Science.gov

Sample records for portable readout system

  1. Medipix2 parallel readout system

    NASA Astrophysics Data System (ADS)

    Fanti, V.; Marzeddu, R.; Randaccio, P.

    2003-08-01

    A fast parallel readout system based on a PCI board has been developed in the framework of the Medipix collaboration. The readout electronics consists of two boards: the motherboard directly interfacing the Medipix2 chip, and the PCI board with digital I/O ports 32 bits wide. The device driver and readout software have been developed at low level in Assembler to allow fast data transfer and image reconstruction. The parallel readout permits a transfer rate up to 64 Mbytes/s. http://medipix.web.cern ch/MEDIPIX/

  2. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  3. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  4. Portable Dental System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Portable dental system provides dental care in isolated communities. System includes a patient's chair and a dentist's stool, an X-ray machine and a power unit, all of which fold into compact packages. A large yellow "pumpkin" is a collapsible compressed air tank. Portable system has been used successfully in South America in out of the way communities with this back-packable system, and in American nursing homes. This product is no longer manufactured.

  5. Portable treatment systems study

    SciTech Connect

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  6. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  7. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  8. A Portable Immunosensor with Differential Pressure Gauges Readout for Alpha Fetoprotein Detection.

    PubMed

    Wang, Qingping; Li, Rongjie; Shao, Kang; Lin, Yue; Yang, Weiqiang; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2017-03-24

    A portable, affordable and simple detector is requested in a "Point-of-Care-Testing" (POCT) system. In this study, we exploited the potentialities of Differential Pressure Gauge (DPG) to the orientation of POCT technology. Alpha fetoprotein (AFP) was chosen as a model analyte that could specifically recognized by its antigen, and a tiny outfits equipped with a DPG was employed as the signal readout. Pt/SiO2 nanospheres were synthesized and modified with the detection antibody. In the presence of target, a sandwich of immunocomplex specifically formed and the Pt/SiO2 had been modified on the capture antibody. Which then can be dissolved to release plenty of Pt and the suspensions were transferred into a closed vial filled with appropriated amount of hydrogen peroxide. Subsequently, hydrogen peroxide was decomposed to produce oxygen, resulting in the enhancement of pressure in the closed vial and which can be detected by DPG easily. Under the optimized conditions, the read out signal from DPG had a direct relationship with AFP concentrations in the range of 10~200 ng/mL, and the detection limit was as low as 3.4 ng/mL. The proposed portable sensor had been successfully applied to detect AFP in serum samples with satisfactory results. This strategy holds a great promising in biological analysis as its convenient operations, reliable results and flexible apparatus.

  9. A Portable Immunosensor with Differential Pressure Gauges Readout for Alpha Fetoprotein Detection

    PubMed Central

    Wang, Qingping; Li, Rongjie; Shao, Kang; Lin, Yue; Yang, Weiqiang; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2017-01-01

    A portable, affordable and simple detector is requested in a “Point-of-Care-Testing” (POCT) system. In this study, we exploited the potentialities of Differential Pressure Gauge (DPG) to the orientation of POCT technology. Alpha fetoprotein (AFP) was chosen as a model analyte that could specifically recognized by its antigen, and a tiny outfits equipped with a DPG was employed as the signal readout. Pt/SiO2 nanospheres were synthesized and modified with the detection antibody. In the presence of target, a sandwich of immunocomplex specifically formed and the Pt/SiO2 had been modified on the capture antibody. Which then can be dissolved to release plenty of Pt and the suspensions were transferred into a closed vial filled with appropriated amount of hydrogen peroxide. Subsequently, hydrogen peroxide was decomposed to produce oxygen, resulting in the enhancement of pressure in the closed vial and which can be detected by DPG easily. Under the optimized conditions, the read out signal from DPG had a direct relationship with AFP concentrations in the range of 10~200 ng/mL, and the detection limit was as low as 3.4 ng/mL. The proposed portable sensor had been successfully applied to detect AFP in serum samples with satisfactory results. This strategy holds a great promising in biological analysis as its convenient operations, reliable results and flexible apparatus. PMID:28338068

  10. Portable neon purification system

    SciTech Connect

    Richardson, R.A.; Schmitt, R.L.

    1995-08-01

    This paper describes the principle design features of a portable neon purification system and the results of the system performance testing. Neon gas replaces air in the Ring Imaging Cherenkov detector without using vacuum, in experiment E781(SELEX) at Fermilab. The portable neon purification system purifies neon gas by, first purging air with CO{sub 2}, freezing the CO{sub 2}, then cryoadsorbing the remaining contaminants. The freezer removes carbon dioxide from a neon gas mixture down to a maximum concentration of 500 parts-per-million (ppm). The charcoal bed adsorber removes nitrogen from neon gas down to a maximum concentration of 100 ppm. The original RICH vessel was designed to hold vacuum but its photomultiplier tube plates were not.

  11. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  12. Portable Medical System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Portable Medical Status and Treatment System (PMSTS) is designed for use in remote areas where considerable time may elapse before a patient can be transported to a hospital. First units were delivered to the Department of Transportation last year and tested in two types of medical emergency environments: one in a rural Pennsylvania community and another aboard a U.S. Coast Guard rescue helicopter operating along Florida's Gulf Coast. The system has the capability to transmit vital signs to a distantly located physician, who can perform diagnosis and relay treatment instructions to the attendant at the scene. The battery powered PMSTS includes a vital signs monitor and a defibrillator. Narco has also developed a companion system, called Porta-Fib III designed for use in a hospital environment with modifications accordingly. Both systems are offshoots of an earlier NASA project known as the Physician's Black Bag developed by Telecare, Inc., a company now acquired by NARCO.

  13. Portable active interrogation system.

    SciTech Connect

    Moss, C. E.; Brener, M. W.; Hollas, C. L.; Myers, W. L.

    2004-01-01

    The system consists of a pulsed DT neutron generator (5 x 10{sup 7} n/s) and a portable but high intrinsic efficiency, custom-designed, polyethylene-moderated {sup 3}He neutron detector. A multichannel scaler card in a ruggedized laptop computer acquires the data. A user-friendly LabVIEW program analyzes and displays the data. The program displays a warning message when highly enriched uranium or any other fissionable materials is detected at a specified number of sigmas above background in the delayed region between pulses. This report describes the system and gives examples of the response of the system to highly enriched uranium and some other fissionable materials, at several distances and with various shielding materials.

  14. Advanced Microdisplays for Portable Systems

    DTIC Science & Technology

    1999-08-01

    THROUGH SCIENCE mm WE DEFEND TECHNICAL REPORT NATICK/TR-99/037 AD ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS by Phillip Alvelda Michael...1996 - 19 October 1998 4. TITLE AND SUBTITLE ADVANCED MICRODISPLAYS FOR PORTABLE SYSTEMS 6. AUTHOR(S) Phillip Alvelda , Michael Bolotski, Ramon...MIT’s Artificial Intelligence Laboratory which forms the basis for this proposal. Under DARPA funding, Mr. Alvelda and Mr. Knight developed the highest

  15. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor

    PubMed Central

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-01-01

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment. PMID:27834794

  16. Gravity Probe B gyroscope readout system

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.

    2015-11-01

    We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

  17. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  18. Portable Liquid-Injecting System

    NASA Technical Reports Server (NTRS)

    Shuck, T.; Chin, F.; Hansen, M.

    1988-01-01

    Portable injecting-gun system dispenses predetermined amount of liquid at moderately high pressure. Tool belt holds components of liquid-injecting system. Pump and four-way valve combined in nylon housing. Connected to injecting nozzle and other components by polyvinyl tubing.

  19. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  20. Portable plant health measurement system

    NASA Astrophysics Data System (ADS)

    Aksoy, Nejat

    1999-01-01

    This system is designed to assist diagnosis of the plant health globally. The system is formed by portable plant health measurement devices connected to a diagnosis and analysis center through a flexible information network. A flexible network is formed so that users from the remote areas as well as internet are able to use the system. The hardware and software is designed in an open technology for easier upgrades. Portable plant health measurement instrument is a networkable leaf flash spectrophotometer capable of measuring Qa, Electrochromy, P700, Fluorescence, S Fluorescence, reflectance spectra, temperature, humidity and image of the leaf with GPS information. The network and intelligent user interface options of the system can be used by any commercially or user designed instrument.

  1. Microprocessor controlled portable TLD system

    NASA Technical Reports Server (NTRS)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  2. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  3. Study of spacecraft direct readout meteorological systems

    NASA Technical Reports Server (NTRS)

    Bartlett, R.; Elam, W.; Hoedemaker, R.

    1973-01-01

    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.

  4. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  5. Portable electronic endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Du, Lihui; Wang, Liqiang; Ye, Bin; Duan, Huilong

    2010-11-01

    The paper presents a low-power, inexpensive and portable endoscopic imaging system. A 1.3 million pixels CMOS sensor is considered as an image capture. The sensor and the lens system are designed to minify the cannula diameter of the endoscope and therefore minimize the incision size for insertion. LVDS is used for image data transmission between the sensor and CPU to realize a long distance, high speed and low noise system. An ARM 920T based microcontroller is employed as the control core for the image transmission module, display module and other modules. The camera interface and LCD controller are integrated in the microcontroller and both have a dedicated DMA supports to transmit image data though AHB to or from frame buffer located in system memory without CPU intervention. The image is displayed on an 8 inch LCD screen with 800 × 600 resolution and 16 bits of color depth. With the maximum capture and display rate of 15 fps, this system can provide a clear image enough for laparoscopy or industrial application. And with integrated camera, light source and video display function, it can also be used as a portable, miniature and inexpensive endoscope.

  6. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.

    2017-01-01

    The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.

  7. A novel readout system for wireless passive pressure sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Huixin; Hong, Yingping; Ge, Binger; Liang, Ting; Xiong, Jijun

    2014-03-01

    This paper presents a novel readout system for wireless passive pressure sensors based on the inductively coupled inductor and cavity (LC) resonant circuits. The proposed system consists of a reader antenna inductively coupled to the sensor circuit, a readout circuit, and a personal computer (PC) post processing unit. The readout circuit generates a voltage signal representing the sensor's capacitance. The frequency of the reader antenna driving signal is a constant, which is equal to the sensor's resonant frequency at zero pressure. Based on mechanical and electrical modeling, the pressure sensor design based on the high temperature co-fired ceramic (HTCC) technology is conducted and discussed. The functionality and accuracy of the readout system are tested with a voltage-capacitance measurement system and demonstrated in a realistic pressure measurement environment, so that the overall performance and the feasibility of the readout system are proved.

  8. Portable Microleak-Detection System

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Sikora, Joseph G.; Sankaran, Sankara N.

    2007-01-01

    The figure schematically depicts a portable microleak-detection system that has been built especially for use in testing hydrogen tanks made of polymer-matrix composite materials. (As used here, microleak signifies a leak that is too small to be detectable by the simple soap-bubble technique.) The system can also be used to test for microleaks in tanks that are made of other materials and that contain gases other than hydrogen. Results of calibration tests have shown that measurement errors are less than 10 percent for leak rates ranging from 0.3 to 200 cm3/min. Like some other microleak-detection systems, this system includes a vacuum pump and associated plumbing for sampling the leaking gas, and a mass spectrometer for analyzing the molecular constituents of the gas. The system includes a flexible vacuum chamber that can be attached to the outer surface of a tank or other object of interest that is to be tested for leakage (hereafter denoted, simply, the test object). The gas used in a test can be the gas or vapor (e.g., hydrogen in the original application) to be contained by the test object. Alternatively, following common practice in leak testing, helium can be used as a test gas. In either case, the mass spectrometer can be used to verify that the gas measured by the system is the test gas rather than a different gas and, hence, that the leak is indeed from the test object.

  9. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable fuel systems. 119.458 Section 119.458 Shipping... Machinery Requirements § 119.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where used for portable dewatering...

  10. Portable direct methanol fuel cell systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.

    2002-01-01

    This article includes discussion of the specific power and power density requirements for various portable system applications, the status of stack technology, progress in the implementation of balance-of-plant designs, and a summary of the characteristics of various DMFC portable power source demonstrations.

  11. A Portable Infrasonic Detection System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael

    2008-01-01

    During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.

  12. The Belle II SVD data readout system

    NASA Astrophysics Data System (ADS)

    Thalmeier, R.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Casarosa, G.; Ceccanti, M.; Cervenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doleźal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyś, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnićka, P.; Lanceri, L.; Lettenbicher, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2017-02-01

    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing.

  13. FASTBUS readout system for the CDF DAQ upgrade

    SciTech Connect

    Andresen, J.; Areti, H.; Black, D.

    1993-11-01

    The Data Acquisition System (DAQ) at the Collider Detector at Fermilab is currently being upgraded to handle a minimum of 100 events/sec for an aggregate bandwidth that is at least 25 Mbytes/sec. The DAQ System is based on a commercial switching network that has interfaces to VME bus. The modules that readout the front end crates (FASTBUS and RABBIT) have to deliver the data to the VME bus based host adapters of the switch. This paper describes a readout system that has the required bandwidth while keeping the experiment dead time due to the readout to a minimum.

  14. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  15. Handheld chemiresistive gas sensor readout system

    NASA Astrophysics Data System (ADS)

    Joubert, Trudi-Heleen; du Toit, Jurie; Mkwakikunga, Bonex; Bosscha, Peter

    2016-02-01

    Low-cost and non-invasive diabetes diagnosis is increasingly important [1], and this paper presents a handheld readout system for chemiresistive gas sensors in a breath acetone diagnostic application. The sensor contains reference and detection devices, used for the detection of gas concentration. Fabrication is by dropcasting a metaloxide nanowire solution onto gold interdigitated electrodes, which had been manufactured on silicon. The resulting layer is a wide bandgap n-type semiconductor material sensitive to acetone, producing a change in resistance between the electrode terminals [2]. Chemiresistive sensors typically require temperatures of 300-500 °C, while variation of sensing temperature is also employed for selective gas detection. The nano-structured functional material requires low temperatures due to large surface area, but heating is still required for acceptable recovery kinetics. Furthermore, UV illumination improves the sensor recovery [3], and is implemented in this system. Sensor resistances range from 100 Ω to 50 MΩ, while the sensor response time require a sampling frequency of 10Hz. Sensor resistance depends on temperature, humidity, and barometric pressure. The GE CC2A23 temperature sensor is used over a range of -10°C to 60°C, the Honeywell HIH5031 humidity sensor operates up to 85% over this temperature range, and the LPS331AP barometric pressure sensor measures up to 1.25 bar. Honeywell AWM43300V air flow sensors monitor the flow rate up to 1000 sccm. An LCD screen displays all the sensor data, as well as real time date and time, while all measurements are also logged in CSV-format. The system operates from a rechargeable battery.

  16. A radiation-tolerant electronic readout system for portal imaging

    NASA Astrophysics Data System (ADS)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  17. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  18. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where...

  19. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where...

  20. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where...

  1. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable fuel systems. 182.458 Section 182.458 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel systems, including portable tanks and related fuel lines and accessories, are prohibited except where...

  2. The SoLid anti-neutrino detector's readout system

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Beaumont, W.; Cussans, D.; Newbold, D.; Ryder, N.; Weber, A.

    2017-02-01

    The SoLid collaboration have developed an intelligent readout system to reduce their 3200 silicon photomultiplier detector's data rate by a factor of 10000 whilst maintaining high efficiency for storing data from anti-neutrino interactions. The system employs an FPGA-level waveform characterisation to trigger on neutron signals. Following a trigger, data from a space-time region of interest around the neutron will be read out using the IPbus protocol. In these proceedings the design of the readout system is explained and results showing the performance of a prototype version of the system are presented.

  3. Spatial distribution read-out system for thermoluminescence sheets

    NASA Technical Reports Server (NTRS)

    Yamamoto, I.; Tomiyama, T.; Imaeda, K.; Ninagawa, K.; Wada, T.; Yamashita, Y.; Misaki, A.

    1985-01-01

    A spatial distribution read-out system of thermoluminescence (TL) sheets is developed. This system consists of high gain image intensifier, a CCD-TV camera, a video image processor and a host computer. This system has been applied to artificial TL sheets (BaSO4:Eu doped) for detecting high energy electromagnetic shower and heavy nuclei tracks.

  4. 46 CFR 182.458 - Portable fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.458 Portable fuel systems. (a) Portable fuel... for portable dewatering pumps or outboard motor installations. (b) The design, construction, and stowage of portable tanks and related fuel lines and accessories must meet the requirements of ABYC...

  5. A compact light readout system for longitudinally segmented shashlik calorimeters

    NASA Astrophysics Data System (ADS)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  6. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  7. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  8. Development and characterization of the readout system for POLARBEAR-2

    NASA Astrophysics Data System (ADS)

    Barron, D.; Ade, P. A. R.; Akiba, Y.; Aleman, C.; Arnold, K.; Atlas, M.; Bender, A.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, G.; Gilbert, A.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Inoue, Y.; Jaehnig, G. C.; Katayama, N.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Matsuda, F.; Matsumura, T.; Morii, H.; Myers, M. J.; Navroli, M.; Nishino, H.; Okamura, T.; Peloton, J.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Sholl, M.; Siritanasak, P.; Smecher, G.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Suzuki, J.; Takada, S.; Takakura, T.; Tomaru, T.; Wilson, B.; Yamaguchi, H.; Zahn, O.

    2014-07-01

    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.

  9. Portable medical status and treatment system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A portable medical status and treatment system is discussed. The vital signs monitor includes electrocardiogram, respiration, temperature, blood pressure, alarm, and power subsystems, which are described. A DC defibrillator module, a radio module, and their packaging are also described. These subsystems were evaluated and the results and recommendations are presented.

  10. The NA62 liquid Krypton calorimeter's new readout system

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Lamanna, G.; Rouet, J.; Ryjov, V.; Venditti, S.

    2014-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the experiment photon-veto system; to cope with the new requirements, the back-end electronics of the LKr had to be completely renewed. Due to the huge number of the calorimeter readout channels ( ~ 14 K) and the maintenance requirement over 10 years of the experiment lifetime, the decision to sub-contract the development and production to industry was taken in 2011. This paper presents the primary test results of the Calorimeter REAdout Module (CREAM) [3] prototype delivered by the manufacturer in March 2013. All essential features, analog performance, data processing and readout, are covered.

  11. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  12. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  13. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  14. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  15. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  16. Portable imaging system method and apparatus

    DOEpatents

    Freifeld, Barry M.; Kneafsley, Timothy J.; Pruess, Jacob; Tomutsa, Liviu; Reiter, Paul A.; deCastro, Ted M.

    2006-07-25

    An operator shielded X-ray imaging system has sufficiently low mass (less than 300 kg) and is compact enough to enable portability by reducing operator shielding requirements to a minimum shielded volume. The resultant shielded volume may require a relatively small mass of shielding in addition to the already integrally shielded X-ray source, intensifier, and detector. The system is suitable for portable imaging of well cores at remotely located well drilling sites. The system accommodates either small samples, or small cross-sectioned objects of unlimited length. By rotating samples relative to the imaging device, the information required for computer aided tomographic reconstruction may be obtained. By further translating the samples relative to the imaging system, fully three dimensional (3D) tomographic reconstructions may be obtained of samples having arbitrary length.

  17. Optimized readout system for cooled optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1990-09-01

    Cooled Optically Stimulated Luminescence (COSL) in CaF2:Mn is an ionizing radiation dosimetry method recently developed at the Pacific Northwest Laboratory (PNL). In this method CaF2:Mn crystals irradiated by gamma radiation at room temperature are cooled to liquid nitrogen temperature (77 K), stimulated by ultraviolet laser light at 326 nm, and allowed to warm to room temperature. Light emission proportional to the gamma exposure occurs as the TLD warms from liquid nitrogen temperature to room temperature. The new method is an example of a highly sensitive phototransfer technique which could form the basis for future radiation dosimetry applications. Measurements to date have shown high potential for measuring gamma exposures in the range of 10 microR. The high sensitivity of the COSL technique is due in part to the larger quantum efficiency of radiative recombination at low temperatures and to the complete absence of the incandescent background associated with conventional thermoluminescent readout methods. Along with the potential for a system which is more sensitive than thermoluminescent readers, multiple COSL readouts can be performed with minimal reduction in the COSL intensity. The multiple readout capability can serve as a possible permanent dosimetry record, thus allowing the reanalysis of a questionable reading. In an attempt to optimize the sensitivity of the COSL method, a new readout system is being developed.

  18. Portable deaerator for deionized water systems

    SciTech Connect

    Lancaster, K.T.

    1987-08-01

    The flowing water deaerator systems were designed and built for the TEMPO microwave pulser. The TEMPO program major goals were to build three one-megavolt, rep-rate pulsers capable of providing high power pulsed microwaves for various susceptibility and biological experiments. The TEMPO machine is a transformer driven water dielectric transmission line pulser. The water in the transmission line is required to have high purity and be bubble-free. The purity of the water is maintained by a filtered deionizing system that was supplied by a local vendor. The deaerating system was unique because it was required to be portable and self-contained. The design was based on a very large existing system (RADLAC II) which was not portable. The present system was scaled down to the approximate size of 2 ft x 4 ft x 7 ft high and mounted on a caster-supported frame for portability. Its small size and closed-loop operation allowed it to fit into a transportable subsystem container which housed the water processing and air supply systems. The following report discusses the design, installation, and operation of this flowing water deaerator.

  19. Development of a Portable DNA Sensor System

    DTIC Science & Technology

    2008-12-01

    DEVELOPMENT OF A PORTABLE DNA SENSOR SYSTEM J.J. Sumner* U.S. Army Research Laboratory Adelphi, MD 20783 P. Freudenthal Nanex,LLC Santa...Barbara, CA 93106 C.D. Meinhart , H.T. Soh, and K.W. Plaxco University of California, Santa Barbara Santa Barbara, CA 93106 ABSTRACT A...was lead by Nanex LLC with co-investigators from the US Army Research Laboratory and the University of California, Santa Barbara. This analyzer

  20. Portability of Operating System Software.

    DTIC Science & Technology

    1981-06-01

    Pazal and ports nicely to P-code type machines SUcn as the Western Digital _I Pascal Microengine. Four feasibility studies were arried out ’.nder this...experiment involved studying the Concurrent Pascal compiler to ascertain the effort to generate P-code for the Western Digital . This took about four (4) months...systems could then be measured on both high-level language machines (such as the INTEL 432 (ADA) machine and the Western Digital ADA microengine) and on

  1. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  2. New readout system optimized for the Planck Surveyor bolometric instrument

    NASA Astrophysics Data System (ADS)

    Gaertner, Siegfried; Benoit, A.; Piat, M.

    1998-08-01

    We have developed a new readout system for bolometers optimized for the Planck Surveyor experiment, a satellite mission dedicated to survey the Cosmological Microwave Background. The bolometer resistance is measured in a bridge with a capacitance load, using a periodic square wave bias current in order to remove the 1/f noises of the electronics. The use of a capacitance allows to reduce the transient signal and to get rid of the Johnson noise. The bias voltages are fully controlled by computer, and the lock-in detection is digital. This system has been implemented and successfully tested on the Diabolo ground- based astronomical experiment. Using the advantages of our readout system, we have built and fully tested an engineering model of the space qualifiable electronics which fulfills the scientific and technical requirements of the Planck Surveyor bolometric instrument: low noise system down to 0.1 Hz, electrical power consumption lower than 40 Watts and volume lower than 15 liters. Our presentation will consist in a full description of this readout system and a review of the current test results. Our system could also be adapted, with some modifications, to other space born instruments which use bolometers.

  3. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  4. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  5. Point-of-care, portable microfluidic blood analyzer system

    NASA Astrophysics Data System (ADS)

    Maleki, Teimour; Fricke, Todd; Quesenberry, J. T.; Todd, Paul W.; Leary, James F.

    2012-03-01

    Recent advances in MEMS technology have provided an opportunity to develop microfluidic devices with enormous potential for portable, point-of-care, low-cost medical diagnostic tools. Hand-held flow cytometers will soon be used in disease diagnosis and monitoring. Despite much interest in miniaturizing commercially available cytometers, they remain costly, bulky, and require expert operation. In this article, we report progress on the development of a battery-powered handheld blood analyzer that will quickly and automatically process a drop of whole human blood by real-time, on-chip magnetic separation of white blood cells (WBCs), fluorescence analysis of labeled WBC subsets, and counting a reproducible fraction of the red blood cells (RBCs) by light scattering. The whole blood (WB) analyzer is composed of a micro-mixer, a special branching/separation system, an optical detection system, and electronic readout circuitry. A droplet of un-processed blood is mixed with the reagents, i.e. magnetic beads and fluorescent stain in the micro-mixer. Valve-less sorting is achieved by magnetic deflection of magnetic microparticle-labeled WBC. LED excitation in combination with an avalanche photodiode (APD) detection system is used for counting fluorescent WBC subsets using several colors of immune-Qdots, while counting a reproducible fraction of red blood cells (RBC) is performed using a laser light scatting measurement with a photodiode. Optimized branching/channel width is achieved using Comsol Multi-Physics™ simulation. To accommodate full portability, all required power supplies (40v, +/-10V, and +3V) are provided via step-up voltage converters from one battery. A simple onboard lock-in amplifier is used to increase the sensitivity/resolution of the pulse counting circuitry.

  6. Fast Low-Cost Multiple Sensor Readout System

    DOEpatents

    Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary

    2004-04-06

    A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.

  7. Intelligent hand-portable proliferation sensing system

    SciTech Connect

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-08-01

    Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.

  8. Readout Circuits for Noise Compensation in ISFET Sensory System

    NASA Astrophysics Data System (ADS)

    Das, M. P.; Bhuyan, M.; Talukdar, C.

    2015-12-01

    This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/ f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

  9. SPIDR, a general-purpose readout system for pixel ASICs

    NASA Astrophysics Data System (ADS)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit

  10. Portable chemical detection system with intergrated preconcentrator

    DOEpatents

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  11. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  12. Readout techniques for photon-counting microchannel image systems

    NASA Technical Reports Server (NTRS)

    Lampton, Michael

    1988-01-01

    A comparative evaluation is made of such readout methods for the microchannel plates that are commonly used in EUV, FUV, and X-ray low light level image systems as the (1) phosphor-video, (2) phosphor and binary-mask encoder, (3) direct discrete-position encoder, (4) direct analog amplitude position-encoder systems, and (5) delay-line encoders. Relative advantages and limitations are discussed in the context of low light level space-based astronomy applications. The delay-line technique offers great promise for high-resolution applications where oversampling is mandatory, as in spectroscopy.

  13. Job Scheduling Under the Portable Batch System

    NASA Technical Reports Server (NTRS)

    Henderson, Robert L.; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The typical batch queuing system schedules jobs for execution by a set of queue controls. The controls determine from which queues jobs may be selected. Within the queue, jobs are ordered first-in, first-run. This limits the set of scheduling policies available to a site. The Portable Batch System removes this limitation by providing an external scheduling module. This separate program has full knowledge of the available queued jobs, running jobs, and system resource usage. Sites are able to implement any policy expressible in one of several procedural language. Policies may range from "bet fit" to "fair share" to purely political. Scheduling decisions can be made over the full set of jobs regardless of queue or order. The scheduling policy can be changed to fit a wide variety of computing environments and scheduling goals. This is demonstrated by the use of PBS on an IBM SP-2 system at NASA Ames.

  14. Demonstration of portable solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Dong, Bing

    2012-10-01

    Solar-adaptive optics (AO) are more challenging than night-time AO, in some aspects. A portable solar adaptive optics (PSAO) system featuring compact physical size, low cost, and good performance has been proposed and developed. PSAO can serve as a visiting instrument for any existing ground-based solar telescope to improve solar image quality by replacing just a few optical components. High-level programming language, LabVIEW, is used to develop the wavefront sensing and control software, and general purpose computers are used to drive the whole system. During October 2011, the feasibility and good performance of PSAO was demonstrated with the 61-cm solar telescope at San Fernando Observatory. The image contrast and resolution are noticeably improved after AO correction.

  15. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  16. Development of field portable sampling and analysis systems

    SciTech Connect

    Beals, D.

    2000-06-08

    A rapid field portable sample and analysis system has been demonstrated at the Savannah River Site and the Hanford Site. The portable system can be used when rapid decisions are needed in the field during scoping or remediation activities, or when it is impractical to bring large volumes of water to the lab for analysis.

  17. Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser.

    PubMed

    Nakano, Masaharu; Kawata, Yoshimasa

    2003-08-01

    We present a compact confocal readout system for three-dimensional optical memories that uses the thresholding property of a semiconductor laser for feedback light. The system has higher axial resolution than a conventional confocal system with a pinhole. We demonstrate readout results for data recorded in two recording layers with the developed system.

  18. Readout system of TPC/MPD NICA project

    SciTech Connect

    Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.; Cheremukhina, G. A.; Fateev, O. V.; Korotkova, A. M.; Levchanovskiy, F. V.; Lukstins, J.; Movchan, S. A.; Razin, S. V.; Rybakov, A. A.; Vereschagin, S. V. Zanevsky, Yu. V.; Zaporozhets, S. A.; Zruyev, V. N.

    2015-12-15

    The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noise charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.

  19. Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and a distance-readout microfluidic chip.

    PubMed

    Ma, Yanli; Mao, Yu; Huang, Di; He, Zhe; Yan, Jinmao; Tian, Tian; Shi, Yuanzhi; Song, Yanling; Li, Xingrui; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong James

    2016-08-02

    Aflatoxin B1 (AFB1), as the secondary metabolite of molds, is the most predominant and toxic mycotoxin that seriously threatens the health of humans and animals. In this work, an AFB1-responsive hydrogel was synthesized for highly sensitive and portable detection of AFB1. The AFB1-responsive hydrogel was prepared using an AFB1 aptamer and its two short complementary DNA strands as cross-linkers. For visual detection of AFB1, the hydrogel is preloaded with gold nanoparticles (AuNPs). Upon introduction of AFB1, the AFB1 aptamer binds with AFB1, leading to the disruption of the hydrogel and release of the AuNPs with a distinct color change of the supernatant from colorless to red. In order to lower the detection limit and extend the method to quantitative analysis, a distance-readout volumetric bar chart chip (V-chip) was combined with an AFB1-responsive hydrogel preloaded with platinum nanoparticles (PtNPs). In the presence of AFB1, the hydrogel collapses and releases PtNPs which can catalyze the decomposition of H2O2 to generate O2. The increasing gas pressure moves a red ink bar in the V-chip and provides a quantitative relationship between the distance and the concentration of AFB1. The method was applied for detection of AFB1 in beer, with a detection limit of 1.77 nM (0.55 ppb) where an immunoaffinity column (IAC) of AFB1 was used to cleanup and pre-concentrate the sample, which satisfies the testing requirement of 2.0 ppb set by the European Union. The combination of an AFB1-responsive hydrogel with a distance-based readout V-chip offers a user-friendly POCT device, which has great potential for rapid, portable, selective, and quantitative detection of AFB1 in real samples to ensure food safety and avoid subsequent economic losses.

  20. Portable radiation detector and mapping system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-12-31

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate, and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a global positioning system (GPS) on flash memory cards. The recorded information is then transferred to a laptop computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system records spectra from a NaI(Tl) gamma-ray detector or an enriched {sup 6}Li doped glass neutron scintillator. Standard Geographic Information System (GIS) software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River site (SRS) using RADMAPS. The ability to provide rapid field data should be of use in treaty verification, safeguards, decontamination, and nuclear weapons dismantlement.

  1. Spacecraft signal sources portable test system

    NASA Technical Reports Server (NTRS)

    Kirk, Albert; Kuhnle, Paul; Sydnor, Richard; Diener, William; Stowers, David

    1993-01-01

    There is a frequent need to measure the frequency stability and phase noise levels of very high performance signal sources that are required for certain spacecraft missions. These measurements need to be done at different locations as the spacecraft subsystems progress through the various stages of development, assembly, test, and integration. Allan Deviation and Phase Noise of high performance sources are generally measured by comparing the unit under test to a reference standard. Five basic requirements are associated with making these kind of measurements: (1) the reference standard performance needs to be equal or better than the unit under test; (2) the measurement system needs to accommodate odd, nonstandard measurement frequencies that can range from 4 MHz to 35 GHz; (3) warm-up frequency drift and aging can corrupt a measurement and must be dealt with; (4) test equipment generated noise must be understood and prevented from limiting the measurements; (5) test equipment noise performance must be verifiable in the field as needed. A portable measurement system that was built by JPL and used in the field is described. The methods of addressing the above requirements are outlined and some measurement noise floor values are given. This test set was recently used to measure state of the art crystal oscillator frequency standards on the TOPEX and MARS OBSERVER spacecraft during several stages of acceptance tests.

  2. Merlin: a fast versatile readout system for Medipix3

    NASA Astrophysics Data System (ADS)

    Plackett, R.; Horswell, I.; Gimenez, E. N.; Marchal, J.; Omar, D.; Tartoni, N.

    2013-01-01

    This contribution reports on the development of a new high rate readout system for the Medipix3 hybrid pixel ASIC developed by the Detector Group at Diamond Light Source. It details the current functionality of the system and initial results from tests on Diamond's B16 beamline. The Merlin system is based on a National Instruments PXI/FlexRIO system running a Xilinx Virtex5 FPGA. It is capable of recording Medipix3 256 by 256 by 12 bit data frames at over 1 kHz in bursts of 1200 frames and running at over 100 Hz continuously to disk or over a TCP/IP link. It is compatible with the standard Medipix3 single chipboards developed at CERN and is capable of driving them over cable lengths of up to 10 m depending on the data rate required. In addition to a standalone graphical interface, a system of remote TCP/IP control and data transfer has been developed to allow easy integration with third party control systems and scripting languages. Two Merlin systems are being deployed on the B16 and I16 beamlines at Diamond and the system has been integrated with the EPICS/GDA control systems used. Results from trigger synchronisation, fast burst and high rate tests made on B16 in March are reported and demonstrate an encouraging reliability and timing accuracy. In addition to normal high resolution imaging applications of Medipix3, the results indicate the system could profitably be used in `pump and probe' style experiments, where a very accurate, high frame rate is especially beneficial. In addition to these two systems, Merlin is being used by the Detector Group to test the Excalibur 16 chip hybrid modules, and by the LHCb VELO Pixel Upgrade group in their forthcoming testbeams. Additionally the contribution looks forward to further developments and improvements in the system, including full rate quad chip readout capability, multi-FPGA support, long distance optical communication and further functionality enhancements built on the capabilities of the Medipix3 chips.

  3. Whip antenna design for portable rf systems

    NASA Astrophysics Data System (ADS)

    Ponnapalli, Saila; Canora, Frank J.

    1995-12-01

    Whip type antennas are probably the most commonly used antennas in portable rf systems, such as cordless and cellular phones, rf enabled laptop computers, personal digital assistants (PDAs), and handheld computers. Whip antennas are almost always mounted on the chassis which contains the radio and other electronics. The chassis is usually a molded plastic which is coated with a conducting paint for EMI purposes. The chassis which appears as a lossy conductor to the antenna, has several effects -- detuning, altering the gain of the antenna, and shadowing its radiation pattern. Extensive modeling and measurements must be performed in order to fully characterize the affects of the chassis on the whip antenna, and to optimize antenna type, orientation and position. In many instances, modeling plays a more important role in prediction of the performance of whip antennas, since measurements become difficult due to the presence of common mode current on feed cables. In this paper models and measurements are used to discuss the optimum choice of whip antennas and the impact of the chassis on radiation characteristics. A modeling tool which has been previously described and has been successfully used to predict radiated field patterns is used for simulations, and measured and modeled results are shown.

