Sample records for portland cement paste

  1. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    PubMed

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  2. Study on temperature and damage sensing capability of Portland cement paste through the thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Tai, Ko-Hung; Su, Yu-Min

    2017-04-01

    This study attempted to investigate the self-sensing capability of Portland cement composites in sensing temperature and detecting damages through the measurements of materials' thermoelectric properties. Specimens were made of Ordinary Portland Cement (OPC) with the water to cement ratio of 0.4. Temperature sensing property was characterized at various ages of the specimens from 28 to 49 days and at dried/moisturized conditions. It was found there exists an approximately linear relationship between temperature differences (ΔT) and the measured thermoelectric potentials, which is known as the Seebeck effect. This linearity was observed to be varied but able to be characterized for cement pastes at different ages and water saturation conditions. Mechanical loading that introduced different types and degrees of damages also translated into the variations of thermoelectric properties. Specifically, different types of compressive loads were tested for comparison. The study results have shown that Seebeck coefficient dropped with introduced damages, and restored with the subsequent re-curing as well as the continued cement hydration. Mild and moderate damages can be partially or fully restored, while severe damages that have resulted in significant drop of the Seebeck coefficients would restrain the self-restoration. Determination of the damage threshold was not yet revealed in this study, while it was shown obviously there existed one. Our investigation results indicated that characterizing the self-sensing capability of Portland cement composites is achievable through the measurements of thermoelectric properties. This study, in particular, has showcased the temperature sensing and damage detection capability.

  3. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no; SINTEF Building and Infrastructure, Trondheim; Orsáková, D.

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding formore » NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.« less

  4. Portland cement concrete pavement best practices summary report.

    DOT National Transportation Integrated Search

    2010-08-01

    This report summarizes the work and findings from WA-RD 744. This work consisted of four separate efforts related to best practices for portland cement concrete (PCC) pavement design and construction: (1) a review of past and current PCC pavement, (2...

  5. Radiopacity of portland cement associated with different radiopacifying agents.

    PubMed

    Húngaro Duarte, Marco Antonio; de Oliveira El Kadre, Guâniara D'arc; Vivan, Rodrigo Ricci; Guerreiro Tanomaru, Juliane Maria; Tanomaru Filho, Mário; de Moraes, Ivaldo Gomes

    2009-05-01

    This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p < 0.05) than that of dentin, whereas all cement/radiopacifier mixtures were significantly more radiopaque than dentin and Portland cement alone (p < 0.05). Portland cement/bismuth oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p < 0.05), whereas Portland cement/zinc oxide presented the lowest radiopacity values of all mixtures (p < 0.05). All tested substances presented higher radiopacity than that of dentin and may potentially be added to the Portland cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done.

  6. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    NASA Astrophysics Data System (ADS)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  7. Traditional Portland cement and MgO-based cement: a promising combination?

    NASA Astrophysics Data System (ADS)

    Tonelli, Monica; Martini, Francesca; Calucci, Lucia; Geppi, Marco; Borsacchi, Silvia; Ridi, Francesca

    2017-06-01

    MgO/SiO2 cements are materials potentially very useful for radioactive waste disposal, but knowledge about their physico-chemical properties is still lacking. In this paper we investigated the hydration kinetics of cementitious formulations prepared by mixing MgO/SiO2 and Portland cement in different proportions and the structural properties of the hydrated phases formed in the first month of hydration. In particular, the hydration kinetics was investigated by measuring the free water index on pastes by means of differential scanning calorimetry, while the structural characterization was carried out by combining thermal (DTA), diffractometric (XRD), and spectroscopic (FTIR, 29Si solid state NMR) techniques. It was found that calcium silicate hydrate (C-S-H) and magnesium silicate hydrate (M-S-H) gels mainly form as separate phases, their relative amount and structural characteristics depending on the composition of the hydrated mixture. Moreover, the composition of the mixtures strongly affects the kinetics of hydration and the pH of the aqueous phase in contact with the cementitious materials. The results here reported show that suitable mixtures of Portland cement and MgO/SiO2 could be used to modify the properties of hydrated phases with potential application in the storage of nuclear waste in clayey disposal.

  8. Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.

    PubMed

    Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael

    2012-02-21

    Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.

  9. The physical properties of accelerated Portland cement for endodontic use.

    PubMed

    Camilleri, J

    2008-02-01

    To investigate the physical properties of a novel accelerated Portland cement. The setting time, compressive strength, pH and solubility of white Portland cement (Lafarge Asland; CEM 1, 52.5 N) and accelerated Portland cement (Proto A) produced by excluding gypsum from the manufacturing process (Aalborg White) and a modified version with 4 : 1 addition of bismuth oxide (Proto B) were evaluated. Proto A set in 8 min. The compressive strength of Proto A was comparable with that of Portland cement at all testing periods (P > 0.05). Additions of bismuth oxide extended the setting time and reduced the compressive strength (P < 0.05). Both cements and storage solution were alkaline. All cements tested increased by >12% of their original weight after immersion in water for 1 day with no further absorption after 28 days. Addition of bismuth oxide increased the water uptake of the novel cement (P < 0.05). The setting time of Portland cement can be reduced by excluding the gypsum during the last stage of the manufacturing process without affecting its other properties. Addition of bismuth oxide affected the properties of the novel cement. Further investigation on the effect that bismuth oxide has on the properties of mineral trioxide aggregate is thus warranted.

  10. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  11. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    PubMed

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates.

  12. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    PubMed

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying-Liang; Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan; Ko, Ming-Sheng

    2011-06-15

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, includingmore » nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.« less

  15. Assessment the potential of using Carbon nanotubes reinforcements for improving the tensile/flexural strength and fracture toughness of Portland cement paste for damage resistant concrete transportation infrastructures.

    DOT National Transportation Integrated Search

    2010-09-01

    The focus of this study was on exploring the use of nanotechnology-based nano-filaments, such as carbon : nanotubes (CNTs) and nanofibers (CNFs), as reinforcement in improving the mechanical properties of Portland : cement paste as a construction mat...

  16. ESEM analysis of polymeric film in EVA-modified cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, D.A.; Monteiro, P.J.M.

    2005-10-01

    Portland cement pastes modified by 20% weight (polymer/cement ratio) of poly(ethylene-co-vinyl acetate) (EVA) were prepared, cured, and immersed in water for 11 days. The effects of water saturation and drying on the EVA polymeric film formed in cement pastes were observed using environmental scanning electron microscopy (ESEM). This technique allowed the imaging of the EVA film even in saturated samples. The decrease of the relative humidity inside the ESEM chamber did not cause any visual modification of the polymeric film during its drying.

  17. Effect of different mixing methods on the physical properties of Portland cement.

    PubMed

    Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz

    2016-12-01

    The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred sixty two samples of Portland cement were prepared for three mixing techniques for each physical property (each 6 samples). Data were analyzed using descriptive statistics, one-way ANOVA and post hoc Tukey tests. Statistical significance was set at P <0.05. The mixing technique had no significant effect on the compressive strength, film thickness and flow of Portland cement ( P >0.05). Dimensional changes (shrinkage), solubility and pH increased significantly by amalgamator and ultrasonic mixing techniques ( P <0.05). The ultrasonic technique significantly decreased working time, and the amalgamator and ultrasonic techniques significantly decreased the setting time ( P <0.05). The mixing technique exerted no significant effect on the flow, film thickness and compressive strength of Portland cement samples. Key words: Physical properties, Portland cement, mixing methods.

  18. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-AQ93 National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing... Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants,'' which was... Manufacturing Industry and Standards of Performance for Portland Cement Plants'' under Docket ID No. EPA-HQ-OAR...

  19. IMMEDIATE AND DELAYED SOLUBILITY OF MINERAL TRIOXIDE AGGREGATE AND PORTLAND CEMENT

    PubMed Central

    Bodanezi, Augusto; Carvalho, Nara; Silva, Daniela; Bernardineli, Norberti; Bramante, Clovis Monteiro; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes

    2008-01-01

    This study investigated the solubility of mineral trioxide aggregate (MTA) and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours), were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8). Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05). The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001). PMID:19089204

  20. Electrically conductive Portland cement concrete.

    DOT National Transportation Integrated Search

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  1. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  2. Hydrated Ordinary Portland Cement as a Carbonic Cement: The Mechanisms, Dynamics, and Implications of Self-Sealing and CO 2 Resistance in Wellbore Cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrie, George Drake Jr.; Pawar, Rajesh J.; Carey, James William

    2017-07-28

    This report analyzes the dynamics and mechanisms of the interactions of carbonated brine with hydrated Portland cement. The analysis is based on a recent set of comprehensive reactive-transport simulations, and it relies heavily on the synthesis of the body of work on wellbore integrity that we have conducted for the Carbon Storage Program over the past decade.

  3. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    NASA Astrophysics Data System (ADS)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  4. Recycled materials in Portland cement concrete

    DOT National Transportation Integrated Search

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  5. The Portland cement aggregate bond : influence of surface area of the coarse aggregate as a function of lithology.

    DOT National Transportation Integrated Search

    1972-01-01

    Presented is a direct tensile test for measuring the bond of rock or mineral surfaces to portland cement paste, or for measuring the tensile strength of neat paste or of mortar specimens, devised using commercially available gripping devices and prep...

  6. Stabilization of marly soils with portland cement

    NASA Astrophysics Data System (ADS)

    Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii

    2017-10-01

    Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.

  7. Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes

    NASA Astrophysics Data System (ADS)

    Rodríguez, B.; Quintero, J. H.; Arias, Y. P.; Mendoza-Reales, O. A.; Ochoa-Botero, J. C.; Toledo-Filho, R. D.

    2017-12-01

    This work studies the reinforcing effect of Multi Walled Carbon Nanotubes (MWCNT) on cement pastes. A 0.35% solid concentration of MWCNT in powder was dispersed in deionized water with sodium dodecyl sulfate (cationic surfactant), cetylpyridinium chloride (anionic surfactant) and triton X-100 (amphoteric surfactant) using an ultrasonic tip processor. Three concentrations of each surfactant (1mM, 10mM and 100mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes with additions of carbon nanotubes of 0.15% by mass of cement were produced in two steps; first the dispersions of MWCNT were combined with the mixing water using an ultrasonic tip processor to guarantee homogeneity, and then cement was added and mixed until a homogeneous paste was obtained. Direct tensile strength, apparent density and open porosity of the pastes were measured after 7 days of curing. It was found that the MWCNT/surfactants dispersions decrease the mechanical properties of the cement based matrix due to an increased porosity caused by the presence of surfactants.

