granites also occur. The porphyries and granites have an age around 1700 Ma, and the former are amazingly well preserved with magnificent volcanic textures. The porphyries and granites occupy a vast area and are in part covered with red, continental sandstones (which are quarried to-day). In the middle of the 20th century, the ignimbritic character of the porphyry was discovered. Previously, the flattened "fiamme" (collapsed pumice) had been interpreted as some kind of flow structure in a lava. The porphyry manufacturing plants in Älvdalen are a part of the Swedish industrial history. Over a significant

  15. Microthermometric and stable isotopic (O and H) characteristics of fluid inclusions in the porphyry related Çöpler (İliç - Erzincan) gold deposit, central eastern Turkey

    NASA Astrophysics Data System (ADS)

    Canbaz, Oktay; Gökce, Ahmet

    2014-06-01

    The Çöpler gold deposit occurs within the stockwork of quartz hosted by the Çöpler granitoid (Eosen) and by surrounding metasediments of Keban metamorphic (Late Paleozoic - Early Mesozoic) and the Munzur limestones (Late Carboniferous - Early Cretaceous). Native gold accompanied by small amounts of chalcopyrite, pyrite, magnetite, maghemite, hematite, fahlerz, marcasite, bornite, galena, sphalerite, specular hematite, goethite, lepidochrosite and bravoitic pyrite within the stockwork ore veinlets. In addition, epidote (pistazite - zoisite), garnet, scapolite, chlorite, tremolite/actinolite, muscovite and opaque minerals were determined within the veinlets occurred in skarn zones. The study of fluid inclusions in quartz veinlets showed that the hydrothermal fluids contain CaCl2, MgCl2 and NaCl and the salinities of the two phases (L+V) inclusions range from 1.7 to 20.6% NaCl equivalent. Salinity values up to 44% were determined within the halite bearing three phases inclusions. Their homogenization temperature values have a wide range from 145.0 to 380.0°C, indicative of catathermal/hypothermal to epithermal conditions. The δ 18O and δD values of the fluid inclusion waters from the Çöpler granitoid correspond to those assigned to Primary Magmatic Water, those from the metasediments of Keban metamorphics fall outside of the Primary Magmatic and are within the Metamorphic Water field. A sample from a quartz vein within the skarn zone hosted by the Munzur limestones has a particularly low δD value. The results suggest that fluids derived from the granitoids were mixed with those derived from the metasediments of Keban metamorphics and the the Munzur limestones and resulting in quartz veinlets in these lithologies and the formation of stockwork ores. In view of the occurrence, the features described and processes envisaged for this study area may be applicable in similar settings.

  16. Porphyry copper assessment of British Columbia and Yukon Territory, Canada: Chapter C in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Bookstrom, Arthur A.; Frost, Thomas P.; Ludington, Steve

    2011-01-01

    In permissive tract 003pCu2002, alkaline igneous rocks of Middle Triassic to Late Jurassic age within the Intermontane accreted island-arc terranes are assessed for alkaline porphyry Cu-Au deposits. The area of this tract is 109,290 km2. In 12 known deposits the total reported tonnage of ore is 6,440 Mt, containing 20.9 Mt copper. An estimated 7 undiscovered deposits contain a calculated mean of 22 Mt copper and a median of 13 Mt copper. The spatial density for the 19 known plus estimated

  17. Diversity of primary CL textures in quartz from porphyry environments: implication for origin of quartz eyes

    NASA Astrophysics Data System (ADS)

    Vasyukova, O. V.; Kamenetsky, V. S.; Goemann, K.; Davidson, P.

    2013-10-01

    Porphyry-style mineralization is related to the intrusion and crystallization of small stocks, which can be of different compositions (from intermediate to felsic) and can intrude into different host rocks (from magmatic to sedimentary). We used cathodoluminescence and electron probe microanalysis to study the internal textures of more than 300 quartz eyes from six porphyry deposits, Panguna (Papua New Guinea), Far Southeast porphyry (Philippines), Batu Hijau (Indonesia), Antapaccay (Peru), Rio Blanco (Chile) and Climax (USA). Significant diversity of the internal textures in quartz eyes was revealed, sometimes even within a single sample. Quartz grains with Ti-rich cores surrounded by Ti-poor mantles were found next to the grains showing the opposite Ti distribution or only slight Ti fluctuations.We propose that diversity of the internal patterns in quartz eyes can actually reflect in situ crystallization history, and that prolonged crystallization after magma emplacement under conditions of continuous cooling can account for the observed features of internal textures. Formation of quartz eyes begins at high temperatures with crystallization of high titanium Quartz 1, which as the melt becomes more and more evolved and cooler, is overgrown by low Ti Quartz 2. Subsequent fluid exsolution brings about dramatic change in the melt composition: OH - , alkalis and other Cl-complexed elements partition into the fluid phase, whereas Ti stays in the melt, contributing to a rapid increase in Ti activity. Separation of the fluid and its further cooling causes disequilibrium in the system, and the Quartz 2 becomes partially resorbed. Exsolution of the fluid gradually builds up the pressure until it exceeds the yield strength of the host rocks and they then fracture. This pressure release most likely triggers crystallization of Quartz 3, which is higher in Ti than Quartz 2 because Ti activity in the melt is higher and pressure of crystallization is lower. As a result of the

  18. Diversity of hydrothermal processes and different types of epithermal deposits

    NASA Astrophysics Data System (ADS)

    Sidorov, A. A.; Volkov, A. V.

    2016-05-01

    It is shown that classical epithermal deposits with hydrothermal explosions, brecciated and framework-lamellar (including agate-like) structures, and well-developed bonanzas are usually pre-porphyry in origin. This inference seems to be important for development of the genetic model of a porphyry-epithermal ore-forming system as well as for exploration of gold-silver deposits and assessment of their potential.

  19. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  20. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production. PMID:23160957

  1. Gold-Silver mineralization in porphyry-epithermal systems of the Baimka trend, western Chukchi Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yu. N.; Baksheev, I. A.; Prokofiev, V. Yu.; Nagornaya, E. V.; Marushchenko, L. I.; Sidorina, Yu. N.; Chitalin, A. F.; Kal'ko, I. A.

    2016-07-01

    Mineralogical, fluid inclusion, and geochemical studies of precious metal mineralization within the Baimka trend in the western Chukchi Peninsula have been preformed. Porphyry copper-molybdenum-gold deposits and prospects of the Baimka trend are spatially related to monzonitic rocks of the Early Cretaceous Egdygkych Complex. Four types of precious metal-bearing assemblages have been identified: (1) chalcopyrite + bornite + quartz with high-fineness native gold enclosed in bornite, (2) low-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite-tetrahedrite) ± tourmaline with low-fineness native gold and hessite, (3) rhodochrosite + high-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite- tetrahedrite) with low-fineness native gold, electrum, acanthite, Ag and Au-Ag tellurides, and Ag sulfosalts, and (4) calcite + quartz + sulfide (chalcopyrite, sphalerite, galena) with low-fineness native gold, Ag sulfides and selenides, and Ag-bearing sulfosalts. Study of fluid inclusions from quartz, sphalerite, and fluorite have revealed that hydrothermal ores within the Baimka trend precipitated from fluids with strongly variable salinity at temperatures and pressures ranging from 594 to 104°C and from 1200 to 170 bar, respectively. An indicator of vertical AgPbZn/CuBiMo geochemical zoning is proposed. The value range of this indicator makes it possible to estimate the erosion level of the porphyry-epithermal system. The erosion level of the Baimka deposits and prospects deepens in the following order: Vesenny deposit → Pryamoi prospect → Nakhodka prospect → Peschanka deposit → III Vesenny prospect.

  2. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits. PMID:10521343

  3. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  4. Stratigraphy and mineralogy of a carbonate-hosted gold deposit: Kings Mountain gold mine, NC

    SciTech Connect

    Supplee, J.; Lapoint, D.; Feiss, P.G.

    1985-01-01

    The Kings Mountain Gold Mine, Cleveland Company, North Carolina, is unique in the Appalachians in that it is carbonate-hosted, with a distinctive ore mineralogy. The mine stratigraphy is upright, younging east to west. The basal unit is a volcanic to subvolcanic chlorite, feldspar, quartz-eye porphyry, cut by a silicic porphyry, interpreted as a shallow level intrusion. Above and gradational to the chloritic porphyry, unless separated by the intrusive silicic porphyry, is a sericitic, quartz-eye porphyry, probably a metatuff. A north-thinning, graphite schists is above the sericitic porphyry. Carbonates overlie the graphite schist except to the north where they are above the sericitic porphyry. The carbonates consist of basal and upper sequences separated by a sericite, quartz-eye schists (metatuff) which is capped by a chlorite-sericite-graphite schist. Mineralization occurs within each carbonate sequence. This is overlain by interbedded chlorite and graphite schists with two horizons of exhalative iron formation (I.F.). Above the I.F. is a thick sequence of sericitic chlorite schists (turbidites). The mineralized carbonates are pervasively silicified with a disseminated assemblage of pyrite, pyrrhotite, sphalerite, chalcopyrite, galena, gold, altaite (PbTe), tetrahedrite, and pyrargyrite in quartz and dolomite +/- fluorite gangue. We suggest that the mineralization is associated with hydrothermal activity during emplacement of the silicic porphyry and following carbonate diagenesis. Mineralization was syn- or post-depositional with respect to the I.F.

  5. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson,, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  6. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.

    2011-01-01

    Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late

  7. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  8. The Alapaevsk-Sukhoi Log porphyry copper zone, Middle Urals: The U-Pb age of productive magmatism

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Korovko, A. V.; Gerdes, A.; Azovskova, O. B.; Pribavkin, S. V.

    2014-12-01

    The Alapaevsk-Sukhoi Log zone about 100 km long and 3-10 km wide with numerous porphyry copper occurrences and small deposits is located in the eastern part of the East Ural volcanic megazone, Middle Urals. The long evolution of productive magmatism (according to the U-Pb (SHRIMP-II and LA-ICP-MS age of zircon) and its rejuvenation are established from the north and the south (Ma): from 411 ± 3 (Yalunina Gora pluton, town of Alapaevsk) to 404-406 ± 3 (Altynai-Artemovsk pluton, town of Artemovsk) and to 397 ± 4 (porphyric rhyodacites of the Shata area, town of Sukhoi Log). The K2O content in productive quartz diorites is 0.4-0.7, 0.8-1.2, and 0.4-0.7 wt %, respectively. The Mo-Cu porphyry occurrences are abundant in the Altynai-Artemovsk area. The granitic rocks of the quartz dioritic East Artemovsk pluton, which was recently found, are sericitized and contain significant sulfide mineralization. The structural position, age (365 ± 39 Ma, Rb-Sr errochron), composition of granitic rocks, and its mineralization are similar to those of the large (1.7 Mt Cu) Mikheevka deposit (U-Pb SHRIMP-II age of zircon is 356 ± 6 Ma) in the South Urals.

  9. A comparison of rock and soil samples for geochemical mapping of two porphyry-metal systems in Colorado

    USGS Publications Warehouse

    Neuerburg, George J.; Barton, H.N.; Watterson, J.R.; Welsch, E.P.

    1978-01-01

    Paired rock and soil samples were collected at widely spaced locations in large segments of the porphyry-metal systems of the Montezuma district in central Colorado and of a northwestward extension of the Summitville district into Crater Creek in southern Colorado. The paired samples do not covary closely enough for one sample medium to proxy for the other. However, the areal distributions of elements in both rocks and soils in these two districts conform to alteration zoning as defined by mineralogy. Differing geochemical patterns of rocks and soils reflect species-dependent responses to weathering. Soils appear to be statistically enriched in ore elements and depleted in rock elements as compared to the matching rocks. These differences are largely artificial s owing to different methods of sample preparation and chemical analysis for rocks and for soils. The distributions of metals in soils delineate the occurrence of ore-metal minerals mostly from vein deposits whereas the distributions of metals in rocks conform to zones of pervasive hydrothermal alteration and to the distribution of varied mineral deposits among these zones. Rock and soil samples are equally useful s of comparable map resolution and complement one another as a basis for geochemically mapping these porphyry-metal systems.

  10. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study

    NASA Astrophysics Data System (ADS)

    Heinrich, Christoph A.

    2005-03-01

    Fluid-phase relationships and thermodynamic reaction modelling based on published mineral solubility data are used to re-assess the Cu Au-mineralising fluid processes related to calc-alkaline magmatism. Fluid inclusion microanalyses of porphyry ore samples have shown that vapour-like fluids of low to intermediate salinity and density (~2 10 wt% NaCl eq.; ~0.1 0.3 g cm-3) can carry percentage-level concentrations of copper and several ppm gold at high temperature and pressure. In epithermal deposits, aqueous fluids of similar low to intermediate salinity but liquid-like density are ubiquitous and commonly show a magmatic isotope signature. This paper explores the physical evolution of low-salinity to medium-salinity magmatic fluids of variable density, en route from their magmatic source through the porphyry regime to the near-surface epithermal environment, and investigates the chemical conditions required for effective transport of gold and other components from the magmatic to the epithermal domain. Multicomponent reaction modelling guided by observations of alteration zonation and vein overprinting relationships predicts that epithermal gold deposits are formed most efficiently by a specific succession of processes during the evolution of a gradually cooling magmatic hydrothermal system. (1) The low-salinity to medium-salinity fluid, after separating from the magma and possibly condensing out some hypersaline liquid in the high-temperature porphyry environment, must physically separate from the denser and more viscous liquid, and then cool within the single-phase fluid stability field. By cooling under adequate confining pressure, such a vapour will evolve above the critical curve and contract, without any heterogeneous phase change, to an aqueous liquid of the same salinity. (2) High concentrations of gold, transported as stable Au bisulphide complexes supporting >1 ppm Au even at 200°C, can be maintained throughout cooling, provided that the fluid initially

  11. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia

    USGS Publications Warehouse

    Khashgerel, B.-E.; Rye, R.O.; Hedenquist, J.W.; Kavalieris, I.

    2006-01-01

    The Oyu Tolgoi porphyry Cu-Au system in the South Gobi desert, Mongolia, comprises five deposits that extend over 6 km in a north-northeast-oriented zone. They occur in a middle to late Paleozoic are terrane and are related to Late Devonian quartz monzodiorite intrusions. The Hugo Dummett deposits are the northernmost and deepest, with up to 1,000 m of premineral sedimentary and volcanic cover rock remaining. They are the largest deposits discovered to date and characterized by high-grade copper (>2.5% Cu) and gold (0.5-2 g/t) mineralization associated with intense quartz veining and several phases of quartz monzodiorite intruded into basaltic volcanic host rocks. Sulfide minerals in these deposits are zoned outward from a bornite-dominated core to chalcopyrite, upward to pyrite ?? enargite and covellite at shallower depth. The latter high-sulfidation-state sulfides are hosted by advanced argillic alteration mineral associations. This alteration is restricted mainly to dacitic ash-flow tuff that overlies the basaltic volcanic rock and includes ubiquitous quartz and pyrophyllite, kaolinite, plus late dickite veins, as well as K alunite, Al phosphate-sulfate minerals, zunyite, diaspore, topaz, corundum, and andalusite. A reconnaissance oxygen-hydrogen and sulfur isotope study was undertaken to investigate the origin of several characteristic alteration minerals in the Oyu Tolgoi system, with particular emphasis on the Hugo Dummett deposits. Based on the isotopic composition of O, H, and S (??18O(SO4) = 8.8-20.1???, ??D = -73 to -43???, ??34S = 9.8-17.9???), the alunite formed from condensation of magmatic vapor that ascended to the upper parts of the porphyry hydrothermal system, without involvement of significant amounts of meteoric water. The isotopic data indicate that pyrophyllite (??18O = 6.5-10.9???, ??D = -90 to -106???) formed from a magmatic fluid with a component of meteoric water. Muscovite associated with quartz monzodiorite intrusions occurs in the core

  12. HRTEM/AEM study of trace metal behavior, sheet silicate reactions, and fluid/solid mass balances in porphyry copper hydrothermal systems

    SciTech Connect

    Veblen, D.R.; Ilton, E.S.

    1989-04-01

    Transmission electron microscopy has been used to investigate copper (Cu) incorporation into silicates and alteration reactions in porphyry copper deposits. High Cu in biotites results from submicroscopic inclusions of native Cu. The incorporation of Cu in low-temperature alteration lamellae suggests that Cu enrichment occurs during weathering, rather than during the hydrothermal event. Drill core from Cyprus Casa Grande, Arizona, shows systematic variation of Cu in sheet silicates as a function of depth in the weathering column. The aims of the present project are to apply the powerful techniques of transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and analytical electron microscopy (AEM) to understanding the geochemical processes in porphyry copper systems at the near-atomic scale. Our primary goals are to characterize the structural state of anomalously high Cu in silicates, determine the timing and conditions of Cu enrichment in silicates such as biotite, and use these data to suggest how base metals are released and subsequently immobilized under hydrothermal or weathering conditions; and to determine the submicroscopic, atomic-level reaction mechanisms responsible for silicate alteration in porphyry-copper hydrothermal systems, which will allow us to determine reaction stoichiometries and hence mass balances between minerals and hydrothermal fluid. 19 refs., 7 figs., 3 tabs.

  13. Magma evolution and the formation of porphyry Cu Au ore fluids: evidence from silicate and sulfide melt inclusions

    NASA Astrophysics Data System (ADS)

    Halter, Werner E.; Heinrich, Christoph A.; Pettke, Thomas

    2005-03-01

    Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source

  14. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    during ascent along regional-scale transcurrent faults promotes continued growth of the magmatic magnetite microlites from the Fe-rich magmatic-hydrothermal fluid, which manifests in magnetite rims that have trace element abundances consistent with growth from a magmatic-hydrothermal fluid. Mass balance calculations indicate that this process can leach and transport sufficient Fe from a magmatic source to form large IOA deposits such as Los Colorados. Furthermore, published experimental data demonstrate that a saline magmatic-hydrothermal ore fluid will scavenge significant quantities of metals such as Cu and Au from a silicate melt, and when combined with solubility data for Fe, Cu and Au, it is plausible that the magmatic-hydrothermal ore fluid that continues to ascend from the IOA depositional environment can retain sufficient concentrations of these metals to form iron oxide copper-gold (IOCG) deposits at lateral and/or stratigraphically higher levels in the crust. Notably, this study provides a new discrimination diagram to identify magnetite from Kiruna-type deposits and to distinguish them from IOCG, porphyry and Fe-Ti-V/P deposits, based on low Cr (<100 ppm) and high V (>500 ppm) concentrations.

  15. Using the concentration-volume (C-V) fractal model in the delineation of gold mineralized zones within the Tepeoba porphyry Cu-Mo-Au, Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Abdelnasser, Amr; Karaman, Muhittin; Budakoglu, Murat

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au mineralization that located at the Biga peninsula (W Turkey) developed around the Eybek pluton concentrated at its southern contact. This mineralization that hosted in the hornfels rocks of Karakaya Complex is associated with three main alteration zones; potassic, phyllic and propylitic alterations along the fault controlled margins of the Eybek pluton and quartz stockwork veining as well as brecciation zones. As well as two mineralized zones were occurred in the mine area; hypogene and oxidation/supergene zone. The hypogene zone has differentiated alteration types; high potassic and low phyllic alteration, while the oxidation/supergene zone has high phyllic and propylitic alterations. This work deals with the delineation of gold mineralized zone within this porphyry deposit using the concentration-volume (C-V) fractal model. Five zones of gold were calculated using its power-law C-V relationship that revealed that the main phase of gold mineralization stated at 5.3083 ppm Au concentration. In addition, the C-V log-log plot shows that the highly and moderately Au mineralization zone developed in western part of deposit correlated with oxidation zone related to propylitic alteration. On the other hand, its weakly mineralization zone has a widespread in the hypogene zone related to potassic alteration. This refers to the enrichment of gold and depletion of copper at the oxidation/supergene zone is due to the oxidation/supergene alteration processes that enrich the deposits by the meteoric water. Keywords: Concentration-volume (C-V) fractal model; gold mineralized zone; Tepeoba porphyry Cu-Mo-Au; Balikesir; NW Turkey.

  16. Research on remote sensing assessment technology for porphyry copper in south of Arequipa province of Peru

    NASA Astrophysics Data System (ADS)

    Yang, Rihong; Li, Zhizhong; Cheng, Xiufa; Zhao, Yuling

    2014-05-01

    The study area is located in the middle section of Andean metallogenic zone. Excellent mineralization geological conditions make it the most principal Porphyry Copper Deposits (PCDs) distribution area in southern Peru and there are several super-large PCDs for hundreds of kilometers in every direction. The regional metallogenic regularity of this area is controlled by the NNW fault parallel to the trench on the west of the South American continent. Small porphyry rocks are very common in this area (circular structure pattern in remote sensing image) with typical zoned alteration of PCD - potassic alteration, argillic alteration, phyllic alteration and propylitization (most exposed) from inside to the outside on the surface. These geologic features can be recognized and extracted by using remote sensing image data. Accordingly, the reflectivity curve of main altered minerals of the typical alteration zones of PCD was rebuilt which was corresponded to B1-B9 of ASTER satellite data, based on the altered mineral assemblages and their spectral characteristics of the typical alteration zones of PCD, and ASTER data's ability of identifying minerals with argillic alteration and carbonatite alteration. Based on the standard spectral data of USGS, We found that the information of argillic-and phyllic- altered minerals assemblages in the typical alteration zones can be extracted in the principal components analysis pattern based on ASTER B1467 while the information of propylitization altered minerals in the principal components analysis pattern based on ASTER B1348 with larger reflectivity of B9 than B8, after comparing and analyzing comprehensively the spectral curve characteristics of main altered minerals. In this method, altered minerals assemblages of argillic-and phyllic- altered zone and propylitization altered zone in this study area was extracted, and the results agree well with the distribution of known PCD. Meanwhile, remote sensing geological interpretation has

  17. Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado

    USGS Publications Warehouse

    Drewes, Harald

    2008-01-01

    During early Paleocene time shoshonite porphyry lava was extruded from several plugs about 5 km north of Golden, Colo., to form lava flows intercalated in the upper part of the Denver Formation. These flows now form the caps of North and South Table Mountains. Detailed field and petrographic studies provide insights into magma development, linkage between vents and flows, and the history of the lava flows. The magma was derived from a deep (mantle) source, was somewhat turbulent on its way up, paused on its way up in a shallow granite-hosted chamber, and near the surface followed the steep Golden fault and the thick, weak, steeply dipping Upper Cretaceous Pierre Shale. At the surface the lava flowed out of several plug and dike vents in a nonexplosive manner, four times during a span of about 1 m.y. Potassium-rich material acquired in the shallow chamber produced distinctive textures and mineral associations in the igneous rocks. Lava flows 1 (the lowest) and 2 are channel deposits derived from the southeastern group of intrusions, and flow 1 (a composite, multiple-tongued flow) lies about 50 m below the capping flows. Provisionally, the unit termed flow 1 is considered to include older, felty-textured flows that are distinguished from a blocky-textured unit, flow 1a. Flow 2, newly recognized in this study, lies immediately beneath the capping flows. Lava flows 3 and 4, more voluminous than the earlier ones, were derived from a plug vent 1?2 km farther north-northwest and flowed south-southeast across a broad alluvial plain. This plug is a composite body; the rim phase fed flow 3, and the core phase was the source of flow 4. During the time between the effusion of the four flows, the composition of the shoshonite porphyry magma changed subtly; the later flows contain more alkali, as shown by higher proportions of sanidine. On North Table Mountain, lava flows 3 and 4 form an elongate tumulus above a stream channel that carried water at the time of their eruption. On

  18. High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia

    NASA Astrophysics Data System (ADS)

    Kyle, J. Richard; Mote, Alison S.; Ketcham, Richard A.

    2008-07-01

    High-resolution X-ray computed tomography (HRXCT) provides unique information of the geological and metallurgical significance for gold and related ore minerals in the supergiant Grasberg porphyry Cu-Au deposit. Digital radiographs have proved to be an effective means of screening samples for the presence of gold for HRXCT studies. Digital radiograph effectiveness is limited by the thickness of samples (typically to ≤2 cm), as well as the associated minerals. Thus, preselecting samples for gold studies using HRXCT is most effective using digital radiographs combined with assay information. Differentiating between metallic mineral grains with relatively small differences in density, e.g., bornite (5.1 g/cm3) from chalcopyrite (4.2 g/cm3), is relatively straightforward for isolated monominerallic grains or composites in a similar lower-density matrix, but difficulties are encountered with the interpretation of typical intergrown ore minerals. X-ray beam-hardening artifacts lead to inconsistency in attenuation determination, both within and among slice images, complicating quantitative processing. However, differentiation of chalcopyrite and bornite has been successful in smaller-diameter (≤22-mm) cores of Grasberg ores. Small-diameter (≤10 mm) cores of the Grasberg stockwork Cu-Au ore were analyzed using HRXCT methods scanned at the minimum spacing currently available (7.5 μm), and data reduction protocols using the Blob3D program were modified to improve the quantification of grain sizes and shapes. Grains as small as 6.5 μm have been identified. All of these grains are in direct contact with chalcopyrite, providing support for gold distribution in porphyry copper systems being a result of exsolution from copper sulfides. HRXCT scanning (±digital radiography) precisely defines the in situ location of mineral grains of interest within a sample, which then can be studied in conventional petrographic sections, and other types of analytical studies conducted, e

  19. Devonian and carboniferous arcs of the oyu tolgoi porphyry Cu-Au district, South Gobi region, Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Forster, C.N.; Kirwin, D.J.; Lewis, P.D.; Wooden, J.L.

    2011-01-01

    The Central Asian orogenic belt consists of microcontinental blocks and mobile belts positioned between the Siberian craton and the Tarim and North China cratons. Extending across Asia for 5000 km, the belt consists of terranes that decrease in age southward away from the Siberian craton. A time-stratigraphic-structural sequence for the rocks is critical to defining the tectonic evolution of the belt. In the Oyu Tolgoi area of the South Gobi Desert (Mongolia), Devonian and Carboniferous rocks record the construction of multiple arcs, formation of a giant porphyry Cu-Au system, exhumation, and polyphase deformation. The oldest rocks are basaltic volcanic and subvolcanic rocks of the Devonian Alagbayan Group intruded by Late Devonian quartz monzodiorite stocks and dikes, which host giant porphyry Cu-Au deposits. The rocks were exhumed, overlain by pyroclastic rocks, and then tectonically buried by marine mafic supracrustal rocks prior to the youngest Devonian granodiorite intrusions. The postmineral Carboniferous Gurvankharaat Group unconformably overlying the deformed terrane consists of effusive, pyroclastic, subvolcanic and volcaniclastic rocks, as well as sedimentary units. The supracrustal rocks underwent polyphase shortening after 330 Ma and prior to 290 Ma. Variations in stratigraphic sequences suggest that the region is underlain by a submarine arc that became emergent during the Upper Devonian and remained subaerial to shallow subaqueous through much of the Carboniferous. Xenocrystic zircons in igneous rocks suggest that the offshore arcs were sufficiently close to ancient crust to have interacted with detritus shed into marine basins, most likely from the Siberian craton and fringing early Paleozoic terranes. ?? 2011 Geological Society of America.