  4. Endosafe(R)-Portable Test System (PTS)

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Wainwright, Norm; Burbank, Dan

    2005-01-01

    The Portable Test System (PTS) is a hand-held device for monitoring the presence of potentially hazardous bacteria in the environment. It uses an immunological method derived from the horseshoe crab (Limulus polyphemus) to detect bacterial cell membranes and other molecular components of a cell. Further modifications of the PTS will allow detection of individual hazardous species of bacteria. This study was a follow-up of previous PTS and other immunological tests performed on the KC-135 during 2002-2003 (Maule et al., 2003, J. Gravit. Physiol.) and in the underwater habitat Aquarius during NEEMO 5 (Maule et al., 2005, Appl. Environ. Microbiol in prep.). The experiments described here were part of a final testing phase prior to use of the PTS on the International Space Station (ISS), scheduled for launch on 12A.1 on February 9th 2006. The specific aspects of PTS operation studied were those involving a fluid component: pumping, mixing, incubations and pipetting into the instrument. The PTS uses a stepper motor to move fluid along small channels, which may be affected by reduced gravity.

  5. A portable magnetic induction measurement system (PIMS).

    PubMed

    Cordes, Axel; Foussier, Jérôme; Pollig, Daniel; Leonhardt, Steffen

    2012-02-22

    For contactless monitoring of ventilation and heart activity, magnetic induction measurements are applicable. As the technique is harmless for the human body, it is well suited for long-term monitoring solutions, e.g., bedside monitoring, monitoring of home care patients, and the monitoring of persons in critical occupations. For such settings, a two-channel portable magnetic induction system has been developed, which is small and light enough to be fitted in a chair or bed. Because demodulation, control, and filtering are implemented on a front-end digital signal processor, a PC is not required (except for visualization/data storage during research and development). The system can be connected to a local area network (LAN) or wireless network (WiFi), allowing to connect several devices to a large monitoring system, e.g., for a residential home for the elderly or a hospital with low-risk patients not requiring standard ECG monitoring. To visualize data streams, a Qt-based (Qt-framework by Nokia, Espoo, Finland) monitoring application has been developed, which runs on Netbook computers, laptops, or standard PCs. To induce and measure the magnetic fields, external coils and amplifiers are required. This article describes the system and presents results for monitoring respiration and heart activity in a (divan) bed and for respiration monitoring in a chair. Planar configurations and orthogonal coil setups were examined during the measurement procedures. The measurement data were streamed over a LAN to a monitoring PC running Matlab (The MathWorks Inc, Natick, MA, USA).

  6. Advances in Materials and System Technology for Portable Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.

    2007-01-01

    This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.

  7. 76. DETAIL OF AIRCONDITIONING DUCT BETWEEN PORTABLE PAYLOAD AIRCONDITIONING SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. DETAIL OF AIR-CONDITIONING DUCT BETWEEN PORTABLE PAYLOAD AIR-CONDITIONING SYSTEM AND LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. NASA Now: Life Science: Portable Life Support System

    NASA Video Gallery

    Spacesuit engineer Antja Chambers discusses the Portable Life Support System, a backpack the astronauts wear during spacewalks. It provides oxygen for the astronauts, protects them from the harsh c...

  9. [Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].

    PubMed

    Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli

    2016-02-01

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.

  10. Measurement of MKID Performance with High-Speed and Wide-Band Readout System

    NASA Astrophysics Data System (ADS)

    Karatsu, Kenichi; Naruse, M.; Nitta, T.; Sekine, M.; Sekiguchi, S.; Sekimoto, Y.; Noguchi, T.; Uzawa, Y.; Matsuo, H.; Kiuchi, H.

    2014-08-01

    Microwave kinetic inductance detectors (MKIDs) are being developed at the National Astronomical Observatory of Japan to enable precise measurements of the cosmic microwave background. One of the features of MKIDs is scalability using a frequency-division multiplexing (FDMUX) readout scheme. A digital fast fourier transform spectrometer (FFTS) is a good way to read out a number of resonance frequencies simultaneously and fully utilize the advantage of FDMUX of MKIDs. We have developed FFTS readout electronics using an ADC/DAC with 1 Gsps (sample per second) sampling rate and 270 MHz bandwidth. We measured the noise characteristics of a single MKID in the frequency range of 60 Hz-30 kHz with this readout system, and found the noise was almost equivalent to the noise measured by ordinary analog IQ down-converter readout. This indicates our FFTS electronics do not add any additional noise to the MKID readout system over the frequency range.

  11. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  12. Toward a Reduced-Wire Readout System for Ultrasound Imaging

    PubMed Central

    Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam

    2015-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135

  13. Toward a reduced-wire readout system for ultrasound imaging.

    PubMed

    Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam

    2014-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.

  14. Portable wireless power transmission system for video capsule endoscopy.

    PubMed

    Zhiwei, Jia; Guozheng, Yan; Bingquan, Zhu

    2014-10-01

    Wireless power transmission is considered a practical way of overcoming the power shortage of wireless capsule endoscopy (VCE). However, most patients cannot tolerate the long hours of lying in a fixed transmitting coil during diagnosis. To develop a portable wireless power transmission system for VCE, a compact transmitting coil and a portable inverter circuit driven by rechargeable batteries are proposed. The couple coils, optimized considering the stability and safety conditions, are 28 turns of transmitting coil and six strands of receiving coil. The driven circuit is designed according to the portable principle. Experiments show that the integrated system could continuously supply power to a dual-head VCE for more than 8 h at a frame rate of 30 frames per second with resolution of 320 × 240. The portable VCE exhibits potential for clinical applications, but requires further improvement and tests.

  15. The USB-based portable data acquisition system for AR

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Yan, Dayuan; Dong, Taian; Zhang, Hao; Liu, Guangting; Zheng, Chunliang

    2011-11-01

    Rotary position sensors are widely used in many applications that require precise shaft unlimited rotation: including control systems, robotics and AR (Augmented Reality) systems. However, traditional data acquisition system is often a PC-based (Personal Computer-based) one with complex structures and complicated electrical connections, which means that the system has limited application for its size as well as its poor portability. That is a main drawback, especially for AR system in which the user is supposed to walk freely. In this paper, a novel portable data acquisition system (PDAS) based on USB interface technology with a succinct hardware structure is proposed. Implemented on an 8051-based microcontroller AT89C5131, the proposed system can receive signal from optical encoder, decode the signal and transfer the data to the computer through USB interface. The experimental results show that this system can provide the possibility to realize portable and improve performance of AR, which demonstrate the efficiency of the proposed system.

  16. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  17. Development of a Portable Muon Witness System

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with

  18. Enhanced data consistency of a portable gait measurement system

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-I.; Chiang, Y. P.

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  19. The PCIe-based readout system for the LHCb experiment

    NASA Astrophysics Data System (ADS)

    Cachemiche, J. P.; Duval, P. Y.; Hachon, F.; Le Gac, R.; Réthoré, F.

    2016-02-01

    The LHCb experiment is designed to study differences between particles and anti-particles as well as very rare decays in the beauty and charm sector at the LHC. The detector will be upgraded in 2019 in order to significantly increase its efficiency, by removing the first-level hardware trigger. The upgrade experiment will implement a trigger-less readout system in which all the data from every LHC bunch-crossing are transported to the computing farm over 12000 optical links without hardware filtering. The event building and event selection are carried out entirely in the farm. Another original feature of the system is that data transmitted through these fibres arrive directly to computers through a specially designed PCIe card called PCIe40. The same board handles the data acquisition flow and the distribution of fast and slow controls to the detector front-end electronics. It embeds one of the most powerful FPGAs currently available on the market with 1.2 million logic cells. The board has a bandwidth of 480 Gbits/s in both input and output over optical links and 100 Gbits/s over the PCI Express bus to the CPU. We will present how data circulate through the board and in the PC server for achieving the event building. We will focus on specific issues regarding the design of such a board with a very large FPGA, in particular in terms of power supply dimensioning and thermal simulations. The features of the board will be detailed and we will finally present the first performance measurements.

  20. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  1. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  2. A portable freshwater closed-system fish egg incubation system

    USGS Publications Warehouse

    Sutherland, Jenny L.; Manny, Bruce A.; Kennedy, Gregory W.; Roseman, Edward F.; Allen, Jeffrey D.; Black, M. Glen

    2014-01-01

    To identify fish eggs collected in the field to species, a portable closed-system fish egg incubation system was designed and used to incubate and hatch the eggs in the laboratory. The system is portable, small in scale (2.54 × 1.52 × 2.03 m), and affordable, with the approximate cost of the system being US$8,300 (2012). The main tank is 678 L and holds a battery of up to 21 (egg) incubation jars. The system includes three independent water pumping systems to (1) provide aerated water to hatching jars, (2) filter and sterilize incubation water, and (3) provide temperature-controlled water in the main tank bath and the incubation jars. The system was successfully used to incubate freshwater fish eggs to raise resulting larvae to the post-yolk-sac stage for three seasons (spring 2012, spring 2013, and fall 2013) over two consecutive years, at two different locations, enabling us to identify fish eggs to species by providing identifiable fish larvae from incubated fish eggs.

  3. Handheld and portable test systems for decentralized testing: from lab to marketplace

    NASA Astrophysics Data System (ADS)

    Faulstich, Konrad; Haberstroh, Klaus

    2009-05-01

    Emergency Diagnostics, Homeland Security, Epidemiological Preparedness and the high cost of the Health Care Systems have increased demand for affordable and mobile point of care (POC) devices with highest sensitivity, specificity and rapid time to result. We have developed pocket and brief case sized systems for point of care and field based tests based on fluorescence read-out. The core consists of battery operated, 90 gram electro-optical units with optional wireless data transfer, which have been optimized to achieve highest accuracy and sensitivity combined with simplicity of use. The robust systems have been applied to molecular diagnostics such as DNA based testing, immunodiagnostics as well as environmental monitoring and agricultural testing. Starting with the current bottlenecks of in-vitro diagnostics testing and a brief market overview, we will show commercially available portable test systems for molecular diagnostics and how we solve the current bottlenecks. We will further show battery operated handheld prototypes for DNA testing. ESE's handheld and portable testing platforms have been shown to provide sensitive, accurate, and specific results, as well as rapid turnaround. The stand-alone devices demonstrate operational and physical robustness, and they can be manufactured to be affordable.

  4. A portable wireless power transmission system for video capsule endoscopes.

    PubMed

    Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang

    2015-01-01

    Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.

  5. A portable life support system for use in mines

    NASA Technical Reports Server (NTRS)

    Zeller, S. S.

    1972-01-01

    The portable life support system described in this paper represents a potential increase in the probability of survival for miners who are trapped underground by a fire or explosion. The habitability and life support capability of the prototype shelter have proved excellent. Development of survival chamber life support systems for wide use in coal mines is definitely within the capabilities of current technology.

  6. A portable fNIRS system with eight channels

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhao, Ruirui; Zhang, Yujin; Zuo, Nianming; Zhang, Xin; Jiang, Tianzi

    2015-03-01

    Abundant study on the hemodynamic response of a brain have brought quite a few advances in technologies of measuring it. The most benefitted is the functional near infrared spectroscope (fNIRS). A variety of devices have been developed for different applications. Because portable fNIRS systems were more competent to measure responses either of special subjects or in natural environment, several kinds of portable fNIRS systems have been reported. However, they all required a computer for receiving data. The extra computer increases the cost of a fNIRS system. What's more noticeable is the space required to locate the computer even for a portable system. It will discount the portability of the fNIRS system. So we designed a self-contained eight channel fNIRS system, which does not demand a computer to receive data and display data in a monitor. Instead, the system is centered by an ARM core CPU, which takes charge in organizing data and saving data, and then displays data on a touch screen. The system has also been validated by experiments on phantoms and on subjects in tasks.

  7. Portable cost-effective EEG data acquisition system.

    PubMed

    Agarwal, N; Nagananda, M S; Rahman, S M K; Sengupta, A; Santhosh, J; Anand, S

    2011-01-01

    Neuro-cognitive dysfunctions are common clinical abnormalities found in society. They require objective analysis by various instruments; an important technique involves monitoring electroencephalogram (EEG) signals. To date, EEG machines have been robust, costly and require patients to come to a hospital for test. Therefore, we have constructed a simple, cheap and portable EEG instrument for wider patient use. It consists of two active digital EEG probes with two channels each, making it a four-channel portable acquisition system. It is further connected through a two-wire serial bus to the acquisition unit, which comprises an analogue to digital converter (ADC) and an ARM board processor with 2 GB memory and USB interface. The whole system is placed in a small box making it highly portable for wider use in clinical settings.

  8. Onsite Portable Alarm System - Its Merit and Application

    NASA Astrophysics Data System (ADS)

    Saita, J.; Sato, T.; Nakamura, Y.

    2007-12-01

    Recently an existence of the earthquake early warning system (EEWS) becomes popular. In general, the EEWS will be installed in a fixed observation site and it may consist of several separated components such as a sensing portion, A/D converter, an information processing potion and so on. The processed information for warning may be transmitted to network via fixed communication line, and therefore this kind of alarm system is called as Network Alarm System. On the other hand, after the severe earthquake damage, it is very important to save the disaster victims immediately. These rescue staffs are also under the risk of aftershocks and need a local alarm not depending on the network, so this kind of alarm can be called as Onsite Alarm. But the common early warning system is too complex to set onsite temporary, and even if possible to install, the alarm is too late to receive at the epicentral area. However, the new generation earthquake early warning system FREQL can issue the P wave alarm by minimum 0.2 seconds after P wave detection. And FREQL is characterized as the unique all-in-one seismometer with power unit. At the time of the 2004 Niigata-Ken-Chuetsu earthquake, a land slide attacked a car just passing. A hyper rescue team of Tokyo Fire Department pulled the survivor, one baby, from the land slide area. During their activity the rescue team was exposed to the risk of secondary hazards caused by the aftershocks. It was clear that it is necessary to use a portable warning system to issue the onsite P wave alarm. Because FREQL was originally developed as portable equipment, Tokyo Fire Department asked us to modify it to the portable equipment with the loud sound and the light signal. In this moment, this portable FREQL has equipped in nation wide. When the hyper rescue team of Tokyo Fire Department was sent to Pakistan as a task force for rescue work of the 2005 Pakistan earthquake, the portable FREQL was used as important onsite portable warning system and P

  9. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  10. Portable parallel portfolio optimization in the Aurora Financial Management System

    NASA Astrophysics Data System (ADS)

    Laure, Erwin; Moritsch, Hans

    2001-07-01

    Financial planning problems are formulated as large scale, stochastic, multiperiod, tree structured optimization problems. An efficient technique for solving this kind of problems is the nested Benders decomposition method. In this paper we present a parallel, portable, asynchronous implementation of this technique. To achieve our portability goals we elected the programming language Java for our implementation and used a high level Java based framework, called OpusJava, for expressing the parallelism potential as well as synchronization constraints. Our implementation is embedded within a modular decision support tool for portfolio and asset liability management, the Aurora Financial Management System.

  11. Development of a new readout system for the near-infrared detector of HONIR

    NASA Astrophysics Data System (ADS)

    Ui, Takahiro; Sako, Shigeyuki; Yamashita, Takuya; Akitaya, Hiroshi; Kawabata, Koji S.; Nakaya, Hidehiko; Moritani, Yuki; Itoh, Ryosuke; Takaki, Katsutoshi; Urano, Takeshi; Ueno, Issei; Ohsugi, Takashi; Yoshida, Michitoshi; Nakao, Hikaru; Hashiba, Yasuhito

    2014-08-01

    We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ˜ 37 μV rms.

  12. 75. GENERAL VIEW OF PORTABLE PAYLOAD AIRCONDITIONING SYSTEM LOCATED ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. GENERAL VIEW OF PORTABLE PAYLOAD AIR-CONDITIONING SYSTEM LOCATED ON NORTH SIDE OF SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Implementation of a Portable Personal EKG Signal Monitoring System

    NASA Astrophysics Data System (ADS)

    Tan, Tan-Hsu; Chang, Ching-Su; Chen, Yung-Fu; Lee, Cheng

    This research develops a portable personal EKG signal monitoring system to help patients monitor their EKG signals instantly to avoid the occurrence of tragedies. This system is built with two main units: signal pro-cessing unit and monitoring and evaluation unit. The first unit consists of EKG signal sensor, signal amplifier, digitalization circuit, and related control circuits. The second unit is a software tool developed on an embedded Linux platform (called CSA). Experimental result indicates that the proposed system has the practical potential for users in health monitoring. It is demonstrated to be more convenient and with greater portability than the conventional PC-based EKG signal monitoring systems. Furthermore, all the application units embedded in the system are built with open source codes, no licensed fee is required for operating systems and authorized applications. Thus, the building cost is much lower than the traditional systems.

  14. Drive system and readout characteristics of micro-reflector optical disc

    NASA Astrophysics Data System (ADS)

    Saito, Kimihiro; Horigome, Toshihiro; Miyamoto, Hirotaka; Yamatsu, Hisayuki; Tanabe, Norihiro; Hayashi, Kunihiko; Fujita, Goro; Kobayashi, Seiji; Kudo, Takao; Uchiyama, Hiroshi

    2007-06-01

    This paper reviews the analyses and the experimental results of Micro-reflector optical disc system. In Micro-reflector optical disc, data are recorded on multiple virtual planes in a monolithic holographic medium. We have demonstrated the possibility of huge capacity from our analyses of readout characteristics of the Micro-reflector. In addition, we have developed the five-axis servo control system in order to achieve precise control of two counter-propagating light spots in recording media. Using this system, we succeeded in four-layer recording/readout.

  15. A portable air jet actuator device for mechanical system identification

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  16. A portable air jet actuator device for mechanical system identification.

    PubMed

    Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  17. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  18. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    NASA Astrophysics Data System (ADS)

    Ramfos, Ioannis; Blionas, Spyridon; Birbas, Alexios

    2015-01-01

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges.

  19. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    NASA Technical Reports Server (NTRS)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  20. Development of a portable vital sensing system for home telemedicine.

    PubMed

    Ichihashi, F; Sankai, Y

    2007-01-01

    For safe and effective home medical care, a network system for observing one's vital signs noninvasively and evaluating one's health conditions is highly desirable. In this paper, we described a portable vital sensing system and a home medical server to establish a home telemedicine system. In order to develop a portable vital sensing system, physiological sensing circuit, digital signal processor and wireless communication device are integrated into a small electrical circuit, called "smart telecom unit" with a size of 25mm * 37mm. By using a smart telecom unit, noninvasive vital sensing units including blood pressure, electrocardiograph, pulse wave and body temperature were developed. These sensing units are able to communicate vital records to a home medical server, which consists of a small computer and virtual physiological model to estimate health conditions and can seamlessly connect to the Internet. The accuracy and stability were evaluated in the system performance test. As a result of a performance test of a portable vital sensing system, these vital data could be measured easily and noninvasively. In addition, vital sensing system is able to communicate vital records to home medical server. Hence, it could be confirmed that it was useful to analyze daily health condition in order to prevent a lifestyle disease like hypertension, hyperlipidemia and diabetes.

  1. A green-color portable waveguide eyewear display system

    NASA Astrophysics Data System (ADS)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  2. Fuel cell systems for personal and portable power applications

    SciTech Connect

    Fateen, S. A.

    2001-01-01

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  3. A new interpolation arithmetic based readout signals process method for infrared imaging system applications

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Yao, Suying; Zhao, Yiqiang

    2009-07-01

    A new readout signals process circuit for infrared focal plane array (IR FPA) applications is proposed. In the proposed structure the continuous-time current signals from the detector array are mirrored, amplified, integrated on the integration capacitors and changed to discrete analog voltage signals. Next, these voltage signals are amplified and modulated by a group of encoded signals from the column buses, then fed to a multiple-input analog adder to generate a single serial output data stream. The generated single serial data stream is transferred to the mitigate noise circuit and is converted to digital signals by the A/D converter. For very large format detector arrays applications the speed restriction of the time-multiplexing circuitry and the A/D converter will be released. Since no scan technique has been used, all the output signals from an entire row in the detector array have been readout simultaneously without loss of optical power, the scalability of the photon-signals, the readout efficiency and the accuracy of the imaging system will be improved. Theory analysis and experimental results show that the proposed idea is reasonable and efficient. The proposed readout method is a solid option for large format infrared detector arrays and highly integrated infrared imaging system applications. In addition, the proposed idea also can be used for other active and passive imaging readout integrated circuits.

  4. Detector apparatus having a hybrid pixel-waveform readout system

    DOEpatents

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  5. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps or outboard motor installations. (b) The design, construction and stowage of portable tanks...

  6. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps or outboard motor installations. (b) The design, construction and stowage of portable tanks...

  7. 46 CFR 119.458 - Portable fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and related fuel lines and accessories, are prohibited except where used for portable dewatering pumps or outboard motor installations. (b) The design, construction and stowage of portable tanks...

  8. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-01

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  9. Conversion factors between human and automatic readouts of CDMAM phantom images of CR mammography systems.

    PubMed

    Figl, Michael; Homolka, Peter; Osanna-Elliott, Angelika; Semturs, Friedrich; Kaar, Marcus; Hummel, Johann

    2016-09-21

    In mammography screening, profound assessment of technical image quality is imperative. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests using an alternate fixed choice contrast-detail phantom-like CDMAM. For the evaluation of technical image quality, human or automated readouts can be used. For automatic evaluation, a software (cdcom) is provided by EUREF. If the automated readout indicates unacceptable image quality, additional human readout may be performed overriding the automated readout. As the latter systematically results in higher image quality ratings, conversion factors between both methods are regularly applied. Since most image quality issues with mammography systems arise within CR systems, an assessment restricted to CR systems with data from the Austrian Reference Center in the mammography screening program has been conducted. Forty-five CR systems were evaluated. Human readouts were performed with a randomisation software to avoid bias due to learning effects. Additional automatic evaluation allowed for the computation of conversion factors between human and automatic readouts. These factors were substantially lower compared to those suggested by EUREF, namely 1.21 compared to 1.62 (EUREF UK method) and 1.42 (EUREF EU method) for 0.1 mm, and 1.40 compared to 1.83 (EUREF UK) and 1.73 (EUREF EU) for 0.25 mm structure size, respectively. Using either of these factors to adjust patient dose in order to comply with image quality requirements results in differences in the dose increase of up to 90%. This necessitates a consensus on their proper application and limits the validity of the assessment methods. Clear criteria for CR systems based on appropriate studies should be promoted.

  10. Portable weighing system with alignment features

    DOEpatents

    Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh; Sheldon, Frederick T.

    2012-11-06

    A system for weighing a load is disclosed. The weighing system includes a pad having at least one transducer for weighing a load disposed on the pad. In some embodiments the pad has a plurality of foot members and the weighing system may include a plate that disposed underneath the pad for receiving the plurality of foot member and for aligning the foot members when the weighing system is installed. The weighing system may include a spacer disposed adjacent the pad and in some embodiments, a spacer anchor operatively secures the spacer to a support surface, such as a plate, a railway bed, or a roadway. In some embodiments the spacer anchor operatively secures both the spacer and the pad to a roadway.

  11. A Portable Farmland Information Collection System with Multiple Sensors

    PubMed Central

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-01-01

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture—efficient use of agricultural resources, and improving the crop yields and quality—some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops. PMID:27782076

  12. A Portable Farmland Information Collection System with Multiple Sensors.

    PubMed

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-10-22

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture-efficient use of agricultural resources, and improving the crop yields and quality-some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops.

  13. Characteristics of a large system of pad readout wire proportional chambers for the HPC calorimeter

    SciTech Connect

    Camporesi, T.; Cavallo, F.R.; Giordano, V.; Laurenti, G.; Molinari, G.; Navarria, F.L.; Privitera, P.; Rovelli, T.; Valenti, G.; Zucchini, A.

    1989-02-01

    A large system of wire proportional chambers is being constructed for the readout of the High-Density Projection Chamber (HPC) of the DELPHI experiment at the Large Electron-Positron storage ring. The system consists of 144 chambers, each 0.3 m/sup 2/ wide and read out via cathode pads, located at the end of the HPC drift volume.

  14. Portable Runway Intersection Display and Monitoring System

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W. (Inventor); Elrod, Susan Vinz (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which an apparatus located on an airfield provides information to pilots in aircraft on the ground and simultaneously gathers information on the motion and position of the aircraft for controllers.

  15. Portable-Beacon Landing System for Helicopters

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Clary, George R.; Chisholm, John P.; Macdonald, Stanley L.

    1987-01-01

    Prototype beacon landing system (BLS) allows helicopters to make precise landings in all weather. BLS easily added to existing helicopter avionic equipment and readily deployed at remote sites. Small and light, system employs X-band radar and digital processing. Variety of beams pulsed sequentially by ground station after initial interrogation by weather radar of approaching helicopter. Airborne microprocessor processes pulses to determine glide slope, course deviation, and range.

  16. Portable EGG recording system based on a digital voice recorder.

    PubMed

    Jang, J-K; Shieh, M-J; Kuo, T-S; Jaw, F-S

    2009-01-01

    Cutaneous electrogastrogram (EGG) recording offers the benefit of non-invasive gastrointestinal diagnosis. With long-term ambulatory recording of signals, researchers and clinicians could have more opportunities to investigate and analyse paroxysmal or acute symptoms. A portable EGG system based on a digital voice recorder (DVR) is designed for long-term recording of cutaneous EGG signals. The system consists of electrodes, an EGG amplifier, a modulator, and a DVR. Online monitoring and off-line acquisition of EGG are handled by software. A special design employing an integrated timer circuit is used to modulate the EGG frequency to meet the input requirements of the DVR. This approach involves low supply voltage and low power consumption. Software demodulation is used to simplify the complexity of the system, and is helpful in reducing the size of the portable device. By using surface-mount devices (SMD) and a low-power design, the system is robust, compact, and suitable for long-term portable recording. As a result, researchers can record an ambulatory EGG signal by means of the proposed circuits in conjunction with an up-to-date voice-recording device.

  17. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    SciTech Connect

    Chris A. Hodge

    2007-07-12

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  18. 46 CFR 95.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 95.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  19. 46 CFR 193.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 193.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  20. 46 CFR 76.05-25 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Hand portable fire extinguishers and semiportable fire... Required § 76.05-25 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed...

  1. 46 CFR 193.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 193.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  2. 46 CFR 193.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 193.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  3. 46 CFR 193.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 193.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  4. 46 CFR 193.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 193.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  5. 46 CFR 95.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 95.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  6. 46 CFR 95.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 95.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  7. 46 CFR 76.05-25 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Hand portable fire extinguishers and semiportable fire... Required § 76.05-25 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed...

  8. 46 CFR 76.05-25 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Hand portable fire extinguishers and semiportable fire... Required § 76.05-25 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed...

  9. 46 CFR 76.05-25 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Hand portable fire extinguishers and semiportable fire... Required § 76.05-25 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed...

  10. 46 CFR 76.05-25 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Hand portable fire extinguishers and semiportable fire... Required § 76.05-25 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems shall be installed...

  11. 46 CFR 95.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 95.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  12. 46 CFR 95.05-15 - Hand portable fire extinguishers and semiportable fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hand portable fire extinguishers and semiportable fire... Equipment, Where Required § 95.05-15 Hand portable fire extinguishers and semiportable fire extinguishing systems. (a) Approved hand portable fire extinguishers and semiportable fire extinguishing systems...

  13. Portable database driven control system for SPEAR

    SciTech Connect

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig.

  14. Portable light detection system for the blind

    NASA Technical Reports Server (NTRS)

    Wilber, R. L.; Carpenter, B. L.

    1973-01-01

    System can be used to detect "ready" light on automatic cooking device, to tell if lights are on for visitors, or to tell whether it is daylight or dark outside. Device is actuated like flashlight. Light impinging on photo cell activates transistor which energizes buzzer to indicate presence of light.

  15. Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Di Fiore, Luciano; Garufi, Fabio; La Rana, Adele; Milano, Leopoldo

    2006-11-01

    In this paper, we report on the progress in the development of an optical read-out (ORO) system for the inertial sensor of the LISA gravitational wave antenna. The device is based on optical levers and position sensors and is intended to be integrated in the present baseline design for the LISA inertial sensor, which is based on capacitive readout of the test mass position. In particular, we report some improved measurement of the sensitivity of this device, performed with a bench-top rigid set-up and tests on a real scale prototype.

  16. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  17. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  18. Portable high precision pressure transducer system

    NASA Astrophysics Data System (ADS)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  19. Readout Circuit System for In2O3/RGO Nanocomposite Gas Sensors

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Yi

    A readout circuit system for In2O3/RGO nanocomposite gas sensors using open-source software has been developed for the first time. The readout system adopts a Raspberry Pi as an electronic control unit and incorporates different electronics components to realize the function of a source measure unit (SMU). During the operation, real-time results of measured gas concentrations can be accessed through the Internet and alarm functions are also included. All control programs were written in Python language. Using this readout system, current response of gas sensors toward oxygen concentrations (2,000---32,000 ppm) in argon environment at 140 °C are in a good agreement with the data measured by Agilent SMU (B2902A). Furthermore, temperature effects and transient response of the proposed system are investigated. The success of this readout system demonstrates the potential use of open-source hardware to construct scientific instruments with the advantages of miniaturization, low cost, flexible design, and Internet access.

  20. Portable wireless ultrasonic systems for remote inspection

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2015-03-01

    The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.

  1. Automated Portable Test (APT) System: overview and prospects

    NASA Technical Reports Server (NTRS)

    Bittner, A. C.; Smith, M. G.; Kennedy, R. S.; Staley, C. F.; Harbeson, M. M.

    1985-01-01

    The Automated Portable Test (APT) System is a notebook-sized, computer-based, human-performance and subjective-status assessment system. It is now being used in a wide range of environmental studies (e.g., simulator aftereffects, flight tests, drug effects, and hypoxia). Three questionnaires and 15 performance tests have been implemented, and the adaptation of 30 more tests is underway or is planned. The APT System is easily transportable, is inexpensive, and has the breadth of expansion options required for field and laboratory applications. The APT System is a powerful and expandable tool for human assessment in remote and unusual environments.

  2. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  3. A wire spark chamber capacitive readout system with low leakage current and small systematic error

    NASA Astrophysics Data System (ADS)

    Anderhub, H. B.; Boecklin, J.; von Gunten, H. P.; Koenig, H.; Le Coultre, P.; Makowiecki, D.; Seiler, P. G.

    1983-02-01

    A wire spark chamber capacitive readout system with analog FET switch multiplexing and CAMAC interface is described. Two wire planes per chamber are read out. The information of each plane is sequentially digitized in one ADC. This and the low leakage current of the FET switches guarantee a small systematic error of the measurement of the spark position.

  4. Choosing the number of readout systems of a photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Latyev, S. M.; Mitrofanov, S. S.

    1994-09-01

    This paper discusses certain errors of photoelectric angle converters whose effect can be lessened by making the best choice of the number of readout systems and of their definite mutual placement. Recommendations are given for compensating the systematic and random errors of a converter.

  5. Readout system of multi-level run-length-limited read-only disc

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Xu, Haizheng; Pan, Longfa; Yan, Mingming

    2008-12-01

    The Radio Frequency (RF) signal of the Multi-Level Run-Length-Limited (ML-RLL) read-only disc is different from that of DVD, so the readout system of the ML-RLL read-only disc is built specially. The readout system of the ML-RLL read-only disc can realize servo control, RF signal readout and so on. The readout system consists of Digital Versatile Disc (DVD) traverse, analog front-end and digital processing part. Analog front-end can realize front-end amplification of the output signal of the optical pick-up and power drive of mechanism. Digital processing part mainly consists of digital circuits, which functions are the servo controlling, demodulation and decoding of RF signal, general control and so on. The whole system is implemented on two Field Programmable Gate Array (FPGA) chips and the experimental results show a good performance. We tested the important signals, and experimental results are also given to verify the performance of this development platform, which meets the controlling and detecting requirements to multi-level read-only disc completely. The Bit Error Rate (SER) can achieve below 10-4.

  6. Development of microwave kinetic inductance detectors and their readout system for LiteBIRD

    NASA Astrophysics Data System (ADS)

    Hattori, K.; Hazumi, M.; Ishino, H.; Kibayashi, A.; Kibe, Y.; Mima, S.; Okamura, T.; Sato, N.; Tomaru, T.; Yamada, Y.; Yoshida, M.; Yuasa, T.; Watanabe, H.

    2013-12-01

    Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R&D status of the developing MKIDs and on the read-out system for LiteBIRD.

  7. Development of readout system for FE-I4 pixel module using SiTCP

    NASA Astrophysics Data System (ADS)

    Teoh, J. J.; Hanagaki, K.; Ikegami, Y.; Takubo, Y.; Terada, S.; Unno, Y.

    2013-12-01

    The ATLAS pixel detector will be replaced in the future High Luminosity-Large Hadron Collider (HL-LHC) upgrade to preserve or improve the detector performance at high luminosity environment. To meet the tight requirements of the upgrade, a new pixel Front-End (FE) Integrated Circuit (IC) called FE-I4 has been developed. We have then devised a readout system for the new FE IC. Our system incorporates Silicon Transmission Control Protocol (SiTCP) technology (Uchida, 2008 [1]) which utilizes the standard TCP/IP and UDP communication protocols. This technology allows direct data access and transfer between a readout hardware chain and PC via a high speed Ethernet. In addition, the communication protocols are small enough to be implemented in a single Field-Programable Gate Array (FPGA). Relying on this technology, we have been able to construct a very compact, versatile and fast readout system. We have developed a firmware and software together with the readout hardware chain. We also have established basic functionalities for reading out FE-I4.

  8. A fast embedded readout system for large-area Medipix and Timepix systems

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Balzer, M.; Smale, S.; Hartmann, J.; Bormann, D.; Hamann, E.; Cecilia, A.; Zuber, M.; Koenig, T.; Zwerger, A.; Weber, M.; Fiederle, M.; Baumbach, T.

    2014-05-01

    In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ~ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s.

  9. A portable fluorescence microscopic imaging system for cholecystectomy

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  10. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  11. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    SciTech Connect

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  12. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    SciTech Connect

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all of these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  13. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Bartoldus, R.; Claus, R.; Garelli, N.; ...

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  14. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  15. A Portable Computer System for Auditing Quality of Ambulatory Care

    PubMed Central

    McCoy, J. Michael; Dunn, Earl V.; Borgiel, Alexander E.

    1987-01-01

    Prior efforts to effectively and efficiently audit quality of ambulatory care based on comprehensive process criteria have been limited largely by the complexity and cost of data abstraction and management. Over the years, several demonstration projects have generated large sets of process criteria and mapping systems for evaluating quality of care, but these paper-based approaches have been impractical to implement on a routine basis. Recognizing that portable microcomputers could solve many of the technical problems in abstracting data from medical records, we built upon previously described criteria and developed a microcomputer-based abstracting system that facilitates reliable and cost-effective data abstraction.

  16. Automated Portable Test System (APTS) - A performance envelope assessment tool

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.; Dunlap, W. P.; Jones, M. B.; Wilkes, R. L.; Bittner, A. C., Jr.

    1985-01-01

    The reliability and stability of microcomputer-based psychological tests are evaluated. The hardware, test programs, and system control of the Automated Portable Test System, which assesses human performance and subjective status, are described. Subjects were administered 11 pen-and-pencil and microcomputer-based tests for 10 sessions. The data reveal that nine of the 10 tests stabilized by the third administration; inertial correlations were high and consistent. It is noted that the microcomputer-based tests display good psychometric properties in terms of differential stability and reliability.

