NASA Technical Reports Server (NTRS)
Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)
1999-01-01
A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
Small plasma focus as neutron pulsed source for nuclides identification
NASA Astrophysics Data System (ADS)
Milanese, M.; Niedbalski, J.; Moroso, R.; Barbaglia, M.; Mayer, R.; Castillo, F.; Guichón, S.
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
Small plasma focus as neutron pulsed source for nuclides identification.
Milanese, M; Niedbalski, J; Moroso, R; Barbaglia, M; Mayer, R; Castillo, F; Guichón, S
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
21 CFR 868.5655 - Portable liquid oxygen unit.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...
21 CFR 868.5655 - Portable liquid oxygen unit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...
21 CFR 868.5655 - Portable liquid oxygen unit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...
21 CFR 868.5655 - Portable liquid oxygen unit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...
21 CFR 868.5655 - Portable liquid oxygen unit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Portable liquid oxygen unit. 868.5655 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5655 Portable liquid oxygen unit. (a) Identification. A portable liquid oxygen unit is a portable, thermally insulated container of liquid oxygen that...
Pillar-structured neutron detector based multiplicity system
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...
2017-10-04
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less
Pillar-structured neutron detector based multiplicity system
NASA Astrophysics Data System (ADS)
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.
2018-01-01
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.
21 CFR 868.5440 - Portable oxygen generator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...
21 CFR 868.5440 - Portable oxygen generator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...
21 CFR 868.5440 - Portable oxygen generator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...
21 CFR 868.5440 - Portable oxygen generator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...
21 CFR 868.5440 - Portable oxygen generator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2014 CFR
2014-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2013 CFR
2013-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2012 CFR
2012-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
Regional Small-Event Identification Using Networks and Arrays of Seismic and Acoustic Sensors
2006-04-01
ground displacement and excite infra - sonic waves in the atmosphere (Blanc, 1989) near-surface explosions are much more efficient sources of...valuable advice on the portable infrasonic deployment at MNTA. Several of the images in this report are attributable to David Anderson at Southern...populations. This study has focused on seismic observations from mining explosions. There is increasing evidence that infrasonic observations may help in
Development and testing of a portable wind sensitive directional air sampler
NASA Technical Reports Server (NTRS)
Deyo, J.; Toma, J.; King, R. B.
1975-01-01
A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.
NASA Astrophysics Data System (ADS)
Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard
2010-08-01
We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.
MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go.
Muth, Thilo; Kohrs, Fabian; Heyer, Robert; Benndorf, Dirk; Rapp, Erdmann; Reichl, Udo; Martens, Lennart; Renard, Bernhard Y
2018-01-02
Metaproteomics, the mass spectrometry-based analysis of proteins from multispecies samples faces severe challenges concerning data analysis and results interpretation. To overcome these shortcomings, we here introduce the MetaProteomeAnalyzer (MPA) Portable software. In contrast to the original server-based MPA application, this newly developed tool no longer requires computational expertise for installation and is now independent of any relational database system. In addition, MPA Portable now supports state-of-the-art database search engines and a convenient command line interface for high-performance data processing tasks. While search engine results can easily be combined to increase the protein identification yield, an additional two-step workflow is implemented to provide sufficient analysis resolution for further postprocessing steps, such as protein grouping as well as taxonomic and functional annotation. Our new application has been developed with a focus on intuitive usability, adherence to data standards, and adaptation to Web-based workflow platforms. The open source software package can be found at https://github.com/compomics/meta-proteome-analyzer .
SELDI Validation Study Phase II — EDRN Public Portal
This project –A Comprehensive Program for the Validation of Prostate Cancer Early Detection with Novel Protein Identification Techniques -- is divided into three phases. The goal of Phase I was to assess the reproducibility and portability of Surface-Enhanced Laser Desorption and Ionization time-of-flight mass spectrometry (SELDI-TOF-MS) using protein profiles generated from serum. Phase I was recently successfully completed at six institutions using a single source of pooled sera.
Witinski, Mark F; Blanchard, Romain; Pfluegl, Christian; Diehl, Laurent; Li, Biao; Krishnamurthy, Kalyani; Pein, Brandt C; Azimi, Masud; Chen, Peili; Ulu, Gokhan; Vander Rhodes, Greg; Howle, Chris R; Lee, Linda; Clewes, Rhea J; Williams, Barry; Vakhshoori, Daryoosh
2018-04-30
This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.
Portable source identification device
NASA Astrophysics Data System (ADS)
Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.
2005-05-01
U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.
Rapid lard identification with portable electronic nose
NASA Astrophysics Data System (ADS)
Latief, Marsad; Khorsidtalab, Aida; Saputra, Irwan; Akmeliawati, Rini; Nurashikin, Anis; Jaswir, Irwandi; Witjaksono, Gunawan
2017-11-01
Human sensory systems are limited in many different regards, yet they are great sources of inspiration for development of technologies that help humans to overcome their restraints. This paper signifies the capability of our developed electronic nose in rapid lard identification. The developed device, known as E-Nose, mimics human’s olfactory system’s technique to identify a particular substance. Lard is a common pig derivative which is often used as a food additive, emulsion or shortening. It’s also commonly used as an adulterant or as an alternative for cooking oils, margarine and butter. This substance is prohibited to be consumed by Muslims and Orthodox Jews for religious reasons. A portable reliable device with an ability to identify lard rapidly can be convenient to users concerned about lard adulteration. The prototype was examined using K-Nearest Neighbors algorithm (KNN), Support Vector Machine (SVM), Bagged Trees and Simple Tree, and can identify lard with the highest accuracy of 95.6% among three types of fat (lard, chicken and beef) in liquid form over a certain range of temperature using KNN.
21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4680 Nonpowered, single patient, portable suction apparatus. (a) Identification. A nonpowered, single patient, portable suction apparatus is a device that consists of a manually operated plastic, disposable...
21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4680 Nonpowered, single patient, portable suction apparatus. (a) Identification. A nonpowered, single patient, portable suction apparatus is a device that consists of a manually operated plastic, disposable...
2004-06-10
Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II (performance...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II (performance...
Retrieval columns of SO2 in industrial chimneys using DOAS passive in traverse
NASA Astrophysics Data System (ADS)
Galicia Mejía, Rubén; de la Rosa Vázquez, José Manuel; Sosa Iglesias, Gustavo
2011-10-01
The optical Differential Optical Absorption Spectroscopy (DOAS) is a technique to measure pollutant emissions like SO2, from point sources and total fluxes in the atmosphere. Passive DOAS systems use sunlight like source. Measurements with such systems can be made in situ and in real time. The goal of this work is to report the implementation of hardware and software of a portable system to evaluate the pollutants emitted in the atmosphere by industrial chimneys. We show SO2 measurements obtained around PEMEX refinerys in Tula Hidalgo that enables the identification of their pollution degree with the knowledge of speed wind.
Fujihara, J; Fujita, Y; Yamamoto, T; Nishimoto, N; Kimura-Kataoka, K; Kurata, S; Takinami, Y; Yasuda, T; Takeshita, H
2017-03-01
Raman spectroscopy is commonly used in chemistry to identify molecular structure. This technique is a nondestructive analysis and needs no sample preparation. Recently, Raman spectroscopy has been shown to be effective as a multipurpose analytical method for forensic applications. In the present study, blood identification and discrimination between human and nonhuman blood were performed by a portable Raman spectrometer, which can be used at a crime scene. To identify the blood and to discriminate between human and nonhuman blood, Raman spectra of bloodstains from 11 species (human, rat, mouse, cow, horse, sheep, pig, rabbit, cat, dog, and chicken) were taken using a portable Raman spectrometer. Raman peaks for blood (742, 1001, 1123, 1247, 1341, 1368, 1446, 1576, and 1619 cm -1 ) could be observed by the portable Raman spectrometer in all 11 species, and the human bloodstain could be distinguished from the nonhuman ones by using a principal component analysis. This analysis can be performed on a bloodstain sample of at least 3 months old. The portable Raman spectrometer can be used at a crime scene, and this analysis is useful for forensic examination.
Goñi Gironés, E; Vicente García, F; Serra Arbeloa, P; Estébanez Estébanez, C; Calvo Benito, A; Rodrigo Rincón, I; Camarero Salazar, A; Martínez Lozano, M E
2013-01-01
To define the sentinel node identification rate in breast cancer, the chronological evolution of this parameter and the influence of the introduction of a portable gamma camera. A retrospective study was conducted using a prospective database of 754 patients who had undergone a sentinel lymph node biopsy between January 2003 and December 2011. The technique was mixed in the starting period and subsequently was performed with radiotracer intra-peritumorally administered the day before of the surgery. Until October 2009, excision of the sentinel node was guided by a probe. After that date, a portable gamma camera was introduced for intrasurgical detection. The SN was biopsied in 725 out of the 754 patients studied. The resulting technique global effectiveness was 96.2%. In accordance with the year of the surgical intervention, the identification percentage was 93.5% in 2003, 88.7% in 2004, 94.3% in 2005, 95.7% in 2006, 93.3% in 2007, 98.8% in 2008, 97.1% in 2009 and 99.1% in 2010 and 2011. There was a significant difference in the proportion of identification before and after the incorporation of the portable gamma camera of 4.6% (95% CI of the difference 2-7.2%, P = 0.0037). The percentage of global identification exceeds the recommended level following the current guidelines. Chronologically, the improvement for this parameter during the study period has been observed. These data suggest that the incorporation of a portable gamma camera had an important role. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.
NASA Technical Reports Server (NTRS)
Selvaduray, Guna; Lomax, Curtis
1991-01-01
Fusible heat sinks are a possible source for thermal regulation of space suited astronauts. An extensive database search was undertaken to identify candidate materials with liquid solid transformations over the temperature range of -18 C to 5 C; and 1215 candidates were identified. Based on available data, 59 candidate materials with thermal storage capability, DeltaH values higher than that of water were identified. This paper presents the methodology utilized in the study, including the decision process used for materials selection.
On-road and wind-tunnel measurement of motorcycle helmet noise.
Kennedy, J; Carley, M; Walker, I; Holt, N
2013-09-01
The noise source mechanisms involved in motorcycling include various aerodynamic sources and engine noise. The problem of noise source identification requires extensive data acquisition of a type and level that have not previously been applied. Data acquisition on track and on road are problematic due to rider safety constraints and the portability of appropriate instrumentation. One way to address this problem is the use of data from wind tunnel tests. The validity of these measurements for noise source identification must first be demonstrated. In order to achieve this extensive wind tunnel tests have been conducted and compared with the results from on-track measurements. Sound pressure levels as a function of speed were compared between on track and wind tunnel tests and were found to be comparable. Spectral conditioning techniques were applied to separate engine and wind tunnel noise from aerodynamic noise and showed that the aerodynamic components were equivalent in both cases. The spectral conditioning of on-track data showed that the contribution of engine noise to the overall noise is a function of speed and is more significant than had previously been thought. These procedures form a basis for accurate experimental measurements of motorcycle noise.
Gem and mineral identification using GL Gem Raman and comparison with other portable instruments
NASA Astrophysics Data System (ADS)
Culka, Adam; Hyršl, Jaroslav; Jehlička, Jan
2016-11-01
Several mainly silicate minerals in their gemstone varieties have been analysed by the Gem Raman portable system by Gemlab R&T, Vancouver, Canada, in order to ascertain the general performance of this relatively non-expensive tool developed exactly for the purpose of gemstone identification. The Raman spectra of gemstones acquired by this system have been subsequently critically compared with the data obtained by several other portable or handheld Raman instruments. The Raman spectra acquired with the Gem Raman instrument were typically of lesser quality when compared with the spectra taken by other instruments. Characteristic features such as steep baseline probably due to the fluorescence of the minerals, Raman bands much broader and therefore less resolved closely located Raman bands, and generally greater shifts of the band positions from the reference values were encountered. Some gemstone groups such as rubies did not provide useful Raman spectra at all. Nevertheless, general identification of gemstones was possible for a selection of gemstones.
DOT National Transportation Integrated Search
2013-08-01
Portable roll-up signs are currently used by the Texas Department of Transportation for identification of short-term maintenance/work zones and emergency operations. These signs have fiberglass frames that directly support diamond-shaped and rectangu...
Kawashima, Hiroki; Hayashi, Norio; Ohno, Naoki; Matsuura, Yukihiro; Sanada, Shigeru
2015-08-01
To evaluate the patient identification ability of radiographers, previous and current chest radiographs were assessed with observer study utilizing a receiver operating characteristics (ROCs) analysis. This study included portable and conventional chest radiographs from 43 same and 43 different patients. The dataset used in this study was divided into the three following groups: (1) a pair of portable radiographs, (2) a pair of conventional radiographs, and (3) a combination of each type of radiograph. Seven observers participated in this ROC study, which aimed to identify same or different patients, using these datasets. ROC analysis was conducted to calculate the average area under ROC curve obtained by each observer (AUCave), and a statistical test was performed using the multi-reader multi-case method. Comparable results were obtained with pairs of portable (AUCave: 0.949) and conventional radiographs (AUCave: 0.951). In a comparison between the same modality, there were no significant differences. In contrast, the ability to identify patients by comparing a portable and conventional radiograph (AUCave: 0.873) was lower than with the matching datasets (p=0.002 and p=0.004, respectively). In conclusion, the use of different imaging modalities reduces radiographers' ability to identify their patients.
Britton, J
2007-01-01
Portable medical devices represent an important resource for assisting healthcare delivery. The movement of portable devices often results in them being unavailable when needed. Tracking equipment using radiofrequency identification technology/devices (RFID) may provide a promising solution to the problems encountered in locating portable equipment. An RFID technology trial was undertaken at Royal Alexandra Hospital, Paisley. This involved the temporary installation of three active readers and attaching actively transmitting radio frequency tags to different portable medical devices. The active readers and computer system were linked using a bespoke data network. Tags and readers from two separate manufacturers were tested. Reliability difficulties were encountered when testing the technology from the first manufacturer, probably due to the casing of the medical device interfering with the signal from the tag. Improved results were obtained when using equipment from the second manufacturer with an overall error rate of 12.3%. Tags from this manufacturer were specifically designed to overcome problems observed with the first system tested. Findings from this proof of concept trial suggest that RFID technology could be used to track the location of equipment in a hospital.
Satellite sound broadcasting system, portable reception
NASA Technical Reports Server (NTRS)
Golshan, Nasser; Vaisnys, Arvydas
1990-01-01
Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.
NASA Astrophysics Data System (ADS)
Suresh, Pooja
2014-05-01
Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.
Microprocessor controlled portable TLD system
NASA Technical Reports Server (NTRS)
Apathy, I.; Deme, S.; Feher, I.
1996-01-01
An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Fleck, D.
2017-12-01
Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.
Tsujikawa, Kenji; Kuwayama, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Yoshida, Takemi; Inoue, Hiroyuki
2008-02-04
We tried to develop a library search system using a portable, attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer for on-site identification of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) tablets. The library consisted of the spectra from mixtures of controlled drugs (e.g. MDMA and ketamine), adulterants (e.g. caffeine), and diluents (e.g. lactose). In the seven library search algorithms, the derivative correlation coefficient showed the best discriminant capability. This was enhanced by segmentation of the search area. The optimized search algorithm was validated by the positive (n=154, e.g. the standard mixtures containing the controlled drug, and the MDMA/MDA tablets confiscated) and negative samples (n=56, e.g. medicinal tablets). All validation samples except for four were judged truly. Final criteria for positive identification were decided on the basis of the results of the validation. In conclusion, a portable ATR-FT-IR spectrometer with our library search system would be a useful tool for on-site identification of amphetamine-type stimulant tablets.
PORTABLE SOURCE OF RADIOACTIVITY
Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.
1959-06-16
A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)
Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don
2005-08-01
We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.
Portable data collection device
French, P.D.
1996-06-11
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.
Portable data collection device
French, Patrick D.
1996-01-01
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.
Engineering Resilience Into The Marine Expeditionary Units Resupply System Through Military Foraging
2017-09-01
19 Figure 7. Solar Portable Alternative Communications Energy System ( SPACES ) Source...sustained operations ashore SPACES solar portable alternative communications energy system STOM ship-to-objective maneuver STSM ship-to-shore movement... Communications Energy System Solar Portable Alternative Communications Energy System ( SPACES ) is a man-portable energy generation system for mounted
Container weld identification using portable laser scanners
NASA Astrophysics Data System (ADS)
Taddei, Pierluigi; Boström, Gunnar; Puig, David; Kravtchenko, Victor; Sequeira, Vítor
2015-03-01
Identification and integrity verification of sealed containers for security applications can be obtained by employing noninvasive portable optical systems. We present a portable laser range imaging system capable of identifying welds, a byproduct of a container's physical sealing, with micrometer accuracy. It is based on the assumption that each weld has a unique three-dimensional (3-D) structure which cannot be copied or forged. We process the 3-D surface to generate a normalized depth map which is invariant to mechanical alignment errors and that is used to build compact signatures representing the weld. A weld is identified by performing cross correlations of its signature against a set of known signatures. The system has been tested on realistic datasets, containing hundreds of welds, yielding no false positives or false negatives and thus showing the robustness of the system and the validity of the chosen signature.
Leary, Pauline E; Dobson, Gareth S; Reffner, John A
2016-05-01
Portable gas chromatography-mass spectrometry (GC-MS) systems are being deployed for field use, and are designed with this goal in mind. Performance characteristics of instruments that are successful in the field are different from those of equivalent technologies that are successful in a laboratory setting. These field-portable systems are extending the capabilities of the field user, providing investigative leads and confirmatory identifications in real time. Many different types of users benefit from the availability of this technology including emergency responders, the military, and law-enforcement organizations. This manuscript describes performance characteristics that are important for field-portable instruments, especially field-portable GC-MS systems, and demonstrates the value of this equipment to the disciplines of explosives investigations, fire investigations, and counterfeit-drug detection. This paper describes the current state of portable GC-MS technology, including a review of the development of portable GC-MS, as well as a demonstration of the value of this capability using different examples. © The Author(s) 2016.
Sound reduction of air compressors using a systematic approach
NASA Astrophysics Data System (ADS)
Moylan, Justin Tharp
The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... filter press and/or portable centrifuge, and the resulting residual solids are disposed of in a RCRA... dewatered and de- oiled using a filter press and/or portable centrifuge and the resulting solids disposed in... tanks at approximately 18 month intervals and processed via centrifuge and/or filter press for oil...
40 CFR 52.2020 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to... Subchapter A—Portable Fuel Containers Section 130.101 Applicability 10/5/02 12/8/04, 69 FR 70893 (c)(229... for portable fuel containers and spill-proof spouts 10/5/02 12/8/04, 69 FR 70893 (c)(229). Section 130...
Portable Tandem Mass Spectrometer Analyzer
1991-07-01
The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional
New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics
NASA Astrophysics Data System (ADS)
Voronine, Dmitri; Scully, Rob; Sanders, Virgil
2014-03-01
Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.
Miniaturised Space Payloads for Outdoor Environmental Applications
NASA Astrophysics Data System (ADS)
de Souza, P. A.
2012-12-01
The need for portable, robust and acurate sensors has increased in recent years resulting from industrial and environmental needs. This paper describes a number of applications of engineering copies of those Moessbauer spectrometers (MIMOS II) used by Mars Exploration Rovers, and the use of portable XRF spectrometers in the analysis of heavy metals in sediments. MIMOS II has been applied in the characterisation of Fe-bearing phases in airborne particles in industrialised urban centres, The results have allowed an identification of sources or air pollution in near-real-time. The results help to combine production parameters with pollution impact in the urban area. MIMOS II became a powerful tool because its constructive requirements to flight has produced a robust, power efficient, miniaturised, and light. On the limitation side, the technique takes sometime to produce a good result and the instrument requires a radioactive source to operate. MIMOS II Team has reported a new generation of this instrument incorporating a XRF spectrometer using the radioactive source to generate fluorescence emissions from sample. The author, and its research group, adapted a portable XRF spectrometer to an autonomous underwater vehicle (AUV) and conducted heavy metals survey in sediments across the Derwent Estuary in Tasmania, Australia. The AUV lands on suitable locations underwater, makes the chemical analysis and decide based on the result to move to a closer location, should high concentration of chemicals of interest be found, or to another distant location otherwise. Beyond environmental applications, these instruments were applied in archaeology and in industrial process control.oessbauer spectra recorded on airborne particles (Total Suspended Particles) collected at Ilha do Boi, VItoria, ES, Brazil. SIRO's Autonomous Underwater Vehicle carring a miniaturised XRF spectrometer for underwater chemistry. Students involved in this Project: Mr Jeremy Breen and Mr Andrew Davie. Collaborators: Dr. Greg Timms (CSIRO) and Dr. Robert Ollington (UTAS). This AUV us 1.2m long.
Portable data collection device with self identifying probe
French, P.D.
1998-11-17
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of time. The sensor may also store a unique sensor identifier. 13 figs.
Portable data collection device with self identifying probe
French, Patrick D.
1998-01-01
The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of time. The sensor may also store a unique sensor identifier.
Portable direct methanol fuel cell systems
NASA Technical Reports Server (NTRS)
Narayanan, S. R.; Valdez, T. I.
2002-01-01
This article includes discussion of the specific power and power density requirements for various portable system applications, the status of stack technology, progress in the implementation of balance-of-plant designs, and a summary of the characteristics of various DMFC portable power source demonstrations.
State-of-the-art lab chip sensors for environmental water monitoring
NASA Astrophysics Data System (ADS)
Jang, Am; Zou, Zhiwei; Kug Lee, Kang; Ahn, Chong H.; Bishop, Paul L.
2011-03-01
As a result of increased water demand and water pollution, both surface water and groundwater quantity and quality are of major concern worldwide. In particular, the presence of nutrients and heavy metals in water is a serious threat to human health. The initial step for the effective management of surface waters and groundwater requires regular, continuous monitoring of water quality in terms of contaminant distribution and source identification. Because of this, there is a need for screening and monitoring measurements of these compounds at contaminated areas. However, traditional monitoring techniques are typically still based on laboratory analyses of representative field-collected samples; this necessitates considerable effort and expense, and the sample may change before analysis. Furthermore, currently available equipment is so large that it cannot usually be made portable. Alternatively, lab chip and electrochemical sensing-based portable monitoring systems appear well suited to complement standard analytical methods for a number of environmental monitoring applications. In addition, this type of portable system could save tremendous amounts of time, reagent, and sample if it is installed at contaminated sites such as Superfund sites (the USA's worst toxic waste sites) and Resource Conservation and Recovery Act (RCRA) facilities or in rivers and lakes. Accordingly, state-of-the-art monitoring equipment is necessary for accurate assessments of water quality. This article reviews details on our development of these lab-on-a-chip (LOC) sensors.
McGraw, Deven
2013-01-01
The aim of this paper is to summarize concerns with the de-identification standard and methodologies established under the Health Insurance Portability and Accountability Act (HIPAA) regulations, and report some potential policies to address those concerns that were discussed at a recent workshop attended by industry, consumer, academic and research stakeholders. The target audience includes researchers, industry stakeholders, policy makers and consumer advocates concerned about preserving the ability to use HIPAA de-identified data for a range of important secondary uses. HIPAA sets forth methodologies for de-identifying health data; once such data are de-identified, they are no longer subject to HIPAA regulations and can be used for any purpose. Concerns have been raised about the sufficiency of HIPAA de-identification methodologies, the lack of legal accountability for unauthorized re-identification of de-identified data, and insufficient public transparency about de-identified data uses. Although there is little published evidence of the re-identification of properly de-identified datasets, such concerns appear to be increasing. This article discusses policy proposals intended to address de-identification concerns while maintaining de-identification as an effective tool for protecting privacy and preserving the ability to leverage health data for secondary purposes.
Portable Raman instrument for rapid biological agent detection and identification
NASA Astrophysics Data System (ADS)
Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy
2009-05-01
The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.
A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.
Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei
2017-12-04
A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.
Rapid bacterial diagnostics via surface enhanced Raman microscopy.
Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D
2012-06-01
There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.
Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...
System and method for acquisition management of subject position information
Carrender, Curt
2005-12-13
A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.
System and method for acquisition management of subject position information
Carrender, Curt [Morgan Hill, CA
2007-01-23
A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.
Portable exhauster POR-007/Skid E and POR-008/Skid F storage plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, O.D.
1998-07-25
This document provides storage requirements for 1,000 CFM portable exhausters POR-O07/Skid E and POR-008/Skid F. These requirements are presented in three parts: preparation for storage, storage maintenance and testing, and retrieval from storage. The exhauster component identification numbers listed in this document contain the prefix POR-007 or POR-008 depending on which exhauster is being used.
NASA Technical Reports Server (NTRS)
1984-01-01
A low cost, low power, self-contained portable welding gun designed for joining thermoplastics which become soft when heated and harden when cooled was developed originally by NASA's Langley Research Center for repairing helicopter windshields. Welder has a broad range of applications for joining both thermoplastic materials in the aerospace, automotive, appliance, and construction industries. Welders portability and low power requirement allow its use on-site in any type of climate, with power supplied by a variety of portable sources.
Portable traceability solution for ground-based calibration of optical instruments
NASA Astrophysics Data System (ADS)
El Gawhary, Omar; van Veghel, Marijn; Kenter, Pepijn; van der Leden, Natasja; Dekker, Paul; Revtova, Elena; Heemskerk, Maurice; Trarbach, André; Vink, Ramon; Doyle, Dominic
2017-11-01
We present a portable traceability solution for the ground-based optical calibration of earth observation (EO) instruments. Currently, traceability for this type of calibration is typically based on spectral irradiance sources (e.g. FEL lamps) calibrated at a national metrology institute (NMI). Disadvantages of this source-based traceability are the inflexibility in operating conditions of the source, which are limited to the settings used during calibration at the NMI, and the susceptibility to aging, which requires frequent recalibrations, and which cannot be easily checked on-site. The detector-based traceability solution presented in this work uses a portable filter radiometer to calibrate light sources onsite, immediately before and after, or even during instrument calibration. The filter radiometer itself is traceable to the primary standard of radiometry in the Netherlands. We will discuss the design and realization, calibration and performance verification.
Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo
2014-01-01
A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
A spectroscopic tool for identifying sources of origin for materials of military interest
NASA Astrophysics Data System (ADS)
Miziolek, Andrzej W.; De Lucia, Frank C.
2014-05-01
There is a need to identify the source of origin for many items of military interest, including ammunition and weapons that may be circulated and traded in illicit markets. Both fieldable systems (man-portable or handheld) as well as benchtop systems in field and home base laboratories are desired for screening and attribution purposes. Laser Induced Breakdown Spectroscopy (LIBS) continues to show significant capability as a promising new tool for materials identification, matching, and provenance. With the use of the broadband, high resolution spectrometer systems, the LIBS devices can not only determine the elemental inventory of the sample, but they are also capable of elemental fingerprinting to signify sources of origin of various materials. We present the results of an initial study to differentiate and match spent cartridges from different manufacturers and countries. We have found that using Partial Least Squares Discriminant Analysis (PLS-DA) we are able to achieve on average 93.3% True Positives and 5.3% False Positives. These results add to the large body of publications that have demonstrated that LIBS is a particularly suitable tool for source of origin determinations.