  8. Portland cement concrete air content study.

    DOT National Transportation Integrated Search

    1987-04-20

    This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...

  9. The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use.

    PubMed

    Camilleri, J; Montesin, F E; Di Silvio, L; Pitt Ford, T R

    2005-11-01

    To evaluate the biocompatibility of mineral trioxide aggregate and accelerated Portland cement and their eluants by assessing cell metabolic function and proliferation. The chemical constitution of grey and white Portland cement, grey and white mineral trioxide aggregate (MTA) and accelerated Portland cement produced by excluding gypsum from the manufacturing process (Aalborg White) was determined using both energy dispersive analysis with X-ray and X-ray diffraction analysis. Biocompatibility of the materials was assessed using a direct test method where cell proliferation was measured quantitatively using Alamar Blue dye and an indirect test method where cells were grown on material elutions and cell proliferation was assessed using methyltetrazolium assay as recommended by the International standard guidelines, ISO 10993-Part 5 for in vitro testing. The chemical constitution of all the materials tested was similar. Indirect studies of the eluants showed an increase in cell activity after 24 h compared with the control in culture medium (P<0.05). Direct cell contact with the cements resulted in a fall in cell viability for all time points studied (P<0.001). Biocompatibility testing of the cement eluants showed the presence of no toxic leachables from the grey or white MTA, and that the addition of bismuth oxide to the accelerated Portland cement did not interfere with biocompatibility. The new accelerated Portland cement showed similar results. Cell growth was poor when seeded in direct contact with the test cements. However, the elution made up of calcium hydroxide produced during the hydration reaction was shown to induce cell proliferation.

  10. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide.

    PubMed

    Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J

    2009-04-01

    To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.

  11. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    PubMed

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  12. Properties of Portland cement--stabilised MSWI fly ashes.

    PubMed

    Polettini, A; Pomi, R; Sirini, P; Testa, F

    2001-11-16

    In the present paper, the properties of Portland cement mixtures containing fly ashes (FA) collected at four different Italian municipal solid waste incineration (MSWI) plants were investigated. In particular, physical/mechanical characteristics (setting time, unconfined compressive strength (UCS) and shrinkage/expansion), as well as the acid neutralisation behaviour of the solidified products were considered. The FA composition, revealing enrichment in heavy metals, chlorides and sulphates, significantly altered the hydration behaviour of Portland cement. Consequently, for some of the investigated FA the maximum allowable content for the mixtures to achieve appreciable mechanical strength was 20 wt.%. Even at low FA dosages setting of cement was strongly delayed. In order to improve the properties of FA/cement mixtures, the use of additives was tested.Moreover, the acid neutralisation capacity (ANC) of the solidified products was evaluated in order to assess the ability of the matrix to resist acidification, and also to provide information on hydration progression, as well as on heavy metal release under different pH conditions. Comparison of the results from the present work with previous studies carried out on spiked mixtures lead to the conclusion that the mechanical properties of the stabilised FA could not be predicted based on the effect exerted by heavy metals and anions only, even when the dilution effect exerted on cement was taken into account. It was likely that a major role was also played by alkalis, which were present in the FA at much higher concentrations than in cement.

  13. Portland cement concrete pavement restoration : final summary report.

    DOT National Transportation Integrated Search

    1988-07-01

    This final summary report is comprised of an Initial Construction Report; a Final Report; and two Interim Reports. These reports document the construction of Louisiana's Portland Cement Concrete Pavement Restoration project and its performance during...

  14. Guide for curing of portland cement. Volume I

    DOT National Transportation Integrated Search

    2005-01-01

    This document provides guidance on details of concrete curing practice as they pertain to construction of portland cement concrete pavements. The guide is organized around the major events in curing pavements: curing immediately after placement (init...

  15. Alternative Fuel for Portland Cement Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were

  16. Portland-cement concrete rheology and workability : final report.

    DOT National Transportation Integrated Search

    2011-04-01

    Methods for determining the workability of freshly mixed Portland-cement concrete with : slumps less than 5 1 mm (2 in) were investigated. Four potential methods to determine the : workability of concrete were proposed for evaluation and development....

  17. The influence of calcium nitrate on setting and hardening rate of Portland cement concrete at different temperatures

    NASA Astrophysics Data System (ADS)

    Kičaitė, A.; Pundienė, I.; Skripkiūnas, G.

    2017-10-01

    Calcium nitrate in mortars and concrete is used as a multifunctional additive: as set accelerator, plasticizer, long term strength enhancer and as antifreeze admixture. Used binding material and the amount of calcium nitrate, affect the characteristics of the concrete mixture and strength of hardened concrete. The setting time of the initial and the final binding at different temperatures of hardening (+ 20 °C and + 5 °C) of the pastes made of different cements (Portland cement CEM I 42.5 R and Portland limestone cement CEM II/A-LL 42.5 R) and various amounts of calcium nitrate from 1 % until 3 % were investigated. The effect of calcium nitrate on technological characteristics of concrete mixture (the consistency of the mixture, the density, and the amount of air in the mixture), on early concrete strength after 2 and 7 days, as well as on standard concrete strength after 28 days at different temperatures (at + 20 °C and + 5 °C) were analysed.

  18. 76 FR 54206 - Gray Portland Cement and Clinker From Japan: Final Results of the Expedited Third Sunset Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... manufacturing cement, has no use other than grinding into finished cement. Microfine cement was specifically... DEPARTMENT OF COMMERCE International Trade Administration [A-588-815] Gray Portland Cement and... portland cement and clinker from Japan. As a result of this third sunset review, the Department finds that...

  19. Utilization of steel slag for Portland cement clinker production.

    PubMed

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  20. 76 FR 12370 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Production Act of 1993--Portland Cement Association Notice is hereby given that, on February 02, 2011... seq. (``the Act''), Portland Cement Association (``PCA'') has filed written notifications..., Praxair, Danbury, CT; Metso Minerals, York, PA; Lehigh Cement Company LLC, Allentown, PA; Lehigh Northwest...

  1. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States International... clinker from Japan would be likely to lead to continuation or recurrence of material injury within a...

  2. Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications.

    PubMed

    Higuita-Castro, Natalia; Gallego-Perez, Daniel; Pelaez-Vargas, Alejandro; García Quiroz, Felipe; Posada, Olga M; López, Luis E; Sarassa, Carlos A; Agudelo-Florez, Piedad; Monteiro, Fernando J; Litsky, Alan S; Hansford, Derek J

    2012-02-01

    Modified Portland cement porous scaffolds with suitable characteristics for load-bearing bone tissue engineering applications were manufactured by combining the particulate leaching and foaming methods. Non-crosslinked polydimethylsiloxane was evaluated as a potential reinforcing material. The scaffolds presented average porosities between 70 and 80% with mean pore sizes ranging from 300 μm up to 5.0 mm. Non-reinforced scaffolds presented compressive strengths and elastic modulus values of 2.6 and 245 MPa, respectively, whereas reinforced scaffolds exhibited 4.2 and 443 MPa, respectively, an increase of ∼62 and 80%. Portland cement scaffolds supported human osteoblast-like cell adhesion, spreading, and propagation (t = 1-28 days). Cell metabolism and alkaline phosphatase activity were found to be enhanced at longer culture intervals (t ≥ 14 days). These results suggest the possibility of obtaining strong and biocompatible scaffolds for bone repair applications from inexpensive, yet technologically advanced materials such as Portland cement. Copyright © 2011 Wiley Periodicals, Inc.

  3. Study of the bismuth oxide concentration required to provide Portland cement with adequate radiopacity for endodontic use.

    PubMed

    Bueno, Carlos Eduardo da Silveira; Zeferino, Eduardo Gregatto; Manhães, Luiz Roberto Coutinho; Rocha, Daniel Guimarães Pedro; Cunha, Rodrigo Sanches; De Martin, Alexandre Sigrist

    2009-01-01

    The purpose of this study was to determine the ideal concentration of bismuth oxide in white Portland cement to provide it with sufficient radiopacity for use as an endodontic material (ADA specification #57). 2-mm thick standardized test specimens of white MTA and of white Portland cement, as controls, and of white Portland cement with the experimental addition of 5%, 10%, 15%, 20%, 25% or 30% of bismuth oxide were radiographed and compared with various thicknesses of pure aluminum, using optic density to determine the observed grayscale levels of radiopacity in a scale ranging from 0 to 255. The data was submitted to ANOVA (p<0.05) and the Ryan-Einot-Gabriel-Welch and Quiot test (REGWQ) for multiple comparison of the means. White Portland cement with 0%, 5%, 10%, 15%, 20%, 25% and 30% of bismuth oxide presented mean readings of 63.3, 95.7, 110.7, 142.7, 151.3, 161.0 and 180.0 respectively. MTA presented a mean reading of 157.3. The readings of MTA and white Portland cement with 15% bismuth oxide did not differ significantly from the reading observed for a thickness of 4 mm of aluminum (145.3), which is considered ideal for a test specimen by ADA specification #57 (2 mm above the thickness of the test specimen). White MTA and white Portland cement with 15% bismuth oxide presented the radiopacity required for an endodontic cement.

  4. Life Cycle Cost Analysis of Portland Cement Concrete Pavements

    DOT National Transportation Integrated Search

    1999-09-01

    This report describes the development of a new life cycle cost analysis methodology for Portland cement concrete pavements - one that considers all aspects of pavement design, construction, maintenance, and user impacts throughout the analysis period...

  5. Shoulder rehabilitation using portland cement and recycled asphalt pavement.

    DOT National Transportation Integrated Search

    2007-04-01

    Maine has hundreds of miles of roadway originally constructed with Portland Cement Concrete that now : are covered with Hot Mix Asphalt overlays. In 2001 the Maine Department of Transportation utilized an : experimental construction technique on one ...

  6. Evaluation of fly ash in lean Portland Cement Concrete base "Econocrete".

    DOT National Transportation Integrated Search

    1986-08-01

    Fly ash was used in this evaluation study to replace 30, 50 and 70 : percent of the 400 1bs. of cement currently used in each cu. yd. of : portland cement econocrete base paving mix. : Two Class "c" ashes and one Class "F" ash from Iowa approved sour...

  7. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  8. Innovative solutions to buried portland cement concrete roadways.

    DOT National Transportation Integrated Search

    2005-03-01

    Forty or more years ago hundreds of miles of Maine highways were constructed of Portland Cement : Concrete (PCC) to a width of 5.5 to 6.0 m (18 to 20 ft). Since that time these same highways have been : paved and widened to 6.7 or 7.3 m (22 or 24 ft)...