  20. Geochonology and Tectonic Significance of post-collisional porphyry in Qulong area, southeast segment of the Gangdese belt, Tibet, China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Zeren, Z.; Du, C.; Feng, L.; Nima, C.; Zhang, L.

    2012-12-01

    With the collision of Indian plate and Eura-Asian plate, there developed complicated tectono-magmanism during Meso-Cenozoic in Gangdese belt, Xizang Tibet. Therefore, it resulted that plentiful tectonism and post-collision high-K calc-alkaline magmatism related to mineralization distrubted from east to west in the belt. And this is quite significant for us to do some rearch on large-scale metallogenetics, uplifting epoch and EW-striking extension during the post-collision in Xizang-Qinghai Plateau. Zircon samples from Cangrila Granodiorite-porphyry in Qulong area, Southeast of Gangdese porphyry copper belt, Xiangbeishan diorite-porphyrite and from Jiama Granite-porphyry give LA-ICPMS U-Pb ages of 16.3Ma, 14. 4Ma, and 15.4Ma, respectively, and all these ages represent the porphyries' forming ages. From barren Xiangbeishan diorite-porphyrite through intermediately mineralized Jiama Granite-porphyry to stongly mineralized Cangrila Granodiorite-porphyry, the LA-ICPMS U-Pb ages of zircon become younger and younger. According to the regional data and geochemical characteristics, these porphyries were mainly derived directly from the thickened mafic lower-crust formed in south Tibet during collision and epeirogeny. During post-collisional extension stage, for inter-earth thermal flowing, SN-striking normal faulting systems across the Tibetan orogen caused rapid rising and localization of porphyry magmas and adequately separating of massive ore-bearing fluids from the magmatic hydrothermal systems. All these data indicate that Gandese belt has experienced from post-collisional extrusion changed into intra-plate extension since Miocene. During Miocene, Gangdese belt undergone violent intraplate extension, post-collisional porphyry intrusion and paroxysmal massive mineralization of porphyry-type, and all these was controlled by deep dynamics. Key Words: Qulong area; Gangdese tectonic belt; Tibet;Zircon La-ICP-MS U-Pb dating; intra-plate extension; Image Information For CL

  1. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    NASA Astrophysics Data System (ADS)

    Larson, Peter B.; Cunningham, Charles G.; Naeser, Charles W.

    1994-03-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  2. Gold deposits in the late Archaean Nzega-Igunga greenstone belt, central plateau of tanzania

    SciTech Connect

    Feiss, P.G.; Siyomana, S.

    1985-01-01

    2.2 m oz of gold have been produced, since 1935, from late Archaean (2480-2740 Ma) greenstone belts of the Central Plateau, Tanzania. North and east of Nzega (4/sup 0/12'S, 3/sup 0/11'E), 18% of the exposed basement, mainly Dodoman schists and granites, consists of metavolcanics and metasediments of the Nyanzian and Kavirondian Series. Four styles of mineralization are observed. 1. Stratabound quartz-gold veins with minor sulfides. Host rocks are quartz porphyry, banded iron formation (BIF), magnetite quartzite, and dense, cherty jasperite at the Sekenke and Canuck mines. The Canuck veins are on strike from BIF's in quartz-eye porphyry of the Igusule Hills. 2. Stratabound, disseminated gold in coarse-grained, crowded feldspar porphyry with lithic fragments and minor pyrite. At Bulangamilwa, the porphyry is conformable with Nyanzian-aged submarine (.) greenstone, volcanic sediment, felsic volcanics, and sericite phyllite. The deposits are on strike with BIF of the Wella Hills, which contains massive sulfide with up to 15% Pb+Zn. 3. Disseminated gold in quartz-albite metasomes in Nyanzian greenstones. At Kirondatal, alteration is associated with alaskites and feldspar porphyry dikes traceable several hundred meters into post-Dodoman diorite porphyry. Gold is with pyrite, arsenopyrite, pyrrhotite, minor chalcopyrite, and sphalerite as well as tourmalinite and silica-cemented breccias. 4. Basal Kavirondian placers in metaconglomerates containing cobbles and boulders of Dodoman and Nyanzian rocks several hundred meters up-section from the stratabound, disseminated mineralization at Bulangamilwa.

  3. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  4. Magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size and resistivity of the mineralized area beneath overburden, a regional east-west magnetotelluric sounding profile was acquired. This is a data release report of the magnetotelluric sounding data collected along the east-west profile; no interpretation of the data is included.

  5. Petrogenesis and Tectonic Implications for High Ba-Sr Porphyries from South Qinling Oroganic Belt, China

    NASA Astrophysics Data System (ADS)

    Zhang, H. F.; Luo, B. J.; Shen, L. M.; Liu, Y.

    2014-12-01

    The Qinling orgenic belt resulted from collision between the North China plate and the Yangtze blocks during Triassic. In the South Qinling orogenic belt, there are lots of small porphyry bodies with area <0.5 km2. These porphyry bodies consist mainly of granodiorite porphyries in petrography. They are closely related to Cu, Mo, Au and Fe mineralization. In this presentation, we carry out an integrated study of LA-ICP-MS zircon U-Pb dating, geochemical and Sr-Nd-Hf isotopic compositions for the porphyry bodies. U-Pb zircon dating shows that they have magma crystallization ages of 145~150 Ma.They are high-potassium calc-alkaline, characterized by high Sr (up to 1300 ppm) and Ba (up to 5000 ppm). Rear earth element data for the porphyries display moderately fractionated REE patterns with (La/Yb)N=9~26 and Eu/Eu*=0.8~1.0. Geochemical characteristics of the granodiorite porphyries are good consistent with high Ba-Sr granitoids [1,2]. These granodiorite porphyries have whole-rock initial 87Sr/86Sr ratios ranging from 0.7046 to 0.7075, ɛNd (t) values ranging from - 4.6 to - 2.5, and zircon ɛHf(t) values ranging from - 2.2 to +0.8. We suggest that their magma was derived from partial melting of enriched mantle sources. The strong enrichment of Sr and Ba imply that the mantle sources could be metasomatized by fluid or melt released from subducting slab (including sediments) due to previous subduction of the Ma-Lue ocean slab at the south of the South Qinling orogenic belt. Lithospheric delamination at ~150 Ma can account for their magma generation for the porphyries. References [1] Fowler M B, Henney P J, Darbyshire D, et al. Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society. 2001, 158: 521-534. [2] Choi S G, Rajesh V J, Seo J, et al. Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc. 2009, 18: 266-281.

  6. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA

    NASA Astrophysics Data System (ADS)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.

    2016-03-01

    The halogen-bearing minerals tourmaline, amphibole, and biotite formed during magmatic-hydrothermal processes associated with the late-stage cooling of the Spirit Lake granitoid pluton (Mt. St. Helens, WA) and with the younger sulphide-mineralised rocks of the Margaret Cu-Mo porphyry deposit located entirely within the pluton. Major- and trace-element discrimination suggests that one tourmaline population crystallised from fractionated late-stage melt pockets in granodiorite-monzogranitic dykes of the pluton. These coarse, euhedral, oscillatory, and complexly sector-zoned uvite tourmalines span a limited range in Mg/(Mg + Fe) [Mg#] space (0.4-0.7 apfu) and show the highest Ti, Ca, F, Nb, and Ta contents, and low X-site vacancies (<0.1 apfu), suggesting slow, ordered crystallisation. Conversely, smaller, microcrystalline, pluton-related vein tourmalines show higher X-site vacancies (>0.6 apfu), lower Ca and F contents, and the highest Li, As, and HREE contents (>80 ppm Li, >1200 ppm As). This population appears to record direct, rapid crystallisation from magmatic ± meteoric fluid(s) bearing the signature of the breakdown of primary feldspars and pyroxenes, with fluid exsolution from fractionated melt patches likely triggered by the formation of the previous generation of tourmaline. Mineralised porphyry deposit tourmaline compositions from the stockwork span a much larger range in Mg# space (0.05-0.9 apfu) and are almost entirely Ca-free. X-sites of these schorl tourmalines are dominated by Na or vacancies, and the Y-sites are strongly Fe enriched. The highest Mn and Zn concentrations (>4000 and >1000 ppm, respectively) potentially reflect the composition of mineralising fluids during ore deposition. A number of boron isotopic analyses yield predominantly heavy boron, but δ11B values range from -5.2 to 6.2 ‰ and average 1.4 ‰. Whilst most plutonic tourmalines conform to reported a- and c-sector element partitioning models, those from the mineralised porphyry

  7. Zircon U-Pb ages, Hf-O isotopes and trace elements of Mesozoic high Sr/Y porphyries from Ningzhen, eastern China: Constraints on their petrogenesis, tectonic implications and Cu mineralization

    NASA Astrophysics Data System (ADS)

    Wang, Fangyue; Liu, Sheng-Ao; Li, Shuguang; Akhtar, Shamim; He, Yongsheng

    2014-07-01

    The relationship between high Sr/Y (adakitic) rocks and Cu mineralization has been long recognized but the mechanism remains unclear. The Cretaceous high Sr/Y porphyries in the Ningzhen area host major Cu polymetallic deposits in the Lower Yangtze River Belt (LYRB) of eastern China. These rocks exhibit some geochemical characteristics (e.g., non-radiogenic Pb isotope ratios) that differ from adakitic rocks from adjacent locations in the LYRB. In this study, we present a study of the zircon U-Pb-Hf-O isotope and trace element compositions for five porphyries from Ningzhen to reveal their petrogenesis and how that correlates with Cu-Fe-Mo mineralization. Zircon U-Pb ages of Anjishan (Cu deposit), Tongshan (Cu-Mo deposit) and Xiangshan (Fe deposit) plutons in the Ningzhen area are 108.8 ± 1.5 Ma, 105-107 Ma and 100-105 Ma, respectively, which are significantly younger than the ore-bearing adakites (140 ± 5 Ma) in the western part of the LYRB. Zircon εHf(t) and δ18O values range from - 23.4 to - 10.6 and from 5.7 to 7.0‰, respectively, falling between subduction-related adakites from the other regions in the LYRB and delamination-related adakitic rocks from the adjacent South Tan-Lu Fault Zone. The similarities of Ce4 +/Ce3 + and Eu/Eu* ratios in zircons from Ningzhen and those from the western LYRB indicate higher oxygen fugacity in their magma sources. Ti-in-zircon thermometer yields magma temperatures of 550 to 700 °C (with an average of ~ 650 °C) for the Ningzhen porphyries, which are significantly lower than those of the South Tan-Lu Fault adakites (> 750 °C), but similar to those for the LYRB adakites (< 700 °C). In summary, the Ningzhen high Sr/Y porphyries have high Mg# (> 50), non-radiogenic Pb, enriched Sr-Nd isotopic compositions, negative zircon εHf(t), mantle-like δ18O values, high oxygen fugacities and low magma temperatures. Mafic rocks that co-exist with ore-bearing porphyries or occur as xenoliths in porphyries are widespread. We proposed

  8. Low-fluorine Stockwork Molybdenite Deposits

    USGS Publications Warehouse

    Ludington, Steve; Hammarstrom, Jane; Piatak, Nadine M.

    2009-01-01

    Low-fluorine stockwork molybdenite deposits are closely related to porphyry copper deposits, being similar in their tectonic setting (continental volcanic arc) and the petrology (calc-alkaline) of associated igneous rock types. They are mainly restricted to the Cordillera of western Canada and the northwest United States, and their distribution elsewhere in the world may be limited. The deposits consist of stockwork bodies of molybdenite-bearing quartz veinlets that are present in and around the upper parts of intermediate to felsic intrusions. The deposits are relatively low grade (0.05 to 0.2 percent Mo), but relatively large, commonly >50 million tons. The source plutons for these deposits range from granodiorite to granite in composition; the deposits primarily form in continental margin subduction-related magmatic arcs, often concurrent with formation of nearby porphyry copper deposits. Oxidation of pyrite in unmined deposits or in tailings and waste rock during weathering can lead to development of acid-rock drainage and limonite-rich gossans. Waters associated with low-fluorine stockwork molybdenite deposits tend to be nearly neutral in pH; variable in concentrations of molybdenum (10,000 ug/L); below regulatory guidelines for copper, iron, lead, zinc, and mercury; and locally may exceed guidelines for arsenic, cadmium, and selenium.

  9. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review

    NASA Astrophysics Data System (ADS)

    Seltmann, Reimar; Porter, T. Mike; Pirajno, Franco

    2014-01-01

    Major porphyry Cu-Au and Cu-Mo deposits are distributed across almost 5000 km across central Eurasia, from the Urals Mountains in Russia in the west, to Inner Mongolia in north-eastern China. These deposits were formed during multiple magmatic episodes from the Ordovician to the Jurassic. They are associated with magmatic arcs within the extensive subduction-accretion complex of the Altaid and Transbaikal-Mongolian orogenic collages that developed from the late Neoproterozoic, through the Palaeozoic, to the Jurassic intracratonic extension. The arcs formed predominantly on the Palaeo-Tethys Ocean margin of the proto-Asian continent, but also within two back-arc basins. The development of the collages commenced when slivers of an older Proterozoic subduction complex were rifted from an existing cratonic mass and accreted to the Palaeo-Tethys Ocean margin of the combined Eastern Europe and Siberian cratons. Subduction of the Palaeo-Tethys Ocean beneath the Karakum and Altai-Tarim microcontinents and the associated back-arc basin produced the overlapping late Neoproterozoic to early Palaeozoic Tuva-Mongol and Kipchak magmatic arcs. Contemporaneous intra-oceanic subduction within the back-arc basin from the Late Ordovician produced the parallel Urals-Zharma magmatic arc, and separated the main Khanty-Mansi back-arc basin from the inboard Sakmara marginal sea. By the Late Devonian, the Tuva-Mongol and Kipchak arcs had amalgamated to form the Kazakh-Mongol arc. By the mid Palaeozoic, the two principal cratonic elements, the Siberian and Eastern European cratons, had begun to rotate relative to each other, "drawing-in" the two sets of parallel arcs to form the Kazakh Orocline between the two cratons. During the Late Devonian to Early Carboniferous, the Palaeo-Pacific Ocean began subducting below the Siberian craton to form the Sayan-Transbaikal arc, which expanded by the Permian to become the Selanga-Gobi-Khanka arc. By the Middle to Late Permian, as the Kazakh Orocline

  10. Laramide alteration of proterozoic diabase: A likely contributor of copper to porphyry systems in the dripping spring mountains area, Southeastern Arizona

    USGS Publications Warehouse

    Force, E.R.

    1998-01-01

    Proterozoic diabase of the Dripping Spring range occurs as sills in the Proterozoic Apache Group and the Troy Quartzite and as intrusive sheets in basement rocks. The aggregate thickness of the diabase sills and intrusive sheets averages about 450 m in the part of the range showing little mid-Tertiary extension. Laramide alteration is of two types, dominated by chlorite and actinolite, respectively, and formed mostly from clinopyroxene. Actinolite-dominated assemblages are higher in Na and Ca. Hydrothermal biotite is common in the central areas of both alteration types. Laramide alteration forms two distribution patterns: a subequant pattern centered on Laramide intrusions and small porphyry deposits, characterized by actinolitic alteration, and a more extensive branching linear pattern that follows Laramide structures, centered on the larger Ray porphyry deposit, extending toward other Laramide districts and showing both alteration types. Alteration has apparently mobilized copper and other metals from diabase. The freshest diabase samples average about 120 ppm copper with little variation. In chloritic alteration, about 100 ppm of this copper is expelled in the most completely altered rocks. In actinolitic alteration, diabase may either gain or lose copper during alteration. Chloritic alteration constitutes roughly 70 percent of the diabase alteration in the study area, where alteration averages 41 percent complete. This implies liberation of about 9 ?? 106 tons (t) copper from diabase alteration, significantly less than the 16 ?? 106 t copper in Laramide mineral deposits of the superdistrict (Ray, Superior, Chilito, Christmas). However, diabase alteration may have been a significant component of the supply of copper to the Laramide mineral districts of the area. Synmineral magmatic sources of copper are not documented in this area. The distribution of Proterozoic diabase coincides with the central part of the southeastern Arizona copper province, which may thus

  11. A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.; Fey, David L.; Diehl, Sharon F.; Saltus, Richard W.

    2010-01-01

    This report also describes the geoenvironmental characteristic of MVT deposits. The response of MVT ores in the supergene environment is buffered by their placement in carbonate host rocks which commonly results in near-neutral associated drainage water. The geoenvironmental features and anthropogenic mining effects presented in this report illustrates this important environmental aspect of MVT deposits which separates them from other deposit types (especially coal, VHMS, Cu-porphyry, SEDEX, acid-sulfate polymetallic vein).

  12. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  13. Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece

    NASA Astrophysics Data System (ADS)

    Fornadel, Andrew P.; Voudouris, Panagiotis Ch.; Spry, Paul G.; Melfos, Vasilios

    2012-05-01

    The Fakos porphyry Cu and epithermal Au-Te deposit, Limnos Island, Greece, is hosted in a ~20 Ma quartz monzonite and shoshonitic subvolcanic rocks that intruded middle Eocene to lower Miocene sedimentary basement rocks. Metallic mineralization formed in three stages in quartz and quartz-calcite veins. Early porphyry-style (Stage 1) metallic minerals consist of pyrite, chalcopyrite, galena, bornite, sphalerite, molybdenite, and iron oxides, which are surrounded by halos of potassic and propylitic alteration. Stage 2 mineralization is composed mostly of quartz-tourmaline veins associated with sericitic alteration and disseminated pyrite and molybdenite, whereas Stage 3, epithermal-style mineralization is characterized by polymetallic veins containing pyrite, chalcopyrite, sphalerite, galena, enargite, bournonite, tetrahedrite-tennantite, hessite, petzite, altaite, an unknown cervelleite-like Ag-telluride, native Au, and Au-Ag alloy. Stage 3 veins are spatially associated with sericitic and argillic alteration. Fluid inclusions in quartz from Stage 1 (porphyry-style) mineralization contain five types of inclusions. Type I, liquid-vapor inclusions, which homogenize at temperatures ranging from 189.5°C to 403.3°C have salinities of 14.8 to 19.9 wt. % NaCl equiv. Type II, liquid-vapor-NaCl, Type III liquid-vapor-NaCl-XCl2 (where XCl is an unknown chloride phase, likely CaCl2), and Type IV, liquid-vapor-hematite ± NaCl homogenize to the liquid phase by liquid-vapor homogenization or by daughter crystal dissolution at temperatures of 209.3 to 740.5 °C, 267.6 to 780.8 °C, and 357.9 to 684.2 °C, respectively, and, Type V, vapor-rich inclusions. Stage 2 veins are devoid of interpretable fluid inclusions. Quartz from Stage 3 (epithermal-style) veins contains two types of fluid inclusions, Type I, liquid-vapor inclusions that homogenize to the liquid phase (191.6 to 310.0 °C) with salinities of 1.40 to 9.73 wt. % NaCl equiv., and Type II, vapor-rich inclusions. Mixing

  14. Geologic interpretation of geophysical data for the Wadi al Jarir and Al Jurdhawiyah quadrangles, sheets 25/42 C and D, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kleinkopf, M. Dean; Cole, James C.

    1983-01-01

    Correlation of aeromagnetic data and mineral deposit information provide justification for some prospecting guides. Small granodiorite-porphyry plutons with distinct edge anomalies in Murdama metasediments commonly are associated with copper-gold-bearing quartz veins. Vein orientations in these and most other known deposits in the northeastern Shield cannot be sensibly related to the stress field of the Najd fault system, and are believed to predate the Najd or to have been governed by local factors. Small, weakly magnetic targets such as the Bald al Jimalah West tungsten deposit are not indicated by the regional magnetic data.

  15. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator); Camp, L. W.

    1973-01-01

    The author has identified the following significant results. Preliminary analysis of a mosaic composing 20 individual ERTS-1 frames that covers most of Nevada and western Utah reveals both new and old structural features. Three separate provinces, the Basin and Range, the southern extension of the Columbia River Plateau volcanics, and the western edge of the Colorado Plateau are easily distinguishable. A west-northwest cross or transverse structural trend, the Las Vegas Shear zone, is present in the region running from the Sierra Nevada to Lake Mead. The Sevier, Hurricane and Grand Wash faults that define the Wasateh-Jerome structural zone, can be traced further on the ERTS-1 imagery than on existing tectonic maps. By use of a stereo viewer on the side-lap coverage of ERTS-1 imagery, it is possible in some instances to determine the direction of sedimentary beds, enabling anticlines and synclines to be mapped. Other geologic features, faults, direction of throw on faults, recent basalt flow contacts with older rhyolitic tuffs, volcanic cones, and subsidences can also be mapped.

  16. Application of thematic mapper-type data over a porphyry-molybdenum deposit in Colorado

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Sadowski, R. M.

    1983-01-01

    The objective of the study was to evaluate the utility of thematic mapper data as a source of geologically useful information for mountainous areas of varying vegetation density. Much of the processing was done in an a priori manner without prior ground-based information. This approach resulted in a successfull mapping of the alteration associated with the Mt. Emmons molybdenum ore body as well as several other hydrothermal systems. Supervised classification produced a vegetation map at least as accurate as the mapping done for the environmental impact statement. Principal components were used to map zones of general, subtle alteration and to separate hematitically stained rock from staining associated with hydrothermal activity. Decorrelation color composites were found to be useful field mapping aids, easily delineating many lithologies and vegetation classes of interest. The factors restricting the interpretability and computer manipulation of the data are examined.

  17. Prediction of AMD generation potential in mining waste piles, in the Sarcheshmeh porphyry copper deposit, Iran.

    PubMed

    Modabberi, Soroush; Alizadegan, Ali; Mirnejad, Hassan; Esmaeilzadeh, Esmat

    2013-11-01

    This study investigates the possibility of acid mine drainage (AMD) generation in active and derelict mine waste piles in Sarcheshmeh Copper Mine produced in several decades, using static tests including acid-base accounting (ABA) and net acid-generating pH (NAGpH). In this study, 51 composite samples were taken from 11 waste heaps, and static ABA and NAGpH tests were carried out on samples. While some piles are acid producing at present and AMD is discharging from the piles, most of them do not show any indication on their AMD potential, and they were investigated to define their acid-producing potential. The analysis of data indicates that eight waste piles are potentially acid generating with net neutralization potentials (NNPs) of -56.18 to -199.3, net acid generating of 2.19-3.31, and NPRs from 0.18 to 0.44. Other waste piles exhibited either a very low sulfur, high carbonate content or excess carbonate over sulfur; hence, they are not capable of acid production or they can be considered as weak acid producers. Consistency between results of ABA and NAGpH tests using a variety of classification criteria validates these tests as powerful means for preliminary evaluation of AMD/ARD possibilities in any mining district. It is also concluded that some of the piles with very negative NNPs are capable to produce AMD naturally, and they can be used in heap leaching process for economic recovery of trace amounts of metals without applying any biostimulation methods. PMID:23813094

  18. The giant Pebble Cu-Au-Mo deposit and surrounding region, southwest Alaska: introduction

    USGS Publications Warehouse

    Kelley, Karen D.; Lang, James R.; Eppinger, Robert G.

    2013-01-01

    The Pebble deposit is located about 320 km southwest of and 27 km northwest of the village of Iliamna in Alaska (Fig. 1A). It is one of the largest porphyry deposits in terms of contained Cu (Fig. 2A) and it has the largest Au endowment of any porphyry deposit in the world (Fig. 2B). The deposit comprises the Pebble West and Pebble East zones that represent two coeval hydrothermal centers within a single system (Lang et al., 2013). Together the measured and indicated resources total 5,942 million metric tons (Mt) at 0.42% Cu, 0.35 g/t Au, and 250 ppm Mo with an inferred resource of 4,835 Mt at 0.24% Cu, 0.26 g/t Au, and 215 ppm Mo. In addition, the deposit contains significant concentrations of Ag, Pd, and Re (Northern Dynasty Minerals, 2011).

  19. Typing mineral deposits using their associated rocks, grades and tonnages using a probabilistic neural network

    USGS Publications Warehouse

    Singer, D.A.

    2006-01-01

    A probabilistic neural network is employed to classify 1610 mineral deposits into 18 types using tonnage, average Cu, Mo, Ag, Au, Zn, and Pb grades, and six generalized rock types. The purpose is to examine whether neural networks might serve for integrating geoscience information available in large mineral databases to classify sites by deposit type. Successful classifications of 805 deposits not used in training - 87% with grouped porphyry copper deposits - and the nature of misclassifications demonstrate the power of probabilistic neural networks and the value of quantitative mineral-deposit models. The results also suggest that neural networks can classify deposits as well as experienced economic geologists. ?? International Association for Mathematical Geology 2006.

  20. Self-ordering and complexity in epizonal mineral deposits

    USGS Publications Warehouse

    Henley, Richard W.; Berger, Byron R.

    2000-01-01

    Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.

  1. K Ar ages of plutonism and mineralization at the Shizhuyuan W Sn Bi Mo deposit, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Yin, Jingwu; Kim, Sang Jung; Lee, Hyun Koo; Itay, Tetsumaru

    2002-01-01

    The Qianlishan granite complex, situated 16 km southeast of Chenzhou City, Hunan Province, China, hosts the Shizhuyuan W-Sn-Bi-Mo deposit. This complex, which intruded the Protozoic metasedimentary rocks and the Devonian clastic sedimentary and carbonate rocks, consists of mainly medium- to coarse-grained biotite granites and minor amounts of fine-grained biotite granite in addition to granite and quartz porphyry. K-Ar ages suggest three episodes of plutonism: the medium- to coarse-grained biotite granite (before 152 Ma), the fine-grained biotite granite (137 Ma), and the granite porphyry (129-131 Ma). Muscovite ages of the greisen are 145-148 Ma, suggesting that the W-Sn-Bi-Mo mineralization was related to the main, medium- to coarse-grained biotite granites. The K-Ar age of the hydrothermal vein mineralization is 92 Ma and is probably related to the porphyries.

  2. Digital data base application to porphyry copper mineralization in Alaska; case study summary

    USGS Publications Warehouse

    Trautwein, Charles M.; Greenlee, David D.; Orr, Donald G.