2013-01-01
Objectives The aim of this paper is to summarize concerns with the de-identification standard and methodologies established under the Health Insurance Portability and Accountability Act (HIPAA) regulations, and report some potential policies to address those concerns that were discussed at a recent workshop attended by industry, consumer, academic and research stakeholders. Target audience The target audience includes researchers, industry stakeholders, policy makers and consumer advocates concerned about preserving the ability to use HIPAA de-identified data for a range of important secondary uses. Scope HIPAA sets forth methodologies for de-identifying health data; once such data are de-identified, they are no longer subject to HIPAA regulations and can be used for any purpose. Concerns have been raised about the sufficiency of HIPAA de-identification methodologies, the lack of legal accountability for unauthorized re-identification of de-identified data, and insufficient public transparency about de-identified data uses. Although there is little published evidence of the re-identification of properly de-identified datasets, such concerns appear to be increasing. This article discusses policy proposals intended to address de-identification concerns while maintaining de-identification as an effective tool for protecting privacy and preserving the ability to leverage health data for secondary purposes. PMID:22735615
42 CFR 37.60 - Submitting required chest roentgenograms and miner identification documents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... prescribed in this subpart, all the forms shall be submitted with his or her name and social security account... miner identification document containing the miner's name, address, social security number and place of... format specified by NIOSH either using portable electronic media, or a secure electronic file transfer...
Portable Immune-Assessment System
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.
1995-01-01
Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.
A portable high power microwave source with permanent magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Zhang, Jun; Li, Zhi-qiang
A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.
Portable breathing apparatus for coal mines
NASA Technical Reports Server (NTRS)
Vandolah, R. W.
1972-01-01
The state of the art in portable oxygen breathing equipment is reported. Considered are self-containing as well as chemically generating oxygen sources and their effectiveness and limitations in mine rescue operations.
Ragan, Elizabeth J; Johnson, Courtney; Milton, Jacqueline N; Gill, Christopher J
2016-11-02
One of the greatest public health challenges in low- and middle-income countries (LMICs) is identifying people over time and space. Recent years have seen an explosion of interest in developing electronic approaches to addressing this problem, with mobile technology at the forefront of these efforts. We investigate the possibility of biometrics as a simple, cost-efficient, and portable solution. Common biometrics approaches include fingerprinting, iris scanning and facial recognition, but all are less than ideal due to complexity, infringement on privacy, cost, or portability. Ear biometrics, however, proved to be a unique and viable solution. We developed an identification algorithm then conducted a cross sectional study in which we photographed left and right ears from 25 consenting adults. We then conducted re-identification and statistical analyses to identify the accuracy and replicability of our approach. Through principal component analysis, we found the curve of the ear helix to be the most reliable anatomical structure and the basis for re-identification. Although an individual ear allowed for high re-identification rate (88.3%), when both left and right ears were paired together, our rate of re-identification amidst the pool of potential matches was 100%. The results of this study have implications on future efforts towards building a biometrics solution for patient identification in LMICs. We provide a conceptual platform for further investigation into the development of an ear biometrics identification mobile application.
Collins, James C; Collet-Klingenberg, Lana
2017-01-01
This article summarizes a review of empirical literature from 2000 to 2015 that involved the use of specific portable technology to support persons with an intellectual disability in completing work-related tasks. Nineteen studies were identified for review, with an emphasis on the identification of (a) the characteristics of participants and settings, (b) the types of portable technology and prompting formats used, (c) the research designs utilized, (d) the independent and dependent variables, (e) the measures of reliability and validity, and (f) the overall effectiveness of the interventions. The authors provide an interpretation of the findings as well as the implications of the results and recommended areas for future research.
[Current status and prospects of portable NIR spectrometer].
Yu, Xin-Yang; Lu, Qi-Peng; Gao, Hong-Zhi; Peng, Zhong-Qi
2013-11-01
Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.
NASA Astrophysics Data System (ADS)
Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.
2000-03-01
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.
The Underwater Radiation Spectral Identification System (URSIS) is a portable spectrometer used for the in situ detection of radioactivity in the marine environment. This paper reports on the first time application of this technology to assess, in a preliminary manner, the potent...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreyer, Jonathan G.; Wang, Tzu-Fang; Vo, Duc T.
Under a 2006 agreement between the Department of Energy (DOE) of the United States of America and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) of France, the National Nuclear Security Administration (NNSA) within DOE and IRSN initiated a collaboration to improve isotopic identification and analysis of nuclear material [i.e., plutonium (Pu) and uranium (U)]. The specific aim of the collaborative project was to develop new versions of two types of isotopic identification and analysis software: (1) the fixed-energy response-function analysis for multiple energies (FRAM) codes and (2) multi-group analysis (MGA) codes. The project is entitled Action Sheet 4more » – Cooperation on Improved Isotopic Identification and Analysis Software for Portable, Electrically Cooled, High-Resolution Gamma Spectrometry Systems (Action Sheet 4). FRAM and MGA/U235HI are software codes used to analyze isotopic ratios of U and Pu. FRAM is an application that uses parameter sets for the analysis of U or Pu. MGA and U235HI are two separate applications that analyze Pu or U, respectively. They have traditionally been used by safeguards practitioners to analyze gamma spectra acquired with high-resolution gamma spectrometry (HRGS) systems that are cooled by liquid nitrogen. However, it was discovered that these analysis programs were not as accurate when used on spectra acquired with a newer generation of more portable, electrically cooled HRGS (ECHRGS) systems. In response to this need, DOE/NNSA and IRSN collaborated to update the FRAM and U235HI codes to improve their performance with newer ECHRGS systems. Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) performed this work for DOE/NNSA.« less
PHILIS (PORTABLE HIGH-THROUGHPUT INTEGRATED LABORATORY IDENTIFICATION SYSTEM)
These mobile laboratory assets, for the on-site analysis of chemical warfare agent (CWA) and toxic industrial compound (TIC) contaminated environmental samples, are part of the evolving Environmental Response Laboratory Network (ERLN).
Detection of chemical warfare simulants using Raman excitation at 1064 nm
NASA Astrophysics Data System (ADS)
Dentinger, Claire; Mabry, Mark W.; Roy, Eric G.
2014-05-01
Raman spectroscopy is a powerful technique for material identification. The technique is sensitive to primary and higher ordered molecular structure and can be used to identify unknown materials by comparison with spectral reference libraries. Additionally, miniaturization of opto-electronic components has permitted development of portable Raman analyzers that are field deployable. Raman scattering is a relatively weak effect compared to a competing phenomenon, fluorescence. Even a moderate amount of fluorescence background interference can easily prevent identification of unknown materials. A long wavelength Raman system is less likely to induce fluorescence from a wider variety of materials than a higher energy visible laser system. Compounds such as methyl salicylate (MS), diethyl malonate (DEM), and dimethyl methylphosphonate (DMMP) are used as chemical warfare agent (CWA) simulants for development of analytical detection strategies. Field detection of these simulants however poses unique challenges because threat identification must be made quickly without the turnaround time usually required for a laboratory based analysis. Fortunately, these CWA simulants are good Raman scatterers, and field based detection using portable Raman instruments is promising. Measurements of the CWA simulants were done using a 1064 nm based portable Raman spectrometer. The longer wavelength excitation laser was chosen relative to a visible based laser systems because the 1064 nm based spectrometer is less likely to induce fluorescence and more suitable to a wider range of materials. To more closely mimic real world measurement situations, different sample presentations were investigated.
Microcombustor-thermoelectric power generator for 10-50 watt applications
NASA Astrophysics Data System (ADS)
Marshall, Daniel S.; Cho, Steve T.
2010-04-01
Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.
Portable multispectral fluorescence imaging system for food safety applications
NASA Astrophysics Data System (ADS)
Lefcourt, Alan M.; Kim, Moon S.; Chen, Yud-Ren
2004-03-01
Fluorescence can be a sensitive method for detecting food contaminants. Of particular interest is detection of fecal contamination as feces is the source of many pathogenic organisms. Feces generally contain chlorophyll a and related compounds due to ingestion of plant materials, and these compounds can readily be detected using fluorescence techniques. Described is a fluorescence-imaging system consisting primarily of a UV light source, an intensified camera with a six-position filter wheel, and software for controlling the system and automatically analyzing the resulting images. To validate the system, orchard apples artificially contaminated with dairy feces were used in a "hands-on" public demonstration. The contamination sites were easily identified using automated edge detection and threshold detection algorithms. In addition, by applying feces to apples and then washing sets of apples at hourly intervals, it was determined that five h was the minimum contact time that allowed identification of the contamination site after the apples were washed. There are many potential uses for this system, including studying the efficacy of apple washing systems.
Development and study of aluminum-air electrochemical generator and its main components
NASA Astrophysics Data System (ADS)
Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.
2017-02-01
Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.
Performance characterization of a combined material identification and screening algorithm
NASA Astrophysics Data System (ADS)
Green, Robert L.; Hargreaves, Michael D.; Gardner, Craig M.
2013-05-01
Portable analytical devices based on a gamut of technologies (Infrared, Raman, X-Ray Fluorescence, Mass Spectrometry, etc.) are now widely available. These tools have seen increasing adoption for field-based assessment by diverse users including military, emergency response, and law enforcement. Frequently, end-users of portable devices are non-scientists who rely on embedded software and the associated algorithms to convert collected data into actionable information. Two classes of problems commonly encountered in field applications are identification and screening. Identification algorithms are designed to scour a library of known materials and determine whether the unknown measurement is consistent with a stored response (or combination of stored responses). Such algorithms can be used to identify a material from many thousands of possible candidates. Screening algorithms evaluate whether at least a subset of features in an unknown measurement correspond to one or more specific substances of interest and are typically configured to detect from a small list potential target analytes. Thus, screening algorithms are much less broadly applicable than identification algorithms; however, they typically provide higher detection rates which makes them attractive for specific applications such as chemical warfare agent or narcotics detection. This paper will present an overview and performance characterization of a combined identification/screening algorithm that has recently been developed. It will be shown that the combined algorithm provides enhanced detection capability more typical of screening algorithms while maintaining a broad identification capability. Additionally, we will highlight how this approach can enable users to incorporate situational awareness during a response.
Portable medical status system. [potential hazards in the use of the telecare system
NASA Technical Reports Server (NTRS)
Lindsey, O. C.
1976-01-01
The hazards inherent in the Portable Medical Status System are identified, and the measures taken to reduce them to an acceptable level are described. Identification of these hazards is a prerequisite to use of the system on humans in the earth environment. One hazard which is insufficiently controlled and which is considered a constraint to use on humans is the level of current possible in the electrodes for the EEG (electroencephalograph) circuitry. It exceeds the maximum specified. A number of procedural and design recommendations for enhancement of safety are made.
Mirzabekov, Andrei; Guschin, Dmitry Y.; Chik, Valentine; Drobyshev, Aleksei; Fotin, Alexander; Yershov, Gennadiy; Lysov, Yuri
2002-01-01
This invention relates to using customized oligonucleotide microchips as biosensors for the detection and identification of nucleic acids specific for different genes, organisms and/or individuals in the environment, in food and in biological samples. The microchips are designed to convert multiple bits of genetic information into simpler patterns of signals that are interpreted as a unit. Because of an improved method of hybridizing oligonucleotides from samples to microchips, microchips are reusable and transportable. For field study, portable laser or bar code scanners are suitable.
NASA Astrophysics Data System (ADS)
Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.
2018-01-01
In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.
Portable XRF and principal component analysis for bill characterization in forensic science.
Appoloni, C R; Melquiades, F L
2014-02-01
Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mehrabi, Saeed; Krishnan, Anand; Roch, Alexandra M; Schmidt, Heidi; Li, DingCheng; Kesterson, Joe; Beesley, Chris; Dexter, Paul; Schmidt, Max; Palakal, Mathew; Liu, Hongfang
2015-01-01
In this study we have developed a rule-based natural language processing (NLP) system to identify patients with family history of pancreatic cancer. The algorithm was developed in a Unstructured Information Management Architecture (UIMA) framework and consisted of section segmentation, relation discovery, and negation detection. The system was evaluated on data from two institutions. The family history identification precision was consistent across the institutions shifting from 88.9% on Indiana University (IU) dataset to 87.8% on Mayo Clinic dataset. Customizing the algorithm on the the Mayo Clinic data, increased its precision to 88.1%. The family member relation discovery achieved precision, recall, and F-measure of 75.3%, 91.6% and 82.6% respectively. Negation detection resulted in precision of 99.1%. The results show that rule-based NLP approaches for specific information extraction tasks are portable across institutions; however customization of the algorithm on the new dataset improves its performance.
Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Gongping
2018-05-01
Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.
Design and Fabrication of Multifunctional Portable Bi2Te3-Based Thermoelectric Camping Lamp
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Gongping
2018-07-01
Camping lamps have been widely used in the lighting, power supply, and intelligent electronic equipment fields. However, applications of traditional chemical and solar camping lamps are largely limited by the physical size of the source and operating conditions. A new prototype multifunctional portable Bi2Te3-based thermoelectric camping lamp (TECL) has been designed and fabricated. Ten parallel light-emitting diodes were lit directly by a Bi2Te3-based thermoelectric generator (TEG). The highest short-circuit current of 0.38 A and open-circuit voltage of 4.2 V were obtained at temperature difference of 115 K. This TECL is attractive for use in multifunctional and extreme applications as it integrates a portable heat source, high-performance TEG, and power management unit.
NASA Astrophysics Data System (ADS)
Poston, Terry L.
1989-10-01
The invention relates generally to the art of self-contained heating devices and in particular to portable heating devices employing chemical reaction to produce heat. Currently, hand-held heat sources, capable of producing heat at a sufficiently high temperature to activate heat-shrink material, rely on either the combustion of flammable material or electrical power to provide energy for generating the required heat. An object of the present invention is to provide a portable device capable of providing sufficient heat to shrink heat-shrinkable tubing. A further object of the invention is to provide a non-flammable heat source suitable for use in the presence of explosive atmospheres. Still another object of the invention is to provide a portable hand-held device for generating heat which can be directed to a specific location on a work surface.
Portable, low-cost NMR with laser-lathe lithography produced microcoils.
Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey
2007-11-01
Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.
Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal
2017-09-01
For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.
Identification of chemical warfare agents using a portable microchip-based detection device
NASA Astrophysics Data System (ADS)
Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.
2011-12-01
Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.
On site DNA barcoding by nanopore sequencing
Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo
2017-01-01
Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016
NASA Astrophysics Data System (ADS)
Carriere, James T. A.; Havermeyer, Frank; Heyler, Randy A.
2014-05-01
Rapid identification and source attribution of homemade explosives (HMEs) is vital to national defense and homeland security efforts. Since HMEs can be prepared in a variety of methods with different component ingredients, telltale traces can be left behind in the final structural form of the material. These differences manifest as polymorphs, isomers, conformers or even contaminants that can all impact the low energy vibrational modes of the molecule. Conventional Raman spectroscopy systems confine their measurements to the "chemical fingerprint" region and are unable to detect low frequency Raman signals (<200cm-1) where these low energy modes are found. This gap in sensitivity limits the conclusions that can be drawn from a single Raman measurement and creates the need for multiple measurement techniques to confirm any results. We present results from a new rugged, portable approach that is capable of extending the range of Raman to include these low frequency signals down to ~5cm-1, plus complementary anti-Stokes spectra, with measurement times on the order of seconds. We demonstrate the diversity of signals that lie in this region that directly correlate to the molecular structure of the material, resulting in a new Raman "structural fingerprint" region. By correlating the measured results with known samples from a spectral library, rapid identification of the specific method of manufacture can be made.
Sumant, Anirudha V.; Divan, Ralu; Posada, Chrystian M.; Castano, Carlos H.; Grant, Edwin J.; Lee, Hyoung K.
2016-03-29
A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters. This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube "forest" (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.
Marchese, N; Cannuli, A; Caccamo, M T; Pace, C
2017-01-01
Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
Mastinu, Enzo; Ortiz-Catalan, Max; Hakansson, Bo
2015-01-01
Compact and low-noise Analog Front-Ends (AFEs) are becoming increasingly important for the acquisition of bioelectric signals in portable system. In this work, we compare two popular AFEs available on the market, namely the ADS1299 (Texas Instruments) and the RHA2216 (Intan Technologies). This work develops towards the identification of suitable acquisition modules to design an affordable, reliable and portable device for electromyography (EMG) acquisition and prosthetic control. Device features such as Common Mode Rejection (CMR), Input Referred Noise (IRN) and Signal to Noise Ratio (SNR) were evaluated, as well as the resulting accuracy in myoelectric pattern recognition (MPR) for the decoding of motion intention. Results reported better noise performances and higher MPR accuracy for the ADS1299 and similar SNR values for both devices.
Laser Spiderweb Sensor Used with Portable Handheld Devices
NASA Technical Reports Server (NTRS)
Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)
2017-01-01
A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.
A review of the development of portable laser induced breakdown spectroscopy and its applications
NASA Astrophysics Data System (ADS)
Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.
2014-11-01
In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.
Analysis of DMFC/battery hybrid power system for portable applications
NASA Astrophysics Data System (ADS)
Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho
This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.
Room Temperature Sulfur Battery Cathode Design and Processing Techniques
NASA Astrophysics Data System (ADS)
Carter, Rachel
As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will require exploration of chemistries beyond the Li-ion battery for a system consisting of low cost active materials and promising device performance. (Abstract shortened by ProQuest.).
Portable bacterial identification system based on elastic light scatter patterns.
Bae, Euiwon; Ying, Dawei; Kramer, Donald; Patsekin, Valery; Rajwa, Bartek; Holdman, Cheryl; Sturgis, Jennifer; Davisson, V Jo; Robinson, J Paul
2012-08-28
Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.
Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors
NASA Astrophysics Data System (ADS)
Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart
2018-06-01
A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.
Portable power source needs of the future Army -- Batteries and fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, R.; Christopher, H.; Hamlen, R.
This paper describes the US Army`s future needs for silent portable power in the area of batteries and fuel cells. These needs will continue to increase as a result of the introduction of newer types of equipment, the increasing digitization of the battlefield, and future integrated Soldier Systems. Current battery programs are aimed at improved, low-cost primary batteries, and rechargeable batteries with increased energy densities. The Army fuel cell program aimed at portable systems capable of the order of 150W is also described.
40 CFR 204.55-3 - Configuration identification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.55-3... the following parameters: (1) The compressor type (screw, sliding vane, etc.). (2) Number of compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters...
Autonomous measurements of bridge pier and abutment scour using motion-sensing radio transmitters.
DOT National Transportation Integrated Search
2010-01-01
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa. Both systems co...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seyong; Kim, Jungwon; Vetter, Jeffrey S
This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, thismore » design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.« less
Mainali, Dipak; Seelenbinder, John
2016-05-01
Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples. © The Author(s) 2016.
Tunable light source for use in photoacoustic spectrometers
Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.
2005-12-13
The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili
2013-05-01
Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.
NASA Astrophysics Data System (ADS)
Doherty, B.; Vagnini, M.; Dufourmantelle, K.; Sgamellotti, A.; Brunetti, B.; Miliani, C.
2014-03-01
This contribution examines the utility of vibrational spectroscopy by bench and portable Raman/surface enhanced Raman and infrared methods for the investigation of ten early triarlymethane dye powder references and dye solutions applied on paper. The complementary information afforded by the techniques is shown to play a key role in the identification of specific spectral marker ranges to distiguish early synthetic dyes of art-historical interest through the elaboration of an in-house database of modern organic dyes. Chemometric analysis has permitted a separation of data by the discrimination of di-phenyl-naphthalenes and triphenylmethanes (di-amino and tri-amino derivatives). This work serves as a prelude to the validation of a non-invasive working method for in situ characterization of these synthetic dyes through a careful comparison of respective strengths and limitations of each portable technique.
DOT National Transportation Integrated Search
2010-07-01
The objective of this work was to develop a : low-cost portable damage detection tool to : assess and predict damage areas in highway : bridges. : The proposed tool was based on standard : vibration-based damage identification (VBDI) : techniques but...
Mehrabi, Saeed; Krishnan, Anand; Roch, Alexandra M; Schmidt, Heidi; Li, DingCheng; Kesterson, Joe; Beesley, Chris; Dexter, Paul; Schmidt, Max; Palakal, Mathew; Liu, Hongfang
2018-01-01
In this study we have developed a rule-based natural language processing (NLP) system to identify patients with family history of pancreatic cancer. The algorithm was developed in a Unstructured Information Management Architecture (UIMA) framework and consisted of section segmentation, relation discovery, and negation detection. The system was evaluated on data from two institutions. The family history identification precision was consistent across the institutions shifting from 88.9% on Indiana University (IU) dataset to 87.8% on Mayo Clinic dataset. Customizing the algorithm on the the Mayo Clinic data, increased its precision to 88.1%. The family member relation discovery achieved precision, recall, and F-measure of 75.3%, 91.6% and 82.6% respectively. Negation detection resulted in precision of 99.1%. The results show that rule-based NLP approaches for specific information extraction tasks are portable across institutions; however customization of the algorithm on the new dataset improves its performance. PMID:26262122
Portable thin layer chromatography for field detection of explosives and propellants
NASA Astrophysics Data System (ADS)
Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.
2012-06-01
A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J
2016-01-15
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. Published by Elsevier B.V.
Harries, Megan; Bukovsky-Reyes, Santiago; Bruno, Thomas J.
2016-01-01
This paper details the sampling methods used with the field portable porous layer open tubular cryoadsorption (PLOT-cryo) approach, described in Part I of this two-part series, applied to several analytes of interest. We conducted tests with coumarin and 2,4,6-trinitrotoluene (two solutes that were used in initial development of PLOT-cryo technology), naphthalene, aviation turbine kerosene, and diesel fuel, on a variety of matrices and test beds. We demonstrated that these analytes can be easily detected and reliably identified using the portable unit for analyte collection. By leveraging efficiency-boosting temperature control and the high flow rate multiple capillary wafer, very short collection times (as low as 3 s) yielded accurate detection. For diesel fuel spiked on glass beads, we determined a method detection limit below 1 ppm. We observed greater variability among separate samples analyzed with the portable unit than previously documented in work using the laboratory-based PLOT-cryo technology. We identify three likely sources that may help explain the additional variation: the use of a compressed air source to generate suction, matrix geometry, and variability in the local vapor concentration around the sampling probe as solute depletion occurs both locally around the probe and in the test bed as a whole. This field-portable adaptation of the PLOT-cryo approach has numerous and diverse potential applications. PMID:26726934
High-throughput spectrometer designs in a compact form-factor: principles and applications
NASA Astrophysics Data System (ADS)
Norton, S. M.
2013-05-01
Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.
Mass Spectrometry in the Home and Garden
NASA Astrophysics Data System (ADS)
Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham
2015-02-01
Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.
Toward the development of portable miniature intelligent electronic color identification devices
NASA Astrophysics Data System (ADS)
Nicolau, Dan V., Jr.; Livingston, Peter; Jahshan, David; Evans, Rob
2004-03-01
The identification and differentiation of colours is a relatively problematic task for colour-impaired and partially vision-impaired persons and an impossible one for completely blind. In various contexts, this leads to a loss of independence or an increased risk of harm. The identification of colour using optoelectronic devices, on the other hand, can be done precisely and inexpensively. Additionally, breakthroughs in miniaturising and integrating colour sensors into biological systems may lead to significant advances in electronic implants for alleviating blindness. Here we present a functional handheld device developed for the identification of colour, intended for use by the vision-impaired. We discuss the features and limitations of the device and describe in detail one target application - the identification of different banknote denominations by the blind.
Custom FPGA processing for real-time fetal ECG extraction and identification.
Torti, E; Koliopoulos, D; Matraxia, M; Danese, G; Leporati, F
2017-01-01
Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Innovative Case Studies of Good Practice in England.
ERIC Educational Resources Information Center
Gifted Education International, 2003
2003-01-01
Four case studies of gifted education programs in England are described, including the development of a teacher handbook based on the principles behind accelerated learning, the identification of students with musical ability and the provision of musical instrument lessons, and the development of a portable information communication technology…
Dehzangi, Omid; Farooq, Muhamed
2018-01-01
A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.
Training Laparoscopic Skills at Home: Residents' Opinion of a New Portable Tablet Box Trainer.
van der Aa, Jessica E; Schreuder, Henk W R
2016-04-01
To determine residents' opinion about a new portable box trainer, to see if they would be interested in using this for training at home, and to give an overview of the box trainers that could be used at home. An expert opinion study was performed among 27 gynecology residents to determine the value of the portable box trainer in training their laparoscopic skills and the value of using it at home. Their opinions were scored on a 5-point Likert scale. Gynecology residents very much appreciated the portable box trainer in its design, size, visualization, light source, ability to record, and instruments (all median 4). They felt that the portable box trainer would be effective in training laparoscopic skills in general; in training hand-eye coordination, 3D perception, and tying knots (all median 4); and especially in training basic skills (median 5). Almost all residents would use the portable box trainer if they had one at home (median 5). The literature supports the hypothesis that training laparoscopic skills at home using a box trainer may be effective in acquiring and maintaining laparoscopic skills. Training laparoscopic skills at home using a portable box trainer may be of added value in the laparoscopic training of surgical residents. Residents feel positive about using the new portable box trainer that is presented and appreciate the possibility of training at home. © The Author(s) 2015.
P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw
2010-01-01
We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...
Technology assessment of portable energy RDT and P
NASA Technical Reports Server (NTRS)
Vanston, J. H., Jr.; Frisbie, W. P.; Poston, D. L.
1975-01-01
Results are presented of a workshop conducted to assess portable energy technology. The results were evaluated and areas for future research were considered. Several research categories were studied: increasing presently available fuel supplies, developing new fuel sources, utilization of new transportation fuels, improving conservation practices, and equitable distribution of fuel supplies. Several research projects were proposed, and work statements were constructed for those considered suitable.
A case for ZnO nanowire field emitter arrays in advanced x-ray source applications
NASA Astrophysics Data System (ADS)
Robinson, Vance S.; Bergkvist, Magnus; Chen, Daokun; Chen, Jun; Huang, Mengbing
2016-09-01
Reviewing current efforts in X-ray source miniaturization reveals a broad spectrum of applications: Portable and/or remote nondestructive evaluation, high throughput protein crystallography, invasive radiotherapy, monitoring fluid flow and particulate generation in situ, and portable radiography devices for battle-front or large scale disaster triage scenarios. For the most part, all of these applications are being addressed with a top-down approach aimed at improving portability, weight and size. That is, the existing system or a critical sub-component is shrunk in some manner in order to miniaturize the overall package. In parallel to top-down x-ray source miniaturization, more recent efforts leverage field emission and semiconductor device fabrication techniques to achieve small scale x-ray sources via a bottom-up approach where phenomena effective at a micro/nanoscale are coordinated for macro-scale effect. The bottom-up approach holds potential to address all the applications previously mentioned but its entitlement extends into new applications with much more ground-breaking potential. One such bottom-up application is the distributed x-ray source platform. In the medical space, using an array of microscale x-ray sources instead of a single source promises significant reductions in patient dose as well as smaller feature detectability and fewer image artifacts. Cold cathode field emitters are ideal for this application because they can be gated electrostatically or via photonic excitation, they do not generate excessive heat like other common electron emitters, they have higher brightness and they are relatively compact. This document describes how ZnO nanowire field emitter arrays are well suited for distributed x-ray source applications because they hold promise in each of the following critical areas: emission stability, simple scalable fabrication, performance, radiation resistance and photonic coupling.
Portable microwave instrument for non-destructive evaluation of structural characteristics
Bible, Don W.; Crutcher, Richard I.; Sohns, Carl W.; Maddox, Stephen R.