  9. Evaluation of a thin-bonded Portland cement concrete pavement overlay.

    DOT National Transportation Integrated Search

    1996-01-01

    This report discusses the performance of the Virginia Department of Transportation's first modern rehabilitation project involving a thin-bonded portland cement concrete overlay of an existing jointed concrete pavement. The performance of the rigid o...

  10. Nanotechnology-Based Performance Improvements For Portland Cement Concrete - Phase I

    DOT National Transportation Integrated Search

    2012-08-16

    A fundamental understanding of the nano-structure of Portland cement concrete (PCC) is the key to realizing significant breakthroughs regarding high performance and susta : (MBTC 2095/3004) using molecular dynamics (MD) provided new understanding of ...

  11. Effects of portland cement particle size on heat of hydration.

    DOT National Transportation Integrated Search

    2013-12-01

    Following specification harmonization for portland cements, FDOT engineers reported signs of : deterioration in concrete elements due to temperature rise effects. One of the main factors that affect : concrete temperature rise potential is the heat g...

  12. Impact of aggregate gradation on properties of portland cement concrete.

    DOT National Transportation Integrated Search

    2013-10-01

    Increasingly, aggregates in South Carolina are failing to meet the standard requirements for gradation for use in portland cement concrete. The effect of such failed aggregate gradations on concrete properties and the consequent effect on short- and ...

  13. Portland cement for SO/sub 2/ control in coal-fired power plants

    DOEpatents

    Steinberg, M.

    1984-10-17

    A method is described for removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. The cement products that result from this method is also described. 1 tab.

  14. Portland cement for SO.sub.2 control in coal-fired power plants

    DOEpatents

    Steinberg, Meyer

    1985-01-01

    There is described a method of removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. There is also described the cement products that result from this method.

  15. Time-domain reflectometry of water content in portland cement concrete

    DOT National Transportation Integrated Search

    1997-11-01

    Time-domain reflectometry is useful for measuring the moisture content of solids. However, little information exists on its use with portland cement concrete. By monitoring the response from TDR sensors embedded in concrete as the concrete dried, the...

  16. Spectroscopic investigation of Ni speciation in hardened cement paste.

    PubMed

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  17. Effect of various Portland cement paste compositions on early-age strain

    NASA Astrophysics Data System (ADS)

    Guzzetta, Alana G.

    Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.

  18. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    NASA Astrophysics Data System (ADS)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  19. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement.

    PubMed

    García Calvo, José Luis; Sánchez Moreno, Mercedes; Alonso Alonso, María Cruz; Hidalgo López, Ana; García Olmo, Juan

    2013-06-18

    Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC), high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  20. Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system.

    PubMed

    Borges, Alvaro Henrique; Pedro, Fabio Luiz Miranda; Semanoff-Segundo, Alex; Miranda, Carlos Eduardo Saraiva; Pécora, Jesus Djalma; Cruz Filho, Antônio Miranda

    2011-01-01

    The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (p<0.05), while white non-structural Portland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (p<0.05). It was concluded that MTA-based cements were the only materials presenting radiopacity within the ANSI/ADA specifications.

  1. Innovative solutions to buried Portland concrete cement roadways : construction report.

    DOT National Transportation Integrated Search

    1999-01-01

    Maine has hundreds of miles of highway that were constructed of Portland Concrete Cement : (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that time these : same highways have been paved and widened to 6.7 or 7 meter...

  2. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases.

    PubMed

    Qiao, X C; Poon, C S; Cheeseman, C R

    2007-01-10

    This research studied the influence of individual heavy metal on the hydration reactions of major cement clinker phases in order to investigate the performance of cement based stabilization/solidification (S/S) system. Tricalcium silicate (C3S) and tricalcium aluminate (C3A) had been mixed with individual heavy metal hydroxide including Zn(OH)2, Pb(OH)2 and Cu(OH)2, respectively. The influences of these heavy metal hydroxides on the hydration of C3S and C3A have been characterized by X-ray diffraction (XRD) and differential scanning calorimetry-thermogravimetry (DSC-TG). A mixture of Zn(OH)2, Pb(OH)2 and Cu(OH)2 was blended with Portland cement (PC) and evaluated through compressive strength and dynamic leach test. XRD and DSC-TG data show that all the heavy metal hydroxides (Zn(OH)2, Pb(OH)2 and Cu(OH)2) have detrimental effects on the hydration of C3A, but only Zn(OH)2 does to the C3S at early curing ages which can completely inhibit the hydration of C3S due to the formation of CaO(Zn(OH)2).2H2O. Cu6Al2O8CO(3).12H2O, Pb2Al4O4(CO3)(4).7H2O and Zn6Al2O8CO(3).12H2O are formed in all the samples containing C3A in the presence of metal hydroxides. After adding CaSO4 into C3A, the detrimental effect of heavy metals increases due to the coating effect of both calcium aluminate sulphates and heavy metal aluminate carbonates. The influence of heavy metal hydroxide on the hydration of C3S and C3A can be used to predict the S/S performance of Portland cement.

  3. Innovative solutions to buried portland cement concrete roadways : second interim.

    DOT National Transportation Integrated Search

    2001-04-01

    Maine has hundreds of miles of highway that were constructed of : Portland Cement Concrete (PCC) roughly 6 to 6.1 m (18 to 20 ft) wide forty : or more years ago. Since that time these same highways have been paved : and widened to 6.7 or 7 m (22 or 2...

  4. Impact of aggregate gradation on properties of Portland cement concrete : final report.

    DOT National Transportation Integrated Search

    2013-10-15

    Increasingly, aggregates in South Carolina are failing to meet the standard requirements for gradation for use in : portland cement concrete. The effect of such failed aggregate gradations on concrete properties and the : consequent effect on short- ...

  5. Final Rule: NESHAP for the Portland Cement Manufacturing Industry: Alternative Monitoring Method

    EPA Pesticide Factsheets

    EPA is extending its approval for the use of an alternative method to show compliance with hydrogen chloride (HCl) emissions limits in the National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry

  6. Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system

    PubMed Central

    BORGES, Alvaro Henrique; PEDRO, Fabio Luiz Miranda; SEMANOFF-SEGUNDO, Alex; MIRANDA, Carlos Eduardo Saraiva; PÉCORA, Jesus Djalma; CRUZ FILHO, Antônio Miranda

    2011-01-01

    Objective The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. Material and Methods The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. Results White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (p<0.05), while white non-structural Portland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (p<0.05). Conclusions It was concluded that MTA-based cements were the only materials presenting radiopacity within the ANSI/ADA specifications. PMID:21625738

  7. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    PubMed Central

    Bidar, Maryam; Naghavi, Neda; Mohtasham, Nooshin; Sheik-Nezami, Mahshid; Fallahrastegar, Amir; Afkhami, Farzaneh; Attaran Mashhadi, Negin; Nargesi, Iman

    2014-01-01

    Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. Histopathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tissue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposed with a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Portland cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral trioxide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Although the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45%) and the least increase in fibrous tissue were observed adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp capping in dog teeth. PMID:25346831

  8. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents.

    PubMed

    Li, Dongliang; Liu, Xinrong; Liu, Xianshan

    2015-07-02

    Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  9. Portland cement concrete pavement review of QC/QA data 2000 through 2009.

    DOT National Transportation Integrated Search

    2011-04-01

    This report analyzes the Quality Control/Quality Assurance (QC/QA) data for Portland cement concrete pavement : (PCCP) awarded in the years 2000 through 2009. Analysis of the overall performance of the projects is accomplished by : reviewing the Calc...

  10. Recycled Portland cement concrete pavements : Part II, state-of-the art summary.

    DOT National Transportation Integrated Search

    1979-01-01

    This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...

  11. Innovative solutions to buried portland cement concrete roadways : first interim report.

    DOT National Transportation Integrated Search

    2000-05-01

    Maine has hundreds of miles of highway that were constructed of Portland Cement : Concrete (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that : time these same highways have been paved and widened to 6.7 or 7 meter...

  12. Setting time and flowability of accelerated Portland cement mixed with polycarboxylate superplasticizer.

    PubMed

    Wongkornchaowalit, Norachai; Lertchirakarn, Veera

    2011-03-01

    Important limitations of mineral trioxide aggregate for use in clinical procedures are extended setting time and difficult handling characteristics. The removal of gypsum at the end stage of the Portland cement manufacturing process and polycarboxylate superplasticizer admixture may solve these limitations. Different concentrations of polycarboxylate superplasticizer (0%, 1.2%, 1.8%, and 2.4% by volume) and liquid-to-powder ratios (0.27, 0.30, and 0.33 by weight) were mixed with white Portland cement without gypsum (AWPC-experimental material). Type 1 ordinary white Portland cement mixed with distilled water at the same ratios as the experimental material was used as controls. All samples were tested for setting time and flowability according to the International Organization for Standardization 6876:2001 guideline. The data were analyzed by two-way analysis of variance. Then, one-way analysis of variance and multiple comparison tests were used to analyze the significance among groups. The data are presented in mean ± standard deviation values. In all experimental groups, the setting times were in the range of 4.2 ± 0.4 to 11.3 ± 0.2 minutes, which were significantly (p < 0.05) lower than the control groups (26.0 ± 2.4 to 54.8 ± 2.5 minutes). The mean flows of AWPC plus 1.8% and 2.4% polycarboxylate superplasticizer groups were significantly increased (p < 0.001) at all liquid-to-powder ratios compared with control groups. Polycarboxylate superplasticizer at concentrations of 1.8% and 2.4% and the experimental liquid-to-powder ratios reduced setting time and increased flowability of cement, which would be beneficial for clinical use. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters.

    PubMed

    Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez

    2017-02-28

    Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10 -10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale.

  14. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters

    PubMed Central

    Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez

    2017-01-01

    Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10−10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale. PMID:28772605

  15. Development of Mix Design Method in Efforts to Increase Concrete Performance Using Portland Pozzolana Cement (PPC)

    NASA Astrophysics Data System (ADS)

    Krisnamurti; Soehardjono, A.; Zacoeb, A.; Wibowo, A.