  17. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  18. A new analogue sampling readout system for the COMPASS RICH-1 detector

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Dafni, T.; Delagnes, E.; Deschamps, H.; Gerassimov, S.; Ketzer, B.; Kolosov, V.; Konorov, I.; Kravtchuk, N.; Kunne, F.; Magnon, A.; Neyret, D.; Panebianco, S.; Paul, S.; Rebourgeard, P.

    2008-05-01

    A new electronic readout for CsI-coated multiwire proportional chambers (MWPC), used as photon detectors in the COMPASS ring imaging Cherenkov (RICH) detector, is described. A prototype system comprising more than 5000 channels has been built and tested in high-intensity beam conditions. It is based on the APV25-S1 analogue sampling chip, and replaces the GASSIPLEX chip readout used previously. The APV25 chip, although originally designed for Silicon microstrip detectors, is shown to perform well even with "slow" signals from an MWPC, maintaining a signal-to-noise ratio (SNR) of 9. For every trigger the system reads out three consecutive amplitudes in time, thus allowing to extract information on both the signal amplitude and its timing. This information is used to reduce pile-up events in a high-rate environment. Prototype tests of the new readout electronics on a central RICH photocathode in nominal COMPASS beam conditions showed that the effective time window is reduced from more than 3 μs for the GASSIPLEX to less than 400 ns for the APV25 chip. This leads to a significant improvement of the signal-to-background ratio (SBR) with respect to the original readout. A gain by a factor of 5-6 was experimentally verified in the very forward region of phase space, where pile-up due to the muon beam halo is most significant. Owing to its pipelined architecture, the new readout system also considerably reduces the dead time per event, thus allowing to make use of trigger rates exceeding 50 kHz.

  19. A portable power system using PEM fuel cells

    SciTech Connect

    Long, E.

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  20. Wave-front coded optical readout for the MEMS-based uncooled infrared imaging system

    NASA Astrophysics Data System (ADS)

    Li, Tian; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Jia, Wei; Hui, Mei; Yu, Xiaomei; Gong, Cheng; Liu, Weiyu

    2012-11-01

    In the space limited infrared imaging system based MEMS, the adjustment of optical readout part is inconvenient. This paper proposed a method of wave-front coding to extend the depth of focus/field of the optical readout system, to solve the problem above, and to reduce the demanding for precision in processing and assemblage of the optical readout system itself as well. The wave-front coded imaging system consists of optical coding and digital decoding. By adding a CPM (Cubic Phase Mask) on the pupil plane, it becomes non-sensitive to defocussing within an extended range. The system has similar PSFs and almost equally blurred intermediate images can be obtained. Sharp images are supposed to be acquired based on image restoration algorithms, with the same PSF as a decoding core. We studied the conventional optical imaging system, which had the same optical performance with the wave-front coding one for comparing. Analogue imaging experiments were carried out. And one PSF was used as a simple direct inverse filter, for imaging restoration. Relatively sharp restored images were obtained. Comparatively, the analogue defocussing images of the conventional system were badly destroyed. Using the decrease of the MTF as a standard, we found the depth of focus/field of the wave-front coding system had been extended significantly.

  1. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  2. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    SciTech Connect

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-09-29

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium {gamma}-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material.

  3. Trace detection of analytes using portable raman systems

    DOEpatents

    Alam, M. Kathleen; Hotchkiss, Peter J.; Martin, Laura E.; Jones, David Alexander

    2015-11-24

    Apparatuses and methods for in situ detection of a trace amount of an analyte are disclosed herein. In a general embodiment, the present disclosure provides a surface-enhanced Raman spectroscopy (SERS) insert including a passageway therethrough, where the passageway has a SERS surface positioned therein. The SERS surface is configured to adsorb molecules of an analyte of interest. A concentrated sample is caused to flow over the SERS surface. The SERS insert is then provided to a portable Raman spectroscopy system, where it is analyzed for the analyte of interest.

  4. Portable High-Frequency Data-Acquisition System

    NASA Technical Reports Server (NTRS)

    Mustain, Roy W.

    1990-01-01

    Compact unit made of readily available solid-state components. Proposed system for acquisition of rapidly changing data self-contained and portable. Conceived for monitoring such aerodynamic effects as flutter, vibration, shock, sound, and pressure. Offers precise and fast acquisition of data and large data-storage capacity: has maximum sampling rate of 125 kHz, access time of 15 ns, and 1-million-bit memory. Measures time with "smart" (microprocessor-controlled) watch that maintains calendar time for more than 10 years without external power. Provides standby power from "smart" battery furnishing up to 1 ampere-hour of charge if power from main batteries lost.

  5. The read-out and control system For the ATLAS SemiConductor Tracker

    NASA Astrophysics Data System (ADS)

    Sandaker, H.

    2005-04-01

    The SemiConductor Tracker (SCT) in the ATLAS experiment has entered the stage of system assembly. Around 35% of the 4088 silicon modules are already produced, tested and will soon be mounted on the four barrel cylinders and 18 end-cap disks which make up the SCT. A new Data Acquisition System (DAQ) will provide binary readout, via front-end ASICs, of 16,000 silicon wafers and 6.3 million read-out channels using optical links. A new Detector Control System (DCS) will control up to 500 V bias voltage and the 30 kW low voltage power to the modules, as well as monitor the C3F8 evaporative cooling system, humidity and temperatures. Recently, several macro-assembly sites have mounted modules on both end-cap and barrel prototype structures and gained first experience with system-operation of the SCT. This presentation will give an overview of the full system required to operate and read-out a large-scale silicon detector. A description of both off-detector systems, DAQ and DCS, and their interactions will be presented, as well as the macro-assembly status.

  6. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  7. Design of versatile ASIC and protocol tester for CBM readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, W. M.; Byszuk, A. P.; Emschermann, D.; Gumiński, M.; Juszczyk, B.; Kasiński, K.; Kasprowicz, G.; Lehnert, J.; Müller, W. F. J.; Poźniak, K.; Romaniuk, R.; Szczygieł, R.

    2017-02-01

    Silicon Tracking System (STS), Muon Chamber (MUCH) and Transition Radiation Detector (TRD) subdetectors in the Compressed Baryonic Matter (CBM) detector system at Facility for Antiproton and Ion Research (FAIR) use the same innovative protocol ensuring reliable synchronization of the communication link between the controller and the front-end ASIC, transmission of time-deterministic commands to the ASIC and efficient readout of data. The paper describes the FPGA-based tester platform which can be used both for the verification of the protocol implementation in a front-end ASIC at the design stage, and for testing of the produced ASICs. Due to its modularity, the platform can be easily adapted for different integrated circuits and readout systems.

  8. A Portable Sensing System for Electronic Tongue Operations

    PubMed Central

    Twomey, Karen; Truemper, Andreas; Murphy, Kilian

    2006-01-01

    A portable, low cost sensing system is described which interfaces to an electronic tongue sensor. The sensor used is a voltammetric sensor which monitors electrochemical reactions that occur in solutions. The sensor is able to test a range of liquids with different electrochemical properties without any hardware adjustments to the system. The system can automatically adjust for the change in solution properties by performing a routine which uses an auto-ranging feature to determine a current-to-voltage conversion of the sensor data by using a binary search strategy. This eliminates the intervention of the user to modify the system each time a new solution is tested. The effectiveness of the calibration routine was tested by carrying out cyclic voltammetry in two different solutions, 0.1M sulfuric acid solution and the phosphate buffered solution of pH3. The sensor system was able to accurately acquire the sensor data for each solution.

  9. Portable system for microbial sample preparation and oligonucleotide microarray analysis.

    SciTech Connect

    Bavykin, S. G.; Akowski, J. P.; Zakhariev, V. M.; Barsky, V. E.; Mirzabekov, A. D.; Perov, A. N.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology

    2001-02-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.

  10. Development of a portable low-cost LIBS system

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Urquidi, O.; Casazola, D.

    2013-11-01

    This article reports the construction of a portable, low-cost LIBS (Light Induced Breakdown Spectroscopy) system for use in the Bolivian mining industry for the qualitative and quantitative analysis of the composition of mineral samples. The device consists of a portable laser, a medium-resolution spectrometer and an optomechanical light collection system. The laser developed for the device is a YAG:Nd+++ with an estimated power output of 10 MW/cm2. Weighing approximately 3 kg and powered by lithium ion batteries, it is easily carried and can be used in remote locations. The spectrometer has a resolution of 0.3 nm allowing the detection fine spectral features, while its range of 80 nm is broad enough to simultaneously show many of the principal spectral lines of the element of interest. A monochromatic CCD camera was used as the detector of the spectrometer and was fitted with an external trigger to coordinate the camera frames with the firing of the laser. The light emitted by the plasma is collected with a photographic objective and is transmitted to the spectrometer via a fiber optics cable. A mechanical system was incorporated to make, both the laser beam and the receptor positionable. In the preliminary tests of the prototype, a LIBS spectrum of a Bolivian copper coin was obtained. Analysis showed that the spectral lines obtained coincide with those of a copper reference spectrum and demonstrate the capacity of the device to perform qualitative analysis of materials.

  11. Portable Electron-Beam Free-Form Fabrication System

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Petersen, Daniel D.; Taminger, Karen M.; Hafley, Robert A.

    2005-01-01

    A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber

  12. A portable personal cooling system for mine rescue operations

    NASA Technical Reports Server (NTRS)

    Webbon, B.; Williams, B.; Kirk, P.; Elkins, W.; Stein, R.

    1977-01-01

    Design of a portable personal cooling system to reduce physiological stress in high-temperature, high-humidity conditions is discussed. The system, based on technology used in the thermal controls of space suits, employs a combination of head and thoracic insulation and cooling through a heat sink unit. Average metabolic rates, heart rates, rectal temperature increase and sweat loss were monitored for test subjects wearing various configurations of the cooling system, as well as for a control group. The various arrangements of the cooling garment were found to provide significant physiological benefits; however, increases in heat transfer rate of the cooling unit and more effective insulation are suggested to improve the system's function.

  13. Portable fluorescence microendoscope system for smartphones and its applications

    NASA Astrophysics Data System (ADS)

    Gómez García, Pablo Aurelio; Teixeira Rosa, Ramon Gabriel; Pratavieira, Sebastião.; Kurachi, Cristina

    2015-06-01

    A portable microscope/microendoscope will be presented in this article. The system was specially designed for Smartphones and taking into account its simplicity, will be able to bring this technology to almost every doctor's office. It is worth mentioning its flexibility of use, that allows several modes since all the components are interchangeable (the illumination LED, the lens, the optic filters, etc) resulting in different applications, from medical applications until other areas (for example, the inspection of non-accessible pieces of plane engines). In addition, the system has a double platform, working as a conventional microscope or as a fiberoptic microendoscope. In situ and cell smear interrogation of oral mucosa, using a proflavine as dye will be presented. The price of the system does not exceed US 350, plus the price of the fiber bundle (around US 500) turning it onto a high resolution affordable system.

  14. An effervescent reaction micropump for portable microfluidic systems.

    PubMed

    Good, Brian T; Bowman, Christopher N; Davis, Robert H

    2006-05-01

    A water-activated, effervescent reaction was used to transport fluid in a controllable manner on a portable microfluidic device. The reaction between sodium bicarbonate and an organic acid, tartaric acid and/or benzoic acid, was modeled to analyze methods of controlling the generation of carbon-dioxide gas for the purposes of pumping fluids. Integration and testing of the effervescent reaction pump in a microfluidic device was made possible by using elastomeric polymers as both photopolymerizable septa and removable lids. These materials combined to enable facile access to otherwise gas-tight devices. Based on theoretical predictions for 0.33 mg of sodium bicarbonate and a stoichiometric amount of organic acid, the pumping flow rate could be varied from 0.01 microL s(-1) to 70 microL s(-1). The flow rate is controlled by adjusting any or all of the particle size of the least soluble reactant, the amount of reactants used, and the type of organic acid selected. The tartaric acid systems rapidly produce carbon dioxide; however, the gas generation rates dramatically decrease over the course of the reaction. In contrast, carbon dioxide production rate in the benzoic acid systems is lower and nearly constant for several minutes. Water activation and direct placement on a microfluidic device are key features of this micropump, which is therefore useful for portable microfluidic applications.

  15. A next generation field-portable goniometer system

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  16. A read-out system for the Medipix2 chip capable of 500 frames per second

    NASA Astrophysics Data System (ADS)

    Maiorino, M.; Martinez, R.; Pellegrini, G.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Puigdengoles, C.; Ullan, M.

    2006-07-01

    High-speed X-ray-imaging acquisition technique is a growing field that can be used to understand microscopic mechanism of different phenomena in biology and material science. IFAE and CNM developed a very high-speed readout system, named DEMAS, for the Medipix2. The system is able to read a single Medipix2 chip through the parallel bus at a rate of 1 kHz.With a duty cycle of 50%, the real sampling speed is 500 frames per second (fps). This implies that 1 ms is allocated to the exposure time and another millisecond is devoted to the read-out of the chip. In such configuration, the raw data throughput is about 500 Mbit/s. For the first time we present examples of acquisition at 500 fps of moving samples with X-rays working in direct capture and photon counting mode.

  17. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    NASA Astrophysics Data System (ADS)

    Gaisbauer, D.; Konorov, I.; Steffen, D.; Paul, S.

    2016-07-01

    The aim of PENeLOPE (Precision Experiment on Neutron Lifetime Operating with Proton Extraction) at the Forschungsreaktor München II is a high-precision measurement of the neutron lifetime and thereby an improvement of the parameter's precision by one order of magnitude. In order to achieve a higher accuracy, modern experiments naturally require state-of-the-art readout electronics, as well as high-performance data acquisition systems. This paper presents the self-triggering readout system designed for PENeLOPE which features a continuous pedestal tracking, configurable signal detection logic, floating ground up to 30 kV, cryogenic environment and the novel Switched Enabling Protocol (SEP). The SEP is a time-division multiplexing transport level protocol developed for a star network topology.

  18. A prototype scalable readout system for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Zheng, Qi-Bin; Liu, Shu-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-08-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors in various applications. The system mainly consists of three kinds of modules: the ASIC card, the adapter card and the front-end card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the adapter, has field-programmable gate array (FPGA)-based reconfigurable logic and I/O interfaces, allowing users to choose different ASIC cards and adapters for different experiments, which expands the system to various applications. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in FPGA. By assembling a flexible number of FECs in parallel through Gigabit Ethernet, the readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chip, VA140 and AGET, are applied to verify the scalability of this SRS architecture. Based on this VA140 or AGET SRS, one FEC covers 8 ASIC (VA140) cards handling 512 detector channels, or 4 ASIC (AGET) cards handling 256 detector channels, respectively. More FECs can be assembled in crates to handle thousands of detector channels. Supported by National Natural Science Foundation of China (11222552)

  19. Systematic Comparison of the MINOS Near and Far Detector Readout Systems

    SciTech Connect

    Cabrera, Anatael

    2005-06-22

    The MINOS experiment is a neutrino oscillation baseline experiment intending to use high resolution L/E neutrinos to measure the atmospheric neutrino oscillations parameters to unprecedented precision. Two detectors have been built to realize the measurements, a Near detector, located about 1km downstream from the beam target at the Fermi Laboratory, and a Far detector, located at 736km, at the Soudan Laboratory. The technique relies on the Near detector to measure the un-oscillated neutrino spectrum, while the Far detector measures the neutrino spectrum once oscillated. The comparison between the two measurements is expected to allow MINOS to measure Δm2 beyond 10% precision level. The Near and Far detectors have been built similarly to minimize possible systematic effects. Both detectors have been endowed with different readout systems, as the beam event rates are very different. The MINOS calibration detector (CalDet), installed at CERN, was instrumented with both readout systems such that they can simultaneously measure and characterize the energy deposition (response and event topology) of incident known particle from test-beams. This thesis presents the investigations to quantify the impact of the performance of both readout systems on the MINOS results using the measurements obtained with CalDet. The relative comparison of the responses of both readout systems have been measured to be consistent with being identical within a systematic uncertainty of 0.6%. The event topologies have been found to be negligibly affected. In addition, the performance of the detector simulations have been thoroughly investigated and validated to be in agreement with data within similar level of uncertainties.

  20. Portable blood extraction device integrated with biomedical monitoring system

    NASA Astrophysics Data System (ADS)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  1. A Novel Portable Multi-Wavelength Laser System

    NASA Astrophysics Data System (ADS)

    Charlton, Andy; Dickinson, B.

    There is an established need for a portable and affordable Q-switched laser system for use in studio conservation and small scale field use. The ideal system would be capable of producing a variety of wavelengths ranging from the ultraviolet to the infrared with sufficient energy per pulse to treat a wide range of materials including stone, marble, terracotta, wood, organic materials, bone, parchment, textiles, and metals. In this paper we report on such a system which is capable of delivering Q-switched output at 1,064nm in excess of 300mJ per pulse and at repetition rates of up to 25 Hz. Additional outputs are also reported at 266 nm, 355 nm, 532 nm, and 2.94 μm. Preliminary cleaning results on a small range of objects using the Q-switched 1,064nm output are presented.

  2. [Portable lung function parameters testing system based on DSP].

    PubMed

    Guo, Zhanshe; Yuan, Minzhong; Zhou, Hui

    2012-11-01

    Lung function monitoring is a critical technique for clinical medicine. Currently, the lung function testing devices used in our domestic hospitals are both expensive and bulky. A portable and accurate lung function parameters testing system is highly desired and is proposed in this paper. The hardware of the system is based on DSP technology. The breathing passage is designed with an aim suitable for the breathe and signal detection. We use the direct detection method to detect the gas flow, the breathing passage pressure and the breathing time. Thanks to the powerful data processing ability and the high operation speed of the DSP, breathing signals can be easily analyzed. Thus, several lung function parameters of clinical significance can be obtained. Experiments show that the accuracy of the system is better than 3%, and could meet the demand of the lung function testing.

  3. The readout and control system of the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Honscheid, Klaus; Elliott, Ann; Annis, James; Bonati, Marco; Buckley-Geer, Elizabeth; Castander, Francisco; daCosta, Luiz; Fausti, Angelo; Karliner, Inga; Kuhlmann, Steve; Neilsen, Eric; Patton, Kenneth; Reil, Kevin; Roodman, Aaron; Thaler, Jon; Serrano, Santiago; Soares Santos, Marcelle; Suchyta, Eric

    2012-09-01

    The Dark Energy Camera (DECam) is a new 520 Mega Pixel CCD camera with a 3 square degree field of view designed for the Dark Energy Survey (DES). DES is a high precision, multi-bandpass, photometric survey of 5000 square degrees of the southern sky. DECam is currently being installed at the prime focus of the Blanco 4-m telescope at the Cerro- Tololo International Observatory (CTIO). In this paper we describe SISPI, the data acquisition and control system of the Dark Energy Camera. SISPI is implemented as a distributed multi-processor system with a software architecture based on the Client-Server and Publish-Subscribe design patterns. The underlying message passing protocol is based on PYRO, a powerful distributed object technology system written entirely in Python. A distributed shared variable system was added to support exchange of telemetry data and other information between different components of the system. We discuss the SISPI infrastructure software, the image pipeline, the observer console and user interface architecture, image quality monitoring, the instrument control system, and the observation strategy tool.

  4. SPIDR: a read-out system for Medipix3 & Timepix3

    NASA Astrophysics Data System (ADS)

    Visser, J.; van Beuzekom, M.; Boterenbrood, Henk; van der Heijden, B.; Muñoz, J. I.; Kulis, S.; Munneke, B.; Schreuder, F.

    2015-12-01

    The realisation of the Timepix3 chip opened the way for new opportunities in research areas such as particle tracking with both semiconductor sensors and gas filled time projection chambers, electron microscopy and imaging mass spectrometry. To exploit the full capability of the Timepix3 chip, Nikhef developed a compact read-out system, called SPIDR that can deal with the high data output of 80 Mhits per chip per second. The main read-out board connects to both 10 Gb Ethernet and 1 Gb Ethernet devices. The latter obviously at a reduced rate. The main board connects to individual chip-carrier boards via a standard FMC connector. The system is designed such that support for other readout chips is foreseen via reprogramming of the FPGA. Besides the Timepix3 chip also the Medipix3 chip is currently supported. Both the main board and the chip carrier boards are cooled, via the housing and a fan to obtain a stable temperature of around 40 ± 0.2 °C for the Timepix3 chips. We will present the system and the results obtained with the LHCb beam telescope at CERN and proton radiography data obtained with a time projection chamber based on GEM technology.

  5. Catalysts for portable, solid state hydrogen genration systems

    NASA Astrophysics Data System (ADS)

    Gabl, Jason Robert

    Hydrogen and air powered proton exchange membrane fuel cells are a potential alternative to batteries. In portable power systems, the design requirements often focus on cost efficiency, energy density, storability, as well as safety. Ammonia borane (AB), a chemical hydride containing 19.6 wt. % hydrogen, has a high hydrogen capacity and is a stable and non-toxic candidate for storing hydrogen in portable systems. Throughout this work, Department of Energy guidelines for low power portable hydrogen power systems were used as a baseline and comparison with commercially available systems. In order to make this comparison, the system parameters of a system using AB hydrolysis were estimated by developing capacity and cost correlations from the commercial systems and applying them to this work. Supporting experiments were designed to evaluate a system that would use a premixed solid storage bed of AB and a catalyst. This configuration would only require a user input of water in order to initiate the hydrogen production. Using ammonia borane hydrolysis, the hydrogen yield is ˜9 wt. %, when all reactants are considered. In addition to the simplicity of initiating the reaction, hydrolysis of AB has the advantage of suppressing the production of some toxic borazines that are present when AB is thermally decomposed. However, ammonia gas will be formed and this problem must be addressed, as ammonia is damaging to PEM fuel cells. The catalyst focused on throughout this work was Amberlyst - 15; an ion exchange resin with an acid capacity of 4.7 eq/kg and ammonia adsorbent. At less than 0.30/g, this is a cost effective alternative to precious metal catalysts. The testing with this catalyst was compared to a traditional catalyst in literature, 20% platinum in carbon, costing more than 40/g. The Amberlyst catalyst was found to reduce the formation of ammonia in the gas products from ˜3.71 wt. % with the Pt/C catalyst to <0.01 wt. %. Since Amberlyst adsorbs ammonia, it acts as a

  6. Portable water filtration system for oil well fractionation

    SciTech Connect

    Seibert, D. L.

    1985-08-13

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which is obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.

  7. Performance of Front-End Readout System for PHENIX RICH

    SciTech Connect

    Oyama, K.; Hamagaki, H.; Nishimura, S.; Shigaki, K.; Hayano, R.S.; Hibino, M.; Kametani, S.; Kikuchi, J.; Matsumoto, T.; Sakaguchi, T.; Ebisu, K.; Hara, H.; Tanaka, Y.; Ushiroda, T.; Moscone, C.G.; Wintenberg, A.L.; Young, G.R.

    1999-11-15

    A front-end electronics system has been developed for the Ring Imaging Cerenkov (RICH) detector of the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Laboratory (BNL). A high speed custom back-plane with source synchronous bus architecture, a full custom analog ASIC, and board modules with FPGA's and CPLD's were developed for high performance real time data acquisition. The transfer rate of the back-lane has reached 640 MB/s with 128 bits data bus. Total transaction time is estimated to be less than 30 {micro}s per event. The design specifications and test results of the system are presented in this paper.

  8. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    SciTech Connect

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  9. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-07-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  10. A portable, disposable system for negative-pressure wound therapy.

    PubMed

    Brandon, Tanya

    Negative-pressure wound therapy (NPWT) imparts a number of clinical effects that promote a healing response and, as such, is a well-established means of treating a variety of wound types. Historically, the technique has been primarily used in the hospital setting; however, the introduction of more portable devices has led to an increase in the use of NPWT in the homecare setting, thereby facilitating early discharge of patients from hospital and continuity of care in the community. Portable NPWT devices also have the potential to impact positively on patients' quality of life, allowing increased mobility and freedom to undertake normal activities of daily living. Following the development of its standard Avance® NPWT system and associated dressing kits, Mölnlycke Health Care (Gothenburg, Sweden) has introduced a single-patient-use, disposable NPWT system; Avance Solo. This has been developed with a view to maximising patient freedom and mobility, providing a single-patient-use NPWT solution for multi-week treatment to allow quick and easy discharge of patients from hospital to home, and reducing some of the challenges of logistics and administration associated with the provision of NPWT for the caregiver. As with the standard NPWT system, the single-patient use system is supplied with a number of products incorporating Safetac® adhesive technology to minimise the risk of patients suffering unnecessary pain and trauma associated with dressing changes. This article presents a series of case studies describing procedures and outcomes following the application of the Avance Solo single-patient-use system.

  11. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator

    NASA Astrophysics Data System (ADS)

    Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.

    2016-12-01

    We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.

  12. A Digital Readout System For The CSO Microwave Kinetic Inductance Camera

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter; Mazin, B. A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter galaxies are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. Our group is developing a camera for the Caltech Submillimeter Observatory (CSO) using Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting devices whose impedance changes with the absorption of photons. The camera will have 600 spatial pixels and 4 bands at 750 μm, 850 μm, 1.1 mm and 1.3 mm. For each spatial pixel of the camera the radiation is coupled to the MKIDs using phased-array antennas. This signal is split into 4 different bands using filters and detected using the superconductor as part of a MKID's resonant circuit. The detection process consists of measurement of the changes in the transmission through the resonator when it is illuminated. By designing resonant circuits to have different resonant frequencies and high transmission out resonance, MKIDs can be frequency-domain multiplexed. This allows the simultaneous readout of many detectors through a single coaxial cable. The readout system makes use of microwave IQ modulation and is based on commercial electronics components operating at room temperature. The basic readout has been demonstrated on the CSO. We are working on the implementation of an improved design to be tested on a prototype system with 6x6 pixels and 4 colors next April on the CSO.

  13. System Architecture of the Dark Energy Survey Camera Readout Electronics

    SciTech Connect

    Shaw, Theresa; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Chappa, Steve; de Vicente, Juan; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; Martinez, Gustavo; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  14. Development of OCR system for portable passport and visa reader

    NASA Astrophysics Data System (ADS)

    Visilter, Yury V.; Zheltov, Sergey Y.; Lukin, Anton A.

    1999-01-01

    The modern passport and visa documents include special machine-readable zones satisfied the ICAO standards. This allows to develop the special passport and visa automatic readers. However, there are some special problems in such OCR systems: low resolution of character images captured by CCD-camera (down to 150 dpi), essential shifts and slopes (up to 10 degrees), rich paper texture under the character symbols, non-homogeneous illumination. This paper presents the structure and some special aspects of OCR system for portable passport and visa reader. In our approach the binarization procedure is performed after the segmentation step, and it is applied to the each character site separately. Character recognition procedure uses the structural information of machine-readable zone. Special algorithms are developed for machine-readable zone extraction and character segmentation.

  15. Modelling an infrared Man Portable Air Defence System

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Brian, Butters; Roy, Walmsley

    2010-09-01

    The global proliferation of shoulder launched IR Man Portable Air Defence Systems (ManPADS) has resulted in the existence of a serious threat to both civilian and military aircraft from terrorist attack. Some of the older generations of ManPADS can be defeated with modern countermeasures but even the most sophisticated protection still has vulnerabilities to the latest family of ManPADS. This paper describes the work undertaken by the authors to model a second generation ManPAD, based on the Russian SA-14, and assess the vulnerabilities of aircraft both with and without flare countermeasures from these systems. The conclusions are the results of over 11,000 simulated firings against targets of varying aspects, velocities and altitudes.

  16. Portable light transmission measuring system for preserved corneas

    PubMed Central

    Ventura, Liliane; de Jesus, Gabriel Torres; de Oliveira, Gunter Camilo Dablas; Sousa, Sidney JF

    2005-01-01

    Background The authors have developed a small portable device for the objective measurement of the transparency of corneas stored in preservative medium, for use by eye banks in evaluation prior to transplantation. Methods The optical system consists of a white light, lenses, and pinholes that collimate the white light beams and illuminate the cornea in its preservative medium, and an optical filter (400–700 nm) that selects the range of the wavelength of interest. A sensor detects the light that passes through the cornea, and the average corneal transparency is displayed. In order to obtain only the tissue transparency, an electronic circuit was built to detect a baseline input of the preservative medium prior to the measurement of corneal transparency. The operation of the system involves three steps: adjusting the "0 %" transmittance of the instrument, determining the "100 %" transmittance of the system, and finally measuring the transparency of the preserved cornea inside the storage medium. Results Fifty selected corneas were evaluated. Each cornea was submitted to three evaluation methods: subjective classification of transparency through a slit lamp, quantification of the transmittance of light using a corneal spectrophotometer previously developed, and measurement of transparency with the portable device. Conclusion By comparing the three methods and using the expertise of eye bank trained personnel, a table for quantifying corneal transparency with the new device has been developed. The correlation factor between the corneal spectrophotometer and the new device is 0,99813, leading to a system that is able to standardize transparency measurements of preserved corneas, which is currently done subjectively. PMID:16372912

  17. A gas flow indicator for portable life support systems

    NASA Technical Reports Server (NTRS)

    Bass, R. L., III; Schroeder, E. C.

    1975-01-01

    A three-part program was conducted to develop a gas flow indicator (GFI) to monitor ventilation flow in a portable life support system. The first program phase identified concepts which could potentially meet the GFI requirements. In the second phase, a working breadboard GFI, based on the concept of a pressure sensing diaphragm-aneroid assembly connected to a venturi, was constructed and tested. Extensive testing of the breadboard GFI indicated that the design would meet all NASA requirements including eliminating problems experienced with the ventilation flow sensor used in the Apollo program. In the third program phase, an optimized GFI was designed by utilizing test data obtained on the breadboard unit. A prototype unit was constructed using prototype materials and fabrication techniques, and performance tests indicated that the prototype GFI met or exceeded all requirements.

  18. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  19. Development and Application of a Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane

    2007-01-01

    This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.

  20. Phase 1 upgrade of the CMS drift tubes read-out system

    NASA Astrophysics Data System (ADS)

    Navarro-Tobar, Á.; Triossi, A.; Fernández-Bedoya, C.; Redondo, I.; Redondo, D.; Sastre, J.; Cela-Ruiz, J. M.; Esteban, L.

    2017-03-01

    In order to cope with up to two times the nominal LHC luminosity, the second level of the readout system of the CMS Drift Tubes (DT) electronics needs to be redesigned to minimize event processing time and remove present bottlenecks. The μ ROS boards are μ TCA modules, which include a Xilinx Virtex-7 FPGA and are equipped with up to 6 12-channel optical receivers of the 240 Mbps input links. Each board collects the information from up to 72 input links (3 DT sectors), requiring a total of 25 boards. The design of the system and the first validation tests will be described.

  1. Portable radiation detection system for pulsed high energy photon sources

    SciTech Connect

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y.

    1994-12-31

    Portable, battery-operated, radiation detection systems for measuring the intensity and energy characteristics of intense, pulsed photon sources (either high energy X-ray or gamma) have been developed at the Idaho National Engineering Laboratory. These field-deployable, suitcase-sized detection units are designed to measure and record the characteristics of a single radiation burst or multiple bursts from a pulsed ionizing radiation source. The recorded information can then be analyzed on a simple laptop computer at a location remote from the detection system and completely independent of the ongoing data acquisition process. Two detection unit designs are described. The first, called the MARK-1, has eight bismuth germanate (BGO) radiation detectors. Four of which are unshielded and have different thicknesses (diameters). The remaining four are the same size as the largest unshielded detector but have different thicknesses of lead shielding surrounding each detector. The second unit design, called the MARK-1 A, utilizes the same detection methodology as the MARK-1 but has ten BGO detectors instead of eight and utilizes a different method of amplifying detector signals enabling reduced overall size and weight of the detection unit. Both the detection system designs have sensitivity ranges from 3 x 10{sup {minus}9} cGy to 9 x 10{sup {minus}5} cGy per radiation burst. Experimental detection results will be presented and discussed along the systems` potential for commercial applications.

  2. Courseware Portability.

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    Portability enables interactive courseware (ICW) and associated application programs to operate on computer-based systems other than the ones on which they are developed. Courseware portability will increase sharing of ICW across a range of instructional settings within military services and across internationally allied military services. The…

  3. Innovative multi-cantilever array sensor system with MOEMS read-out

    NASA Astrophysics Data System (ADS)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  4. [Development and Design of Portable Sleep Electroencephalogram Monitoring System].

    PubMed

    Li, Hui; Ye, Datian; Peng, Cheng

    2015-06-01

    The growing rate of public health problem for increasing number of people afflicted with poor sleep quality suggests the importance of developing portable sleep electroencephalogram (EEG) monitoring systems. The system could record the overnight EEG signal, classify sleep stages automatically, and grade the sleep quality. We in our laboratory collected the signals in an easy way using a single channel with three electrodes which were placed in frontal position in case of the electrode drop-off during sleep. For a test, either silver disc electrodes or disposable medical electrocardiographic electrodes were used. Sleep EEG recorded by the two types of electrodes was compared to each other so as to find out which type was more suitable. Two algorithms were used for sleep EEG processing, i. e. amplitude-integrated EEG (aEEG) algorithm and sample entropy algorithm. Results showed that both algorithms could perform sleep stage classification and quality evaluation automatically. The present designed system could be used to monitor overnight sleep and provide quantitative evaluation.

  5. Lunar Portable Life Support System Heat Rejection Study

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.

  6. A simple readout electronics for automatic power controlled self-mixing laser diode systems.

    PubMed

    Cattini, Stefano; Rovati, Luigi

    2008-08-01

    The paper describes a simple electronic circuit to drive a laser diode for self-mixing interferometry. The network integrates a stable commercial automatic power controller and a current mirror based readout of the interferometric signal. The first prototype version of the circuit has been realized and characterized. The system allows easily performing precise interferometric measurements with no thermostatic circuitry to stabilize the laser diode temperature and an automatic control gain network to compensate emitted optical power fluctuations. To achieve this result, in the paper a specific calibration procedure to be performed is described.

  7. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device.

    PubMed

    Huang, Yishun; Fang, Luting; Zhu, Zhi; Ma, Yanli; Zhou, Leiji; Chen, Xi; Xu, Dunming; Yang, Chaoyong

    2016-11-15

    Due to uranium's increasing exploitation in nuclear energy and its toxicity to human health, it is of great significance to detect uranium contamination. In particular, development of a rapid, sensitive and portable method is important for personal health care for those who frequently come into contact with uranium ore mining or who investigate leaks at nuclear power plants. The most stable form of uranium in water is uranyl ion (UO2(2+)). In this work, a UO2(2+) responsive smart hydrogel was designed and synthesized for rapid, portable, sensitive detection of UO2(2+). A UO2(2+) dependent DNAzyme complex composed of substrate strand and enzyme strand was utilized to crosslink DNA-grafted polyacrylamide chains to form a DNA hydrogel. Colorimetric analysis was achieved by encapsulating gold nanoparticles (AuNPs) in the DNAzyme-crosslinked hydrogel to indicate the concentration of UO2(2+). Without UO2(2+), the enzyme strand is not active. The presence of UO2(2+) in the sample activates the enzyme strand and triggers the cleavage of the substrate strand from the enzyme strand, thereby decreasing the density of crosslinkers and destabilizing the hydrogel, which then releases the encapsulated AuNPs. As low as 100nM UO2(2+) was visually detected by the naked eye. The target-responsive hydrogel was also demonstrated to be applicable in natural water spiked with UO2(2+). Furthermore, to avoid the visual errors caused by naked eye observation, a previously developed volumetric bar-chart chip (V-Chip) was used to quantitatively detect UO2(2+) concentrations in water by encapsulating Au-Pt nanoparticles in the hydrogel. The UO2(2+) concentrations were visually quantified from the travelling distance of ink-bar on the V-Chip. The method can be used for portable and quantitative detection of uranium in field applications without skilled operators and sophisticated instruments.