    1982-01-01

    The purpose of this report is to summarize the progress in use of digital image analysis techniques in developing a conceptual model for assessing porphyry copper mineral potential. The study area consists of approximately the southern one-half of the 1? by 3? Nabesna quadrangle in east-central Alaska. The digital geologic data base consists of data compiled under the Alaskan Mineral Resource Assessment Program (AMRAP) as well as digital elevation data and Landsat spectral reflectance data from the Multispectral Scanner System. The digital data base used to develop and implement a conceptual model for porphyry-type copper mineralization consisted of 16 original data types and 18 derived data sets formatted in a grid-cell (raster) structure and registered to a map base in the Universal Transverse Mercator (UTM) projection. Minimum curvature and inverse distance squared interpolation techniques were used to generate continuous surfaces from sets of irregularly spaced data points. Processing requirements included: (1) merging or overlaying of data sets, (2) display and color coding of maps and images, (3) univariate and multivariate statistical analyses, and (4) compound overlaying operations. Data sets were merged and processed to create stereoscopic displays of continuous surfaces. The ratio of several data sets were calculated to evaluate relative variations and to enhance the display of surface alteration (gossans). Factor analysis and principal components analysis techniques were used to determine complex relationships and correlations between data sets. The resultant model consists of 10 parameters that identify three areas most likely to contain porphyry copper mineralization; two of these areas are known occurrences of mineralization and the third is not well known. Field studies confirmed that the three areas identified by the model have significant copper potential.

  3. Are fractal dimensions of the spatial distribution of mineral deposits meaningful?

    USGS Publications Warehouse

    Raines, G.L.

    2008-01-01

    It has been proposed that the spatial distribution of mineral deposits is bifractal. An implication of this property is that the number of deposits in a permissive area is a function of the shape of the area. This is because the fractal density functions of deposits are dependent on the distance from known deposits. A long thin permissive area with most of the deposits in one end, such as the Alaskan porphyry permissive area, has a major portion of the area far from known deposits and consequently a low density of deposits associated with most of the permissive area. On the other hand, a more equi-dimensioned permissive area, such as the Arizona porphyry permissive area, has a more uniform density of deposits. Another implication of the fractal distribution is that the Poisson assumption typically used for estimating deposit numbers is invalid. Based on datasets of mineral deposits classified by type as inputs, the distributions of many different deposit types are found to have characteristically two fractal dimensions over separate non-overlapping spatial scales in the range of 5-1000 km. In particular, one typically observes a local dimension at spatial scales less than 30-60 km, and a regional dimension at larger spatial scales. The deposit type, geologic setting, and sample size influence the fractal dimensions. The consequence of the geologic setting can be diminished by using deposits classified by type. The crossover point between the two fractal domains is proportional to the median size of the deposit type. A plot of the crossover points for porphyry copper deposits from different geologic domains against median deposit sizes defines linear relationships and identifies regions that are significantly underexplored. Plots of the fractal dimension can also be used to define density functions from which the number of undiscovered deposits can be estimated. This density function is only dependent on the distribution of deposits and is independent of the

  4. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    USGS Publications Warehouse

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  5. Iron concretions within a highly altered unit of the Berlins Porphyry, New Zealand: an abiotic or biotic story?

    NASA Astrophysics Data System (ADS)

    Cox, Toni L.; Oze, Christopher; Horton, Travis W.

    2016-09-01

    The Berlins Porphyry located on the South Island of New Zealand provides an opportunity to examine iron concretions formed in a subterranean system. Specifically, an alteration zone within the Berlins Porphyry contains iron concretions similar to sedimentary biologically-mediated iron concretions. Here, we provide evidence for two sources of dissolved Fe (II) that potentially aided in the formation of the iron concretions. Furthermore, we discuss the potential for microbial involvement in the anaerobic oxidation of Fe (II) to Fe (III) to form magnetite. Evidence in support of this hypothesis includes the low concentrations of iron and sulfur in the white hydrothermally altered porphyry outcrop and concretion cores; concentrated pyrite and magnetite mineralisation surrounding the cores; and δ13C values indicative of organic carbon (averaging -26 ‰ ± 4 ‰) within the iron cement, porphyry-core-boundary and outer weathered rinds of the concretions. Overall, these unusually preserved iron concretions could represent a new environmental niche for microorganisms and a potential analogue for microbially induced iron-oxidation. More importantly, this study illustrates the many obstacles involved in analysing and interpreting potential subterranean biosignatures.

  6. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.

  7. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith

    NASA Astrophysics Data System (ADS)

    Streck, Martin J.; Dilles, John H.

    1998-06-01

    Uniformly sulfur-rich cores abruptly zoned to sulfur-poor rims (˜1 to <0.2 wt% SO3) in apatite from the Yerington batholith, Nevada, indicate that early magma that is crystal poor, oxidizing, and sulfate rich evolved to sulfate-poor magma via crystallization of anhydrite, a mineral observed in magmas from Pinatubo and El Chichón. We predict that the characteristic zonation to sulfur-poor rims of apatite in the Yerington batholith is common in other oxidized, hydrous, calc-alkaline magmas, and can be used to track cryptic anhydrite saturation as well as to monitor sulfur evolution. Sulfate-rich arc magmas such as Yerington magmas may crystallize to produce hydrothermal fluids rich in chlorine, copper, and sulfur and porphyry copper ores.

  8. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    USGS Publications Warehouse

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  9. Geophysical Exploration of Disseminated and Stockwork deposits associated with plutonic intrusive: A Case study in the eastern flank of the western Cordillera, Colombia

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; Alexander, G. C.; Pintor, I. M.

    2011-12-01

    Disseminated deposit exploration in the tropics suffers from difficult geological mapping due to thick vegetation, lack of rock outcrop, and extensive but variable saprolitic weathering. Geophysical exploration of these deposits normally includes magnetic, induced polarization and gamma ray spectrometry surveys. The largest RTP Total field magnetic anomaly highs are usually associated with the diorite porphyry intrusive bodies. Normally, diorites are less magnetic than the basaltic rocks. Therefore, where the magnetic anomaly highs are related to the intrusions they can be explained by the intensive mineralization of basic metals including magnetite that are associated with the porphyry intrusions. Regularly, the magnetic anomaly gradients help to delineate local discontinuities that can be interpreted as local faults and joints that can be mineralized. The gamma ray spectrometry is useful to determine the anomalous concentration of Potassium, Uranium and Thorium that can be interpreted in terms of alteration halos and linear discontinuities. The statistical analysis of the data also can determine the intermediate intrusive / extrusive nature of the porphyry intrusions. The use of gamma ray spectrometry helps to determine the concentration of elemental potassium, regardless of the associated potassium mineral species, enabling alteration mapping in a geological setting related to volcanic-associated massive sulphide base metals and gold. The induced polarization survey is useful in outlining sulphide distribution in porphyry deposits related to chargeability anomaly highs. The preliminary results of the geophysical exploration program of the eastern flank of the Western Cordillera in the Andes Mountains of Colombia are discussed.

  10. Sediment-hosted stratabound copper deposit model: Chapter M in Mineral deposit model for resource assessment

    USGS Publications Warehouse

    Hayes, Timothy S.; Cox, Dennis P.; Bliss, James D.; Piatak, Nadine M.; Seal, Robert R.

    2015-01-01

    This report contains a descriptive model of sediment-hosted stratabound copper (SSC) deposits that supersedes the model of Cox and others (2003). This model is for use in assessments of mineral resource potential. SSC deposits are the second most important sources of copper in the world behind porphyry copper deposits. Around 20 percent of the copper in the world is produced from this class of deposits. They are also the most important sources of cobalt in the world, and they are fourth among classes of ore deposits in production of silver. SSC deposits are the basis of the economies of three countries: Democratic Republic of Congo, Poland, and Zambia. This report provides a description of the key features of SSC deposits; it identifies their tectonic-sedimentary environments; it illustrates geochemical, geophysical, and geoenvironmental characteristics of SSC deposits; it reviews and evaluates hypotheses on how these deposits formed; it presents exploration and assessment guides; and it lists some gaps in our knowledge about the SSC deposits. A summary follows that provides overviews of many subjects concerning SSC deposits.

  11. The uranium-bearing nickel-cobalt-native silver deposits in the Black Hawk district, Grant County, New Mexico

    USGS Publications Warehouse

    Gillerman, Elliot; Whitebread, Donald H.

    1953-01-01

    The Black Hawk (Bullard Peak) district, Grant County, N. Mex., is 21 miles by road west of Silver City. From 1881 to 1893 more than $1,000,000.00 of high-grade silver ore is reported to have been shipped from the district. Since 1893 there has been no mining in the district except during a short period in 1917 when the Black Hawk mine was rehabilitated. Pre-Cambrian quartz diorite gneiss, which contains inclusions of quartzite, schist, monzonite, and quartz monzonite, is the most widespread rock in the district. The quartz diorite gneiss is intruded by many pre-Cambrian and younger rocks, including diorite granite, diabase, monzonite porphyry and andesite and is overlain by the Upper Cretaceous Beartooth quartzite. The monzonite porphyry, probably of late Cretaceous or early Tertiary age, forms a small stock along the northwestern edge of the district and numerous dikes and irregular masses throughout the district. The ore deposits are in fissure veins that contain silver, cobalt, and uranium. The ore minerals, which include native silver, niccolite, millerite, skutterudite, nickel skutterudite, bismuthinite, pitchblende, and sphalerite, are in a carbonate gangue in narrow, persistent veins, most of which trend northeasterly. Pitchblende has been identified in the Black Hawk and the Alhabra deposits and unidentified radioactive minerals were found at five other localities. The deposits that contain the radioactive minerals constitude a belt 600 to 1,500 feet wide that trends about N. 45° E., and is approximately parallel to the southeastern boundary of the monzonite porphyry stock. All the major ore deposits are in the quartz diorite gneiss in close proximity to the monzonite porphyry. The ore deposits are similar to the deposits at Great Bear Lake, Canada, and Joachimstahl, Czechoslovakia.

  12. Mineral Deposit Data for Epigenetic Base- and Precious-metal and Uranium-thorium Deposits in South-central and Southwestern Montana and Southern and Central Idaho

    USGS Publications Warehouse

    Klein, T.L.

    2004-01-01

    Metal deposits spatially associated with the Cretaceous Boulder and Idaho batholiths of southwestern Montana and southern and central Idaho have been exploited since the early 1860s. Au was first discovered in placer deposits; exploitation of vein deposits in bedrock soon followed. In 1865, high-grade Ag vein deposits were discovered and remained economically important until the 1890s. Early high-grade deposits of Au, Ag and Pb were found in the weathered portions of the veins systems. As mining progressed to deeper levels, Ag and Pb grades diminished. Exploration for and development of these vein deposits in this area have continued until the present. A majority of these base- and precious-metal vein deposits are classified as polymetallic veins (PMV) and polymetallic carbonate-replacement (PMR) deposits in this compilation. Porphyry Cu and Mo, epithermal (Au, Ag, Hg and Sb), base- and precious-metal and W skarn, W vein, and U and Th vein deposits are also common in this area. The world-class Butte Cu porphyry and the Butte high-sulfidation Cu vein deposits are in this study area. PMV and PMR deposits are the most numerous in the region and constitute about 85% of the deposit records compiled. Several types of syngenetic/diagenetic sulfide mineral deposits in rocks of the Belt Supergroup or their equivalents are common in the region and they have been the source of a substantial metal production over the last century. These syngenetic deposits and their metamorphosed/structurally remobilized equivalents were not included in this database; therefore, deposits in the Idaho portion of the Coeur d'Alene district and the Idaho Cobalt belt, for example, have not been included because many of them are believed to be of this type.

  13. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite

  14. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu sbnd Au deposit

    NASA Astrophysics Data System (ADS)

    Mancano, D. P.; Campbell, A. R.

    1995-10-01

    The spatial relation between porphyry and high-sulfidation epithermal deposits is particularly well revealed in the Mankayan mineral district of northern Luzon, Philippines, where the Lepanto high-sulfidation Cu sbnd Au deposit lies over and adjacent to the Far Southeast (FSE) porphyry Cu sbnd Au deposit. Consequently, a study was undertaken to characterize the fluids responsible for epithermal mineralization in this environment. The ore stage at Lepanto consists of enargite-luzonite (Cu 3AsS 4), pyrite, tennantite-tetrahedrite, and chalcopyrite. Infrared petrography of the enargite reveals variable transparency, with growth banding and twinning visible in euhedral specimens. Two phase (liquid > vapor) fluid inclusions occur as primary and secondary types ranging from <1 to 80 micrometers in length, with tabular, cylindrical, or oval shapes. Homogenization temperatures ( Th) of fluid inclusions in enargite were measured from within the lateral (3.0 km) and vertical (0.5 km) extent of the enargite mineralization. These values show a cooling trend toward the northwest, away from the area over the porphyry deposit, with average Th ranging from 285°C (proximal) to 166°C (distal). Ice melting temperatures ( Tm) were measured using a cycling technique, as ice was usually not visible in frozen inclusions. Apparent salinities range from 4.5 to 0.2 eq. wt% NaCl, with samples from the margins of the deposit showing a general decrease in apparent salinity with lower Th. Secondary fluid inclusions in quartz phenocrysts tend to have a higher average Th and lower apparent salinities compared to enargite-hosted inclusion fluids from the same locations. Several samples of pyrite are also transparent to IR radiation, and show internal features such as growth banding, and in one instance a two phase (liquid > vapor) fluid inclusion. This inclusion yielded a salinity of 1.2 eq. wt% NaCl. There is a large discrepancy in Th and apparent salinities between the enargite mineralization

  15. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  16. Progressive mixing of isotopic reservoirs during magma genesis at the Sierrita porphyry copper deposit, Arizona: Inverse solutions

    SciTech Connect

    Anthony, E.Y.; Titley, S.R. )

    1988-09-01

    Trace-element and Sr and Nd isotopic compositions have been determined for a suite of calc-alkaline rocks from southeastern Arizona. The suite consists of andesitic and rhyolitic rocks (67 m.y. old) intruded by granodiorite and granite (62-58 m.y. old). It is situated within Proterozoic basement of 1.7 to 1.65 Ga age. Isotopic composition and chemical evolution are well correlated throughout the suite. The andesite has the least negative {epsilon}{sub Nd} ({epsilon}{sub Nd}(t{sub igneous}) = {minus}4.3) and smallest {sup 87}Sr/{sup 86}Sr{sub o} (0.7069). It is also the oldest and chemically most primitive, having the lowest concentrations of Rb, SiO{sub 2}, and highest concentrations of the transition elements. These parameters change through the system to the youngest unit (granite) which has the most negative {epsilon}{sub Nd}(8-5), the greatest {sup 87}Sr/{sup 86}Sr{sub o} (0.7092), and is most chemically evolved. The authors interpret these trends as resulting from a continuous process of progressive assimilation in which mafic magmas invade and incorporate continental crust. The assimilated continental crust was probably intermediate to mafic in composition and of amphibolite grade. Phase relations among minerals indicate that it was hydrous and oxidizing. Inverse methods have been applied to equations for assimilation and fractional crystallization whose use assumes periodic tapping of a single magma body. Such modeling yields insight into the size and chemistry of the magma system.

  17. Research on recognition of the geologic framework of porphyry copper deposits on ERTS-1 imagery. [New Guinea, Alaska, and Colorado

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Many new linear and circular features were found. These features prompted novel tectonic classification and analysis especially in the Ray and Ely areas. Tectonic analyses of the Ok Tedi, Tanacross, and Silvertone areas follow conventional interpretations. Circular features are mapped in many cases and are interpreted as exposed or covered intrusive centers. The small circular features reported in the Ok Tedi test area are valid and useful correlations with tertiary intrusion and volcanism in this remote part of New Guinea. Several major faults of regional dimensions, such as the Denali fault in Alaska and the Colorado mineral belt structures in Colorado are detected in the imagery. Many more faults and regional structures are found in the imagery than exist on present maps.

  18. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI) Satellite Data

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, A.; Hashim, M.

    2015-10-01

    This study evaluates the capability of Earth Observing-1 (EO1) Advanced Land Imager (ALI) data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF) was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  19. The role of the Antofagasta-Calama Lineament in ore deposit deformation in the Andes of northern Chile

    NASA Astrophysics Data System (ADS)

    Palacios, Carlos; Ramírez, Luis E.; Townley, Brian; Solari, Marcelo; Guerra, Nelson

    2007-02-01

    During the Late Jurassic-Early Oligocene interval, widespread hydrothermal copper mineralization events occurred in association with the geological evolution of the southern segment of the central Andes, giving rise to four NS-trending metallogenic belts of eastward-decreasing age: Late Jurassic, Early Cretaceous, Late Paleocene-Early Eocene, and Late Eocene-Early Oligocene. The Antofagasta-Calama Lineament (ACL) consists of an important dextral strike-slip NE-trending fault system. Deformation along the ACL system is evidenced by a right-lateral displacement of the Late Paleocene-Early Eocene metallogenic belts. Furthermore, clockwise rotation of the Early Cretaceous Mantos Blancos copper deposit and the Late Paleocene Lomas Bayas porphyry copper occurred. In the Late Eocene-Early Oligocene metallogenic belt, a sigmoidal deflection and a clockwise rotation is observed in the ACL. The ACL is thought to have controlled the emplacement of Early Oligocene porphyry copper deposits (34-37 Ma; Toki, Genoveva, Quetena, and Opache), whereas it deflected the Late Eocene porphyry copper belt (41-44 Ma; Esperanza, Telégrafo, Centinela, and Polo Sur ore deposits). These observations suggest that right-lateral displacement of the ACL was active during the Early Oligocene. We propose that the described structural features need to be considered in future exploration programs within this extensively gravel-covered region of northern Chile.

  20. Cretaceous subduction-related magmatism and associated porphyry-type Cu-Mo prospects in the Eastern Pontides, Turkey: New constraints from geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Delibaş, Okan; Moritz, Robert; Ulianov, Alexey; Chiaradia, Massimo; Saraç, Cem; Revan, Kemal M.; Göç, Deniz

    2016-04-01

    This study focuses on the Elbeyli-Ordu, Emeksen-Giresun, Güzelyayla-Trabzon and Ulutaş-Ispir porphyry-type prospects located in the Eastern Pontides, Turkey. Our new LA-ICP-MS U-Pb zircon age data reveal that the Elbeyli-Ordu Mo-Cu mineralization is hosted by a 77.0 ± 1.3 Ma-old monzonite/monzodiorite with a shoshonitic character. The Emeksen Mo mineralization, located ~ 40 km southeast of the Elbeyli-Ordu prospect, consists of NW- and NE-striking quartz veins crosscutting a high-K calc-alkaline to shoshonitic granite dated at 78.5 ± 0.8 Ma, a granodiorite dated at 78.7 ± 0.5 Ma and porphyry granite dated at 77.7 ± 0.5 Ma. The Güzelyayla porphyry Cu-Mo prospect consists of a stockwork-type Cu-Mo mineralization crosscutting a calc-alkaline 81.4 ± 1.1 Ma-old dacite porphyry and Late Cretaceous calc-alkaline andesite. The Ispir-Ulutaş mineralization is hosted within a highly sericitized 131.1 ± 0.9 Ma-old quartz-porphyry that intruded into a 132.9 ± 0.6 Ma-old calc-alkaline granite porphyry. Our new U-Pb zircon ages, lithogeochemical and radiogenic isotopic data of the host rocks associated with the porphyry-type prospects in the Eastern Pontides indicate that they formed in an arc-related environment during Cretaceous subduction of the Neotethys Ocean, and the Ispir-Ulutaş prospect is attributed to the main stage of the northward subduction of the Neotethys during the Early Cretaceous. We conclude that the Güzelyayla and Emeksen hydrothermal systems were formed during a transitional compressional to extensional tectonic evolution, whereas the Late Cretaceous Elbeyli hydrothermal system was emplaced during an extensional arc magmatic event. Highly-oxidized, high-K calc-alkaline to shoshonitic magmas at Emeksen and Elbeyli were derived from a metasomatized, heterogeneous and enriched lithospheric mantle, with variable degrees of partial melting of the mantle wedge and variable crustal contamination. Mixing/mingling processes between mafic magmas derived

  1. Permian magmatic sequences of the Bilihe gold deposit in central Inner Mongolia, China: Petrogenesis and tectonic significance

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Nie, Fengjun

    2015-08-01

    The Bilihe gold deposit is located in the eastern section of the Ondor Sum-Yanji Suture at the southern margin of the Xing'an-Mongolian Orogenic Belt (XMOB) and the northern margin of the North China Craton (NCC), central Inner Mongolia. The magmatic rocks in the ore district are generally high-K calc-alkaline, enriched in LREE, Zr, and Hf, and depleted in HREE, Nb, Ta, and P. The magmatic evolution sequences are norite gabbro → granodiorite porphyry → granite or norite gabbro → andesite → dacite porphyry → granodiorite, which show a trend of decreasing TiO2, FeO, MgO, CaO, and P2O5 with increasing SiO2. In the Bilihe ore district, hydrothermal processes were coeval with granitic magmatism for a period of ~ 17 Myr (272-255 Ma). The ages of the granite, granodiorite porphyry, granodiorite, and dacite porphyry are 271.5-264.1 Ma, 269.8-255.8 Ma, 268.3 Ma, and 268.6-259.4 Ma, respectively. The magmatic rocks contain magmatic, hydrothermal, and magmatic-hydrothermal zircons. The magmatic zircons have δCe > 4, La < 3 ppm, and SmN/LaN > 2.5; the hydrothermal zircons have δCe < 4, La > 3 ppm, and SmN/LaN < 2.5. The Nb/Ta and Zr/Hf ratios of granodiorite are 12.7-14.99 and 40.2-46.56, respectively. The Zr/Hf ratios successively increase in the sequence of granite (27.4-29.02) → granodiorite porphyry (29.19-32.18) → dacite porphyry (33.54-38.5) → norite gabbro (36.75-38.37), and their Nb/Ta ratios are 9.09-12.38. Zircons in granodiorite yield ε Hf (t) values of - 0.29 to - 56 (n = 13) and 2.07-7.62 (n = 5), and they give a Hf two-stage model age (tDM2) of 807-4765 Ma. The ε Hf (t) values of the zircons in granite, granodiorite porphyry, and dacite porphyry are - 0.46 to 8.03, 3.17 to 10.32, and - 0.78 to 6.58, respectively, and their Hf tDM2 ages are 787-1324 Ma, 638-1091 Ma, and 868-1343 Ma, respectively. Dehydration partial melting of subducted oceanic crust resulted in the formation of dacite porphyry; partial melting of depleted mantle resulted in

  2. Nature, diversity of deposit types and metallogenic relations of South China

    USGS Publications Warehouse

    Zaw, K.; Peters, S.G.; Cromie, P.; Burrett, C.; Hou, Z.

    2007-01-01

    the 'Northern Golden Triangle' of China. These deposits are mostly epigenetic hydrothermal micron-disseminated gold deposits with associated As, Hg, Sb + Tl mineralisation similar to Carlin-type deposits in USA. The important deposits in the Southern Golden Triangle are Jinfeng (Lannigou), Zimudang, Getang, Yata and Banqi in Guizhou Province, and the Jinya and Gaolong deposits in Guangxi District. The most important deposits in the Northern Golden Triangle are the Dongbeizhai and Qiaoqiaoshang deposits. Many porphyry-related polymetallic copper-lead-zinc and gold skarn deposits occur in South China. These deposits are related to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) magmatism associated with collision of the South China and North China Cratons and westward subduction of the Palaeo-Pacific Plate. Most of these deposits are distributed along the Lower to Middle Yangtze River metallogenic belt. The most significant deposits are Tonglushan, Jilongshan, Fengshandong, Shitouzui and Jiguanzui. Au-(Ag-Mo)-rich porphyry-related Cu-Fe skarn deposits are also present (Chengmenshan and Wushan in Jiangxi Province and Xinqiao, Mashan-Tianmashan, Shizishan and Huangshilaoshan in Anhui Province). The South China fold belt extending from Fujian to Zhejiang Provinces is characterised by well-developed Yanshanian intrusive to subvolcanic rocks associated with porphyry to epithermal type mineralisation and mesothermal vein deposits. The largest porphyry copper deposit in China, Dexing, occurs in Jiangxi Province and is hosted by Yanshanian granodiorite. The high-sulphidation epithermal system occurs at the Zijinshan district in Fujian Province and epithermal to mesothermal vein-type deposits are also found in the Zhejiang Province (e.g., Zhilingtou). Part of Shandong Province is located at the northern margin of the South China Craton and the province has unique world class granite-hosted orogenic gold deposits. Occurrences of Pt-Pd-Ni-Cu-Co are found in Permian

  3. Geologic setting and characteristic of mineral deposits in the central Wasatch Mountains, Utah

    USGS Publications Warehouse

    John, David A.

    1997-01-01

    Base- and precious-metal deposits in the central Wasatch Mountains southeast of Salt Lake City were mined for more than 100 years beginning in 1868. Deposits present in the Park City, Little Cottonwood, and Big Cottonwood mining districts include Ag-Pb-Zn ± Cu ± Au replacement and veins, a low-grade porphyry Cu-Au deposit, Cu-bearing skarns, a quartz monzonite-type (low F) porphyry Mo deposit, and high sulfidation (quartz-alunite) Au deposits. Most production came from polymetallic replacement and vein deposits in the Park City mining district, which has a recorded production of more than 1.4 million oz Au , 253 million oz Ag, 2.7 billion lbs Pb, 1.5 billion lbs Zn, and 129 million lbs Cu from 1872 to 1978. Production in the Little and Big Cottonwood districts, mostly from Pb-Ag replacement deposits, was much smaller. Most mineral deposits in the central Wasatch Mountains are genetically related to the Wasatch igneous belt, a series of high-K calc-alkaline stocks and cogenetic volcanic rocks that formed about 41(?) to 30 Ma. The mineral deposits mostly formed near the end of magmatic activity between about 36 to 31.4 Ma. A subeconomic porphyry Mo deposit in the Little Cottonwood stock is notably younger having formed about 26 to 23.5 Ma. The intrusive rocks were emplaced mostly along the westward extension of the west-trending Uinta arch during a period of NW-SE-directed extension, and much of the mineralization in the Park City district controlled by ENE-striking normal faults. About 15 degrees of eastward tilting of the central Wasatch Mountains during Late Cenozoic Basin and Range extension has resulted in progressively deeper levels of exposure from <1 km on the east to about 11 km on the west and in profound variations in the types of minerals deposits exposed in different parts of the range. Most deposits formed at paleodepths ≤5 km, and the most productive deposits in the Park City district formed at depths of 1 to 2 km. The prophyry Mo deposit in the

  4. [Spectral characteristics and implication of granite from pozaiying molybdenite deposits in west of Guangdong].