    2018-01-01

    Earthquake disaster can cause infrastructure damage. Prevention of human casualties from disasters should do. Prevention efforts can do through improving the mechanical performance of building materials. To achieve high-performance concrete (HPC), usually used Ordinary Portland Cement (OPC). However, the most widely circulating cement types today are Portland Pozzolana Cement (PPC) or Portland Composite Cement (PCC). Therefore, the proportion of materials used in the HPC mix design needs to adjust to achieve the expected performance. This study aims to develop a concrete mix design method using PPC to fulfil the criteria of HPC. The study refers to the code/regulation of concrete mixtures that use OPC based on the results of laboratory testing. This research uses PPC material, gravel from Malang area, Lumajang sand, water, silica fume and superplasticizer of a polycarboxylate copolymer. The analyzed information includes the investigation results of aggregate properties, concrete mixed composition, water-binder ratio variation, specimen dimension, compressive strength and elasticity modulus of the specimen. The test results show that the concrete compressive strength achieves value between 25 MPa to 55 MPa. The mix design method that has developed can simplify the process of concrete mix design using PPC to achieve the certain desired performance of concrete.

  16. Rehabilitation of jointed Portland cement concrete pavements : SPS-6--initial evaluation and analysis

    DOT National Transportation Integrated Search

    2005-10-01

    The Specific Pavement Studies 6 (SPS-6) experiment, "Rehabilitation of Jointed Portland Cement Concrete Pavements," was designed as a controlled field experiment that focuses on the study of specific rehabilitation design features of jointed plain co...

  17. NESHAP for the Portland Cement Manufacturing Industry: Fact Sheets for Actions Since 2015

    EPA Pesticide Factsheets

    EPA is extending its approval for the use of an alternative method to show compliance with hydrogen chloride (HCl) emissions limits in the National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry

  18. Hydration of Portland cement with additions of calcium sulfoaluminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr; Lothenbach, Barbara; Hori, Akihiro

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has amore » similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.« less

  19. Construction of a thin-bonded Portland cement concrete overlay using accelerated paving techniques.

    DOT National Transportation Integrated Search

    1992-01-01

    The report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded Portland cement concrete overlays of existing concrete pavements and with the fast track mode of rigid paving. The study was...

  20. Performance of portland limestone cements : cements designed to be more sustainable that include up to 15% limestone addition.

    DOT National Transportation Integrated Search

    2013-11-01

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of ASTM : C150/AASHTO M85. When this project was initiated a new proposal was being discussed that would enable up to 15% intergr...

  1. Mercury release from fly ashes and hydrated fly ash cement pastes

    NASA Astrophysics Data System (ADS)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  2. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  3. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroefl, Christof, E-mail: christof.schroefl@tu-dresden.de; Mechtcherine, Viktor; Vontobel, Peter

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. Inmore » the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.« less

  4. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boncukcuoglu, Recep; Icelli, Orhan; Erzeneoglu, Salih

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays ofmore » the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.« less

  5. Determination of coefficient of thermal expansion for Portland Cement Concrete pavements for MEPDG Implementation

    DOT National Transportation Integrated Search

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  6. Determination of coefficient of thermal expansion For Portland Cement Concrete pavements for MEPDG Implementation

    DOT National Transportation Integrated Search

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  7. Efforts to reduce reflective cracking of bituminous concrete overlays of Portland cement concrete pavements.

    DOT National Transportation Integrated Search

    1975-01-01

    Studies of efforts in Virginia to reduce the incidence of reflection cracking when portland cement concrete pavements or bases are overlayed with asphaltic concrete are reported. The methods of reflection crack reduction discussed are: (1) The use of...

  8. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    NASA Astrophysics Data System (ADS)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  9. Effect of wastewater on properties of Portland pozzolana cement

    NASA Astrophysics Data System (ADS)

    Babu, G. Reddy

    2017-07-01

    This paper presents the effect of wastewaters on properties of Portland pozzolana cement (PPC). Fourteen water treatment plants were found out in the Narasaraopet municipality region in Guntur district, Andhra Pradesh, India. Approximately, from each plant, between 3500 and 4000 L/day of potable water is selling to consumers. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. During water treatment, plants are discharging approximately 1,00,000 L/day as wastewater in side drains in Narasaraopet municipality. Physical and chemical analysis was carried out on fourteen plants wastewater and distilled water as per producer described in APHA. In the present work, based on the concentrations of constituent's in wastewater, four typical plants i.e., Narasaraopeta Engineering College (NECWW), Patan Khasim Charitable Trust (PKTWW), Mahmadh Khasim Charitable Trust (MKTWW) and Amara (ARWW) were considered. The performance of four plants wastewater on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were performed in laboratories and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time but setting times of selected wastewaters were retarded as compared to that of reference water. Almost, no change was observed in 90 days compressive and flexural strengths in four plants wastewaters specimens compared to that of reference water specimens. XRD technique was employed to find out main hydration compounds formed in the process.

  10. Effects of Curing Temperature and Pressure on the Chemical, Physical, and Mechanical Properties of Portland Cement

    NASA Astrophysics Data System (ADS)

    Pang, Xueyu

    This dissertation mainly focuses on studying the fundamental hydration kinetics and mechanisms of Portland cement as well as the effects of curing temperature and pressure on its various properties. An innovative test apparatus has been developed in this study to cure and test cement paste specimens under in-situ conditions, such as down-hole in oil wells with high temperature and high pressure. Two series of tests were performed using cement pastes prepared with four different classes of oilwell cement (namely Class A, C, G, and H cements). Specimens in groups of four were cured at temperatures ranging from ambient to 60 °C and pressures ranging from 0.69 to 51.7 MPa for a period of 48 or 72 hours. The density and w/c ratio of the specimens at the time of casting as well as at the end of the curing period were recorded. Total chemical shrinkage of the cement paste was measured continuously during the entire hydration period while tensile strength was obtained at the end of the curing period using both water pressure and splitting tension test methods. Due to capacity limitations of the test equipment, in-situ tensile strength was obtained for only one test series with a highest curing pressure of 13.1 MPa. Specimens from the other test series were depressurized before the tensile strength tests. Chemical shrinkage test is an important method of measuring cement hydration kinetics in that the normalized total chemical shrinkage is approximately equal to the degree of cement hydration. By studying the correlations between the chemical shrinkage and the non-evaporable water content of cement during hydration, a multi-linear model is first proposed to estimate the normalization factors for different types of cement under different curing conditions. Based on the hydration kinetics data obtained from chemical shrinkage test results, a new approach of modeling the effect of curing temperature and pressure on cement hydration kinetics is proposed. It is found that when

  11. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    PubMed

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  12. Influence of bismuth oxide concentration on the pH level and biocompatibility of white Portland cement.

    PubMed

    Marciano, Marina Angélica; Garcia, Roberto Brandão; Cavenago, Bruno Cavalini; Minotti, Paloma Gagliardi; Midena, Raquel Zanin; Guimarães, Bruno Martini; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro

    2014-01-01

    To investigate if there is a relation between the increase of bismuth oxide and the decrease of pH levels and an intensification of toxicity in the Portland cement. White Portland cement (WPC) was mixed with 0, 15, 20, 30 and 50% bismuth oxide, in weight. For the pH level test, polyethylene tubes were filled with the cements and immersed in Milli-Q water for 15, 30 and 60 days. After each period, the increase of the pH level was assessed. For the biocompatibility, two polyethylene tubes filled with the cements were implanted in ninety albino rats (n=6). The analysis of the intensity of the inflammatory infiltrate was performed after 15, 30 and 60 days. The statistical analysis was performed using the Kruskal-Wallis, Dunn and Friedman tests for the pH level and the Kruskal-Wallis and Dunn tests for the biological analysis (p<0.05). The results showed an increase of the pH level after 15 days, followed by a slight increase after 30 days and a decrease after 60 days. There were no significant statistical differences among the groups (p>0.05). For the inflammatory infiltrates, no significant statistical differences were found among the groups in each period (p>0.05). The 15% WPC showed a significant decrease of the inflammatory infiltrate from 15 to 30 and 60 days (p<0.05). The addition of bismuth oxide into Portland cement did not affect the pH level and the biological response. The concentration of 15% of bismuth oxide resulted in significant reduction in inflammatory response in comparison with the other concentrations evaluated.

  13. Odor investigation of a Portland cement plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pleus, R.C.

    1998-12-31

    The main concern expressed by Smithville residents is whether the odors they were smelling during odor events were due to chemicals that could cause adverse health effects. Odors were allegedly emanating from the town`s Portland cement plant. The purpose of the study was to measure the ambient air for 20 reduced sulfur, 50 volatile organic compounds, and air samples for olfactometric analysis. Carbonyl sulfide was found to be at a concentration that could create a sense of odor and irritation. This sense of irritation may be due to a physiological response by the central nervous system, and is not associatedmore » with any known adverse effects. This physiological response could account for some or all of the irritation experienced by residents during odor events. Comparing chemical concentrations that were detected in air samples to standard and recognized guidelines for acceptable exposure, all measured concentrations were found to be well below the acceptable criteria. From these data the authors conclude that no acute or chronic adverse health effects are expected at the concentrations of the chemicals detected downwind of the cement plant, either routinely or during odor events.« less

  14. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  15. XRD Analysis of Cement Paste Samples Exposed to the Simulated Environment of a Deep Repository - 12239

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Eduardo G.A.; Marumo, Julio T.; Vicente, Roberto

    2012-07-01

    Portland cement materials are widely used as engineered barriers in repositories for radioactive waste. The capacity of such barriers to avoid the disposed of radionuclides to entering the biosphere in the long-term depends on the service life of those materials. Thus, the performance assessment of structural materials under a series of environmental conditions prevailing at the environs of repositories is a matter of interest. The durability of cement paste foreseen as backfill in a deep borehole for disposal of disused sealed radioactive sources is investigated in the development of the repository concept. Results are intended to be part of themore » body of evidence in the safety case of the proposed disposal technology. This paper presents the results of X-Ray Diffraction (XRD) Analysis of cement paste exposed to varying temperatures and simulated groundwater after samples received the radiation dose that the cement paste will accumulate until complete decay of the radioactive sources. The XRD analysis of cement paste samples realized in this work allowed observing some differences in the results of cement paste specimens that were submitted to different treatments. The cluster analysis of results was able to group tested samples according to the applied treatments. Mineralogical differences, however, are tenuous and, apart from ettringite, are hardly observed. The absence of ettringite in all the seven specimens that were kept in dry storage at high temperature had hardly occurred by natural variations in the composition of hydrated cement paste because ettringite is observed in all tested except the seven specimens. Therefore this absence is certainly the result of the treatments and could be explained by the decomposition of ettringite. Although the temperature of decomposition is about 110-120 deg. C, it may be initially decomposed to meta-ettringite, an amorphous compound, above 50 deg. C in the absence of water. Influence of irradiation on the

  16. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.