  8. Performance of stationary and portable passive transponder detection systems for monitoring of fish movements

    USGS Publications Warehouse

    Zydlewski, G.B.; Haro, A.; Whalen, K.G.; McCormick, S.D.

    2001-01-01

    A stationary system for long-range detection of PIT tags in fish was efficient under high water conditions in streams. A portable system was particularly effective for detecting habitat use by fish without recapture.

  9. The Design of a Portable and Deployable Solar Energy System for Deployed Military Applications

    DTIC Science & Technology

    2011-04-01

    The Design of a Portable and Deployable Solar Energy System for Deployed Military Applications Justin Tyner, Matt Coates, Dave Holloway, Kyle...energy systems and to specifically design a portable solar energy system for use tailored for a deployed military/combat unit. We considered ease...where diesel generators are superior and areas where the solar energy systems are superior. The remainder of this paper outlines our process and

  10. Improved thermal storage material for portable life support systems

    NASA Technical Reports Server (NTRS)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  11. A double photomultiplier Compton camera and its readout system for mice imaging

    SciTech Connect

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Uzunov, Nikolay; Di Domenico, Giovanni

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  12. A double photomultiplier Compton camera and its readout system for mice imaging

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Bello, Michele; Uzunov, Nikolay; Di Domenico, Giovanni Di

    2013-04-01

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the "electronic collimation", i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a "cone" of possible incident directions are obtained (event with "incomplete geometry"). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  13. Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR

    NASA Astrophysics Data System (ADS)

    Greiner, L.; Matis, H. S.; Ritter, H. G.; Rose, A.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; Vu, C.; Wieman, H.

    2008-05-01

    We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment.

  14. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    PubMed

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  15. On the Integration of a Readout System Dedicated for Neutron Discrimination in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Ben Krit, S.; Rahajandraibe, W.; Coulié-Castellani, K.; Micolau, G.; Lyoussi, A.

    2016-02-01

    New insights related to the integration of a readout system dedicated for the detection and discrimination of neutrons are presented here. This study takes place in the framework of the I_SMART European project. This system will have to work later in a harsh environment in terms of temperature and radiations, what makes not only the development of specifications for operation and reliability of the components necessary but also the investigation of margins for the interplay of the system. Implementation of the analog conditioning chain at transistor level (AMS (Analog/Mixed Signal) 0.35μm CMOS technology) is investigated here where electrical performances have been validated at SPICE-level simulations using "Spectre" simulator (SPICE-based) under Cadence DFII.

  16. Read-out optical schemes for holographic memory system based on multiplexed computer generated 1D Fourier holograms

    NASA Astrophysics Data System (ADS)

    Donchenko, Sergey S.; Odinokov, Sergey B.; Bobrinev, Vladimir I.; Betin, Alexandr Y.; Zlokazov, Evgenie Y.

    2015-05-01

    Computer holographic synthesis allows to significantly simplify the recording scheme of microholograms in holographic memory system as the classic high precision holographic setup based on two-beam interference is removed by simple scale reduction projection scheme. Application of computer generated 1D-Fourier holograms provides the possibility of selective reconstruction of the multiplexed holograms with different orientation of data lines by corresponding rotation of anamorphic objective (cylindrical lens), used in the read-out systems. Two configurations of read-out optical scheme were investigated by our team: full-page scheme and line-by-line scheme. In the present article we report the specificities of these schemes and consider their advantages and disadvantages. The results of experimental modeling of both read-out configurations are also presented.

  17. Parainfluenza virus isolation enhancement utilizing a portable cell culture system in the field.

    PubMed Central

    Parkinson, A J; Muchmore, H G; Scott, L V; Miles, J A

    1980-01-01

    Using a portable minaturized cell culture system, enhanced recoveries of parainfluenza virus types 1 and 3 were made in the field from symptomatic human adult subjects working at remote Antarctic stations. PMID:6247369

  18. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  19. PSAMM: A Portable System for the Analysis of Metabolic Models

    PubMed Central

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2016-01-01

    The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591

  20. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    NASA Astrophysics Data System (ADS)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  1. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  2. Finite element simulations of low-mass readout cables for the CBM Silicon Tracking System using RAPHAEL

    NASA Astrophysics Data System (ADS)

    Singla, M.; Chatterji, S.; Müller, W. F. J.; Kleipa, V.; Heuser, J. M.

    2014-01-01

    The first three-dimensional simulation study of thin multi-line readout cables using finite element simulation tool RAPHAEL is being reported. The application is the Silicon Tracking System (STS) of the fixed-target heavy-ion experiment Compressed Baryonic Matter (CBM), under design at the forthcoming accelerator center FAIR in Germany. RAPHAEL has been used to design low-mass analog readout cables with minimum possible Equivalent Noise Charge (ENC). Various trace geometries and trace materials have been explored in detail for this optimization study. These cables will bridge the distance between the microstrip detectors and the signal processing electronics placed at the periphery of the silicon tracking stations. SPICE modeling has been implemented in Sentaurus Device to study the transmission loss (dB loss) in cables and simulation has been validated with measurements. An optimized design having minimum possible ENC, material budget and transmission loss for the readout cables has been proposed.

  3. Development of low mass optical readout for high data bandwidth systems.

    SciTech Connect

    Underwood, D.; DeLurgio, P.; Drake, G.; Fernando, W.; Lopez, D.; Salvachua-Ferrando, B.; Stanek, R.

    2010-10-01

    At Argonne National Laboratory the High Energy Physics and Center for Nanoscale Materials Divisions are working on a project to develop a new generation of detector readout using high speed data transfer optical devices that can be implemented in particle physics or for long distances. Free-space communications devices offer the potential for reductions in mass, power, and cost of data paths for on-board trigger and readout of tracking detectors. The project involves three areas of study: light modulation, the design and construction of MEMS optical devices, and the control systems for maintaining precise laser light positioning. We demonstrate an optical link in air over one meter and with low error rate at 1 Gb/s. We demonstrate steering of an optical beam over a meter with a precision of 5 micrometers utilizing a MEMS mirror and reflected light in the feedback loop. For early testing, light modulation tests with a fiber link using Li-Niobate modulators and a data generation and error checking chip are done at 1 Gb/s. Many companies and universities are developing modulators which will be incorporated into CMOS chips. We are doing radiation hardness studies for one of the materials involved. Laser light will need to be steered on to and kept centered on the detector in the presence of thermal or mechanical motion, etc. This steering will be controlled by MEMS mirrors. Polycrystalline and crystalline silicon based mirror designs are being studied. We review the current status of the project and outline plans for the future development of the system.

  4. Performance Analysis and Portability of the PLUM Load Balancing System

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1998-01-01

    The ability to dynamically adapt an unstructured mesh is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult. To address this problem, we have developed PLUM, an automatic portable framework for performing adaptive numerical computations in a message-passing environment. PLUM requires that all data be globally redistributed after each mesh adaption to achieve load balance. We present an algorithm for minimizing this remapping overhead by guaranteeing an optimal processor reassignment. We also show that the data redistribution cost can be significantly reduced by applying our heuristic processor reassignment algorithm to the default mapping of the parallel partitioner. Portability is examined by comparing performance on a SP2, an Origin2000, and a T3E. Results show that PLUM can be successfully ported to different platforms without any code modifications.

  5. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  6. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  7. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  8. GBT based readout in the CBM experiment

    NASA Astrophysics Data System (ADS)

    Lehnert, J.; Byszuk, A. P.; Emschermann, D.; Kasinski, K.; Müller, W. F. J.; Schmidt, C. J.; Szczygiel, R.; Zabolotny, W. M.

    2017-02-01

    The CBM experiment at FAIR will use GBTX and Versatile Link based readout systems for several of its subdetectors. The paper describes the GBT based readout concept in CBM, emphasizing the common features among systems. Particular choices and features of the readout are motivated mainly by the requirements in the readout of the silicon tracking system (STS). Common developments like a common CBM readout board are presented. The prototype board provides full GBT functionality for all systems, can be interfaced to various prototype readout chains and be refined for later detector specific versions.

  9. Cryogenic readout techniques for germanium detectors

    SciTech Connect

    Benato, G.; Cattadori, C.; Di Vacri, A.; Ferri, E.

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  10. Comparison of fan- and cone-beam imaging capabilities on a portable x-ray imaging system

    NASA Astrophysics Data System (ADS)

    White, Timothy A.; Roney, Tim J.; Pink, Robert J.; Noo, Frederic; Clackdoyle, Rolf; Smith, Mike; Jones, Warren F.

    1999-09-01

    Portable systems for x-ray imaging of objects up to 20-cm in diameter have been developed for field inspection of industrial objects. These systems can be configured with either a linear diode array (45-cm long, 1024-elements, 12- bits/element) or a large-area amorphous-silicon (a-Si) detector (30 X 40-cm2, 2304 X 3200-elements, 12- bits/element). Each detector utilizes gadolinium oxysulfide as the scintillation element. X-rays are emitted from an 80 to 300-kVp constant-potential source with a spot size of approximately 1.6-mm. The object can be rotated and the source and detector translated vertically for collection of 'spiral' fanbeam or 'helical' conebeam computed-tomography (CT) data. For low-density objects, the reconstructed spatial resolution of CT data collected with either detector is about the same and the choice of detector is determined by detector parameters such as dynamic range and integration/readout time. For higher-density objects, which need to be imaged at higher energies and for which there is a higher probability of Compton scatter, the linear diode array produces better contrast images of small voids in a scattering medium. A series of experiments designed to test the performance of each detector with and without a scattering medium will be presented.

  11. Review on the development of truly portable and in-situ capillary electrophoresis systems

    NASA Astrophysics Data System (ADS)

    Lewis, A. P.; Cranny, A.; Harris, N. R.; Green, N. G.; Wharton, J. A.; Wood, R. J. K.; Stokes, K. R.

    2013-04-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems.

  12. Portable Mass Spectrometer System for in-situ Environmental Gas Monitoring

    NASA Technical Reports Server (NTRS)

    Conejo, E.; Griffin, T. P.; Diaz, J. A.; Arkin, C. R.; Soto, C.; Naylor, G. R.; Curley, C.; Floyd, D.

    2005-01-01

    A system developed by NASA has been used for monitoring air quality around different locations. The system was designed for aircraft applications but has proven to be very useful as a portable gas analyzer. The system has been used to monitor air quality around volcanoes, cities, and the surrounding areas. The transport of the system has been via aircraft, car, and hand carried.

  13. Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lopez, F. C.; Rigon, L.; Longo, R.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2011-12-01

    A single-photon counting detector read-out system for mammography with synchrotron radiation has been developed with the aim to meet the needs of the mammographic imaging station of the SYRMEP beamline at ELETTRA. The system called PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) is a modular detector that implements a read-out system with MYTHEN II ASICs, an embedded Linux-based controller board and a Scientific Linux acquisition workstation. The system architecture and characteristics are herein presented. The system was tested at the SYRMEP beamline and achieved a frame rate of 33 Hz for 8448 channels at 24-bit dynamic range, and it is capable of continuously acquiring up to 2000 frames. Standard mammographic phantoms were imaged and good quality images were obtained at doses comparable with what is delivered in conventional full field mammographic systems.

  14. A front-end readout Detector Board for the OpenPET electronics system.

    PubMed

    Choong, W-S; Abu-Nimeh, F; Moses, W W; Peng, Q; Vu, C Q; Wu, J-Y

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  15. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  16. A front-end readout Detector Board for the OpenPET electronics system

    SciTech Connect

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J. -Y.

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  17. A self contained Linux based data acquisition system for 2D detectors with delay line readout

    NASA Astrophysics Data System (ADS)

    Beltran, D.; Toledo, J.; Klora, A. C.; Ramos-Lerate, I.; Martínez, J. C.

    2007-01-01

    This article describes a fast and self-contained data acquisition system for 2D gas-filled detectors with delay line readout. It allows the realization of time resolved experiments in the millisecond scale. The acquisition system comprises of an industrial PC running Linux, a commercial time-to-digital converter and an in-house developed histogramming PCI card. The PC provides a mass storage for images and a graphical user interface for system monitoring and control. The histogramming card builds images with a maximum count rate of 5 MHz limited by the time-to-digital converter. Histograms are transferred to the PC at 85 MB/s. This card also includes a time frame generator, a calibration channel unit and eight digital outputs for experiment control. The control software was developed for easy integration into a beamline, including scans. The system is fully operational at the Spanish beamline BM16 at the ESRF in France, the neutron beamlines Adam and Eva at the ILL in France, the Max Plank Institute in Stuttgart in Germany, the University of Copenhagen in Denmark and at the future ALBA synchrotron in Spain. Some representative collected images from synchrotron and neutron beamlines are presented.

  18. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  19. A front-end readout Detector Board for the OpenPET electronics system

    PubMed Central

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W.W.; Peng, Q.; Vu, C.Q.; Wu, J.-Y.

    2016-01-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a time-to-digital converter (TDC) implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. PMID:27134641

  20. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    NASA Technical Reports Server (NTRS)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  1. The electronics readout and the DAQ system of the DRAGO Anger Camera

    NASA Astrophysics Data System (ADS)

    Gola, A.; Fiorini, C.; Porro, M.; Zanchi, M.

    2007-02-01

    The aim of the DRAGO project, supported by Italian INFN, is the development of a high-resolution, compact γ-ray imager, based on the Anger Camera principle. In this configuration, the light generated by a unique scintillator is read by an array of 77 Silicon Drift Detectors. In order to locate the position of interaction of the photon inside the scintillator, it is necessary to make an amplification and filtering of the detector signals followed by a processing of the acquired data. The electronics readout and processing system can be divided in two separate parts: the analog front end and the DAQ board. The analog front end is composed of 80 readout channels divided in 10 CMOS chips, produced in the 0.35 μm AMS technology, each one processing 8 channels. Each analog channel of the circuit includes a low-noise preamplifier, a sixth-order semigaussian shaping amplifier with four selectable peaking times from 1.8 μs up to 6 μs, a peak stretcher and a baseline holder. The energy resolution measured using a single channel of the chip with a Silicon Drift Detector Droplet (SD 3) is of 128 eV FWHM at 6 keV with the detector cooled at -20 °C. The 8 analog channels of the chip are multiplexed to a single analog output and fed to the acquisition system. For each γ event, this system performs the A/D conversion of all the signals of the array and sends them to a host PC, where the position reconstruction algorithm is executed. The DAQ board contains 10 ADCs, each one dedicated to a single ASIC of the analog section and having a resolution of 13 bit (ENOB). The burst conversion rate of the 10 ADCs together is 50 Ms/s resulting in a dead time of about 2 μs/event. The converted data are stored in a FIFO memory, for buffering, and then are transferred to the host PC via a USB 2.0 interface, which allows an event rate of more than 40k events/s for the whole Anger Camera, compatible with the application.

  2. System design for precise digitization and readout of the CSNS-WNS BaF2 spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, De-Liang; Cao, Ping; Wang, Qi; He, Bing; Zhang, Ya-Xi; Qi, Xin-Cheng; Yu, Tao; An, Qi

    2017-02-01

    The BaF2 (barium fluoride) spectrometer is one of the experiment facilities at the CSNS-WNS (White Neutron Source at China Spallation Neutron Source), currently under construction. It is designed to precisely measure the (n, γ) cross section, with 92 crystal elements and complete 4π steradian coverage. In order to improve the precision of measurement, in this paper, a new precise digitization and readout method is proposed. Waveform digitizing with 1 GSps sampling rate and 12-bit resolution is used to precisely capture the detector signal. To solve the problem of massive data readout and processing, the readout electronics is designed as a distributed architecture with 4 PXIe crates. The digitized signal is concentrated to the PXIe crate controller through a PCIe bus on the backplane and transmitted to the data acquisition system over gigabit Ethernet in parallel. Besides, the clock and trigger can be fanned out synchronously to every electronic channel over a high-precision distribution network. Test results show that the prototype of the readout electronics can achieve good performance and meet the requirements of the CSNS-WNS BaF2 spectrometer. Supported by National Research and Development plan (2016YFA0401602) and NSAF (U1530111)

  3. Satellite Direct Readout: Opportunities for Science Education

    DTIC Science & Technology

    1994-02-01

    AD-A276 257 1UIIIIIlii 253860-1-X (R) SATELLITE DIRECT READOUT: OPPORTUNITIES FOR SCIENCE EDUCATION Thomas W. Wagner February 1994 C, Submitted to...Their Classroom ..................... 10 LIST OF TABLES 1. Summary Statement of Work .............................. 1 2. Science Education Goals and...with emphasis on newly emerging national Science Education Standards. Section 3 provides the specifications of the portable ERIM Direct Readout

  4. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  5. Development of a portable preconcentrator/ion mobility spectrometer system for the trace detection of narcotics

    SciTech Connect

    Parmeter, J.E.; Custer, C.A.

    1997-08-01

    This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on their characteristics IMS signatures.

  6. High throughput optical readout of dense arrays of nanomechanical systems for sensing applications

    NASA Astrophysics Data System (ADS)

    Martínez, N. F.; Kosaka, P. M.; Tamayo, J.; Ramírez, J.; Ahumada, O.; Mertens, J.; Hien, T. D.; Rijn, C. V.; Calleja, M.

    2010-12-01

    We present an instrument based on the scanning of a laser beam and the measurement of the reflected beam deflection that enables the readout of arrays of nanomechanical systems without limitation in the geometry of the sample, with high sensitivity and a spatial resolution of few micrometers. The measurement of nanoscale deformations on surfaces of cm2 is performed automatically, with minimal need of user intervention for optical alignment. To exploit the capability of the instrument for high throughput biological and chemical sensing, we have designed and fabricated a two-dimensional array of 128 cantilevers. As a proof of concept, we measure the nanometer-scale bending of the 128 cantilevers, previously coated with a thin gold layer, induced by the adsorption and self-assembly on the gold surface of several self-assembled monolayers. The instrument is able to provide the static and dynamic responses of cantilevers with subnanometer resolution and at a rate of up to ten cantilevers per second. The instrumentation and the fabricated chip enable applications for the analysis of complex biological systems and for artificial olfaction.

  7. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    NASA Astrophysics Data System (ADS)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  8. 1 ns time to digital converters for the KM3NeT data readout system

    SciTech Connect

    Calvo, David [IFIC, Instituto de Física Corpuscular, CSIC- Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of thousands of glass spheres (nodes), each of them containing 31 photomultiplier (PMT) of small photocathode area. The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers. For this purpose, 31 high-resolution time-interval measuring channels are implemented on the Field-Programmable Gate Arrays (FPGA) based on Time to Digital Converter (TDC). TDC are very common devices in particles physics experiments. Architectures with low resources occupancy are desirable allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The required resolution to measure both, time of flight and timestamp must be 1 ns. A 4-Oversampling technique with two high frequency clocks is used to achieve this resolution. The proposed TDC firmware is developed using very few resources in Xilinx Kintex-7.

  9. Towards large-scale data analysis: challenges in the design of portable systems and use of Cloud computing.

    PubMed

    Diaz, Javier; Arrizabalaga, Saioa; Bustamante, Paul; Mesa, Iker; Añorga, Javier; Goya, Jon

    2013-01-01

    Portable systems and global communications open a broad spectrum for new health applications. In the framework of electrophysiological applications, several challenges are faced when developing portable systems embedded in Cloud computing services. In order to facilitate new developers in this area based on our experience, five areas of interest are presented in this paper where strategies can be applied for improving the performance of portable systems: transducer and conditioning, processing, wireless communications, battery and power management. Likewise, for Cloud services, scalability, portability, privacy and security guidelines have been highlighted.

  10. Readout of a 176 pixel FDM system for SAFARI TES arrays

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R.; Ridder, M.; van der Linden, A. J.; van der Kuur, J.; Gao, J. R.; Jackson, B.

    2016-07-01

    In this paper we present the results of our 176-pixel prototype of the FDM readout system for SAFARI, a TES-based focal-plane instrument for the far-IR SPICA mission. We have implemented the knowledge obtained from the detailed study on electrical crosstalk reported previously. The effect of carrier leakage is reduced by a factor two, mutual impedance is reduced to below 1 nH and mutual inductance is removed. The pixels are connected in stages, one quarter of the array half of the array and the full array, to resolve intermediate technical issues. A semi-automated procedure was incorporated to find all optimal settings for all pixels. And as a final step the complete array has been connected and 132 pixels have been read out simultaneously within the frequency range of 1-3.8MHz with an average frequency separation of 16kHz. The noise was found to be detector limited and was not affected by reading out all pixels in a FDM mode. With this result the concept of using FDM for multiplexed bolometer read out for the SAFARI instrument has been demonstrated.

  11. Inspection of Spot Welds Using a Portable Ultrasonic Phased-Array System

    SciTech Connect

    Reverdy, F.; Hopkins, D.

    2005-04-09

    Results were presented last year to demonstrate the feasibility of using an ultrasonic phased array to inspect spot welds. Analysis of the signals in the Fourier domain allows identification of satisfactory, undersized and defective welds. Signal- and image-processing techniques have been implemented with the goal of extracting the dimensions of the weld nugget. The results presented here were obtained using a portable phased-array controller. Toward developing a fully portable system, a housing for the probe is under development with an integrated mechanical scanning system.

  12. Capability of patch antennas in a portable harmonic radar system to track insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  13. A portable, low-cost flight-data measurement and recording system

    NASA Technical Reports Server (NTRS)

    Miller, R. J.

    1982-01-01

    The design of and the experience with an inexpensive, hand-portable, onboard data system used to record four parameters in the final portion of the landing approach and touchdown of an airplane are described. The system utilized a high-quality audio tape recorder and amateur photographic equipment with accessory circuitry rather than specialized instrumentation to given satisfactory results.

  14. Portable medical status system. [potential hazards in the use of the telecare system

    NASA Technical Reports Server (NTRS)

    Lindsey, O. C.

    1976-01-01

    The hazards inherent in the Portable Medical Status System are identified, and the measures taken to reduce them to an acceptable level are described. Identification of these hazards is a prerequisite to use of the system on humans in the earth environment. One hazard which is insufficiently controlled and which is considered a constraint to use on humans is the level of current possible in the electrodes for the EEG (electroencephalograph) circuitry. It exceeds the maximum specified. A number of procedural and design recommendations for enhancement of safety are made.

  15. Data communication in read-out systems: how fast can we go over copper wires?

    NASA Astrophysics Data System (ADS)

    Schrader, J. H. R.; Klumperink, E. A. M.; Visschers, J. L.; Nauta, B.

    2004-09-01

    In a digital X-ray imaging system, data has to be transmitted from the detector to the storage system. In future digital X-ray imaging systems, higher data rates will be needed. For some applications, e.g. protein crystallography at synchrotron beams, data rates in the order of gigabits per second are expected. Present trend for such systems is to move from a parallel data bus towards a high-speed serial readout. For high speed signaling over short distances (up to 10m) the attenuation of copper cables is low enough to permit multi-gigabit per second speeds. In this article, an overview will be given of problems encountered in high speed data transmission over copper cable and techniques will be shown to overcome these problems. The bandwidth bottleneck in short distance communication is in the IC-technology and not in the channel. The cable transfer function results in inter-symbol interference (ISI). The skin-effect is the most significant cause of ISI for short length (10m) coaxial copper cables. Fortunately, equalization can compensate for these effects. An equalizer has a transfer function that is the inverse of the channel transfer function. With the correct equalizer, a very low Bit Error Ratio (BER) can be achieved. The measured RG-58U cable (τ1=0.12ns) could transmit at a bit rate of 8.3Gbps, with a BER of 10-12. Multi-gigabit speeds are possible over short length coaxial copper cables.

  16. Microstrip electrode readout noise for load-dominated long shaping-time systems

    NASA Astrophysics Data System (ADS)

    Collier, Kelsey; Cunnington, Taylor; Crosby, Sean; Fadeyev, Vitaliy; Martinez-McKinney, Forest; Mistry, Khilesh; Schumm, Bruce A.; Spencer, Edwin; Taylor, Aaron; Wilder, Max

    2013-11-01

    In cases such as that of the proposed International Linear Collider (ILC), for which the beam-delivery and detector-occupancy characteristics permit a long shaping-time readout of the microstrip sensors, it is possible to envision long (∼1 meter) daisy-chained ‘ladders’ of fine-pitch sensors read out by a single front-end amplifier. In this study, a long shaping-time (∼2 μsec) front-end amplifier has been used to measure readout noise as a function of detector load. Comparing measured noise to that expected from lumped and distributed models of the load network, it is seen that network effects significantly mitigate the amount of readout noise contributed by the detector load. Further reduction in noise is demonstrated for the case that the sensor load is read out from its center rather than its end.

  17. The embodiment design of the heat rejection system for the portable life support system

    NASA Technical Reports Server (NTRS)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  18. Portable laser speckle perfusion imaging system based on digital signal processor.

    PubMed

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  19. The Design and Realization of Linear Calibration System of a Large Dynamic Range Readout Unit for a BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Ming-Gang; Guo, Jian-Hua; Wu, Jian; Chang, Jin

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is proposed by the Purple Mountain Observatory, Chinese Academy of Sciences. This project expects to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. The major component of the satellite payload is a BGO (Bismuth Germanate Oxide) calorimeter, which is used to detect the particles in the energy range from 5 GeV to 10 TeV. According to a physical simulation, the dynamic range of each BGO detection unit is about 1.5×105. In order to test the readout linearity of the BGO detection unit, we have implemented a simple linear calibration system covering such a large dynamic range. The experimental result shows that the readout nonlinearity of the BGO detection unit in the entire dynamic range is less than 2.7%.

  20. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    SciTech Connect

    Real, Diego [IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocol used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.

  1. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  2. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  3. 14 CFR Special Federal Aviation... - Rules for use of portable oxygen concentrator systems on board aircraft

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concentrator systems on board aircraft Federal Special Federal Aviation Regulation 106 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, SFAR No. 106 Special Federal Aviation Regulation 106—Rules for use of portable...

  4. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically u...

  5. Use of Portable Video Recorders as an Instructional System Development Tool.

    ERIC Educational Resources Information Center

    Smith, Edgar A.

    Small portable videotape recorders can be used economically and effectively as "scratch pads" during course development. Current off-the-shelf equipment can be used for data gathering during the analysis of systems requirements and initial development of course equipment and test materials. Such equipment has been beneficial in revealing…

  6. Study on the MWIR imaging ability of optical readout bimaterial microcantilever FPA uncooled infrared imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Bingbing; Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Chu, Xuhong; Yu, Xiaomei

    2016-09-01

    In this paper, we analyze and experimentally demonstrate the medium-wave infrared (MWIR) imaging ability based on optical readout bimaterial microcantilever focal plane array (FPA) uncooled infrared imaging system. Multiband infrared imaging technology has been a hotspot in the field of infrared imaging. In the infrared band, medium-wave infrared (3 5 μm) has minimal attenuation of atmospheric infrared window, and it also covers many atomic and molecular absorption peak. Imaging study on MWIR radiation source also appears particularly important. First of all, we introduce the bimaterial microcantilever IR sensing principle and the fabrication of the bimaterial microcantilever FPA. Secondly, the paper introduces the theory of the optical-thermal-mechnical reading based on FPA. Finally, the experimental platform was constructed to conduct the MWIR imaging experiment. The medium-wave infrared radiation source consists of a continuous-wave optical parametric oscillator (OPO) that is pumped by a polarization-maintained, single-mode fiber amplifier. The length of the 50mm periodically polarized LiNbO3 crystal (5%MgO) is used as the nonlinear crystal. The stable cavity of the ring is designed, and the output of the 3 4 μm band is realized by the design of the nonlinear crystal polarization period. And the FPA employed in our experiment contains 256×256 pixels fabricated on a glass substrate, whose working bandwidth is covering the three IR atmospheric windows. The experimental results show that the bimaterial microcantilever FPA has a good imaging ability to the MWIR sources.

  7. A portable system for recording neural activity in indoor and outdoor environments.

    PubMed

    Baluch, Farhan; Itti, Laurent

    2012-01-01

    We present a self-contained portable USB based device that can amplify and record small bioelectric signals from insects and animals. The system combines a purpose built low noise amplifier with off the shelf components to provide a low cost low power system for recording electrophysiological signals. Using open source software the system is programmed as a simple USB device and can be connected to any USB capable computer for recording data. This simple and universal interface provides the ability to connect to a variety of systems. Open source acquisition software was also written to record signals under the linux operating system. Performance analysis shows that our device is able to record good quality signals both indoors and outdoors and delivers this performance at a very low cost. Compared to larger systems our device provides the additional advantage of portability given that it can fit into a pocket and costs a fraction of large systems used in electrophysiology labs.

  8. The FDM readout system for the TES bolometers of the SWIPE instrument on the balloon-borne LSPE experiment

    NASA Astrophysics Data System (ADS)

    Vaccaro, D.; Baldini, A. M.; Cei, F.; Galli, L.; Gallucci, G.; Grassi, M.; Iezzi, A.; Incagli, M.; Nicolò, D.; Spinella, F.; Venturini, M.; Venturini, Y.; Signorelli, G.

    2016-07-01

    We present the design and first tests of a prototype readout for the SWIPE instrument onboard the LSPE balloon-borne experiment. LSPE aims at measuring the linear polarization of the Cosmic Microwave Background (CMB) at large angular scales, to find the imprint of inflation on the B-mode CMB polarization. The SWIPE instrument hosts two focal planes hosting 163 TES Au/Mo spiderweb bolometers each, cooled at 0.3 K for the detection of microwave frequencies of 140, 220 and 240 GHz. To read all the detectors, a 16 channel frequency domain multiplexing readout system has been devised, consisting of LC resonators composed of custom Nb superconducting inductors and commercial SMD capacitors. A set-up consisting of 14 LC resonators shows that we can accommodate 16 channels in the frequency range between 200 kHz and 1.6 MHz, since the necessary line-widths can be achieved. A preliminary firmware for the generation and read-out of the biasing frequency comb is also discussed.

  9. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Bassini, R.; van den Berg, A. M.; Ellinghaus, F.; Frekers, D.; Hannen, V. M.; Häupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Krüsemann, B.; Rakers, S.; Sohlbach, H.; Wörtche, H. J.

    1999-11-01

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0°. For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  10. Development of portable phased array UT system for real-time flaw imaging

    SciTech Connect

    Goto, M.

    1995-08-01

    Many functions and features of phased array UT technology must be useful for NDE in the industrial field. Some phased array UT systems have been developed for the inspection of nuclear pressure vessel and turbine components. However, phased array UT is still a special NDE technique and it has not been used widely in the past. The reasons of that are system size, cost, operator performance, equipment design and others. TOSHIBA has newly developed PC controlled portable phased array system to solve those problems. The portable phased array UT system is very compact and light but it is able to drive up to 32-channel linear array probe, to display real-time linear/sector B-scan, to display accumulated B-scan with an encoder and to display profile overlaid B-scan. The first applications were turbine component inspections for precise flaw investigation and flaw image data recording.

  11. Portable Analytical Systems for On-Site Diagnosis of Exposure to Pesticides and Nerve Agents

    SciTech Connect

    Lin, Yuehe; Wang, Jun; Liu, Guodong; Timchalk, Chuck

    2009-12-01

    In this chapter, we summarize recent work in our laboratory on the development of sensitive portable analytical systems for use in on-site detection of exposure to organophosphate (OP) pesticides and chemical nerve agents. These systems are based on various nanomaterials functioning as transducers; recognition agents or labels and various elelectrochemical/immunoassay techniques. The studied nanomaterials included functionalized carbon nanotubes (CNT), zirconia nanoparticles (NPs) and quantum dots (QDs). Three biomarkers e.g. the free OPs, metabolites of OPs and protein-OP adducts in biological matrices have been employed for biomonitoring of OP exposure with our developed system. It has been found that the nanomaterial-based portable analytical systems have high sensitivity for the detection of the biomarkers, which suggest that these technologies offer great promise for the rapid and on-site detection and evaluation of OP exposure.

  12. A portable mid-range localization system using infrared LEDs for visually impaired people

    NASA Astrophysics Data System (ADS)

    Park, Suhyeon; Choi, In-Mook; Kim, Sang-Soo; Kim, Sung-Mok

    2014-11-01

    A versatile indoor/outdoor pedestrian guidance system with good mobility is necessary in order to aid visually impaired pedestrians in indoor and outdoor environments. In this paper, distance estimation methods for portable wireless localization systems are verified. Two systems of a fixed active beacon and a receiver using an ultrasound time-of-flight method and a differential infrared intensity method are proposed. The infrared localization system was appropriate for the goal of this study. It was possible to use the infrared intensity method to generate a uniform signal field that exceeded 30 m. Valid distance estimations which were within 30 m of coverage indoors and within 20 m of coverage outdoors were made. Also, a pocket-sized receiver which can be adapted to a smartphone was found to be suitable for use as a portable device.

  13. Development of a Portable Gamma-ray Survey System for the Measurement of Air Dose Rates

    NASA Astrophysics Data System (ADS)

    Goto, Jun; Shobugawa, Yugo; Kawano, Yoh; Amaya, Yoshihiro; Izumikawa, Takuji; Katsuragi, Yoshinori; Shiiya, Tomohiro; Suzuki, Tsubasa; Takahashi, Takeshi; Takahashi, Toshihiro; Yoshida, Hidenori; Naito, Makoto

    BIo-Safety Hybrid Automatic MOnitor-Niigata (BISHAMON), a portable gamma-ray survey system, was developed to support victims of the Fukushima Daiichi nuclear disaster. BISHAMON is capable of constructing a map of the distribution of ambient dose equivalent rates using vehicle-mounted or on-foot survey methods. In this study, we give an overview of BISHAMON and its measurement results including a comparison with those of other systems such as KURAMA.

  14. A portable real-time data processing system for standard meteorological radiosondes

    NASA Technical Reports Server (NTRS)

    Staffanson, F. L.

    1983-01-01

    The UMET-1 is a microprocessor-based portable system for automatic real-time processing of flight data transmitted from the standard RAWINSONDE upper atmosphere meteorological balloonsonde. The first 'target system' is described which was designed to receive data from a mobile tracking and telemetry receiving station (TRADAT), as the balloonsonde ascends to apogee. After balloon-burst, the UMET-1 produces user-ready hardcopy.

  15. A study of the portability of an Ada system in the software engineering laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    Jun, Linda O.; Valett, Susan Ray

    1990-01-01

    A particular porting effort is discussed, and various statistics on analyzing the portability of Ada and the total staff months (overall and by phase) required to accomplish the rehost, are given. This effort is compared to past experiments on the rehosting of FORTRAN systems. The discussion includes an analysis of the types of errors encountered during the rehosting, the changes required to rehost the system, experiences with the Alsys IBM Ada compiler, the impediments encountered, and the lessons learned during this study.