    PubMed

    An, Yan-Fei; Zhong, Li-li; Zhou, Yang-Zhang; Chen, Qing; Li, Xing-yuan

    2014-06-01

    Some granite samples from Pozaiying molybdenite deposits in the west of Guangdong were retrieved to characterize the spectral signature of XRD, FT-NIR and Raman. The results show that compared to the Porphyry granite and granite in the far zone, the signal of XRD and Raman of granite in near zone is weaker while the signal of FT-NIR is stronger. The authors' analyses indicate that the FWHM of quartz (101) peak in XRD, Sericite peak (4 529 cm(-1)) in FT-NIR and quartz peak in Raman shift from the latter are higher than those of former two. Those spectral characteristics indicate that compared with other samples, the content of petrogenetic mineral in samples from near zone is lower while the content of alteration mineral is higher, and its crystallinity and crystallization temperatures are both lower. The authors' studies suggest that there may be an alteration zone, embracing the granite-porphyry, which comprised low temperature mineral, and the quartz-porphyry which related to molybdenite mineralization belongs to the zone near Guanshanzhang mass. PMID:25358146

  5. [Spectral characteristics and implication of granite from pozaiying molybdenite deposits in west of Guangdong].

    PubMed

    An, Yan-Fei; Zhong, Li-li; Zhou, Yang-Zhang; Chen, Qing; Li, Xing-yuan

    2014-06-01

    Some granite samples from Pozaiying molybdenite deposits in the west of Guangdong were retrieved to characterize the spectral signature of XRD, FT-NIR and Raman. The results show that compared to the Porphyry granite and granite in the far zone, the signal of XRD and Raman of granite in near zone is weaker while the signal of FT-NIR is stronger. The authors' analyses indicate that the FWHM of quartz (101) peak in XRD, Sericite peak (4 529 cm(-1)) in FT-NIR and quartz peak in Raman shift from the latter are higher than those of former two. Those spectral characteristics indicate that compared with other samples, the content of petrogenetic mineral in samples from near zone is lower while the content of alteration mineral is higher, and its crystallinity and crystallization temperatures are both lower. The authors' studies suggest that there may be an alteration zone, embracing the granite-porphyry, which comprised low temperature mineral, and the quartz-porphyry which related to molybdenite mineralization belongs to the zone near Guanshanzhang mass.

  6. In situ LA-MC-ICP-MS U-Pb geochronology of igneous rocks in the Ashele Basin, Altay orogenic belt, northwest China: Constraints on the timing of polymetallic copper mineralization

    NASA Astrophysics Data System (ADS)

    Yang, Fuquan; Liu, Feng; Li, Qiang; Geng, Xinxia

    2014-01-01

    The Altay orogenic belt of Kazakhstan hosts a world-class polymetallic copper volcanogenic massive sulfide (VMS) metallogenic belt, and the eastern margin of this belt extends into the southern Chinese Altay. The Ashele Basin is located at the western end of the Chinese Altay and borders Kazakhstan. The basin hosts the large Ashele copper-zinc deposit, which is a typical VMS deposit and the largest deposit in the Ashele Basin, and it hosts the subvolcanic-hosted medium-sized Sarsuk polymetallic gold deposit. Both of these deposits are hosted in the Ashele Formation volcanic sequence. The Ashele copper-zinc orebodies are stratabound orebodies located between basalt and tuff units, and were formed during exhalative sediment deposition; in comparison, the Sarsuk gold-copper-lead-zinc orebodies are hosted by rhyolite porphyry that contains disseminated, veinlet, and veinlet-stockwork ore that formed during intrusion of the rhyolite porphyry. This study presents new zircon LA-MC-ICP-MS U-Pb analyses of six volcanic and subvolcanic units, and dikes associated with the Sarsuk and Ashele deposits. The ore-bearing rhyolite porphyry, diabase dike, basalt, tuff, and dacite porphyry samples analyzed during this study yielded ages of 382.0-382.8, 381.7, 388.2, 387.0, and 379.4 Ma, respectively. These data indicate that the Ashele Formation formed during the Early-Mid-Devonian (375-402 Ma), whereas the Ashele copper-zinc deposit formed during the Middle Devonian (388-387 Ma) and the Sarsuk polymetallic copper-gold deposit formed during the latest Middle Devonian (382 Ma). Inherited zircons within the six samples analyzed during this study yielded U-Pb ages of 618-2294 Ma, suggesting the presence of Precambrian crystalline basement within the Altay orogenic belt.

  7. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, clark county, Nevada

    USGS Publications Warehouse

    Vikre, P.; Browne, Q.J.; Fleck, R.; Hofstra, A.; Wooden, J.

    2011-01-01

    ore breccias and relatively low S and Pb isotope values (??34S values vary from 0-??4%; 206Pb/204Pb <18.5). Copper ?? precious metal-PGE deposits (Cu, Co, Ag, Au, Pd, and Pt) consist of Cu carbonate minerals (after chalcocite and chalcopyrite) and fine-grained quartz that have replaced breccia clasts and margins of fissures in Paleozoic limestones and dolomites near porphyritic intrusions. Gold ?? silver deposits occur along contacts and within small-volume stocks and dikes of feldspar porphyry, one textural variety of porphyritic intrusions. Lead isotope compositions of copper ?? precious metal-PGE, gold ?? silver, and lead-dominant carbonate replacement deposits are similar to those of Mojave crust plutons, indicating derivation of Pb from 1.7 Ga crystalline basement or from Late Proterozoic siliciclastic sedimentary rocks derived from 1.7 Ga crystalline basement. Four texturally and modally distinctive porphyritic intrusions are exposed largely in the central part of the district: feldspar quartz porphyry, plagioclase quartz porphyry, feldspar biotite quartz porphyry, and feldspar porphyry. Intrusions consist of 64 to 70 percent SiO2 and variable K2O/Na2O (0.14-5.33) that reflect proportions of K-feldspar and albite phenocrysts and megacrysts as well as partial alteration to K-mica; quartz and biotite phenocrysts are present in several subtypes. Albite may have formed during emplacement of magma in brine-saturated basinal strata, whereas hydrothermal alteration of matrix, phenocrystic, and megacrystic feldspar and biotite to K-mica, pyrite, and other hydrothermal minerals occurred during and after intrusion emplacement. Small volumes of garnet-diopside-quartz and retrograde epidote-mica-amphibole skarn have replaced carbonate rocks adjacent to one intrusion subtype (feldspar-quartz porphyry), but alteration of carbonate rocks at intrusion contacts elsewhere is inconsp. Uranium-lead ages of igneous zircons vary inconsistently from ?? 180 to 230

  8. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  9. Major brazilian gold deposits - 1982 to 1999

    USGS Publications Warehouse

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  10. Major Brazilian gold deposits - 1982 to 1999

    NASA Astrophysics Data System (ADS)

    Thorman, Charles H.; DeWitt, Ed; Maron, Marcos A.; Ladeira, Eduardo A.

    2001-07-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (>20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Carajás Mineral Province.

  11. Permissive tracts for orogenic and epithermal gold deposits in Mauritania (phase V, deliverable 70): Chapter I1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  12. Permissive tracts for shoreline placer titanium deposits in Mauritania (phase V, deliverable 84): Chapter P1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  13. Permissive tracts for sediment-hosted copper deposits in Mauritania (phase V, deliverable 74): Chapter K1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  14. Permissive tracts for volcanogenic massive sulfide deposits in Mauritania (phase V, deliverable 76): Chapter L1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  15. Permissive tracts for sediment-hosted lead-zinc-silver deposits in Mauritania (phase V, deliverable 72): Chapter J1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  16. Permissive tracts for uranium deposits in Mauritania (phase V, deliverable 80): Chapter N1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  17. Permissive tracts for algoma-, superior-, and oolitic-type iron deposits in Mauritania (phase V, deliverable 82): Chapter O1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  18. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    USGS Publications Warehouse

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly Au deposit formed during the early stages of magmatism. LA-ICP-MS zircon U-Pb geochronology of host andesite and 40Ar/39Ar dating of two samples of gold-associated adularia show that the ore-stage adularia (19.83 ± 0.10 and 19.2 ± 0.5 Ma) is younger, by as much as 1.5 million years, than the volcanic host rock (20.32 ± 0.4 Ma). Therefore, either hydrothermal activity continued well after volcanism or a second magmatic event rejuvenated hydrothermal activity. This second magmatic event may be related to eruption of porphyritic andesite at ~20.32 ± 0.40 Ma, which is within error of ~19.83 ± 0.10 Ma adularia. The new LA-ICP-MS zircon U-Pb host rock and vein adularia 40Ar/39Ar ages suggest that early Miocene magmatism and mineralization in the Bazman area is of a similar age to that of the Saindak porphyry and Tanjeel porphyry center of the giant Reko Diq deposit. This confirms the existence of early Miocene arc magmatism and mineralization along the Iranian part of the Makran volcanic arc. Ore, alteration mineralogy, and alteration patterns indicate that the Chahnaly deposit is a typical low-sulfidation epithermal Au deposit, located in a poorly explored part of the Makran volcanic arc in Iran.                   

  19. Late paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Wang, Y.; Hart, C.J.; Wang, Z.; Yang, J.

    2005-01-01

    The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest. The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan - Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-collisional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.

  20. Petrochemistry of igneous rocks of the California-Vetas mining district, Santander, Colombia: Implications for northern Andean tectonics and porphyry Cu (-Mo, Au) metallogeny

    NASA Astrophysics Data System (ADS)

    Bissig, Thomas; Mantilla Figueroa, Luis Carlos; Hart, Craig J. R.

    2014-07-01

    Porphyry Mo and Cu mineralization in the California-Vetas mining district is contemporaneous with 10.9 to 8.4 Ma granodiorite porphyry stocks and overprinted by Au-Ag mineralization of epithermal affinity. Mineralization is hosted by Grenvillian aged paragneisses (Bucaramanga Gneiss of the Santander Massif) and late Triassic to early Jurassic granitic rocks. All intrusive rocks are high-K calc-alkaline. Late Triassic to early Jurassic rocks include peraluminous granites with more than 70 wt.% SiO2 as well as metaluminous diorites, tonalites and granodiorites with SiO2 between 54.9 and 60.4 wt.%. Late Miocene rocks are weakly peraluminous granodiorite porphyries with SiO2 between 61 and 67 wt.% SiO2. Late Miocene rocks share some characteristics with adakite-like rocks which are widely associated with porphyry and epithermal style mineralization elsewhere in the Andes. They have high Ba (930 to 1500 ppm) and high Ba/La (28 to 50), high Sr (850 to 1100 ppm) and Sr/Y (48-78) and depleted middle rare earth elements (MREE) compared to the Mesozoic granites, which have 400 to 700 ppm Ba (Ba/La 14 to 25) and 80 to 150 ppm Sr (Sr/Y 2.5 to 14), and Mesozoic diorites and tonalites, which have ~ 900 to 1200 ppm Ba (Ba/La 20 to 32) and ~ 610 to 750 ppm Sr (Sr/Y 22 to 25). Miocene granodiorite porphyries, in contrast to Mesozoic intrusive rocks have only weak negative Eu anomalies. The Miocene rocks have 87Sr/86Sr ratios of 0.7052 to 0.7067 and εNd of - 1.9 to - 5.4 and are significantly more isotopically primitive than all other rocks in the study area including the Mesozoic diorites to tonalites (87Sr/86Sr = 0.7082 and 0.7092; εNd = - 6.7 and - 7.2), granites (87Sr/86Sr = 0.730 (n = 2); εNd = - 8.2 and - 8.3) and Bucaramanga Gneiss (0.718 to 0.743; εNd = - 10.8 to - 14.1). Lead isotope data are broadly consistent with the Sr and Nd isotope data and the Miocene porphyries have the lowest 207Pb/204Pb ratios but overlap with the Mesozoic diorites to tonalites in their 206Pb

  1. Chronology, geochemistry and Sr-Nd isotope studies of Jurassic intrusions in the Diyanqinamu porphyry Mo mine, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Sun, Hairui; Huang, Zhilong; Li, Wenbo; Leng, Chengbiao; Ma, Deyun; Zhang, Xingchun

    2014-07-01

    Available cores of porphyritic granite and aplitic granite from the Diyanqinamu porphyry Mo deposit in the north central Great Xing’an Range presented an opportunity to examine and analyze Mesozoic igneous rocks far from the Paleo-Pacific subduction zone. The Diyanqinamu granites are highly fractionated I-type, distinguished from the M-, A- or S-type granite by: high SiO2, and Rb; low Zr, Nb, Y, and Ce; low Fe2O3total/MgO and (K2O + Na2O)/CaO ratios; low alumina saturation index (<1.1); low initial ISr ratios (0.70137-0.70451); positive εNd(t) values (2.37-3.77); and negative correlation between P2O5 and SiO2. The aplitic granites were generated by fractional crystallization of the porphyritic granite, as evidenced by: spatial proximity; consistent zircon U-Pb ages (156 Ma) within error; correlations between other oxides and SiO2 in Haker diagrams; low Ba, Sr, Nb, P, Ti, Eu; linear relationship in both (La/Yb)N vs. La and Sr vs. Ba diagrams; and, decreasing LREE and ∑REE with increasing SiO2. The Diyanqinamu granites have young depleted-mantle two-stage model ages (avg. TDM2 = 660 Ma) similar to those of most Mesozoic voluminous felsic magmas in northeastern China, and were likely sourced from pre-existent crustal components both “old” and juvenile that had been juxtaposed during the tectonic evolution of the Paleo-Asian Ocean. These granites project in the transitional field from syn-collision to post-collision tectonic settings on tectonic discrimination diagrams, implying emplacement in an extensional environment. Extensional volcanism and basin formation in the Great Xing’an Range region in Late Jurassic is coeval with the Diyanqinamu granites, demonstrating that post-orogenic lithospheric extension related to the closure of the Mongol-Okhotsk Ocean was the main driving force for Late Jurassic magmatism in this region.

  2. Magmatic and structural controls on porphyry-style Cu-Au-Mo mineralization at Kemess South, Toodoggone District of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Rowins, Stephen M.; McKinley, Bradley S. M.; Dickinson, Jenni M.; Diakow, Larry J.; Kim, Young-Seog; Creaser, Robert A.

    2009-05-01

    Kemess South is the only Cu-Au-Mo mine in the Toodoggone district and a major Cu and Au producer in British Columbia. Porphyry-style Cu-Au-Mo mineralization is mainly hosted by the tabular, SW-plunging, 199.6 ± 0.6-Ma Maple Leaf granodiorite, which intrudes tightly folded, SW-dipping, Permian Asitka Group siltstone and limestone and homogeneous Triassic Takla Group basalt. Southwest-dipping 194.0 ± 0.4-Ma Toodoggone Formation conglomerate, volcaniclastic, and epiclastic rocks overlie the granodiorite and Asitka Group rocks. Minor Cu-Au-Mo mineralization is hosted by the immediate Takla Group basalt country rock, whereas low-tonnage high-grade Cu zones occur beneath a 30-m-thick leached capping in supergene-altered granodiorite and in exotic positions in overlying Toodoggone Formation conglomerate. Granodiorite has an intrusive contact with mineralized and altered Takla Group basalt but displays a sheared contact with unmineralized and less altered Asitka Group siltstone. The North Block fault is a deposit-scale, E-striking, steeply S-dipping normal fault that juxtaposes the granodiorite/basalt ore body against unmineralized Asitka Group rocks. Younger NW- and NE-striking normal-dextral faults cut all rock types, orebodies, and the North Block fault with displacements of up to 100 m and result in the graben-and-horst-style block faulting of the stratigraphy and ore body. Both basalt and granodiorite host comparable vein sequence and alteration histories, with minor variations in hydrothermal mineral assemblages caused by differing protolith chemistry. Early potassic alteration (and associated early-stage Cu ± Au ± Mo mineralization) is partly replaced by phyllic and intermediate argillic alteration associated with main-stage Cu-Au-Mo mineralization. Two main-stage veins have Re-Os molybdenite ages of 201.3 ± 1.2 and 201.1 ± 1.2 Ma. These mineralization ages overlap the 199.6 ± 0.6-Ma U-Pb zircon crystallization age for the Maple Leaf granodiorite. Late

  3. Sediment-Hosted Copper Deposits of the World: Deposit Models and Database

    USGS Publications Warehouse

    Cox, Dennis P.; Lindsey, David A.; Singer, Donald A.; Diggles, Michael F.

    2003-01-01

    a PDF file. The database can be most conveniently read in FileMaker Pro. For those who do not have the FileMaker application, Microsoft-Excel, tab-delimited-ASCII and comma-separated-value files are included. The reader may be interested in a similar publication on porphyry copper deposits (Singer and others, 2005) also available online. The Google Earth image is not intended to be viewed at the highest possible magnification because the resolution of the database is plus or minus two kilometers. At extreme zoom settings, the deposit locations may not coincide with the Google-Earth images of the mine workings.

  4. Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia

    NASA Astrophysics Data System (ADS)

    Dejonghe, Léon; Darras, Benoît; Hughes, Guillermo; Muchez, Philippe; Scoates, James S.; Weis, Dominique

    2002-03-01

    The lead isotope compositions of galena and the fluid-inclusion systematics of nine barite-bearing polymetallic (Au, Ag, Pb, Zn) deposits of the central Argentinian Patagonia (Chubut and Rio Negro provinces) have been investigated to constrain the compositions and sources of the mineralizing fluids. Most of the deposits occur as veins, with less common wall-rock disseminations and/or stockworks, and are low-sulfidation epithermal deposits hosted in Jurassic volcanic rocks. Fluid-inclusion homogenization temperatures (Th) from quartz and sphalerite from the deposits fall within the range of 100-300 °C, with the highest measured average temperatures for the most eastern deposits (Mina Angela - 298 °C; Cañadón Bagual - 343 °C). The salinities of the hydrothermal fluids at all deposits were low to moderate (≤10.4 equiv. wt% NaCl). Three groups of ore deposits can be defined on the basis of 206Pb/204Pb ratios for galena and these show a general decrease from west to east (from 18.506 to 18.000). The central Argentinian Patagonia deposits have distinctly less radiogenic lead isotope compositions than similar deposits from Peru and Chile, except for the porphyry copper deposits of central and southern Peru. Galena from the Mina Angela deposit is characterized by very low radiogenic lead isotope compositions (18.000<206Pb/204Pb<18.037 and 38.03<208Pb/204Pb<38.09) and reflects interaction with Precambrian basement. The geographic trend in lead isotope compositions of both galena and whole rocks indicates a crustal contribution which increases eastwards, also reflected in the strontium-neodymium isotope systematics of the host lavas. Finally, due to the lack of precise age determinations for the central Patagonian polymetallic deposits, a potential link with Andean porphyry copper systems remains an open question.

  5. Zircon U-Pb geochronology and Sr-Nd-Hf isotopic compositions of the Yuanzhuding granitoid porphyry within the Shi-Hang Zone, South China: Petrogenesis and implications for Cu-Mo mineralization

    NASA Astrophysics Data System (ADS)

    Zhong, Lifeng; Li, Jie; Peng, Touping; Xia, Bin; Liu, Liwen

    2013-09-01

    The Shi-Hang Zone is an important NE-SW-trending Mesozoic magmatic belt in South China, which is dominated by granites with relatively high εNd(t) values and young TDM model ages. Here, we present laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb ages, major and trace element compositions, and Sr-Nd-Hf isotope data for the Yuanzhuding porphyritic granitoids within the southwestern Shi-Hang Zone, and use these data to determine the origin of this granitoid and its relationship with Cu-Mo mineralization. Zircon U-Pb dating indicates that these granitoids were emplaced at 157.8 ± 1.1 Ma. They have initial 87Sr/86Sr ratios of 0.70941-0.71398, εNd(t) values of - 3.15 to - 2.02, and in situ zircon εHf(t) values of + 1.71 to + 6.17. Geochemically, most of them are high-K calc-alkaline and show an adakitic affinity. They are more likely emplaced in a continental arc setting related to westward subduction of the paleo-Pacific plate. Their parental magma originated chiefly from the overlying sediments of the downgoing slab, and subsequently interacted with the lithospheric mantle wedge at the temperatures of ~ 790 °C. High oxygen fugacity during magmatic evolution played a crucial role in the development of Cu-Mo mineralization within the Yuanzhuding. The discovery of the Yuanzhuding deposit implies that the Chenzhou-Huaiji fault belt is most likely prospective for mineral exploration for porphyry Cu-Mo deposits.

  6. Regional Crustal Structures and Their Relationship to the Distribution of Ore Deposits in the Western United States, Based on Magnetic and Gravity Data

    USGS Publications Warehouse

    Hildenbrand, T.G.; Berger, B.; Jachens, R.C.; Ludington, S.

    2000-01-01

    Upgraded gravity and magnetic databases and associated filtered-anomaly maps of western United States define regional crustal fractures or faults that may have guided the emplacement of plutonic rocks and large metallic ore deposits. Fractures, igneous intrusions, and hydrothermal circulation tend to be localized along boundaries of crustal blocks, with geophysical expressions that are enhanced here by wavelength filtering. In particular, we explore the utility of regional gravity and magnetic data to aid in understanding the distribution of large Mesozoic and Cenozoic ore deposits, primarily epithermal and porphyry precious and base metal deposits and sediment-hosted gold deposits in the western United States cordillera. On the broadest scale, most ore deposits lie within areas characterized by low magnetic properties. The Mesozoic Mother Lodge gold belt displays characteristic geophysical signatures (regional gravity high, regional low-to-moderate background magnetic field anomaly, and long curvilinear magnetic highs) that might serve as an exploration guide. Geophysical lineaments characterize the Idaho-Montana porphyry belt and the La Caridad-Mineral Park belt (from northern Mexico to western Arizona) and thus indicate a deep-seated control for these mineral belts. Large metal accumulations represented by the giant Bingham porphyry copper and the Butte polymetallic vein and porphyry copper systems lie at intersections of several geophysical lineaments. At a more local scale, geophysical data define deep-rooted faults and magmatic zones that correspond to patterns of epithermal precious metal deposits in western and northern Nevada. Of particular interest is an interpreted dense crustal block with a shape that resembles the elliptical deposit pattern partly formed by the Carlin trend and the Battle Mountain-Eureka mineral belt. We support previous studies, which on a local scale, conclude that structural elements work together to localize mineral deposits within

  7. Permissive tracts for incompatible element deposits hosted in pegmatities, alkaline rocks, and carbonatities in Mauritania (phase V, deliverable 86), Chapter Q1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  8. Permissive tracts for nickel, copper, platinum group elements (PGE), and chromium deposits of Mauritania (phase V, deliverable 66): Chapter G1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  9. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 68): Chapter H1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Goldfarb, Richard J.; Marsh, Erin; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  10. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China

    NASA Astrophysics Data System (ADS)

    Wang, Changming; Zhang, Da; Wu, Ganguo; Santosh, M.; Zhang, Jing; Xu, Yigan; Zhang, Yaoyao

    2014-08-01

    The Lengshuikeng ore district in east-central China has an ore reserve of ˜43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb + Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ˜100-400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite-chalcopyrite-sphalerite, middle-stage acanthite-native silver-galena-sphalerite, and late-stage pyrite-quartz-calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from -3.8 to +6.9‰ with an average of +2.0‰. The C-O isotope values of siderite, calcite, and dolomite range from -7.2 to -1.5‰ with an average of -4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA-ICP-MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3 ± 0.8 Ma considered as the emplacement age of the porphyry. Rb-Sr dating of sphalerite from the main ore stage yielded an age of 126.9 ± 7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag-Pb-Zn deposit.

  11. Metallogeny of the northeastern Pacific Rim: an example of the distribution of ore deposits along a growing continental margin

    USGS Publications Warehouse

    Goldfarb, R.J.; Hart, C.J.; Mortensen, J.K.; Weber, Graeme

    1999-01-01

    The distribution of mineral deposits within northwestern North America (Alaska, Yukon, and northern British Columbia) allows for an in-depth examination of the metallogenic patterns of a growing continental margin. A more complete understanding of the tectonic evolution of this part of the Pacific Rim, achieved over the last 15 to 20 years, now allows for the placement of ore systems into a well-defined plate tectonic framework. Ore deposits older than about 185 Ma represent hydrothermal systems that were active in the platform/shelf environment of ancestral North America's miogeocline or hydrothermal systems developed in oceanic arcs and continental fragments more distal to the craton. These include important SEDEX, VMS, and pre-accretionary porphyry deposits. In contrast, most mineral deposits younger than about 185 Ma were formed within the growing Cordilleran orogen, as terranes were accreted to the continental margin during interactions between the North America and Pacific/Farallon/Kula plates. Such syn- to post-accretionary mineralised systems include many large lode gold and porphyry/skarn systems.

  12. Altered igneous rocks around Rocky Mountain manto deposits: the Gilman (Colorado) example

    SciTech Connect

    O'Neill, T.F.; Merchant, J.S.; Beaty, D.W.; Whitney, G.

    1985-01-01

    The Pando Porphyry at Gilman, Colorado forms an easterly-dipping sill above a major manto sulfide ore deposit hosted in the Leadville Dolomite. The sill is regionally altered to a propylitic assemblage (chl-epid-carb). Above the ore bodies the base of the sill is regionally altered to a phyllic assemblage (2M mica-qtz-py-kaol). The phyllic zone is divisible using birefringence of 2M mica into three subzones, which are mineralogically identical and gradational into one another. The phyllic zone is surrounded by a kaolinite-rich argillic zone with local sparse smectite. Spatially, the phyllic alteration is closely confined to the area of the ore bodies. Moreover, the thickness of phyllically altered porphyry is directly correlated with the intensity of mineralization. The distribution of alteration in the Pando sill (age = 70 Ma) requires that the manto mineralization process was at least predominantly: 1) hydrothermal; 2) Tertiary in age; and 3) had up-dip hydrothermal flux along the base of the sill. The sequence propyllitic-argillic-phyllic-ore is present at several other large Rocky Mountain manto deposits and argues for an epigenetic origin involving high-T, low-pH fluids.

  13. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  14. An Index to PGE-Ni-Cr Deposits and Occurrences in Selected Mineral-Occurrence Databases

    USGS Publications Warehouse

    Causey, J. Douglas; Galloway, John P.; Zientek, Michael L.