    PubMed

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-06-24

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.

  17. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevelsted, Tine F.; Herfort, Duncan; Skibsted, Jørgen, E-mail: jskib@chem.au.dk

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrousmore » and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.« less

  18. Phase I: energy conservation potential of Portland Cement particle size distribution control. Progress report, November 1978-January 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmuth, R.A.

    1979-03-01

    Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.

  19. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less

  20. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  1. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    NASA Astrophysics Data System (ADS)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  2. Red mud addition in the raw meal for the production of Portland cement clinker.

    PubMed

    Tsakiridis, P E; Agatzini-Leonardou, S; Oustadakis, P

    2004-12-10

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste, which is obtained from bauxite during the Bayer process for alumina production, in the raw meal for the production of Portland cement clinker. For that reason, two samples of raw meals were prepared: one with ordinary raw materials, as a reference sample ((PC)Ref), and another with 3.5% red mud ((PC)R/M). The effect on the reactivity of the raw mix was evaluated on the basis of the unreacted lime content in samples sintered at 1350, 1400 and 1450 degrees C. Subsequently, the clinkers were produced by sintering the two raw meals at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the red mud did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the red mud did not negatively affect the quality of the produced cement.

  3. Superfund Record of Decision (EPA Region 7): Lehigh Portland Cement Company, Mason City, IA. (First remedial action), June 1991. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-28

    The Lehigh Portland Cement site is composed of two areas: the 150-acre Lehigh Portland Cement Company (LPCC) cement production facility, and the 410-acre Lime Creek Nature Center (LCNC), in Mason, Gordo County, Iowa. The site overlies an aquifer that serves as a source of water for 12 nearby wells; and municipal water is obtained from a deeper aquifer. Calmus Creek borders the site and discharges to the Winnebago River, located within a mile of the site. From 1911 to the present, the LPCC has manufactured cement products. In 1981, hydrochemical tests of Blue Waters Pond on the LPCC area indicatedmore » high alkalinity. The Record of Decision (ROD) addresses the Cement Kiln Dust ground water, and surface water as a final remedy. Elevated pH of ground water and surface water also is of potential concern. The selected remedial action for all are included.« less

  4. Cement paste prior to setting: A rheological approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellotto, Maurizio, E-mail: maurizio.bellotto@bozzetto.it

    2013-10-15

    The evolution of cement paste during the dormant period is analyzed via small amplitude oscillation rheological measurements. Cement paste, from the very first moments after mixing cement and water, shows the formation of an elastic gel whose strength is rapidly increasing over time. Up to the onset of Portlandite precipitation G′(t) increases by more than 2 orders of magnitude and in the acceleratory period G′(t) continues steadily to increase. A microstructural modification is likely to occur between the dormant and the acceleratory period. At low deformations in the linearity domain the storage modulus G′(ω) exhibits a negligible frequency dependence. Atmore » higher deformations cement paste shows a yield stress which increases on increasing paste concentration. The presence of superplasticizers decreases the yield stress and increases the gelation threshold of the paste. Above the gelation threshold the evolution of cement paste with superplasticizers follows similar trends to the neat paste. -- Highlights: •The gelation of cement paste during the dormant period is analyzed via rheometry. •The observed evolution is proposed to be related to the pore structure refinement. •Similarities are observed with colloidal gels and colloidal glasses.« less

  5. Effects of Using Pozzolan and Portland Cement in the Treatment of Dispersive Clay

    PubMed Central

    Vakili, A. H.; Selamat, M. R.; Moayedi, H.

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone. PMID:23864828

  6. Effects of using pozzolan and Portland cement in the treatment of dispersive clay.

    PubMed

    Vakili, A H; Selamat, M R; Moayedi, H

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.

  7. Biocompatibility and setting time of CPM-MTA and white Portland cement clinker with or without calcium sulfate.

    PubMed

    Bramante, Clovis Monteiro; Kato, Marcia Magro; Assis, Gerson Francisco de; Duarte, Marco Antonio Hungaro; Bernardineli, Norberti; Moraes, Ivaldo Gomes de; Garcia, Roberto Brandão; Ordinola-Zapata, Ronald; Bramante, Alexandre Silva

    2013-01-01

    To evaluate the biocompatibility and the setting time of Portland cement clinker with or without 2% or 5% calcium sulfate and MTA-CPM. Twenty-four mice (Rattus norvegicus) received subcutaneously polyethylene tubes filled with Portland cement clinker with or without 2% or 5% calcium sulfate and MTA. After 15, 30 and 60 days of implantation, the animals were killed and specimens were prepared for microscopic analysis. For evaluation of the setting time, each material was analyzed using Gilmore needles weighing 113.5 g and 456.5 g, according to the ASTM specification Number C266-08 guideline. Data were analyzed by ANOVA and Tukey's test for setting time and Kruskal-Wallis and Dunn test for biocompatibility at 5% significance level. Histologic observation showed no statistically significant difference of biocompatibility (p>0.05) among the materials in the subcutaneous tissues. For the setting time, clinker without calcium sulfate showed the shortest initial and final setting times (6.18 s/21.48 s), followed by clinker with 2% calcium sulfate (9.22 s/25.33 s), clinker with 5% calcium sulfate (10.06 s/42.46 s) and MTA (15.01 s/42.46 s). All the tested materials showed biocompatibility and the calcium sulfate absence shortened the initial and final setting times of the white Portland cement clinker.

  8. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-01-01

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987

  9. Modification of Wood Fiber for Use in Cement Board

    NASA Astrophysics Data System (ADS)

    Han, F. Q.; Tan, X.; Zhao, F. Q.

    2017-12-01

    When ordinary Portland cement is used for wood fiber cement (WFC) board, the setting time is too long, even hard to solidify. Three methods can be used for wood fiber modification, i.e., soaking in water, treated with alkali solution and coated with some substances on the fiber surface. The results show that the proper water-cement ratio of WFC paste is 1:1.3 in the case of wood cement ratio being 1:1. The WFC board from modified wood fiber and cement is better than the control samples, in which the combined treatment, i.e. soaking in hot water and then coating with alkali-BFS-EVA slurry, behaves best. It is proved that ordinary Portland cement can be used to produce WFC board, with the modified wood fiber, which can greatly reduce production costs.

  10. 76 FR 78240 - Gray Portland Cement and Clinker From Japan: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Clinker From Japan: Continuation of Antidumping Duty Order AGENCY: Import Administration, International... clinker from Japan, pursuant to section 751(c) of the Tariff Act of 1930, as amended (the Act). See... of the antidumping duty order on gray portland cement and clinker from Japan would likely lead to...

  11. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiringmore » cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process.« less

  12. Lime kiln dust as a potential raw material in portland cement manufacturing

    USGS Publications Warehouse

    Miller, M. Michael; Callaghan, Robert M.

    2004-01-01

    In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.

  13. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  14. Effects of loop detector installation on the Portland cement concrete pavement lifespan : case study on I-5.

    DOT National Transportation Integrated Search

    2010-08-01

    The installation of loop detectors in portland cement concrete pavement (PCCP) may shorten affected panel life, thus prematurely worsening the condition of the overall pavement. This study focuses on the performance of those loop embedded panels (LEP...

  15. Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder.

    PubMed

    Napia, Chuwit; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya

    2012-07-01

    This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement.

    PubMed

    Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun

    2018-01-01

    Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Portland Cement Manufacturing Industry Subpart LLL Rule Guidance

    EPA Pesticide Factsheets

    This Spring 2016 document is intended for the use of EPA staff, State and Local regulatory agencies and their staff, and industry plant managers for the NESHAP for the Portland Cement Manufacturing Industry.

  18. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    NASA Astrophysics Data System (ADS)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  19. Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhenguo; Geiker, Mette Rica; De Weerdt, Klaartje

    Chloride binding is investigated for Portland cement–metakaolin–limestone pastes exposed to CaCl{sub 2} and NaCl solutions. The phase assemblages and the amount of Friedel's salt are evaluated using TGA, XRD and thermodynamic modeling. A larger amount of Friedel's salt is observed in the metakaolin blends compared to the pure Portland cement. A higher total chloride binding is observed for the pastes exposed to the CaCl{sub 2} solution relative to those in the NaCl solution. This is reflected by the fact that calcium increases the quantity of Friedel's salt in the metakaolin blends by promoting the transformation of strätlingite and/or monocarbonate tomore » Friedel's salt. Calcium increases also the amount of chloride in the diffuse layer of the C-S-H for the pure cement. A linear correlation between the total bound chloride and the uptake of calcium from the CaCl{sub 2} solution is obtained and found to be independent on the type of cement blend.« less

  20. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    PubMed

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P < 0.05). MTA Fillapex had the shortest setting time and lowest compressive strength values (P < 0.05) compared with the other materials. The ES had flow values similar to the conventional materials, but higher film thickness (P < 0.05) and lower radiopacity (P < 0.05). Similarly to AH Plus, the ES were associated with dimensional expansion (P > 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P < 0.05). None of the endodontic sealers evaluated released formaldehyde after mixing. With the exception of radiopacity, the Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    PubMed

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  2. Analysis of Metal Contents in Portland Type V and MTA-Based Cements

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Bandeca, Matheus Coelho; Pedro, Fábio Luis Miranda; Volpato, Luiz Evaristo Ricci; Guedes, Orlando Aguirre; Villa, Ricardo Dalla; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique

    2014-01-01

    The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P < 0.05). Bismuth was found in all cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion. PMID:25436238

  3. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    NASA Astrophysics Data System (ADS)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement

  4. Arsenic Encapsulation Using Portland Cement With Ferrous Sulfate/Lime And Terra-BondTM Technologies - Microcharacterization And Leaching Studies

    EPA Science Inventory

    This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-BondTM, a commercially available patented technology. The arsenic materials treated we...

  5. Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua, E-mail: yc982@163.com; Li, Weifeng; Zhang, Shenbiao

    2015-01-15

    Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the hydration kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the phase development in the process of hydration. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second hydration rate of the aluminatemore » and ferrite phases, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the hydration of alite and reduces the pore size and porosity.« less

  6. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  7. Effect of Nano-SiO₂ on the Hydration and Microstructure of Portland Cement.