  16. A portable data acquisition and control system for waste treatment development

    SciTech Connect

    Bowers, J; Rogers, H

    1999-06-07

    Lawrence Livermore National Laboratory (LLNL) has developed a Portable Data Acquisition and Control (PDAC) System that is basically a laboratory-scale Program Logic Control (PLC). This system can obtain signals from numerous sensors (e.g., pH, level, pressure, and flow meters), open and close valves, and turn on and off pumps. The data can then be saved on a spreadsheet or displayed as a graph/indicator in real-time on a computer screen.

  17. Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors

    PubMed Central

    Tang, Kea-Tiong; Chiu, Shih-Wen; Pan, Chih-Heng; Hsieh, Hung-Yi; Liang, Yao-Sheng; Liu, Ssu-Chieh

    2010-01-01

    In this study, we have developed a prototype of a portable electronic nose (E-Nose) comprising a sensor array of eight commercially available sensors, a data acquisition interface PCB, and a microprocessor. Verification software was developed to verify system functions. Experimental results indicate that the proposed system prototype is able to identify the fragrance of three fruits, namely lemon, banana, and litchi. PMID:22163403

  18. Improvement of portable computed tomography system for on-field applications

    NASA Astrophysics Data System (ADS)

    Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.

    2015-05-01

    In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.

  19. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    PubMed

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  20. a Man-Portable Imu-Free Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Nüchter, A.; Borrmann, D.; Koch, P.; Kühn, M.; May, S.

    2015-08-01

    Mobile mapping systems are commonly mounted on cars, ships and robots. The data is directly geo-referenced using GPS data and expensive IMU (inertial measurement systems). Driven by the need for flexible, indoor mapping systems we present an inexpensive mobile mapping solution that can be mounted on a backpack. It combines a horizontally mounted 2D profiler with a constantly spinning 3D laser scanner. The initial system featuring a low-cost MEMS IMU was revealed and demonstrated at MoLaS: Technology Workshop Mobile Laser Scanning at Fraunhofer IPM in Freiburg in November 2014. In this paper, we present an IMU-free solution.

  1. Development of a portable passive-acoustic bedload monitoring system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  2. Real-time and Portable Microwave Imaging System

    NASA Technical Reports Server (NTRS)

    Ghasr, Mohammed Tayeb

    2009-01-01

    Microwave and millimeter wave imaging has shown tremendous utility in a wide variety of applications. These techniques are primarily based on measuring coherent electric field distribution on the target being imaged. Mechanically scanned systems are the simple and low cost solution in microwave imaging. However, these systems are typically bulky and slow. This dissertation presents a design for a 2D switched imaging array that utilizes modulated scattering techniques for spatial multiplexing of the signal. The system was designed to be compact, coherent, possessing high dynamic range, and capable of video frame rate imaging. Various aspects of the system design were optimized to achieve the design objectives. The 2D imaging system as designed and described in this dissertation utilized PIN diode loaded resonant elliptical slot antennas as array elements. The slot antennas allow for incorporating the switching into the antennas thus reducing the cost and size of the array. Furthermore, these slots are integrated in a simple low loss waveguide network. Moreover, the sensitivity and dynamic range of this system is improved by utilizing a custom designed heterodyne receiver and matched filter. This dissertation also presents an analysis on the properties of this system. The performance of the multiplexing scheme, the noise floor and the dynamic range of the receivers are investigated. Furthermore, sources of errors such as mutual coupling and array response dispersion are also investigated. Finally, utilizing this imaging system for various applications such as 2D electric field mapping, scatterer localization, and nondestructive imaging is demonstrated.

  3. Evaluation of Elbow Stretch Reflex Using a Portable Hand-driven Isokinetic System in Normal Adults

    PubMed Central

    Seo, Jeong-Hwan; Song, Chul-Gyu; Ko, Myoung-Hwan; Park, Sung-Hee

    2011-01-01

    Objective To evaluate normal healthy persons without spasticity to observe normal findings of the elbow stretch reflex using a newly developed, portable, hand-driven spasticity-measuring system. Method Thirty normal persons without any disease involving the central or peripheral nervous system were enrolled in this study. The portable hand-driven isokinetic system is able to measure the joint angle, angular velocity, electromyographic (EMG) signals, and torque during elbow passive extension-flexion. One set of 10 passive elbow extension and flexion movements was performed for data acquisition at each angular velocity, including 60, 90, 120, 150 and 180 degrees per second (°/sec). Electromyographic data were collected from the biceps brachii and the triceps brachii. Torque data were collected from sensors around the wrist. Results We were able to detect EMG activity and torque in all subjects by using the new portable hand-driven isokinetic system. EMG activity and torque increased with incremental increase of angular velocities. The joint angle of maximal EMG activity according to different angular velocities did not show any significant difference (116°-127° in elbow extension and 37°-66° in elbow flexion). The joint angles of maximal torque according to different angular velocities were not significantly different either. Conclusion Using the portable hand-driven isokinetic system on the elbows of normal subjects, we were able to obtain expected results. By considering our normal findings of the elbow stretch reflex using this system, we propose that the various aspects of spasticity-related data can be measured successfully. PMID:22506169

  4. The effect of carrying a portable respiratory gas analysis system on energy expenditure during incremental running.

    PubMed

    Sparks, S Andy; Orme, Duncan; Mc Naughton, Lars R

    2013-05-01

    This study aimed to assess the effect of portable gas analysis system carriage on energy expenditure (EE) during incremental treadmill running. Eight males (Mean ± SD) age 25.0 ± 9.47 y, body mass 78.5 ± 8.39 kg, completed an experimental trial (PT) during which they wore the system in a chest harness and a control trial (CT) when the system was externally supported. Each protocol consisted of 4 min stages at speeds of 0, 4, 7, 10, 12, 14 km h(-1). Increments continued until volitional exhaustion. The EE was greater (3.95 and 7.02% at 7 and 14 km h(-1) respectively) during PT (p < 0.05) but no significant differences were observed during standing, walking or VO(2max.) (4.10 ± 0.53, and 4.28 ± 0.75 l min(-1) for CT and PT respectively), HR or RPE. Portable gas analysis systems therefore only increase EE when running sub-maximally, but VO(2max) is unaffected, suggesting that using portable gas analysis systems in field-based situations is appropriate for maximal aerobic capacity measurement, but the effects of prolonged use on EE remains unclear.

  5. Portable tongue-supported human computer interaction system design and implementation.

    PubMed

    Quain, Rohan; Khan, Masood Mehmood

    2014-01-01

    Tongue supported human-computer interaction (TSHCI) systems can help critically ill patients interact with both computers and people. These systems can be particularly useful for patients suffering injuries above C7 on their spinal vertebrae. Despite recent successes in their application, several limitations restrict performance of existing TSHCI systems and discourage their use in real life situations. This paper proposes a low-cost, less-intrusive, portable and easy to use design for implementing a TSHCI system. Two applications of the proposed system are reported. Design considerations and performance of the proposed system are also presented.

  6. Large Scale Portability of Hospital Information System Software

    PubMed Central

    Munnecke, Thomas H.; Kuhn, Ingeborg M.

    1986-01-01

    As part of its Decentralized Hospital Computer Program (DHCP) the Veterans Administration installed new hospital information systems in 169 of its facilities during 1984 and 1985. The application software for these systems is based on the ANS MUMPS language, is public domain, and is designed to be operating system and hardware independent. The software, developed by VA employees, is built upon a layered approach, where application packages layer on a common data dictionary which is supported by a Kernel of software. Communications between facilities are based on public domain Department of Defense ARPA net standards for domain naming, mail transfer protocols, and message formats, layered on a variety of communications technologies.

  7. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  8. Analysis of DMFC/battery hybrid power system for portable applications

    NASA Astrophysics Data System (ADS)

    Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho

    This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.

  9. Development of fast neutron radiography system based on portable neutron generator

    NASA Astrophysics Data System (ADS)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  10. Development of fast neutron radiography system based on portable neutron generator

    SciTech Connect

    Yi, Chia Jia Nilsuwankosit, Sunchai

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  11. Developments in HF equipment and systems mobile and portable terminals

    NASA Astrophysics Data System (ADS)

    Wilson, Q. C.

    1986-03-01

    Before the advent of satellite platforms, sophisticated high frequency (HF) propagation and system research promised improved capability during disturbed ionospheric propagation conditions. However, satellite relays captured the imaginations and pocketbooks of the communications community in the mid-1960s. Consequently, extant HF systems aged while satellite systems were implemented. During peacetime, satellite systems transmit quality low data rate communications and navigation aids to mobile users, but there is now renewed interest in the low cost and survivability attributes of HF radio. At this time, when old HF prime systems need replacement for logistical reasons, the need for low cost communications that can survive jamming, nuclear effects, and space warfare is not satisfied. The HF renaissance is the response to this challenge. Logistical replacement procurements that provide new capabilities are redressing the attrition of vacuum-tube radio equipment over the last decade. Procuring organizations typically compile specifications comprising state-of-the-art and new capabilities offered by competing vendors. Integrated circuits, which include microprocessors, synthesizer ele ments, and other evolving components, have led to new circuit architectures. The first of the following three sections describes: Receivers; Transceivers and Antenna Couplers; Antenna Kits; and Audio Channel Peripherals.

  12. Portable multispectral fluorescence imaging system for food safety applications

    NASA Astrophysics Data System (ADS)

    Lefcourt, Alan M.; Kim, Moon S.; Chen, Yud-Ren

    2004-03-01

    Fluorescence can be a sensitive method for detecting food contaminants. Of particular interest is detection of fecal contamination as feces is the source of many pathogenic organisms. Feces generally contain chlorophyll a and related compounds due to ingestion of plant materials, and these compounds can readily be detected using fluorescence techniques. Described is a fluorescence-imaging system consisting primarily of a UV light source, an intensified camera with a six-position filter wheel, and software for controlling the system and automatically analyzing the resulting images. To validate the system, orchard apples artificially contaminated with dairy feces were used in a "hands-on" public demonstration. The contamination sites were easily identified using automated edge detection and threshold detection algorithms. In addition, by applying feces to apples and then washing sets of apples at hourly intervals, it was determined that five h was the minimum contact time that allowed identification of the contamination site after the apples were washed. There are many potential uses for this system, including studying the efficacy of apple washing systems.

  13. Portable, space-saving medical patient support system

    DOEpatents

    Bzorgi,; Fariborz, [Knoxville, TN

    2011-02-01

    A support platform having a stowed configuration and a deployed configuration on a floor. The support platform is related to stretcher devices that are used for transporting, confining, or conducting medical procedures on medical patients in medical emergencies. The support platform typically includes a work surface that has a geometric extent. A base that typically includes a plurality of frame members is provided, and the frame members are disposed across the geometric extent of, and proximal to, the work surface in the stowed configuration. The frame members are typically disposed on the floor in the deployed configuration. There is a foldable bracing system engaged with the work surface and engaged with the base. At least a portion of the foldable bracing system is disposed substantially inside at least a portion of the plurality of frame members in the stowed configuration. Further, the foldable bracing system is configured for translocation of the work surface distal from the base in the deployed configuration.

  14. A Portable Stereo Vision System for Whole Body Surface Imaging.

    PubMed

    Yu, Wurong; Xu, Bugao

    2010-04-01

    This paper presents a whole body surface imaging system based on stereo vision technology. We have adopted a compact and economical configuration which involves only four stereo units to image the frontal and rear sides of the body. The success of the system depends on a stereo matching process that can effectively segment the body from the background in addition to recovering sufficient geometric details. For this purpose, we have developed a novel sub-pixel, dense stereo matching algorithm which includes two major phases. In the first phase, the foreground is accurately segmented with the help of a predefined virtual interface in the disparity space image, and a coarse disparity map is generated with block matching. In the second phase, local least squares matching is performed in combination with global optimization within a regularization framework, so as to ensure both accuracy and reliability. Our experimental results show that the system can realistically capture smooth and natural whole body shapes with high accuracy.

  15. Portable calculator operating system for aerosol science use

    SciTech Connect

    Carpenter, R.L.; Barr, E.B.

    1983-04-01

    By employing the capabilities of a programmable calculator, the authors have developed a system of programs that calculates quantities often used in aerosol science. This system is suitable for use in the laboratory or in locations remote from normal laboratory environments and has the capability for executing complex calculations for data analysis from the keyboard in a manner similar to the functions supplied by a calculator manufacturer. Quantities calculated are particle real and aerodynamic diameter; slip correction factor; density, viscosity and mean free path of air at specified temperature and pressure; Reynolds number; particle stopping distance and velocity; as well as cascade impactor jet area and jet velocity. To provide flexibility for diverse data reduction needs, provisions are made to allow the user to write control programs that use the system programs to calculate desired quantities. 9 references. 2 figures, 3 tables.

  16. Portable System for Field-Feeding Greywater Remediation and Recycling

    DTIC Science & Technology

    2006-07-01

    with greywater reuse regulations2 base their water quality standards on the secondary treatment standard. In addition, each system’s process rate...to the system and converted to greywater . Of this added water, 80% is cleaned for reuse while 20% is unusable concentrate that requires backhauling...Field- Feeding Greywater Remediation and Recycling July 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  17. A low-noise and fast pre-amplifier and readout system for SiPMs

    NASA Astrophysics Data System (ADS)

    Biroth, M.; Achenbach, P.; Downie, E.; Thomas, A.

    2015-07-01

    To operate silicon photomultipliers (SiPMs) in a demanding environment with large temperature gradients, different amplifier concepts were characterized by analyzing SiPM pulse-shapes and charge distributions. A fully differential 4-wire SiPM pre-amplifier with separated tracks for the bias voltage and with good common-mode noise suppression was developed and successfully tested. To achieve highest single-pixel resolutions an online after-pulse and pile-up suppression was realized with fast readout electronics based on digital filters.

  18. Development of an Optical Read-Out System for the LISA/NGO Gravitational Reference Sensor: A Status Report

    NASA Astrophysics Data System (ADS)

    Di Fiore, L.; De Rosa, R.; Garufi, F.; Grado, A.; Milano, L.; Spagnuolo, V.; Russano, G.

    2013-01-01

    The LISA group in Napoli is working on the development of an Optical Read-Out (ORO) system, based on optical levers and position sensitive detectors, for the LISA gravitational reference sensor. ORO is not meant as an alternative, but as an addition, to capacitive readout, that is the reference solution for LISA/NGO and will be tested on flight by LISA-Pathfinder. The main goal is the introduction of some redundancy with consequent mission risk mitigation. Furthermore, the ORO system is more sensitive than the capacitive one and its usage would allow a significant relaxation of the specifications on cross-couplings in the drag free control loops. The reliability of the proposed ORO device and the fulfilment of the sensitivity requirements have been already demonstrated in bench-top measurements and tests with the four mass torsion pendulum developed in Trento as a ground testing facility for LISA-Pathfinder and LISA hardware. In this paper we report on the present status of this activity presenting the last results and perspectives on some relevant aspects. 1) System design, measured sensitivity and noise characterization. 2) Possible layouts for integration in LISA/NGO and bench-top tests on real scale prototypes. 3) Search for space compatible components and preliminary tests. We will also discuss next steps in view of a possible application in LISA/NGO.

  19. System for portable nucleic acid testing in low resource settings

    NASA Astrophysics Data System (ADS)

    Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika

    2013-03-01

    Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.

  20. Portable Rapid Test Fuel Tank Leak Detection System

    DTIC Science & Technology

    2010-04-01

    aspects of the bulk tank leak detection method . It is not intended to provide a thorough description of the principles behind the system or how the...no Does the Method detect the presence of water in the bottom of the tank? ( ) yes (X) no B-2 Principle of Operation What technique...rates of 0.10 gal/hr and 0.20 gal/hr with a very high PD and very low PFA. This provides a significant improvement over current methods technologically

  1. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  2. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  3. A portable swappable method scientific CMOS image data storage system

    NASA Astrophysics Data System (ADS)

    Liu, Wen-long; Pi, Hai-feng; Hu, Bing-liang; Gao, Jia-rui

    2015-11-01

    In the field of deep space exploration, the detector needs high-speed data real-time transmission and large capacity storage. SATA(Serial advanced technology attachment) as a new generation of interface protocols, SATA interface hard disk has the advantages of with large storage capacity, high transmission rate, the cheap price, data is not lost when power supply drop, so it is suitable for used in high speed large capacity data storage system. This paper by using Kintex-7 XCE7K325T XILINK series FPGA, the data of scientific CMOS CIS2521F through the SATA controller is stored in the hard disk. If the hard disk storage is full, it will automatically switch to the next hard disk.

  4. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  5. Battery powered portable vapor compression cycle system with PCM condenser

    NASA Astrophysics Data System (ADS)

    DeNardo, Nicholas M.

    Additive manufacturing, or 3D printing, encompasses manufacturing processes that construct a geometry by depositing or solidifying material only where it is needed in the absence of a mold. The ability to manufacture complex geometries on demand directly from a digital file, as well as the decreasing equipment costs due to increased competition in the market, have resulted in the AM industry experiencing rapid growth in the past decade. Many companies have emerged with novel technologies well suited to improve products and/or save costs in various industries. Until recently, the applications of polymer additive manufacturing have been mainly limited to prototyping. This can be attributed to multiple factors, namely the high cost of the machines and materials, long print times, and anisotropy of printed parts. In addition, the low unit cost and cycle time of competing processes such as injection molding further skew the economics in favor of other processes. The addition of fiber-reinforcement into polymers used in additive manufacturing processes significantly increases the strength of parts, and also allows larger parts to be manufactured. In 2014, large-scale additive manufacturing of fiber-reinforced polymers was pioneered, and has generated significant attention from both academia and industry. Commercial machines that incorporate high throughput extruders on gantry systems are now available. New applications that require high temperature polymers with low coefficients of thermal expansion and high stiffness are being targeted, for example tooling used in the manufacturing of composite components. The state of the art of this new paradigm in additive manufacturing as well as the target applications will be discussed in detail. Many new challenges arise as AM scales and reinforced polymers are incorporated. One of the most notable challenges is the presence of large temperature gradients induced in parts during the manufacturing process, which lead to residual

  6. Man-portable command, communication, and control systems for the next generation of unmanned field systems

    NASA Astrophysics Data System (ADS)

    Jacobus, Charles J.; Mitchell, Brian T.; Jacobus, Heidi N.; Watts, Russell C.; Taylor, Mark J.; Salazar, Alfonso

    1993-05-01

    New generations of military unmanned systems on the ground, at sea, and in the air will be driven by man-portable command units. In past efforts we implemented several prototypes of such units which provided display and capture of up to four video input channels, provided 4 color LCD screens and a larger status display LCD screen, provided drive input through two joysticks, and, through software, supported a flexible 'virtual' driver's interface. We have also performed additional trade analysis of prototype systems incorporating force feedback and extensive image-oriented processing facilities applied to man-controlled robotic control systems. This prior work has resulted in a database of practical design guidelines and a new generation of hardened compact robotic command center which is being designed and built to provide more advanced video capture, display, and interfacing features, supercomputer level computational performance, and ergonomic features for hard field use. In this paper we will summarize some past work and will project current performance to features likely to be common across most unmanned systems command, control, and communications subsystems of the near future.

  7. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  8. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines

    SciTech Connect

    Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T.; Hu, D. Z.; Schaadt, D. M.

    2012-10-15

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  9. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

    PubMed

    Slobodskyy, T; Schroth, P; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-10-01

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  10. A Portable, Air-Jet-Actuator-Based Device for System Identification

    NASA Astrophysics Data System (ADS)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  11. Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.

    2008-01-01

    As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.

  12. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  13. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  14. Development of a portable Linux-based ECG measurement and monitoring system.

    PubMed

    Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng

    2011-08-01

    This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.

  15. A handheld computer as part of a portable in vivo knee joint load monitoring system

    PubMed Central

    Szivek, JA; Nandakumar, VS; Geffre, CP; Townsend, CP

    2009-01-01

    In vivo measurement of loads and pressures acting on articular cartilage in the knee joint during various activities and rehabilitative therapies following focal defect repair will provide a means of designing activities that encourage faster and more complete healing of focal defects. It was the goal of this study to develop a totally portable monitoring system that could be used during various activities and allow continuous monitoring of forces acting on the knee. In order to make the monitoring system portable, a handheld computer with custom software, a USB powered miniature wireless receiver and a battery-powered coil were developed to replace a currently used computer, AC powered bench top receiver and power supply. A Dell handheld running Windows Mobile operating system(OS) programmed using Labview was used to collect strain measurements. Measurements collected by the handheld based system connected to the miniature wireless receiver were compared with the measurements collected by a hardwired system and a computer based system during bench top testing and in vivo testing. The newly developed handheld based system had a maximum accuracy of 99% when compared to the computer based system. PMID:19789715

  16. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties

    PubMed Central

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E.; Ramanujam, Nimmi

    2010-01-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer. PMID:21499501

  17. Medipix2/USB Portable Radiation Camera

    SciTech Connect

    Vykydal, Z.; Holy, T.; Jakubek, J.; Platkevic, M.; Pospisil, S.

    2007-11-26

    Advances in the field of semiconductor technologies in the last years make possible to develop new types of ionizing radiation detectors. The Medipix2 readout ASIC is an example of such a device. It is the hybrid single photon counting imaging chip (sensor and readout chips are fabricated separately). With an appropriate sensor chip on the top, it can count single X-ray photons, without any noise or dark current, at high fluxes (several Gigaphotons per cm{sup 2} per second). It also offers excellent radiation hardness and good position resolution (256x256 pixels, each pixel has a 55x55 {mu}m{sup 2} area). To make the Medipix2 imaging chip more portable for specific applications a microprocessor controlled read-out system based on the USB (Universal Serial Bus) interface has been developed. It integrates all necessary detector support into one compact device (75x46 mm{sup 2}). All power supplies including sensor bias (up to 100 V) are internally derived from the voltage provided by the USB connection.

  18. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research

    PubMed Central

    Krigolson, Olave E.; Williams, Chad C.; Norton, Angela; Hassall, Cameron D.; Colino, Francisco L.

    2017-01-01

    In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system—one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t-tests of component existence (all p's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts. PMID:28344546

  19. A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F.; Little, J. R.; Ellingson, W. A.; Green, W.

    2009-03-03

    A portable, microwave interference scanning system, that can be used in situ, with one-sided, non-contact access, has been developed. It has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and non-ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper will present details of the system and discuss results obtained.

  20. Fabrication of a pen-shaped portable biochemical reaction system based on magnetic bead manipulation

    NASA Astrophysics Data System (ADS)

    Shikida, Mitsuhiro; Inagaki, Noriyuki; Okochi, Mina; Honda, Hiroyuki; Sato, Kazuo

    2011-06-01

    A pen-shaped platform that is similar to a mechanical pencil is proposed for producing a portable reaction system. A reaction unit, as the key component in the system, was produced by using a heat shrinkable tube. A mechanical pencil supplied by Mitsubishi Pencil Co. Ltd was used as the pen-shaped platform for driving the reaction cylinder. It was actuated using an inchworm motion. We confirmed that the magnetic beads were successfully manipulated in the droplet in the cylinder-shaped reaction units.

  1. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    PubMed

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  2. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)

    NASA Astrophysics Data System (ADS)

    MacDermid, Kevin; Aboobaker, Asad M.; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bandura, Kevin; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Helson, Kyle; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Johnson, Bradley; Jaffe, Andrew; Jones, Terry; Kisner, Ted; Klein, Jeff; Korotkov, Andrei; Lee, Adrian; Levinson, Lorne; Limon, Michele; Miller, Amber; Milligan, Michael; Pascale, Enzo; Raach, Katherine; Reichborn-Kjennerud, Britt; Reintsema, Carl; Sagiv, Ilan; Smecher, Graeme; Stompor, Radek; Tristram, Matthieu; Tucker, Greg; Westbrook, Ben; Zilic, Kyle

    2014-07-01

    EBEX is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background radiation. During its eleven day science flight in the Austral Summer of 2012, it operated 955 spider-web transition edge sensor (TES) bolometers separated into bands at 150, 250 and 410 GHz. This is the first time that an array of TES bolometers has been used on a balloon platform to conduct science observations. Polarization sensitivity was provided by a wire grid and continuously rotating half-wave plate. The balloon implementation of the bolometer array and readout electronics presented unique development requirements. Here we present an outline of the readout system, the remote tuning of the bolometers and Superconducting QUantum Interference Device (SQUID) amplifiers, and preliminary current noise of the bolometer array and readout system.

  3. Development of Portable Automatic Number Plate Recognition System on Android Mobile Phone

    NASA Astrophysics Data System (ADS)

    Mutholib, Abdul; Gunawan, Teddy S.; Chebil, Jalel; Kartiwi, Mira

    2013-12-01

    The Automatic Number Plate Recognition (ANPR) System has performed as the main role in various access control and security, such as: tracking of stolen vehicles, traffic violations (speed trap) and parking management system. In this paper, the portable ANPR implemented on android mobile phone is presented. The main challenges in mobile application are including higher coding efficiency, reduced computational complexity, and improved flexibility. Significance efforts are being explored to find suitable and adaptive algorithm for implementation of ANPR on mobile phone. ANPR system for mobile phone need to be optimize due to its limited CPU and memory resources, its ability for geo-tagging image captured using GPS coordinates and its ability to access online database to store the vehicle's information. In this paper, the design of portable ANPR on android mobile phone will be described as follows. First, the graphical user interface (GUI) for capturing image using built-in camera was developed to acquire vehicle plate number in Malaysia. Second, the preprocessing of raw image was done using contrast enhancement. Next, character segmentation using fixed pitch and an optical character recognition (OCR) using neural network were utilized to extract texts and numbers. Both character segmentation and OCR were using Tesseract library from Google Inc. The proposed portable ANPR algorithm was implemented and simulated using Android SDK on a computer. Based on the experimental results, the proposed system can effectively recognize the license plate number at 90.86%. The required processing time to recognize a license plate is only 2 seconds on average. The result is consider good in comparison with the results obtained from previous system that was processed in a desktop PC with the range of result from 91.59% to 98% recognition rate and 0.284 second to 1.5 seconds recognition time.

  4. Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System.

    PubMed

    Chang, Keke; Chen, Ruipeng; Wang, Shun; Li, Jianwei; Hu, Xinran; Liang, Hao; Cao, Baiqiong; Sun, Xiaohui; Ma, Liuzheng; Zhu, Juanhua; Jiang, Min; Hu, Jiandong

    2015-08-19

    The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD) array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D) converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 10(5) ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10(-5) refractive index unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.

  5. Comparison of IEEE Portable Operating System Interface (POSIX). Part 1 and X/Open Single Unix Specifications (SUS).

    DTIC Science & Technology

    1995-07-01

    0604574N and accession number DN302171. Released by Under authority of M. B. Vineberg, Head R. B. Volker , Head Business Branch Advanced Concepts and...between the two specificiations. To determine the application portability of some commands between an XPG4 UNIX- Branded implementation and a FTPS 151... Branded imple- mentation and a FIPS 151-2 certified implementation, further study is required. 14. SUBJECT TERMS Portable Operating System

  6. An Integrated Front-End Readout And Feature Extraction System for the BaBar Drift Chamber

    SciTech Connect

    Zhang, Jinlong; /Colorado U.

    2006-08-10

    The BABAR experiment has been operating at SLAC's PEP-II asymmetric B-Factory since 1999. The accelerator has achieved more than three times its original design luminosity of 3 x 10{sup 33} cm{sup -2} s{sup -1}, with plans for an additional factor of three in the next two years. To meet the experiment's performance requirements in the face of significantly higher trigger and background rates, the drift chamber's front-end readout system has been redesigned around the Xilinx Spartan 3 FPGA. The new system implements analysis and feature-extraction of digitized waveforms in the front-end, reducing the data bandwidth required by a factor of four.

  7. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  8. Research and design of portable photoelectric rotary table data-acquisition and analysis system

    NASA Astrophysics Data System (ADS)

    Yang, Dawei; Yang, Xiufang; Han, Junfeng; Yan, Xiaoxu

    2015-02-01

    Photoelectric rotary table as the main test tracking measurement platform, widely use in shooting range and aerospace fields. In the range of photoelectric tracking measurement system, in order to meet the photoelectric testing instruments and equipment of laboratory and field application demand, research and design the portable photoelectric rotary table data acquisition and analysis system, and introduces the FPGA device based on Xilinx company Virtex-4 series and its peripheral module of the system hardware design, and the software design of host computer in VC++ 6.0 programming platform and MFC package based on class libraries. The data acquisition and analysis system for data acquisition, display and storage, commission control, analysis, laboratory wave playback, transmission and fault diagnosis, and other functions into an organic whole, has the advantages of small volume, can be embedded, high speed, portable, simple operation, etc. By photoelectric tracking turntable as experimental object, carries on the system software and hardware alignment, the experimental results show that the system can realize the data acquisition, analysis and processing of photoelectric tracking equipment and control of turntable debugging good, and measurement results are accurate, reliable and good maintainability and extensibility. The research design for advancing the photoelectric tracking measurement equipment debugging for diagnosis and condition monitoring and fault analysis as well as the standardization and normalization of the interface and improve the maintainability of equipment is of great significance, and has certain innovative and practical value.

  9. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    double sampler; a digitally controlled variable gain amplifier and a 16-bit A/D converter which can help improve the data quality. And the acquired digital signals are transmitted into the computer via USB 2.0 data port. Our spectrometer with SHINERS technology can acquire the Raman spectrum signals efficiently in long time integration and weak signal environment, and the size of our system is well controlled for portable application.

  10. A low-noise 64-channel front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Liu, H.; Hu, Y.

    2016-04-01

    In this paper, we report on the recent development of a 64-channel low-noise front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems. The readout channel is comprised of a charge sensitive amplifier, a leakage current compensation circuit, a CR-RC shaper, two S-K filters, an inverse proportional amplifier, a peak-detect-and-hold circuit, a discriminator and trigger logic, a time sequence control circuit and a driving buffer. The readout ASIC is implemented in TSMC 0.35 μm mixed-signal CMOS technology, the die size of the prototype chip is 2.7 mm×8.0 mm. The overall gain of the readout channel is 200 mV/fC, the power consumption is less than 8 mW/channel, the linearity error is less than 1%, the inconsistency among the channels is less than 2.86%, and the equivalent noise charge of a typical channel is 66 e- at zero farad plus 14 e- per picofarad. By connecting this readout ASIC to an 8×8 pixel CdZnTe detector, we obtained an energy spectrum, the energy resolution of which is 4.5% at the 59.5 keV line of 241Am source.

  11. Portable emergency telemedicine system over wireless broadband and 3G networks.

    PubMed

    Hong, SungHye; Kim, SangYong; Kim, JungChae; Lim, DongKyu; Jung, SeokMyung; Kim, DongKeun; Yoo, Sun K

    2009-01-01

    The telemedicine system aims at monitoring patients remotely without limit in time and space. However the existing telemedicine systems exchange medical information simply in a specified location. Due to increasing speed in processing data and expanding bandwidth of wireless networks, it is possible to perform telemedicine services on personal digital assistants (PDA). In this paper, a telemedicine system on PDA was developed using wideband mobile networks such as Wi-Fi, HSDPA, and WiBro for high speed bandwidths. This system enables to utilize and exchange variety and reliable patient information of video, biosignals, chatting messages, and triage data. By measuring bandwidths of individual data of the system over wireless networks, and evaluating the performance of this system using PDA, we demonstrated the feasibility of the designed portable emergency telemedicine system.

  12. Portable fiber optic coupled doppler interferometer system for detonation and shock wave diagnostics

    SciTech Connect

    Fleming, K.J.

    1993-03-01

    Testing and analysis of shock wave characteristics such as produced by detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses doppler interferometry and has pined wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement non intrusively. The conventional VISAR is not well suited for portability because of its sensitive components, large power and cooling requirements, and hazardous laser beam. A new VISAR using the latest technology in solid state lasers and detectors has been developed and tested. To further enhance this system`s versatility, the unit is fiber optic coupled which allows remote testing, permitting the VISAR to be placed over a kilometer away from the target being measured. Because the laser light is contained in the fiber optic, operation of the system around personnel is far less hazardous. A software package for data reduction has also been developed for use with a personal computer. These new advances have produced a very versatile system with full portability which can be totally powered by batteries or a small generator. This paper describes the solid state VISAR and its peripheral components, fiber optic coupling methods and the fiber optic coupled sensors used for sending and receiving laser radiation.

  13. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  14. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  15. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  16. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  17. Study of the Properties of Plessey's Electrocardiographic Capacitive Electrodes for Portable Systems

    NASA Astrophysics Data System (ADS)

    Uvarov, A. A.; Lezhnina, I. A.; Overchuk, K. V.; Starchak, A. S.; Akhmedov, Sh D.; Larioshina, I. A.

    2016-01-01

    Cardiac diseases are still most widely spread in all regions of the world. And more and more devices are invented to satisfy increasing requirements of the patients. One of the perspective technologies in cardiac diagnostics is capacitive sensing ECG electrodes. This article describes a study of the properties of electrocardiographic capacitive electrodes PS25255 from Plessey Semiconductors for portable systems as well as some undocumented parameters of these sensors. We developed special cardiograph using Plessey's electrodes and applied to the number of patients with ischemic heart disease. We paid our attention mostly to the correct transition of the ST segment as it has critical impact on the diagnostics of ischemic heart disease.

  18. Testing and Oxygen Assessment Results for a Next Generation Extravehicular Activity Portable Life Support System Fan

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Rivera, Fatonia L.; Martin, Devin

    2011-01-01

    NASA is designing a next generation Extravehicular Activity (EVA) Portable Life Support System (PLSS) for use in future surface exploration endeavors. To meet the new requirements for ventilation flow at nominal and buddy modes, a fan has been developed and tested. This paper summarizes the results of the performance and life cycle testing efforts conducted at the NASA Johnson Space Center. Additionally, oxygen compatibility assessment results from an evaluation conducted at White Sands Test Facility (WSTF) are provided, and lessons learned and future recommendations are outlined.

  19. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  20. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  1. Development and test in liquid argon of the light readout system for the ArDM experiment

    NASA Astrophysics Data System (ADS)

    Boccone, V.

    2009-12-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon (LAr) underground detector. The project relies on the read out of the VUV scintillation light and on the extraction of the electrons produced by ionization from the liquid into the gas phase of the detector. The light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. I describe the light readout system and the tests of the prototype with liquid argon in the full size detector.

  2. The Design and Realization of Linear Calibration System of a Large Dynamic Range Readout Unit for a BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, M. G.; Guo, J. H.; Wu, J.; Chang, J.

    2014-03-01

    The DArk Matter Particle Explorer (DAMPE) is proposed by Purple Mountain Observatory, Chinese Academy of Sciences. This project expects to find the evidence of the existence of dark matter particle in the universe via the detection of high-energy electron and gamma-ray. A major component of the payload is a BGO (Bismuth Germanate Oxide) calorimeter, which is used to detect the particles in the energy range from 5 GeV to 10 TeV. According to a physical simulation, the dynamic range of each BGO detection unit is about 1.5×10^{5}. In order to test the linearity of BGO detection readout unit, we implement a simple linearity calibration system covering such a large dynamic range. The experimental result shows that the nonlinearity of the entire dynamic range is less than 2.7%.

  3. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    SciTech Connect

    Nocente, M. Gorini, G.; Fazzi, A.; Lorenzoli, M.; Pirovano, C.; Tardocchi, M.; Cazzaniga, C.; Rebai, M.; Uboldi, C.; Varoli, V.

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  4. Evaluation of a Portable Microchip Electrophoresis Fluorescence Detection System for the Analysis of Amino Acid Neurotransmitters in Brain Dialysis Samples

    PubMed Central

    OBORNY, Nathan J.; COSTA, Elton E. Melo; SUNTORNSUK, Leena; ABREU, Fabiane C.; LUNTE, Susan M.