1995-01-01
A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.
Rapid determination of lead for industrial hygiene surveys
NASA Astrophysics Data System (ADS)
Schneider, E. W.; Hill, R. F.
1982-02-01
Emphasis on the continued reduction of personnel exposure to airborne lead has led to the development and evaluation of portable instrumentation for the rapid determination of microgram quantities of lead collected on air filter samples. The instrumentation is based on radioisotope-induced X-ray fluorescence; a cadmium-109 radioisotope source is used for sample excitation, and the characteristic lead X-rays emitted are measured by a proportional detector. The effects of excitation source geometry, particle size, and interferences from other elements were investigated. This type of portable instrumentation appears ideally suited for in-plant measurements intended to monitor lead and evaluate new control measures.
NASA Astrophysics Data System (ADS)
Paik, Seung-ho; Kim, Beop-Min
2016-03-01
fNIRS is a neuroimaging technique which uses near-infrared light source in the 700-1000 nm range and enables to detect hemodynamic changes (i.e., oxygenated hemoglobin, deoxygenated hemoglobin, blood volume) as a response to various brain processes. In this study, we developed a new, portable, prefrontal fNIRS system which has 12 light sources, 15 detectors and 108 channels with a sampling rate of 2 Hz. The wavelengths of light source are 780nm and 850nm. ATxmega128A1, 8bit of Micro controller unit (MCU) with 200~4095 resolution along with MatLab data acquisition algorithm was utilized. We performed a simple left and right finger movement imagery tasks which produced statistically significant changes of oxyhemoglobin concentrations in the dorsolateral prefrontal cortex (dlPFC) areas. We observed that the accuracy of the imagery tasks can be improved by carrying out neurofeedback training, during which a real-time feedback signal is provided to a participating subject. The effects of the neurofeedback training was later visually verified using the 3D NIRfast imaging. Our portable fNIRS system may be useful in non-constraint environment for various clinical diagnoses.
The Health Insurance Portability and Accountability Act of 1996 (P.L. 104-191).
Kops, S R
1997-01-01
The purpose of this article is to provide a general overview and reference source for the Health Insurance Portability and Accountability Act, which was signed into law by President Clinton last August. The focus of the article is on Title I--Improved Availability and Portability of Health Insurance Coverage, and on Title III--Tax-Related Health Provisions. The author points out that due to the trend towards an incremental approach to health care legislation, this act must be viewed as one of a series of initiatives being taken by the federal government intended to impact the cost of the U.S. health care delivery system.
SIMPLIFIED PRACTICAL TEST METHOD FOR PORTABLE DOSE METERS USING SEVERAL SEALED RADIOACTIVE SOURCES.
Mikamoto, Takahiro; Yamada, Takahiro; Kurosawa, Tadahiro
2016-09-01
Sealed radioactive sources which have small activity were employed for the determination of response and tests for non-linearity and energy dependence of detector responses. Close source-to-detector geometry (at 0.3 m or less) was employed to practical tests for portable dose meters to accumulate statistically sufficient ionizing currents. Difference between response in the present experimentally studied field and in the reference field complied with ISO 4037 due to non-uniformity of radiation fluence at close geometry was corrected by use of Monte Carlo simulation. As a consequence, corrected results were consistent with the results obtained in the ISO 4037 reference field within their uncertainties. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Chase A.; Gottfried, Jennifer L.; Snyder, Emily Gibb
2008-11-01
The performance of a man-portable laser induced breakdown spectrometer was evaluated for the detection of biological powders on indoor office surfaces and wipe materials. Identification of pure unknown powders was performed by comparing against a library of spectra containing biological agent surrogates and confusant materials, such as dusts, diesel soot, natural and artificial sweeteners, and drink powders, using linear correlation analysis. Simple models constructed using a second technique, partial least squares discriminant analysis, successfully identified Bacillus subtilis (BG) spores on wipe materials and office surfaces. Furthermore, these models were able to identify BG on materials not used in the trainingmore » of the model.« less
A Portable Electronic Nose For Toxic Vapor Detection, Identification, and Quantification
NASA Technical Reports Server (NTRS)
Linnell, B. R.; Young, R. C.; Griffin, T. P.; Meneghelli, B. J.; Peterson, B. V.; Brooks, K. B.
2005-01-01
A new prototype instrument based on electronic nose (e-nose) technology has demonstrated the ability to identify and quantify many vapors of interest to the Space Program at their minimum required concentrations for both single vapors and two-component vapor mixtures, and may easily be adapted to detect many other toxic vapors. To do this, it was necessary to develop algorithms to classify unknown vapors, recognize when a vapor is not any of the vapors of interest, and estimate the concentrations of the contaminants. This paper describes the design of the portable e-nose instrument, test equipment setup, test protocols, pattern recognition algorithms, concentration estimation methods, and laboratory test results.
Merrill, Rebecca D.; Shamim, Abu Ahmed; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Jr., Keith P.
2009-01-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions. PMID:19507757
Merrill, Rebecca D; Shamim, Abu Ahmed; Labrique, Alain B; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Keith P
2009-06-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions.
10 CFR 36.31 - Control of source movement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... portable radiation survey meter by a chain or cable. The lock for source control must be designed so that... 10 Energy 1 2014-01-01 2014-01-01 false Control of source movement. 36.31 Section 36.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...
10 CFR 36.31 - Control of source movement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... portable radiation survey meter by a chain or cable. The lock for source control must be designed so that... 10 Energy 1 2013-01-01 2013-01-01 false Control of source movement. 36.31 Section 36.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...
10 CFR 36.31 - Control of source movement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... portable radiation survey meter by a chain or cable. The lock for source control must be designed so that... 10 Energy 1 2012-01-01 2012-01-01 false Control of source movement. 36.31 Section 36.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...
10 CFR 36.31 - Control of source movement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... portable radiation survey meter by a chain or cable. The lock for source control must be designed so that... 10 Energy 1 2010-01-01 2010-01-01 false Control of source movement. 36.31 Section 36.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...
10 CFR 36.31 - Control of source movement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... portable radiation survey meter by a chain or cable. The lock for source control must be designed so that... 10 Energy 1 2011-01-01 2011-01-01 false Control of source movement. 36.31 Section 36.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and...
PELAN: a pulsed neutron portable probe for UXO and land mine identification
NASA Astrophysics Data System (ADS)
Vourvopoulos, George; Womble, Phillip C.; Paschal, Jonathon
2000-12-01
There has been much work increasing the sensitivity of detecting metallic objects in soils and other environments. This has lead to a problem in discriminating unexploded ordnance (UXO) and landmines form other metallic clutter. PELAN is a small portable system for the detection of explosives. PELAN weights less than 45 kg and is man portable. It is based on the principle that explosives and other contraband contain various chemical elements such as H, C, N, O, etc. in quantities and ratios that differentiate them from other innocuous substances. The pulsed neutrons are produced with a 14 MeV neutron generator. Separate gamma-ray spectra form fast neutron, thermal neutron and activation reactions are accumulated and analyzed to determine elemental content. The data analysis is performed in an automatic manner and a result of whether a threat is present is returned to the operator. PELAN has successfully undergone field demonstrations for explosive detection. In this paper, we will discuss the application of PELAN to the problem of differentiating threats from metallic clutter.
Ali, Esam M A; Edwards, Howell G M
2014-01-01
The differentiation between genuine and fake lapis lazuli specimens using Raman spectroscopy is assessed using laboratory and portable instrumentation operating at two longer wavelengths of excitation in the near-infrared, namely 1064 and 785 nm. In spite of the differences between the spectra excited here in the near infrared and those reported in the literature using visible excitation, it is clear that Raman spectroscopy at longer wavelengths can provide a means of differentiating between the fakes studied here and genuine lapis lazuli. The Raman spectra obtained from portable instrumentation can also achieve this result, which will be relevant for the verification of specimens which cannot be removed from collections and for the identification of genuine lapis lazuli inlays in, for example, complex jewellery and furniture. The non-destructive and non-contact character of the technique offers a special role for portable Raman spectroscopy in forensic art analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Portable X-ray powder diffractometer for the analysis of art and archaeological materials
NASA Astrophysics Data System (ADS)
Nakai, Izumi; Abe, Yoshinari
2012-02-01
Phase identification based on nondestructive analytical techniques using portable equipment is ideal for the analysis of art and archaeological objects. Portable(p)-XRF and p-Raman are very widely used for this purpose, yet p-XRD is relatively rare despite its importance for the analysis of crystalline materials. This paper overviews 6 types of p-XRD systems developed for analysis of art and archaeological materials. The characteristics of each system are compared. One of the p-XRD systems developed by the authors was brought to many museums as well as many archeological sites in Egypt and Syria to characterize the cultural heritage artifacts, e.g., amulet made of Egyptian blue, blue painted pottery, and Islamic pottery from Egypt, jade from China, variscite from Syria, a Japanese classic painting drawn by Korin Ogata, and oil paintings drawn by Taro Okamoto. Practical application data are shown to demonstrate the potential ability of the method for analysis of various art and archaeological materials.
Evaluation of methods for rapid determination of freezing point of aviation fuels
NASA Technical Reports Server (NTRS)
Mathiprakasam, B.
1982-01-01
Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Yejun
2011-04-15
Ruby (Al{sub 2}O{sub 3}, with {approx}0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones.
Micro solid oxide fuel cells: a new generation of micro-power sources for portable applications
NASA Astrophysics Data System (ADS)
Chiabrera, Francesco; Garbayo, Iñigo; Alayo, Nerea; Tarancón, Albert
2017-06-01
Portable electronic devices are already an indispensable part of our daily life; and their increasing number and demand for higher performance is becoming a challenge for the research community. In particular, a major concern is the way to efficiently power these energy-demanding devices, assuring long grid independency with high efficiency, sustainability and cheap production. In this context, technologies beyond Li-ion are receiving increasing attention, among which the development of micro solid oxide fuel cells (μSOFC) stands out. In particular, μSOFC provides a high energy density, high efficiency and opens the possibility to the use of different fuels, such as hydrocarbons. Yet, its high operating temperature has typically hindered its application as miniaturized portable device. Recent advances have however set a completely new range of lower operating temperatures, i.e. 350-450°C, as compared to the typical <900°C needed for classical bulk SOFC systems. In this work, a comprehensive review of the status of the technology is presented. The main achievements, as well as the most important challenges still pending are discussed, regarding (i.) the cell design and microfabrication, and (ii.) the integration of functional electrolyte and electrode materials. To conclude, the different strategies foreseen for a wide deployment of the technology as new portable power source are underlined.
Improvement of portable computed tomography system for on-field applications
NASA Astrophysics Data System (ADS)
Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.
2015-05-01
In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.
Sheykhi, Sara; Mosca, Lorenzo; Anzenbacher, Pavel
2017-05-04
Increasing security needs require compact and portable detection tools for the rapid and reliable identification of explosives used in improvised explosive devices (IEDs). We report of an easy-to-use optical sensor for both vapour-phase and solution-phase identification of explosive mixtures that uses a cross-reactive fluorimetric sensor array comprising chemically responsive fluorimetric indicators composed of aromatic aldehydes and polyethyleneimine. Ammonium nitrate-nitromethane (ANNM) was analyzed by paper microzone arrays and nanofiber sensor mats. Progress toward wearable sensors based on electrospun nanofiber mats is outlined.
21 CFR 878.4780 - Powered suction pump.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section 878.4780...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be...
40 CFR 52.1070 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register... Portable Fuel Containers 6/18/07 7/17/08, 73 FR 40970 26.11.13.08 Control of VOC Emissions from Marine... Recodification of existing Regulation .15; Amended. 26.11.32.19 Recordkeeping and Availability of Requested...
Design and build a compact Raman sensor for identification of chemical composition
NASA Astrophysics Data System (ADS)
Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani
2008-04-01
A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified CCD camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.
Design and Build a Compact Raman Sensor for Identification of Chemical Composition
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani
2008-01-01
A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.
Spectroscopy methods for identifying the country of origin
NASA Astrophysics Data System (ADS)
Hondrogiannis, Ellen; Ehrlinger, Erin; Miziolek, Andrzej W.
2013-05-01
There is a need in many industries and government functions to identify the source of origin for various materials. For example, the food industry needs to ensure that the claimed source of some of the food products (e.g. coffee, spices) are in fact legitimate due to the variation of quality from different source locations world-wide. Another example is to identify the source country for imported commodities going through Customs so as to assess the correct tariff which varies depending on the source country. Laser Induced Breakdown Spectroscopy (LIBS) holds promise for being a field-portable tool for rapid identification of the country of origin of various materials. Recent research at Towson University has identified the elemental markers needed for discrimination of select spices back to their country of origin using wavelength dispersive X-ray fluorescence (WDXRF). The WDXRF device, however, is not particularly suitable for convenient and fast field analysis. We are extending this study to evaluate the potential of a benchtop commercial LIBS device that could be located at ports of entry and to compare its performance with WDXRF. Our initial study on the spice cumin has demonstrated that discriminant function models can not only be created with 100% separation between the 4 countries of origin (China, India, Syria, and Turkey), but also when tested they show 100% correct matching to the country of origin. This study adds to the growing number of publications that indicate the power of LIBS elemental fingerprinting for provenance determinations.
NASA Astrophysics Data System (ADS)
Tykot, Robert
A portable, hand-held X-ray fluorescence spectrometer has been used for a decade to elementally analyze prehistoric obsidian artifacts in the Mediterranean. Nearly 400 geological obsidian samples and 7500 obsidian artifacts have been analyzed. The pXRF can distinguish all individual sources, as well as assign artifacts specifically to most subsources. For the island sources of Lipari, Pantelleria, Sardinia, and Melos, it is important to address the usage of obsidian from specific subsources due to human selection based on physical properties of the raw material and their production practices, which may have changed over time from the Early Neolithic to the Bronze Age. The analysis of 50 or more artifacts from 60 different archaeological sites allows for statistical comparison between sites, and their contexts, geographic areas (e.g. coastal/inland, highland/lowland) and distance from geological sources. The frequency of transport between island sources and mainland sites is suggestive of maritime capabilities also for the transport of domesticated animals, ceramics, and other materials. This presentation will specifically address potential limitations of the portable XRF, including non-destructive surface analysis of potentially heterogeneous materials, and limited trace element detection compared to other analytical methods, versus its highly beneficial ``package'' of analyzing great numbers of artifacts non-destructively and rapidly without needing to export them from museums and facilities in many countries.
Evaluation of Raman spectroscopy for the trace analysis of biomolecules for Mars exobiology
NASA Astrophysics Data System (ADS)
Jehlicka, Jan; Edwards, Howell G. M.; Vitek, Petr; Culka, Adam
2010-05-01
Raman spectroscopy is an ideal technique for the identification of biomolecules and minerals for astrobiological applications. Raman spectroscopic instrumentation has been shown to be potentially valuable for the in-situ detection of spectral biomarkers originating from rock samples containing remnants of terrestrial endolithic colonisation. Within the future payloads designed by ESA and NASA for several missions focussing on life detection on Mars, Raman spectroscopy has been proposed as an important non-destructive analytical tool for the in-situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near sub-surfaces. Portable Raman systems equipped with 785 nm lasers permit the detection of pure organic minerals, aminoacids, carboxylic acids, as well as NH-containing compounds outdoors at -20°C and at an altitude of 3300 m. A potential limitation for the use of Raman spectroscopic techniques is the detection of very low amounts of biomolecules in rock matrices. The detection of beta-carotene and aminoacids has been achieved in the field using a portable Raman system in admixture with crystalline powders of sulphates and halite. Relatively low detection limits less than 1 % for detecting beta-carotene, aminoacids using a portable Raman system were obtained analysing traces of these compounds in crystalline powders of sulphates and halite. Laboratory systems permit the detection of these biomolecules at even lower concentrations at sub-ppm level of the order of 0.1 to 1 mg kg-1. The comparative evaluation of laboratory versus field measurements permits the identification of critical issues for future field applications and directs attention to the improvements needed in the instrumentation . A comparison between systems using different laser excitation wavelengths shows excellent results for 785 nm laser excitation . The results of this study will inform the acquisition parameters necessary for the deployment of robotic miniaturised Raman spectrosocpic instrumentation intended for the detection of spectral signatures of extant or relict life on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorman, A; Seabrook, G; Brakken, A
Purpose: Small surgical devices and needles are used in many surgical procedures. Conventionally, an x-ray film is taken to identify missing devices/needles if post procedure count is incorrect. There is no data to indicate smallest surgical devices/needles that can be identified with digital radiography (DR), and its optimized acquisition technique. Methods: In this study, the DR equipment used is a Canon RadPro mobile with CXDI-70c wireless DR plate, and the same DR plate on a fixed Siemens Multix unit. Small surgical devices and needles tested include Rubber Shod, Bulldog, Fogarty Hydrogrip, and needles with sizes 3-0 C-T1 through 8-0 BV175-6.more » They are imaged with PMMA block phantoms with thickness of 2–8 inch, and an abdomen phantom. Various DR techniques are used. Images are reviewed on the portable x-ray acquisition display, a clinical workstation, and a diagnostic workstation. Results: all small surgical devices and needles are visible in portable DR images with 2–8 inch of PMMA. However, when they are imaged with the abdomen phantom plus 2 inch of PMMA, needles smaller than 9.3 mm length can not be visualized at the optimized technique of 81 kV and 16 mAs. There is no significant difference in visualization with various techniques, or between mobile and fixed radiography unit. However, there is noticeable difference in visualizing the smallest needle on a diagnostic reading workstation compared to the acquisition display on a portable x-ray unit. Conclusion: DR images should be reviewed on a diagnostic reading workstation. Using optimized DR techniques, the smallest needle that can be identified on all phantom studies is 9.3 mm. Sample DR images of various small surgical devices/needles available on diagnostic workstation for comparison may improve their identification. Further in vivo study is needed to confirm the optimized digital radiography technique for identification of lost small surgical devices and needles.« less
Portable smartphone based quantitative phase microscope
NASA Astrophysics Data System (ADS)
Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu
2018-01-01
To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.
Development of cable fed flash X-ray (FXR) system
NASA Astrophysics Data System (ADS)
Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana
2017-08-01
Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.
NASA Astrophysics Data System (ADS)
Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Tseng, Derek; Benien, Parul; Ozcan, Aydogan
2017-03-01
Giardia lamblia causes a disease known as giardiasis, which results in diarrhea, abdominal cramps, and bloating. Although conventional pathogen detection methods used in water analysis laboratories offer high sensitivity and specificity, they are time consuming, and need experts to operate bulky equipment and analyze the samples. Here we present a field-portable and cost-effective smartphone-based waterborne pathogen detection platform that can automatically classify Giardia cysts using machine learning. Our platform enables the detection and quantification of Giardia cysts in one hour, including sample collection, labeling, filtration, and automated counting steps. We evaluated the performance of three prototypes using Giardia-spiked water samples from different sources (e.g., reagent-grade, tap, non-potable, and pond water samples). We populated a training database with >30,000 cysts and estimated our detection sensitivity and specificity using 20 different classifier models, including decision trees, nearest neighbor classifiers, support vector machines (SVMs), and ensemble classifiers, and compared their speed of training and classification, as well as predicted accuracies. Among them, cubic SVM, medium Gaussian SVM, and bagged-trees were the most promising classifier types with accuracies of 94.1%, 94.2%, and 95%, respectively; we selected the latter as our preferred classifier for the detection and enumeration of Giardia cysts that are imaged using our mobile-phone fluorescence microscope. Without the need for any experts or microbiologists, this field-portable pathogen detection platform can present a useful tool for water quality monitoring in resource-limited-settings.
Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre
2015-10-01
Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.
Portable spark-gap arc generator
NASA Technical Reports Server (NTRS)
Ignaczak, L. R.
1978-01-01
Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.
Use of a Portable Stimulator to Treat GWI
2016-10-01
equilibrium in veterans during stochastic noise electrical stim. Electrical Stimulation Time (sec) 0 5 10 15 20 m A -1.0 -0.5 0.0 0.5 1.0 Center of Pressure...AD______________ AWARD NUMBER: W81XWH-14-1-0598 TITLE: Use of a Portable Stimulator to Treat GWI PRINCIPAL INVESTIGATOR: Jorge M... time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this
Portable microwave instrument for non-destructive evaluation of structural characteristics
Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.
1995-01-24
A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.
Application of a Smartphone Metabolomics Platform to the Authentication of Schisandra sinensis.
Kwon, Hyuk Nam; Phan, Hong-Duc; Xu, Wen Jun; Ko, Yoon-Joo; Park, Sunghyouk
2016-05-01
Herbal medicines have been used for a long time all around the world. Since the quality of herbal preparations depends on the source of herbal materials, there has been a strong need to develop methods to correctly identify the origin of materials. To develop a smartphone metabolomics platform as a simpler and low-cost alternative for the identification of herbal material source. Schisandra sinensis extracts from Korea and China were prepared. The visible spectra of all samples were measured by a smartphone spectrometer platform. This platform included all the necessary measures built-in for the metabolomics research: data acquisition, processing, chemometric analysis and visualisation of the results. The result of the smartphone metabolomics platform was compared to that of NMR-based metabolomics, suggesting the feasibility of smartphone platform in metabolomics research. The smartphone metabolomics platform gave similar results to the NMR method, showing good separation between Korean and Chinese materials and correct predictability for all test samples. With its accuracy and advantages of affordability, user-friendliness, and portability, the smartphone metabolomics platform could be applied to the authentication of other medicinal plants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rehse, Steven J.; Miziolek, Andrzej W.
2012-06-01
Laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. The significant advantages of LIBS include speed (< 1 sec analysis), portability, robustness, lack of consumables, little to no need for sample preparation, lack of genetic amplification, and the ability to identify all bacterial pathogens without bias (including spore-forms and viable but nonculturable specimens). In this manuscript, we present the latest advances achieved in LIBS-based bacterial sensing including the ability to uniquely identify species from more than five bacterial genera with high-sensitivity and specificity. Bacterial identifications are completely unaffected by environment, nutrition media, or state of growth and accurate diagnoses can be made on autoclaved or UV-irradiated specimens. Efficient discrimination of bacteria at the strain level has been demonstrated. A rapid urinary tract infection diagnosis has been simulated with no sample preparation and a one second diagnosis of a pathogen surrogate has been demonstrated using advanced chemometric analysis with a simple "stop-light" user interface. Stand-off bacterial identification at a 20-m distance has been demonstrated on a field-portable instrument. This technology could be implemented in doctors' offices, clinics, or hospital laboratories for point-of-care medical specimen analysis; mounted on military medical robotic platforms for in-the- field diagnostics; or used in stand-off configuration for remote sensing and detection.
Aboud, Maurice J; Gassmann, Marcus; McCord, Bruce
2015-09-01
There are situations in which it is important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. DNA typing methods provide the best biometric information yielding identity, kinship, and geographical origin, but they are not portable and rapid. This study details the development of a portable short-channel microfluidic device based on a modified Agilent 2100 bioanalyzer for applications in forensic genomics. The system utilizes a denaturing polymer matrix with dual-channel laser-induced fluorescence and is capable of producing a genotype in 80 sec. The device was tested for precision and resolution using an allelic ladder created from 6 short tandem repeat (STR) loci and a sex marker (amelogenin). The results demonstrated a precision of 0.09-0.21 bp over the entire size range and resolution values from 2.5 to 4.1 bp. Overall, the results demonstrate the chip provides a portable, rapid, and precise method for screening amplified short tandem repeats and human identification screening. © 2015 American Academy of Forensic Sciences.
UNCERTAINTY IN SCALING NUTRIENT EXPORT COEFFICIENTS
The Innov-X XT400 portable XRF analyzer features a miniature, rugged x-ray tube excitation source for analyzing a wide variety of elements and sample materials, including alloys, environmental solids, and other analytical samples. The x-ray tube source and Light Element Analysis...
NASA Technical Reports Server (NTRS)
Reilly, Thomas L. (Inventor); Jacobstein, A. Ronald (Inventor); Cramer, K. Elliott (Inventor)
2006-01-01
A method and apparatus for testing a material such as the water-wall tubes in boilers includes the use of a portable thermal line heater having radiation shields to control the amount of thermal radiation that reaches a thermal imager. A procedure corrects for variations in the initial temperature of the material being inspected. A method of calibrating the testing device to determine an equation relating thickness of the material to temperatures created by the thermal line heater uses empirical data derived from tests performed on test specimens for each material type, geometry, density, specific heat, speed at which the line heater is moved across the material and heat intensity.
A portable circulating tumor cell capture microdevice
NASA Astrophysics Data System (ADS)
Datar, Ram H.
2009-03-01
Sensitive detection of earliest metastatic spread of tumors in a minimally invasive and user-friendly manner will revolutionize the clinical management of cancer patients. The current methodologies for circulating tumor cell (CTC) capture and identification have significant limitations including time, cost, limited capture efficiency and lack of standardization. We have developed and optimized a novel parylene membrane filter-based portable microdevice for size-based isolation of CTC from human peripheral blood. Following characterization with a model system to study the recovery rate and enrichment factor, a comparison of the microdevice with the commercially available system using blood from cancer patients demonstrated superior recovery rate and the promise of clinical utility of the microdevice. The development of the microdevice and its potential clinical applicability will be discussed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... software and format specified by NIOSH either using portable electronic media, or a secure electronic file... forms shall be submitted with his or her name and social security account number on each. If any of the... containing the miner's name, address, social security number and place of employment. [43 FR 33715, Aug. 1...
42 CFR 37.60 - Submitting required chest roentgenograms and miner identification documents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... format specified by NIOSH either using portable electronic media, or a secure electronic file transfer... forms shall be submitted with his or her name and social security account number on each. If any of the... containing the miner's name, address, social security number and place of employment. [43 FR 33715, Aug. 1...
USDA-ARS?s Scientific Manuscript database
The horticultural trade is an important pathway for the introduction and spread of invasive gastropods because potted plants are essentially portable microhabitats, which protect snails and slugs, especially buried eggs and juveniles, from desiccation and molluscicides. The identification of a drenc...
Light, shadows and surface characteristics: the multispectral Portable Light Dome
NASA Astrophysics Data System (ADS)
Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc
2016-11-01
A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.
Metal oxide based multisensor array and portable database for field analysis of antioxidants
Sharpe, Erica; Bradley, Ryan; Frasco, Thalia; Jayathilaka, Dilhani; Marsh, Amanda; Andreescu, Silvana
2014-01-01
We report a novel chemical sensing array based on metal oxide nanoparticles as a portable and inexpensive paper-based colorimetric method for polyphenol detection and field characterization of antioxidant containing samples. Multiple metal oxide nanoparticles with various polyphenol binding properties were used as active sensing materials to develop the sensor array and establish a database of polyphenol standards that include epigallocatechin gallate, gallic acid, resveratrol, and Trolox among others. Unique charge-transfer complexes are formed between each polyphenol and each metal oxide on the surface of individual sensors in the array, creating distinct optically detectable signals which have been quantified and logged into a reference database for polyphenol identification. The field-portable Pantone/X-Rite© CapSure® color reader was used to create this database and to facilitate rapid colorimetric analysis. The use of multiple metal-oxide sensors allows for cross-validation of results and increases accuracy of analysis. The database has enabled successful identification and quantification of antioxidant constituents within real botanical extractions including green tea. Formation of charge-transfer complexes is also correlated with antioxidant activity exhibiting electron transfer capabilities of each polyphenol. The antioxidant activity of each sample was calculated and validated against the oxygen radical absorbance capacity (ORAC) assay showing good comparability. The results indicate that this method can be successfully used for a more comprehensive analysis of antioxidant containing samples as compared to conventional methods. This technology can greatly simplify investigations into plant phenolics and make possible the on-site determination of antioxidant composition and activity in remote locations. PMID:24610993
Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).
Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H
2017-08-01
Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.
A proposed rule to control gasoline, passenger vehicles, and portable gasoline containers (gas cans) that would significantly reduce emissions of benzene and other hazardous air pollutants (‘‘mobile source air toxics’’).
Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin
2017-05-23
The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.
Development open source microcontroller based temperature data logger
NASA Astrophysics Data System (ADS)
Abdullah, M. H.; Che Ghani, S. A.; Zaulkafilai, Z.; Tajuddin, S. N.
2017-10-01
This article discusses the development stages in designing, prototyping, testing and deploying a portable open source microcontroller based temperature data logger for use in rough industrial environment. The 5V powered prototype of data logger is equipped with open source Arduino microcontroller for integrating multiple thermocouple sensors with their module, secure digital (SD) card storage, liquid crystal display (LCD), real time clock and electronic enclosure made of acrylic. The program for the function of the datalogger is programmed so that 8 readings from the thermocouples can be acquired within 3 s interval and displayed on the LCD simultaneously. The recorded temperature readings at four different points on both hydrodistillation show similar profile pattern and highest yield of extracted oil was achieved on hydrodistillation 2 at 0.004%. From the obtained results, this study achieved the objective of developing an inexpensive, portable and robust eight channels temperature measuring module with capabilities to monitor and store real time data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Tushar, E-mail: tushar@barc.gov.in; Kashyap, Yogesh; Shukla, Mayank
Associated particle technique (APT) for detection of explosives is well established but has been implemented mostly for fixed portal systems. In certain situations, a portable system is required where the suspect object cannot be moved from site. This paper discusses the development of a portable APT system in single-sided geometry which can be transported to site and requires only one-sided access to the object. The system comprised D-T neutron source and bismuth germanate (BGO) detectors fixed on a portable module. Different aspects of the system have been discussed such as background contribution, time selection, and elemental signatures. The system wasmore » used to detect benign samples and explosive simulants under laboratory condition. The elemental ratios obtained by analyzing the gamma spectra show good match with the theoretical ratios.« less
... portable generators? Source: National Institute of Standards and Technology More information on carbon monoxide safety Heating fire safety NFPA Educational Messages Desk Reference – these messages provide fire and ...
A military grade, field usable, Raman analyzer: measurement of captured fuel
NASA Astrophysics Data System (ADS)
Farquharson, Stuart; Smith, Wayne; Shende, Chetan; Patient, Michael; Huang, Hermes; Brouillette, Carl
2014-05-01
Portable Raman analyzers have emerged during the first part of this century as an important field tool for crime scene and forensic analysis, primarily for their ability to identify unknown substances. This ability is also important to the US military, which has been investigating such analyzers for identification of explosive materials that may be used to produce improvised explosive devices, chemicals that may be used to produce chemical warfare agents, and fuels in storage tanks that may be used to power US military vehicles. However, the use of such portable analyzers requires that they meet stringent military standards (specifically MIL-STD 810G). These requirements include among others: 1) light weight and small size (< 35 pounds, < 3 cu. ft.), 2) vibration and shock resistant (26 four foot drops), 3) operation from -4 to 110 oF, 4) operation in blowing dust, sand and rain, 5) battery operation, and of course 6) safe operation (no laser or shock hazards). Here we describe a portable Raman analyzer that meets all of these requirements, and its use to determine if captured fuels are suitable for use.
NASA Astrophysics Data System (ADS)
Knechtges, Paul L.; Gargan, Thomas P., II; Burrows, William D.
2002-02-01
The assurance of safe food and water is paramount to the health and performance of the warfighter. Any technology to assess the chemical and microbial purity of food and water under field conditions must meet rigorous criteria: it must be readily portable, provide timely results (no more than 4 hours), have adequate sensitivity (1 cfu/100 mL for potable water), be compatible with military power sources, and be of complexity appropriate for operation by a Preventive Medicine Specialist. The nomination of an Army Science and Technology Objective (STO) leads to assessment of existing technologies and commercial products; identification of users, regulators and developers; definition of essential capabilities; and consideration of potential obstructions. The U.S. Army Center for Environmental Health Research has identified a number of technologies for detecting microbial contaminants in food and water and has pursued development of the more promising examples. This paper examines developmental risks in the context of the STO and offers some insight and strategies to manage them.
Variability of microchip capillary electrophoresis with conductivity detection.
Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta
2014-02-01
Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-07-01
... inspections b. Portable mercury vapor analyzer—ultraviolet light absorption detector A sample of gas is drawn... detector A sample of gas is drawn through a detection cell containing a gold film detector. Elemental mercury amalgamates with the gold film, changing the resistance of the detector in proportion to the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... inspections b. Portable mercury vapor analyzer—ultraviolet light absorption detector A sample of gas is drawn... detector A sample of gas is drawn through a detection cell containing a gold film detector. Elemental mercury amalgamates with the gold film, changing the resistance of the detector in proportion to the...
Jehlicka, J; Edwards, H G M; Culka, A
2010-07-13
Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.
The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.
ERIC Educational Resources Information Center
Jackson, David L.; And Others
1985-01-01
The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)
Muscatiello, Neil A; Babcock, Gwen; Jones, Rena; Horn, Edward; Hwang, Syni-An
2010-01-01
Following an October 2006 snowstorm that caused widespread power outages in western New York State, hospital emergency department (ED) visits for carbon monoxide (CO) poisoning increased. Overall, 264 people representing 155 households were diagnosed with CO poisoning during the power outages. Telephone interviews were conducted with a subset of these individuals. Respondents provided information about exposure sources, CO alarms, and awareness of CO warnings. In many households, portable generators were operated in an enclosed area. Awareness of CO warnings may have contributed to knowledge about locating portable generators outside. When operated outside, however, portable generators were generally located too close to the home. Gas kitchen ranges were used for heat by numerous households. In the short term, CO education and improved clarity of CO warning information is important for increasing awareness about power outage-related CO risks. Improvements in the combustion efficiency of portable generators should be a long-term goal.
Small Portable PEM Fuel Cell Systems for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2005-01-01
Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges
DOT National Transportation Integrated Search
2011-04-08
A wireless remote-sensing system has been developed for measurement of NOx and particulate matters (PM) emissions from passing diesel trucks. The NOx measurement system has a UV light source with quartz fiber optics that focused the light source into...
Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview
Dutse, Sabo Wada; Yusof, Nor Azah
2011-01-01
Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment. PMID:22163925
NASA Astrophysics Data System (ADS)
Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo
2015-11-01
An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.
Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo
2015-11-27
An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.
Radiation detection system for portable gamma-ray spectroscopy
Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA
2006-06-20
A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.
Portable imaging system method and apparatus
Freifeld, Barry M.; Kneafsley, Timothy J.; Pruess, Jacob; Tomutsa, Liviu; Reiter, Paul A.; deCastro, Ted M.
2006-07-25
An operator shielded X-ray imaging system has sufficiently low mass (less than 300 kg) and is compact enough to enable portability by reducing operator shielding requirements to a minimum shielded volume. The resultant shielded volume may require a relatively small mass of shielding in addition to the already integrally shielded X-ray source, intensifier, and detector. The system is suitable for portable imaging of well cores at remotely located well drilling sites. The system accommodates either small samples, or small cross-sectioned objects of unlimited length. By rotating samples relative to the imaging device, the information required for computer aided tomographic reconstruction may be obtained. By further translating the samples relative to the imaging system, fully three dimensional (3D) tomographic reconstructions may be obtained of samples having arbitrary length.
NASA Astrophysics Data System (ADS)
Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod
2015-04-01
Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.
An Open-source Low-cost Portable Apparatus for Soil Fauna Sampling
NASA Astrophysics Data System (ADS)
Daliakopoulos, Ioannis; Wagner, Karl; Grillakis, Manolis; Apostolakis, Antonios; Tsanis, Ioannis
2016-04-01
A low-cost apparatus for the extraction of living soil animals from soil or litter samples is presented. The main unit consists of a modular bank system with three horizontal shelves designed to accommodate lamps and soil samples over funnel and jar systems for animal collection, thus serving as a practical and standardized modification of the well-documented Berlese-Tullgren funnel. Shelves are vertically adjustable, sliding on 5 mm threaded rods and securing with wing nuts for easy assembly/disassembly and stability. Shelf material is 4 mm plywood (or similar), laser-cut (or similar) to accommodate lamp sockets, tubes and funnels at respective levels. Soil samples are inserted in 10 cm tubes from standard Ø50 mm PVC piping that can also function as direct collection corers for softer soils. Tubes are fitted in the tube bank shelf, each directly under a 25 W reflector lamp and over a funnel and jar system. Lamps are located 25 mm over the tubes' top creating a relatively constant 10 oC temperature gradient that drives soil animals away from heat and light, and towards the bottom end of the tube which is fitted with a suitable fabric mesh. Standard 106 ml panelled jars, filled with a safe-to-handle preservative (e.g. propylene glycol) to the lower end of the funnel fitted in them, trap and preserve soil organisms until identification. The apparatus offers flat-pack portability and scalability using low-cost standard material. Design specifications and Drawing eXchange Format (dxf) files for apparatus reproduction are provided.
NASA Astrophysics Data System (ADS)
Guo, Bing; Zhang, Yu; Documet, Jorge; Liu, Brent; Lee, Jasper; Shrestha, Rasu; Wang, Kevin; Huang, H. K.
2007-03-01
As clinical imaging and informatics systems continue to integrate the healthcare enterprise, the need to prevent patient mis-identification and unauthorized access to clinical data becomes more apparent especially under the Health Insurance Portability and Accountability Act (HIPAA) mandate. Last year, we presented a system to track and verify patients and staff within a clinical environment. This year, we further address the biometric verification component in order to determine which Biometric system is the optimal solution for given applications in the complex clinical environment. We install two biometric identification systems including fingerprint and facial recognition systems at an outpatient imaging facility, Healthcare Consultation Center II (HCCII). We evaluated each solution and documented the advantages and pitfalls of each biometric technology in this clinical environment.
A USB-2 based portable data acquisition system for detector development and nuclear research
NASA Astrophysics Data System (ADS)
Jiang, Hao; Ojaruega, M.; Becchetti, F. D.; Griffin, H. C.; Torres-Isea, R. O.
2011-10-01
A highly portable high-speed CAMAC data acquisition system has been developed using Kmax software (Sparrow, Inc.) for Macintosh laptop and tower computers. It uses a USB-2 interface to the CAMAC crate controller with custom-written software drivers. Kmax permits 2D parameter gating and specific algorithms have been developed to facilitate the rapid evaluation of various multi-element nuclear detectors for energy and time-of-flight measurements. This includes tests using neutrons from 252Cf and a 2.5 MeV neutron generator as well as standard gamma calibration sources such as 60Co and 137Cs. In addition, the system has been used to measure gamma-gamma coincidences over extended time periods using radioactive sources (e.g., Ra-228, Pa-233, Np-237, and Am-243).
Burns, Jennifer B.; Riley, Christopher B.; Shaw, R. Anthony; McClure, J. Trenton
2017-01-01
The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL), which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI) in neonates. Serum samples (n = 175) collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID) assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set). Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field. PMID:28651006
Elsohaby, Ibrahim; Burns, Jennifer B; Riley, Christopher B; Shaw, R Anthony; McClure, J Trenton
2017-01-01
The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL), which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI) in neonates. Serum samples (n = 175) collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID) assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set). Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field.
Smart phones: platform enabling modular, chemical, biological, and explosives sensing
NASA Astrophysics Data System (ADS)
Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.
2013-05-01
Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.
Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)
NASA Astrophysics Data System (ADS)
Zhang, Qigui; Deng, Kai
2016-12-01
As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.
Handheld isotope identification system
Frankle, Christen M [Los Alamos, NM; Becker, John A [Alameda, CA; Cork,; Christopher, P [Pleasant Hill, CA; Madden, Norman W [Livermore, CA
2007-01-09
A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.
Reusable Energy and Power Sources: Rechargeable Batteries
ERIC Educational Resources Information Center
Hsiung, Steve C.; Ritz, John M.
2007-01-01
Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
NASA Technical Reports Server (NTRS)
Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry
2013-01-01
Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara
We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APSmore » beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.« less
Portable LED-induced autofluorescence spectroscopy for oral cancer diagnosis
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Huang, Ting-Wei; Cheng, Nai-Lun; Hsieh, Yao-Fang; Tsai, Ming-Hsui; Chiou, Jin-Chern; Duann, Jeng-Ren; Lin, Yung-Jiun; Yang, Chin-Siang; Ou-Yang, Mang
2017-04-01
Oral cancer is a serious and growing problem in many developing and developed countries. To improve the cancer screening procedure, we developed a portable light-emitting-diode (LED)-induced autofluorescence (LIAF) imager that contains two wavelength LED excitation light sources and multiple filters to capture ex vivo oral tissue autofluorescence images. Compared with conventional means of oral cancer diagnosis, the LIAF imager is a handier, faster, and more highly reliable solution. The compact design with a tiny probe allows clinicians to easily observe autofluorescence images of hidden areas located in concave deep oral cavities. The ex vivo trials conducted in Taiwan present the design and prototype of the portable LIAF imager used for analyzing 31 patients with 221 measurement points. Using the normalized factor of normal tissues under the excitation source with 365 nm of the central wavelength and without the bandpass filter, the results revealed that the sensitivity was larger than 84%, the specificity was not smaller than over 76%, the accuracy was about 80%, and the area under curve of the receiver operating characteristic (ROC) was achieved at about 87%, respectively. The fact shows the LIAF spectroscopy has the possibilities of ex vivo diagnosis and noninvasive examinations for oral cancer.
NASA Astrophysics Data System (ADS)
Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.
2012-04-01
Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.
Portable laser synthesizer for high-speed multi-dimensional spectroscopy
Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA
2012-05-29
Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.
Portable receiver for radar detection
Lopes, Christopher D.; Kotter, Dale K.
2008-10-14
Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.
RF Power Transfer, Energy Harvesting, and Power Management Strategies
NASA Astrophysics Data System (ADS)
Abouzied, Mohamed Ali Mohamed
Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes.
TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics
NASA Astrophysics Data System (ADS)
Wood, Paul; Sinton, David
2010-08-01
We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.
Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.
Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G
2018-02-15
Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.
2018-02-01
We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.
An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters
Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.
2014-01-01
Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581
An overview of power electronics applications in fuel cell systems: DC and AC converters.
Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A
2014-01-01
Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.
A Portable, Shock-Proof, Surface-Heated Droplet PCR System for Escherichia coli Detection
Angus, Scott V.; Cho, Soohee; Harshman, Dustin K.; Song, Jae-Young; Yoon, Jeong-Yeol
2015-01-01
A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 103 genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides realtime droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008
A Portable Electronic Nose for Toxic Vapor Detection, Identification, and Quantification
NASA Technical Reports Server (NTRS)
Linnell, B. R.; Young, R. C.; Griffin, T. P.; Meneghelli, B. J.; Peterson, B. V.; Brooks, K. B.
2005-01-01
The Space Program and military use large quantities of hydrazine and monomethyl hydrazine as rocket propellant, which are very toxic and suspected human carcinogens. Current off-the-shelf portable instruments require 10 to 20 minutes of exposure to detect these compounds at the minimum required concentrations and are prone to false positives, making them unacceptable for many operations. In addition, post-mission analyses of grab bag air samples from the Shuttle have confirmed the occasional presence of on-board volatile organic contaminants, which also need to be monitored to ensure crew safety. A new prototype instrument based on electronic nose (e-nose) technology has demonstrated the ability to qualify (identify) and quantify many of these vapors at their minimum required concentrations, and may easily be adapted to detect many other toxic vapors. To do this, it was necessary to develop algorithms to classify unknown vapors, recognize when a vapor is not any of the vapors of interest, and estimate the concentrations of the contaminants. This paper describes the design of the portable e-nose instrument, test equipment setup, test protocols, pattern recognition algorithms, concentration estimation methods, and laboratory test results.
Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi
2011-02-01
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra
2017-01-03
Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.
Maurer, Natalie E; Hatta-Sakoda, Beatriz; Pascual-Chagman, Gloria; Rodriguez-Saona, Luis E
2012-09-15
Consumption of omega-3 fatty acids (ω-3's), whether from fish oils, flax or supplements, can protect against cardiovascular disease. Finding plant-based sources of the essential ω-3's could provide a sustainable, renewable and inexpensive source of ω-3's, compared to fish oils. Our objective was to develop a rapid test to characterize and detect adulteration in sacha inchi oils, a Peruvian seed containing higher levels of ω-3's in comparison to other oleaginous seeds. A temperature-controlled ZnSe ATR mid-infrared benchtop and diamond ATR mid-infrared portable handheld spectrometers were used to characterize sacha inchi oil and evaluate its oxidative stability compared to commercial oils. A soft independent model of class analogy (SIMCA) and partial least squares regression (PLSR) analyzed the spectral data. Fatty acid profiles showed that sacha inchi oil (44% linolenic acid) had levels of PUFA similar to those of flax oils. PLSR showed good correlation coefficients (R(2)>0.9) between reference tests and spectra from infrared devices, allowing for rapid determination of fatty acid composition and prediction of oxidative stability. Oils formed distinct clusters, allowing the evaluation of commercial sacha inchi oils from Peruvian markets and showed some prevalence of adulteration. Determining oil adulteration and quality parameters, by using the ATR-MIR portable handheld spectrometer, allowed for portability and ease-of-use, making it a great alternative to traditional testing methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...
Discharge of thoracic patients on portable digital suction: Is it cost-effective?
Southey, Dawn; Pullinger, Diane; Loggos, Spiros; Kumari, Nelam; Lengyel, Emma; Morgan, Ian; Yiu, Patrick; Nandi, Jayanta; Luckraz, Heyman
2015-09-01
A portable suction drainage device for patients undergoing thoracic surgical procedures was introduced into our service in January 2010. Patients who met strict discharge criteria were allowed to continue their treatment at home with the device. They were monitored in a designated follow-up clinic. Data were collected to identify the impact of this service in relation to the duration of follow-up required, bed-days saved, and potential cost/benefits. All patients who underwent a thoracic procedure from March 2012 to April 2014 and required suction postoperatively for air leak were included in the study. Patients were identified as suitable according to the discharge criteria. Data regarding patient demographics were collected prospectively on the thoracic database, and data on the drainage device were logged in a specific data sheet. Visits to the follow-up clinic were also recorded. During the study period, 50 patients stayed a total 1125 days on the portable suction system. Twenty were discharged home, equating to 772 bed-days saved (GBP 270,000 cost-saving). Clinic attendance totalled 162 visits (GBP 24,300 cost reimbursement for attendance). Six (30%) patients were readmitted on 9 occasions due to device malfunction or inability to cope at home. Careful identification of patients suitable for discharge with a portable suction device achieved a significant cost-saving and freed hospital beds, thus allowing increased surgical activity. Patients were also able to be cared for within their home environment and maintain their quality of life. © The Author(s) 2015.
The Role of Counterintelligence in the European Theater of Operations During World War II
1993-06-04
revolvers, Minox cameras, portable typewriters, 48 fingerprint cameras, latent fingerprint kits, handcuffs, and listening and recording devices.13 This...Comments from the detachments indicated that the fingerprint equipment, and listening and recording devices were of little use. However, the revolvers...40-49. 138 Moulage* 2 Fingerprinting 2 Latent Fingerprinting 3 System of Identification 1 Codes and Ciphers 1 Handwriting Comparison 2 Documentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Richard; Branch, Darren; Edwards, Thayne
The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.
NASA Astrophysics Data System (ADS)
Rehse, Steven; Trojand, Daniel; Putnam, Russell; Gillies, Derek; Woodman, Ryan; Sheikh, Khadija; Daabous, Andrew
2013-05-01
There is a well-known and urgent need in the fields of medicine, environmental health and safety, food-processing, and defense/security to develop new 21st Century technologies for the rapid and sensitive identification of bacterial pathogens. In only the last five years, the use of a real-time elemental (atomic) analysis performed with laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. In this talk we will show how this laser-based optical emission spectroscopic technique is able to sensitively assay the elemental composition of bacterial cells in situ. We will also present the latest achievements of our lab to fully develop LIBS-based bacterial sensing including simulation of a rapid urinary tract infection diagnosis and investigation of a variety of autonomous multivariate analysis algorithms. Lastly, we will show how this technology is now ready to be transitioned from the laboratory to field-portable and potentially man-portable instrumentation. The introduction of such a technology into popular use could very well transform the field of bacterial biosensing - a market valued at approximately 10 billion/year world-wide. Funding for this project was provided in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.
Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O’Brien, Nada A.
2016-01-01
Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. PMID:27029624
Portable thermo-photovoltaic power source
Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.
1997-01-14
A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.
Compact Power Conditioning and RF Systems for a High Power RF Source
2008-12-01
RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system
Recent Advances in Subsurface Imaging and Monitoring with Active Sources in China
NASA Astrophysics Data System (ADS)
Wang, B.; Chen, Y.; Wang, W.; Yang, W.
2017-12-01
Imaging high-resolution crustal structures and monitoring their temporal changes with active sources is essential to our understanding of regional tectonics and seismic hazards. In the past decades, great efforts has been made in China to looking for an ideal artificial seismic source to study continental crustal structures. After a mountain of field experiments, we developed permanent and portable seismic airgun sources for inland seismotectonic studies. Here we introduce several applications of using airgun source to imaging local crustal structures and monitoring velocity changes associated with natural and anthropogenic loadings. During Oct. 10th-20th, 2015, we carried out a crustal structure exploration experiment by firing portable airgun source along the Yangtze River in Anhui Province of eastern China. About 5000 shots were fired along 300km long section of the river. More than 2000 portable short period seismometers or geophones were deployed during the experiment. About 3000 of 5000 shots were fired at 20 fixed sites roughly evenly distributed along the river, and the rest shots were fired in the walkway. Seismic signal radiated by airgun source can be tracked to 350km. 2D/3D near surface and crustal velocity structure along the Yangtze River and adjacent region were inverted from airgun seismic records. Inverted velocity show well consistence with previous images and geological structure. The high resolution structural image provides a better understanding on regional geologic features and distribution of mineral resources. In the past five years, three Fixed Aigun Signal Transmitting Stations (FASTS) were built in western China. Those FASTS generate seismic signals with high repeatability, which can be tracked to the distance 1300 km. The highly reproducible signals are used to monitor the subtle subsurface changes. Observed diurnal and semi-diurnal velocity changes 10-4 are supposed to be results of barometrical and tidal loading. Suspicious velocity changes prior to several moderate earthquakes are detected around. Seismic velocity measured around the Hutubi underground gas storage show clear correlation with the gas pressure. Those results shed some light on the short term evolution of the shallow to low crust, which may boost our understanding the mechanism of local seismic hazards.
PINS Spectrum Identification Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.J. Caffrey
2012-03-01
The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectralmore » analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.« less
Portable instrument and method for detecting reduced sulfur compounds in a gas
Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.
1983-06-01
A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.
Preliminary testing of a prototype portable X-ray fluorescence spectrometer
NASA Technical Reports Server (NTRS)
Patten, L. L.; Anderson, N. B.; Stevenson, J. J.
1982-01-01
A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended.
Portable emittance measurement device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakin, D.; Seleznev, D.; Orlov, A.
2010-02-15
In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.
ASC Tri-lab Co-design Level 2 Milestone Report 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornung, Rich; Jones, Holger; Keasler, Jeff
2015-09-23
In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \
Implementation of a Portable Personal EKG Signal Monitoring System
NASA Astrophysics Data System (ADS)
Tan, Tan-Hsu; Chang, Ching-Su; Chen, Yung-Fu; Lee, Cheng
This research develops a portable personal EKG signal monitoring system to help patients monitor their EKG signals instantly to avoid the occurrence of tragedies. This system is built with two main units: signal pro-cessing unit and monitoring and evaluation unit. The first unit consists of EKG signal sensor, signal amplifier, digitalization circuit, and related control circuits. The second unit is a software tool developed on an embedded Linux platform (called CSA). Experimental result indicates that the proposed system has the practical potential for users in health monitoring. It is demonstrated to be more convenient and with greater portability than the conventional PC-based EKG signal monitoring systems. Furthermore, all the application units embedded in the system are built with open source codes, no licensed fee is required for operating systems and authorized applications. Thus, the building cost is much lower than the traditional systems.
A low-cost and portable realization on fringe projection three-dimensional measurement
NASA Astrophysics Data System (ADS)
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2015-12-01
Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.
Portable liquid collection electrostatic precipitator
Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.
2005-10-18
A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.
Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J; Liu, Chenhai; Xu, Ronald X
2018-02-01
We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen
2008-12-01
A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.
NASA Astrophysics Data System (ADS)
Lareau, Etienne; Lesage, Frederic; Pouliot, Philippe; Nguyen, Dang; Le Lan, Jerome; Sawan, Mohamad
2011-09-01
Functional neuroimaging is becoming a valuable tool in cognitive research and clinical applications. The clinical context brings specific constraints that include the requirement of a high channel count to cover the whole head, high sensitivity for single event detection, and portability for long-term bedside monitoring. For epilepsy and stroke monitoring, the combination of electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) is expected to provide useful clinical information, and efforts have been deployed to create prototypes able to simultaneously acquire both measurement modalities. However, to the best of our knowledge, existing systems lack portability, NIRS sensitivity, or have low channel count. We present a battery-powered, portable system with potentially up to 32 EEG channels, 32 NIRS light sources, and 32 detectors. Avalanche photodiodes allow for high NIRS sensitivity and the autonomy of the system is over 24 h. A reduced channel count prototype with 8 EEG channels, 8 sources, and 8 detectors was tested on phantoms. Further validation was done on five healthy adults using a visual stimulation protocol to detect local hemodynamic changes and visually evoked potentials. Results show good concordance with literature regarding functional activations and suggest sufficient performance for clinical use, provided some minor adjustments were made.
Note: A portable pulsed neutron source based on the smallest sealed-type plasma focus device.
Niranjan, Ram; Rout, R K; Mishra, Prabhat; Srivastava, Rohit; Rawool, A M; Kaushik, T C; Gupta, Satish C
2011-02-01
Development and operation of a portable and compact pulsed neutron source based on sealed-type plasma focus (PF) device are reported. The unit is the smallest sealed-type neutron producing PF device. The effective volume of the PF unit is 33 cm(3) only. A compact size single capacitor (4 μF) is used as the energy driver. A battery based power supply unit is used for charging the capacitor and triggering the spark gap. The PF unit is operated at 10 kV (200 J) and at a deuterium gas filling pressure of 8 mb. The device is operated over a time span of 200 days and the neutron emissions have been observed for 200 shots without changing the gas in between the shots. The maximum yield of this device is 7.8 × 10(4) neutrons/pulse. Beyond 200 shots the yield is below the threshold (1050 neutrons/pulse) of our (3)He detector. The neutron energy is evaluated using time of flight technique and the value is (2.49 ± 0.27) MeV. The measured neutron pulse width is (24 ± 5) ns. Multishot and long duration operations envisage the potentiality of such portable device for repetitive mode of operation.
Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence
NASA Astrophysics Data System (ADS)
Chen, Guoying
2007-09-01
A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.