    2009-01-01

    Databases of mineral deposits and occurrences are essential to conducting assessments of undiscovered mineral resources. In the USGS's (U.S. Geological Survey) global assessment of undiscovered resources of copper, potash, and the platinum-group elements (PGE), only a few mineral deposit types will be evaluated. For example, only porphyry-copper and sediment-hosted copper deposits will be considered for the copper assessment. To support the global assessment, the USGS prepared comprehensive compilations of the occurrences of these two deposit types in order to develop grade and tonnage models and delineate permissive areas for undiscovered deposits of those types. This publication identifies previously published databases and database records that describe PGE, nickel, and chromium deposits and occurrences. Nickel and chromium were included in this overview because of the close association of PGE with nickel and chromium mineralization. Users of this database will need to refer to the original databases for detailed information about the deposits and occurrences. This information will be used to develop a current and comprehensive global database of PGE deposits and occurrences.

  15. Zircon U-Pb and molybdenite Re-Os geochronology, and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Wang, Jianping; Yang, Yongqiang; Zhang, Hongyu; Wang, Xilong; Zhang, Qibin; Wang, Gongwen; Liu, Zhenjiang

    2014-01-01

    The Hashitu deposit is a newly-discovered Mo deposit in the southern part of the Great Hinggan Range, NE China. Molybdenum mineralization occurs as quartz-sulfide veins within the Hashitu granite-porphyry composite pluton. The sulfide assemblage in the veins is dominated by molybdenite, with minor amounts of galena, sphalerite, chalcopyrite, pyrite and marcasite. The associated gangue minerals are quartz, fluorite, calcite, sericite, chlorite and epidote. Whole-rock chemical compositions show that the Hashitu granites belong to the A2-type. The U-Pb ages of zircons from the Hashitu granite and porphyry units are 147 ± 1 Ma and 143 ± 2 Ma, respectively. The Re-Os isochron age of molybdenites from the deposit is 150 ± 4 Ma. The molybdenite Re-Os model ages vary from 144 to 150 Ma, with a weighted mean of 147 ± 1 Ma. The results show that the ages of zircon crystallization and Mo mineralization are similar, mostly within analytical uncertainties, and that the host granite pluton is one of many late-Jurassic plutons in the Great Hinggan Range. The formation of the late-Jurassic granitic plutons in this region coincides with the subduction of the Pacific plate beneath the North China block which took place ˜2000 km to the east at the time. The occurrence of abundant late-Jurassic granitoids with compositions similar to the Hashitu pluton in the Great Hinggan Range is a positive sign for more discoveries of Mo deposits in this region.

  16. Mineralogical study on volcanic ash of the eruption on September 27, 2014 at Ontake volcano, central Japan: correlation with porphyry copper systems

    NASA Astrophysics Data System (ADS)

    Minami, Yusuke; Imura, Takumi; Hayashi, Shintaro; Ohba, Tsukasa

    2016-04-01

    The volcanic ash of the eruption on September 27, 2014 at Ontake volcano consists mostly of altered rock fragments. The ash contains partly altered volcanic rock fragments consisting of primary igneous minerals (plagioclase, orthopyroxene, titanomagnetite, and feldspars) and volcanic glass accompanied by alteration minerals to some extents, and contains no juvenile fragments. These features indicate that the eruption was a non-juvenile hydrothermal eruption that was derived from the hydrothermal system developed under the crater. The major minerals derived from hydrothermal alteration zones are silica mineral, kaolin-group mineral, smectite, pyrophyllite, muscovite, alunite, anhydrite, gypsum, pyrite, K-feldspar, albite, and rutile. Minor chlorite, biotite, and garnet are accompanied. Five types of alteration mineral associations are identified from observations on individual ash particles: silica-pyrite, silica-pyrite ± alunite ± kaolin, silica-pyrophyllite-pyrite, silica-muscovite ± chlorite, and silica-K-feldspar ± albite ± garnet ± biotite. The associations indicate development of advanced argillic, sericite, and potassic alteration zones under the crater. Occurrence of anhydrite veinlet and the set of alteration zones indicate hydrothermal alteration zones similar to late-stage porphyry copper systems. Comparing the mineral associations with the geologic model of the late-stage porphyry copper systems, the source depths of mineral associations are estimated to range from near surface to >2 km. The depths of advanced argillic alteration, sericite, and potassic zones are 0 to ~2, ~1.5 to ~2, and >2 km, respectively.

  17. Map scale effects on estimating the number of undiscovered mineral deposits

    USGS Publications Warehouse

    Singer, D.A.; Menzie, W.D.

    2008-01-01

    Estimates of numbers of undiscovered mineral deposits, fundamental to assessing mineral resources, are affected by map scale. Where consistently defined deposits of a particular type are estimated, spatial and frequency distributions of deposits are linked in that some frequency distributions can be generated by processes randomly in space whereas others are generated by processes suggesting clustering in space. Possible spatial distributions of mineral deposits and their related frequency distributions are affected by map scale and associated inclusions of non-permissive or covered geological settings. More generalized map scales are more likely to cause inclusion of geologic settings that are not really permissive for the deposit type, or that include unreported cover over permissive areas, resulting in the appearance of deposit clustering. Thus, overly generalized map scales can cause deposits to appear clustered. We propose a model that captures the effects of map scale and the related inclusion of non-permissive geologic settings on numbers of deposits estimates, the zero-inflated Poisson distribution. Effects of map scale as represented by the zero-inflated Poisson distribution suggest that the appearance of deposit clustering should diminish as mapping becomes more detailed because the number of inflated zeros would decrease with more detailed maps. Based on observed worldwide relationships between map scale and areas permissive for deposit types, mapping at a scale with twice the detail should cut permissive area size of a porphyry copper tract to 29% and a volcanic-hosted massive sulfide tract to 50% of their original sizes. Thus some direct benefits of mapping an area at a more detailed scale are indicated by significant reductions in areas permissive for deposit types, increased deposit density and, as a consequence, reduced uncertainty in the estimate of number of undiscovered deposits. Exploration enterprises benefit from reduced areas requiring

  18. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Matjuschkin, Vladimir; Blundy, Jon D.; Brooker, Richard A.

    2016-07-01

    Piston cylinder experiments are used to investigate the effect of oxygen fugacity (ƒO2) on sulphur speciation and phase relations in arc magmas at 0.5-1.5 GPa and 840-950 °C. The experimental starting composition is a synthetic trachyandesite containing 6.0 wt% H2O, 2880 ppm S, 1500 ppm Cl and 3800 ppm C. Redox conditions ranging from 1.7 log units below the Ni-NiO buffer (NNO - 1.7) to NNO + 4.7 were imposed by solid-state buffers: Co-CoO, Ni-NiO, Re-ReO2 and haematite-magnetite. All experiments are saturated with a COH fluid. Experiments produced crystal-bearing trachydacitic melts (SiO2 from 60 to 69 wt%) for which major and volatile element concentrations were measured. Experimental results demonstrate a powerful effect of oxidation state on phase relations. For example, plagioclase was stable above NNO, but absent at more reduced conditions. Suppression of plagioclase stability produces higher Al2O3 and CaO melts. The solid sulphur-bearing phases and sulphur speciation in the melt are strong functions of ƒO2, as expected, but also of pressure. At 0.5 GPa, the anhydrite stability field is intersected at NNO ≥ +2, but at 1.0 and 1.5 GPa, experiments at the same ƒO2 produce sulphides and the stability field of sulphate moves towards higher ƒO2 by ~1 log unit at 1.0 GPa and ~1.5 log units at 1.5 GPa. As a result, models that appeal to high oxidation state as an important control on the mobility of Cu (and other chalcophiles) during crustal differentiation must also consider the enhanced stability of sulphide in deep- to mid-crustal cumulates even for relatively oxidized (NNO + 2) magmas. Experimental glasses reproduce the commonly observed minimum in sulphur solubility between the S2- and S6+ stability fields. The solubility minimum is not related to the Fe content (Fe2+/Fe3+ or total) of the melt. Instead, we propose this minimum results from an unidentified, but relatively insoluble, S-species of intermediate oxidation state.

  19. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  20. Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, west central Utah.

    USGS Publications Warehouse

    Cunningham, C.G.; Rye, R.O.; Steven, T.A.; Mehnert, H.H.

    1984-01-01

    Alunite in the Marysvale volcanic field forms two (three are described) different types of deposits which contrast in appearance and conditions of origin: 1) Replacement deposits are generally fine-grained and formed by near-surface replacement of intermediate-composition volcanic rocks. The deposits form a bead necklace around a monzonite stock. Each deposit is zoned horizontally from alunitic cores to kaolinitic and propylitic envelopes and zoned vertically from pyrite/propylite upward through alunite/jarosite/hematite to a silica cap. Alunite does not extend below 100 m. Sulphur isotope ratios agree with derivation from underlying Mesozoic evaporites. 2) Natroalunite of 14-m.y. age crosscuts replacement-type alunite deposits. Its S-isotope ratios are comparable with those of pyrite in the volcanics. The Na may be from underlying Mesozoic halites. 3) Veins of coarse-grained alunite of 14-m.y. age filled extension fractures above a postulated stock. S-isotope ratios indicate a probable magmatic source. The contrasting properties of the Marysvale alunite deposits preclude any simple relation to ore deposits, but serve to refine interpretations based on other geological considerations. The replacement deposits are a logical near-surface result of skarn forming processes at depth around the monzonite stock. The vein- type deposits are a logical near-surface result of porphyry metallization in an underlying stock. -G.J.N.

  1. Quartz-sericite and argillic alterations at the Peschanka Cu-Mo-Au deposit, Chukchi Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Marushchenko, L. I.; Baksheev, I. A.; Nagornaya, E. V.; Chitalin, A. F.; Nikolaev, Yu. N.; Kal'ko, I. A.; Prokofiev, V. Yu.

    2015-05-01

    The porphyry Peschanka copper-molybdenum-gold deposit and the Nakhodka ore field located in the Baimka ore trend on the western Chukchi Peninsula are spatially related to monzonitic rocks of the Early Cretaceous Egdykgych Complex. Two types of quartz-sericite metasomatic rocks (QSR) have been identified at both the deposits and the ore field: (I) chlorite-quartz-muscovite rock with bornite and chalcopyrite (porphyry type) and (II) tourmaline-quartz-carbonate-muscovite ± phengite rock accompanied by veins with base-metal mineralization (subepithermal or transitional type), as well as carbonate-quartz-illite rock (argillic alteration) accompanied by veins with precious metal mineralization (epithermal type). The QSR I chlorite evolves from chamosite to clinochlore, which is caused by increasing H2S activity in mineralizing fluid and precipitation of sulfide minerals. The QSR I clinochlore is significantly depleted in silica as compared with that from the rocks affected by argillic alteration. The chemical composition of muscovite from both quartz-sericite alterations is similar. The QSR II carbonates evolve from calcite through dolomite to siderite, which results from the increasing activity of CO2 followed by the decreasing activity of H2S in mineralizing fluid. The Mn content in dolomite is similar to that in beresite (quartz-muscovite-carbonate-pyrite metasomatic rock) of the intrusion-related gold deposits. Illite from argillic alteration is depleted in Al as compared with that of postvolcanic epithermal Au-Ag deposits. However, carbonates from the discussed argillic alteration rhodochrosite and Mn-rich dolomite are similar to those from quartz-illite rock at postvolcanic epithermal Au-Ag deposits.

  2. Geochronology and petrogenesis of Miocene granitic intrusions related to the Zhibula Cu skarn deposit in the Gangdese belt, southern Tibet

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Zheng, You-ye; Sun, Xiang; Shen, Ya-hui

    2016-04-01

    The Zhibula Cu skarn deposit (19.5 Mt ore @ 1.64%), near the Qulong porphyry Cu-Mo deposit, is located in the Gangdese porphyry copper belt in southern Tibet. The deposit is a typical metasomatic skarn that is related to the interaction of magmatic-hydrothermal fluids and calcareous host rocks. Stratiform skarn orebodies are mainly distributed in the contact between tuff and marble in the lower part of the Jurassic Yeba Formation. Endoskarn zonations for an outward trend are observed in the granodiorite, which grade from a fresh granodiorite to a weakly chlorite-altered granodiorite, a green diopside-bearing granodiorite, and a dark red-brown garnet-bearing granodiorite. The Zhibula granodiorite and monzogranite have similar secondary ion mass spectrometry (SIMS) zircon U-Pb ages of 16.9 ± 0.3 Ma and 17.0 ± 0.2 Ma, respectively. They exhibit different fractional crystallization from granodiorite (SiO2 = 64.8-69.3 wt.%) to monzogranite (SiO2 = 72.3-76.8 wt.%). Both the granodiorite and monzogranite are characterized by high Al2O3 (12.6-16.7 wt.%) and K2O (1.5-5.5 wt.%) contents, high Sr/Y (35-151) and La/Yb (19-48) ratios, and variable MgO (0.16-3.91) and Mg# (31-61) values. They display features of enrichment in large ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, and K), depletion in high field strength elements (HFSEs, e.g., Nb, Ta, Ti, and P), and moderate negative Eu anomalies (δEu = 0.58-0.98). They show restricted in situ zircon Hf isotopic compositions (+6.7 to +8.8; only one sample is +4.5) and consistent δ18O values (+6.0‰ to +6.6‰). The geochemical data indicated that the Miocene Zhibula granitic intrusions formed by the magma that were characterized by high Sr/Y ratios and were derived from the partial melting of the thickened juvenile lower crust, which may have been metasomatized by the slab melts during subduction of the Neo-Tethyan oceanic crust and were induced by the convective removal of the thickened lithosphere. In addition, the

  3. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    The origin and tectonic setting of Early Cretaceous adakitic rocks from the Luxi terrane in the eastern North China Block (NCB) remain debated. To resolve this issue, we determined whole-rock geochemistry, zircon U-Pb ages, and in situ Hf-O isotopes of the Mengyin and Liujing adakitic porphyries from the Luxi terrane. Zircon U-Pb dating results reveal that both the Mengyin and Liujing plutons were emplaced during the Early Cretaceous, with weighted mean 206Pb/238U ages of 130 ± 1 Ma (2σ) and 131 ± 2 Ma (2σ), respectively. In addition, abundant Neoarchean-Paleoproterozoic inherited zircon cores are identified in the Mengyin adakitic porphyry with 207Pb/206Pb ages ranging from 2.53 to 2.42 Ga. Rocks of both plutons are silicic (SiO2 = 65.4-70.2 wt.%), metaluminous, and alkaline in composition, comprising mainly quartz syenite porphyries. Samples from both plutons are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Sr, and Ba), and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs) (e.g., Nb, Ta, and Ti), and heavy rare earth elements (HREEs), and have either positive or no Eu anomalies. In addition, both adakitic porphyries have high Mg# values (51-64), high Sr and La contents, low Y and Yb contents, and high Sr/Y (Mengyin = 149-264; Liujing = 58-110) and (La/Yb)N (Mengyin = 32.4-45.3; Liujing = 43.8-53.1) ratios, similar to adakitic rocks worldwide. The Mengyin adakitic porphyry has higher whole-rock εNd(t) values (-5.8 to - 4.1), more radiogenic Pb [(206Pb/204Pb)i = 18.35-18.39, (207Pb/204Pb)i = 15.55-15.56, (208Pb/204Pb)i = 38.20-38.23], higher zircon rim εHf(t) values (+ 3.3 to + 8.8) and δ18O values (+ 6.5‰ to + 7.9‰), and lower (87Sr/86Sr)i ratios (0.7049-0.7050) than the Liujing adakitic porphyry [εNd(t) = - 12.4 to - 12.2, (206Pb/204Pb)i = 17.63-17.72, (207Pb/204Pb)i = 15.56-15.58, (208Pb/204Pb)i = 37.76-37.94, εHf(t) = - 14.8 to - 11.2, δ18O = + 5.9‰ to + 7.1‰, (87Sr/86Sr)i = 0.7090-0.7091]. The

  4. Geology and ore deposits of the Whitepine area, Tomichi mining district, Gunnison County, Colorado

    USGS Publications Warehouse

    Robinson, Charles Sherwood

    1956-01-01

    The Tomichi mining district is on the western slope of the Continental Divide near the southern end of the Sawatch Range in southeastern Gunnison County, Colorado. The most productive part of the Tomichi district was the Whitepine area. It is estimated that since the discovery of ore in 1879 the area has produced approximately $7,000,000, principally in lead and zinc, with lesser amounts of silver, copper, and gold. Geologically, the Whitepine area is a faulted syncline of Paleozoic rocks that was intruded by Tertiary igneous rocks. The oldest rock of the area is the Silver Plume granite of pre-Cambrian age. Deposited upon this successively were the Sawatch quartzite (Late Cambrian), Manitou dolomite (Early Ordovician), Harding quartzite (Middle Ordovician), Fremont dolomite (Lade Ordovician), Chaffee formation (Late Devonian), Leadville limestone (Late Mississippian), and Beldon shale (Late Pennsylvanian); a total thickness of about 1,450 feet. During the Laramide Revolution, the sedimentary rocks were folded into a broad northward-plunging syncline, faulted, and intruded by a series of igneous rocks. The igneous rocks, in order of relative age from oldest to youngest, are: a rhyolite stock, the Princeton quartz monzonite batholith, quartz monzonite or quartz latite porphyry dikes, and rhyolite or pitchstone porphyry dikes. The ore deposits of the Whitepine area may be classified into replacement deposits, vein deposits, and contact metamorphic deposits. The replacement deposits may be further subdivided into deposits along faults and bedded deposits. Of the types of deposits, the most productive have been the replacement deposits along faults. The major replacement deposits along faults are those of the Akron, Morning Star, and Victor mines. The ore deposits of these mines are in the foot wall of the Star faults in the Akron mine in the Manitou dolomite and in the Morning Star and Victor mines in the Leadville limestone. The chief bedded replacement deposits are

  5. Age constraints of the Wassa and Benso mesothermal gold deposits, Ashanti Belt, Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Parra-Avila, Luis A.; Bourassa, Yan; Miller, John; Perrouty, Stéphane; Fiorentini, Marco L.; Campbell McCuaig, T.

    2015-12-01

    The Ashanti Belt in Ghana hosts numerous multi-million ounce gold deposits and is one of the most richly gold endowed Paleoproterozoic belts of the West African Craton. This work shows that the Wassa mineralized intrusion is part of the Sefwi Group. This unit at Wassa is strongly magnetic and show a distinctly high response in regional magnetic data sets compared to other units of equivalent age within the belt. The unit is inferred to be a lateral extension of an exposed fragment of what defines the substrate to the Tarkwa Basin sediments. The Wassa deposit, located in the eastern limb of the belt, is hosted within mafic to intermediate volcanic flows that are interbedded with minor horizons of volcaniclastics, clastic sediments. The clastic sediments include wackes and magnetite rich sedimentary layers, presumably derived from banded iron formations. The previously described sequence is intruded by syn-volcanic mafic intrusives and felsic porphyries rocks that are all part of the Birimian stratigraphy. Two new key SHRIMP II U-Pb ages were determined as part of this study: a new age of 2191 ± 6 Ma was determined on magmatic zircon grains of the Wassa porphyry host rock, which now represents the oldest known felsic intrusion hosting gold mineralization in the Ashanti Belt region. The Benso gold deposit system, which is located in the eastern limb of the Ashanti Belt approximately 38 km southwest of Wassa is hosted within a series of volcanic units intruded by mafic to intermediate units. A SHRIMP II U-Pb age of 2157 ± 5 Ma was determined from magmatic zircons obtained from a granodiorite of the G-Zone of the Benso deposit. This granodiorite is the main host rock for gold mineralization and thus the age provides an upper constraint for mineral emplacement. The newly determined ages provide an upper constraint for the gold mineralization within this region of the Ashanti Belt. They also support recent structural studies that have interpreted that the Wassa

  6. The geology and ore deposits of Upper Mayflower Gulch, Summit County, Colorado

    USGS Publications Warehouse

    Randall, John Alexander

    1958-01-01

    Upper Mayflower Gulch is on the highly glaciated western side of the Tenmile Range near Kokomo in central Colorado. Somewhat less than $500,000 in silver and gold has been produced from the area since the first mining in the 1880' s. In the mapped area high grade regional metamorphism has produced two varieties of gneiss and a granulite. Total thickness of the rocks is about 5,000 feet. Relict bedding is preserved in compositional banding which strikes north to N. 20 ? E. and dips 70 ? to 80 ? southeast. No significant folding was observed. Normal faulting has occurred since the Precambrian; two major sets of faults are recognizable: (1) a set striking N. 70 ? to 85 ? E. and dipping 75?-85 ? NW; and (2) a set striking N. 70?-50 ? W. and dipping 50?-60 ? SW. Tabular bodies of pegmatite and retrogressively metamorphosed schist along many faults indicate Precambrian movement. The Mayflower fault, a 90 to 300 foot wide zone of siltification and shattered rock, strikes about N. 40 ? W. It extends the entire length of the gulch and appears to form the northern terminus for the northeast trending Mosquito Fault. The Mayflower fault shows repeated movement since the Precambrian, totaling about 3,000 feet of apparent dip slip and 640 feet of apparent strike slip. Faulting during the Tertiary includes both additional movement along Precambrian faults and development of shears trending N. to N. 20 ? E. The shears served as channels for the intrusion of two varieties of quartz latite porphyry dikes. Specular hematite and base-metal sulfide mineralization followed intrusion of the porphyry dikes; the minerals were deposited in open fault zones by high temperature solutions in a low pressure environment. The principal metallic minerals in order of deposition are: hematite, pyrite, chalcopyrite, sphalerite, galena, and rarer argentite. The major mines are the Gold Crest, Payrock, Nova Scotia Boy, and Bird's Nest.

  7. Re Os isotopes applied to the epithermal gold deposits near Bucaramanga, northeastern Colombia

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Ruiz, J.; Herb, P.; Hahn, L.; Burgath, K.-P.

    2003-01-01

    The epithermal gold mineralization near Bucaramanga, Colombia, is spatially associated with a dacitic porphyry of Upper Cretaceous to Early Tertiary age. Two mining districts in the vicinity of Bucaramanga, the California and the Vetas, host different styles of mineralization that could be interpreted as high- and low-sulfidation style mineralization, respectively. Re-Os isotope systematics were used on sulfide-gold-rich gravity concentrates in an attempt to determine both the ages of the epithermal deposits and the possible genetic relationships between the porphyry and the epithermal mineralization. The concentration of Os for sulfide samples taken from both systems is relatively uniform, ranging from 19 to 35 ppt (parts per trillion), whereas the Re concentration varies significantly, with the California system averaging 10 ppb (parts per billion) and the Vetas system averaging 140 ppb. The samples from the high-sulfidation California deposit form an isochron with an age of 57±10 Ma (MSWD=0.8), which overlaps with the age of the dacitic volcanism. The initial 187Os/ 188Os of the isochron is 1.20±0.13 and indicates a predominately crustal source for the Os and, by inference, gold. The samples from the Vetas low-sulfidation system have very high Re/Os ratios and do not lie on the isochron. These data reveal a difference between two epithermal systems that border one intrusion. Sulfide samples from the high-sulfidation system are isotopically homogenous with respect to Re-Os (form an isochron) and probably represent mineralization linked closely with the high temperature volatiles/fluids from the magma. In contrast, the sulfides from the Vetas system are in disequilibrium with respect to Re-Os and may illustrate mineralization that is not directly related to similar magmatic fluids.

  8. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, B.R.; Henley, R.W.

    2011-01-01

    High-sulfidation copper-gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500. m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica-alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide-sulfosalt mineral assemblages and gold-silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting. At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold-silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source. ?? 2010.

  9. Tectonics and distribution of gold deposits in China - An overview

    USGS Publications Warehouse

    Zhou, T.; Goldfarb, R.J.; Phillips, G.N.

    2002-01-01

    Gold exploration in China has expanded rapidly during the last two decades since a modern approach to economic development has become a national priority. China currently produces 180 tonnes (t) of gold annually, which is still significantly less than South Africa, USA, and Australia. However, China is now recognized as possessing significant gold resources in a wide range of mineral deposit types. Present estimates of gold resources in China exceed 4,500 t, which comprise 60% in gold-only deposits, more than 25% in base metal-rich skarn, porphyry, and vein deposits, and more than 10% in placer accumulations. The major gold provinces in China formed during the main episodes of Phanerozoic tectonism. Such tectonism involved interaction of China's three major Precambrian cratons, North China, Tarim, and Yangtze (or South China when combined with Cathysia block), with the Angara (or Siberian), Kazakhstan-Kyrgyzstan, and Indian cratons. Resulting collisions included deformation of accreted oceanic sequences between the cratonic blocks. The most important ore-forming orogenies were (1) the late Paleozoic Variscan (405-270 Ma), which led to amalgamation of the Angara, North China and Yangtze cratons, (2) the Indosinian (270-208 Ma), which led to the collision of North China and South China cratons, (3) the Yanshanian (208-90 Ma), which was largely influenced by the subduction of the Izanagi-Pacific plates beneath eastern China, and (4) the Himalayan (<90 Ma) indentation of the Indian continent into Eurasia. No important Precambrian gold systems are recognized in China, mainly because of reworking of exposed Precambrian rocks by these younger orogenies, but there are a few Caledonian (600-405 Ma) gold-bearing system in northern Xinjiang. Most of China's orogenic, epithermal, and Carlinlike gold deposits are in the reworkerd margins of major cratonic blocks and in metasedimentary rock-dominated fold belts adjacent to these margins. Accordingly, the major gold provinces are

  10. Geochemical constraints on adakites of different origins and copper mineralization

    USGS Publications Warehouse

    Sun, W.-D.; Ling, M.-X.; Chung, S.-L.; Ding, X.; Yang, X.-Y.; Liang, H.-Y.; Fan, W.-M.; Goldfarb, R.; Yin, Q.-Z.

    2012-01-01

    The petrogenesis of adakites holds important clues to the formation of the continental crust and copper ?? gold porphyry mineralization. However, it remains highly debated as to whether adakites form by slab melting, by partial melting of the lower continental crust, or by fractional crystallization of normal arc magmas. Here, we show that to form adakitic signature, partial melting of a subducting oceanic slab would require high pressure at depths of >50 km, whereas partial melting of the lower continental crust would require the presence of plagioclase and thus shallower depths and additional water. These two types of adakites can be discriminated using geochemical indexes. Compiled data show that adakites from circum-Pacific regions, which have close affinity to subduction of young hot oceanic plate, can be clearly discriminated from adakites from the Dabie Mountains and the Tibetan Plateau, which have been attributed to partial melting of continental crust, in Sr/Y-versus-La/Yb diagram. Given that oceanic crust has copper concentrations about two times higher than those in the continental crust, whereas the high oxygen fugacity in the subduction environment promotes the release of copper during partial melting, slab melting provides the most efficient mechanism to concentrate copper and gold; slab melts would be more than two times greater in copper (and also gold) concentrations than lower continental crust melts and normal arc magmas. Thus, identification of slab melt adakites is important for predicting exploration targets for copper- and gold-porphyry ore deposits. This explains the close association of ridge subduction with large porphyry copper deposits because ridge subduction is the most favorable place for slab melting. ?? 2012 by The University of Chicago.