    2016-01-01

    A portable fluorescence detection system for use with microchip electrophoresis was developed and compared to a benchtop system. Using this system, six neuroactive amines commonly found in brain dialysate—arginine, citrulline, taurine, histamine, glutamate, and aspartate—were derivatized offline with naphthalene-2,3-dicarboxaldehyde/cyanide, separated electrophoretically, and detected by fluorescence. Limits of detection for the analytes of interest were 50nM – 250nM for the benchtop system and 250 nM – 1.3 μM for the portable system, both of which were adequate for analyte determination in brain microdialysis samples. The portable system was then demonstrated for the detection of the same six amines in a rat brain microdialysis sample. PMID:26753703

  5. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect

    Xi, Wenze; Seidel, Jurgen; Kakareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  6. MONICA: A Compact, Portable Dual Gamma Camera System for Mouse Whole-Body Imaging

    PubMed Central

    Xi, Wenze; Seidel, Jurgen; Karkareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2009-01-01

    Introduction We describe a compact, portable dual-gamma camera system (named “MONICA” for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed “looking up” through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV ± 10%, yielded the following results: spatial resolution (FWHM at 1-cm), 2.2-mm; sensitivity, 149 cps/MBq (5.5 cps/μCi); energy resolution (FWHM), 10.8%; count rate linearity (count rate vs. activity), r2 = 0.99 for 0–185 MBq (0–5 mCi) in the field-of-view (FOV); spatial uniformity, < 3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-minute images acquired throughout the 168-hour study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g. limited imaging space, portability, and, potentially, cost are important. PMID:20346864

  7. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Abbosh, A. M.

    2016-11-01

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system’s operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  8. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System

    PubMed Central

    Mobashsher, Ahmed Toaha; Abbosh, A. M.

    2016-01-01

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system’s operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials. PMID:27897197

  9. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.

    1994-08-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors was developed for fiber optic coupling (1 kilometer long) to the VISCAR. The system has proven itself as reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  10. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.; Crump, O.B.

    1994-03-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR`s large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation. The solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  11. Portable, solid state, fiber optic coupled doppler interferometer system for detonation and shock diagnostics

    SciTech Connect

    Fleming, K.J.; Crump, O.B.

    1993-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity has restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of an underground nuclear detonation (UGT). The Solid State VISAR uses a prototype diode pumped ND:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensor was developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy-to-use instrument that is capable of field test use and rapid data reduction employing only a personal computer (PC).

  12. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.

    PubMed

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-02-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field.

  13. Detailed modal testing of a solid rocket motor using a portable test system

    NASA Technical Reports Server (NTRS)

    Glozman, Vladimir; Brillhart, Ralph D.

    1990-01-01

    Modern analytical techniques have expended the ability to evaluate solid rocket motors used in launch vehicles. As more detailed models of solid rocket motors were developed, testing methods were required to verify the models. Experimental modal analysis (modal testing) of space structures and launch vehicles has been a requirement for model validation for many years. However, previous testing of solid rocket motors has not typically involved dynamic modal testing of full scale motors for verification of solid propellant or system assembly properties. Innovative approaches to the testing of solid rocket motors were developed and modal testing of a full scale, two segment Titan 34D Solid Rocket Motor (SRM) was performed to validate detailed computer modeling. Special modifications were made to convert an existing facility into a temporary modal test facility which would accommodate the test article. The assembly of conventional data acquisition equipment into a multiple channel count portable system has made modal testing in the field feasible. Special purpose hydraulic exciters were configured to apply the dynamic driving forces required. All instrumentation and data collection equipment were installed at the test site for the duration of the test program and removed upon completion. Conversion of an existing test facility into a temporary modal test facility, and use of a multiple channel count portable test data acquisition system allowed all test objectives to be met and resulted in validation of the computer model in a minimum time.

  14. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    NASA Astrophysics Data System (ADS)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  15. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  16. Evaluation of a novel portable micro-pump and infusion system for drug delivery.

    PubMed

    Pankhurst, Paul; Abdollahi, Zahra McGuinness

    2016-08-01

    In this paper the design, fabrication and experimental results of a novel portable fixed-displacement micro-pump for controlled dosing and timing is described. The new pump is developed especially for high efficiency, high accuracy, ease of use and very low cost for single use drug delivery systems which can overcome many of the deficiencies of current portable pumps. Primary tests have been conducted and the results have demonstrated that the pump has the ability to deliver high performance and accuracy with less than +/-1% error over the whole operating flow rate range of 0.05-120 (mL/h). The pump is designed to be used with a motor drive, which has been configured to be the size of a typical pen, improving the patient's mobility and wellbeing. The new micro-pump can be used for a variety of applications including chemotherapy, insulin delivery, pain management and antibiotic therapy. A complete therapy system is enabled by providing physicians with devices that programme the Pendrive for patient specific therapies.

  17. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.

    PubMed

    Tsai, Sung-Lin; Chiang, Yang; Wang, Min-Haw; Chen, Ming-Kun; Jang, Ling-Sheng

    2014-08-01

    A battery-powered portable instrument system for the single-HeLa-cell trapping and analyses is developed. A method of alternating current electrothermal (ACET) and DEP are employed for the cell trapping and the method of impedance spectroscopy is employed for cell characterizations. The proposed instrument (160 mm × 170 mm × 110 mm, 1269 g) equips with a highly efficient energy-saving design that promises approximately 120 h of use. It includes an impedance analyzer performing an excitation voltage of 0.2-2 Vpp and a frequency sweep of 11-101 kHz, function generator with the sine wave output at an operating voltage of 1-50 Vpp with a frequency of 4-12 MHz, cell-trapping biochip, microscope, and input/output interface. The biochip for the single cell trapping is designed and simulated based on a combination of ACET and DEP forces. In order to improve measurement accuracy, the curve fitting method is adopted to calibrate the proposed impedance spectroscopy. Measurement results from the proposed system are compared with results from a precision impedance analyzer. The trapped cell can be modeled for numerical analyses. Many advantages are offered in the proposed instrument such as the small volume, real-time monitoring, rapid analysis, low cost, low-power consumption, and portable application.

  18. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system.

    PubMed

    Stevens, Richard C; Soelberg, Scott D; Near, Steve; Furlong, Clement E

    2008-09-01

    Saliva provides a useful and noninvasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a six-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/mL (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/mL (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrixes.

  19. Flexible field goniometer system: the Goniometer for Outdoor Portable Hyperspectral Earth Reflectance

    NASA Astrophysics Data System (ADS)

    Bachmann, Charles M.; Abelev, Andrei; Montes, Marcos J.; Philpot, William; Gray, Deric; Doctor, Katarina Z.; Fusina, Robert A.; Mattis, Gordon; Chen, Wei; Noble, Scott D.; Coburn, Craig; Corl, Tom; Slomer, Lawrence; Nichols, C. Reid; van Roggen, Elena; Hughes, Roy J.; Carr, Stephen; Kharabash, Sergey; Brady, Andrew; Vermillion, Michael

    2016-07-01

    This paper describes a portable hyperspectral goniometer system for measurement of hemispherical conical reflectance factor (HCRF) data for terrestrial applications, especially in the coastal zone. This system, the Goniometer for Portable Hyperspectral Earth Reflectance (GOPHER), consists of a computer-controlled Spectra Vista Corporation HR-1024 full-range spectrometer mounted on a rotating arc and track assembly, allowing complete coverage in zenith and azimuth of a full hemisphere for recording HCRF. The control software allows customized scan patterns to be quickly modified in the field, providing for flexibility in recording HCRF and the opposition effect with varying grid sizes and scan ranges in both azimuth and zenith directions. The spectrometer track can be raised and lowered on a mast to accommodate variations in terrain and land cover. To minimize the effect of variations in illumination during GOPHER scan cycles, a dual-spectrometer approach has been adapted to link records of irradiance recorded by a second spectrometer during the GOPHER HCRF scan cycle. Examples of field data illustrate the utility of the instrument for coastal studies.

  20. The Generation of Building Floor Plans Using Portable and Unmanned Aerial Vehicle Mapping Systems

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chen, Y. L.; Chiang, K. W.; Lai, Y. C.

    2016-06-01

    Indoor navigation or positioning systems have been widely developed for Location-Based Services (LBS) applications and they come along with a keen demand of indoor floor plans for displaying results even improving the positioning performance. Generally, the floor plans produced by robot mapping focus on perceiving the environment to avoid obstacles and using the feature landmarks to update the robot position in the relative coordinate frame. These maps are not accurate enough to incorporate to the indoor positioning system. This study aims at developing Indoor Mobile Mapping System (Indoor MMS) and concentrates on generating the highly accurate floor plans based on the robot mapping technique using the portable, robot and Unmanned Aerial Vehicles (UAV) platform. The proposed portable mapping system prototype can be used in the chest package and the handheld approach. In order to evaluate and correct the generated floor plans from robot mapping techniques, this study builds the testing and calibration field using the outdoor control survey method implemented in the indoor environments. Based on control points and check points from control survey, this study presents the map rectification method that uses the affine transformation to solve the scale and deformation problems and also transfer the local coordinate system into world standard coordinate system. The preliminary results illustrate that the final version of the building floor plan reach 1 meter absolute positioning accuracy using the proposed mapping systems that combines with the novel map rectification approach proposed. These maps are well geo-referenced with world coordinate system thus it can be applied for future seamless navigation applications including indoor and outdoor scenarios.

  1. A Portable Shoulder-Mounted Camera System for Surgical Education in Spine Surgery.

    PubMed

    Pham, Martin H; Ohiorhenuan, Ifije E; Patel, Neil N; Jakoi, Andre M; Hsieh, Patrick C; Acosta, Frank L; Wang, Jeffrey C; Liu, John C

    2017-02-07

    The past several years have demonstrated an increased recognition of operative videos as an important adjunct for resident education. Currently lacking, however, are effective methods to record video for the purposes of illustrating the techniques of minimally invasive (MIS) and complex spine surgery. We describe here our experiences developing and using a shoulder-mounted camera system for recording surgical video. Our requirements for an effective camera system included wireless portability to allow for movement around the operating room, camera mount location for comfort and loupes/headlight usage, battery life for long operative days, and sterile control of on/off recording. With this in mind, we created a shoulder-mounted camera system utilizing a GoPro™ HERO3+, its Smart Remote (GoPro, Inc., San Mateo, California), a high-capacity external battery pack, and a commercially available shoulder-mount harness. This shoulder-mounted system was more comfortable to wear for long periods of time in comparison to existing head-mounted and loupe-mounted systems. Without requiring any wired connections, the surgeon was free to move around the room as needed. Over the past several years, we have recorded numerous MIS and complex spine surgeries for the purposes of surgical video creation for resident education. Surgical videos serve as a platform to distribute important operative nuances in rich multimedia. Effective and practical camera system setups are needed to encourage the continued creation of videos to illustrate the surgical maneuvers in minimally invasive and complex spinal surgery. We describe here a novel portable shoulder-mounted camera system setup specifically designed to be worn and used for long periods of time in the operating room.

  2. Development and flight test of a helicopter, X-band, portable precision landing system concept

    NASA Technical Reports Server (NTRS)

    Davis, T. J.; Clary, G. R.; Chisholm, J. P.; Macdonald, S. L.

    1985-01-01

    A beacon landing system (BLS) is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. The system is based on state-of-of-the-art X-band radar technology and digital processing techniques. The bLS airborne hardware consists of an X-band receiver and a small micropreocessor, installed in conjunction wht the aircraft instrument landing system (ILS) receiver. The microprocessor analyzes the X-band, BLS pulses and outputs ILS-compatible localizer and glide slope signals. Range information is obtained using an on-board weather/mapping radar in conjunction with the BLS. The ground station is an inexpensive, portable unit; it weighs less than 70 lb and can be quickly deployed at a landing site. Results from the flight-test program show that the BLS has a significant potential for providing rotorcaraft with low-cost, precision instrument approach capability in remote areas.

  3. Development and flight test of a helicopter, X-band, portable precision landing system concept

    NASA Technical Reports Server (NTRS)

    Davis, T. J.; Clary, G. R.; Chisholm, J. P.; Macdonald, S. L.

    1985-01-01

    A beacon landing system (BLS) is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. The system is based on state-of-the-art X-band radar technology and digital processing techniques. The BLS airborne hardware consists of an X-band receiver and a small microprocessor, installed in conjunction with the aircraft instrument landing system (ILS) receiver. The microprocessor analyzes the X-band, BLS pulses and outputs ILS-compatible localizer and glide slope signals. Range information is obtained using an on-board weather/mapping radar in conjunction with the BLS. The ground station is an inexpensive, portable unit; it weighs less than 70 lb and can be quickly deployed at a landing site. Results from the flight-test program show that the BLS has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.

  4. OPTIMIZING A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.

    2010-02-22

    The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.

  5. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  6. Portable system and method combining chromatography and array of electrochemical sensors

    DOEpatents

    Zaromb, Solomon; Stetter, Joseph R.

    1989-01-01

    A portable system for analyzing a fluid sample includes a small, portable, low-pressure and low-power chromatographic analyzer and a chemical parameter spectrometry monitor including an array of sensors for detecting, identifying and measuring the concentrations of a variety of components in the eluent from the chromatographic analyzer. The monitor includes one or more operating condition controllers which may be used to change one or more of the operating conditions during exposure of the sensors to the eluent from the chromatography analyzer to form a response pattern which is then compared with a library of previously established patterns. Gas and liquid chromatographic embodiments are disclosed. In the gas embodiment, the operating condition controllers include heated filaments which may convert electrochemically inactive components to electrochemically active products. In the liquid chromatography embodiment, low-power, liquid-phase equivalents of heated filaments are used with appropriate sensors. The library response patterns may be divided into subsets and the formed pattern may be assigned for comparison only with the patterns of a particular subset.

  7. A Portable, Shock-Proof, Surface-Heated Droplet PCR System for Escherichia coli Detection

    PubMed Central

    Angus, Scott V.; Cho, Soohee; Harshman, Dustin K.; Song, Jae-Young; Yoon, Jeong-Yeol

    2015-01-01

    A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 103 genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides realtime droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008

  8. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  9. Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout.

    PubMed

    Kong, Janay E; Wei, Qingshan; Tseng, Derek; Zhang, Jingzi; Pan, Eric; Lewinski, Michael; Garner, Omai B; Ozcan, Aydogan; Di Carlo, Dino

    2017-03-02

    Key challenges with point-of-care (POC) nucleic acid tests include achieving a low-cost, portable form factor, and stable readout, while also retaining the same robust standards of benchtop lab-based tests. We addressed two crucial aspects of this problem, identifying a chemical additive, hydroxynaphthol blue, that both stabilizes and significantly enhances intercalator-based fluorescence readout of nucleic acid concentration, and developing a cost-effective fiber-optic bundle-based fluorescence microplate reader integrated onto a mobile phone. Using loop-mediated isothermal amplification on lambda DNA we achieve a 69-fold increase in signal above background, 20-fold higher than the gold standard, yielding an overall limit of detection of 25 copies/μL within an hour using our mobile-phone-based platform. Critical for a point-of-care system, we achieve a >60% increase in fluorescence stability as a function of temperature and time, obviating the need for manual baseline correction or secondary calibration dyes. This field-portable and cost-effective mobile-phone-based nucleic acid amplification and readout platform is broadly applicable to other real-time nucleic acid amplification tests by similarly modulating intercalating dye performance and is compatible with any fluorescence-based assay that can be run in a 96-well microplate format, making it especially valuable for POC and resource-limited settings.

  10. Portable Welder

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A low cost, low power, self-contained portable welding gun designed for joining thermoplastics which become soft when heated and harden when cooled was developed originally by NASA's Langley Research Center for repairing helicopter windshields. Welder has a broad range of applications for joining both thermoplastic materials in the aerospace, automotive, appliance, and construction industries. Welders portability and low power requirement allow its use on-site in any type of climate, with power supplied by a variety of portable sources.

  11. Portable single-channel NIRS-based BMI system for motor disabilities' communication tools.

    PubMed

    Sagara, Kazuhiko; Kido, Kunihiko; Ozawa, Kuniaki

    2009-01-01

    A portable near-infrared spectroscopy (NIRS) -based brain-machine Interface (BMI) system featuring single-channel probe, BMI controller and Infrared-emission apparatus was developed. As a switching technology for external devices, the threshold logic was proposed, which detects the blood volume change in the operator's frontal lobe. Experiments showed that the operator was able to change the TV programs or get forward the toy robot within 16 s (the mean is 11.77 s and the standard deviation is 2.35 s) after the mental calculation. In addition, the menu selection program was proposed for motor disabilities and the preliminary test showed that he could successively select the sentence from several candidates. It was shown that this system would provide the external device's control capabilities for motor disabilities.

  12. Modeling-based optimization study for an EDXRD system in a portable configuration

    NASA Astrophysics Data System (ADS)

    Peterzol, Angela; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2011-10-01

    Energy-Dispersive X-ray Diffraction (EDXRD) is well suited for the detection of narcotics and a wide range of explosives. This technique, combined with the dual-energy tomosynthesis, has been used for verification of a novel portable imaging system, the aim of which is characterization of dangerous/illicit materials inside objects. We present the design methodology and optimization study using EDXRD modality. In order to evaluate the experimental conditions best suited for system purposes, kinematic theory of diffraction has been exploited to model the height and shape of diffraction patterns. From the simulation-based analysis a diffraction angle of 2.75°±0.10° and an X-ray tube voltage ≤160 kV have been selected.

  13. A preliminary study for portable walking distance measurement system using ultrasonic sensors.

    PubMed

    Jang, Yongwon; Shin, Seungchul; Lee, Jeong Won; Kim, Seunghwan

    2007-01-01

    Efforts have been made to measure the distance traveled by humans in motion, in ways that are compact and accurate, for a long time. There are several ways to measure the distance moved by walking or running in daily life, some of which already use commercial products, but those methods are inaccurate. In this study, a new method is provided using ultrasonic sensors, and this is the fundamental study. The newly devised 'Portable Walking Distance Measurement System' was developed using ultrasonic wave characteristics and has approximately 90% accuracy. This result provides an opportunity to estimate human activities and the developed system would provide more comfort and an exact way to measure the walking distance in daily life and could be applied to exercise.

  14. Development of a portable and fast wire tension measurement system for MWPC construction

    NASA Astrophysics Data System (ADS)

    Pan, Jing-Hui; Ma, Chang-Li; Gong, Xue-Yu; Sun, Zhi-Jia; Wang, Yan-Feng; Yin, Chen-Yan; Gong, Lei

    2016-09-01

    In a multi-wire proportional chamber detector (MWPC), the anode and signal wires must maintain suitable tension, which is very important for the detector’s stable and accurate performance. As a result, wire tension control and measurement is essential in MWPC construction. A high pressure 3He MWPC detector is to be used as the thermal neutron detector of the multi-functional reflectometer at China Spallation Neutron Source, and in the construction of the detector, we have developed a wire tension measurement system. This system is accurate, portable and time-saving. With it, the wire tension on an anode wire plane has been tested. The measurement results show that the wire tension control techniques used in detector manufacture are reliable. Supported by National Natural Science Foundation of China (A050506), State Key Laboratory of Particle Detection and Electronics and Key Laboratory of China Academy of Engineering Physics (Y490KF40HD)

  15. A portable high-field pulsed magnet system for x-ray scattering studies.

    SciTech Connect

    Islam, Z.; Ruff, J.P.C.; Nojiri, H.; Matsuda, Y. H.; Ross, K. A.; Gaulin, B. D.; Qu, Z.; Lang, J. C.

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (- 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  16. Humidifier Development and Applicability to the Next Generation Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce C.; Barnes, Bruce G.; Sompayrac, Robert G.; Paul, Heather L.

    2011-01-01

    A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG).

  17. Proposed Schematics for an Advanced Development Lunar Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg

    2010-01-01

    The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.

  18. Advanced Spacesuit Portable Life Support System Oxygen Regulator Development and Testing

    NASA Technical Reports Server (NTRS)

    Campbell, Colin; Vogel, Matt R.; Watts, Carly

    2011-01-01

    The advanced spacesuit portable life support system (PLSS) oxygen regulators represent an evolutionary approach to regulator development. Several technology development prototypes have been produced that borrow much of the mechanical regulator design from the well proven Shuttle/ISS Extravehicular Mobility Unit (EMU) Secondary Oxygen Regulator, but incorporate a motor-settable pressure set-point feature that facilitates significantly greater operational flexibility. For example, this technology would enable EVA to begin at a higher suit pressure, which would reduce pre-breathe time, and then slowly step down to a lower pressure to increase suit mobility for the duration of the EVA. Comprehensive testing of the prototypes was performed on the component level as well as part of the PLSS 1.0 system level testing. Results from these tests characterize individual prototype performance and demonstrate successful operation during multiple nominal and contingency EVA modes

  19. Linear readout of object manifolds

    NASA Astrophysics Data System (ADS)

    Chung, SueYeon; Lee, Daniel D.; Sompolinsky, Haim

    2016-06-01

    Objects are represented in sensory systems by continuous manifolds due to sensitivity of neuronal responses to changes in physical features such as location, orientation, and intensity. What makes certain sensory representations better suited for invariant decoding of objects by downstream networks? We present a theory that characterizes the ability of a linear readout network, the perceptron, to classify objects from variable neural responses. We show how the readout perceptron capacity depends on the dimensionality, size, and shape of the object manifolds in its input neural representation.

  20. A novel portable perfused manometric system for recording of small intestinal motility.

    PubMed

    Samsom, M; Smout, A J; Hebbard, G; Fraser, R; Omari, T; Horowitz, M; Dent, J

    1998-04-01

    The development of solid-state catheters with miniature pressure transducers and portable dataloggers with a large memory capacity has allowed recording of gastrointestinal motility in ambulant subjects. Developments in silicone rubber extrusion technology made it possible to build a perfused manometric system, using a perfused manometric assembly requiring a low volume of perfusate. In the present study the feasibility of recording and automated analysis of small intestinal motility using a perfused multiple lumen manometric system was evaluated in seven healthy volunteers. Pressures were recorded from 12 sideholes arranged in four clusters spaced at 10-cm intervals from the catheter tip. Each channel was perfused at 0.15 mL min-1 with degassed water by a portable, low-compliance, perfusion pump. The 12 sidehole recording channels were connected to external transducers mounted on a belt. Pressure data were stored in two dataloggers. Motility was recorded in the sitting (30 min), and supine (30 min) position, during walking (30 min) and postprandially (90 min). Using purpose-built software baseline variations were corrected for and manometric variables (number of pressure waves, mean amplitude and motility index) calculated. Bench testing of the manometric assembly showed a median baseline pressure offset of 4.2 kPa (range 3.7-10.1) and upon occlusion a rise rate of 27.8 kPa sec-1 (range 19.7-30.8). Changes in body position affected baseline pressures so that compared to the supine position changes in baseline pressure varied between 1.5 +/- 0.7 kPa and 1.9 +/- 0.6 kPa during sitting (P < 0.02), and between 1.7 +/- 0.7 kPa and 1.5 +/- 0.9 kPa during walking (P < 0.03). Manometric recordings obtained during the fasting period showed an increase in small intestinal motor activity during walking. In the postprandial period no differences in motility variables were observed within one cluster and in time. Recording of small intestinal motility with a multiple

  1. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  2. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    PubMed Central

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-01-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  3. Handheld and portable test systems for immunodiagnostics, nucleic acid detection and more

    NASA Astrophysics Data System (ADS)

    Faulstich, Konrad; Haberstroh, Klaus; Gruler, Roman; Eberhard, Michael; Wiest, Thomas; Lentzsch, Dirk

    2008-04-01

    Emergency Diagnostics, Homeland Security, Epidemiological Preparedness and the high cost of the Health Care Systems have increased demand for affordable and mobile point of care (POC) devices with highest sensitivity, specificity and rapid time to result. We have developed pocket sized systems for point of care and field based tests based on fluorescence read-out. The core consists of battery operated, 90 gram electro-optical units with optional wireless data transfer, which have been optimized to achieve highest accuracy and sensitivity paired with simplicity of use. The robust systems have been applied to molecular diagnostics such as DNA based testing, immunodiagnostics as well as environmental monitoring and agricultural testing. We will show examples of DNA testing, testing of drugs and toxins, cell based assays and water monitoring. We will discuss drivers and rationale for mobile testing platforms and address critical points such as sample preparation and sampling problems e.g. target delivery in small volumes. ESE's battery-operated handheld and mobile testing platforms have been shown to provide sensitive, accurate, and specific results, as well as rapid turnaround. The stand-alone devices demonstrate operational and physical robustness, and they can be manufactured to be affordable. Some underlying assays work directly from clinical samples such as urine or blood.

  4. A highly portable, rapidly deployable system for eddy covariance measurements of CO2 fluxes

    SciTech Connect

    Billesbach, David P.; Fischer, Marc L.; Torn, Margaret S.; Berry, Joe A.

    2001-09-19

    To facilitate the study of flux heterogeneity within a region, the authors have designed, built, and field-tested a highly portable, rapidly deployable, eddy covariance CO{sub 2} flux measurement system. The system is built from off-the-shelf parts and was assembled at a minimal cost. The unique combination of features of this system allow for a very rapid deployment with a minimal number of field personnel. The system is capable of making high precision, unattended measurements of turbulent CO{sub 2} fluxes, latent heat (LE) fluxes, sensible heat fluxes (H), and momentum transfer fluxes. In addition, many of the meteorological and ecosystem variables necessary for quality control of the fluxes and for running ecosystem models are measured. A side-by-side field comparison of the system at a pair of established AmeriFlux sites has verified that, for single measurements, the system is capable of CO{sub 2} flux accuracy of about {+-} 1.2 {micro}mole/m{sup 2}/sec, LE flux accuracy of about {+-} 15 Watts/m{sup 2}, H flux accuracy of about {+-} 7 Watts/m{sup 2}, and momentum transfer flux accuracy of about {+-} 11 gm-m/sec/sec. System deployment time is between 2 and 4 hours by a single person. The system was measured to draw between 30 and 35 Watts of power and may be run from available line power, storage batteries, or solar panels.

  5. Carotid arterial blood pressure waveform monitoring using a portable ultrasound system.

    PubMed

    Joohyun Seo; Pietrangelo, Sabino J; Hae-Seung Lee; Sodini, Charles G

    2015-08-01

    This work presents a non-invasive arterial blood pressure (ABP) waveform monitoring technique using ultrasound. A portable ultrasound system to excite ultrasound transducers and acquire data is designed with off-the-shelf components. The insonation angles are identified using a vector Doppler technique based on the cosine dependency of the Doppler signals. The pulse pressure of an estimated waveform at the left common carotid artery is compared to the standard sphygmomanometer measurement in a clinical test. The estimated carotid ABP waveform shows excellent agreement to the finger ABP waveform with expected discrepancy of the systolic peak shape due to different measurement sites. The proposed method also tracks slow blood pressure fluctuations. This validation on human subjects shows potential for a noninvasive blood pressure waveform monitoring device at central arterial sites.

  6. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Clary, G. R.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder based beacon landing system (BLS) applying state of the art X band radar technology and digital processing techniques, has been built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide slope derivation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low cost, precision instrument approach capability in remote areas.

  7. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.

  8. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  9. Portable detection system for standoff sensing of explosives and hazardous materials

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Kumar, Deepak; Bhardwaj, Neha; Gupta, Saurabh; Chandra, Hukum; Maini, Anil K.

    2013-11-01

    Standoff Quartz Enhanced Laser Photoacoustic Spectroscopy (QE-LPAS) technique is emerging as a powerful technique for detection of hazardous chemicals, biological and explosive agents. Experimentally, we have recorded standoff photoacoustic spectrum of hazardous molecules adsorbed at diffused surfaces from a distance of up to 25 m. Tunable mid infrared quantum cascade lasers (MIR-QCL) in the wavelength range 7.0-12.0 μm are being used as optical source. Samples of Dinitrotoluene (DNT), Pentaerythritoltetranitrate (PETN) having adsorbed concentration of approximately 5.0 μg/cm2 were detected. Acetone and nitrobenzene samples in liquid having concentration 200 nl approximately sealed in polythene sachet were detected from a standoff distance of up to 25 m. All the above measurements are reported for a Signal to Noise Ratio (SNR) of 10, optimized for maintaining very less false alarm rates for field measurements. A portable trolley mounted system has been developed for field applications.

  10. Toward a real-time positioning system for a portable EMI sensor

    NASA Astrophysics Data System (ADS)

    Fernández, Juan Pablo; Barrowes, Benjamin; O'Neill, Kevin; Shamatava, Irma; Shubitidze, Fridon

    2013-06-01

    The Portable Decoupled Electromagnetic Induction Sensor (Pedemis) is a new instrument designed to provide diverse, high-quality data for detection and discrimination of unexploded ordnance in rocky, treed, or otherwise forbidding terrain. It consists of a square array of nine transmitters and a similar arrangement of receivers that measure all three vector components of the time-dependent magnetic field at nine different locations. The receiver assembly can be fixed to the transmitters or detached from them for enhanced flexibility and convenience. The latter mode requires a positioning system that finds the location of the receivers with respect to the transmitters at any time without hampering portability or requiring communication with outside agents (which may be precluded by field conditions). The current system examines the primary field during the transmitters' on-time phase and optimizes to find the location at which it is most likely to obtain the combination of measured values. We have developed an algorithm that computes mutual inductances analytically and exploits their geometric information to predict location. The method does full justice to Faraday's Law from the start and incorporates the fine structure of both transmitters and receivers; it is exact and involves only elementary functions, making it unnecessary to set up and monitor approximations and guaranteeing robustness and stability everywhere; it uses a fraction of the memory and is orders-of-magnitude faster than methods based on numerical quadrature. We have tested the algorithm on the current Pedemis prototype and have obtained encouraging results which we summarize in this paper.

  11. Human Visual System-Based Fundus Image Quality Assessment of Portable Fundus Camera Photographs.

    PubMed

    Wang, Shaoze; Jin, Kai; Lu, Haitong; Cheng, Chuming; Ye, Juan; Qian, Dahong

    2016-04-01

    Telemedicine and the medical "big data" era in ophthalmology highlight the use of non-mydriatic ocular fundus photography, which has given rise to indispensable applications of portable fundus cameras. However, in the case of portable fundus photography, non-mydriatic image quality is more vulnerable to distortions, such as uneven illumination, color distortion, blur, and low contrast. Such distortions are called generic quality distortions. This paper proposes an algorithm capable of selecting images of fair generic quality that would be especially useful to assist inexperienced individuals in collecting meaningful and interpretable data with consistency. The algorithm is based on three characteristics of the human visual system--multi-channel sensation, just noticeable blur, and the contrast sensitivity function to detect illumination and color distortion, blur, and low contrast distortion, respectively. A total of 536 retinal images, 280 from proprietary databases and 256 from public databases, were graded independently by one senior and two junior ophthalmologists, such that three partial measures of quality and generic overall quality were classified into two categories. Binary classification was implemented by the support vector machine and the decision tree, and receiver operating characteristic (ROC) curves were obtained and plotted to analyze the performance of the proposed algorithm. The experimental results revealed that the generic overall quality classification achieved a sensitivity of 87.45% at a specificity of 91.66%, with an area under the ROC curve of 0.9452, indicating the value of applying the algorithm, which is based on the human vision system, to assess the image quality of non-mydriatic photography, especially for low-cost ophthalmological telemedicine applications.

  12. Sniffer used as portable hydrogen leak detector

    NASA Technical Reports Server (NTRS)

    Dayan, V. H.; Rommel, M. A.

    1966-01-01

    Sniffer type portable monitor detects hydrogen in air, oxygen, nitrogen, or helium. It indicates the presence of hydrogen in contact with activated palladium black by a change in color of a thermochromic paint, and indicates the quantity of hydrogen by a sensor probe and continuous readout.

  13. Portable basketball rim testing device

    DOEpatents

    Abbott, W. Bruce; Davis, Karl C.

    1993-01-01

    A portable basketball rim rebound testing device 10 is illustrated in two preferred embodiments for testing the rebound or energy absorption characteristics of a basketball rim 12 and its accompanying support to determine likely rebound or energy absorption charcteristics of the system. The apparatus 10 includes a depending frame 28 having a C-clamp 36 for releasably rigidly connecting the frame to the basketball rim 12. A glide weight 60 is mounted on a guide rod 52 permitting the weight 60 to be dropped against a calibrated spring 56 held on an abutment surface on the rod to generate for deflecting the basketball rim and then rebounding the weight upwardly. A photosensor 66 is mounted on the depending frame 28 to sense passage of reflective surfaces 75 on the weight to thereby obtain sufficient data to enable a processing means 26 to calculate the rebound velocity and relate it to an energy absorption percentage rate of the rim system 12. A readout is provided to display the energy absorption percentage.

  14. A Readout IC Using Two-Step Fastest Signal Identification for Compact Data Acquisition of PET Systems.

    PubMed

    Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2016-10-20

    A readout integrated circuit (ROIC) using two-step fastest signal identification (FSI) is proposed to reduce the number of input channels of a data acquisition (DAQ) block with a high-channel reduction ratio. The two-step FSI enables the proposed ROIC to filter out useless input signals that arise from scattering and electrical noise without using complex and bulky circuits. In addition, an asynchronous fastest signal identifier and a self-trimmed comparator are proposed to identify the fastest signal without using a high-frequency clock and to reduce misidentification, respectively. The channel reduction ratio of the proposed ROIC is 16:1 and can be extended to 16 × N:1 using N ROICs. To verify the performance of the two-step FSI, the proposed ROIC was implemented into a gamma photon detector module using a Geiger-mode avalanche photodiode with a lutetium-yttrium oxyorthosilicate array. The measured minimum detectable time is 1 ns. The difference of the measured energy and timing resolution between with and without the two-step FSI are 0.8% and 0.2 ns, respectively, which are negligibly small. These measurement results show that the proposed ROIC using the two-step FSI reduces the number of input channels of the DAQ block without sacrificing the performance of the positron emission tomography (PET) systems.

  15. A Readout IC Using Two-Step Fastest Signal Identification for Compact Data Acquisition of PET Systems

    PubMed Central

    Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2016-01-01

    A readout integrated circuit (ROIC) using two-step fastest signal identification (FSI) is proposed to reduce the number of input channels of a data acquisition (DAQ) block with a high-channel reduction ratio. The two-step FSI enables the proposed ROIC to filter out useless input signals that arise from scattering and electrical noise without using complex and bulky circuits. In addition, an asynchronous fastest signal identifier and a self-trimmed comparator are proposed to identify the fastest signal without using a high-frequency clock and to reduce misidentification, respectively. The channel reduction ratio of the proposed ROIC is 16:1 and can be extended to 16 × N:1 using N ROICs. To verify the performance of the two-step FSI, the proposed ROIC was implemented into a gamma photon detector module using a Geiger-mode avalanche photodiode with a lutetium-yttrium oxyorthosilicate array. The measured minimum detectable time is 1 ns. The difference of the measured energy and timing resolution between with and without the two-step FSI are 0.8% and 0.2 ns, respectively, which are negligibly small. These measurement results show that the proposed ROIC using the two-step FSI reduces the number of input channels of the DAQ block without sacrificing the performance of the positron emission tomography (PET) systems. PMID:27775623

  16. Portable inference engine: An extended CLIPS for real-time production systems

    NASA Technical Reports Server (NTRS)

    Le, Thach; Homeier, Peter

    1988-01-01

    The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.