    PubMed

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-12-15

    This paper systematically studied the modification of cement-based materials by nano-SiO₂ particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO₂ particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO₂ in cement paste, respectively. The results showed that the reaction of nano-SiO₂ particles with Ca(OH)₂ (crystal powder) started within 1 h, and formed C-S-H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO₂, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO₂. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO₂ promoted the formation of C-S-H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO₂ was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased.

  8. Modelling the minislump spread of superplasticized PPC paste using RLS with the application of Random Kitchen sink

    NASA Astrophysics Data System (ADS)

    Sathyan, Dhanya; Anand, K. B.; Jose, Chinnu; Aravind, N. R.

    2018-02-01

    Super plasticizers(SPs) are added to the concrete to improve its workability with out changing the water cement ratio. Property of fresh concrete is mainly governed by the cement paste which depends on the dispersion of cement particle. Cement dispersive properties of the SP depends up on its dosage and the family. Mini slump spread diameter with different dosages and families of SP is taken as the measure of workability characteristic of cement paste chosen for measuring the rheological properties of cement paste. The main purpose of this study includes measure the dispersive ability of different families of SP by conducting minislump test and model the minislump spread diameter of the super plasticized Portland Pozzolona Cement (PPC)paste using regularized least square (RLS) approach along with the application of Random kitchen sink (RKS) algorithm. For preparing test and training data for the model 287 different mixes were prepared in the laboratory at a water cement ratio of 0.37 using four locally available brand of Portland Pozzolona cement (PPC) and SP belonging to four different families. Water content, cement weight and amount of SP (by considering it as seven separate input based on their family and brand) were the input parameters and mini slump spread diameter was the output parameter for the model. The variation of predicted and measured values of spread diameters were compared and validated. From this study it was observed that, the model could effectively predict the minislump spread of cement paste

  9. The effect of gyrolite additive on the hydration properties of Portland cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisinas, A., E-mail: anatolijus.eisinas@ktu.lt; Baltakys, K.; Siauciunas, R.

    2012-01-15

    The influence of gyrolite additive on the hydration properties of ordinary Portland cement was examined. It was found that the additive of synthetic gyrolite accelerates the early stage of hydration of OPC. This compound binds alkaline ions and serves as a nucleation site for the formation of hydration products (stage I). Later on, the crystal lattice of gyrolite becomes unstable and turns into C-S-H, with higher basicity (C/S {approx} 0.8). This recrystallization process is associated with the consumption of energy (the heat of reaction) and with a decrease in the rate of heat evolution of the second exothermic reaction (stagemore » II). The experimental data and theoretical hypothesis were also confirmed by thermodynamic and the apparent kinetic parameters of the reaction rate of C{sub 3}S hydration calculations. The changes occur in the early stage of hydration of OPC samples and do not have a significant effect on the properties of cement stone.« less

  10. Determination of the Apical Sealing Abilities of Mineral Trioxide Aggregate, Portland Cement, and Bioaggregate After Irrigation with Different Solutions.

    PubMed

    Bayram, H Melike; Saklar, Feridun; Bayram, Emre; Orucoglu, Hasan; Bozkurt, Alperen

    2015-06-01

    The purpose of this study was to investigate the sealing ability of root-end filling materials such as mineral trioxide aggregate (MTA), Portland cement, and bioaggregate (BA) after irrigation with different solutions. We examined 130 human maxillar central teeth. After cutting the teeth at the cementoenamel junction, the root canals were expanded using nickel-titanium rotary instruments. Root canals were filled with AH-plus and gutta-percha. Then, the roots were cut apically, and 3 mm deep retrograde cavities were prepared. The roots were divided 12 experimental groups, consisting 10 teeth each; the positive and negative control groups contained five teeth each. The retrograde cavities were rinsed using ethylenediaminetetraacetic acid (EDTA), chlorhexidine (CHX), BioPure(™) mixture of a tetracycline isomer, an acid, and a detergent (MTAD), or distilled water. Next, groups 1, 2, 3, and 4 were sealed with MTA; groups 5, 6, 7, and 8 were sealed with Portland cement; and groups 9, 10, 11, and 12 were sealed with BA. Then, apical microleakage was evaluated by using a computerized fluid filtration method. The results of the leakage test were statistically evaluated by the post-hoc Tukey's test. MTA, Portland cement, and BA root-end filling materials showed the least leakage in the CHX and distilled water groups. The highest leakage was observed in the EDTA and MTAD groups. The sealing ability of BA was as good as that of MTA. EDTA and MTAD increased the apical leakage and CHX and distilled water decreased the leakage of the root-end filling materials examined in this study.

  11. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, G.; Liu, X.; De Schutter, G.

    2007-06-15

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on themore » cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m{sup 3} of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently.« less

  12. Damage identification in cement paste amended with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soltangharaei, Vafa; Anay, Rafal; Assi, Lateef; Ziehl, Paul; Matta, Fabio

    2018-04-01

    Cement-based composites have been used as reliable materials in building and civil engineering infrastructure for many decades. Although there are several advantages, some drawbacks such as premature cracking may be problematic for sensitive applications such as those found in nuclear power plants or associated waste storage facilities. In this study, acoustic emission monitoring was employed to detect stress waves associated with damage progression during uniaxial compressive loading. Acoustic emission data resulting from loading of plain cement paste prisms and cement paste prisms amended with carbon nanotubes are compared. Unsupervised pattern recognition is employed to categorize the data. Results indicate that increased acoustic emission activity was recorded for the plain cement paste prisms when compared to prisms amended with carbon nanotubes.

  13. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete.

    PubMed

    Wang, Xiao-Yong

    2017-01-26

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel-space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  14. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete

    PubMed Central

    Wang, Xiao-Yong

    2017-01-01

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods. PMID:28772472

  15. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significantmore » change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.« less

  16. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  17. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement

    PubMed Central

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-01-01

    This paper systematically studied the modification of cement-based materials by nano-SiO2 particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO2 particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO2 in cement paste, respectively. The results showed that the reaction of nano-SiO2 particles with Ca(OH)2 (crystal powder) started within 1 h, and formed C–S–H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO2, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO2. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO2 promoted the formation of C–S–H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO2 was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased. PMID:28335369

  18. Stabilized phosphogypsum: class C fly ash: Portland type II cement composites for potential marine application.

    PubMed

    Guo, T; Malone, R F; Rusch, K A

    2001-10-01

    Phosphogypsum (PG, CaSO4 x H20), a byproduct of phosphoric acid manufacturing, contains low levels of Ra226. PG can be stabilized with portland type II cement and class C fly ash for use in marine environments, thus eliminating the airborne vector of transmission for radon gas. An augmented simplex centroid design with pseudocomponents was used to select 10 PG:class C fly ash:portland type II cement compositions. The 43 cm3 blocks were fabricated and subjected to a 1.5-yr field submergence test and a 28-d saltwater dynamic leaching study. All field composites survived with no signs of degradation. Dynamic leaching resulted in effective calcium diffusion coefficients ranging from 0.21 to 7.5 x 10(-14)m2 s(-1). Effective diffusion depths, calculated for t=1 and 30 yr, ranged from 0.4 to 2.2 mm and from 2.0 to 11.9 mm, respectively. Scanning electron microscopy and wavelength dispersive microprobe and X-ray diffraction analyses of the leached composites identified a 40-60-microm calcite layer that was absent in the control composites. This suggests that a reaction between the composites and the saltwater results in the precipitation of calcite onto the block surface, encapsulating the composites and protecting them from saltwater attack and dissolution.

  19. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 2: Significance of transition zones on physical and mechanical properties of portland cement mortar; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.F.F.; Cohen, M.D.; Chen, W.F.

    1998-08-01

    The research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  20. Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement

    NASA Astrophysics Data System (ADS)

    Khanna, Om Shervan

    The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different

  1. Critical review: Injectability of calcium phosphate pastes and cements.

    PubMed

    O'Neill, R; McCarthy, H O; Montufar, E B; Ginebra, M-P; Wilson, D I; Lennon, A; Dunne, N

    2017-03-01

    Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Investigation on the potential of waste cooking oil as a grinding aid in Portland cement.

    PubMed

    Li, Haoxin; Zhao, Jianfeng; Huang, Yuyan; Jiang, Zhengwu; Yang, Xiaojie; Yang, Zhenghong; Chen, Qing

    2016-12-15

    Although there are several methods for managing waste cooking oil (WCO), a significant result has not been achieved in China. A new method is required for safe WCO management that minimizes the environmental threat. In this context, this work was developed in which cement clinker and gypsum were interground with various WCOs, and their properties, such as grindability, water-cement ratio required to achieve a normal consistency, setting times, compressive strength, contents of calcium hydroxide and ettringite in the hardened paste, microstructure and economic and environmental considerations, were addressed in detail. The results show that, overall, WCO favorably improves cement grinding. WCO prolonged the cement setting times and resulted in longer setting times. Additionally, more remarkable effects were found in cements in which WCO contained more unsaturated fatty acid. WCOs increased the cement strength. However, this enhancement was rated with respect to the WCO contents and components. WCOs decreased the CH and AFt contents in the cement hardened paste. Even the AFt content at later ages was reduced when WCO was used. WCO also densify microstructure of the hardened cement paste. It is economically and environmentally feasible to use WCOs as grinding aids in the cement grinding process. These results contribute to the application of WCOs as grinding aids and to the safe management of WCO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques

    DOE PAGES

    Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan; ...

    2017-10-13

    Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydratemore » and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.« less

  4. Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan

    Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydratemore » and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.« less

  5. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gineys, N., E-mail: nathalie.gineys@mines-douai.fr; EMDouai, LGCgE-MPE-GCE, F-59508 Douai; Aouad, G.