NAVAIR Portable Source Initiative (NPSI) Standard for Reusable Source Dataset Metadata (RSDM) V2.4
2012-09-26
defining a raster file format: <RasterFileFormat> <FormatName>TIFF</FormatName> <Order>BIP</Order> < DataType >8-BIT_UNSIGNED</ DataType ...interleaved by line (BIL); Band interleaved by pixel (BIP). element RasterFileFormatType/ DataType diagram type restriction of xsd:string facets
Carbon monoxide poisoning from portable electric generators.
Hampson, Neil B; Zmaeff, Jennette L
2005-01-01
While the overall death rate from unintentional carbon monoxide (CO) poisoning has decreased in the United States due to improved automobile emissions controls and a decline in CO poisonings from motor vehicles, exposures have not changed from some sources of CO. One of these is the operation of portable electrical generators in poorly ventilated spaces. This study sought to describe the population poisoned from CO produced by portable electric generators, and to determine the reasons that generators are operated in a hazardous fashion. Cases of CO poisoning referred for treatment with hyperbaric oxygen at Virginia Mason Medical Center in Seattle from November 1978 to March 2004 were reviewed. Those cases that resulted from portable generator use were selected for analysis. Sixty-three patients aged 2 to 85 years were treated for CO poisoning from portable electric generators. They included 34 males and 29 females who were poisoned in 37 separate incidents. Thirty-four lost consciousness with the exposure. Of the 63 total patients, 60 spoke English. Generators were typically used when normal electrical service was disrupted by a storm or in remote locations. In 29 of 37 incidents, the generator was operated in the home environment, most commonly in the garage. Lack of awareness of the dangers of CO poisoning or lack of knowledge of ventilation requirements were the most commonly identified reasons. CO poisoning from portable electric generators occurs in a characteristic population, in a few typical locations and for a limited number of reasons. This information may help target prevention efforts for this form of poisoning, such as warning labels or educational programs.
Noise Source Visualization Using a Digital Voice Recorder and Low-Cost Sensors
Cho, Yong Thung
2018-01-01
Accurate sound visualization of noise sources is required for optimal noise control. Typically, noise measurement systems require microphones, an analog-digital converter, cables, a data acquisition system, etc., which may not be affordable for potential users. Also, many such systems are not highly portable and may not be convenient for travel. Handheld personal electronic devices such as smartphones and digital voice recorders with relatively lower costs and higher performance have become widely available recently. Even though such devices are highly portable, directly implementing them for noise measurement may lead to erroneous results since such equipment was originally designed for voice recording. In this study, external microphones were connected to a digital voice recorder to conduct measurements and the input received was processed for noise visualization. In this way, a low cost, compact sound visualization system was designed and introduced to visualize two actual noise sources for verification with different characteristics: an enclosed loud speaker and a small air compressor. Reasonable accuracy of noise visualization for these two sources was shown over a relatively wide frequency range. This very affordable and compact sound visualization system can be used for many actual noise visualization applications in addition to educational purposes. PMID:29614038
Portable light source unit for simulating fires having an adjustable aperture
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Moerk, John S. (Inventor); Strobel, James P. (Inventor)
1997-01-01
A portable, hand held light source unit is employed to check operation of fire detectors, such as hydrogen fire detectors. The unit emits radiation in a narrow band of wavelengths which are generated by the type of fire to be tested, but not by other light sources such as the sun or incandescent lamps. The unit can test fire detectors at different distances, and of different sensitivities. The intensity of the radiation emitted by the unit is adjustable for this purpose by means of a rotatable disk having a plurality of different sized apertures for selective placement between the light source and an output lens. The disk can also be rotated to a calibration position which causes a microprocessor circuit in the unit to initiate a calibration procedure. During this procedure, the lamp intensity is measured by a photodetector contained within the unit, and the microprocessor adjusts the lamp current to insure that its intensity remains within a preset range of values. A green and a red LED are mounted on the unit which indicate to an operator whether the calibration is successful, as well as the condition of the unit's battery power supply.
Portable instant display and analysis reflectance spectrometer
NASA Technical Reports Server (NTRS)
Goetz, Alexander F. H. (Inventor)
1985-01-01
A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.
A portable fluorescence detector for fast ultra trace detection of explosive vapors
NASA Astrophysics Data System (ADS)
Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu
2011-10-01
This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.
A portable fluorescence detector for fast ultra trace detection of explosive vapors.
Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu
2011-10-01
This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.
LED intense headband light source for fingerprint analysis
Villa-Aleman, Eliel
2005-03-08
A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.
Franklin, Daniel; O'Higgins, Paul; Oxnard, Charles E; Dadour, Ian
2007-03-01
This article forms part of an ongoing series of investigations designed to apply three-dimensional (3D) technology to problems in forensic anthropology. We report here on new morphometric data examining sexual dimorphism and population variation in the adult human mandible. The material is sourced from dissection hall subjects of South African and American origin consequently the sex and a statement of age are known for each individual. Thirty-eight bilateral 3D landmarks were designed and acquired using a Microscribe G2X portable digitizer. The shape analysis software morphologika (www.york.ac.uk/res/fme) is used to analyze the 3D coordinates of the landmarks. A selection of multivariate statistics is applied to visualize the pattern, and assess the significance of, shape variation between the sexes and populations. The determination of sex and identification of population affinity are two important aspects of forensic investigation. Our results indicate that the adult mandible can be used to identify both sex and population affinity with increased sensitivity and objectivity compared to standard analytical techniques.
Citing geospatial feature inventories with XML manifests
NASA Astrophysics Data System (ADS)
Bose, R.; McGarva, G.
2006-12-01
Today published scientific papers include a growing number of citations for online information sources that either complement or replace printed journals and books. We anticipate this same trend for cartographic citations used in the geosciences, following advances in web mapping and geographic feature-based services. Instead of using traditional libraries to resolve citations for print material, the geospatial citation life cycle will include requesting inventories of objects or geographic features from distributed geospatial data repositories. Using a case study from the UK Ordnance Survey MasterMap database, which is illustrative of geographic object-based products in general, we propose citing inventories of geographic objects using XML feature manifests. These manifests: (1) serve as a portable listing of sets of versioned features; (2) could be used as citations within the identification portion of an international geospatial metadata standard; (3) could be incorporated into geospatial data transfer formats such as GML; but (4) can be resolved only with comprehensive, curated repositories of current and historic data. This work has implications for any researcher who foresees the need to make or resolve references to online geospatial databases.
SITE CHARACTERIZATION LIBRARY VERSION 3.0
The Site Characterization Library is a CD that provides a centralized, field-portable source for site characterization information. Version 3 of the Site Characterization Library contains additional (from earlier versions) electronic documents and computer programs related to th...
The Identification of EGRET Sources with Flat-Spectrum Radio Sources
NASA Astrophysics Data System (ADS)
Mattox, J. R.; Schachter, J.; Molnar, L.; Hartman, R. C.; Patnaik, A. R.
1997-05-01
We present a method to assess the reliability of the identification of EGRET sources with extragalactic radio sources. We verify that EGRET is detecting the blazar class of active galactic nuclei (AGNs). However, many published identifications are found to be questionable. We provide a table of 42 blazars that we expect to be robust identifications of EGRET sources. This includes one previously unidentified EGRET source, the lensed AGN PKS 1830-210, near the direction of the Galactic center. We provide the best available positions for 16 more radio sources that are also potential identifications for previously unidentified EGRET sources. All high Galactic latitude EGRET sources (|b| > 3°) that demonstrate significant variability can be identified with flat-spectrum radio sources. This suggests that EGRET is not detecting any type of AGN other than blazars. This identification method has been used to establish with 99.998% confidence that the peak γ-ray flux of a blazar is correlated with its average 5 GHz radio flux. An even better correlation is seen between γ-ray flux and the 2.29 GHz flux density measured with VLBI at the base of the radio jet. Also, using high-confidence identifications, we find that the radio sources identified with EGRET sources have greater correlated VLBI flux densities than the parent population of flat radio spectrum sources.
Development of a 500-Watt portable generator
NASA Astrophysics Data System (ADS)
Knochenhauer, Robert John
In many commercial and recreational environments where power is unavailable, there is a need for lightweight, efficient, reasonably priced and quiet power sources that can recharge batteries for various portable devices. The current benchmark device is the Honda EU1000i, a 1000-Watt (peak) generator that weighs only 29 pounds (dry) and has a respectable noise level of 59 dB (at 7 meters) under peak power loading. The intent of this thesis study is to focus on the thermal management of a novel generator design that develops peak power of 500-Watts, weighs in at less than 20 pounds (dry) and has a reasonably low noise level at peak power loading. Through the course of this assessment, two key lessons are learned: • Liquid cooling at this scale is possible, but not practical • Renewable power sources (wind turbines and/or solar panels) are viable alternatives when used in environments that offer suitable conditions.
Fair, Justin D.; Bailey, William F.; Felty, Robert A.; Gifford, Amy E.; Shultes, Benjamin; Volles, Leslie H.
2010-01-01
Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern. PMID:20885969
Bullet Trap Feasibility Assessment and Implementation Plan. (Technology Identification).
1996-03-01
reduce costs, perhaps one of their premier assets is income generation . Projectiles fired into and recovered from TEC System products can be resold...ombat shooting scenarios with up to 15 individual targets as far away as 300 yards. Page 7 \\IEUMATIC TARGET SYSTEMS gt reliable . portable and... SYYSTEM ] 3DULAR BALLISTIC PANELS (MBPs) A~rking with recycled rubber tire products, DUE- RON has created the proprietary MBP System ,or use in the
US Army battery needs -- Present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlen, R.P.; Christopher, H.A.; Gilman, S.
1995-07-01
The purpose of this paper is to describe the needs of the US Army for silent portable power sources, both in the near and longer term future. As a means of doing this, the programs of the Power Sources Division of the Army Research Laboratory will be discussed. The six program areas in which the Power Sources Division is engaged are: primary batteries, rechargeable batteries, reserve/fuze batteries, pulse batteries and capacitors, fuel cells, and thermophotovoltaic power generation.
PINS Testing and Modification for Explosive Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; A.J. Caffrey
2011-09-01
The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test,more » the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.« less
Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying
2014-12-01
A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.
A portable device for detecting fruit quality by diffuse reflectance Vis/NIR spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Hongwei; Peng, Yankun; Li, Peng; Wang, Wenxiu
2017-05-01
Soluble solid content (SSC) is a major quality parameter to fruit, which has influence on its flavor or texture. Some researches on the on-line non-invasion detection of fruit quality were published. However, consumers desire portable devices currently. This study aimed to develop a portable device for accurate, real-time and nondestructive determination of quality factors of fruit based on diffuse reflectance Vis/NIR spectroscopy (520-950 nm). The hardware of the device consisted of four units: light source unit, spectral acquisition unit, central processing unit, display unit. Halogen lamp was chosen as light source. When working, its hand-held probe was in contact with the surface of fruit samples thus forming dark environment to shield the interferential light outside. Diffuse reflectance light was collected and measured by spectrometer (USB4000). ARM (Advanced RISC Machines), as central processing unit, controlled all parts in device and analyzed spectral data. Liquid Crystal Display (LCD) touch screen was used to interface with users. To validate its reliability and stability, 63 apples were tested in experiment, 47 of which were chosen as calibration set, while others as prediction set. Their SSC reference values were measured by refractometer. At the same time, samples' spectral data acquired by portable device were processed by standard normalized variables (SNV) and Savitzky-Golay filter (S-G) to eliminate the spectra noise. Then partial least squares regression (PLSR) was applied to build prediction models, and the best predictions results was achieved with correlation coefficient (r) of 0.855 and standard error of 0.6033° Brix. The results demonstrated that this device was feasible to quantitatively analyze soluble solid content of apple.
Portable power supply options for positive airway pressure devices.
Riaz, Muhammad; Certal, Victor; Camacho, Macario
2015-01-01
Patients with obstructive sleep apnea (OSA) often face the challenge of how to power their positive airway pressure (PAP) devices when alternating current power supplies are not available in remote areas with lack of electricity or frequent power outages. This article elucidates portable power supply options for PAP devices with the aim to increase alternative power source awareness among medical providers. A search of scientific databases (Medline, Scopus, Web of Science, Google Scholar, and the Cochrane Library) was carried out on the topic of alternative portable power supply options for treatment of OSA. Scientific databases listed above yielded only limited results. Most articles were found via Google search. These articles were reviewed for alternative power supply options for OSA patients when alternating current is not available. The power supply options in this article include lead-acid batteries (starter, marine and deep-cycle batteries), lithium ion batteries, solar kits, battery packs, backup power systems, portable generators, and travel-size PAP devices. There are several options to power PAP devices with direct current when alternating current is not available. Knowledgeable primary care physicians especially in rural and remote areas can help OSA patients improve PAP compliance in order to mitigate morbidity and long-term complications of OSA.
NASA Astrophysics Data System (ADS)
Alfonso, Krystal; Elsalim, Mashal; King, Michael; Strellis, Dan; Gozani, Tsahi
2013-04-01
MCNPX simulations have been used to guide the development of a portable inspection system for narcotics, explosives, and special nuclear material (SNM) detection. The system seeks to address these threats to national security by utilizing a high-yield, compact neutron source to actively interrogate the threats and produce characteristic signatures that can then be detected by radiation detectors. The portability of the system enables rapid deployment and proximity to threats concealed in small spaces. Both dD and dT electronic neutron generators (ENG) were used to interrogate ammonium nitrate fuel oil (ANFO) and cocaine hydrochloride, and the detector response of NaI, CsI, and LaBr3 were compared. The effect of tungsten shielding on the neutron flux in the gamma ray detectors was investigated, while carbon, beryllium, and polyethylene ENG moderator materials were optimized by determining the reaction rate density in the threats. In order to benchmark the modeling results, experimental measurements are compared with MCNPX simulations. In addition, the efficiency and die-away time of a portable differential die-away analysis (DDAA) detector using 3He proportional counters for SNM detection has been determined.
Portable atomic frequency standard based on coherent population trapping
NASA Astrophysics Data System (ADS)
Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming
2015-05-01
In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.
System Control Applications of Low-Power Radio Frequency Devices
NASA Astrophysics Data System (ADS)
van Rensburg, Roger
2017-09-01
This paper conceptualizes a low-power wireless sensor network design for application employment to reduce theft of portable computer devices used in educational institutions today. The aim of this study is to design and develop a reliable and robust wireless network that can eradicate accessibility of a device’s human interface. An embedded system supplied by an energy harvesting source, installed on the portable computer device, may represent one of multiple slave nodes which request regular updates from a standalone master station. A portable computer device which is operated in an undesignated area or in a field perimeter where master to slave communication is restricted, indicating a possible theft scenario, will initiate a shutdown of its operating system and render the device unusable. Consequently, an algorithm in the device firmware may ensure the necessary steps are executed to track the device, irrespective whether the device is enabled. Design outcomes thus far indicate that a wireless network using low-power embedded hardware, is feasible for anti-theft applications. By incorporating one of the latest Bluetooth low-energy, ANT+, ZigBee or Thread wireless technologies, an anti-theft system may be implemented that has the potential to reduce major portable computer device theft in institutions of digitized learning.
Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.
Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J
2016-01-01
A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field.
Chang, Keke; Chen, Ruipeng; Wang, Shun; Li, Jianwei; Hu, Xinran; Liang, Hao; Cao, Baiqiong; Sun, Xiaohui; Ma, Liuzheng; Zhu, Juanhua; Jiang, Min; Hu, Jiandong
2015-08-19
The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD) array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D) converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 10(5) ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10(-5) refractive index unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.
Lessing, Paul A.; Zuppero, Anthony C.
1997-06-24
A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.
Automated Report Generation for Research Data Repositories: From i2b2 to PDF.
Thiemann, Volker S; Xu, Tingyan; Röhrig, Rainer; Majeed, Raphael W
2017-01-01
We developed an automated toolchain to generate reports of i2b2 data. It is based on free open source software and runs on a Java Application Server. It is sucessfully used in an ED registry project. The solution is highly configurable and portable to other projects based on i2b2 or compatible factual data sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
XU, X. George; Zhang, X.C.
Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field usingmore » gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.« less
Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pang, Sean; Zhu, Zheyuan
2017-05-01
Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik
In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less
The use of a handheld Raman system for virus detection
NASA Astrophysics Data System (ADS)
Song, Chunyuan; Driskell, Jeremy D.; Tripp, Ralph A.; Cui, Yiping; Zhao, Yiping
2012-06-01
The combination of surface enhanced Raman spectroscopy (SERS) with a handheld Raman system would lead to a powerful portable device for defense and security applications. The Thermo Scientific FirstDefender RM instrument is a 785-nm handheld Raman spectrometer intended for rapid field identification of unknown solid and liquid samples. Its sensitivity and effectiveness for SERS-based detection was initially confirmed by evaluating detection of 1,2-di(4- pyridyl)ethylene as a reporter molecule on a silver nanorod (AgNR) substrate, and the results are comparable to those from a confocal Bruker Raman system. As avian influenza A viruses (AIV) are recognized as an important emerging threat to public health, this portable handheld Raman spectrometer is used, for the first time, to detect and identify avian influenza A viruses using a multi-well AgNR SERS chip. The SERS spectra obtained had rich peaks which demonstrated that the instrument can be effectively used for SERS-based influenza virus detection. According to the SERS spectra, these different influenza viruses were distinguished from the negative control via the principal component analysis and by partial least squares-discriminate analysis. Together, these results show that the combination effective SERS substrates when combined with a portable Raman spectrometer provides a powerful field device for chemical and biological sensing.
Infrared hyperspectral imaging sensor for gas detection
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2000-11-01
A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.
Tridandapani, Srini; Ramamurthy, Senthil; Provenzale, James; Obuchowski, Nancy A; Evanoff, Michael G; Bhatti, Pamela
2014-08-01
To evaluate whether the presence of facial photographs obtained at the point-of-care of portable radiography leads to increased detection of wrong-patient errors. In this institutional review board-approved study, 166 radiograph-photograph combinations were obtained from 30 patients. Consecutive radiographs from the same patients resulted in 83 unique pairs (ie, a new radiograph and prior, comparison radiograph) for interpretation. To simulate wrong-patient errors, mismatched pairs were generated by pairing radiographs from different patients chosen randomly from the sample. Ninety radiologists each interpreted a unique randomly chosen set of 10 radiographic pairs, containing up to 10% mismatches (ie, error pairs). Radiologists were randomly assigned to interpret radiographs with or without photographs. The number of mismatches was identified, and interpretation times were recorded. Ninety radiologists with 21 ± 10 (mean ± standard deviation) years of experience were recruited to participate in this observer study. With the introduction of photographs, the proportion of errors detected increased from 31% (9 of 29) to 77% (23 of 30; P = .006). The odds ratio for detection of error with photographs to detection without photographs was 7.3 (95% confidence interval: 2.29-23.18). Observer qualifications, training, or practice in cardiothoracic radiology did not influence sensitivity for error detection. There is no significant difference in interpretation time for studies without photographs and those with photographs (60 ± 22 vs. 61 ± 25 seconds; P = .77). In this observer study, facial photographs obtained simultaneously with portable chest radiographs increased the identification of any wrong-patient errors, without substantial increase in interpretation time. This technique offers a potential means to increase patient safety through correct patient identification. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
A large-scale cryoelectronic system for biological sample banking
NASA Astrophysics Data System (ADS)
Shirley, Stephen G.; Durst, Christopher H. P.; Fuchs, Christian C.; Zimmermann, Heiko; Ihmig, Frank R.
2009-11-01
We describe a polymorphic electronic infrastructure for managing biological samples stored over liquid nitrogen. As part of this system we have developed new cryocontainers and carrier plates attached to Flash memory chips to have a redundant and portable set of data at each sample. Our experimental investigations show that basic Flash operation and endurance is adequate for the application down to liquid nitrogen temperatures. This identification technology can provide the best sample identification, documentation and tracking that brings added value to each sample. The first application of the system is in a worldwide collaborative research towards the production of an AIDS vaccine. The functionality and versatility of the system can lead to an essential optimization of sample and data exchange for global clinical studies.
Portable instrument for inspecting irradiated nuclear fuel assemblies
Nicholson, Nicholas; Dowdy, Edward J.; Holt, David M.; Stump, Jr., Charles J.
1985-01-01
A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.
2004-03-01
using standard Internet technologies with no additional client software required. Furthermore, using a portable...Wilkerson Computational and Information Sciences Directorate, ARL Approved for public release... information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Evolution of Space Station EMU PLSS technology recommendations
NASA Technical Reports Server (NTRS)
Wilde, Richard C.
1990-01-01
Viewgraphs on extravehicular mobility unit (EMU) portable life support system (PLSS) technology recommendations are presented. Topics covered include: oxygen supply storage; oxygen supply regulators; carbon dioxide control; prime movers; crew comfort; heat rejection; power sources; controls; display devices; and sensor technology.
NAVAIR Portable Source Initiative (NPSI) Data Preparation Standard V2.2: NPSI DPS V2.2
2012-05-22
Keyhole Markup Language (file format) KMZ ............................................................................. Keyhole Markup...required for the geo-specific texture may differ within the database depending on the mission parameters. When operating close to the ground (e.g
Monitoring system for the study of autotrophic biofilms in bioremediation of polyaromatic compounds
NASA Astrophysics Data System (ADS)
Alarie, Jean P.; Bruttig, A.; Miller, Gordon H.; Hill, Walter; Vo-Dinh, Tuan
1999-02-01
Bacterial and other natural materials such as plants and algae have received increasing interest for bioremediation efforts. The identificatIon of materials capable of biodegrading or sequestering environmental pollutants offers an attractive alternative to chemical or physical means of remediation. A number of bacteria capable of biodegrAding organic or reducing metal pollutants have received great interest. Similarly, the use of natural plants to absorb pollutants from soil anD liquid samples is another potential approach. Our interest lies in identification of naturally occurring algae and their ability to absorb polyaromatic compounds (PAC) from groundwater sources (i.e. streams). These algae could serve as natural water filters for streams contaminated with Polyaromatic hydrocarbons. Polycyclic aromatic compounds, which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion or pyrolysis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air, soil and water. Among energy-related products, fossil fuels are the major sources of PACs. The primary sources of airborne PACs are associated with combustion, coal coking, and petroleum catalytic cracking. Coal and shale conversion also contribute to production of PACs. Production, transportation and, use of synthetic fuels and petroleum products provide emission sources for PACs. In urban environments an significant source of PACs is diesel exhaust. Food cooking and cigarette smoking activities contribute to PAC occurrence in indoor environments. Chemical analysis of PACs is of great environmental and toxicological interest because many of them have been shown to be mutagens and/or potent carcinogens in laboratory animal assays. The parent homocyclic species, which contain only carbon and hydrogen, are the familiar polyaromatic hydrocarbon (PAH) compounds. In addition to the PAH compounds, there are thousands of substituted compounds that could have various substituent groups, such as alkyl, amino, chloro, cyano, hydroxy, oxy, or thio groups. In this study we investigate anthracene and pyrene as PAH model systems. A portable fiberoptic instrument capable of real-time measurements has been developed for field screening these PAHs in surface water and natural algae systems. Our preliminary studies investigated the detection limits of anthracene and pyrene and the adsorption properties of two algae using fluorescence monitoring. An exposure study of the algae to 5 ppb anthracene was performed to investigate the ability of the algae to adsorb PAHs.
Gao, Lei; Chen, Jian-yao; Wang, Jiang; Ke, Zhi-ting; Zhu, Ai-ping; Xu, Kai
2015-05-01
Shima River catchment is of strategic importance to urban water supply in Dongjiang portable water source area. To investigate the hydro-chemical characteristics of Shima River, 39 river water samples were collected in February, June and November, 2012 to analyze the major ions (K+, Na+, Ca2+, Mg2+, Cl-, SO4(2-) , HCO3-) and nutritive salts (PO4(3-), NO3- and NH4+) and to discuss the temporal-spatial variation and controlling factors of hydro-chemical composition, relative sources identification of varied ions was performed as well. The results showed that the hydro-chemical composition exhibited significant differences in different periods. The average concentration of total dissolved solid ( TDS) and nutritive salts in different investigated periods followed the decreasing order of November > February > June. The dominant anion of Shima River was HCO3-, and Na+ + K+ were the major cations in February and November which were changed to Ca2+ in June, the hydro-chemical types were determined as HCO(3-)-Na+ and HCO(3-)- Ca2+ in dry (February and November) and rainy (June) seasons, respectively. Spatial variations of concentration of nutritive salts were mainly affected by the discharges of N- and P-containing waste water resulted from human activities. The ratio between N and P of water sample (R7) was 18.4:1 which boosted the "crazy growth" of phytoplankton and led to severe eutrophication. According to Gibbs distribution of water samples, dissolution of hydatogenic rocks was the primary factor to control the major cations of river water in dry season, however, the hydro-chemical composition was significantly affected by the combination of hydatogenic and carbonate rocks in rainy season. The deposition of sea-salts contributed less to chemical substances in river. Correlation analysis revealed that K+, Na+, Mg2+, Cl- and SO4(2-) were partly derived from the application of fertilizer and the discharge of industrial effluent; Waste water of poultry feeding and sanitary wastewater transported large quantities of NH(4+)-N, PO4(3-)-P and NO(3-)-N into the river.
A portable fluorescence microscopic imaging system for cholecystectomy
NASA Astrophysics Data System (ADS)
Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald
2016-03-01
In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.
Maregesi, Sheila M.; Messo, Charles W.; Mathias, Juma
2017-01-01
Aim: This study aimed at documenting products used as traditional eye medicine (TEM) in Misungwi district, Tanzania, and performing preliminary analysis on safety status. Methodology: Ethnomedical study was conducted in Misungwi district. Information was sourced by face-to-face interview with traditional healers, traditional medicine vendors, and knowledgeable people guided by a well-structured questionnaire. Safety was evaluated by determining pH using pH meter and mineral analysis using the Delta, Portable X-ray fluorescence equipment, and qualitative chemical tests. Results: A total of 23 TEM products were recorded from botanical (79%) and zoological (21%) sources including animal excreta. Liquid preparation ranked highest among dosage forms. Safety evaluation showed that only one product possessed the pH value of 7.4 as recommended for topical ophthalmic medicines. Fourteen minerals were detected and quantified in three samples; some of these minerals are known for their negative effects to the eyes, of medical interest is strontium used for the management of benign eye tumors. Information providers were unaware of health risks associated with the use of TEM. Conclusion: This study has revealed the common use of TEM in Misungwi district. The majority of the products are from the botanical source. Although literature provides supporting data for the application to some of the recorded TEM, safety evaluation by pH and mineral analysis in this study have indicated possible ophthalmological medical problems that could result from using such products. Extensive scientific studies including animal experiments and identification of bioactive compounds are essential to develop safe TEMs. PMID:28163964
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co...] Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co...] Fluoride Emissions From Phosphate Fertilizer Plants ...
NASA Astrophysics Data System (ADS)
Zhang, Shou-ping; Xin, Xiao-kang
2017-07-01
Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.
Spore collection and elimination apparatus and method
Czajkowski, Carl [South Jamesport, NY; Warren, Barbara Panessa [Port Jefferson, NY
2007-04-03
The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... enough electrical or thermal energy to ignite a flammable mixture of the most easily ignitable composition. Intrinsically safe means incapable of releasing enough electrical or thermal energy under normal... portable cables may be connected to a source of electrical energy, and which contains a short-circuit...