  11. Ore deposits of the Gilman District, Eagle County, Colorado

    USGS Publications Warehouse

    Lovering, T.S.; Tweto, Ogden; Lovering, T.G.

    1978-01-01

    The Gilman mining district, known also in the past as the Red Cliff district, is in the mountains of southeastern Eagle County, west-central Colorado. The district is the leading source of zinc in Colorado and one of the major base-metal mining districts in the State. As valued at the time of production, total output of zinc, silver, copper, lead, and gold through 1972 was about $328 million. About 90 percent of this total was produced after 1930. The productive part of the district is an area of about 3 square miles (7.8 square kilometers) on the northeast side of the deep canyon of the Eagle River between the small towns of Gilman and Red Cliff. The ore deposits are principally replacement deposits in dolomites of Mississippian and Devonian age and in quartzite of Cambrian age. A few productive veins occur in Precambrian rocks. The replacement deposits crop out in the cliffs of the canyon wall and extend northeastward downdip beneath Battle Mountain, which is composed of a thick sequence of Pennsylvanian clastic rocks. The deposits were originally worked through several separate mines along the canyon wall, but since 1918, all deposits in dolomite rocks, except some small ones near Red Cliff, have been worked through the Eagle mine of the New Jersey Zinc Company at Gilman. The Gilman district lies on the eastern flank of the huge anticline of the Sawatch Range, near the steeply plunging north end of the anticline. Sedimentary rocks on the flank of this part of the anticline dip homoclinally northeastward to a synclinal axis about 8 mi (miles) (13 km (kilometers> northeast of Gilman and then rise more steeply to the Gore fault at the edge of the Gore Range. The homocline is broken by only a few faults most of which have displacements of less than 100 ft (feet) (30 m (meters>. In contrast, the underlying Precambrian rocks are broken by numerous faults and shear zones related to the Homestake shear zone, a northeast-trending master shear zone several miles wide

  12. Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Bove, D.J.; Plumlee, G.S.; Runkel, R.L.

    2009-01-01

    Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ???1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to <1 mg/L, SO4 increased from 162 to 314 mg/L, dissolved Fe increased from to 0.011 to 0.596 mg/L, and dissolved Zn increased from 0.056 to 0.607 mg/L. Compared to mine drainage in the same study areas, the chemistry of naturally acidic waters tends to overlap but not reach the extreme concentrations of metals and acidity as some mine waters. The chemistry of waters draining these mineralized but unmined areas can be used to

  13. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    PubMed

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-28

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  14. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    PubMed

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  15. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  16. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    NASA Astrophysics Data System (ADS)

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  17. The use of ERTS-1 images in the search for large sulfide deposits in the Chagai District, Pakistan

    NASA Technical Reports Server (NTRS)

    Schmidt, R. G. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Visual examination of color composites was tested under relatively ideal conditions for direct detection of large hydrothermal sulfide deposits at the low-grade porphyry copper deposit at Saindak, western Chagai District, Pakistan. The Saindak deposit is characterized by an elongate zone of easily eroded sulfide-rich rock surrounded by a resistant rim of hornfels and propylitically altered rock. The geomorphic features related to the Saindak deposit are easily distinguished on ERTS-1 images. Attempts to detect a color anomaly using false-color composites were not successful. About 36,000 square km of the western Chagai District were examined on false-color composites for direct evidence of large sulfide deposits. New geologic information acquired from the images was used in conjunction with the known geology to evaluate two previously known proposed areas and to suggest seven additional targets for field checking, one of which is proposed on the basis of tonal anomaly alone. The study also showed that Saindak-type deposits are not likely to be present in some extensive areas of the Chagai District; and also that a rim like that at Saindak does not form if regional metamorphism has increased the resistance of the country rock to erosion.

  18. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  19. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ ‑ Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  20. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chambefort, Isabelle; Moritz, Robert; von Quadt, Albrecht

    2007-10-01

    Chelopech area and the about 92-Ma-old Elatsite porphyry-Cu deposit, suggest two different magma sources in the Chelopech-Elatsite magmatic area. Magmatic rocks associated with the Elatsite porphyry-Cu deposit and the dacitic dome-like body north of Chelopech are characterized by zircons with ɛHfT90 values of ˜5, which suggest an important input of mantle-derived magma. Some zircons display lower ɛHfT90 values, as low as -6, and correlate with increasing 206Pb/238U ages up to about 350 Ma, suggesting assimilation of basement rocks during magmatism. In contrast, zircon grains in andesitic rocks from Chelopech are characterized by homogeneous 176Hf/177Hf isotope ratios with ɛHfT90 values of ˜1 and suggest a homogeneous mixed crust-mantle magma source. We conclude that the Elatsite porphyry-Cu and the Chelopech high-sulfidation epithermal deposits were formed within a very short time span and could be partly contemporaneous. However, they are related to two distinct upper crustal magmatic reservoirs, and they cannot be considered as a genetically paired porphyry-Cu and high-sulfidation epithermal related to a single magmatic-hydrothermal system centered on the same intrusion.

  1. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    Rutile is a relatively common accessory phase in many geological environments, and although it is almost always composed dominantly of TiO2, it is also associated with a wide range of minor and trace element substitutions. The most prominent minor elements that occur in rutile are Fe, Cr, V, Nb and Ta. Like Ti, the latter two elements are essentially immobile in most non-magmatic metallic ore deposits, and their concentrations in rutile are largely influenced by precursor mineral compositions. Iron, Cr and V concentrations vary considerably in rutile hosted by ore deposits, and reflect combinations of precursor mineral composition and the bulk chemistry of the local mineralized or altered rock environment. However, in hydrothermal alteration zones, rutile compositions are clearly anomalous compared to those in unaltered host rocks, and have distinctive elemental associations and substitutions in different types of ore deposits. We have evaluated the mineral chemistry of rutile in >40 ore deposits worldwide. In general, rutile in volcanogenic massive sulfide deposits contains Sn (and locally W, Sb and/or Cu). Rutile from mesothermal and related gold deposits invariably contains W, and in some of the larger and more important deposits, also contains Sb and/or V. Tungsten-bearing detrital rutile grains from the Witwatersrand suggest that paleoplacer mineralization may have had a mesothermal/orogenic gold source. In some magmatic-hydrothermal Pd-Ni-Cu deposits, rutile contains Ni and Cu. Rutile associated with granite-related Sn deposits has strongly elevated concentrations of Sn and W, and granite-pegmatite W-Sn deposits contain rutile with these elements plus Nb and Ta. The Olympic Dam deposit hosts rutile that is enriched in W, Sn and Cu. Rutile associated with porphyry and skarn Cu and Cu-Au deposits tends to contain elevated W, Cu (and sometimes V). Although many ore deposits have well-defined and diagnostic rutile compositions, there are some compositional

  2. Preliminary report on the geology of the Arbuckle and Wichita mountains, in Indian Territory and Oklahoma, with an appendix on reported ore deposits of the Wichita Mountains

    USGS Publications Warehouse

    Taff, J.A.; Bain, H.F.

    1904-01-01

    The Arbuckle Mountains consist of a moderately elevated table -land or plateau in the east-central part of the Chickasaw Nation, Indian Territory. The plateau ranges in elevation from 1,300 feet above sea, in its contracted western part, to 750 feet, at the east end, where it coalesces with the bordering plain. Geologically the Arbuckle Mountain region consists of a great thickness of rocks, composed chiefly of limestones, which range in age from middle Cambrian to Devonian, and which are succeeded on the borders by an almost equal thickness of Carboniferous conglomerates, shales, and sandstones. In the central part of the district, unconformably beneath the Cambrian strata, there is a mass of granite, granite-porphyry, diabase, and associated crystalline rocks. The uplifting and folding of the region occurred previous to the deposition of the Permian "Red Beds," which were deposited across it on the' west. The bearing of the Arbuckle uplift is approximately N. 70° W.

  3. REE, trace elements, Sr, Pb, C, and O isotopes in a zoned skarn ore deposit

    SciTech Connect

    Langmuir, C.; LeHuray, A.; Fairbanks, R.; Meinert, L.

    1985-01-01

    The Groundhog skarn in the Central Mining District, New Mexico, is zoned along its >2km length adjacent to a dike swarm which trends NE toward the Santa Rita porphyry Cu deposit. Isotopes and trace elements in whole rocks and mineral separates from skarn and adjacent carbonate allow the study of the source of the metals and the systematics of trace element behavior in a skarn system. (1) /sup 87/Sr//sup 86/Sr ratios are uniform (.7083 +/- 1) in the carbonate host, but they range up to .714 in hydrothermal calcite and pyx from the skarn, values distinct from both Santa Rita (.706) and carbonate. (2) delta/sup 18/O (SMOW) in carbonate ranges from (+6.3 -+ 23) and is correlated positively with delta/sup 13/C (-5.6-+2.4) and negatively with /sup 87/Sr//sup 86/Sr. Several trace elements also correlate with delta/sup 18/O. (3) Pb isotopes in galenas lie on the regression line for southwestern New Mexico Proterozoic crust. PbS from the skarn closest to Santa Rita has isotope ratios identical to PbS from the Santa Rita pit. (4) Most of the REE are not in gar or pyx. REE abundances are <1X chondrites after HC1 leaches, but in unleached samples can be >20X chondrites. All pyx separates have deep negative Ce and very deep Eu anomalies. Sr isotopes show that neither Santa Rita magma nor carbonate is the sole source of Sr. Pb isotopes are consistent with a Santa Rita source. The Ce anomaly suggests a seawater source for the REE. The data show that many of the metals in the skarn are not derived from the Santa Rita porphyry, and suggest that different elements may be derived from different source rocks.

  4. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Wang, Guorui; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao; Xu, Bei

    2016-09-01

    The large Chaganbulagen Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein-style orebodies of the deposit occur in the NWW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite stage, a middle quartz-carbonate-pyrite-sphalerite-galena-silver-bearing minerals stage, and a late quartz-carbonate-pyrite stage. The sericite sample yielded a 40Ar -39Ar plateau age of 138 ± 1 Ma and an isochron age of 137 ± 3 Ma, and the zircon LA-ICP-MS U-Pb age of monzogranite porphyry was 143 ± 2 Ma, indicating that the ages of mineralization and monzogranite porphyry in the Chaganbulagen deposit should be the Early Cretaceous, and that the mineralization should be slightly later than the intrusion of monzogranite porphyry. There are only liquid inclusions in quartz veins of the Chaganbulagen deposit. Homogenization temperatures, densities, and salinities of the fluid inclusions from the early stage are 261-340 °C, 0.65-0.81 g/cm3, and 0.7-6.3 wt.% NaCl eqv., respectively. Fluid inclusions of the middle stage have homogenization temperatures, densities, and salinities of 209-265 °C, 0.75-0.86 g/cm3, and 0.5-5.7 wt.% NaCl eqv., respectively. For fluid inclusions of the late stage, their homogenization temperatures, densities, and salinities are 173-219 °C, 0.85-0.91 g/cm3, and 0.4-2.7 wt.% NaCl eqv., respectively. The ore-forming fluids of the deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl ± CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from - 17.9‰ to - 10.8‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from - 166‰ to - 127‰, suggesting that the ore-forming fluids consist dominantly of meteoric water. The δ34SV-CDT values range from 1.4‰ to 4.1‰. The 206Pb/204

  5. Gold deposits of the Carolina Slate Belt, southeastern United States--Age and origin of the major gold producers

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    2012-01-01

    Gold- and iron sulfide-bearing deposits of the southeastern United States have distinctive mineralogical and geochemical features that provide a basis for constructing models of ore genesis for exploration and assessment of gold resources. The largest (historic) deposits, in approximate million ounces of gold (Moz Au), include those in the Haile (~ 4.2 Moz Au), Ridgeway (~1.5 Moz Au), Brewer (~0.25 Moz Au), and Barite Hill (0.6 Moz Au) mines. Host rocks are Late Proterozoic to early Paleozoic (~553 million years old) metaigneous and metasedimentary rocks of the Carolina Slate Belt that share a geologic affinity with the classic Avalonian tectonic zone. The inferred syngenetic and epithermal-subvolcanic quartz-porphyry settings occur stratigraphically between sequences of metavolcanic rocks of the Persimmon Fork and Uwharrie Formations and overlying volcanic and epiclastic rocks of the Tillery and Richtex Formations (and regional equivalents). The Carolina Slate Belt is highly prospective for many types of gold ore hosted within quartz-sericite-pyrite altered volcanic rocks, juvenile metasedimentary rocks, and in associated shear zones. For example, sheared and deformed auriferous volcanogenic massive sulfide deposits at Barite Hill, South Carolina, and in the Gold Hill trend, North Carolina, are hosted primarily by laminated mudstone and felsic volcanic to volcaniclastic rocks. The high-sulfidation epithermal style of gold mineralization at Brewer and low-sulfidation gold ores of the Champion pit at Haile occur in breccias associated with subvolcanic quartz porphyry and within crystal-rich tuffs, ash flows, and subvolcanic rhyolite. The Ridgeway and Haile deposits are primarily epithermal replacements and feeder zones within (now) metamorphosed crystal-rich tuffs, volcaniclastic sediments, and siltstones originally deposited in a marine volcanic-arc basinal setting. Recent discoveries in the region include (1) extensions of known deposits, such as at Haile where

  6. Deposition head for laser

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  7. Deposit model for volcanogenic uranium deposits

    USGS Publications Warehouse

    Breit, George N.; Hall, Susan M.

    2011-01-01

    The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.

  8. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  9. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  10. Cascadia Tsunami Deposit Database

    USGS Publications Warehouse

    Peters, Robert; Jaffe, Bruce; Gelfenbaum, Guy; Peterson, Curt

    2003-01-01

    The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have been compiled from 52 studies, documenting 59 sites from northern California to Vancouver Island, British Columbia that contain known or potential tsunami deposits. Bibliographical references are provided for all sites included in the database. Cascadia tsunami deposits are usually seen as anomalous sand layers in coastal marsh or lake sediments. The studies cited in the database use numerous criteria based on sedimentary characteristics to distinguish tsunami deposits from sand layers deposited by other processes, such as river flooding and storm surges. Several studies cited in the database contain evidence for more than one tsunami at a site. Data categories include age, thickness, layering, grainsize, and other sedimentological characteristics of Cascadia tsunami deposits. The database documents the variability observed in tsunami deposits found along the Cascadia margin.

  11. Deposition of Atmospheric Pollutants

    NASA Astrophysics Data System (ADS)

    Malet, L. M.

    Deposition of Atmospheric Pollutants, containing the proceedings of a colloquium held at Oberursel/Taunus, FRG, November 9-11, 1981, is divided into three main parts: dry deposition; wet deposition; and deposition on plants and vegetation.The 20 articles in the volume permit a fair survey of present-day knowledge and will be a useful tool to all working on the topic. Pollution by deposition of either the dry or wet sort is very insidious; its importance only appears in the long range, when its effects are or are almost irreversible. That is why concern was so long in emerging from decision makers.

  12. Geology, geochronology, and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China: Evidence for a Paleo-Mesoproterozoic tectono-magmatic event and associated IOCG systems in the western Yangtze Block

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Ding, Jun; Deng, Jun; Peng, Hui-juan

    2015-05-01

    Numerous Fe-Cu-Au-rare earth element (REE) deposits have been identified within the Paleoproterozoic Dongchuan Group of the Kangdian region of SW China. This region hosts the Yinachang deposit, which contains more than 16.8 Mt Fe, 682.6 kt Cu, and significant amounts of Au and the REEs. Both the Haizi dolerite and a magmatic breccia in the central part of the Kangdian region are thought to be related to the Dongchuan dolerite in the northern part of this region; all three of these units provide evidence of the tectono-magmatic history of the Kunyang Rift and are closely spatially and temporally related to Fe-Cu-Au-REE mineralization in this region. Here, we present a new zircon U-Pb age for the Haizi dolerite (1764.7 ± 5.7 Ma), which is consistent with the known age of the Dongchuan dolerite (1765 ± 57 Ma), allowing the determination of the precise timing of Paleo-Mesoproterozoic intraplate mafic magmatism in this region (1.72-1.77 Ga). The breccia in this region formed during magmatism at around 1.73-1.74 Ga, as documented by zircon U-Pb dating of matrix material within the Yinachang magmatic breccia (1739 ± 13 Ma). The geochemistry of Haizi and Dongchuan dolerite samples provides evidence of intraplate extension in the Kangdian region, the majority of which was concentrated along the Kunyang Rift. The Kangdian region underwent variable degrees of extension, as evidenced by the fact that break-up in the central part of this region occurred earlier than in the north. This also led to the emplacement of deeper-sourced alkaline magmas (usually OIB-type magmas) in the central part of this region. The iron-oxide copper gold (IOCG) mineralization in the Kangdian region is associated with the upwelling of mantle material. A chalcopyrite Re-Os age of 1648 ± 14 Ma from the Yinachang Fe-Cu-Au-REE deposit obtained during this study is some 50-100 Myr younger than the timing of emplacement of the deeply sourced Haizi and Dongchuan dolerites. The Yinachang deposit is a

  13. Mineral and geothermal resource potential of the Mount Hood Wilderness, Clackamas and Hood River Counties, Oregon. Summary report and map

    SciTech Connect

    Keith, T.E.C.; Causey, J.D.

    1982-01-01

    The potential for near-surface mineral resources in the Mount Hood Wilderness is low. Geochemical data suggest two areas of weak epithermal mineralization in the Zigzag Mountain part of the wilderness: (1) the Lost Creek-Burnt Lake-Cast Creek-Short Creek area on the north side of Zigzag Mountain where vein-type lead-zinc-silver mineralization occurs; and (2) the Lady Creek-Laurel Hill area on the south side of Zigzag Mountain where the upper part of a quartz diorite pluton has associated propylitic alteration resulting in some porphyry-type copper, gold, silver, lead, and zinc mineralization. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F, 120/sup 0/C) hot-water systems in the wilderness is moderate to high. Part of the wilderness is classified as a Known Geothermal Resources Area (KGRA) and two parts have been included in geothermal lease areas. Rock and gravel sources are present within the wilderness; however, quantities of similar and more accessible deposits are available outside the wilderness. Deposits outside the wilderness are large enough to supply local demand in the foreseeable future.

  14. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  15. Vent Complexes above Dolerite Sills in Phanerozoic LIPs: Implications for Proterozoic LIPs and IOCG Deposits

    NASA Astrophysics Data System (ADS)

    Ernst, R. E.; Bleeker, W.; Svensen, H.; Planke, S.; Polozov, A. G.

    2009-05-01

    New insights into the origin of IOCG (iron oxide copper gold) deposits [e.g., 1, 2, 3] follow from recent studies of Phanerozoic Large Igneous Provinces (LIPs). Detailed seismic studies of the 62-55 Ma North Atlantic Igneous Province and complementary studies in the 183 Ma Karoo and 250 Ma Siberian LIPs reveal thousands of hydrothermal vent complexes (HVCs). Up to 5-10 km across at the paleosurface, these vents connect to underlying dolerite sills at paleodepths of up to 8 km [4, 5, 6, 7]. They originate from explosive release of gases generated when thick sills (>50 m) are emplaced into volatile-rich but low-permeability sedimentary strata. HVCs are phreatomagmatic in origin. Their architecture, economic potential for IOCG-type deposits, and effects on climate strongly depend on the type of host rocks (black shales at Karoo and evaporites at Siberian LIPs) and its fluid (brines) saturation at the time of emplacement. About 250 HVCs associated with the Siberian LIP are mineralized having magnetite in the matrix. Some are being mined for Fe (Korshunovskoe and Rudnogorskoe), but their economic potential for copper and gold mineralization is understudied. These observations from the Phanerozoic LIP record suggest that HVCs should also be an essential component of sill provinces associated with Proterozoic LIPs, with a potential for causing major climatic shifts and IOCG-type deposits, particularly if the host sediments include substantial evaporites. Two examples are discussed here. The 725 Ma Franklin LIP covers 1.1 Mkm2 in northern Canada [8]; in the Minto Inlier of Victoria Island, this event comprises volcanics, sills, and breccia pipes [9, 10]. The breccia pipes appear identical to HVCs and, furthermore, the presence of evaporites in the host sediments of the Shaler Supergroup suggests (based on the Siberian trap example) the potential for IOCG-type mineralization. Could 1.59 Ga sills, as exemplified by the exposed Western Channel Diabase sills on the eastern

  16. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran

    NASA Astrophysics Data System (ADS)

    Malekzadeh Shafaroudi, Azadeh; Karimpour, Mohammad Hassan

    2015-07-01

    The Sechangi lead-zinc (-copper) deposit lies in the Lut block metallogenic province of Eastern Iran. This deposit consists of ore-bearing vein emplaced along fault zone and hosted by Late Eocene monzonite porphyry. Hydrothermal alteration minerals developed in the wall rock include quartz, kaolinite, illite, and calcite. Microscopic studies reveal that the vein contains galena and sphalerite with minor chalcopyrite and pyrite as hypogene minerals and cerussite, anglesite, covellite, malachite, hematite, and goethite as secondary minerals. Fluorite and quartz are the dominant gangue minerals and show a close relationship with sulfide mineralization. Calculated δ34S values for the ore fluid vary between -9.9‰ and -5.9‰. Sulfur isotopic compositions suggest that the ore-forming aqueous solutions were derived from magmatic source and mixed with isotopically light sulfur, probably leached from the volcanic and plutonic country rocks. Microthermometric study of fluid inclusions indicates homogenization temperatures of 151-352 °C. Salinities of ore-forming fluids ranged from 0.2 to 16.5 wt.% NaCl equivalent. The ore-forming fluids of the Sechangi deposit are medium- to low-temperature and salinity. Fluid mixing may have played an important role during Pb-Zn (-Cu) mineralization. The key factors allowing for metal transport and precipitation during ore formation include the sourcing of magmatic fluids with high contents of metallogenic elements and the mixing of these hydrothermal fluids with meteoric waters resulting in the formation of deposit. In terms of the genetic type of deposit, the Sechangi is classified as a volcanic-subvolcanic hydrothermal-related vein deposit.

  17. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  18. Uranium and Sm isotope studies of the supergiant Olympic Dam Cu-Au-U-Ag deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Kirchenbaur, Maria; Maas, Roland; Ehrig, Kathy; Kamenetsky, Vadim S.; Strub, Erik; Ballhaus, Chris; Münker, Carsten

    2016-05-01

    The Olympic Dam Cu-U-Au-Ag deposit in the Archean-Proterozoic Gawler Craton (South Australia) is a type example of the iron oxide-copper-gold (IOCG) spectrum of deposits and one of the largest Cu-U-Au resources known. Mineralization is hosted in a lithologically and texturally diverse, hematite-rich breccia complex developed within a granite of the 1.59 Ga Gawler Silicic Province. Emerging evidence indicates that both the breccia complex and its metal content developed over ∼1000 Ma, responding to major tectonic events, e.g., at 1300-1100, 825 and 500 Ma. However, metal sources and exact mechanism/s of ore formation remain poorly known. New high-precision 238U/235U data for a set of 40 whole rock samples representing all major lithological facies of the breccia complex show a narrow range (δ238UCRM112a = -0.56‰ to +0.04‰). At the scale of sampling, there is no correlation of δ238U with lithology, degree of alteration or U mineralogy, although ores with U > 5 wt.% have subtly higher δ238U values (-0.20‰ to 0.00) than the majority of samples (<0.7 wt.% U, -0.56‰ to -0.23‰). The new U isotope data are consistent with published data for uraninites from Olympic Dam, and with published results from high-temperature U deposits. They overlap completely with the range of δ238U values in granitoids (including the host granite, -0.18‰ to -0.32‰) and with estimates of the upper continental crust in general. This similarity suggests that Olympic Dam δ238U values reflects the crustal sources of U, which probably include felsic volcanic rocks and granitoids. The isotopic homogeneity suggests depositional mechanisms that involve minimal isotopic fractionation of U; alternatively, primary fractionation signatures may have been erased during the long history of the U mineralization. High-grade U ores may record isotopic neutron-capture effects related to fissionogenic neutrons. High-precision Sm isotope data for five high-U (>5 wt.% U, U/Sm ≫ 500) Olympic Dam

  19. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue?

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher

    2015-04-01

    contrasting minerals endowment. The Mogok-Mandalay-Mergui (MMM) Belt hosts crustal-melt S-type granites with significant tin-tungsten mineralization, and contains the historically major tungsten deposit of Mawchi. The Wuntho-Popa Arc comprises I-type granites and granodiorites with porphyry-type copper-gold and epithermal gold mineralization, and includes the world-class Monywa copper mine. Recent U-Pb radiometric age dating has shown the potential for the two belts to be both active from the Late Cretaceous to Eocene. The spatial juxtaposition of these two sub-parallel belts, the implication of contemporary magmatism, and their distinct but consistent metallogenic endowment bears strong similarities to the metallogenic belts of the South American Cordillera. Here we investigate whether they together represent the magmatic and metallogenic expression of an Andean-type setting in Myanmar during the subduction of Neo-Tethys. In this analogue the Wuntho-Popa Arc represents a proximal I-type magmatic belt sited immediately above the eastwards-verging Neo-Tethys subduction zone. Exhibiting porphyry-type copper-gold and epithermal gold mineralization, this would therefore be the Myanmar equivalent of the Andean coastal copper belts. Conversely, the parallel MMM Belt, comprised of more distal crustal-melt S-type tin granites, would have an analogue in the Bolivian tin belt.