  17. Portable data-logging system for industrial hygiene personal chlorine monitoring

    SciTech Connect

    Langhorst, M.L.; Illes, S.P. Jr.

    1986-02-01

    The combination of suitable portable sensors or instruments with small microprocessor-based data-logger units has made it possible to obtain detailed monitoring data for many health and environmental applications. Following data acquisition in field use, the logged data may be transferred to a desk-top personal computer for complete flexibility in manipulation of data and formating of results. A system has been assembled from commercial components and demonstrated for chlorine personal monitoring applications. The system consists of personal chlorine sensors, a Metrosonics data-logger and reader unit, and an Apple II Plus personal computer. The computer software was developed to handle sensor calibration, data evaluation and reduction, report formating and long-term storage of raw data on a disk. This system makes it possible to generate time-concentration profiles, evaluate dose above a threshold, quantitate short-term excursions and summarize time-weighted average (TWA) results. Field data from plant trials demonstrated feasibility of use, ruggedness and reliability. No significant differences were found between the time-weighted average chlorine concentrations determined by the sensor/logger system and two other methods: the sulfamic acid bubbler reference method and the 3M Poroplastic diffusional dosimeter. The sensor/data-logger system, however, provided far more information than the other two methods in terms of peak excursions, TWAs and exposure doses. For industrial hygiene applications, the system allows better definition of employee exposures, particularly for chemicals with acute as well as chronic health effects.

  18. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Palonen, V.

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  19. A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements

    SciTech Connect

    Palonen, V.

    2015-12-15

    We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{sub 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  20. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.

    PubMed

    Palonen, V

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  1. Portable point-of-care blood analysis system for global health (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dou, James J.; Aitchison, James Stewart; Chen, Lu; Nayyar, Rakesh

    2016-03-01

    In this paper we present a portable blood analysis system based on a disposable cartridge and hand-held reader. The platform can perform all the sample preparation, detection and waste collection required to complete a clinical test. In order to demonstrate the utility of this approach a CD4 T cell enumeration was carried out. A handheld, point-of-care CD4 T cell system was developed based on this system. In particular we will describe a pneumatic, active pumping method to control the on-chip fluidic actuation. Reagents for the CD4 T cell counting assay were dried on a reagent plug to eliminate the need for cold chain storage when used in the field. A micromixer based on the active fluidic actuation was designed to complete sample staining with fluorescent dyes that was dried on the reagent plugs. A novel image detection and analysis algorithm was developed to detect and track the flight of target particles and cells during each analysis. The handheld, point-of-care CD4 testing system was benchmarked against clinical cytometer. The experimental results demonstrated experimental results were closely matched with the flow cytometry. The same platform can be further expanded into a bead-array detection system where other types of biomolecules such as proteins can be detected using the same detection system.

  2. A portable measurement system for subcriticality measurements by the Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1987-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. 8 refs.

  3. Portable life support system regenerative carbon dioxide and water vapor removal by metal oxide absorbents preprototype hardware development and testing

    NASA Technical Reports Server (NTRS)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Cusick, Robert J.

    1992-01-01

    NASA-Johnson has acquired a preprototype/full-scale metal oxide CO2 and humidity remover (MOCHR), together with its regeneration module. Tests conducted prior to delivery by the MOCHR's manufacturer have demonstrated the concurrent removal of H2O and CO2 at rates, and under conditions, that are applicable to EVA Portable Life Support Systems.

  4. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun

    2011-02-15

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  5. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT: ON-SITE INCINERATION OF SHIRCO INFRARED SYSTEMS PORTABLE PILOT TEST UNIT, TIMES BEACH, MISSOURI

    EPA Science Inventory

    During the period of July 8 - July 12, 1985, the Shirco Infrared Systems Portable Pilot Test Unit was in operation at the Times Beach Dioxin Research Facility to demonstrate the capability of Shirco's infrared technology to decontaminate silty soil laden with 2,3,7,8-tetrachlorod...

  6. Methodology for cost analysis of film-based and filmless portable chest systems

    NASA Astrophysics Data System (ADS)

    Melson, David L.; Gauvain, Karen M.; Beardslee, Brian M.; Kraitsik, Michael J.; Burton, Larry; Blaine, G. James; Brink, Gary S.

    1996-05-01

    Many studies analyzing the costs of film-based and filmless radiology have focused on multi- modality, hospital-wide solutions. Yet due to the enormous cost of converting an entire large radiology department or hospital to a filmless environment all at once, institutions often choose to eliminate film one area at a time. Narrowing the focus of cost-analysis may be useful in making such decisions. This presentation will outline a methodology for analyzing the cost per exam of film-based and filmless solutions for providing portable chest exams to Intensive Care Units (ICUs). The methodology, unlike most in the literature, is based on parallel data collection from existing filmless and film-based ICUs, and is currently being utilized at our institution. Direct costs, taken from the perspective of the hospital, for portable computed radiography chest exams in one filmless and two film-based ICUs are identified. The major cost components are labor, equipment, materials, and storage. Methods for gathering and analyzing each of the cost components are discussed, including FTE-based and time-based labor analysis, incorporation of equipment depreciation, lease, and maintenance costs, and estimation of materials costs. Extrapolation of data from three ICUs to model hypothetical, hospital-wide film-based and filmless ICU imaging systems is described. Performance of sensitivity analysis on the filmless model to assess the impact of anticipated reductions in specific labor, equipment, and archiving costs is detailed. A number of indirect costs, which are not explicitly included in the analysis, are identified and discussed.

  7. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2015-04-01

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×106 Hz without any loses and will report a maximum event rate of 6.11×105 Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  8. System-level considerations for the front-end readout ASIC in the CBM experiment from the power supply perspective

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.

    2017-03-01

    New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.

  9. The portable P300 dialing system based on tablet and Emotiv Epoc headset.

    PubMed

    Tong Jijun; Zhang Peng; Xiao Ran; Ding Lei

    2015-08-01

    A Brain-computer interface (BCI) is a novel communication system that translates brain signals into a control signal. Now with the appearance of the commercial EEG headsets and mobile smart platforms (tablet, smartphone), it is possible to develop the mobile BCI system, which can greatly improve the life quality of patients suffering from motor disease, such as amyotrophic lateral scleroses (ALS), multiple sclerosis, cerebral palsy and head trauma. This study adopted a 14-channel Emotiv EPOC headset and Microsoft surface pro 3 to realize a dialing system, which was represented by 4×3 matrices of alphanumeric characters. The performance of the online portable dialing system based on P300 is satisfying. The average classification accuracy reaches 88.75±10.57% in lab and 73.75±16.94% in metro, while the information transfer rate (ITR) reaches 7.17±1.80 and 5.05±2.17 bits/min respectively. This means the commercial EEG headset and tablet has good prospect in developing real time BCI system in realistic environments.

  10. A portable laser system for high-precision atom interferometry experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Prevedelli, M.; Giorgini, A.; Tino, G. M.; Peters, A.

    2011-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for a portable gravimeter based on atom interferometry that will be capable of performing high-precision gravity measurements directly at sites of geophysical interest. This laser system is constructed in a compact and mobile design so that it can be transported to different locations, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19″ rack and emits light at five different frequencies simultaneously on up to 12 fibre ports at a total output power of 800 mW. These frequencies can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked diode lasers with a phase noise spectral density of less than 1 μrad/Hz1/2 in the frequency range in which our gravimeter is most sensitive to noise. We characterise this laser system and evaluate the performance limits it imposes on an interferometer.

  11. A portable microfluidic chip system for cancer diagnosis with simultaneous detection methods

    NASA Astrophysics Data System (ADS)

    Choi, Hyoungseon; Kim, Kwang Bok; Jun, Changsu; Chung, Taek Dong; Kim, Hee Chan

    2012-10-01

    In clinical and biological fields, circulating tumor cells (CTCs) attracts much attention for the valuable information about cancer progression, cancer status, and prognosis after the treatment with metastatic cancer. Recently, many researchers have studied to count CTCs efficiently. Representative methods of CTC detection are the immune-reaction based method and the morphology-based method. However, the immune-reaction based method is weak due to the imperfect markers, and morphology-based method has a defect because of the unclear criterion. In this paper, we described the CTC detection system based on flow cytometry technique with morphology and immune reaction based methods. The size and the immune-reaction information can be simultaneously obtained from DC impedance based detection and fluorescence detection, respectively. The performance of our system was evaluated with fluorescence beads. To apply the proposed system to biological samples, the human ovarian cancer cell lines (OVCAR-3) suspended in phosphate buffered saline (PBS) were tested. OVCAR-3 cells were stained by fluorescence tagged anti-epithelial cancer adhesion molecule (EpCAM). The portable flow cytometer system could detect the cancer cells with these methods. The proposed system has sufficient potential for point-of-care testing type cancer cell counter and many valuable clinical applications in the near future.

  12. Accurate and portable weigh-in-motion system for manifesting air cargo

    NASA Astrophysics Data System (ADS)

    Nodine, Robert N.; Scudiere, Matthew B.; Jordan, John K.

    1995-12-01

    An automated and portable weigh-in-motion system has been developed at Oak Ridge National Laboratory for the purpose of manifesting cargo onto aircraft. The system has an accuracy range of plus or minus 3.0% to plus or minus 6.0% measuring gross vehicle weight and locating the center of balance of moving vehicles at speeds of 1 to 5 mph. This paper reviews the control/user interface system and weight determination algorithm developed to acquire, process, and interpret multiple sensor inputs. The development effort resulted in a self- zeroing, user-friendly system capable of weighing a wide range of vehicles in any random order. The control system is based on the STANDARD (STD) bus and incorporates custom- designed data acquisition and sensor fusion hardware controlled by a personal computer (PC) based single-board computer. The user interface is written in the 'C' language to display number of axles, axle weight, axle spacing, gross weight, and center of balance. The weighing algorithm developed functions with any linear weight sensor and a set of four axle switches per sensor.

  13. Accurate and portable weigh-in-motion system for manifesting air cargo

    SciTech Connect

    Nodine, R.N.; Scudiere, M.B.; Jordan, J.K.

    1995-12-01

    An automated and portable weigh-in-motion system has been developed at Oak Ridge National Laboratory for the purpose of manifesting cargo onto aircraft. The system has an accuracv range of {plus_minus} 3.0% to {plus_minus} 6.0% measuring gross vehicle weight and locating the center of balance of moving vehicles at speeds of 1 to 5 mph. This paper reviews the control/user interface system and weight determination algorithm developed to acquire, process, and interpret multiple sensor inputs. The development effort resulted in a self-zeroing, user-friendly system capable of weighing a wide range of vehicles in any random order. The control system is based on the STANDARD (STD) bus and incorporates custom-designed data acquisition and sensor fusion hardware controlled by a personal computer (PC) based single-board computer. The user interface is written in the ``C`` language to display number of axles, axle weight, axle spacing, gross weight, and center of balance. The weighing algorithm developed will function with any linear weight sensor and a set of four axle switches per sensor.

  14. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Sharma, Bhavna

    2005-08-01

    We report our initial efforts to use a small portable Raman system for stand-off detection and identification of various types of organic chemicals including benzene, toluene, ethyl benzene and xylenes (BTEX). Both fiber-optic (FO) coupled and a directly coupled f/2.2 spectrograph with the telescope have been developed and tested. A frequency-doubled Nd:YAG pulsed laser (20 Hz, 532 nm, 35 mJ/pulse) is used as the excitation source. The operational range of the FO coupled Raman system was tested to 66 m, and the directly coupled system was tested to a distance of 120 m. We have also measured remote Raman spectra of compressed methane gas and methane gas hydrate. The usefulness of the remote Raman system for identifying unknown compounds is demonstrated by measuring stand-off spectra of two plastic explosives, e.g. tri-amino tri-nitrobenzene (TATB) and beta-HMX at 10 m stand-off distance. The remote Raman system will be useful for terrestrial applications such as monitoring environmental pollution, in identifying unknown materials in public places in 10s or less, and for detecting hydrocarbon plumes and gas hydrates on planetary surfaces such as Mars.

  15. Martian Liquid CO2 and Metabolic Heat Regenerated Temperature Swing Adsorption for Portable Life Support Systems

    NASA Astrophysics Data System (ADS)

    Iacomini, Christine; MacCallum, Taber; Morin, Tom; Straub-Lopez, Kathrine; Paul, Heather

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. This paper presents a conceptual system for CO2 collection, compression, and cooling to produce sub-critical (liquid) CO2. A first order estimate of the system mass and energy to condense and store liquid CO2 outside at Mars ambient temperature at 600 kPa is discussed. No serious technical hurdles were identified and it is likely that better overall performance would be achieved if the system were part of an integrated ISRU strategy rather than a standalone system. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology for CO2 removal from a PLSS vent loop, where the Martian liquid CO2 is used as the heat sink is developed to utilize the readily available liquid CO2. This paper will describe the technology and present data in support of its design.

  16. Design of a Compact, Portable Test System for Thermoelectric Power Generator Modules

    NASA Astrophysics Data System (ADS)

    Faraji, Amir Yadollah; Akbarzadeh, Aliakbar

    2013-07-01

    Measurement of fundamental parameters of a thermoelectric generator (TEG) module, including efficiency, internal electrical resistance, thermal resistance, power output, Seebeck coefficient, and figure of merit ( Z), is necessary in order to design a thermoelectric-based power generation system. This paper presents a new design for a compact, standalone, portable test system that enables measurement of the main parameters of a TEG over a wide range of temperature differences and compression pressures for a 40 mm × 40 mm specimen. The Seebeck coefficient and figure of merit can also be calculated from the information obtained. In the proposed system, the temperature of each side of the TEG can be set at the desired temperature—the hot side as high as 380°C and the cold side as low as 5°C, with 0.5°C accuracy—utilizing an electrical heating system and a thermoelectric-based compact chilling system. Heating and cooling procedures are under control of two proportional-integral-derivative (PID) temperature controllers. Using a monitored pressure mechanism, the TEG specimen is compressed between a pair of hot and cold aluminum cubes, which maintain the temperature difference across the two sides of the TEG. The compressive load can be varied from 0 kPa to 800 kPa. External electrical loading is applied in the form of a direct-current (DC) electronic load. Data collection and processing are through an Agilent 34972A data logger, a computer, and BenchLink software, with results available as computer output. The input power comes from a 240-V general-purpose power point, and the only sound-generating component is a 4-W cooling fan. Total calculated uncertainty in results is approximately 7%. Comparison between experimental data and the manufacturer's published datasheet for a commercially available specimen shows good agreement. These results obtained from a preliminary experimental setup serve as a good guide for the design of a fully automatic portable test system

  17. Design and Implementation of a Portable Impedance Cardiography System for Noninvasive Stroke Volume Monitoring.

    PubMed

    Yazdanian, Hassan; Mahnam, Amin; Edrisi, Mehdi; Esfahani, Morteza Abdar

    2016-01-01

    Measurement of the stroke volume (SV) and its changes over time can be very helpful for diagnosis of dysfunctions in the blood circulatory system and monitoring their treatments. Impedance cardiography (ICG) is a simple method of measuring the SV based on changes in the instantaneous mean impedance of the thorax. This method has received much attention in the last two decades because it is noninvasive, easy to be used, and applicable for continuous monitoring of SV as well as other hemodynamic parameters. The aim of this study was to develop a low-cost portable ICG system with high accuracy for monitoring SV. The proposed wireless system uses a tetrapolar configuration to measure the impedance of the thorax at 50 kHz. The system consists of carefully designed precise voltage-controlled current source, biopotential recorder, and demodulator. The measured impedance was analyzed on a computer to determine SV. After evaluating the system's electronic performance, its accuracy was assessed by comparing its measurements with the values obtained from Doppler echocardiography (DE) on 5 participants. The implemented ICG system can noninvasively provide a continuous measure of SV. The signal to noise ratio of the system was measured above 50 dB. The experiments revealed that a strong correlation (r = 0.89) exists between the measurements by the developed system and DE (P < 0.05). ICG as the sixth vital sign can be measured simply and reliably by the developed system, but more detailed validation studies should be conducted to evaluate the system performance. There is a good promise to upgrade the system to a commercial version domestically for clinical use in the future.

  18. Design and Implementation of a Portable Impedance Cardiography System for Noninvasive Stroke Volume Monitoring

    PubMed Central

    Yazdanian, Hassan; Mahnam, Amin; Edrisi, Mehdi; Esfahani, Morteza Abdar

    2016-01-01

    Measurement of the stroke volume (SV) and its changes over time can be very helpful for diagnosis of dysfunctions in the blood circulatory system and monitoring their treatments. Impedance cardiography (ICG) is a simple method of measuring the SV based on changes in the instantaneous mean impedance of the thorax. This method has received much attention in the last two decades because it is noninvasive, easy to be used, and applicable for continuous monitoring of SV as well as other hemodynamic parameters. The aim of this study was to develop a low-cost portable ICG system with high accuracy for monitoring SV. The proposed wireless system uses a tetrapolar configuration to measure the impedance of the thorax at 50 kHz. The system consists of carefully designed precise voltage-controlled current source, biopotential recorder, and demodulator. The measured impedance was analyzed on a computer to determine SV. After evaluating the system's electronic performance, its accuracy was assessed by comparing its measurements with the values obtained from Doppler echocardiography (DE) on 5 participants. The implemented ICG system can noninvasively provide a continuous measure of SV. The signal to noise ratio of the system was measured above 50 dB. The experiments revealed that a strong correlation (r = 0.89) exists between the measurements by the developed system and DE (P < 0.05). ICG as the sixth vital sign can be measured simply and reliably by the developed system, but more detailed validation studies should be conducted to evaluate the system performance. There is a good promise to upgrade the system to a commercial version domestically for clinical use in the future. PMID:27014612

  19. Towards a multi-channel TOF-PET system with SiPM readout

    NASA Astrophysics Data System (ADS)

    Garutti, Erika; Göttlich, Martin; Harion, Tobias; Hegemann, Niklas; Schmidt, Maximilian; Schultz-Coulon, Hans-Christian; Shen, Wei; Silenzi, Alessandro; Stamen, Rainer; Tadday, Alexander; Xu, Chen

    2012-12-01

    The goal of this project is to develop a multi-channel TOF-PET system with a 300 ps FWHM time resolution, a factor two improvement with respect to commercially available systems (Surti et al., 2007 [1]). In a TOF-PET system, the time-of-flight information can be used to improve significantly the sensitivity of the detector as shown in Karp et al. (2008) [2]. The target time resolution has been achieved in two channel systems with LYSO (Kim and Wang, 2008 [3]), the aim is to port this results into a multi-channel system. This work extends the results shown in Göttlich et al. (2010) [4], studying the stability of the detector performance in different geometries and configurations.

  20. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  1. A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis.

    PubMed

    Brennwald, Matthias S; Schmidt, Mark; Oser, Julian; Kipfer, Rolf

    2016-12-20

    We developed a portable mass spectrometric system ("miniRuedi") for quantificaton of the partial pressures of He, Ne (in dry gas), Ar, Kr, N2, O2, CO2, and CH4 in gaseous and aqueous matrices in environmental systems with an analytical uncertainty of 1-3%. The miniRuedi does not require any purification or other preparation of the sampled gases and therefore allows maintenance-free and autonomous operation. The apparatus is most suitable for on-site gas analysis during field work and at remote locations due to its small size (60 cm × 40 cm × 14 cm), low weight (13 kg), and low power consumption (50 W). The gases are continuously sampled and transferred through a capillary pressure reduction system into a vacuum chamber, where they are analyzed using a quadrupole mass spectrometer with a time resolution of ≲1 min. The low gas consumption rate (<0.1 mL/min) minimizes interference with the natural mass balance of gases in environmental systems, and allows the unbiased quantification of dissolved-gas concentrations in water by gas/water equilibration using membrane contractors (gas-equilibrium membrane-inlet mass spectrometry, GE-MIMS). The performance of the miniRuedi is demonstrated in laboratory and field tests, and its utility is illustrated in field applications related to soil-gas formation, lake/atmosphere gas exchange, and seafloor gas emanations.

  2. Implementation of a portable electronic system for providing pain relief to patellofemoral pain syndrome patients

    NASA Astrophysics Data System (ADS)

    Chang Chien, Jia-Ren; Lin, Guo-Hong; Hsu, Ar-Tyan

    2011-10-01

    In this study, a portable electromyogram (EMG) system and a stimulator are developed for patellofemoral pain syndrome patients, with the objective of reducing the pain experienced by these patients; the patellar pain is caused by an imbalance between the vastus medialis obliquus (VMO) and the vastus lateralis (VL). The EMG measurement circuit and the electrical stimulation device proposed in this study are specifically designed for the VMO and the VL; they are capable of real-time waveform recording, possess analyzing functions, and can upload their measurement data to a computer for storage and analysis. The system can calculate and record the time difference between the EMGs of the VMO and the VL, as well as the signal strengths of both the EMGs. As soon as the system detects the generation of the EMG of the VL, it quickly calculates and processes the event and stimulates the VMO as feedback through electrical stimulation units, in order to induce its contraction. The system can adjust the signal strength, time length, and the sequence of the electrical stimulation, both manually and automatically. The output waveform of the electrical stimulation circuit is a dual-phase asymmetrical pulse waveform. The primary function of the electrical simulation circuit is to ensure that the muscles contract effectively. The performance of the device can be seen that the width of each pulse is 20-1000 μs, the frequency of each pulse is 10-100 Hz, and current strength is 10-60 mA.

  3. Portable tremor monitor system for real-time full-wave monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Yang, Meng-Hsiang; Sheu, Yung-Hoh; Shih, Yuan-Hsing; Young, M. S.

    2003-03-01

    Tremors, which occur anytime during the daily 24 h cycle, may be missed if monitoring is performed on a short-term basis. Improving this situation requires long-term ambulatory recording capability. There are traditionally two methods for long-term recording of tremors: one is the analog recorder, which is both heavy and inconvenient when transferring data to a PC system; the other is the Actigraph, in which only movement counts are recorded, such data being incomplete. Thus, for long-term and continuous tremor monitoring, this study presents a wrist-worn portable system that can save an entire 24 h tremor wave form in an expansible compact flash memory card. With a rechargeable battery and USB interface, the system has two modes: (1) the monitoring mode while connected to a host computer allows confirmation of system operation, calibration of accelerometers, and immediate display of data on a PC screen and (2) the collecting mode saves data during daily activity on the compact flash memory card within the device. After collection, data are accessed to a host computer for processing. Analysis based on complete tremor wave form including tremor frequency and intensity of 24 h data is expected to allow improved understanding and treatment of tremors.

  4. A portable inertial sensing-based spinal motion measurement system for low back pain assessment.

    PubMed

    Lee, Jung Keun; Desmoulin, Geoffrey T; Khan, Aslam H; Park, Edward J

    2011-01-01

    Spinal motion measurement during dynamic conditions may help identify differences between individuals with and without low back pain (LBP). The purpose of this paper is to demonstrate the feasibility of an inertial sensing based, portable spinal motion measurement system for investigating the differences of the spinal motions between an LBP group and a healthy control group. During a fast flexion/extension test, we measured 3D angular motions of the pelvis, lumbar spine and thoracic spine of the two groups using the inertial sensing based system. Range of motions (ROM) and peak angular velocities were investigated to determine which variables have significant differences between the two groups (p < 0.05). Also, a logistic regression analysis was carried out to see the classifying ability of the LBP patients from controls using the proposed system. The result shows that LBP was particularly associated with significant decreases in peak velocities of the lumbar spinal extension motion, having the maximum 90% sensitivity and 80% specificity in the classification according to the regression analysis. The result demonstrates the possibility of the proposed inertial sensing-based system to be served as an efficient tool in providing an accurate and continuous measurement of the spinal kinematics.

  5. Portable Life Support System 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  6. A drift detector system with anode and cathode readout in the GlueX experiment

    SciTech Connect

    Berdnikov, V V; Somov, S V; Pentchev, L; Zihlmann, B

    2015-01-01

    A drift detector system designed to detect charged particle tracks in the GlueX experiment dedicated to study the nature of confinement is described. The key design features of the drift chambers associated with the requirement of a minimum material budget in the path of secondary particles are presented. The spatial resolution and the detection efficiency have been measured with cosmic rays using the automatic data acquisition system.

  7. Rapid detection and profiling of rare cancer cells with a portable holographic imaging system

    NASA Astrophysics Data System (ADS)

    Im, Hyungsoon; Song, Jun; Liong, Monty; Fexon, Lioubov; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho

    2013-03-01

    We herein present the detection and molecular profiling of rare cancer cells, using a chip-based holographic imaging system. In this approach, target cancer cells are labeled with molecular-specific microbeads. Such labeling enables 1) a reliable differentiation between cancer cells and host cells (e.g., leukocytes); and 2) quantitative profiling of target marker expression through bead-counting. A new algorithm for digital image reconstruction and bead counting was developed as well to facilitate the assay. The developed system were able to accurately count more than thousands of beads and cells in a single image. Importantly, the assay could be performed without any dilution or washing steps, minimizing cell loss and simplifying the assay procedure. By counting the number of beads attached on cells, we could also measure the expression levels of different cancer markers, which showed good agreement with profiling results by flow cytometry and fluorescence microscopy. This cost-effective, portable, flow-based holographic imaging system is applicable to detecting rare cancer cells in a large volume of blood samples for point-of-care applications.

  8. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback

    PubMed Central

    Afzal, Muhammad Raheel; Oh, Min-Kyun; Lee, Chang-Hee; Park, Young Sook; Yoon, Jungwon

    2015-01-01

    Gait asymmetry caused by hemiparesis results in reduced gait efficiency and reduced activity levels. In this paper, a portable rehabilitation device is proposed that can serve as a tool in diagnosing gait abnormalities in individuals with stroke and has the capability of providing vibration feedback to help compensate for the asymmetric gait. Force-sensitive resistor (FSR) based insoles are used to detect ground contact and estimate stance time. A controller (Arduino) provides different vibration feedback based on the gait phase measurement. It also allows wireless interaction with a personal computer (PC) workstation using the XBee transceiver module, featuring data logging capabilities for subsequent analysis. Walking trials conducted with healthy young subjects allowed us to observe that the system can influence abnormality in the gait. The results of trials showed that a vibration cue based on temporal information was more effective than intensity information. With clinical experiments conducted for individuals with stroke, significant improvement in gait symmetry was observed with minimal disturbance caused to the balance and gait speed as an effect of the biofeedback. Future studies of the long-term rehabilitation effects of the proposed system and further improvements to the system will result in an inexpensive, easy-to-use, and effective rehabilitation device. PMID:26161398

  9. On-Site Geologic Core Analysis Using a Portable X-ray ComputedTomographic System

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Rack, Frank

    2004-03-01

    X-ray computed tomography (CT) is an established techniquefor nondestructively characterizing geologic cores. CT providesinformation on sediment structure, diagenetic alteration, fractures, flowchannels and barriers, porosity, and fluid-phase saturation. A portableCT imaging system has been developed specifically for imaging whole-roundcores at the drilling site. The new system relies upon carefully designedradiological shielding to minimize the size and weight of the resultinginstrument. Specialized x-ray beam collimators and filters maximizesystem sensitivity and performance. The system has been successfullydeployed on the research vessel Joides Resolution for Ocean DrillingProgram's Leg 204 and 210, within the Ocean Drilling Program'srefrigerated Gulf Coast Core Repository, as well as on the Hot Ice #1drilling platform located near the Kuparuk Field, Alaska. A methodologyfor performingsimple densiometry measurements, as well as scanning forgross structural features, will be presented using radiographs from ODPLeg 204. Reconstructed CT images from Hot Ice #1 will demonstrate the useof CT for discerning core textural features. To demonstrate the use of CTto quantitatively interpret dynamic processes, we calculate 95 percentconfidence intervals for density changes occurring during a laboratorymethane hydrate dissociation experiment. The field deployment of a CTrepresents a paradigm shift in core characterization, opening up thepossibility for rapid systematic characterization of three-dimensionalstructural features and leading to improved subsampling andcore-processing procedures.

  10. Design of a portable near infrared system for topographic imaging of the brain in babies

    SciTech Connect

    Vaithianathan, Tharshan; Tullis, Iain D.C.; Everdell, Nicholas; Leung, Terence; Gibson, Adam; Meek, Judith; Delpy, David T.

    2004-10-01

    A portable topographic near-infrared spectroscopic (NIRS) imaging system has been developed to provide real-time temporal and spatial information about the cortical response to stimulation in unrestrained infants. The optical sensing array is lightweight, flexible, and easy to apply to infants ranging from premature babies in intensive care to children in a normal environment. The sensor pad consists of a flexible double-sided circuit board onto which are mounted multiple sources (light-emitting diodes) and multiple detectors (p-i-n photodiodes), all electrically encapsulated in silicone rubber. The control electronics are housed in a box with a medical grade isolated power supply and linked to a PC fitted with a data acquisition card, the signal acquisition and analysis being performed using LABVIEW{sup TM}. The signal output is displayed as an image of oxy- and deoxyhemoglobin concentration ([HbO{sub 2}], [Hb]) changes at a frame rate of 3 Hz. Experiments have been conducted on phantoms to determine the sensitivity of the system, and the results have been compared to theoretical simulations. The system has been tested in volunteers by imaging changes in forearm muscle oxygenation, following blood pressure cuff occlusion to obtain typical [Hb] and [HbO{sub 2}] plots.

  11. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  12. Design and fabrication of a passive droplet dispenser for portable high resolution imaging system

    NASA Astrophysics Data System (ADS)

    Kamal, Tahseen; Watkins, Rachel; Cen, Zijian; Rubinstein, Jaden; Kong, Gary; Lee, Woei Ming

    2017-01-01

    Moldless lens manufacturing techniques using standard droplet dispensing technology often require precise control over pressure to initiate fluid flow and control droplet formation. We have determined a series of interfacial fluid parameters optimised using standard 3D printed tools to extract, dispense and capture a single silicone droplet that is then cured to obtain high quality lenses. The dispensing process relies on the recapitulation of liquid dripping action (Rayleigh-Plateau instability) and the capturing method uses the interplay of gravitational force, capillary forces and liquid pinning to control the droplet shape. The key advantage of the passive lens fabrication approach is rapid scale-up using 3D printing by avoiding complex dispensing tools. We characterise the quality of the lenses fabricated using the passive approach by measuring wavefront aberration and high resolution imaging. The fabricated lenses are then integrated into a portable imaging system; a wearable thimble imaging device with a detachable camera housing, that is constructed for field imaging. This paper provides the full exposition of steps, from lens fabrication to imaging platform, necessary to construct a standalone high resolution imaging system. The simplicity of our methodology can be implemented using a regular desktop 3D printer and commercially available digital imaging systems.

  13. Design and fabrication of a passive droplet dispenser for portable high resolution imaging system

    PubMed Central

    Kamal, Tahseen; Watkins, Rachel; Cen, Zijian; Rubinstein, Jaden; Kong, Gary; Lee, Woei Ming

    2017-01-01

    Moldless lens manufacturing techniques using standard droplet dispensing technology often require precise control over pressure to initiate fluid flow and control droplet formation. We have determined a series of interfacial fluid parameters optimised using standard 3D printed tools to extract, dispense and capture a single silicone droplet that is then cured to obtain high quality lenses. The dispensing process relies on the recapitulation of liquid dripping action (Rayleigh-Plateau instability) and the capturing method uses the interplay of gravitational force, capillary forces and liquid pinning to control the droplet shape. The key advantage of the passive lens fabrication approach is rapid scale-up using 3D printing by avoiding complex dispensing tools. We characterise the quality of the lenses fabricated using the passive approach by measuring wavefront aberration and high resolution imaging. The fabricated lenses are then integrated into a portable imaging system; a wearable thimble imaging device with a detachable camera housing, that is constructed for field imaging. This paper provides the full exposition of steps, from lens fabrication to imaging platform, necessary to construct a standalone high resolution imaging system. The simplicity of our methodology can be implemented using a regular desktop 3D printer and commercially available digital imaging systems. PMID:28128365

  14. Development of portable 3D optical measuring system using structured light projection method

    NASA Astrophysics Data System (ADS)

    Aoki, Hiroshi

    2014-05-01

    Three-dimensional (3D) scanners are becoming increasingly common in many industries. However most of these scanning technologies have drawbacks for practical use due to size, weight, accessibility, and ease-of-use. Depending on the application, speed, flexibility and portability can often be deemed more important than accuracy. We have developed a solution to address this market requirement and overcome the aforementioned limitations. To counteract shortcomings such as heavy weight and large size, an optical sensor is used that consists of a laser projector, a camera system, and a multi-touch screen. Structured laser light is projected onto the measured object with a newly designed laser projector employing a single Micro Electro Mechanical Systems (MEMS) mirror. The optical system is optimized for the combination of a Laser Diode (LD), the MEMS mirror and the size of measurement area to secure the ideal contrast of structured light. Also, we developed a new calibration algorithm for this sensor with MEMS laser projector that uses an optical camera model for point cloud calculation. These technical advancements make the sensor compact, save power consumption, and reduce heat generation yet still allows for rapid calculation. Due to the principle of the measurement, structured light triangulation utilizing phase-shifting technology, resolution is improved. To meet requirements for practical applications, the optics, electronics, image processing, display and data management capabilities have been integrated into a single compact unit.

  15. A portable inspection system to estimate direct glare of various LED modules

    NASA Astrophysics Data System (ADS)

    Chen, Po-Li; Liao, Chun-Hsiang; Li, Hung-Chung; Jou, Shyh-Jye; Chen, Han-Ting; Lin, Yu-Hsin; Tang, Yu-Hsiang; Peng, Wei-Jei; Kuo, Hui-Jean; Sun, Pei-Li; Lee, Tsung-Xian

    2015-07-01

    Glare is caused by both direct and indirect light sources and discomfort glare produces visual discomfort, annoyance, or loss in visual performance and visibility. Direct glare is caused by light sources in the field of view whereas reflected glare is caused by bright reflections from polished or glossy surfaces that are reflected toward an individual. To improve visual comfort of our living environment, a portable inspection system to estimate direct glare of various commercial LED modules with the range of color temperature from 3100 K to 5300 K was developed in this study. The system utilized HDR images to obtain the illumination distribution of LED modules and was first calibrated for brightness and chromaticity and corrected with flat field, dark-corner and curvature by the installed algorithm. The index of direct glare was then automatically estimated after image capturing, and the operator can recognize the performance of LED modules and the possible effects on human being once the index was out of expecting range. In the future, we expect that the quick-response smart inspection system can be applied in several new fields and market, such as home energy diagnostics, environmental lighting and UGR monitoring and popularize it in several new fields.

  16. Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis.

    PubMed

    Peng, Weng Kung; Chen, Lan; Han, Jongyoon

    2012-09-01

    A novel, compact-sized (19 cm × 16 cm) and portable (500 g) magnetic resonance relaxometry system is designed and developed. We overcame several key engineering barriers so that magnetic resonance technology can be potentially used for disease diagnosis-monitoring in point-of-care settings, directly on biological cells and tissues. The whole system consists of a coin-sized permanent magnet (0.76 T), miniaturized radio-frequency microcoil probe, compact lumped-circuit duplexer, and single board 1-W power amplifier, in which a field programmable gate array -based spectrometer is used for pulse excitation, signal acquisition, and data processing. We show that by measuring the proton transverse relaxation rates from a large pool of natural abundance proton-nuclei presence in less than 1 μL of red blood cells, one can indirectly deduce the relative magnetic susceptibility of the bulk cells within a few minutes of signal acquisition time. Such rapid and sensitive blood screening system can be used to monitor the fluctuation of the bulk magnetic susceptibility of the biological cells (e.g., human blood cells), where unusual state of the bulk magnetic susceptibility is related to a number of diseases.