Detection of Sources of Harmful Radiation using Portable Sensors
2016-05-01
Department Carnegie Mellon University Pittsburgh, PA Thesis Committee Artur Dubrawski, Chair Srinivas Narasimhan Submitted in partial fulfillment of the...Aggregation of Evidence for Detection and Characterization of Patterns in Multiple Noisy Observations”. PhD thesis. Carnegie Mellon, 2015. [15] Prateek Tandon
LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS
A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...
Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-12-20
In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.
Portable Imagery Quality Assessment Test Field for Uav Sensors
NASA Astrophysics Data System (ADS)
Dąbrowski, R.; Jenerowicz, A.
2015-08-01
Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.
NASA Astrophysics Data System (ADS)
Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo
2011-07-01
Long term in vivo observations at large penetration depths and minimum sample disturbance are some of the key factors that have enabled the study of different cellular and tissue mechanisms. The continuous optimization of these aspects is the main driving force for the development of advanced microscopy techniques such as those based on nonlinear effects. Its wide implementation for general biomedical applications is however, limited as the currently used nonlinear microscopes are based on bulky, maintenance-intensive and expensive excitation sources such as Ti:sapphire ultrafast lasers. We present the suitability of a portable (140x240x70 mm) ultrafast semiconductor disk laser (SDL) source, to be used in nonlinear microscopy. The SDL is modelocked by a quantum-dot semiconductor saturable absorber mirror (SESAM). This enables the source to deliver an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. The laser center wavelength (965 nm) virtually matches the two-photon absorption cross-section of the widely used Green Fluorescent Protein (GFP). This property greatly relaxes the required peak powers, thus maximizing sample viability. This is demonstrated by presenting two-photon excited fluorescence images of GFP labeled neurons and second-harmonic generation images of pharyngeal muscles in living C. elegans nematodes. Our results also demonstrate that this compact laser is well suited for efficiently exciting different biological dyes. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its widespread adoption in biomedical applications.
Characterization of a Field Portable Raman System for Rapid Chemical Identification
2007-05-31
Sodium nitrate, 21% Potassium carbonate, 4% Diethanolamine lauryl sulfate , 2% Methamidophos 3 NMF 4 NMF... Sodium sulfate Y P W P 1 45.3% Detergent, 44.0% Sodium sulfate , 5.7% Benzene 2 44.0% Detergent, 42.6% Sodium sulfate , 7.5% 3- (Ethylamino)toluene 3...47.8% Detergent, 47.6% Sodium sulfate Strontium carbonate N P W P 1 NMF 2 NMF 3 NMF Strontium nitrate N P W P 1 Mixture 79%: 56% Urea nitrate,
A Man-Portable Vector Sensor for Identification of Unexploded Ordnance
2011-08-24
Hanover data of Section III-B2, and Dr. L. Pasion , J. Jacobson, and H. Ngo of Sky Research and Dr. L.-P. Song of the University of British Columbia for...of equivalent dipole polarizabilities in situ,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 7, pp. 1490–1498, Jul. 2005. [27] L. R. Pasion and D. W...P. Song, F. Shubitidze, L. R. Pasion , D. W. Oldenburg, and S. D. Billings, “Computing transient electromagnetic responses of a metallic object using
R&D 100 Winner 2010: Acoustic Wave Biosensors
Larson, Richard; Branch, Darren; Edwards, Thayne
2018-01-16
The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures â viruses, bacteria, proteins, and DNA â at clinically relevant levels. This detection occurs within minutes â not hours â at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.
A compact and portable optofluidic device for detection of liquid properties and label-free sensing
NASA Astrophysics Data System (ADS)
Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.
2017-06-01
Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.
A review on the applications of portable near-infrared spectrometers in the agro-food industry.
dos Santos, Cláudia A Teixeira; Lopo, Miguel; Páscoa, Ricardo N M J; Lopes, João A
2013-11-01
Industry has created the need for a cost-effective and nondestructive quality-control analysis system. This requirement has increased interest in near-infrared (NIR) spectroscopy, leading to the development and marketing of handheld devices that enable new applications that can be implemented in situ. Portable NIR spectrometers are powerful instruments offering several advantages for nondestructive, online, or in situ analysis: small size, low cost, robustness, simplicity of analysis, sample user interface, portability, and ergonomic design. Several studies of on-site NIR applications are presented: characterization of internal and external parameters of fruits and vegetables; conservation state and fat content of meat and fish; distinguishing among and quality evaluation of beverages and dairy products; protein content of cereals; evaluation of grape ripeness in vineyards; and soil analysis. Chemometrics is an essential part of NIR spectroscopy manipulation because wavelength-dependent scattering effects, instrumental noise, ambient effects, and other sources of variability may complicate the spectra. As a consequence, it is difficult to assign specific absorption bands to specific functional groups. To achieve useful and meaningful results, multivariate statistical techniques (essentially involving regression techniques coupled with spectral preprocessing) are therefore required to extract the information hidden in the spectra. This work reviews the evolution of the use of portable near-infrared spectrometers in the agro-food industry.
NASA Astrophysics Data System (ADS)
Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze
2017-04-01
Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10ppm in a single measurement. Utilizing a second onboard laser allows for a high precision methane only mode used for surveying and pinpointing. This mode measures at a rate faster than 4Hz with a 1-σ precision of <3ppb. Because methane seepages are highly variable due to air turbulence and mixing right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.
Han, Zhenzhen; Liu, Honglin; Meng, Juan; Yang, Liangbao; Liu, Jing; Liu, Jinhuai
2015-09-15
A portable kit was demonstrated for rapid and reliable surface-enhanced Raman scattering (SERS) detection of drugs in human urine. This kit contains two sealed reagent tubes, a packet of standardized SERS substrates, and a mini Raman device. A 3 min pretreatment for separating amphetamines from human urine was developed with an extraction rate of >80% examined by ultraperformance liquid chromatography (UPLC). Simultaneously, highly reproducible two-dimensional (2D) gold nanorod (GNR) arrays were assembled by the use of methoxymercaptopoly(ethylene glycol) (mPEG-SH) capping. Thirty batches of GNR arrays produced the 1001 cm(-1) intensity of methamphetamine (MA) molecules with a relative standard deviation (RSD) of 7.9%, and a 21 × 21 μm(2) area mapping on a 2D GNR array produced a statistical RSD of <10%, implying an excellent reproducibility and uniformity. The detection limit of amphetamines in human urine was at least 0.1 ppm. Moreover, the portable kit was successfully used for detecting MA, 3,4-methylenedioxymethamphetamine (MDMA), and methcathinone (MC) in 30 volunteers' urine samples with various clinical natures, and the dual-analyte detection of MA and MDMA implied a good capability of multiplex analysis. UPLC examination and the SERS recovery test clearly indicated that our pretreatment procedure was sufficient to lower the high background signals caused by complex components in urine and demonstrated the practicability and the resistance to false positives, which is a vital problem for law enforcement applications. The excellent performance of our portable kit promises a great prospective toward a rapid, reliable, and on-spot analyzer, especially for public safety and healthcare.
Pomerantz, Aaron; Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan
2018-04-01
Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.
Portable Sleep Monitoring for Diagnosing Sleep Apnea in Hospitalized Patients With Heart Failure.
Aurora, R Nisha; Patil, Susheel P; Punjabi, Naresh M
2018-04-21
Sleep apnea is an underdiagnosed condition in patients with heart failure. Efficient identification of sleep apnea is needed, as treatment may improve heart failure-related outcomes. Currently, use of portable sleep monitoring in hospitalized patients and those at risk for central sleep apnea is discouraged. This study examined whether portable sleep monitoring with respiratory polygraphy can accurately diagnose sleep apnea in patients hospitalized with decompensated heart failure. Hospitalized patients with decompensated heart failure underwent concurrent respiratory polygraphy and polysomnography. Both recordings were scored for obstructive and central disordered breathing events in a blinded fashion, using standard criteria, and the apnea-hypopnea index (AHI) was determined. Pearson's correlation coefficients and Bland-Altman plots were used to examine the concordance among the overall, obstructive, and central AHI values derived by respiratory polygraphy and polysomnography. The sample consisted of 53 patients (47% women) with a mean age of 59.0 years. The correlation coefficient for the overall AHI from the two diagnostic methods was 0.94 (95% CI, 0.89-0.96). The average difference in AHI between the two methods was 3.6 events/h. Analyses of the central and obstructive AHI values showed strong concordance between the two methods, with correlation coefficients of 0.98 (95% CI, 0.96-0.99) and 0.91 (95% CI, 0.84-0.95), respectively. Complete agreement in the classification of sleep apnea severity between the two methods was seen in 89% of the sample. Portable sleep monitoring can accurately diagnose sleep apnea in hospitalized patients with heart failure and may promote early initiation of treatment. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming
2009-03-07
A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.
Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; ...
2015-01-01
The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with themore » stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.« less
Detection and Localization of Money Bills Concealed Behind Wooden Walls Using Compton Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wart, Jason A. van; Hussein, Esam M.A.; Waller, Edward J
2005-05-15
This work presents a portable device for detecting visually obscured contraband money bills that may be hidden within conventional household walls for the purpose of avoiding confiscation. The device utilizes the Compton backscattering of photons emitted from a collimated {sup 241}Am source. The scattered photons are detected with a thin NaI(Tl) detector, either over a wide field of view for surface scanning of the wall or within a confined view field for depth scanning. The design of the device was optimized for best density contrast and highest count rate for a given source activity. It was shown that the minimummore » detectable amount of contraband, with >95% confidence level, is 86 paper bills. The contraband was detectable when hidden in household walls made of gyprock or wooden paneling, even when masked by higher density materials such as metallic piping. The device's capability exceeded those of commercially available density-based portable contraband detectors.« less
Boehlke, Adam; Whidden, Katherine J.; Benzel, William M.
2017-01-01
Determining the chemical and mineralogical variability within fine-grained mudrocks poses analytical challenges but is potentially useful for documenting subtle stratigraphic differences in physicochemical environments that may influence petroleum reservoir properties and behavior. In this study, we investigate the utility of combining principal component analysis (PCA) of X-ray diffraction (XRD) data and portable X-ray fluorescence (pXRF) data to identify simplifying relationships within a large number of samples and subsequently evaluate a subset that encompasses the full spectrum or range of mineral and chemical variability within a vertical section. Samples were collected and analyzed from a vertical core of the Shublik Formation, a heterogeneous, phosphate-rich, calcareous mudstone-to-marl unit deposited in the Arctic Alaska Basin (AAB) during the Middle and Late Triassic. The Shublik is a major petroleum source rock in the Alaskan North Slope, and is considered a prime target for continuous self-sourced resource plays.
40 CFR 62.10860 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Acid Mist from Existing Sulfuric Acid Plants § 62.10860 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants: (1) Diamond-Shamrock... Inc. in Deer Park, Texas. (6) Stauffer Chemical Company in Baytown, Texas. (7) Stauffer Chemical...
40 CFR 62.10860 - Identification of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Acid Mist from Existing Sulfuric Acid Plants § 62.10860 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants: (1) Diamond-Shamrock... Inc. in Deer Park, Texas. (6) Stauffer Chemical Company in Baytown, Texas. (7) Stauffer Chemical...
40 CFR 62.10860 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Acid Mist from Existing Sulfuric Acid Plants § 62.10860 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants: (1) Diamond-Shamrock... Inc. in Deer Park, Texas. (6) Stauffer Chemical Company in Baytown, Texas. (7) Stauffer Chemical...
40 CFR 62.10860 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Acid Mist from Existing Sulfuric Acid Plants § 62.10860 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants: (1) Diamond-Shamrock... Inc. in Deer Park, Texas. (6) Stauffer Chemical Company in Baytown, Texas. (7) Stauffer Chemical...
40 CFR 62.10860 - Identification of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Acid Mist from Existing Sulfuric Acid Plants § 62.10860 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants: (1) Diamond-Shamrock... Inc. in Deer Park, Texas. (6) Stauffer Chemical Company in Baytown, Texas. (7) Stauffer Chemical...
Portable microcontroller-based instrument for near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Giardini, Mario E.; Corti, Mario; Lago, Paolo; Gelmetti, Andrea
2000-05-01
Near IR Spectroscopy (NIRS) can be employed to noninvasively and continuously measure in-vivo local changes in haemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring. We present a portable NIRS research-grade acquisition system prototype, strictly dedicate to low-noise measurements during muscular exercise. The prototype is able to control four LED sources and a detector. Such a number of sources allows for multipoint measurements or for multi-wavelength spectroscopy of tissue constituents other than oxygen, such as cytochrome aa3 oxidation. The LEDs and the detector are mounted on separate probes, which carry also the relevant drivers and preamplifiers. By employing surface-mount technologies, probe size and weight are kept to a minimum. A single-chip mixed-signal RISC microcontroller performs source-to- detector multiplexing with a digital correlation technique. The acquired data are stored on an on-board 64 K EEPROM bank, and can be subsequently uploaded to a personal computer via serial port for further analysis. The resulting instrument is compact and lightweight. Preliminary test of the prototype on oxygen consumption during tourniquet- induced forearm ischaemia show adequate detectivity and time response.
Konduru, Anil Reddy; Yelikar, Balasaheb R; Sathyashree, K V; Kumar, Ankur
2018-01-01
Open source technologies and mobile innovations have radically changed the way people interact with technology. These innovations and advancements have been used across various disciplines and already have a significant impact. Microscopy, with focus on visually appealing contrasting colors for better appreciation of morphology, forms the core of the disciplines such as Pathology, microbiology, and anatomy. Here, learning happens with the aid of multi-head microscopes and digital camera systems for teaching larger groups and in organizing interactive sessions for students or faculty of other departments. The cost of the original equipment manufacturer (OEM) camera systems in bringing this useful technology at all the locations is a limiting factor. To avoid this, we have used the low-cost technologies like Raspberry Pi, Mobile high definition link and 3D printing for adapters to create portable camera systems. Adopting these open source technologies enabled us to convert any binocular or trinocular microscope be connected to a projector or HD television at a fraction of the cost of the OEM camera systems with comparable quality. These systems, in addition to being cost-effective, have also provided the added advantage of portability, thus providing the much-needed flexibility at various teaching locations.
Jafri, S H M; Löfås, H; Fransson, J; Blom, T; Grigoriev, A; Wallner, A; Ahuja, R; Ottosson, H; Leifer, K
2013-06-07
Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu
In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less
Investigation of short cavity CRDS noise terms by optical correlation
NASA Astrophysics Data System (ADS)
Griffin, Steven T.; Fathi, Jason
2013-05-01
Cavity Ring Down Spectroscopy (CRDS) has been identified as having significant potential for Department of Defense security and sensing applications. Significant factors in the development of new sensor architectures are portability, robustness and economy. A significant factor in new CRDS sensor architectures is cavity length. Prior publication has examined the role of cavity length in sensing modality both from the standpoint of the system's design and the identification of potential difficulties presented by novel approaches. Two of interest here are new noise terms that have been designated turbulence-like and speckle-like in prior publication. In the prior publication the theoretical and some empirical data was presented. This presentation addresses the automation of the experimental apparatus, new data analysis, and implications regarding the significance of the two noise terms. This is accomplished through an Analog-to- Digital Conversion (ADC) from the output of a custom designed optical correlator. Details of the unique application of the developed instrument and implications for short cavity (portable) CRDS applications are presented.
NASA Technical Reports Server (NTRS)
Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.
1986-01-01
Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.
C3I and Modelling and Simulation (M&S) Interoperability
2004-03-01
customised Open Source products. The technical implementation is based on the use of the eXtendend Markup Language (XML) and Python . XML is developed...to structure, store and send information. The language is focus on the description of data. Python is a portable, interpreted, object-oriented...programming language. A huge variety of usable Open Source Projects were issued by the Python Community. 3.1 Phase 1: Feasibility Studies Phase 1 was
Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.
1982-05-13
A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.
Toslak, Devrim; Liu, Changgeng; Alam, Minhaj Nur; Yao, Xincheng
2018-06-01
A portable fundus imager is essential for emerging telemedicine screening and point-of-care examination of eye diseases. However, existing portable fundus cameras have limited field of view (FOV) and frequently require pupillary dilation. We report here a miniaturized indirect ophthalmoscopy-based nonmydriatic fundus camera with a snapshot FOV up to 67° external angle, which corresponds to a 101° eye angle. The wide-field fundus camera consists of a near-infrared light source (LS) for retinal guidance and a white LS for color retinal imaging. By incorporating digital image registration and glare elimination methods, a dual-image acquisition approach was used to achieve reflection artifact-free fundus photography.
Lightweight, Flexible, Thin, Integrated Solar-Power Packs
NASA Technical Reports Server (NTRS)
Hanson, Robert R.
2004-01-01
Lightweight, flexible, thin, one-piece, solar-power packs are undergoing development. Each power pack of this type is a complete, modular, integrated power-supply system comprising three power subsystems that, in conventional practice, have been constructed as separate units and connected to each other by wires. These power packs are amenable to a variety of uses: For example, they could be laminated to the tops of tents and other shelters to provide or augment power for portable electronic equipment in the field, and they could be used as power sources for such small portable electronic systems as radio transceivers (including data relays and cellular telephones), laptop computers, video camcorders, and Global Positioning System receivers.
Suzuki, Yasutada; Aruga, Terutomi; Kuwahara, Hiroyuki; Kitamura, Miki; Kuwabara, Tetsuo; Kawakubo, Susumu; Iwatsuki, Masaaki
2004-06-01
A portable colorimeter using a red-green-blue light-emitting diode as a light source has been developed. An embedded controller sequentially turns emitters on and off, and acquires the signals detected by two photo diodes synchronized with their blinking. The controller calculates the absorbance and displays it on a liquid-crystal display. The whole system, including a 006P dry cell, is contained in a 100 x 70 x 50 mm aluminum case and its mass is 280 g. This colorimeter was successfully applied to the on-site determination of nitrite and iron in river-water.
Optical ordnance system for use in explosive ordnance disposal activities
NASA Technical Reports Server (NTRS)
Merson, J. A.; Salas, F. J.; Helsel, F.M.
1994-01-01
A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.
Applications of Raman spectroscopy to gemology.
Bersani, Danilo; Lottici, Pier Paolo
2010-08-01
Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.
40 CFR 62.10632 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
....10632 Identification of sources. The Plan applies to all existing HMWI facilities at St. Jude Children's... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Identification of sources. 62.10632 Section 62.10632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
NASA Astrophysics Data System (ADS)
Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin
2015-05-01
Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.
NASA Technical Reports Server (NTRS)
Lyon, R. J. P.; Lanz, K.
1985-01-01
Geologists in exploration need to be able to determine the mineral composition of a given outcrop, and then proceed to another in order to carry out the process of geologic mapping. Since April 1984 researchers have been developing a portable microcomputer-based imaging system (with a grey-scale of 16 shades of amber), which were demonstrated during the November 1984 GSA field trip in the field at Yerington, NV. A color-version of the same technology was recently demonstrated. The portable computer selected is a COLBY 10-Megabyte, hard disk-equipped repackaged-IBM/XT, which operates on either 110/220 VAC or on 12VDC from the cigarette lighter in a field vehicle. A COMPAQ PLUS or an IBM Portable will also work on modified software. The underlying concept is that the atmospheric transmission and surface albedo/slope terms are multiplicative, relating the spectral irradiance to the spectral color of the surface materials. Thus, the spectral color of a pixel remains after averaged log-albedo and log-irradiance have been estimated. All these steps can be carried out on the COLBY microcomputer, using 80 image lines of the 128-channel, 12-bit imagery. Results are shown for such an 80-line segment, showing the identification of an O-H bearing mineral group (of slightly varying specific characters) on the flight line.
NASA Astrophysics Data System (ADS)
Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas
2013-04-01
In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.
PubMedPortable: A Framework for Supporting the Development of Text Mining Applications.
Döring, Kersten; Grüning, Björn A; Telukunta, Kiran K; Thomas, Philippe; Günther, Stefan
2016-01-01
Information extraction from biomedical literature is continuously growing in scope and importance. Many tools exist that perform named entity recognition, e.g. of proteins, chemical compounds, and diseases. Furthermore, several approaches deal with the extraction of relations between identified entities. The BioCreative community supports these developments with yearly open challenges, which led to a standardised XML text annotation format called BioC. PubMed provides access to the largest open biomedical literature repository, but there is no unified way of connecting its data to natural language processing tools. Therefore, an appropriate data environment is needed as a basis to combine different software solutions and to develop customised text mining applications. PubMedPortable builds a relational database and a full text index on PubMed citations. It can be applied either to the complete PubMed data set or an arbitrary subset of downloaded PubMed XML files. The software provides the infrastructure to combine stand-alone applications by exporting different data formats, e.g. BioC. The presented workflows show how to use PubMedPortable to retrieve, store, and analyse a disease-specific data set. The provided use cases are well documented in the PubMedPortable wiki. The open-source software library is small, easy to use, and scalable to the user's system requirements. It is freely available for Linux on the web at https://github.com/KerstenDoering/PubMedPortable and for other operating systems as a virtual container. The approach was tested extensively and applied successfully in several projects.
Design of portable ultraminiature flow cytometers for medical diagnostics
NASA Astrophysics Data System (ADS)
Leary, James F.
2018-02-01
Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.
PubMedPortable: A Framework for Supporting the Development of Text Mining Applications
Döring, Kersten; Grüning, Björn A.; Telukunta, Kiran K.; Thomas, Philippe; Günther, Stefan
2016-01-01
Information extraction from biomedical literature is continuously growing in scope and importance. Many tools exist that perform named entity recognition, e.g. of proteins, chemical compounds, and diseases. Furthermore, several approaches deal with the extraction of relations between identified entities. The BioCreative community supports these developments with yearly open challenges, which led to a standardised XML text annotation format called BioC. PubMed provides access to the largest open biomedical literature repository, but there is no unified way of connecting its data to natural language processing tools. Therefore, an appropriate data environment is needed as a basis to combine different software solutions and to develop customised text mining applications. PubMedPortable builds a relational database and a full text index on PubMed citations. It can be applied either to the complete PubMed data set or an arbitrary subset of downloaded PubMed XML files. The software provides the infrastructure to combine stand-alone applications by exporting different data formats, e.g. BioC. The presented workflows show how to use PubMedPortable to retrieve, store, and analyse a disease-specific data set. The provided use cases are well documented in the PubMedPortable wiki. The open-source software library is small, easy to use, and scalable to the user’s system requirements. It is freely available for Linux on the web at https://github.com/KerstenDoering/PubMedPortable and for other operating systems as a virtual container. The approach was tested extensively and applied successfully in several projects. PMID:27706202
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co. in Bartlesville, Oklahoma. (2) Tulsa Chemical Co. in Tulsa, Oklahoma. [52 FR 3230, Feb. 3, 1987...
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co. in Bartlesville, Oklahoma. (2) Tulsa Chemical Co. in Tulsa, Oklahoma. [52 FR 3230, Feb. 3, 1987...
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co. in Bartlesville, Oklahoma. (2) Tulsa Chemical Co. in Tulsa, Oklahoma. [52 FR 3230, Feb. 3, 1987...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
NASA Astrophysics Data System (ADS)
Rachmatika, Ratih; Adriyanto, Feri
2017-09-01
Current sensors to monitor water quality are made of manual sensors, which reported to have good performance. However, the major problems, which manual process to get the data. In addition, the data interpretation takes a long time. Due to these problems, a new approach needs to be introduced into the process to prevent a long data acquisition. Therefore, the SIAGA application was proposed. The application of SIAGA is divided into two main applications which are SIBA (Siaga Banjir) and SIAB (Siaga Air Bersih). We using WiFi system which is located at points along the flow of river.. The result can be monitored in the online application based on smartphone which is divided into the river water quality, potential sources of pollution and flood area. Each WiFi point is completed with the instruments which are divided into the sensors that can do the identification of parameters to determine the water quality such as temperature, pH, water level and turbidity. This instrument completed using GPS (Global Positioning System), Full Map menu. The instrument was succesfully monitoredthe flood distribution and water quality in Bengawan Solo river.
Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit
McQuaid, James H.; Lavietes, Anthony D.
1998-05-29
A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.
High-pressure swing system for measurements of radioactive fission gases in air samples
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.
1999-01-01
Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.
Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F
2007-01-01
Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818
Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F
2007-10-15
Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.
GOSAT field experiments with a new portable mid-IR FTS in the western US
NASA Astrophysics Data System (ADS)
Shiomi, K.; Kikuchi, N.; Kuze, A.; Suto, H.; Kawakami, S.; Hashimoto, M.; Kataoka, F.; Kasai, K.; Arai, T.; Hedelius, J.; Viatte, C.; Wennberg, P. O.; Roehl, C. M.; Leifer, I.; Yates, E. L.; Marrero, J. E.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Crisp, D.
2016-12-01
The column-average dry air mole fractions of carbon dioxide (XCO2), methane (XCH4) and carbon monoxide (XCO) were measured from the surface using direct sunlight at near-IR wavelengths. Simultaneous detection of CO is helpful to characterize CO2 source type. We measured XCO along with XCO2 and XCH4 using a new portable Fourier transform spectrometer (FTS), EM27/SUN mid-IR,in western US field experiments at 1) Caltech, in Pasadena, a northern Los Angeles suburb, 2) Chino, a dairy farming region east of Los Angeles, and 3) Railroad Valley (RRV), a desert playa in Nevada. These measurements were conducted during the GOSAT/OCO-2 joint campaign for vicarious calibration and validation (cal/val) and its preparatory experiments in the early summer of 2016. Before the campaign, measurements from the JAXA EM27/SUN mid-IR were compared with those from the Total Carbon Column Observing Network (TCCON) station at Caltech. Then, we observed a diurnal cycle at the Chino dairy site, an area of concentrated animal husbandry, producing a CH4 point source. Finally, we conducted the cal/val campaign at RRV coincident with GOSAT and OCO-2 overpass observations. Over RRV, in-situ vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as a part of the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX). We will compare experimental results from the cal/val campaign for XCO2 and XCH4 with the portable FTS.
Personal Computing and Academic Library Design.
ERIC Educational Resources Information Center
Bazillion, Richard J.
1992-01-01
Notebook computers of increasing power and portability offer unique advantages to library users. Connecting easily to a campus data network, they are small silent work stations capable of drawing information from a variety of sources. Designers of new library buildings may assume that users in growing numbers will carry these multipurpose…
O'Neil, Glen D; Newton, Mark E; Macpherson, Julie V
2015-01-01
The development and application of a new methodology, in situ electrochemical X-ray fluorescence (EC-XRF), is described that enables direct identification and quantification of heavy metals in solution. A freestanding film of boron-doped diamond serves as both an X-ray window and the electrode material. The electrode is biased at a suitable driving potential to electroplate metals from solution onto the electrode surface. Simultaneously, X-rays that pass through the back side of the electrode interrogate the time-dependent electrodeposition process by virtue of the XRF signals, which are unique to each metal. In this way it is possible to unambiguously identify which metals are in solution and relate the XRF signal intensity to a concentration of metal species in solution. To increase detection sensitivity and reduce detection times, solution is flown over the electrode surface by use of a wall-jet configuration. Initial studies focused on the in situ detection of Pb(2+), where concentration detection limits of 99 nM were established in this proof-of-concept study (although significantly lower values are anticipated with system refinement). This is more than 3 orders of magnitude lower than that achievable by XRF alone in a flowing solution (0.68 mM). In situ EC-XRF measurements were also carried out on a multimetal solution containing Hg(2+), Pb(2+), Cu(2+), Ni(2+), Zn(2+), and Fe(3+) (all at 10 μM concentration). Identification of five of these metals was possible in one simple measurement. In contrast, while anodic stripping voltammetry (ASV) also revealed five peaks, peak identification was not straightforward, requiring further experiments and prior knowledge of the metals in solution. Time-dependent EC-XRF nucleation data for the five metals, recorded simultaneously, demonstrated similar deposition rates. Studies are now underway to lower detection limits and provide a quantitative understanding of EC-XRF responses in real, multimetal solutions. Finally, the production of custom-designed portable in situ EC-XRF instrumentation will make heavy metal analysis at the source a very realistic possibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.