    2011-11-15

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C{sub 3}S, C{sub 2}S, C{sub 3}A and C{sub 4}AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C{sub 3}S, 18% C{sub 2}S, 8% C{sub 3}A and 8% C{sub 4}AF). The threshold limits formore » Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO{sub 2}) and Sn reacted with lime to form a calcium stannate (Ca{sub 2}SnO{sub 4}). Cu changed the crystallisation process and affected therefore the formation of C{sub 3}S. Indeed a high content of Cu in clinker led to the decomposition of C{sub 3}S into C{sub 2}S and of free lime. Zn, in turn, affected the formation of C{sub 3}A. Ca{sub 6}Zn{sub 3}Al{sub 4}O{sub 15} was formed whilst a tremendous reduction of C{sub 3}A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.« less

  6. Development of high-viscosity, two-paste bioactive bone cements.

    PubMed

    Deb, S; Aiyathurai, L; Roether, J A; Luklinska, Z B

    2005-06-01

    Self-curing two-paste bone cements have been developed using methacrylate monomers with a view to formulate cements with low polymerization exotherm, low shrinkage, better mechanical properties, and improved adhesion to bone and implant surfaces. The monomers include bis-phenol A glycidyl dimethacrylate (bis-GMA), urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) as a viscosity modifier. Two-paste systems were formulated containing 60% by weight of a bioactive ceramic, hydroxyapatite. A methacroyloxy silane (A174) was used as a coupling agent due to its higher water stability in comparison to other aminosilanes to silanate the hydroxyapatite particles prior to composite formulation. A comparison of the FT-infrared spectrum of hydroxyapatite and silanated hydroxyapatite showed the presence of the carbonyl groups ( approximately 1720 cm(-1)), -C=C-( approximately 1630 cm(-1)) and Si-O- (1300-1250 cm(-1)) which indicated the availability of silane groups on the filler surface. Two methods of mixing were effected to form the bone cement: firstly by mixing in an open bowl and secondly by extruding the two pastes by an auto-mixing tip using a gun to dispense the pastes. Both types of cements yielded low polymerization exotherms with good mechanical properties; however, the lower viscosity of UDMA allowed better extrusion and handling properties. A biologically active apatite layer formed on the bone cement surface within a short period after its immersion in simulated body fluid, demonstrating in vitro bioactivity of the composite. This preliminary data thus suggests that UDMA is a viable alternative to bis-GMA as a polymerizable matrix in the formation of bone cements.

  7. Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane

    NASA Astrophysics Data System (ADS)

    Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.

  8. Interactions between chloride and cement-paste materials.

    PubMed

    Barberon, Fabien; Baroghel-Bouny, Véronique; Zanni, Hélène; Bresson, Bruno; d'Espinose de la Caillerie, Jean-Baptiste; Malosse, Lucie; Gan, Zehong

    2005-02-01

    The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress.

  9. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  10. Properties of cement based composites modified using diatomaceous earth

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  11. Peculiarities of hydration of Portland cement with synthetic nano-silica

    NASA Astrophysics Data System (ADS)

    Kotsay, Galyna

    2017-12-01

    Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.

  12. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    DOT National Transportation Integrated Search

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  13. Reducing cement content in concrete mixtures : [research brief].

    DOT National Transportation Integrated Search

    2011-12-01

    Concrete mixtures contain crushed rock or gravel, and sand, bound together by Portland cement in combination with supplemental cementitious materials (SCMs), which harden through a chemical reaction with water. Portland cement is the most costly comp...

  14. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    NASA Astrophysics Data System (ADS)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  15. Adsorption of superplasticizer admixtures on alkali-activated slag pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palacios, M.; Houst, Y.F.; Bowen, P.

    2009-08-15

    Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated. The results obtained allowed us to concludemore » that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.« less

  16. Influence of dunite mineral additive on strength of cement

    NASA Astrophysics Data System (ADS)

    Vasilyeva, A. A.; Moskvitina, L. V.; Moskvitin, S. G.; Lebedev, M. P.; Fedorova, G. D.

    2017-12-01

    The work studies the applicability of dunite rocks from Inagli massif (South Yakutia) for the production of mixed (composite) cement. The paper reviews the implementation of dunite for manufacturing materials and products. The chemical and mineral compositions of Inagli massif dunite rocks are presented, which relegate the rocks to magnesia-silicate rocks of low-quality in terms of its application as refractory feedstock due to appreciable serpentinization of dunite. The work presents the results of dunite study in terms of its applicability as an additive to Portland cement. The authors have established that dunite does not feature hydraulicity and can be used as a filling additive to Portland cement in the amount of up to 40%. It was unveiled that the mixed grinding of Portland cement and dunite sand with specific surface area of 5500 cm2/g yields the cement that complies with GOST 31108-2016 for CEM II and CEM V normal-cured cements with strength grades of 32.5 and 42.5. The work demonstrates the benefits of the studies of dunite as a filling additive for producing both Portland cement with mineral component and composite (mixed) cement.

  17. The influence of cellulose nanocrystal additions on the performance of cement paste

    Treesearch

    Yizheng Cao; Pablo Zavaterri; Jeff Youngblood; Robert Moon; Jason Weiss

    2015-01-01

    The influence of cellulose nanocrystals (CNCs) addition on the performance of cement paste was investigated. Our mechanical tests show an increase in the flexural strength of approximately 30% with only 0.2% volume of CNCs with respect to cement. Isothermal calorimetry (IC) and thermogravimetric analysis (TGA) show that the degree of hydration (DOH) of the cement paste...

  18. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi

    An experimental study is carried out with the aim to understand the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement (OPC) concrete. Effects of carbonation on the chloride profile, the chloride binding capacity and the chloride diffusion coefficient are evaluated. Besides, effect of chloride aerosol attack on the carbonation rate is investigated. Concrete specimens with three water-to-cement ratios (0.38, 0.47 and 0.53) are fabricated in this work. Tested results demonstrate that carbonation remarkably affects the chloride profile, reduces the chloride binding capacity, and also accelerates the rate of chloride ion diffusion of concrete. Besides, the presencemore » of chloride aerosol can lead to lower the carbonation depth and increase the pH value of carbonated concrete. Microscopic properties such as morphology, porosity, and pore size distribution for the contaminated concretes are explored by scanning electron microscope and mercury intrusion porosimetry, which provide strong evidence to these research findings.« less

  20. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  1. Physicomechanical enhancement on Portland composite concrete using silica fume as replacement material

    NASA Astrophysics Data System (ADS)

    Husin, Wan Norsariza Wan; Johari, Izwan

    2017-09-01

    The addition of supplementary cementitious materials may change the physical and mechanical properties of concrete. Mineral additions which are also known as mineral admixtures have been used with cement for many years. However, this research did not use Ordinary Portland Cement (OPC) but using the Portland Cement Composite (PCC). The aim of this study is to determine the effect of partial substitution of PCC by silica fume (SF) on the physicomechanical properties especially the compressive strength of the hardened PCC-SF composite concrete. Silica fume was used to replace PCC at dosage levels of 5%, 10%, 15% and 20% by weight of cement in concrete. The results show that on 7 days the PCC concrete exhibited lower early age strength but PCC-SF concrete improved and gain strength up to grade 30 in 7 days. The utilisation of SF resulted in significant improvement of Portland composite concrete admixture.

  2. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report A : evaluation of HVFA cementitious paste and concrete mixtures.

    DOT National Transportation Integrated Search

    2012-10-01

    In the Paste Screening Study, 25 combinations of five Type I/II portland cements : and five Class C fly ashes commonly used in Missouri were tested in paste form with no : chemical or powder additives. Testing procedures included semi-adiabatic calor...

  3. Effect of various superplasticizers on rheological properties of cement paste and mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, I.; Agarwal, S.K.

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cementmore » paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.« less

  4. Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes

    PubMed Central

    Jang, Sung-Hwan; Kawashima, Shiho; Yin, Huiming

    2016-01-01

    Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without surfactant were characterized. MWCNT clustering was assessed qualitatively in an aqueous solution through visual observation, and quantitatively in cement matrices using a scanning electron microscopy technique. Additionally, the corresponding 28-day compressive strength, tensile strength, and electrical conductivity were measured. Results showed that the use of surfactant led to a downward shift in the MWCNT clustering size distribution in the matrices of MWCNT/cement paste, indicating improved dispersion of MWCNTs. The compressive strength, tensile strength, and electrical conductivity of the composites with surfactant increased with MWCNT concentration and were higher than those without surfactant at all concentrations. PMID:28773348

  5. Carbonation-induced weathering effect on cesium retention of cement paste

    NASA Astrophysics Data System (ADS)

    Park, S. M.; Jang, J. G.

    2018-07-01

    Carbonation is inevitable for cement and concrete in repositories over an extended period of time. This study investigated the carbonation-induced weathering effect on cesium retention of cement. Cement paste samples were exposed to accelerated carbonation for different durations to simulate the extent of weathering among samples. The extent of carbonation in cement was characterized by XRD, TG and NMR spectroscopy, while the retention capacity for cesium was investigated by zeta potential measurement and batch adsorption tests. Though carbonation led to decalcification from the binder gel, it negatively charged the surface of cement hydrates and enhanced their cesium adsorption capacity.

  6. The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles

    PubMed Central

    Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali

    2016-01-01

    This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073

  7. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Bai, Jing; Memon, Shazim Ali; Dong, Biqin; Fang, Yuan; Xu, Weiting; Xing, Feng

    2015-02-13

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)₂, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  8. Temperature influence on water transport in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouet, Emeline; Poyet, Stéphane, E-mail: stephane.poyet@cea.fr; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  9. The Discoloration effect of White Mineral Trioxide Aggregate (WMTA), Calcium Enriched Mixture (CEM), and Portland Cement (PC) on Human Teeth.

    PubMed

    Salem-Milani, Amin; Ghasemi, Saeede; Rahimi, Saeed; Ardalan-Abdollahi, Amir; Asghari-Jafarabadi, Mohammad

    2017-12-01

    The aim of this study was to evaluate the discoloration induced by CEM cement, Portland cement (PC) and MTA mixed with propylene glycol (MTA-PG) in comparison to White MTA. Ninety extracted premolar and canine teeth were resected 2 mm below the CEJ. The coronal part of crown was prepared with peeso reamer and Gates-Glidden drills, and the specimens were randomly divided into 4 experimental (n=20) and one control (n=10) groups. The tooth crowns in experimental groups 1 to 4 were filled with White MTA, PC, CEM cement and MTA-PG, respectively; and in group 5, the teeth were kept empty. After incubation, digital photographs of teeth were acquired at 4 time points (before, immediately after placing the materials, 3 and 6 months afterwards). Images were transferred to Adobe Photoshop CS4 and CIE L*a*b color space was used for tooth shade assessment. One-Way ANOVA and One-Sample t-test were used to compare discoloration of teeth between groups. Significant statistical discoloration was only observed in the cervical one third of all groups at each time points (except between 3 and 6 months). Tooth discoloration was greatest in PC and lower in MTA and MTA-PG at the end of 6 months. The tooth discoloration between immediately and 3 months after placing the materials had significant difference only between MTA and PC; and also the tooth discoloration between immediately and 6 months after placing the materials was observed only between PC and MTA, and PC and MTA-PG. All of the experimental biomaterials caused tooth discoloration after 6 months, of those, PC had the most and MTA and MTA-PG had the least discoloration effect. Key words: Mineral trioxide aggregate (MTA). Calcium enriched mixture (CEM). Propylene glycol. Portland cement.