  17. Portable detection system of vegetable oils based on laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan; Mu, Taotao

    2015-11-01

    Food safety, especially edible oils, has attracted more and more attention recently. Many methods and instruments have emerged to detect the edible oils, which include oils classification and adulteration. It is well known than the adulteration is based on classification. Then, in this paper, a portable detection system, based on laser induced fluorescence, is proposed and designed to classify the various edible oils, including (olive, rapeseed, walnut, peanut, linseed, sunflower, corn oils). 532 nm laser modules are used in this equipment. Then, all the components are assembled into a module (100*100*25mm). A total of 700 sets of fluorescence data (100 sets of each type oil) are collected. In order to classify different edible oils, principle components analysis and support vector machine have been employed in the data analysis. The training set consisted of 560 sets of data (80 sets of each oil) and the test set consisted of 140 sets of data (20 sets of each oil). The recognition rate is up to 99%, which demonstrates the reliability of this potable system. With nonintrusive and no sample preparation characteristic, the potable system can be effectively applied for food detection.

  18. In-situ measurements of Cu in an estuarine environment using a portable spectrophotometric analysis system.

    PubMed

    Callahan, Michael R; Kaltenbacher, Eric A; Byrne, Robert H

    2004-01-15

    Application of a portable in-situ spectrophotometric analysis system for the measurement of Cu in estuarine environments is described in this work. Our spectrophotometric elemental analysis system (SEAS) used for in-situ observations of Cu concentrations is capable of fully autonomous or user-controlled operations. The optical cells used in SEAS systems are flexible liquid core waveguides (LCWs) with optical path lengths as long as 5 m. The 1-m waveguide used in the present study provided a 3.0 nM detection limit and a 5.0% relative standard deviation for a 25 nM copper sample. Analysis times range between 1 and 5 min, allowing for acquisition of data on scales appropriate to the highly dynamic biogeochemical nature of copper in the coastal environment. Field deployments of SEAS-Cu in Tampa Bay, FL, showed low Cu concentrations near the mouth of the estuary (3-4 nM), with elevated concentrations (approximately 25 nM) in anthropogenically impacted regions of the bay (e.g., marinas and areas adjacent wastewater treatment plants). Transect data between Tampa Bay and a deep water harborage exhibited copper concentrations ranging between 5 and 50 nM.

  19. Development of a portable system for checking radioactive sources using long wave radio frequency identification.

    PubMed

    Mori, K; Deji, S; Ito, S; Saze, T; Nishizawa, K

    2007-03-01

    A portable system for automatically checking radioactive sources stored in lead containers at low temperatures was developed in order to prevent the discharging of orphan sources and contaminated materials from a controlled area to the general public. A radio frequency identification (RFID) system using a long wave in a frequency range of 125 kHz was composed of identification tags, a reader, a notebook computer, and software. ID tags without batteries were devised by using integrated circuits with an electrically erasable programmable read-only memory of 250 bytes and antennas. This software consisted of operating and maintenance functions. The read range of the ID tags was adjusted to around 5 cm in order to avoid accidental contamination and for discriminating the multiple sources. A water layer of 6.9 cm had no influence on communication between the ID tags and the reader. The data of the ID tags stored at +4, -20, and -80 degrees C were precisely read 4 mo later. The influence of lead was completely removed by separating the ID tags more than 1.6 cm from the lead. A reader can exactly identify the data of the ID tags within 6.0 cm at a velocity less than 9.0 cm s(-1). Performance of the software was verified using mock data. Nine lists concerning registered, disposed, and missing sources, etc., were displayed on the computer monitor and printed out. An RFID system using long waves proved to be applicable for routinely checking radioactive sources.

  20. Design and fabrication of a passive droplet dispenser for portable high resolution imaging system.

    PubMed

    Kamal, Tahseen; Watkins, Rachel; Cen, Zijian; Rubinstein, Jaden; Kong, Gary; Lee, Woei Ming

    2017-01-27

    Moldless lens manufacturing techniques using standard droplet dispensing technology often require precise control over pressure to initiate fluid flow and control droplet formation. We have determined a series of interfacial fluid parameters optimised using standard 3D printed tools to extract, dispense and capture a single silicone droplet that is then cured to obtain high quality lenses. The dispensing process relies on the recapitulation of liquid dripping action (Rayleigh-Plateau instability) and the capturing method uses the interplay of gravitational force, capillary forces and liquid pinning to control the droplet shape. The key advantage of the passive lens fabrication approach is rapid scale-up using 3D printing by avoiding complex dispensing tools. We characterise the quality of the lenses fabricated using the passive approach by measuring wavefront aberration and high resolution imaging. The fabricated lenses are then integrated into a portable imaging system; a wearable thimble imaging device with a detachable camera housing, that is constructed for field imaging. This paper provides the full exposition of steps, from lens fabrication to imaging platform, necessary to construct a standalone high resolution imaging system. The simplicity of our methodology can be implemented using a regular desktop 3D printer and commercially available digital imaging systems.

  1. Design of a portable near infrared system for topographic imaging of the brain in babies

    NASA Astrophysics Data System (ADS)

    Vaithianathan, Tharshan; Tullis, Iain D. C.; Everdell, Nicholas; Leung, Terence; Gibson, Adam; Meek, Judith; Delpy, David T.

    2004-10-01

    A portable topographic near-infrared spectroscopic (NIRS) imaging system has been developed to provide real-time temporal and spatial information about the cortical response to stimulation in unrestrained infants. The optical sensing array is lightweight, flexible, and easy to apply to infants ranging from premature babies in intensive care to children in a normal environment. The sensor pad consists of a flexible double-sided circuit board onto which are mounted multiple sources (light-emitting diodes) and multiple detectors (p-i-n photodiodes), all electrically encapsulated in silicone rubber. The control electronics are housed in a box with a medical grade isolated power supply and linked to a PC fitted with a data acquisition card, the signal acquisition and analysis being performed using LABVIEW™. The signal output is displayed as an image of oxy- and deoxyhemoglobin concentration ([HbO2], [Hb]) changes at a frame rate of 3 Hz. Experiments have been conducted on phantoms to determine the sensitivity of the system, and the results have been compared to theoretical simulations. The system has been tested in volunteers by imaging changes in forearm muscle oxygenation, following blood pressure cuff occlusion to obtain typical [Hb] and [HbO2] plots.

  2. Portable Planetarium.

    ERIC Educational Resources Information Center

    Stockdale, Dennis L.

    1997-01-01

    Describes a method that students can use to build portable planetariums. After building the models, students are familiar with the names of constellations and major stars and are able to share their projects with other students. (DDR)

  3. Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns.

    PubMed

    Kiplagat, Isaac K; Kubán, Petr; Pelcová, Pavlína; Kubán, Vlastimil

    2010-07-30

    Basic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems. The built-in temperature sensor allows for baseline drift correction typically encountered in conductivity/capacitance measurements without thermostating device. The whole instrument does not require any power supply for its operation, except the detection and data acquisition part that is provided by a USB port of a Netbook computer. It is extremely lightweight, its total weight including the Netbook computer is less than 2.5kg and it can be continuously operated for more than 8h. Several parameters of the instrument, such as detection cell design, eluent delivery systems and data treatment were optimized as well as the composition of eluent for non-suppressed ion chromatographic analysis of common inorganic cations (Na(+), NH(4)(+), K(+), Cs(+), Ca(2+), Mg(2+), transition metals). Low conductivity eluents based on weakly complexing organic acids such as tartaric, oxalic or pyridine-2,6-dicarboxylic acids were used with contactless capacitance detection for simultaneous separation of mono- and divalent cations. Separation of Na(+) and NH(4)(+) cations was optimized by addition of 18-crown-6 to the eluent. The best separation of 6 metal cations commonly present in various environmental samples was accomplished in less than 30min using a 1.75mM pyridine-2,6-dicarboxylic

  4. Data acquisition and readout system for the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Bai, X.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bradley, A.; Cahn, S. B.; Carmona-Benitez, M. C.; Carr, D.; Chapman, J. J.; Clark, K.; Classen, T.; Coffey, T.; Curioni, A.; Dazeley, S.; de Viveiros, L.; Dragowsky, M.; Druszkiewicz, E.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gibson, K. R.; Hall, C.; Hanhardt, M.; Holbrook, B.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Lander, R.; Larsen, N.; Lee, C.; Leonard, D.; Lesko, K.; Lyashenko, A.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.; Mock, J.; Morii, M.; Nelson, H.; Nikkel, J. A.; Pangilinan, M.; Phelps, P.; Shutt, T.; Skulski, W.; Sorensen, P.; Spaans, J.; Stiegler, T.; Svoboda, R.; Sweany, M.; Szydagis, M.; Thomson, J.; Tripathi, M.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Wlasenko, M.; Wolfs, F. L. H.; Woods, M.; Zhang, C.

    2012-03-01

    LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is composed of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline suppression that allows for a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This paper describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.

  5. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.

    PubMed

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2016-04-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  6. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.

    2016-01-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  7. Modeling, control and integration of a portable solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Adhikari, Puran

    This thesis presents an innovative method for the modeling, control and integration of a portable hybrid solid oxide fuel cell system. The control and integration of the fuel cell system is important not only for its efficient operation, but also for issues related to safety and reliability. System modeling is needed in order to facilitate the controller design. Mathematical models of the various components of the system are built in the matlab/simulink environment. Dynamic modeling of the fuel cell stack, catalytic partial oxidation (CPOX) reformer, heat exchanger, tail gas combustor and tail gas splitter of the balance of plant system is performed first. Followed by, modeling of the three input DC/DC converter and energy storage devices (battery and supercapacitor). A two-level control approach, higher level and lower level, is adopted in this research. Each of the two major subsystems, balance of plant subsystem and power electronics subsystem, has its own local level controller (called lower level controller) that are designed such that they follow exactly the command reference from a higher level controller. The higher level controller is an intelligent controller that makes decisions about how the lower level or local controllers should perform based on the status of fuel cell, energy storage device and external load demand. Linear analysis has been done for the design and development of the local controllers as appropriate. For the higher level controller, a finite state machine model is developed and implemented using stateflow and fuzzy logic toolboxes of matlab. Simulations are carried out for the integrated system. The simulation results verify that the controllers are robust in performance during the transient condition when the energy storage devices supplement fuel cells. The temperature and flow rates of the fuel and air are controlled as desired. The output from the designed fuel cell system is a regulated DC voltage, which verifies the overall

  8. Need for population specific validation of a portable metabolic testing system: a case of sedentary pregnant women.

    PubMed

    Yeo, SeonAe; Ronis, David L; Antonakos, Cathy L; Roberts, Katherine; Hayashi, Robert

    2005-01-01

    Commercially available portable metabolic systems have been validated with samples of young, healthy, and well-fit subjects, but use of these systems with a special population, such as healthy but sedentary pregnant women, requires a unique set of considerations. These include a woman's limited testing time necessary for fetal safety, relatively low oxygen consumption, and the unique physiology of pregnancy (woman, the placenta, and the fetus). The purpose of this study was to validate a portable metabolic testing system (VO2000) with healthy sedentary pregnant women. A total of 9 sedentary pregnant women who averaged 30 years of age (SD=3), 93 kg (SD=19) weight, 163 cm (SD=7) height, and at 19 weeks' gestation (SD=5) volunteered to participate. Submaximum fitness tests using the Cornell protocol were conducted once with two systems (VO2000 and CPX/D, a reference) simultaneously, and then subsequently twice with one system (VO2000). The VO2000 consistently overestimated VO2 measurement, compared to the same manufacturer's reference system, by 4.4 +/- 3.6 (SD) ml/kg/min, and when VO2000 was used twice, the mean difference was statistically significant (1.0 +/- 1.8 [SD] ml/kg/min; t(45) = 3.9, p < .001). The results of the study show that although VO2000 is an established and validated portable metabolic system for measurement on adult males and females who are relatively well fit, this portable system consistently overestimates VO2 readings for pregnant women compared to standard full-size system. Measurements, when repeated, were not consistent.

  9. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Marino, C. P.

    2014-06-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| =1.5 to |η| =4.9. The ATLAS LAr calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums to the Level-1 trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 ×1034cm-2s-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For these purposes, a new LAr Trigger Digitizer Board (LTDB) is being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the Level-1 trigger system to extract improved trigger signatures.

  10. A SQUID readout system for a superconducting gyroscope. [superconducting quantum interference device

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.

    1975-01-01

    A design of a read out system for a superconducting gyroscope to be used in an orbiting gyroscope relativity experiment is discussed. The 'London Moment' of the superconducting rotor, which lies along the spin axis of the rotor, will be measured with a SQUID-type magnetometer. The SQUID will be built around the gyro rotor, with a very close spacing to give an inductance between 10 millionths and 1 millionth Hy. A SQUID of this design should resolve 2.07 times 10 to the minus 19th weber. The angular resolution of the gyroscope will then be 0.0035 arc-second, which is sufficient for the intended experiment.

  11. The read-out system of spatial distribution of thermoluminescence in meteorites

    NASA Technical Reports Server (NTRS)

    Ninagawa, K.; Yamamoto, I.; Takano, Y.; Wada, T.; Yamashita, Y.; Takaoka, N.

    1985-01-01

    The thermoluminescence (TL) technique used for dating the terrestrial age of meteorites is based on the TL fading of interior samples. The depth dependence of the TL for Antarctic meteorites with fusion crust is measured. Usually, meteorites are powdered and their TL measured under a photomultiplier. In this case, a TL spatial distribution of a cross section of antarctic meteorites is measured using a read out system of spatial distribution of TL, since a meteorite is made up of inhomogeneous material. Antarctic meteorites MET-78028(L6) and ALH-77278(L13) are used.

  12. A portable and high energy efficient desalination/purification system by ion concentration polarization

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jae; Kim, Bumjoo; Kwak, Rhokyun; Kim, Geunbae; Han, Jongyoon

    2012-10-01

    The shortage of fresh water is one of the acute challenges that the world is facing now and, thus, energy efficient desalination strategies can provide substantial answers for the water-crisis. Current desalination methods utilizing reverse-osmosis and electrodialysis mechanisms required high power consumptions/large-scale infrastructures which do not make them appropriate for disaster-stricken area or underdeveloped countries. In addition, groundwater contamination by heavy metal compounds, such as arsenic, cadmium and lead, poses significant public health challenges, especially in developing countries. Existing water purification strategies for heavy metal removal are not readily applicable due to technological, environmental, and economical barriers. This presentation elucidates a novel desalination/purification process, where a continuous contaminated stream is divided into filtered and concentrated stream by the ion concentration polarization. The key distinct feature is that both salts and larger particles (cells, viruses, and microorganisms) are pushed away from the membrane, in continuous flow operations, eliminating the membrane fouling that plagues the membrane filtration methods. The power consumption is less than 5Wh/L, comparable to any existing systems. The energy and removal efficiency, and low cost manufacturability hold strong promises for portable, self-powered water purification/desalination system that can have significant impacts on water shortage in developing/rural part of the world.

  13. Miniaturized Explosive Preconcentrator for Use in a Man-Portable Field Detection System

    SciTech Connect

    Hannum, David W.; Linker, Kevin L.; Parmeter, John E.; Rhykerd, Charles L.; Varley, Nathan R.

    1999-08-02

    We discuss the design and testing of a miniaturized explosives preconcentrator that can be used to enhance the capabilities of man-portable field detection systems, such as those based on ion mobility spectrometry (IMS). The preconcentrator is a smaller version of a similar device that was developed recently at Sandia National Laboratories for use in a trace detection portal that screens personnel for explosives. Like its predecessor, this preconcentrator is basically a filtering device that allows a small amount of explosive residue in a large incoming airflow to be concentrated into a much smaller air volume via adsorption and resorption, prior to delivery into a chemical detector. We discuss laboratory testing of this preconcentrator interfaced to a commercially available IMS-based detection system, with emphasis on the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The issues investigated include optimization of the preconcentrator volume and inlet airflow, the use of different types of adsorbing surfaces within the preconcentrator, Wd preconcentrator efficiency and concentration factor. We discuss potential field applications of the preconcentrator, as well as avenues for further investigations and improvements.

  14. Proposed Schematics and Modeling Results for a Lunar Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Chullen, Cinda

    2009-01-01

    The Constellation Space Suit Element (CSSE) is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the CSSE PLSS to provide a basis for current and future CSSE PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. Additionally, PLSS functions are presented for multiple operational scenarios as follows: 1) Nominal Extravehicular Activity (EVA) Mode; 2) Umbilical Modes; a) No Recharge, b) With Recharge; 3) Decompression Sickness (DCS) Treatment Mode; 4) Buddy Mode; 5) Secondary O2 Modes; a) Helmet Purge; b) Suit Purge; c) Operational; and 5) PLSS Removed Umbilical Mode. A performance modeling effort is being performed to provide a preliminary confirmation of this layout and the current state of the thermal hydraulic modeling efforts being conducted for the PLSS is presented. The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. Modeling approaches and assumptions are discussed as well as component model descriptions. Results from the models are included that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  15. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    PubMed Central

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  16. Portable System for Monitoring the Microclimate in the Footwear-Foot Interface

    PubMed Central

    Sandoval-Palomares, José de Jesús; Yáñez-Mendiola, Javier; Gómez-Espinosa, Alfonso; López-Vela, José Martin

    2016-01-01

    A new, continuously-monitoring portable device that monitors the diabetic foot has shown to help in reduction of diabetic foot complications. Persons affected by diabetic foot have shown to be particularly sensitive in the plantar surface; this sensitivity coupled with certain ambient conditions may cause dry skin. This dry skin leads to the formation of fissures that may eventually result in a foot ulceration and subsequent hospitalization. This new device monitors the micro-climate temperature and humidity areas between the insole and sole of the footwear. The monitoring system consists of an array of ten sensors that take readings of relative humidity within the range of 100% ± 2% and temperature within the range of −40 °C to 123.8 ± 0.3 °C. Continuous data is collected using embedded C software and the recorded data is processed in Matlab. This allows for the display of data; the implementation of the iterative Gauss-Newton algorithm method was used to display an exponential response curve. Therefore, the aim of our system is to obtain feedback data and provide the critical information to various footwear manufacturers. The footwear manufactures will utilize this critical information to design and manufacture diabetic footwear that reduce the risk of ulcers in diabetic feet. PMID:27399718

  17. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  18. Horizon: The Portable, Scalable, and Reusable Framework for Developing Automated Data Management and Product Generation Systems

    NASA Astrophysics Data System (ADS)

    Huang, T.; Alarcon, C.; Quach, N. T.

    2014-12-01

    Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.

  19. Readout process and noise elimination firmware for the Fermilab beam loss system

    SciTech Connect

    Wu, Jinyuan; Baumbaugh, Alan; Drennan, Craig; Thurman-Keup, Randy; Lewis, Jonathan; Shi, Zonghan; /Fermilab

    2007-05-01

    In the Fermilab Beam Loss Monitor System, inputs from ion chambers are integrated for a short period of time, digitized and processed to create the accelerator abort request signals. The accelerator power supplies employing 3-phase 60Hz AC cause noise at various harmonics on our inputs which must be eliminated for monitoring purposes. During accelerator ramping, both the sampling frequency and the amplitudes of the noise components change. As such, traditional digital filtering can partially reduce certain noise components but not all. A nontraditional algorithm was developed in our work to eliminate remaining ripples. The sequencing in the FPGA firmware is conducted by a micro-sequencer core we developed: the Enclosed Loop Micro-Sequencer (ELMS). The unique feature of the ELMS is that it supports the ''FOR'' loops with pre-defined iterations at the machine code level, which provides programming convenience and avoids many micro-complexities from the beginning.

  20. Multiple layer optical memory system using second-harmonic-generation readout

    DOEpatents

    Boyd, Gary T.; Shen, Yuen-Ron

    1989-01-01

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  1. R&D on a novel spectro-imaging polarimeter with Micromegas detectors and a Caliste readout system

    NASA Astrophysics Data System (ADS)

    Attié, D.; Blondel, C.; Boilevin-Kayl, L.; Desforges, D.; Ferrer-Ribas, E.; Giomataris, I.; Gevin, O.; Jeanneau, F.; Limousin, O.; Meuris, A.; Papaevangelou, T.; Peyaud, A.

    2015-07-01

    Micromegas detectors, part of the Micro-Pattern Gaseous Detectors (MPGD) family, are used in a very wide range of applications in the High Energy Physics community but also in astroparticle and neutrino physics. In most of the Micromegas applications the design of the detector vessel and the readout plane is extremely coupled. A way of dissociating these two components would be by separating the amplification structure and the detector volume from the readout plane and electronics. This is achieved with the so called piggyback Micromegas detectors. They open up new possibilities of applications in terms of adaptability to new electronics. In particular piggyback resistive Micromegas can be easily coupled to modern pixel array electronic ASICs. First tests have been carried out with a Medipix chip where the protection of the resistive layer has been proved. The results of very recent tests coupling piggyback Micromegas with the readout module of Caliste are presented. Caliste is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV in the context of a spatial micro spectro-imaging polarimetrer. In the current application, with the Piggyback Micromegas, we use the readout module only as the sensitive detector. We benefit of the good spatial resolution thanks to the high density readout pixels ( 600 μm pixel pitch), to the low noise, to the low power and to the radiation hard integrated front-end IDEF-X electronics. The advantage of such a device is to have a high gain, low noise, low threshold, and robust detector operating at room temperature. This would be very attractive for spatial applications, for instance X-ray polarisation.

  2. Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer

    NASA Astrophysics Data System (ADS)

    Nguyen, Freddy T.; Zysk, Adam M.; Kotynek, Jan G.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.; Chaney, J. Eric; Boppart, Stephen A.

    2007-02-01

    Breast cancer continues to be one of the most widely diagnosed forms of cancer amongst women and the second leading type of cancer deaths amongst women. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor and the presence of cancer cells in involved lymph nodes. The metastatic spread and staging of breast cancer is also evaluated through the nodal assessment of the regional lymphatic system. A portable real-time spectral domain optical coherence tomography system is being presented as a clinical diagnostic tool in the intraoperative delineation of tumor margins as well as for real time lymph node assessment. The system employs a super luminescent diode centered at 1310 nm with a bandwidth of 92 nm. Using a spectral domain detection system, the data is acquired at a rate of 5 KHz / axial scan. The sample arm is a galvanometer scanning telecentric probe with an objective lens (f = 60 mm, confocal parameter = 1.5 mm) yielding an axial resolution of 8.3 μm and a transverse resolution of 35.0 μm. Images of tumor margins are acquired in the operating room ex vivo on freshly excised human tissue specimen. This data shows the potential of the use of OCT in defining the structural tumor margins in breast cancer. Images taken from ex-vivo samples on the bench system clearly delineate the differences between clusters of tumor cells and nearby adipose cells. In addition, the data shows the potential for OCT as a diagnostic tool in the staging of cancer metastasis through locoregional lymph node assessment.

  3. Portable dynamic positioning control system on a barge in short-crested waves using the neural network algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Ming-chung; Lee, Zi-yi

    2013-08-01

    This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional-Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.

  4. A programmable energy efficient readout chip for a multiparameter highly integrated implantable biosensor system

    NASA Astrophysics Data System (ADS)

    Nawito, M.; Richter, H.; Stett, A.; Burghartz, J. N.

    2015-11-01

    In this work an Application Specific Integrated Circuit (ASIC) for an implantable electrochemical biosensor system (SMART implant, Stett et al., 2014) is presented. The ASIC drives the measurement electrodes and performs amperometric measurements for determining the oxygen concentration, potentiometric measurements for evaluating the pH-level as well as temperature measurements. A 10-bit pipeline analog to digital (ADC) is used to digitize the acquired analog samples and is implemented as a single stage to reduce power consumption and chip area. For pH measurements, an offset subtraction technique is employed to raise the resolution to 12-bits. Charge integration is utilized for oxygen and temperature measurements with the capability to cover current ranges between 30 nA and 1 μA. In order to achieve good performance over a wide range of supply and process variations, internal reference voltages are generated from a programmable band-gap regulated circuit and biasing currents are supplied from a wide-range bootstrap current reference. To accommodate the limited available electrical power, all components are designed for low power operation. Also a sequential operation approach is applied, in which essential circuit building blocks are time multiplexed between different measurement types. All measurement sequences and parameters are programmable and can be adjusted for different tissues and media. The chip communicates with external unites through a full duplex two-wire Serial Peripheral Interface (SPI), which receives operational instructions and at the same time outputs the internally stored measurement data. The circuit has been fabricated in a standard 0.5-μm CMOS process and operates on a supply as low as 2.7 V. Measurement results show good performance and agree with circuit simulation. It consumes a maximum of 500 μA DC current and is clocked between 500 kHz and 4 MHz according to the measurement parameters. Measurement results of the on-chip ADC show a

  5. Walking in simulated Martian gravity: influence of the portable life support system's design on dynamic stability.

    PubMed

    Scott-Pandorf, Melissa M; O'Connor, Daniel P; Layne, Charles S; Josić, Kresimir; Kurz, Max J

    2009-09-01

    With human exploration of the moon and Mars on the horizon, research considerations for space suit redesign have surfaced. The portable life support system (PLSS) used in conjunction with the space suit during the Apollo missions may have influenced the dynamic balance of the gait pattern. This investigation explored potential issues with the PLSS design that may arise during the Mars exploration. A better understanding of how the location of the PLSS load influences the dynamic stability of the gait pattern may provide insight, such that space missions may have more productive missions with a smaller risk of injury and damaging equipment while falling. We explored the influence the PLSS load position had on the dynamic stability of the walking pattern. While walking, participants wore a device built to simulate possible PLSS load configurations. Floquet and Lyapunov analysis techniques were used to quantify the dynamic stability of the gait pattern. The dynamic stability of the gait pattern was influenced by the position of load. PLSS loads that are placed high and forward on the torso resulted in less dynamically stable walking patterns than loads placed evenly and low on the torso. Furthermore, the kinematic results demonstrated that all joints of the lower extremity may be important for adjusting to different load placements and maintaining dynamic stability. Space scientists and engineers may want to consider PLSS designs that distribute loads evenly and low, and space suit designs that will not limit the sagittal plane range of motion at the lower extremity joints.

  6. A new frontier in CO2 flux measurements using a highly portable DIAL laser system.

    PubMed

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-09-22

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes.

  7. Movement and physiological match demands of elite rugby league using portable global positioning systems.

    PubMed

    Waldron, Mark; Twist, Craig; Highton, Jamie; Worsfold, Paul; Daniels, Matthew

    2011-08-01

    Twelve elite players from an English Super League club consented to participate in the present study using portable global positioning system (GPS) devices to assess position-specific demands. Distances covered at low-intensity running, moderate-intensity running, high-intensity running, very high-intensity running, and total distance were significantly (P < 0.05) lower in forwards compared with outside backs and adjustables. Metres per minute was higher in adjustables and forwards, owing to higher values for relative distance in medium-intensity running and a rise in high-intensity running from previous absolute values. Sprint distance, sprint frequency, and peak speed were higher in outside backs than both adjustables and forwards. A moderate, significant correlation (r = 0.62, P = 0.001) was apparent between session ratings of perceived exertion and summated heart rate. Results support the requirement for position-specific conditioning and provide preliminary evidence for the use of session ratings of perceived exertion as a measure of match load.

  8. Evaluation of a portable test system for assessing endotoxin activity in raw milk

    PubMed Central

    SUZUKI, Yohko; SUZUKI, Kazuyuki; SHIMAMORI, Toshio; TSUCHIYA, Masakazu; NIEHAUS, Andrew; LAKRITZ, Jeffrey

    2015-01-01

    The aim of the present study was to compare endotoxin activities detected in raw milk samples obtained from cattle by a commercially available portable test system (PTS) and traditional microplate limulus amebocyte lysate (LAL)-based assay, which determined activities using a kinetic turbidimetric (KT) assay. Raw milk samples were obtained from 53 and 12 dairy cattle without and with clinical mastitis, respectively. Comparison between the KT and PTS was performed by the Friedman test. The Pearson product moment correlation coefficients were calculated to evaluate associations between any two continuous variables. Linear regression model analysis was also performed to obtain the equation describing the relationship between PTS and KT assay. The endotoxin activities detected in 200- or 400-fold diluted milk samples were similar between PTS and KT assay, whereas a significant difference was observed in 100-fold diluted milk (P<0.001). The results obtained from 200- (r2=0.778, P<0.001) and 400-fold diluted milk samples (r2=0.945, P<0.001) using PTS correlated with those using KT assay. The median milk endotoxin activities in Gram-positive and Gram-negative clinical mastitis cows were 0.655 and 11,523.5 EU/ml, respectively. The results of the present study suggest that PTS as a simple and easy test to assess endotoxin activity in raw milk is efficient, simple and reproducible. PMID:26279135

  9. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  10. A dynamic isotope power system portable generator for the moon or Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Richard A.; Hunt, Maribeth E.; Pepping, Richard E.; Mason, Lee S.

    1991-01-01

    The dynamic isotope power systems (DIPS) demonstration program is focused on a standardized 2.5 kWe portable generator for multiple uses on the lunar or Martian surface. A variety of potential remote or mobile applications has been identified by NASA. These applications include remote power to science packages, surface rovers for both short and extended duration missions, and backup to central base power. Reviews conducted on alternative power sources for these applications are described. These include the comparison of DIPS to regenerative fuel cells (RFCs). Recent work is presented refining the 2.5 kWe design to assure compatibility with the Martian environment while imposing only a minor mass penalty on lunar operations. This was accomplished by limiting temperatures, except in the heat source unit (HSU), to the nonrefractory materials regime and protecting the necessary refractories in the HSU from the environment. Design changes to the HSU are described. Work related to recent concerns regarding astronaut radiation doses is described. This work includes the bases for the calculations to determine the necessary shielding or operational limitations.

  11. M-BRIDGE: Wireless portable onbody aggregator and visualizer system for Wireless Body Sensor Network.

    PubMed

    Phyo Wai, Aung Aung; Ge, Yu

    2013-01-01

    Advances made in electronics, intelligent and wireless technologies enable individuals to self-observe their health states anywhere anytime. The shift in self care becomes a promising paradigm to alleviate burdens on centralized institutional care. As a result, Wireless Body Sensor Network (WBSN) personal health solutions can be seen increasingly although medical community still has concerns on their usability and applicability. Especially, there is still lacking in portable wireless wearable gateway to integrate WBSN into existing healthcare solutions. To fulfill this gap, we design and develop MobilE on-Body aGgregator and vIsualizer Device (M-BRIDGE) system using Android smart phone. Our proposed solution fully supports the needs of flexible device interfacing, data aggregation, efficient data distribution and user-friendly visualization. We also explain how M-BRIDGE's unique features and operation can complement with and fulfill the deficiency of existing WBSN healthcare solutions. We finally present the details of implementation and technical evaluation as well as discussion on the potential issues and future works.

  12. Towards a portable system for the measurement of thermal and mechanical indices

    NASA Astrophysics Data System (ADS)

    Whittingham, T. A.; Mitchell, G.; Tong, J.; Feeney, M.

    2004-01-01

    Users of diagnostic ultrasound equipment are provided with on-screen indices (TI and MI) to indicate the potential thermal and non-thermal hazards. It is prudent that these indices be checked for accuracy. Indeed, this is a recommendation of the Safety Guidelines of the British Medical Ultrasound Society. Knowledge of the variation with depth of the derated temporal-average intensity is required for two of the thermal index formulae for non-scanned beams — TIS (large aperture) and TIB. A portable system has been designed and built to permit a plot of derated temporal average intensity versus depth to be quickly made for any ultrasound diagnostic scanner. Signals from a membrane hydrophone are amplified and input to an RF power meter. The use of an analogue method for measuring temporal intensity obviates the need for trigger signals from the scanner. The output from the power meter and the output from a hydrophone depth measuring potentiometer are input to a laptop computer, which calculates and displays the plots of derated intensities (ITA·3 and ITA·6) versus depth. By entering the separately measured acoustic output power of the scanner via the laptop keyboard, the laptop can produce and display MI and TI values.

  13. Smartphone-based portable wireless optical system for the detection of target analytes.

    PubMed

    Gautam, Shreedhar; Batule, Bhagwan S; Kim, Hyo Yong; Park, Ki Soo; Park, Hyun Gyu

    2017-02-01

    Rapid and accurate on-site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone-based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on-site analysis of target analytes is described. As a proof-of-concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on-site detection of various analytes in a point-of-care testing (POCT) manner.

  14. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    NASA Astrophysics Data System (ADS)

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-09-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes.

  15. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    PubMed Central

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  16. Development of a portable ESPI system for the analysis in situ of mural paintings

    NASA Astrophysics Data System (ADS)

    Boaglio, E.; Lamas, J.; López, Ana J.; Ramil, A.; Pereira, L.; Prieto, B.; Silva, B.

    2012-10-01

    The use of Electronic Speckle Pattern Interferometry (ESPI) is well documented in the literature as a non-destructive technique for structural diagnostics in the field of cultural heritage.. In the case of mural paintings the lack of adhesion between the plaster and the mural support is one of the most important risk factors that threaten their conservation. With this non-invasive method it is possible to detect detachments and cracks in the paintings before they become visible The objective of this work is the development of ESPI portable equipment based on a fibre interferometer for in situ qualitative analysis of mural paintings. The novelty of the presented set up is the use of a variable ratio coupler which makes the system more immune to vibrations and allows for better use of available light compared with the equivalent of free air guided. This configuration simplifies the arrangement and makes it possible to obtain ESPI interferograms with high contrast; moreover, the use of a ceramic heater as excitation source enables the analysis during the heating. Preliminary results obtained in laboratory conditions have shown that detachments and cracks can be successfully detected on model samples of the wall paintings.

  17. On-road particle number measurements using a portable emission measurement system (PEMS)

    NASA Astrophysics Data System (ADS)

    Gallus, Jens; Kirchner, Ulf; Vogt, Rainer; Börensen, Christoph; Benter, Thorsten

    2016-01-01

    In this study the on-road particle number (PN) performance of a Euro-5 direct-injection (DI) gasoline passenger car was investigated. PN emissions were measured using the prototype of a portable emission measurement system (PEMS). PN PEMS correlations with chassis dynamometer tests show a good agreement with a chassis dynamometer set-up down to emissions in the range of 1·1010 #/km. Parallel on-line soot measurements by a photo acoustic soot sensor (PASS) were applied as independent measurement technique and indicate a good on-road performance for the PN-PEMS. PN-to-soot ratios were 1.3·1012 #/mg, which was comparable for both test cell and on-road measurements. During on-road trips different driving styles as well as different road types were investigated. Comparisons to the world harmonized light-duty test cycle (WLTC) 5.3 and to European field operational test (euroFOT) data indicate the PEMS trips to be representative for normal driving. Driving situations in varying traffic seem to be a major contributor to a high test-to-test variability of PN emissions. However, there is a trend to increasing PN emissions with more severe driving styles. A cold start effect is clearly visible for PN, especially at low ambient temperatures down to 8 °C.

  18. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

    PubMed

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-03-04

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.

  19. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    NASA Astrophysics Data System (ADS)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  20. Development of a portable frequency-domain angle-resolved low coherence interferometry system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.; Wax, Adam

    2007-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.