2012-04-30
This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that aremore » present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.« less
Directionality of Skyshine Radiation
NASA Astrophysics Data System (ADS)
Kernan, Warnick; Conlin, Kenneth; Kouzes, Richard; Mace, Emily; Siciliano, Edward; Woodring, Mitchell
2010-02-01
Skyshine reflection, or the scattering off of the air above a source, is frequently observed in situations where large sources are incompletely shielded, such as radiography sources in shielding pits that are open to the sky. Originally, concern about skyshine regarded limiting the dose from the source. However, even in situations where dose is minimal, the contribution of skyshine may interfere with sensitive measurement instruments operating near background limits, such as with border security applications. To help determine effective methods for shielding sensitive detection systems from skyshine interference, a series of measurements and model simulations have been conducted using a specially configured, portable collimated detector and an iridium-192 source. This paper will report these results, and also show their similarity when compared to other measurements using different sources. )
Rapid screening of guar gum using portable Raman spectral identification methods.
Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D
2016-01-25
Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.
2011-04-01
Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.
Parallel, Distributed Scripting with Python
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P J
2002-05-24
Parallel computers used to be, for the most part, one-of-a-kind systems which were extremely difficult to program portably. With SMP architectures, the advent of the POSIX thread API and OpenMP gave developers ways to portably exploit on-the-box shared memory parallelism. Since these architectures didn't scale cost-effectively, distributed memory clusters were developed. The associated MPI message passing libraries gave these systems a portable paradigm too. Having programmers effectively use this paradigm is a somewhat different question. Distributed data has to be explicitly transported via the messaging system in order for it to be useful. In high level languages, the MPI librarymore » gives access to data distribution routines in C, C++, and FORTRAN. But we need more than that. Many reasonable and common tasks are best done in (or as extensions to) scripting languages. Consider sysadm tools such as password crackers, file purgers, etc ... These are simple to write in a scripting language such as Python (an open source, portable, and freely available interpreter). But these tasks beg to be done in parallel. Consider the a password checker that checks an encrypted password against a 25,000 word dictionary. This can take around 10 seconds in Python (6 seconds in C). It is trivial to parallelize if you can distribute the information and co-ordinate the work.« less
NASA Astrophysics Data System (ADS)
Bluestein, H. B.; Unruh, W. P.
1989-12-01
A severe-storm intercept field program was held in Oklahoma and nearby parts of Texas during the 1987-38 spring seasons. The purpose of the experiment was to use, for the first time, a low-power, portable, continuous-wave (CW), 3-cm Doppler radar to obtain wind spectra in tornadoes from a distance of less than 10 km.We discuss measurements of spectra we recorded in a tornado, a funnel cloud, and two wall clouds. Photographic documentation is also given to aid in the interpretation of our data. Wind speeds as high as 60 m s1 were measured in the tornado. It was found that deploying the portable Doppler radar from a storm-intercept vehicle may increase substantially the number of measurements of wind speeds in tornadoes.The radar has recently been modified so that it has frequency modulation (FM) capability, and hence can obtain wind spectra within range bins. A plan is presented for using the radar to find the source of vorticity in tornadoes.
Development of a portable Linux-based ECG measurement and monitoring system.
Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng
2011-08-01
This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.
Portable exothermal energy source for disaster relief operations
NASA Astrophysics Data System (ADS)
Zimbeck, Walter R.
1994-03-01
This manuscript describes an example of transfer technology from a U.S. Government Laboratory to commercial products that meet national needs in the public safety and health care sectors. Funded by the U.S. Army, the first project is the development of a portable, non-powered food warming device for serving meals to soldiers in the field. The second project is being funded by the National Institutes of Health for development of a heat therapy device for relief from rheumatoid arthritis discomfort in the hands and other affected joints. Both of these heating devices are portable, reusable heat pack products that can be regenerated in a microwave oven or in boiling water. The knowledge developed during these two projects will be applied to many other related products. Applications in support of natural and manmade disaster relief include food warming heat packs for food service to victims and rescue workers in sustained black-out conditions, and heat pack warming blankets for emergency medical situations in which patients are in traumatic shock and the onset of hypothermia is imminent.
Myhrer, T; Evans, J L; Haugen, H K; Gorman, C; Kavanagh, Y; Cameron, A B
2016-08-01
Dental technology programmes of study must prepare students to practice in a broad range of contemporary workplaces. Currently, there is limited evidence to benchmark dental technology education - locally, nationally or internationally. This research aims to improve consistency, transparency and portability of dental technology qualifications across three countries. Data were accessed from open-source curriculum documents and five calibrated assessment items. Three institutions collaborated with Oslo and Akershus University College, Norway; Trinity College Dublin, Ireland; and Griffith University, Australia. From these, 29-44 students completed 174 assessments. The curricula reflect the community needs of each country and display common themes that underpin professional dental technology practice. Assessment results differed between institutions but no more than a normal distribution. Face-to-face assessment moderation was critical to achieve consistency. This collaborative research has led to the development of a set of guidelines for other dental technology education providers interested in developing or aligning courses internationally to enhance the portability of qualifications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The smartphone brain scanner: a portable real-time neuroimaging system.
Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai
2014-01-01
Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings.
Optical design of portable nonmydriatic fundus camera
NASA Astrophysics Data System (ADS)
Chen, Weilin; Chang, Jun; Lv, Fengxian; He, Yifan; Liu, Xin; Wang, Dajiang
2016-03-01
Fundus camera is widely used in screening and diagnosis of retinal disease. It is a simple, and widely used medical equipment. Early fundus camera expands the pupil with mydriatic to increase the amount of the incoming light, which makes the patients feel vertigo and blurred. Nonmydriatic fundus camera is a trend of fundus camera. Desktop fundus camera is not easy to carry, and only suitable to be used in the hospital. However, portable nonmydriatic retinal camera is convenient for patient self-examination or medical stuff visiting a patient at home. This paper presents a portable nonmydriatic fundus camera with the field of view (FOV) of 40°, Two kinds of light source are used, 590nm is used in imaging, while 808nm light is used in observing the fundus in high resolving power. Ring lights and a hollow mirror are employed to restrain the stray light from the cornea center. The focus of the camera is adjusted by reposition the CCD along the optical axis. The range of the diopter is between -20m-1 and 20m-1.
Portable water filtration system for oil well fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, D. L.
The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which ismore » obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.« less
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.
This study presents a novel fuel sensor-less control scheme for a liquid feed fuel cell system that does not rely on a fuel concentration sensor. The proposed approach simplifies the design and reduces the cost and complexity of a liquid feed fuel cell system, and is especially suited to portable power sources, of which the volume and weight are important. During the reaction of a fuel cell, the cell's operating characteristics, such as potential, current and power are measured to control the supply of fuel and regulate its concentration to optimize performance. Experiments were conducted to verify that the fuel sensor-less control algorithm is effective in the liquid feed fuel cell system.
Phua, Joe
2016-05-01
This study examined the effect of the audience's similarity to, and parasocial identification with, spokespersons in obesity public service announcements, on perceived source credibility, and diet and exercise self-efficacy. The results (N = 200) indicated that perceived similarity to the spokesperson was significantly associated with three dimensions of source credibility (competence, trustworthiness, and goodwill), each of which in turn influenced parasocial identification with the spokesperson. Parasocial identification also exerted a positive impact on the audiences' diet and exercise self-efficacy. Additionally, significant differences were found between overweight viewers and non-overweight viewers on perceived similarity, parasocial identification with the spokesperson, and source credibility. © The Author(s) 2014.
Low power energy harvesting and storage techniques from ambient human powered energy sources
NASA Astrophysics Data System (ADS)
Yildiz, Faruk
Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source.
NASA Astrophysics Data System (ADS)
Zhang, Z. X.; Wang, L. Z.; Jin, Z. J.; Zhang, Q.; Li, X. L.
2013-08-01
The efficient identification of the unbalanced responses in the inner and outer rotors from the beat vibration is the key step in the dynamic balancing of a dual-rotor system with a slight rotating speed difference. This paper proposes a non-whole beat correlation method to identify the unbalance responses whose integral time is shorter than the whole beat correlation method. The principle, algorithm and parameter selection of the proposed method is emphatically demonstrated in this paper. From the numerical simulation and balancing experiment conducted on horizontal decanter centrifuge, conclusions can be drawn that the proposed approach is feasible and practicable. This method makes important sense in developing the field balancing equipment based on portable Single Chip Microcomputer (SCMC) with low expense.
Radio System for Locating Emergency Workers
NASA Technical Reports Server (NTRS)
Larson, William; Medelius, Pedro; Starr, Stan; Bedette, Guy; Taylor, John; Moerk, Steve
2003-01-01
A system based on low-power radio transponders and associated analog and digital electronic circuitry has been developed for locating firefighters and other emergency workers deployed in a building or other structure. The system has obvious potential for saving lives and reducing the risk of injuries. The system includes (1) a central station equipped with a computer and a transceiver; (2) active radio-frequency (RF) identification tags, each placed in a different room or region of the structure; and (3) transponder units worn by the emergency workers. The RF identification tags can be installed in a new building as built-in components of standard fire-detection devices or ground-fault electrical outlets or can be attached to such devices in a previously constructed building, without need for rewiring the building. Each RF identification tag contains information that uniquely identifies it. When each tag is installed, information on its location and identity are reported to, and stored at, the central station. In an emergency, if a building has not been prewired with RF identification tags, leading emergency workers could drop sequentially numbered portable tags in the rooms of the building, reporting the tag numbers and locations by radio to the central station as they proceed.
Species-Level Identification of Orthopoxviruses with an Oligonucleotide Microchip
Lapa, Sergey; Mikheev, Maxim; Shchelkunov, Sergei; Mikhailovich, Vladimir; Sobolev, Alexander; Blinov, Vladimir; Babkin, Igor; Guskov, Alexander; Sokunova, Elena; Zasedatelev, Alexander; Sandakhchiev, Lev; Mirzabekov, Andrei
2002-01-01
A method for species-specific detection of orthopoxviruses pathogenic for humans and animals is described. The method is based on hybridization of a fluorescently labeled amplified DNA specimen with the oligonucleotide DNA probes immobilized on a microchip (MAGIChip). The probes identify species-specific sites within the crmB gene encoding the viral analogue of tumor necrosis factor receptor, one of the most important determinants of pathogenicity in this genus of viruses. The diagnostic procedure takes 6 h and does not require any sophisticated equipment (a portable fluorescence reader can be used). PMID:11880388
2011-01-01
Milwaukee WI). Analytical standards were synthesized for VX degradation product compounds by react- ing 2-(diisopropylamino)ethyl chloride ...Ar at 45 ◦C until the disulfide compound was no longer observed as verified by GC–MS. Methods described by Hook et al. [7] were followed for synthesis ...used was methylene chloride , and the 1.0L volume injected contained 50ng of each analyte. Injector and mass spectrometer transfer line
40 CFR 62.102 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.102 Identification of sources. The plan currently does not identify any sources subject to its fluoride emission limits. Landfill Gas Emissions From...
40 CFR 62.102 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.102 Identification of sources. The plan currently does not identify any sources subject to its fluoride emission limits. Landfill Gas Emissions From...
Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.
McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong
2017-10-01
Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.
Portable telepathology: methods and tools.
Alfaro, Luis; Roca, Ma José
2008-07-15
Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides, when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast.
Portable telepathology: methods and tools
Alfaro, Luis; Roca, Ma José
2008-01-01
Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast. PMID:18673507
NASA Astrophysics Data System (ADS)
Yu, Y.; Kalashnikova, O. V.; Garay, M. J.; Notaro, M.
2017-12-01
Global arid and semi-arid regions supply 1100 to 5000 Tg of Aeolian dust to the atmosphere each year, primarily from North Africa and secondarily from the Middle East. Previous dust source identification methods, based on either remotely-sensed aerosol optical depth (AOD) or dust activity, yield distinct dust source maps, largely due to the limitations in each method and remote-sensing product. Here we apply a novel motion-based method for dust source identification. Dust plume thickness and motion vectors from Multi-angle Imaging SpectroRadiometer (MISR) Cloud Motion Vector Product (CMVP) are examined to identify the regions with high frequency of fast moving-dust plumes, by season. According to MISR CMVP, Bodele depression is the most important dust source across North Africa, consistent with previous studies. Seasonal variability of dust emission across the North Africa is largely driven by climatology of wind and precipitation, featuring the influence of Sharav Cyclone and western African monsoon. In the Middle East, Iraq, Kuwait, and eastern Saudi Arabia are identified as dust source regions, especially during summer months, when the Middle Eastern Shamal wind is active. Furthermore, dust emission trend at each dust source are diagnosed from the motion-based dust source dataset. Increase in dust emission from the Fertile Crescent, Sahel, and eastern African dust sources are identified from MISR CMVP, implying potential contribution from these dust sources to the upward trend in AOD and dust AOD over the Middle East in the 21st century. By comparing with various dust source identification studies, we conclude that the motion-based identification of dust sources is an encouraging alternative and compliment to the AOD-only source identification method.
Portable NIR bottled liquid explosive detector
NASA Astrophysics Data System (ADS)
Itozaki, Hideo; Ono, Masaki; Ito, Shiori; Uekawa, Keisuke; Miyato, Yuji; Sato-Akaba, Hideo
2016-05-01
A near infrared bottled liquid scanner has been developed for security check at airports for anti-terrorism. A compact handheld liquid scanner has been developed using an LED as a light source, instead of a halogen lamp. An LED has much smaller size, longer life time and lower power consumption than those of the lamp. However, it has narrower wave band. Here, we tried to use LEDs to scan liquids and showed the possibility that LEDs can be used as a light source of liquid detector.
ExpertEyes: open-source, high-definition eyetracking.
Parada, Francisco J; Wyatte, Dean; Yu, Chen; Akavipat, Ruj; Emerick, Brandi; Busey, Thomas
2015-03-01
ExpertEyes is a low-cost, open-source package of hardware and software that is designed to provide portable high-definition eyetracking. The project involves several technological innovations, including portability, high-definition video recording, and multiplatform software support. It was designed for challenging recording environments, and all processing is done offline to allow for optimization of parameter estimation. The pupil and corneal reflection are estimated using a novel forward eye model that simultaneously fits both the pupil and the corneal reflection with full ellipses, addressing a common situation in which the corneal reflection sits at the edge of the pupil and therefore breaks the contour of the ellipse. The accuracy and precision of the system are comparable to or better than what is available in commercial eyetracking systems, with a typical accuracy of less than 0.4° and best accuracy below 0.3°, and with a typical precision (SD method) around 0.3° and best precision below 0.2°. Part of the success of the system comes from a high-resolution eye image. The high image quality results from uncasing common digital camcorders and recording directly to SD cards, which avoids the limitations of the analog NTSC format. The software is freely downloadable, and complete hardware plans are available, along with sources for custom parts.
Development of autonomous gamma dose logger for environmental monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.
2012-03-15
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less
Ada/POSIX binding: A focused Ada investigation
NASA Technical Reports Server (NTRS)
Legrand, Sue
1988-01-01
NASA is seeking an operating system interface definition (OSID) for the Space Station Program (SSP) in order to take advantage of the commercial off-the-shelf (COTS) products available today and the many that are expected in the future. NASA would also like to avoid the reliance on any one source for operating systems, information system, communication system, or instruction set architecture. The use of the Portable Operating System Interface for Computer Environments (POSIX) is examined as a possible solution to this problem. Since Ada is already the language of choice for SSP, the question of an Ada/POSIX binding is addressed. The intent of the binding is to provide access to the POSIX standard operation system (OS) interface and environment, by which application portability of Ada applications will be supported at the source code level. A guiding principle of Ada/POSIX binding development is a clear conformance of the Ada interface with the functional definition of POSIX. The interface is intended to be used by both application developers and system implementors. The objective is to provide a standard that allows a strictly conforming application source program that can be compiled to execute on any conforming implementation. Special emphasis is placed on first providing those functions and facilities that are needed in a wide variety of commercial applications
Development of autonomous gamma dose logger for environmental monitoring
NASA Astrophysics Data System (ADS)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.
2012-03-01
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.
Noise Source Identification in a Reverberant Field Using Spherical Beamforming
NASA Astrophysics Data System (ADS)
Choi, Young-Chul; Park, Jin-Ho; Yoon, Doo-Byung; Kwon, Hyu-Sang
Identification of noise sources, their locations and strengths, has been taken great attention. The method that can identify noise sources normally assumes that noise sources are located at a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field, reflections are added to sound field. Therefore, the source location estimated by the conventional methods may give unacceptable error. In this paper, we explain the effects of reverberant field on interior source identification process and propose the method that can identify noise sources in the reverberant field.
[Regional atmospheric environment risk source identification and assessment].
Zhang, Xiao-Chun; Chen, Wei-Ping; Ma, Chun; Zhan, Shui-Fen; Jiao, Wen-Tao
2012-12-01
Identification and assessment for atmospheric environment risk source plays an important role in regional atmospheric risk assessment and regional atmospheric pollution prevention and control. The likelihood exposure and consequence assessment method (LEC method) and the Delphi method were employed to build a fast and effective method for identification and assessment of regional atmospheric environment risk sources. This method was applied to the case study of a large coal transportation port in North China. The assessment results showed that the risk characteristics and the harm degree of regional atmospheric environment risk source were in line with the actual situation. Fast and effective identification and assessment of risk source has laid an important foundation for the regional atmospheric environmental risk assessment and regional atmospheric pollution prevention and control.
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer from organic and inorganic sources is used across the world’s agroecosystems. It contributes to higher yields and higher economic returns to farmers, and is essential for food security. However, when more is applied than necessary, significant amounts of nitrogen can exit the sy...
78 FR 6330 - Clinical Laboratory Improvement Advisory Committee (CLIAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Committee for their consideration and public distribution. Written comments, one hard copy with original... format (PDF) on the Internet instead of by printed copy. Refer to the CLIAC Web site on the day of the... and then emailed to the portable device. An Internet connection, power source and limited hard copies...
Dust emissions from undisturbed and disturbed, crusted playa surfaces: cattle trampling effects
USDA-ARS?s Scientific Manuscript database
Dry playa lake beds can be significant sources of fine dust emission. This study used a portable field wind tunnel to quantify the PM10 emissions from a bare, fine-textured playa surface located in the far northern Chihuahua Desert. The natural, undisturbed crust and its subjection to two levels of ...
Acid-catalyzed dehydrogenation of amine-boranes
Stephens, Frances Helen; Baker, Ralph Thomas
2010-01-12
A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.
64.1: Display Technologies for Therapeutic Applications of Virtual Reality
Hoffman, Hunter G.; Schowengerdt, Brian T.; Lee, Cameron M.; Magula, Jeff; Seibel, Eric J.
2015-01-01
A paradigm shift in image source technology for VR helmets is needed. Using scanning fiber displays to replace LCD displays creates lightweight, safe, low cost, wide field of view, portable VR goggles ideal for reducing pain during severe burn wound care in hospitals and possibly in austere combat-transport environments. PMID:26146424
Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.
Scrosati, Bruno
2005-01-01
The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc
PePSS - A portable sky scanner for measuring extremely low night-sky brightness
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František
2018-05-01
A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.
Measurment of threshold friction velocities at potential dust sources in semi-arid regions
NASA Astrophysics Data System (ADS)
King, Matthew A.
The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.
Multiple-Path-Length Optical Absorbance Cell
NASA Technical Reports Server (NTRS)
2001-01-01
An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,
Integrated bio-fluorescence sensor.
Thrush, Evan; Levi, Ofer; Ha, Wonill; Wang, Ke; Smith, Stephen J; Harris, James S
2003-09-26
Due to the recent explosion in optoelectronics for telecommunication applications, novel optoelectronic sensing structures can now be realized. In this work, we explore the integration of optoelectronic components towards miniature and portable fluorescence sensors. The integration of these micro-fabricated sensors with microfluidics and capillary networks may reduce the cost and complexity of current research instruments and open up a world of new applications in portable biological analysis systems. A novel optoelectronic design that capitalizes on current vertical-cavity surface-emitting laser (VCSEL) technology is explored. Specifically, VCSELs, optical emission filters and PIN photodetectors are fabricated as part of a monolithically integrated near-infrared fluorescence detection system. High-performance lasers and photodetectors have been characterized and integrated to form a complete sensor. Experimental results show that sensor sensitivity is limited by laser background. The laser background is caused by spontaneous emission emitted from the side of the VCSEL excitation source. Laser background will limit sensitivity in most integrated sensing designs due to locating excitation sources and photodetectors in such close proximity, and methods are proposed to reduce the laser background in such designs so that practical fluorescent detection limits can be achieved.
Analyse de plomb dans les peintures
NASA Astrophysics Data System (ADS)
Broll, N.; Frezouls, J.-M.
2002-07-01
The analysis of lead in paints was previously used for the characterisation of pigments. In this way, the analysis is able to specify the century of the painting of a work of art. Recently this technique was also used to determine the toxicity of lead paints in building. This paper compared the result of several X-ray fluorescence spectrometer, either wave length/energy dispersion laboratory apparatus or X-ray microtube/radioactive source portable equipment's. L'analyse du plomb dans les peintures a jusqu'à présent été appliquée essentiellement pour caractériser les pigments lors de leur fabrication et pour identifier des rouvres d'art. Récemment cette technique est également utilisée pour déterminer la toxicité des peintures au plomb dans les bâtiments. Nous avons comparé les performances de plusieurs spectromètres de fluorescence X, soit de laboratoire à dispersion en longueur d'onde ou à dispersion en énergie (avec tube à rayonsX), soit portable avec source radioactive ou tube à rayons X.
Microfabrication of microchannels for fuel cell plates.
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.
Microfabrication of Microchannels for Fuel Cell Plates
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533
Human Fecal Source Identification: Real-Time Quantitative PCR Method Standardization
Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...
Approach to identifying pollutant source and matching flow field
NASA Astrophysics Data System (ADS)
Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang
2013-07-01
Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.
HUMAN FECAL SOURCE IDENTIFICATION: REAL-TIME QUANTITATIVE PCR METHOD STANDARDIZATION - abstract
Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
NASA Astrophysics Data System (ADS)
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.
2018-03-01
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.
Implementation, reliability, and feasibility test of an Open-Source PACS.
Valeri, Gianluca; Zuccaccia, Matteo; Badaloni, Andrea; Ciriaci, Damiano; La Riccia, Luigi; Mazzoni, Giovanni; Maggi, Stefania; Giovagnoni, Andrea
2015-12-01
To implement a hardware and software system able to perform the major functions of an Open-Source PACS, and to analyze it in a simulated real-world environment. A small home network was implemented, and the Open-Source operating system Ubuntu 11.10 was installed in a laptop containing the Dcm4chee suite with the software devices needed. The Open-Source PACS implemented is compatible with Linux OS, Microsoft OS, and Mac OS X; furthermore, it was used with operating systems that guarantee the operation in portable devices (smartphone, tablet) Android and iOS. An OSS PACS is useful for making tutorials and workshops on post-processing techniques for educational and training purposes.
IQM: An Extensible and Portable Open Source Application for Image and Signal Analysis in Java
Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2015-01-01
Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM’s image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis. PMID:25612319
IQM: an extensible and portable open source application for image and signal analysis in Java.
Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2015-01-01
Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM's image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis.
NASA Astrophysics Data System (ADS)
Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo
2012-10-01
Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.
Evaluating re-identification risks with respect to the HIPAA privacy rule
Benitez, Kathleen
2010-01-01
Objective Many healthcare organizations follow data protection policies that specify which patient identifiers must be suppressed to share “de-identified” records. Such policies, however, are often applied without knowledge of the risk of “re-identification”. The goals of this work are: (1) to estimate re-identification risk for data sharing policies of the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule; and (2) to evaluate the risk of a specific re-identification attack using voter registration lists. Measurements We define several risk metrics: (1) expected number of re-identifications; (2) estimated proportion of a population in a group of size g or less, and (3) monetary cost per re-identification. For each US state, we estimate the risk posed to hypothetical datasets, protected by the HIPAA Safe Harbor and Limited Dataset policies by an attacker with full knowledge of patient identifiers and with limited knowledge in the form of voter registries. Results The percentage of a state's population estimated to be vulnerable to unique re-identification (ie, g=1) when protected via Safe Harbor and Limited Datasets ranges from 0.01% to 0.25% and 10% to 60%, respectively. In the voter attack, this number drops for many states, and for some states is 0%, due to the variable availability of voter registries in the real world. We also find that re-identification cost ranges from $0 to $17 000, further confirming risk variability. Conclusions This work illustrates that blanket protection policies, such as Safe Harbor, leave different organizations vulnerable to re-identification at different rates. It provides justification for locally performed re-identification risk estimates prior to sharing data. PMID:20190059
Naik, Ganesh R; Pendharkar, Gita; Nguyen, Hung T
2016-08-01
Nowadays portable devices with more number of sensors are used for gait assessment and monitoring for elderly and disabled. However, the problem with using multiple sensors is that if they are placed on the same platform or base, there could be cross talk between them, which could change the signal amplitude or add noise to the signal. Hence, this study uses wavelet PCA as a signal processing technique to separate the original sensor signal from the signal obtained from the sensors through the integrated unit to compare the two types of walking (with and without an exoskeleton). This comparison using wavelet PCA will enable the researchers to obtain accurate sensor data and compare and analyze the data in order to further improve the design of compact portable devices used to monitor and assess the gait in stroke or paralyzed subjects. The advantage of designing such systems is that they can also be used to assess and monitor the gait of the stroke subjects at home, which will save them time and efforts to visit the laboratory or clinic.
Nguyen, Thi Anh Huong; Pham, Thi Ngoc Mai; Ta, Thi Thao; Nguyen, Xuan Truong; Nguyen, Thi Lien; Le, Thi Hong Hao; Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc
2015-12-01
A simple and inexpensive method for the identification of four substituted amphetamines, namely, 3,4-methylenedioxy methamphetamine (MDMA), methamphetamine (MA), 3,4-methylenedioxy amphetamine (MDA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) was developed using an in-house constructed semi-automated portable capillary electrophoresis instrument (CE) with capacitively coupled contactless conductivity detection (C(4)D). Arginine 10mM adjusted to pH4.5 with acetic acid was found to be the optimal background electrolyte for the CE-C(4)D determination of these compounds. The best detection limits achieved with and without a sample preconcentration process were 10ppb and 500ppb, respectively. Substituted amphetamines were found in different seized illicit club drug tablets and urine samples collected from different suspected users. Good agreement between results from CE-C(4)D and those with the confirmation method (GC-MS) was achieved, with correlation coefficients for the two pairs of data of more than 0.99. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
[Monitor of ECG signal and heart rate using a mobile phone with Bluetooth communication protocol].