  20. Geology and ore deposits of the Pioche district, Nevada

    USGS Publications Warehouse

    Westgate, L.G.; Knopf, Adolph

    1932-01-01

    which was discovered accidentally during the prospecting of the fissure veins. The ore deposits of the district comprise three groups (1) silver-bearing fissure veins in quartzite; (2) silver-bearing mineralized granite porphyry; (3) replacement deposits in limestone and dolomite. All of them appear to have been formed at about the same time, in the epoch of mineralization that occurred shortly after the intrusion of the granitic rocks and their allied dikes of granite porphyry and lamprophyre. The entire present output of the district is coming from the replacement deposits in limestone and dolomite, but exploratory work is still in progress on the fissure veins and mineralized porphyry. The replacement deposits include both replacement fissure veins and stratiform ("bedded") replacement deposits. The replacement fissure veins dip steeply and cut across the bedding of the carbonate rocks in which they are inclosed. They are thoroughly oxidized, as deep at least as 1,100 feet, for on none of them have the mine workings penetrated to water level, and they are highly manganiferous and limonitic and low in silica. At-certain horizons stratiform replacement deposits extend out as lateral branches from the fissure veins. Deposits of this kind occur mainly in the Mendha limestone, Highland Peak limestone, and Lyndon limestone. The stratigraphic range is therefore at least 5,500 feet, and as some of the fissure veins extend down through the underlying Pioche shale the indicated range may exceed 6,500 feet. The most notable representatives of the replacement fissure veins are at the Bristol mine, where they yield silver-bearing copper-leadzinc ores. So far unique among the ore bodies of the district is the pipe of wad and pyrolusite ore at the Jackrabbit mine, the periphery of the pipe consisting of a girdle of extraordinarily coarse white calcite spar produced by the recrystallization of the surrounding limestones. The stratiform replacement deposits that are attracting most

  1. Ionized cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A. R.

    1983-11-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  2. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  3. The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: geology

    NASA Astrophysics Data System (ADS)

    Årebäck, Hans; Barrett, Timothy J.; Abrahamsson, Stig; Fagerström, Pia

    2005-12-01

    The Kristineberg volcanic-hosted massive sulphide (VMS) deposit, located in the westernmost part of the Palaeoproterozoic Skellefte district, northern Sweden, has yielded 22.4 Mt of ore, grading 1.0% Cu, 3.64% Zn, 0.24% Pb, 1.24 g/t Au, 36 g/t Ag and 25.9% S, since the mine opened in 1941, and is the largest past and present VMS mine in the district. The deposit is hosted in a thick pile of felsic to intermediate and minor mafic metavolcanic rocks of the Skellefte Group, which forms the lowest stratigraphic unit in the district and hosts more than 85 known massive sulphide deposits. The Kristineberg deposit is situated lower in the Skellefte Group than most other deposits. It comprises three main ore zones: (1) massive sulphide lenses of the A-ore (historically the main ore), having a strike length of about 1,400 m, and extending from surface to about 1,200 m depth, (2) massive sulphide lenses of the B-ore, situated 100-150 m structurally above the A-ore, and extending from surface to about 1,000 m depth, (3) the recently discovered Einarsson zone, which occurs in the vicinity of the B-ore at about 1,000 m depth, and consists mainly of Au-Cu-rich veins and heavily disseminated sulphides, together with massive sulphide lenses. On a regional scale the Kristineberg deposit is flanked by two major felsic rock units: massive rhyolite A to the south and the mine porphyry to the north. The three main ore zones lie within a schistose, deformed and metamorphosed package of hydrothermally altered, dominantly felsic volcanic rocks, which contain varying proportions of quartz, muscovite, chlorite, phlogopite, pyrite, cordierite and andalusite. The strongest alteration occurs within 5-10 m of the ore lenses. Stratigraphic younging within the mine area is uncertain as primary bedding and volcanic textures are absent due to strong alteration, and tectonic folding and shearing. In the vicinity of the ore lenses, hydrothermal alteration has produced both Mg-rich assemblages (Mg

  4. Stratabound copper-silver deposits of the Mesoproterozoic Revett formation, Montana and Idaho

    USGS Publications Warehouse

    Boleneus, David E.; Appelgate, Larry M.; Stewart, John H.; Zientek, Michael L.

    2005-01-01

    The western Montana copper belt in western Montana and northern Idaho contains several large stratabound copper-silver deposits in fine- to medium-grained quartzite beds of the Revett Formation of the Mesoproterozoic (1,470-1,401 Ma) Belt Supergroup. Production from the deposits at the Troy Mine and lesser production from the Snowstorm Mine has yielded 222,237 tons Cu and 1,657.4 tons Ag. Estimates of undeveloped resources, mostly from the world-class Rock Creek-Montanore deposits, as well as lesser amounts at the Troy Mine, total more than 2.9 million tons Cu and 2,600 tons Ag in 406 million tons of ore.The Rock Creek-Montanore and Troy deposits, which are currently the most significant undeveloped resources identified in the copper belt, are also among the largest stratabound copper-silver deposits in North America and contain about 15 percent of the copper in such deposits in North America. Worldwide, stratabound copper-silver deposits contain 23 percent of all copper resources and are the second-most important global source of the metal after porphyry copper deposits.The Revett Formation, which consists of subequal amounts of argillite, siltite, and quartzite, is informally divided into lower, middle, and upper members on the basis of the proportions of the dominant rock types. The unit thickness increases from north to south, from 1,700 ft near the Troy Mine, 55 mi north of Wallace, Idaho, to more than 5,300 ft at Wallace, Idaho, in the Coeur d'Alene Trough south of the Osburn Fault, a major right-lateral strike-slip fault.Mineral deposits in the Revett Formation occur mostly in the A-D beds of the lower member and in the middle quartzite of the upper member. The deposits are concentrated along a preore pyrite/hematite interface in relatively coarse grained, thick quartzite beds that acted as paleoaquifers for ore fluids. The deposits are characterized by mineral zones (alteration-mineral assemblages) that are a useful guide to the locations of mineral

  5. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Guang; Ni, Pei; Wang, Ru-Cheng; Zhao, Kui-Dong; Chen, Hui; Ding, Jun-Ying; Zhao, Chao; Cai, Yi-Tao

    2013-09-01

    The Yinshan Cu-Au-Pb-Zn-Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb-Zn-Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu-Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite-tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187-303 °C and salinities of 4.2-9.5 wt.% NaCl equivalent in the Pb-Zn-Ag mineralization, and homogenization temperatures of 196-362 °C and salinities of 3.5-9.9 wt.% NaCl equivalent in the Cu-Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu-Au ore bodies, share similar homogenization temperatures of 317-448 °C and contrasting salinities of 0.2-4.2 and 30.9-36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = -1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01-18.07; 207Pb/204Pb = 15.55-15.57; and 208Pb/204Pb = 38.03-38.12) are consistent with those of volcanic-subvolcanic rocks (206Pb/204Pb = 18.03-18.10; 207Pb/204Pb = 15.56-15.57; and 208Pb/204Pb = 38.02-38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8

  6. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  7. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  8. Pitchblende deposits at the Wood and Calhoun mines, Central City mining district, Gilpin County, Colorado

    USGS Publications Warehouse

    Moore, Frank R.; Butler, C.R.

    1952-01-01

    Pitchblende has been mined in commercial quantities from four gold- and silver-bearing pyrite-sphalerite-galena veins that occur in an area about one-half mile square on the south side of Quartz Hill, Central City district, Gilpin County, Colo. These veins are the Kirk, the German-Belcher, the Wood, and the Calhoun. Two of these veins, the Wood and the Calhoun, were studied in an attempt to determine the geologic factors favorable for pitchblende deposition. All accessible workings at the Wood and East Calhoun mines were mapped by tape and compass, and the distribution of radioactivity was studied in the field. Channel and chip samples were taken for chemical assay to compare radioactivity with uranium content. The pitchblende-bearing veins cat both pre-Cambrian granite gneiss and quartz-biotite schist; however, the gneiss was the more favorable host rock. Two bostonite porphyry dikes of Tertiary(?) age were crosscut by the Wood and Calhoun veins. The pitchblende occurs in lenses erratically distributed along the veins and in stringers extending outward from the veins. In the lenses it forms hard'. masses, but elsewhere it is Soft and powdery. The pitchblende is contemporaneous with the pyrite bat earlier than the sphalerite and galena in the same vein. All the observed pitchblende was at depths of less than 400 ft. The veins probably cannot be mined profitably for the pitchblende alone under present conditions.

  9. Geochemical characterization of acidic mine waters in Darrehzar copper deposit, Kerman province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Shahabpour, J.; Naseh, R.

    2009-04-01

    Darrehzar porphyry copper deposit is located in the south of Sar Cheshmeh copper mine. There are varieties of geological factors which control the composition of mine drainage waters. Surface samples were collected from the Darrehzar locality for chemical measurements. The measured quantities are: Cl-, Ca, Mg, Na, K, SO42-, Al. Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, Sb, Mo, HCO3-, EC, pH and Eh. Phyllic alteration has the highest influence on the production of acid mine drainage. Mineralogical studies and analysis of water samples indicate a good correlation between sulfide minerals and acid mine drainage. Analysis of water samples showed that samples with low pH values have high concentration of sulfate and heavy metals. Correlation coefficients between different quantities were calculated and binary diagram prepared. Heavy metals increase with a decrease in pH except for Mo. Sulfate and heavy metals are positively related in mine water. The high positive correlation between Fe and Mn with respect to heavy metals indicates their adsorption on Fe and Mn oxides and hydroxides.

  10. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  11. Solution deposition assembly

    SciTech Connect

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  12. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R., II

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  13. Tsunami Deposit Data Base

    NASA Astrophysics Data System (ADS)

    Keating, B. H.; Wanink, M.

    2007-05-01

    A digital database has been established describing tsunami deposits around the world (3 phases; 15 months). The projects involved the review and tabulation of data derived from books, catalogs, journals, preprints, citations and abstracts (currently 1000 references), into a database designed to provide a comprehensive review of the types of tsunami deposits, their geographic distribution and location, sedimentary characteristics, fossil content, age, preservation, run-up, wave height and inundation observations, etc. (34 parameters). The tsunami occurrences can be divided into many subjects, e.g., Volcanogenic (N=375), Seismites (N=49), Co-seismic (N=258), K/T Boundary Impact-triggered debris flows (N=97), Landslides (N=43), etc. Numerous publications compare tsunami deposits to storm deposits (N=38), or analyze the origin of megaboulders (N=22). Tsunami deposits occur throughout geologic time (Pre-Cambrian to present day), and because of plate tectonics, they occur along plate margins (primarily subduction zones) as well as interior to plates. In addition, they occur in epi-continental seas, fjords, etc. Few publications describe depositional processes. Deposits generated by tsunamis occur in multiple environments such as the marine, fresh water, and subaerial. Common characteristics of tsunami deposits include: 1) Deposition of thin sand sheets (can be normal, massive, inversely graded, chaotic or bimodal). 2) Erosional: basal uncomformity, mud balls, rip-up clasts, reworked fossils produced by scouring. 3) Lithology: Stacks of couplets reflecting marine incursions (often sands) into fresh water or subaerial environments (mud, soil, peat). 4) Fossil: Couplets reflects marine fossils, fresh water fossils or a mixed assemblage. 5) Geomorphology: The sand sheets taper landward and can rise in elevation. 6) Deformation: syn-depositional (soft sediments) and intraformational (stiff sediments).

  14. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: implications for its origin and mineral exploration

    NASA Astrophysics Data System (ADS)

    Duan, Jilin; Tang, Juxing; Li, Yubin; Liu, Sheng-Ao; Wang, Qin; Yang, Chao; Wang, Yiyun

    2016-06-01

    We report the copper isotopic composition of Cu sulfides in the Tiegelongnan high-sulfidation (HS) copper deposit, Tibet, and investigate the possible application of Cu isotopes to mineral exploration. The copper isotopic values of samples from four drill holes display consistent progressive increase with depth to 400 m below surface, with an overall variation of δ65Cu of up to 7.60‰ (-4.76 to 2.84‰). Such a large range is very different from that observed in Cu porphyry deposits which commonly exhibit a small δ65Cu range (<1‰), with decreasing values with depth. The large δ65Cu variation is likely of supergene origin and reflects strong leaching under oxidized conditions. The systematic increase of δ65Cu with depth can be explained by the release of isotopically heavy Cu at the top and its transport downward, which is supported by the coupling of positive δ65Cu values with high Cu grade and the occurrence of both negative and positive δ65Cu values in two drill holes. Mass-balance consideration on the basis of Cu isotopes can indicate mineralized zones which have been eroded or have not been found yet. Such mineralized targets, if buried at depth, could be located using Cu isotopes.

  15. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Bi, Shi-Jian; Li, Jian-Wei

    2016-08-01

    magnetite ore. A synthesis of available data suggests that oxidation of Fe2+-rich, magmatic-hydrothermal fluids by external sulfates could have been a common process in many of the world's iron skarn deposits and other magnetite-dominated ores, such as iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) systems.

  16. Geology and lithogeochemistry of the Ren gold prospect, Elko County, Nevada - the role of rock sampling in exploration for deep Carlin-type deposits

    USGS Publications Warehouse

    Albino, G.V.

    1994-01-01

    The Ren gold prospect, Elko County, Nevada, is in the northern part of the Carlin trend, two kilometers northwest of the recently-discovered, high-grade Purple Vein deposit. The Ren area is underlain mainly by Paleozoic sedimentary rocks, consisting of limestone, calcareous siltstone, and mudstone of the eastern (carbonate) assemblage, overlain in thrust contact by chert, quartzite, and mudstone of the western (siliceous) assemblage. Cretaceous(?) granodiorite porphyry and hornblende porphyry dikes have intruded the sedimentary rocks along north-striking faults. Three stages of mineralization include a pre- or syntectonic base metal-barite assemblage, a middle stage of Ag- and Sb-rich jasperoid, and a late Au-rich stage responsible for the potentially economic mineralization at the prospect. The latter two stages of alteration and mineralization were focused along steep east-dipping faults and dikes, and the nearly flat-lying contact between lower massive limestone and laminated calcareous siltstone. Mineralization is present between 380 and 500 m below the surface. Alteration includes decalcification and weak silicification in siltstone, and formation of massive jasperoid in the upper part of the limestone unit. Alteration of dikes is mainly sericite-quartz-pyrite, with late pyrite-quartz-kaolinite. The element suite characteristic of Au-stage mineralization includes Au, As, and Hg with minor Ag and Hg; Ag and Sb are most enriched in the earlier jasperoid event. Haloes of As and Hg extend at least 80 m above the Au mineralization, but no anomalies are present at the surface. Gold anomalies are more widespread, and extend to shallower depths, but are less coherent. ?? 1994.

  17. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    apparent discrepancy can be explained by the presence of a fluid of meteoric origin that was isotopically equilibrated with a hot, but already solidified and fractured granitic intrusion under rock-dominated conditions prior their transfer to the cold ore deposition site (Heinrich, 1990). Conversely, in porphyry copper systems meteoric fluid incursion has been assumed to participate in formation of peripheral or post-mineralization processes (Bowman et al., 1987; Sillitoe, 2010; Williams-Jones and Migdisov, 2014). However, recent numerical simulations of porphyry copper systems identify a significant role of meteoric fluids for the enrichment process, providing a cooling mechanism for metal-rich fluids expelled from an upper crustal magma chamber (Weis et al. 2012, Weis 2015). Furthermore, new petrographic and fluid inclusion work of ore-mineralized quartz veins (Landtwing et al., 2010; Stefanova et al., 2014) indicates lower (˜ 450r{ }C) than magmatic fluid temperatures for copper precipitation. Given that the Yankee Lode study validated the capability of high resolution, in situ δ 18O analysis to trace meteoric water incursion, we will apply this method to hydrothermal quartz samples from two significant porphyry copper deposits (Bingham Canyon, USA and Elatsite, Bulgaria). By this we intend to better constrain a potential role of meteoric water incursion in porphyry copper ore precipitation. REFERENCES Audétat, A., Günther, D., Heinrich, C. A. 1998: Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions: Science, 279, 2091-2094. Audétat, A. 1999: The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (Eastern Australia): PhD Thesis, 211. Bowman, J. R., Parry, W. T., Kropp, W. P., and Kruer, S. A., 1987: Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah: Economic Geology, 82, 395-428. Heinrich, C.A. 1990: The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition: Economic

  18. World oil shale deposits

    SciTech Connect

    Hook, C.O.; Russell, P.L.

    1982-01-01

    The article estimates resources in-place and their oil equivalent. The major deposits are described in the U.S., Australia, USSR, Peoples Republic of China, Morocco, Israel, Jordan, Syria, Europe and South America. 2 refs.

  19. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.

  20. Automatic Payroll Deposit System.

    ERIC Educational Resources Information Center

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  1. Field Vectors to Metamorphosed Ores: A Prelude to Finding Currently Concealed Volcano-Plutonic Arc Settings and Their Mineral Deposits in The Grenville Province

    NASA Astrophysics Data System (ADS)

    Corriveau, L.; Bonnet, A.; van Breemen, O.

    2004-05-01

    Recent mineral deposits synthesis highlights the largely barren nature of the high-grade metamorphic terrains of the Canadian Shield in terms of large mining camps. No where is the gap most startling than in the Grenville Province even though a lot of its Paleo- to Mesoproterozoic crust consists of magmatic arcs renown worldwide to host IOCG, VHMS and Porphyry Cu deposits. All these deposit types have significant alteration halos that can serve as vectors to ore. The use of such vectors forced a complete reinterpretation of the nature of the La Romaine domain in the eastern Grenville Province. Mapped in the 70's as being a metasedimentary basin with >500 km2 of meta-arkose and minor pelite, quartzite, conglomerate and marble, the domain is herein reassessed as a major 1.5 Ga Pinwarian continental magmatic arc fertile in Cu-sulphides and Fe-oxides mineralizing systems. The original markers used to prognosticate a sedimentary origin can now be demonstrated to be a series of rhyolitic to dacitic lapillistone, sericitized tuff with Al nodules and veins, Al gneiss locally with lapilli textures, garnetite, ironstones and calc-silicate rocks. The distribution, paragenesis and mode of the Al-, Fe- and Ca-rich units significantly depart from those of normal metasediments but are very diagnostic of metamorphosed hydrothermal alteration zones and meta-exhalites. Mapping alteration vectors provided clues to search for and find the volcanic rocks concealed among the composite granitic gneiss, the zones of hydrothermal leaching (e.g., sericitic, argillic and advanced argillic alterations) and discharge, the cap rocks, and the Cu mineralization. Spatial and stratigraphic relationships provided a means to compare their settings with ore deposit models. Roof pendants of Ba-rich meta-exhalite in surrounding 1.5 Ga granitic plutons and intrusion of 1495 Ma Qtz-Kfs porphyry across hydrothermally altered 1500 Ma tuffs attest to coeval hydrothermal activity and sub-volcanic plutons. The

  2. Gemstone deposits of Serbia

    NASA Astrophysics Data System (ADS)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  3. Deposited atmospheric chemicals

    SciTech Connect

    Schell, W.R.

    1986-09-01

    A mountaintop bog in western Pennsylvania serves as a reservoir for materials deposited from the atmosphere. Biological activity in the bog decomposes plant matter, which becomes humified and mineralized at increasing depths. Little or no mixing of elements occurs below the active root zone. Radionuclides produced by natural means and by nuclear weapons have been used to measure the ages of the layers deposited during the growing season of each year. The upper layers of the bog indicate that the deposition of total sulfur is at least 20 times and that of nitrogen is 45 times the value estimated prior to cutting the forest, with a doubling time for each of 25-35 yr. Bromine deposition also doubles every 35 yr. The pattern of mass and element deposition illustrates the changes in land use and industrial effluents that were sources for the material deposited on the bog. The decrease in atmospheric particle removal shows up in the 1960 and later layers. Compared with terrestrial abundances, the relative enrichments over time for chlorine, nitrogen, sulfur, and bromine are more than 100 times those calculated for 1817; lead, calcium, and antimony are 10 to 40 times greater.

  4. Convective microsphere monolayer deposition

    NASA Astrophysics Data System (ADS)

    Gilchrist, James

    2011-03-01

    There is perhaps no simpler way of modifying surface chemistry and morphology than surface deposition of particles. Micron-sized microspheres were deposited into thin films via rapid convective deposition, similar to the `coffee ring effect' using a similar method to that studied by Prevo and Velev, Langmuir, 2003. By varying deposition rate and blade angle, the optimal operating ranges in which 2D close-packed arrays of microspheres existed were obtained. Self-assembly of colloidal particles through a balance of electrostatic and capillary forces during solvent evaporation was revealed. These interactions were explored through a model comparing the residence time of a particle in the thin film and the characteristic time of capillary-driven crystallization to describe the morphology and microstructure of deposited particles. Co-deposition of binary suspensions of micron and nanoscale particles was tailored to generate higher-quality surface coatings and a simple theory describes the immergence of instabilities that result in formation of stripes. Optical and biomedical applications that utilize the described nanoscale control over surface morphology will also be discussed.

  5. Lead-isotopic compositions of diverse igneous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States.

    USGS Publications Warehouse

    Stacey, J.S.; Hedlund, D.C.

    1983-01-01

    Basement rocks in this area are 1750 m.y. old and extend northward through Colorado to Utah. Galena data show that the fraction of older sialic lead in these rocks increases toward the the Archaean craton in Wyoming. The crust apparently developed southward from Wyoming in stages at 2400 m.y. ago or before, 2100 m.y. ago and 1750 m.y. ago. The Laramide alkali to calc-alkaline rocks and their associated porphyry Cu and massive replacement deposits have similar 206Pb/204Pb ratios and are the least radiogenic in the region; their 206Pb/204Pb ratios are all 18.0. Pb isotopes in this region offer some criteria for prospecting purposes. The 206Pb/204Pb values for the larger ore deposits related to Laramide activity are all <18.0, particularly for the larger ones. Within the mid- Tertiary group, the same criteria apply - i.e. the largest deposits have the lowest 206Pb/204Pb ratios. -L.C.H.

  6. Shallow to near-surface, vein-type epithermal gold mineralization at Lalab in the Sibutad gold deposit, Zamboanga del Norte, Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Jimenez, F. A.; Yumul, G. P.; Maglambayan, V. B.; Tamayo, R. A.

    2002-12-01

    The Sibutad vein-type epithermal gold deposit is the most promising economically feasible gold mineralization found in recent years in Zamboanga del Norte province in Zamboanga Peninsula, Mindanao island. The Sibutad gold deposit occurs in Pliocene to Pleistocene volcanic rocks, resting on a deformed island arc block to the east of the tectonically active Sindangan-Cotabato-Daguma Lineament. The host rocks are the Malindang Volcanics, composed of lower and upper members, which are both intruded by andesite porphyry. The lower member is made up of andesite flows, dacite tuff and tuffite, whereas volcanic breccia and tuff breccia characterize the upper member. The Sibutad gold deposit is subdivided into the Larayan and Lalab prospects. In Lalab, which is the prospect studied, hydrothermal activity and gold mineralization occur in the andesite flows. The geology, alteration and mineralization of the Lalab orebody are of adularia-sericite type that suggests the gold was precipitated from reduced, near-neutral pH solutions within a shallow to near-surface environment. The following events produced the Lalab orebody: (1) pre-breccia wallrock alteration, (2) hydrothermal brecciation, (3) post-breccia wallrock alteration, and (4) gold mineralization. Gold precipitated in quartz veins was a response to boiling, followed by fluid mixing. Prolific gold zones occur between 30 m below sea level and 200 m above sea level.

  7. The structural history and mineralization controls of the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania

    NASA Astrophysics Data System (ADS)

    Sanislav, I. V.; Brayshaw, M.; Kolling, S. L.; Dirks, P. H. G. M.; Cook, Y. A.; Blenkinsop, T. G.

    2016-05-01

    The Geita Hill gold deposit is located in the Archean Geita Greenstone Belt and is one of the largest gold deposits in East Africa. The Geita Greenstone Belt experienced a complex deformation and intrusive history that is well illustrated and preserved in and around the Geita Hill gold deposit. Deformation involved early stages of ductile shearing and folding (D1 to D5), during which episodic emplacement of large diorite intrusive complexes, sills, and dykes occurred. These ductile deformation phases were followed by the development of brittle-ductile shear zones and faults (D6 to D8). The last stages of deformation were accompanied by voluminous felsic magmatism involving the intrusion of felsic porphyry dykes, within the greenstone belt, and the emplacement of large granitic bodies now forming the margins of the greenstone belt. Early, folded lamprophyre dykes, and later lamprophyre dykes, crosscutting the folded sequence are common, although volumetrically insignificant. The gold deposit formed late during the tectonic history of the greenstone belt, post-dating ductile deformation and synchronous with the development of brittle-ductile shear zones that overprinted earlier structural elements. The main mineralizing process involved sulfide replacement of magnetite-rich layers in ironstone and locally the replacement of ferromagnesian phases and magnetite in the diorite intrusions. The intersection between the brittle-ductile (D6) Geita Hill Shear Zone and different structural elements of ductile origin (e.g., fold hinges), and the contact between banded ironstone and folded diorite dykes and sills provided the optimal sites for gold mineralization.

  8. Preliminary report on deposit models for sand and gravel in the Cache la Poudre River valley

    USGS Publications Warehouse

    Langer, W.H.; Lindsey, D.A.

    1999-01-01

    The stratigraphy, sedimentary features, and physical characteristics of gravel deposits in the Cache la Poudre River valley were studied to establish geologic models for these deposits. Because most of the gravel mined in the valley is beneath the low terraces and floodplain, the quality of these deposits for aggregate was studied in detail at eight sites in a 25.5-mile reach between Fort Collins and Greeley, Colorado. Aggregate quality was determined by field and laboratory measurements on samples collected under a consistent sampling plan. The Broadway terrace is underlain by Pleistocene alluvium and, at some places, by fine-grained wind-blown deposits. The Piney Creek terrace, low terraces, and floodplain are primarily underlain by Holocene alluvium. Pleistocene alluvium may underlie these terraces at isolated locations along the river. Gravels beneath the Piney Creek terrace, low terraces, and floodplain are divisible into two units that are poorly distinguishable at the upstream end of the study area, but are readily distinguishable about 7 miles downstream. Where distinguished, the two gravel units are separated by a sharp, locally erosional, contact. The upper gravel is probably of Holocene age, but the lower gravel is considered to be Holocene and Pleistocene. The primary variation in particle size of the gravels beneath the floodplain and low terraces of the Cache la Poudre River valley is the downstream decrease in the proportion of particles measuring 3/4 inch and larger. Above Fort Collins, about 60 pct of the gravel collects on the 3/4 inch sieve, whereas about 50 pct of gravel collects on the same sieve size at Greeley. For 1.5-inch sieves, the corresponding values are about 50 pct for Fort Collins and only about 30 pct for Greeley. Local differences in particle size and sorting between the upper and lower gravel units were observed in the field, but only the coarsest particle sizes appear to have been concentrated in the lower unit. Field

  9. Tertiary meteoric hydrothermal systems and their relation to ore deposition, northwestern United States and southern British Columbia

    NASA Astrophysics Data System (ADS)

    Criss, Robert E.; Fleck, Robert J.; Taylor, Hugh P., Jr.