Becerra-Luna, Brayans; Dávila-García, Rodrigo; Salgado-Rodríguez, Paola; Martínez-Memije, Raúl; Infante-Vázquez, Oscar
2012-01-01
To develop a portable signal monitoring equipment for electrocardiography (ECG) and heart rate (HR), communicated with a mobile phone using the Bluetooth (BT) communication protocol for display of the signal on screen. A monitoring system was designed in which the electronic section performs the ECG signal acquisition, as well as amplification, filtering, analog to digital conversion and transmission of the ECG and HR using BT. Two programs were developed for the system. The first one calculates HR through QRS identification and sends the ECG signals and HR to the mobile, and the second program is an application to acquire and display them on the mobile screen. We developed a portable electronic system powered by a 9 volt battery, with amplification and bandwidth meeting the international standards for ECG monitoring. The QRS complex identification was performed using the second derivative algorithm, while the programs allow sending and receiving information from the ECG and HR via BT, and viewing it on the mobile screen. The monitoring is feasible within distances of 15 m and it has been tested in various mobiles telephones of brands Nokia®, Sony Ericsson® and Samsung®. This system shows an alternative for mobile monitoring using BT and Java 2 Micro Edition (J2ME) programming. It allows the register of the ECG trace and HR, and it can be implemented in different phones. Copyright © 2011 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Ganavadiya, R; Chandrashekar, Br; Goel, P; Hongal, Sg; Jain, M
2014-05-01
India is the second most populous country in the world with an extensive rural population (68.8%). Children less than 18 years constitute about 40% of the population. Approximately, 23.5% of the urban population resides in urban slums. The extensive rural population, school children and the urban slum dwellers are denied of even the basic dental services though there is continuous advancement in the field of dentistry. The dentist to population ratio has dramatically improved in the last one to two decades with no significant improvement in the oral health status of the general population. The various studies have revealed an increasing trend in oral diseases in the recent times especially among this underserved population. Alternate strategies have to be thought about rather than the traditional oral health-care delivery through private dentists on fee for service basis. Mobile and portable dental services are a viable option to take the sophisticated oral health services to the doorsteps of the underserved population. The databases were searched for publications from 1900 to the present (2013) using terms such as Mobile dental services, Portable dental services and Mobile and portable dental services with key articles obtained primarily from MEDLINE. This paper reviews the published and unpublished literature from different sources on the various mobile dental service programs successfully implemented in some developed and developing countries. Though the mobile and portable systems have some practical difficulties like financial considerations, they still seem to be the only way to reach every section of the community in the absence of national oral health policy and organized school dental health programs in India. The material for the present review was obtained mainly by searching the biomedical databases for primary research material using the search engine with key words such as mobile and/or portable dental services in developed and developing countries (adding each of these terms in a sequential order). Based on the review of the programs successfully implemented in developed countries, we propose a model to cater to the basic oral health needs of an extensive underserved population in India that may be pilot tested. The increasing dental manpower can best be utilized for the promotion of oral health through mobile and portable dental services. The professional dental organizations should have a strong motive to translate this into reality.
[Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].
Yuan, Jun; Xiao, Dongping; Jian, Xin
2010-11-01
The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.
A portable gas sensor based on cataluminescence.
Kang, C; Tang, F; Liu, Y; Wu, Y; Wang, X
2013-01-01
We describe a portable gas sensor based on cataluminescence. Miniaturization of the gas sensor was achieved by using a miniature photomultiplier tube, a miniature gas pump and a simple light seal. The signal to noise ratio (SNR) was considered as the evaluation criteria for the design and testing of the sensor. The main source of noise was from thermal background. Optimal working temperature and flow rate were determined experimentally from the viewpoint of improvement in SNR. A series of parameters related to analytical performance was estimated. The limitation of detection of the sensor was 7 ppm (SNR = 3) for ethanol and 10 ppm (SNR = 3) for hydrogen sulphide. Zirconia and barium carbonate were respectively selected as nano-sized catalysts for ethanol and hydrogen sulphide. Copyright © 2012 John Wiley & Sons, Ltd.
Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate
NASA Astrophysics Data System (ADS)
Waris, A.; Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K.; Basar, K.
2016-03-01
Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.
Design of a cardiac monitor in terms of parameters of QRS complex.
Chen, Zhen-cheng; Ni, Li-li; Su, Ke-ping; Wang, Hong-yan; Jiang, Da-zong
2002-08-01
Objective. To design a portable cardiac monitor system based on the available ordinary ECG machine and works on the basis of QRS parameters. Method. The 80196 single chip microcomputer was used as the central microprocessor and real time electrocardiac signal was collected and analyzed [correction of analysized] in the system. Result. Apart from the performance of an ordinary monitor, this machine possesses also the following functions: arrhythmia analysis, HRV analysis, alarm, freeze, and record of automatic papering. Convenient in carrying, the system is powered by AC or DC sources. Stability, low power and low cost are emphasized in the hardware design; and modularization method is applied in software design. Conclusion. Popular in usage and low cost made the portable monitor system suitable for use under simple conditions.
Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.
Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F
2010-04-15
We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.
Portable real-time fluorescence cytometry of microscale cell culture analog devices
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.
2006-02-01
A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.
Technological choices for mobile clinical applications.
Ehrler, Frederic; Issom, David; Lovis, Christian
2011-01-01
The rise of cheaper and more powerful mobile devices make them a new and attractive platform for clinical applications. The interaction paradigm and portability of the device facilitates bedside human-machine interactions. The better accessibility to information and decision-support anywhere in the hospital improves the efficiency and the safety of care processes. In this study, we attempt to find out what are the most appropriate Operating System (OS) and Software Development Kit (SDK) to support the development of clinical applications on mobile devices. The Android platform is a Linux-based, open source platform that has many advantages. Two main SDKs are available on this platform: the native Android and the Adobe Flex SDK. Both of them have interesting features, but the latter has been preferred due its portability at comparable performance and ease of development.
A Portable Diode Array Spectrophotometer.
Stephenson, David
2016-05-01
A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.
Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori
2017-09-01
Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan
2018-01-01
Abstract Background Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. Findings We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Conclusions Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism. PMID:29617771
NASA Astrophysics Data System (ADS)
Feijó Barreira, Luís Miguel; Xue, Yu; Duporté, Geoffroy; Parshintsev, Jevgeni; Hartonen, Kari; Jussila, Matti; Kulmala, Markku; Riekkola, Marja-Liisa
2016-08-01
Volatile organic compounds (VOCs) play a key role in atmospheric chemistry and physics. They participate in photochemical reactions in the atmosphere, which have direct implications on climate through, e.g. aerosol particle formation. Forests are important sources of VOCs, and the limited resources and infrastructures often found in many remote environments call for the development of portable devices. In this research, the potential of needle trap microextraction and portable gas chromatography-mass spectrometry for the study of VOCs at forest site was evaluated. Measurements were performed in summer and autumn 2014 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. During the first part of the campaign (summer) the applicability of the developed method was tested for the determination of monoterpenes, pinonaldehyde, aldehydes, amines and anthropogenic compounds. The temporal variation of aerosol precursors was determined, and evaluated against temperature and aerosol number concentration data. The most abundant monoterpenes, pinonaldehyde and aldehydes were successfully measured, their relative amounts being lower during days when particle number concentration was higher. Ethylbenzene, p- and m-xylene were also found when wind direction was from cities with substantial anthropogenic activity. An accumulation of VOCs in the snow cover was observed in the autumn campaign. Results demonstrated the successful applicability of needle trap microextraction and portable gas chromatography-mass spectrometry for the rapid in situ determination of organic gaseous compounds in the atmosphere.
IDENTIFICATION OF SEDIMENT SOURCE AREAS WITHIN A WATERSHED
Identification of sediment source areas is crucial for designing proper abatement strategies that reduce sediment and associated contaminant loading to receiving water downstream. In this study, two methodologies were developed to identify the source areas and their relative stre...
Sittig, D. F.; Orr, J. A.
1991-01-01
Various methods have been proposed in an attempt to solve problems in artifact and/or alarm identification including expert systems, statistical signal processing techniques, and artificial neural networks (ANN). ANNs consist of a large number of simple processing units connected by weighted links. To develop truly robust ANNs, investigators are required to train their networks on huge training data sets, requiring enormous computing power. We implemented a parallel version of the backward error propagation neural network training algorithm in the widely portable parallel programming language C-Linda. A maximum speedup of 4.06 was obtained with six processors. This speedup represents a reduction in total run-time from approximately 6.4 hours to 1.5 hours. We conclude that use of the master-worker model of parallel computation is an excellent method for obtaining speedups in the backward error propagation neural network training algorithm. PMID:1807607
Characterization of Sorolla's gouache pigments by means of spectroscopic techniques
NASA Astrophysics Data System (ADS)
Roldán, Clodoaldo; Juanes, David; Ferrazza, Livio; Carballo, Jorgelina
2016-02-01
This paper presents the characterization of the Joaquín Sorolla's gouache sketches for the oil on canvas series "Vision of Spain" commissioned by A. M. Huntington to decorate the library of the Hispanic Society of America in New York. The analyses were focused on the identification of the elemental composition of the gouache pigments by means of portable EDXRF spectrometry in a non-destructive mode. Additionally, SEM-EDX and FTIR analyses of a selected set of micro-samples were carried out to identify completely the pigments, the paint technique and the binding media. The obtained results have confirmed the identification of lead and zinc white, vermillion, earth pigments, ochre, zinc yellow, chrome yellow, ultramarine, Prussian blue, chromium based and copper-arsenic based green pigments, bone black and carbon based black pigments, and the use of gum arabic as binding media in the gouache pigments.
NASA Astrophysics Data System (ADS)
Kajiya, E. A. M.; Campos, P. H. O. V.; Rizzutto, M. A.; Appoloni, C. R.; Lopes, F.
2014-02-01
This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis ("pinacologia"), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled "Violeiro" (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti.
Military Energy Alternatives Conference
2012-03-08
Power Generation and Alternative Energy Branch US Army RDECOM CERDEC CP&ID Power Division Aberdeen Proving Ground, MD...Co-generation Applications •Tactical Mobile Power •Vehicle-mounted Auxiliary Power and Environmental Control •Energy Security for Base...Mobile Power (PM MEP / PM CP) Vehicle Power (PM Tactical Vehicle / PM HTV) Portable Solar Photovoltaic (PV) Modules and Mobile Hybrid PV Power Sources
The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...
Optimization of Army-Navy/Portable Special Search (AN/PSS)-14 Operator Training
2006-10-01
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN...17 iv 3.2.6 Blind Search Observation Data Worksheet
Origin of the Chemical Elements and Their Discoveries [added 1/2007] National Laboratories and Other to the content of DOE R&D Accomplishments. Celebrating Einstein - series of articles about Albert Einstein and his work [added 3/2005] Compact Portable Electric Power Sources [added 1/2007] History of the
A Microcomputer-Based Software Package for Eye-Monitoring Research. Technical Report No. 434.
ERIC Educational Resources Information Center
McConkie, George W.; And Others
A software package is described that collects and reduces eye behavior data (eye position and pupil size) using an IBM-PC compatible computer. Written in C language for speed and portability, it includes several features: (1) data can be simultaneously collected from other sources (such as electroencephalography and electromyography); (2)…
Natural Sources of Radiation Exposure and the Teaching of Radioecology
ERIC Educational Resources Information Center
Anjos, R. M.; Veiga, R.; Carvalho, C.; Sanches, N.; Estellita, L.; Zanuto, P.; Queiroz, E.; Macario, K.
2008-01-01
We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger-Muller detectors as survey meters for "in situ"…
Frangioni, John V
2013-06-25
A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.
Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads
Gautier, Laurent; Lund, Ole
2013-01-01
Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc. PMID:24391826
Low-bandwidth and non-compute intensive remote identification of microbes from raw sequencing reads.
Gautier, Laurent; Lund, Ole
2013-01-01
Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc.
Liang, Chun-Yang; Yang, Yang; Shen, Chun-Sen; Wang, Hai-Jiang; Liu, Nai-Ming; Wang, Zhi-Wen; Zhu, Feng-Lei; Xu, Ru-Xiang
2018-02-06
Secondary brain injury is the main cause of mortality from traumatic brain injury (TBI). One hallmark of TBI is intracranial hemorrhage, which occurs in 40-50% of severe TBI cases. Early identification of intracranial hematomas in TBI patients allows early surgical evacuation and can reduce the case fatality rate of TBI. As pre-hospital care is the weakest part of Chinese emergency care, there is an urgent need for a capability to detect brain hematomas early. In China, in addition to preventing injuries and diseases in military staff and in enhancing the military armed forces during war, military medicine participates in actions such as emergency public health crises, natural disasters, emerging conflicts, and anti-terrorist campaigns during peacetime. The purpose of this observational study is to evaluate in the Chinese military general hospital the performance of a near-infrared (NIR)-based portable device, developed for US Military, in the detection of traumatic intracranial hematomas. The endpoint of the study was a description of the test characteristics (sensitivity, specificity, and positive and negative predictive values [NPV]) of the portable NIR-based device in identification of hematomas within its detection limits (volume >3.5 mL and depth <2.5 cm) compared with computed tomography (CT) scans as the gold standard. The Infrascanner Model 2000 NIR device (InfraScan, Inc., Philadelphia, PA, USA) was used for hematoma detection in patients sustaining TBI. Data were collected in the People's Liberation Army General Hospital in Beijing using the NIR device at the time of CT scans, which were performed to evaluate suspected TBI. One hundred and twenty seven patients were screened, and 102 patients were included in the per protocol population. Of the 102 patients, 24 were determined by CT scan to have intracranial hemorrhage. The CT scans were read by an independent neuroradiologist who was blinded to the NIR measurements. The NIR device demonstrated sensitivity of 100% (95% confidence intervals [CI] 82.8-100%) and specificity of 93.6% (95%CI 85-97.6%) in detecting intracranial hematomas larger than 3.5 mL in volume and that were less than 2.5 cm from the surface of the brain. Blood contained within scalp hematomas was found to be a major cause of false-positive results with this technology. The study showed that the Infrascanner is a suitable portable device in Chinese population for detecting preoperative intracranial hematomas in remote locations, emergency rooms, and intensive care units. It could aid military medics, physicians, and hospital staff, permitting better triage decisions, earlier treatment, and reducing secondary brain injury caused by acute and delayed hematomas. © Association of Military Surgeons of the United States 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Research of mine water source identification based on LIF technology
NASA Astrophysics Data System (ADS)
Zhou, Mengran; Yan, Pengcheng
2016-09-01
According to the problem that traditional chemical methods to the mine water source identification takes a long time, put forward a method for rapid source identification system of mine water inrush based on the technology of laser induced fluorescence (LIF). Emphatically analyzes the basic principle of LIF technology. The hardware composition of LIF system are analyzed and the related modules were selected. Through the fluorescence experiment with the water samples of coal mine in the LIF system, fluorescence spectra of water samples are got. Traditional water source identification mainly according to the ion concentration representative of the water, but it is hard to analysis the ion concentration of the water from the fluorescence spectra. This paper proposes a simple and practical method of rapid identification of water by fluorescence spectrum, which measure the space distance between unknown water samples and standard samples, and then based on the clustering analysis, the category of the unknown water sample can be get. Water source identification for unknown samples verified the reliability of the LIF system, and solve the problem that the current coal mine can't have a better real-time and online monitoring on water inrush, which is of great significance for coal mine safety in production.
Field-Portable Pixel Super-Resolution Colour Microscope
Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan
2013-01-01
Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742
NASA Astrophysics Data System (ADS)
Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.
2010-04-01
This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.
Field-portable pixel super-resolution colour microscope.
Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan
2013-01-01
Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.
A study on a portable fluorescence imaging system
NASA Astrophysics Data System (ADS)
Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen
2011-09-01
The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.
The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System
Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai
2014-01-01
Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings. PMID:24505263
Portable, battery-operated, fluorescence field microscope for the developing world
NASA Astrophysics Data System (ADS)
Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca
2010-02-01
In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.
40 CFR 62.6120 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.6120 Identification of sources. The plan applies... Corporation in Pascagoula. Fluoride Emissions From Primary Aluminum Reduction Plants ...
40 CFR 62.6120 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.6120 Identification of sources. The plan applies... Corporation in Pascagoula. Fluoride Emissions From Primary Aluminum Reduction Plants ...
Air pollution source identification
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1975-01-01
Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.
Use of nuclear techniques to determine the fill of found unexploded ordnance.
Steward, Scott; Forsht, Denice
2005-01-01
The PELAN is a man-portable device that uses pulsed neutrons to interrogate objects in order to determine their filler. The neutrons initiate several types of nuclear reactions within the object under scrutiny, which result in the formation of gamma rays. The energy of the resulting gamma rays provides information about the elements (carbon, hydrogen, oxygen, nitrogen) contained within the object; in addition the number of gamma rays detected provides information about how much of each element is present. An analysis of the elements present and their ratios to one another allows for identification of the filler material.
Forensic and homeland security applications of modern portable Raman spectroscopy.
Izake, Emad L
2010-10-10
Modern detection and identification of chemical and biological hazards within the forensic and homeland security contexts may well require conducting the analysis in field while adapting a non-contact approach to the hazard. Technological achievements on both surface and resonance enhancement Raman scattering re-developed Raman spectroscopy to become the most adaptable spectroscopy technique for stand-off and non-contact analysis of hazards. On the other hand, spatially offset Raman spectroscopy proved to be very valuable for non-invasive chemical analysis of hazards concealed within non-transparent containers and packaging. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Methods for Human Dehydration Measurement
NASA Astrophysics Data System (ADS)
Trenz, Florian; Weigel, Robert; Hagelauer, Amelie
2018-03-01
The aim of this article is to give a broad overview of current methods for the identification and quantification of the human dehydration level. Starting off from most common clinical setups, including vital parameters and general patients' appearance, more quantifiable results from chemical laboratory and electromagnetic measurement methods will be reviewed. Different analysis methods throughout the electromagnetic spectrum, ranging from direct current (DC) conductivity measurements up to neutron activation analysis (NAA), are discussed on the base of published results. Finally, promising technologies, which allow for an integration of a dehydration assessment system in a compact and portable way, will be spotted.
Lab-on-Chip Cytometry Based on Magnetoresistive Sensors for Bacteria Detection in Milk
Fernandes, Ana C.; Duarte, Carla M.; Cardoso, Filipe A.; Bexiga, Ricardo.; Cardoso, Susana.; Freitas, Paulo P.
2014-01-01
Flow cytometers have been optimized for use in portable platforms, where cell separation, identification and counting can be achieved in a compact and modular format. This feature can be combined with magnetic detection, where magnetoresistive sensors can be integrated within microfluidic channels to detect magnetically labelled cells. This work describes a platform for in-flow detection of magnetically labelled cells with a magneto-resistive based cell cytometer. In particular, we present an example for the validation of the platform as a magnetic counter that identifies and quantifies Streptococcus agalactiae in milk. PMID:25196163
Lab-on-chip cytometry based on magnetoresistive sensors for bacteria detection in milk.
Fernandes, Ana C; Duarte, Carla M; Cardoso, Filipe A; Bexiga, Ricardo; Cardoso, Susana; Freitas, Paulo P
2014-08-21
Flow cytometers have been optimized for use in portable platforms, where cell separation, identification and counting can be achieved in a compact and modular format. This feature can be combined with magnetic detection, where magnetoresistive sensors can be integrated within microfluidic channels to detect magnetically labelled cells. This work describes a platform for in-flow detection of magnetically labelled cells with a magneto-resistive based cell cytometer. In particular, we present an example for the validation of the platform as a magnetic counter that identifies and quantifies Streptococcus agalactiae in milk.
CULTURE-INDEPENDENT MOLECULAR METHODS FOR FECAL SOURCE IDENTIFICATION
Fecal contamination is widespread in the waterways of the United States. Both to correct the problem, and to estimate public health risk, it is necessary to identify the source of the contamination. Several culture-independent molecular methods for fecal source identification hav...
An integrated port camera and display system for laparoscopy.
Terry, Benjamin S; Ruppert, Austin D; Steinhaus, Kristen R; Schoen, Jonathan A; Rentschler, Mark E
2010-05-01
In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by integrating an inexpensive CMOS sensor and LED light source; and 3) enhances laparoscopic surgical procedures by mechanically coupling the camera, tool port, and liquid crystal display (LCD) screen to provide an on-patient visual display. The port camera video system was compared to two laparoscopic video systems: a standard resolution unit from Karl Storz (model 22220130) and a high definition unit from Stryker (model 1188HD). Brightness, contrast, hue, colorfulness, and sharpness were compared. The port camera video is superior to the Storz scope and approximately equivalent to the Stryker scope. An ex vivo study was conducted to measure the operative performance of the port camera. The results suggest that simulated tissue identification and biopsy acquisition with the port camera is as efficient as with a traditional laparoscopic system. The port camera was successfully used by a laparoscopic surgeon for exploratory surgery and liver biopsy during a porcine surgery, demonstrating initial surgical feasibility.
Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit
McQuaid, J.H.; Lavietes, A.D.
1998-05-26
A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.
Gibson, Desmond; MacGregor, Calum
2013-01-01
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing. PMID:23760090
Gibson, Desmond; MacGregor, Calum
2013-05-29
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; ...
2018-03-08
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; C.J. Wharton
2008-08-01
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) andmore » high explosive (HE) filled munitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabury, E. H.; Chichester, D. L.; Wharton, C. J.
2009-03-10
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM)more » and high explosive (HE) filled munitions.« less
40 CFR 62.6120 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.6120 Identification of sources. The plan applies to existing facilities at the following phosphate fertilizer plants. (1) Mississippi Chemical...
40 CFR 62.6120 - Identification of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.6120 Identification of sources. The plan applies to existing facilities at the following phosphate fertilizer plants. (1) Mississippi Chemical...
40 CFR 62.6120 - Identification of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fluoride Emissions from Phosphate Fertilizer Plants § 62.6120 Identification of sources. The plan applies to existing facilities at the following phosphate fertilizer plants. (1) Mississippi Chemical...
40 CFR 62.4353 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.4353 Identification of sources. The... Southwire Aluminum, Hawesville, Ky. (b) Anaconda Company, Aluminum Division, Henderson, Ky. Fluoride...
40 CFR 62.4353 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fluoride Emissions from Existing Primary Aluminum Reduction Plants § 62.4353 Identification of sources. The... Southwire Aluminum, Hawesville, Ky. (b) Anaconda Company, Aluminum Division, Henderson, Ky. Fluoride...
NASA Technical Reports Server (NTRS)
Elvis, Martin; Plummer, David; Schachter, Jonathan; Fabbiano, G.
1992-01-01
A catalog of 819 sources detected in the Einstein IPC Slew Survey of the X-ray sky is presented; 313 of the sources were not previously known as X-ray sources. Typical count rates are 0.1 IPC count/s, roughly equivalent to a flux of 3 x 10 exp -12 ergs/sq cm s. The sources have positional uncertainties of 1.2 arcmin (90 percent confidence) radius, based on a subset of 452 sources identified with previously known pointlike X-ray sources (i.e., extent less than 3 arcmin). Identifications based on a number of existing catalogs of X-ray and optical objects are proposed for 637 of the sources, 78 percent of the survey (within a 3-arcmin error radius) including 133 identifications of new X-ray sources. A public identification data base for the Slew Survey sources will be maintained at CfA, and contributions to this data base are invited.
NASA Astrophysics Data System (ADS)
Malowany, K. S.; Stix, J.; de Moor, J. M.; Chu, K.; Lacrampe-Couloume, G.; Sherwood Lollar, B.
2017-07-01
Over the past two decades, activity at Turrialba volcano, Costa Rica, has shifted from hydrothermal to increasingly magmatic in character, with enhanced degassing and eruption potential. We have conducted a survey of the δ13C signatures of gases at Turrialba using a portable field-based CRDS with comparison to standard IRMS techniques. Our δ13C results of the volcanic plume, high-temperature vents, and soil gases reveal isotopic heterogeneity in the CO2 gas composition at Turrialba prior to its recent phase of eruptive activity. The isotopic value of the regional fault system, Falla Ariete (-3.4 ± 0.1‰), is in distinct contrast with the Central crater gases (-3.9 ± 0.1‰) and the 2012 high-temperature vent (-4.4 ± 0.2‰), an indication that spatial variability in δ13C may be linked to hydrothermal transport of volcanic gases, heterogeneities in the source composition, or magmatic degassing. Isotopic values of CO2 samples collected in the plume vary from δ13C of -5.2 to -10.0‰, indicative of mixing between atmospheric CO2 (-9.2 ± 0.1‰), and a volcanic source. We compare the Keeling method to a traditional mixing model (hyperbolic mixing curve) to estimate the volcanic source composition at Turrialba from the plume measurements. The predicted source compositions from the Keeling and hyperbolic methods (-3.0 ± 0.5‰ and -3.9 ± 0.4‰, respectively) illustrate two potential interpretations of the volcanic source at Turrialba. As of the 29 October 2014, Turrialba has entered a new eruptive period, and continued monitoring of the summit gases for δ13C should be conducted to better understand the dominant processes controlling δ13C fractionation at Turrialba.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S; Dave Dunn, D
The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation implemented in AVERT{reg_sign}. AVERT{reg_sign}, short for the Automated Vulnerability Evaluation for Risk of Terrorism, is personal computer based vulnerability assessment software developed by the ARES Corporation. The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation. The detectors, a RadPack and also a Personal Radiation Detector (PRD), were chosen from the class of Human Portable Radiation Detection Systems (HPRDS). Human Portable Radiationmore » Detection Systems (HPRDS) serve multiple purposes. In the maritime environment, there is a need to detect, localize, characterize, and identify radiological/nuclear (RN) material or weapons. The RadPack is a commercially available broad-area search device used for gamma and also for neutron detection. The PRD is chiefly used as a personal radiation protection device. It is also used to detect contraband radionuclides and to localize radionuclide sources. Neither device has the capacity to characterize or identify radionuclides. The principal aim of this study was to investigate the sensitivity of both the RadPack and the PRD while being used under controlled conditions in a simulated maritime environment for detecting hidden RN contraband. The detection distance varies by the source strength and the shielding present. The characterization parameters of the source are not indicated in this report so the results summarized are relative. The Monte Carlo simulation results indicate the probability of detection of the RN source at certain distances from the detector which is a function of transverse speed and instrument sensitivity for the specified RN source.« less
Identifiability and identification of trace continuous pollutant source.
Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao
2014-01-01
Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.
40 CFR 62.9160 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.9160 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction...
40 CFR 62.1351 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.1351 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.4355 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.4355 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction...
40 CFR 62.1115 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.1115 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction...
40 CFR 62.2360 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.2360 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction...
40 CFR 62.3631 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.3631 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.601 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.601 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.103 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.103 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction...
40 CFR 62.2607 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.2607 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction...
40 CFR 62.5861 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.5861 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.6601 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.6601 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.3331 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.3331 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.8601 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.8601 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction...
40 CFR 62.1101 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fluoride Emissions from Existing Phosphate Fertilizer Plants § 62.1101 Identification of sources. The plan applies to existing facilities at the following phosphate fertilizer plants: (a) Occidental Chemical...
40 CFR 62.6351 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fluoride Emissions from Existing Phosphate Fertilizer Plants § 62.6351 Identification of sources. The plan applies to existing facilities at the following phosphate fertilizer plant: Farmers Chemical Company...