    1991-07-01

    U-bearing Eocene "porphyry" plutons; and (6) Miocene epithermal deposits, most prominently the Au and Ag bearing veins at Silver City and DeLamar, Idaho, the Hg deposits at the McDermitt caldera, Nevada and Oregon, and at Weiser, Idaho, and Au deposits in the Western Cascade Range and Lake County, Oregon. A close spatial association has been demonstrated between ore deposits and rocks having anomalous δ18O values and low δD values. The most important deposits are associated with relatively small (generally 5-300 km2) zones of low δ18O values, and they are particularly closely linked with zones of very steep 18O/16O gradients in the altered rocks. These associations hold much promise for the use of δ18O and δD contour maps in future exploration efforts.

  10. Becquerel Crater Deposit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 28 May 2002) The finely layered deposit in Becquerel crater, seen in the center of this THEMIS image, is slowly being eroded away by the action of windblown sand. Dark sand from a source north of the bright deposit is collecting along its northern edge, forming impressive barchan style dunes. These vaguely boomerang-shaped dunes form with their two points extending in the downwind direction, demonstrating that the winds capable of moving sand grains come from the north. Grains that leave the dunes climb the eroding stair-stepped layers, collecting along the cliff faces before reaching the crest of the deposit. Once there, the sand grains are unimpeded and continue down the south side of the deposit without any significant accumulation until they fall off the steep cliffs of the southern margin. The boat-hull shaped mounds and ridges of bright material called yardangs form in response to the scouring action of the migrating sand. To the west, the deposit has thinned enough that the barchan dunes extend well into the deeply eroded north-south trending canyons. Sand that reaches the south side collects and reforms barchan dunes with the same orientation as those on the north side of the deposit. Note the abrupt transition between the bright material and the dark crater floor on the southern margin. Steep cliffs are present with no indication of rubble from the obvious erosion that produced them. The lack of debris at the base of the cliffs is evidence that the bright material is readily broken up into particles that can be transported away by the wind. The geological processes that are destroying the Becquerel crater deposit appear active today. But it is also possible that they are dormant, awaiting a particular set of climatic conditions that produces the right winds and perhaps even temperatures to allow the erosion to continue.

  11. 76 FR 41392 - Interest on Deposits; Deposit Insurance Coverage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... From the Federal Register Online via the Government Publishing Office FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Parts 329 and 330 RIN 3064-AD78 Interest on Deposits; Deposit Insurance Coverage AGENCY: Federal Deposit Insurance Corporation (FDIC). ACTION: Final rule. SUMMARY: The FDIC is issuing a...

  12. 76 FR 21265 - Interest on Deposits; Deposit Insurance Coverage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Parts 329 and 330 RIN 3064-AD78 Interest on Deposits; Deposit Insurance Coverage AGENCY: Federal Deposit Insurance Corporation (FDIC). ACTION: Notice of proposed rulemaking (NPR) and request...

  13. The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru

    USGS Publications Warehouse

    Lewis, Richard Wheatley

    1964-01-01

    The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by

  14. Vacuum arc deposition devices

    NASA Astrophysics Data System (ADS)

    Boxman, R. L.; Zhitomirsky, V. N.

    2006-02-01

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  15. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  16. Metallogeny of gold deposits

    SciTech Connect

    Hutchinson, R.W.

    1985-01-01

    The metallogeny of various gold deposits, particularly their broad temporal and spatial relations, and their relations to other metallic ores, is significant to genetic understanding and also useful in exploration. Archean gold deposits co-exist, both regionally and locally, with certain iron formations, massive base metal and nickel sulfide ores, but these occur generally in differing parts of the host stratigraphic sequences. Gold deposits in marine-eugeosynclinal environments are most important and numerous in Archean rocks. They become increasingly rare in successively younger strata where epithermal deposits in subaerial-continental rocks become important. The hydrothermal systems that formed both were apparently similar; one active in submarine tectonic settings, the other in sub-volcanic continental ones. Gold was apparently first introduced extensively into supracrustal rocks by sub-sea floor hydrothermal processes in Archean time, forming gold-enriched exhalites. These were reworked by metamorphic processes forming epithermal veins in many lode districts, and by sedimentary processes in the Witwatersrand. Epithermal gold deposits were generated where these older, auriferous basement source rocks were affected by younger, plutonic-volcanic-hydrothermal activity.

  17. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  18. Venus - Landslide Deposits

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Magellan spacecraft has observed remnant landslide deposits apparently resulting from the collapse of volcanic structures. This image, centered at 45.2 degrees south latitude, 201.4 degrees east longitude, shows a collapse deposit 70 kilometers (43 miles) across. The bright, highly textured deposit near the center of the image probably consists of huge blocks of fractured volcanic rock, many as large as several hundred meters across. A remnant of the volcano itself, about 20 kilometers (12.4 miles) across, is seen at the center of the image. The distorted radar appearance of the volcano is a result of extremely steep slopes on the 'scars' from which the landslide material originated. A field of numerous small volcanic domes can be seen in the northern half of the image. The bright irregular lineaments trending to the north-northwest are ridges caused by regional tectonic deformation of the upper layers of the Venusian crust.

  19. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    NASA Astrophysics Data System (ADS)

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  20. Electroless Deposition Processes and Tools

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Ritzdorf, T.

    Electroless deposition, which was introduced in 1946 by Brenner and Riddell [1], is a type of electrochemical deposition that is gaining interest in semiconductor and related applications. Electroless deposition utilizes complementary electrochemical reactions to cause metal deposition. The oxidation of a reducing agent supplies the electrons needed for reducing metal ions to their metallic state [2]. This encompasses both immersion (displacement) deposition reactions and autocatalytic reactions. One should use electroless deposition in cases where it is desirable to deposit metal on non-conducting surfaces or to deposit metal selectively to certain underlying materials, especially if there is no possibility to have a continuous conductive underlayer. Current applications of interest in the microelectronics industry include copper deposition for seed layer and interconnect metallization, nickel and gold depositions for contact metallurgy in microelectronics packaging and related applications, and cobalt-tungsten alloys as diffusion barrier for copper interconnects.

  1. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  2. Paleozoic-early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Z.; Goldfarb, R.J.; Qiu, Y.; Zhou, T.; Chen, R.; Pirajno, F.; Yun, G.

    2002-01-01

    the epithermal and replacement deposits of the Kanggurtag belt to the east in the Chol Tagh range. Gold deposits of approximately the same age in the Yili block include the Axi hot springs/epithermal deposit near the Kazakhstan border and a series of small orogenic gold deposits south of Urumqi (e.g. Wangfeng). Gold-rich porphyry copper deposits (e.g. Tuwu) define important new exploration targets in the northern Tian Shan of Xinjiang. The northern foothills of the Kunlun Shan of southern Xinjiang host scattered, small placer gold deposits. Sources for the gold have not been identified, but are hypothesized to be orogenic gold veins beneath the icefields to the south. They are predicted to have formed in the Tianshuihai terrane during its early Mesozoic accretion to the amalgamated Tarim-Qaidam-Kunlun cratonic block.

  3. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  4. "Total Deposition (TDEP) Maps"

    EPA Science Inventory

    The presentation provides an update on the use of a hybrid methodology that relies on measured values from national monitoring networks and modeled values from CMAQ to produce of maps of total deposition for use in critical loads and other ecological assessments. Additionally, c...

  5. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú

    NASA Astrophysics Data System (ADS)

    Chen, Huayong; Kyser, T. Kurtis; Clark, Alan H.

    2011-10-01

    The Marcona-Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide-copper-gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3-4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite-biotite-calcic amphibole assemblages are inferred to have crystallized from a 700-800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite-phlogopite-calcic amphibole-sulphide assemblages were subsequently precipitated from 430-600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = -73‰ to -43‰; and δ13C = -3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide-calcite-amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (-3.4‰), but higher δD values (average -8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of

  6. Volcanogenic Massive Sulfide Deposit Density

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Berger, Vladimir I.

    2007-01-01

    A mineral-deposit density model for volcanogenic massive sulfide deposits was constructed from 38 well-explored control areas from around the world. Control areas contain at least one exposed volcanogenic massive sulfide deposit. The control areas used in this study contain 150 kuroko, 14 Urals, and 25 Cyprus massive sulfide subtypes of volcanogenic massive sulfide deposits. For each control area, extent of permissive rock, number of exposed volcanogenic massive sulfide deposits, map scale, deposit age, and deposit density were determined. The frequency distribution of deposit densities in these 38 control areas provides probabilistic estimates of the number of deposits for tracts that are permissive for volcanogenic massive sulfide deposits-90 percent of the control areas have densities of 100 or more deposits per 100,000 square kilometers, 50 percent of the control areas have densities of 700 or more deposits per 100,000 square kilometers, and 10 percent of the control areas have densities of 3,700 or more deposits per 100,000 square kilometers. Both map scale and the size of the control area are shown to be predictors of deposit density. Probabilistic estimates of the number of volcanogenic massive sulfide deposits can be made by conditioning the estimates on sizes of permissive area. The model constructed for this study provides a powerful tool for estimating the number of undiscovered volcanogenic massive sulfide deposits when conducting resource assessments. The value of these deposit densities is due to the consistency of these models with the grade and tonnage and the descriptive models. Mineral-deposit density models combined with grade and tonnage models allow reasonable estimates of the number, size, and grades of volcanogenic massive sulfide deposits to be made.

  7. Trouvelot Crater Deposit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Like many of the craters in the Oxia Palus region of Mars, Trouvelot Crater hosts an eroded, light-toned, sedimentary deposit on its floor. Compared with the much larger example in Becquerel Crater to the NE, the Trouvelot deposit has been so eroded by the scouring action of dark, wind-blown sand that very little of it remains. Tiny outliers of bright material separated from the main mass attest to the once, more really extensive coverage by the deposit. A similar observation can be made for White Rock, the best known example of a bright, crater interior deposit. The origin of the sediments in these deposits remains enigmatic but they are likely the result of fallout from ash or dust carried by the thin martian atmosphere.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Rock chemistry and fluid inclusion studies as exploration tools for ore deposits in the Sila batholith, southern Italy

    USGS Publications Warehouse

    de Vivo, B.; Ayuso, R.A.; Belkin, H.E.; Lima, A.; Messina, A.; Viscardi, A.

    1991-01-01

    The Sila batholith is the focus of an extensive petrogenetic research program, which includes an assessment of its potential to host granite-related ore deposits. Univariate and multivariate statistical techniques were applied to major- and minor-element rock geochemical data. The analysis indicates that the highest potential for mineralization occurs in corundum-normative, peraluminous, unfoliated, relatively late-stage plutons. The plutons are enriched in Rb, Nb, Ta and U, but depleted in Fe, Mg and Sr. The K/Rb, Ba/Rb, Rb/Sr and Rb3/Ba??Sr??K indices and high R-factor scores of Si-K-Rb are typical of mineralized granitic rocks. A reconnaissance fluid inclusion study indicates that the sub-solidus rock was infiltrated by solutions of widely different temperatures (50-416??C) and variable salinities (0 to ???26 wt.% NaCl equivalent). The higher-temperature solutions probably represent granite or magmatic-related Hercynian fluids, whereas the lower-temperature fluids may be either Hercynian or Alpine in age. Fluids with characteristics typical of mineralized "porphyry" systems have not been recognized. ?? 1991.

  9. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part VI. Maximum duration for mineralization of the OH vein

    USGS Publications Warehouse

    Campbell, W.R.; Barton, P.B.

    2005-01-01

    The rate at which ore deposits form is one of the least well established parameters in all of economic geology. However, increased detail in sampling, improved technology of dating, and sophistication in modeling are reducing the uncertainties and establishing that ore formation, at least for the porphyry copper-skarn-epithermal base and precious metals deposit package, may take place in surprisingly brief intervals. This contribution applies another approach to examine the duration of mineralization. The degree to which compositional gradients within single crystals has flattened through solid-state diffusion offers a measure of the thermal dose (that is temperature combined with time) that the crystals have been subjected to since deposition. Here we examine the steepness of gradients in iron content within individual single sphalerite crystals from the epithermal silver-lead-zinc deposit in the OH vein at Creede, Colorado. Two initial textures are considered: growth-banded crystals and compositionally contrasting overgrowths that succeed crosscutting dissolution or fractured surfaces. The model used estimates the maximum possible time by assuming a perfectly sharp original compositional step, and it asks how long it would take at a known temperature for the gradient measured today to have formed. Applying the experimentally determined diffusion rates of Mizuta (1988a) to compositional gradients (ranging from 0.4-2.2 mol % FeS/??m) measured by the electron microprobe in 2-??m steps on banded sphalerite formed early in the paragenetic history yields a maximum duration of less than ???10,000 yr. Sphalerite from a solution unconformity in a position midway through the paragenetic sequence is indistinguishable from instantaneous deposition, supporting the conclusion of rapid ore formation. While this formation interval seems very brief, it is consistent with less well constrained estimates using entirely different criteria. ?? 2005 Society of Economic Geologists, Inc.

  10. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China

    NASA Astrophysics Data System (ADS)

    Yu, Jin-Jie; Lu, Bang-Cheng; Wang, Tie-Zhu; Che, Lin-Rui

    2015-05-01

    The Cretaceous Ningwu volcanic basin of the Middle and Lower Yangtze River Valley metallogenic belt of eastern China hosts numerous Fe-oxide-apatite, Cu-Au, and pyrite deposits. The mineralization in the Ningwu basin is associated with subvolcanic rocks, consisting of gabbro-diorite porphyry and/or pyroxene diorite. However, the mineralization is associated with subvolcanic and volcanic rock suite belonging to the Niangniangshan Formation in the Tongjing Cu-Au deposit, including nosean-bearing aegirine-augite syenites, quartz syenites, and quartz monzonites. The zoning displayed by the alteration and mineralization comprises: (1) an upper light-colored zone of argillic, carbonate, and pyrite alteration and silicification that is locally associated with pyrite and gold mineralization, (2) a central dark-colored zone of diopside, fluorapatite-magnetite, phlogopite, and garnet alteration associated with fluorapatite-magnetite mineralization, and (3) a lowermost light-colored zone of extensive albite alteration. The Cu-Au and pyrite orebodies are peripheral to the Fe-oxide-apatite deposits in this area and overlie the iron orebodies, including the Meishan Cu-Au deposit in the northern Ningwu basin and the pyrite deposits in the central Ningwu basin. The δ34S values of sulfides from the Fe-oxide-apatite, Cu-Au, and pyrite deposits in the Ningwu basin show large variation, with a mixed sulfur source, including magmatic sulfur and/or a mixture of sulfur derived from a magmatic component, country rock, and thermochemical reduction of sulfate at 200-300 °C. The ore-forming fluids associated with iron mineralization were derived mainly from magmatic fluids, and the late-stage ore-forming fluids related to Cu-Au and pyrite mineralization may have formed by the introduction of cooler meteoric water to the system. The Fe-oxide-apatite, Cu-Au, and pyrite deposits of the Ningwu basin formed in an extensional environment and are associated with a large-scale magmatic

  11. Volcanogenic Massive Sulphide Deposits in the Southern Tulks Volcanic Belt, Central Newfoundland: Where do They fit Within the Tectonostratigraphic Architecture?

    NASA Astrophysics Data System (ADS)

    Hinchey, J. G.; McNicoll, V.

    2009-05-01

    To help clarify their tectonostratigraphic affinity within the Victoria Lake supergroup, and to better understand mineralizing environments, U-Pb geochronology, trace-element lithogeochemistry and Sm/Nd isotopic geochemistry were applied to the host rocks surrounding the Tulks East, Tulks Hill and Boomerang VMS deposits, in central Newfoundland. A subvolcanic porphyry from the Tulks Hill deposit, dated previously at 498 +6/-4 Ma, provides a minimum age for the nearby Tulks Hill and Tulks East deposits. New U-Pb zircon ages were obtained from both the felsic tuff that hosts mineralization at the Boomerang deposit and from a felsic dyke interpreted to be broadly synvolcanic. The combined TIMS and SHRIMP data for these two samples indicate an identical U-Pb age of 491 +/- 3 Ma. This date is younger than the 498 +6/-4 age from Tulks Hill, although the errors do overlap at their older and younger limits, respectively. Inheritance patterns in the Boomerang samples suggest the presence of older crustal material having Cambrian (514 - 510 Ma) ages akin to those reported from the Tally Pond group, an older sequence within the Victoria Lake supergroup. The new results suggest that VMS mineralization in the Tulks area and at Boomerang may represent temporally discrete events, despite some apparent similarities. The age determined for the Boomerang deposit is closer to (but not identical with) a U- Pb date of 487 +/- 3 Ma, obtained some 30 km to the southwest of the Boomerang deposit, from a unit termed the Pats Pond group. The comparison of lithogeochemical patterns from the three deposit areas, with published data from the Pats Pond group, is complicated by the effects of hydrothermal alteration near the VMS mineralizing environments. Nevertheless, examination of immobile trace-element signatures suggests that these sequences cannot be distinguished on the basis of their geochemistry. The volcanic and pyroclastic rocks are all broadly arc-related, and show a mixture of calc

  12. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite

  13. Mineralized and Barren Tourmaline Breccia at Río Blanco-Los Bronces Copper Deposit, Central Chile

    NASA Astrophysics Data System (ADS)

    Hohf, Michael; Seifert, Thomas; Ratschbacher, Lothar; Rabbia, Osvaldo; Krause, Joachim; Haser, Sabine; Cuadra, Patricio

    2014-05-01

    The Río Blanco-Los Bronces porphyry copper-molybdenum cluster (14.8-4.3 Ma) in central Chile is one of the largest mining districts of the world with more than 200 Mt of contained Cu; almost 30% of these resources are hosted by hydrothermal breccias. These breccia complexes are tourmaline-, biotite-, chlorite-, or iron oxide-cemented and are widespread in the Paleo-Eocene and Mio-Pliocene porphyry Cu-Mo belt of the central Andes. The ongoing research project aims to understand the time-space relationships between the different breccia bodies and the multiple porphyry intrusions. For this, two cross sections in the southern part of the deposit (Sur-Sur and La Americana areas) are studied. Most interesting from the economic/genetic point of view is the intermineral breccia (tourmaline- and biotite-cemented), which have high copper grades. It is under debate whether there is a vertical mineralogical zonation of the cement of the breccia body from tourmaline-rich at the top to biotite-dominated at the bottom, or there are two superimposed breccia formation events. Textural and mineralogical observations of benches- and tunnels-outcrops, drill cores, and polished-thin sections support the first hypothesis. Our work has been focused on tourmaline chemistry due to its high resistance to alteration and weathering, which allows this mineral to retain its original isotopic signature. Preliminary results of 127 microprobe measurements of tourmaline chemistry from the early mineralized breccia (BXT) and the late barren one (BXTTO) show that all the tourmalines belong to the alkali group and the composition ranges between the dravite-schorl end members. There is a pronounced negative correlation between Fe (ferric?) and Al, probably due to exchange at the Z octahedral position. The backscatter images of tourmaline show oscillatory and sector zonings, i.e., alternating light bands/zones (high CaO, FeO, Na2O) and darker ones (enriched in Al2O3 and MgO). There is no significant

  14. The Robinson and Weatherly uraniferous pyrobitumen deposits near Placerville, San Miguel County, Colorado

    USGS Publications Warehouse

    Wilmarth, V.R.; Vickers, R.C.

    1953-01-01

    Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material

  15. Inkjet deposited circuit components

    NASA Astrophysics Data System (ADS)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  16. Intricately Rippled Sand Deposits

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for Intricately Rippled Sand Deposits (QTVR)

    NASA's Mars Exploration Rover Spirit welcomed the beginning of 2006 on Earth by taking this striking panorama of intricately rippled sand deposits in Gusev Crater on Mars. This is an approximate true-color rendering of the 'El Dorado' ripple field provided by Spirit over the New Year's holiday weekend. The view spans about 160 degrees in azimuth from left to right and consists of images acquired by Spirit's panoramic camera on Spirit's 708th and 710th Martian days, or sols, (Dec. 30, 2005 and Jan. 1, 2006). Spirit used the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters to capture the colors on Mars. Scientists have eliminated seams between individual frames in the sky portion of the mosaic to better simulate the vista a person standing on Mars would see. Spirit spent several days acquiring images, spectral data, and compositional and mineralogical information about these large sand deposits before continuing downhill toward 'Home Plate.'

  17. Electrophoretic deposition of biomaterials.

    PubMed

    Boccaccini, A R; Keim, S; Ma, R; Li, Y; Zhitomirsky, I

    2010-10-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer-ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields.

  18. Uranium deposits of Brazil

    SciTech Connect

    1991-09-01

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  19. Electrophoretic deposition of biomaterials

    PubMed Central

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  20. Silicon source for vacuum deposition

    NASA Technical Reports Server (NTRS)

    Racette, G. W.; Rutecki, D. J.

    1979-01-01

    Device using two independent silicon sources for ultra-high-vacuum deposition on large substrates can deposit P and N types of silicon simultaneously. Efficient water cooled copper shield supports and cools structure and isolates two filaments.

  1. Pulse plating of nickel deposits

    SciTech Connect

    Stimetz, C.J.; Stevenson, M.F.

    1980-02-01

    Pulse plated and conventional nickel deposits have been compared for differences in morphology, mechanical properties, and microstructure. The deposits were obtained from nickel sulfamate, nickel chloride, and Watts nickel plating solutions. No significant differences were found in the direct and pulse current deposits from the sulfamate and chloride solutions; however, significant differences in microstructure, yield strength, and microhardness were observed in deposits from the Watts nickel solution.

  2. Deposition of SOCs in forests

    SciTech Connect

    Horstmann, M.; McLachlan, M.S.

    1995-12-31

    The bulk deposition, wet-only deposition, dry-only deposition and ambient air concentrations of PCDD/Fs, PCBs and PAHs were measured in an 80 year old spruce forest, an 80 year old mixed deciduous (beech and oak) forest, and in an adjacent clearing over a period of 1--2 years. The deposition of the less volatile compounds that are primarily particle bound in the atmosphere was similar at both sites. These compounds were deposited primarily through wet deposition, as shown by the measurements in the clearing. In contrast, the deposition of the more volatile compounds was much higher at the forest sites than in the clearing. For instance, the annual deposition of Cl{sub 4}DF was 5 times higher in the spruce forest and 8 times higher in the deciduous forest. The excess deposition in the deciduous forest was almost completely due to the leaf fall in October--December, while about half of the excess deposition in the spruce forest was the result of needle fall. A further, as yet unexplained deposition mechanism accounted for the remainder of the flux in the spruce forest. Other studies have shown that more volatile SOCs are deposited to vegetation primarily through dry gaseous deposition. Hence, while forests have little influence on the deposition of less volatile compounds like the higher chlorinated PCDD/Fs and the 5--6 ring PAHs, dry deposition to leaves/needles and their subsequent falling to the forest floor make forest soils an extremely important sink for more volatile SOC.

  3. Magmatic context of Bou Skour copper deposit (Eastern Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations

    NASA Astrophysics Data System (ADS)

    EL Azmi, Daoud; Aissa, M.; Ouguir, H.; Mahdoudi, M. L.; El Azmi, M.; Ouadjo, A.; Zouhair, M.

    2014-09-01

    The Bou Skour copper deposit is located in the western part of the Saghro massif (Eastern Anti-Atlas), about 50 km East of the city of Ouarzazate. It is subdivided into several areas that are, from North to South: “Panthère”, “Chaigne”, “Anne Marie”, “Chapeau de fer” and “Patte d'Oie”. The latter is economically the most important and is the object of this study. The “Patte d'Oie” district consists mainly of extrusive and intrusive igneous rocks. The extrusive rocks are represented by andesites spatially associated with pyroclastic terms (ignimbrites and pyroclastic breccias). This volcanic unit is intruded by a pink granite pluton and a I-type granodiorite with equigranular texture (Bou Skour granodiorite) showing to the border a microgranular facies (microgranodiorite). All these magmatic formations are intersected by rhyolitic dykes (NNE-SSW) and doleritic dykes (WNW-ESE to NW-SE). The granodiorite and andesite have undergone a polyphase hydrothermal alteration: (i) potassic alteration, (ii) phyllitic alteration, (iii) silicification, (iv) argillic alteration and (v) propylitic alteration. The analysis of geochemical data of granodiorite, granite, andesite and dolerite confirmed: (i) their petrographic natures, (ii) the medium-K calc-alkaline affiliation of andesite and granodiorite, which would have been set up into an active geotectonic environment, probably of island arc or collision, during the Pan-African orogeny, (iii) The high-K calc-alkaline character of granite indicating a post-collision development during the Pan-African orogeny and (iv) The alkaline affinity of the dolerite which is linked to an extensive post-orogenic setting (post-Pan-African). The copper mineralization of “Patte d'Oie” area is hosted, exclusively, in the andesitic and granodioritic facies. It is represented, essentially, by chalcopyrite and bornite minerals and is, probably, related to a porphyry system (disseminated and stockwork mineralization

  4. Geochronological and He-Ar-S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Ripley, Edward M.; Wang, Jianping

    2015-01-01

    Northeastern China is characterized by widespread Mesozoic volcanic rocks and Au-Cu-Mo mineral deposits with a total gold reserve of > 2000 t. Amongst those gold deposits, the newly discovered Sandaowanzi has a total reserve of ≥ 25 t of Au and an average grade of 15 g/t. This deposit is important because it is the first reported case of a dominantly Au(± Ag)-telluride deposit containing economically valuable bonanza Au- and Ag-telluride ores in the region. The Sandaowanzi quartz vein system and associated Au-(± Ag)-telluride mineralization are mainly hosted by trachyandesites and andesitic breccias. Native gold is closely associated with abundant tellurides including petzite, sylvanite, calaverite, hessite, and altaite. Twelve pyrite samples from the alteration zone yield a well defined Rb-Sr isochron age of 119.1 ± 3.9 Ma, which is in agreement with a robust Rb-Sr isochron age of 121.3 ± 2.6 Ma derived from 10 auriferous quartz samples. The obtained isochron age of ~ 120 Ma represents the formation of the Sandaowanzi gold-telluride epithermal system, which is much younger than the host trachyandesite with a zircon U-Pb age of 312.5 ± 0.5 Ma and the spatially associated monzogranite with a zircon U-Pb age of 182.2 ± 1.1 Ma. Dating results indicate a close relationship between the local Au-Ag-Te mineralization and a magmatism episode in the Early Cretaceous. Noble gas (He and Ar) isotopes obtained from telluride, sulfide and quartz and sulfur isotopes determined from sulfides including chalcopyrite, sphalerite and pyrite demonstrate clear mixing trends between crustal and mantle-derived components, confirming a significant contribution of fluid produced from mantle-derived magmas into the epithermal system. Like many Mesozoic porphyry Cu-Mo ± Au deposits, the coeval epithermal Au-Ag ± Te deposits in the region are genetically related to magmatism triggered by the subduction of the Pacific oceanic plate beneath the Eurasian continent at the time.

  5. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17