  10. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  11. Test using expansive cement in cement stabilized base to eliminate or prevent cracking : experimental projects.

    DOT National Transportation Integrated Search

    1975-08-01

    The purpose of this study was to determine the feasibility of using an : expansive cement, TXI 4C Chem Comp, in lieu of the regular Type I Portland : Cement in a cement stabilized gravel screenings base so as to eliminate : or reduce cracks associate...

  12. The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes

    NASA Astrophysics Data System (ADS)

    Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.

    2017-10-01

    It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.

  13. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less

  14. A speciation solver for cement paste modeling and the semismooth Newton method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georget, Fabien, E-mail: fabieng@princeton.edu; Prévost, Jean H., E-mail: prevost@princeton.edu; Vanderbei, Robert J., E-mail: rvdb@princeton.edu

    2015-02-15

    The mineral assemblage of a cement paste may vary considerably with its environment. In addition, the water content of a cement paste is relatively low and the ionic strength of the interstitial solution is often high. These conditions are extreme conditions with respect to the common assumptions made in speciation problem. Furthermore the common trial and error algorithm to find the phase assemblage does not provide any guarantee of convergence. We propose a speciation solver based on a semismooth Newton method adapted to the thermodynamic modeling of cement paste. The strong theoretical properties associated with these methods offer practical advantages.more » Results of numerical experiments indicate that the algorithm is reliable, robust, and efficient.« less

  15. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschner, Florian, E-mail: florian.deschner@gmail.com; Lothenbach, Barbara; Winnefeld, Frank

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringitemore » and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.« less

  16. Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

    NASA Astrophysics Data System (ADS)

    Horgnies, M.; Dubois-Brugger, I.; Krou, N. J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.

    2015-07-01

    The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g-1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g-1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.

  17. Evaluation of ternary blended cements for use in transportation concrete structures

    NASA Astrophysics Data System (ADS)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  18. Blasted copper slag as fine aggregate in Portland cement concrete.

    PubMed

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat; Türkmen, İbrahim; Özdemir, Yüksel

    2009-09-01

    Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.

  20. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.

  1. Effect of sodium fluorosilicate on the properties of Portland cement.

    PubMed

    Appelbaum, Keith S; Stewart, Jeffrey T; Hartwell, Gary R

    2012-07-01

    Mineral trioxide aggregate (MTA) satisfies most of the ideal properties of a surgical root-end filling and perforation repair material. It has been found to be nontoxic, noncarcinogenic, nongenotoxic, biocompatible, insoluble in tissue fluids, and dimensionally stable and promotes cementogenesis. The major disadvantages are its long setting time and difficult handling characteristics during placement when performing endodontic procedures. MTA is similar to Portland cement (PC) in both composition and properties. The cement industry has used many additives to decrease the setting time of PC. Proprietary formulas of PC additives include fluorosilicates, which decrease setting time. The purpose of this pilot study was to determine whether sodium fluorosilicate (SF) could be used to decrease the setting time without adversely affecting the compressive strength of PC. To determine the most appropriate amount of SF to add to PC to decrease its setting time, 1%, 2%, 3%, 4%, 5%, 10%, and 15% SF by weight were added to PC and compared with PC without SF. Setting times were measured by using a Gilmore needle, and compressive strengths were determined by using a materials testing system at 24 hours and 21 days. Statistical analysis was performed by using one-way analysis of variance with post hoc Games-Howell test. None of the percentages of SF were effective in changing the setting time of PC (P > .05), and the SF additives were found to decrease the compressive strength of PC (P < .001). On the basis of the conditions of this study, SF should not be used to decrease setting time and increase the compressive strength of PC and as such does not warrant further testing with MTA. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Utilization of municipal sewage sludge as additives for the production of eco-cement.

    PubMed

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-04-30

    The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50-15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C(2)S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco-cement clinkers met the standard of Chinese current regulatory thresholds. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tailby, Jonathan, E-mail: jmtailby@hotmail.co; MacKenzie, Kenneth J.D.

    2010-05-15

    The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poormore » strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.« less

  4. Effectiveness of inorganic membrane mixture of natural zeolite and portland white cement in purifying of peat water based on turbidity parameter

    NASA Astrophysics Data System (ADS)

    Elfiana; Fuadi, A.; Diana, S.

    2018-04-01

    Peat water is water surface that brownish red colour caused by the contained constituents. Solving the peat watercolor problem requires special attention considering the quantity of peat water and suitable to be used to meet the daily needs. This study aims to know the inorganic membrane capability of mix nature zeolite and white Portland cement to purifying the peat water based on turbidity parameter. The study was conducted by varying the composition of nature zeolite (Za) and white Portland cement (Sp) in the ratio of Za: Sp is (25%:75%; 50%:50%; 75%:25%) with zeolite condition activated using HCl 2M and nonactivated zeolite treatments. The result of the characteristic test on membrane morphology using SEM (Scanning Electron Microscope) showed that the pore surface size of the membrane is 2 μm that could classified in microfiltration membrane an organic type. The characteristic test showed also resulted in the density of 0.77 to 0.86 gr/cm3, porosity 26.22% to 35.93%, and permeability 2736.19 to 8428.15. While the water retention capacity is in range of 30.64% to 46.46%, The result of inorganic membrane application on peat water showed turbidity of peat water decreased 94.17%, from 10.3 NTU to 0.6 NTU.

  5. Using cement paste rheology to predict concrete mix design problems : technical report.

    DOT National Transportation Integrated Search

    2009-07-01

    The complex interaction between cement and chemical/mineral admixtures in concrete mixture sometimes leads to : unpredictable concrete performance in the field, which is generally defined as concrete incompatibilities. Cement paste : rheology measure...

  6. Use of coir pith particles in composites with Portland cement.

    PubMed

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Cheng-Gang; Sun, Chang-Jung, E-mail: sun.3409@hotmail.com; Gau, Sue-Huai

    2013-04-15

    Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA)more » leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.« less

  8. Characterization and analyses of acid-extractable and leached trace elements in dental cements.

    PubMed

    Camilleri, J; Kralj, P; Veber, M; Sinagra, E

    2012-08-01

    Determination of the elemental constitution and investigation of the total and leachable arsenic, chromium and lead in Portland cement, pure tricalcium silicate, Biodentine, Bioaggregate and mineral trioxide aggregate (MTA) Angelus. The chemical composition of Portland cement, MTA Angelus, tricalcium silicate cement, Biodentine and Bioaggregate was determined using X-ray fluorescence (XRF). Measurements of arsenic, lead and chromium were taken with inductively coupled plasma-mass spectrometry (ICP-MS), following acid digestion on the hydrated material and on leachates of cements soaked in Hank's balanced salt solution (HBSS). All the cements investigated had a similar oxide composition with the main oxide being calcium and silicon oxide. Both the Portland cement and MTA Angelus had an additional aluminium oxide. The dental cements included a radiopacifying material. All the materials tested had higher acid-extractable arsenic content than the level set by ISO 9917-1 (2007) and an acceptable level of lead. Regardless these high levels of trace elements present in the materials, the leaching in HBSS was minimal for all the dental material tested in contrast to the high levels displayed by Portland cement. Dental materials based on tricalcium silicate cement and MTA Angelus release minimal quantities of trace elements when in contact with simulated body fluids. The results of acid extraction could be affected by nonspecific matrix effects by the cement. © 2012 International Endodontic Journal.

  9. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  10. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  11. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk; Swift, Paul; Utton, Claire

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, andmore » the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.« less

  12. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application

    PubMed Central

    Cui, Hongzhi; Yang, Shuqing; Memon, Shazim Ali

    2015-01-01

    Microencapsulated phase-change materials (MPCM) can be used to develop a structural–functional integrated cement paste having high heat storage efficiency and suitable mechanical strength. However, the incorporation of MPCM has been found to degrade the mechanical properties of cement based composites. Therefore, in this research, the effect of carbon nanotubes (CNTs) on the properties of MPCM cement paste was evaluated. Test results showed that the incorporation of CNTs in MPCM cement paste accelerated the cement hydration reaction. SEM micrograph showed that CNTs were tightly attached to the cement hydration products. At the age of 28 days, the percentage increase in flexural and compressive strength with different dosage of CNTs was found to be up to 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %. From the thermal performance test, it was found that the cement paste panels incorporated with different percentages of MPCM reduced the temperature measured at the center of the room by up to 4.6 °C. Inverse relationship was found between maximum temperature measured at the center of the room and the dosage of MPCM. PMID:25867476

  13. Influence of viscosity modifying admixtures on the rheological behavior of cement and mortar pastes

    NASA Astrophysics Data System (ADS)

    Bouras, R.; Kaci, A.; Chaouche, M.

    2012-03-01

    The influence of Viscosity-modifying admixtures (VMA) dosage rate on the steady state rheological properties, including the yield stress, fluid consistency index and flow behaviour index, of cementitious materials is considered experimentally. The investigation is undertaken both at cement paste and mortar scales. It is found that the rheological behaviour of the material is in general dependent upon shear-rate interval considered. At sufficiently low shear-rates the materials exhibit shear-thinning. This behaviour is attributed to flow-induced defloculation of the solid particles and VMA polymer disentanglement and alignment. At relatively high shear-rates the pastes becomes shear-thickening, due to repulsive interactions among the solid particles. There is a qualitative difference between the influence of VMA dosage at cement and mortar scales: at cement scale we obtain a monotonic increase of the yield stress, while at mortar scale there exists an optimum VMA dosage for which the yield stress is a minimum. The flow behaviour index exhibit a maximum in the case of cement pastes and monotonically decreases in the case of mortars. On the other hand, the fluid consistency index presents a minimum for both cement pastes and mortars.

  14. Study of leaching mechanisms of caesium ions incorporated in Ordinary Portland Cement.

    PubMed

    Papadokostaki, Kyriaki G; Savidou, Anastasia

    2009-11-15

    In this work, a study of the leaching kinetics of Cs(+) ions from cement paste solids, containing inactive Cs(2)SO(4), is presented, involving (i) the parallel performance of leaching experiments at two temperatures (30 degrees C and 70 degrees C); (ii) the performance of leaching tests with intermediate changes in temperature between 30 degrees C and 70 degrees C; (iii) the use of specimens of two different thicknesses and (iv) the determination of the distribution of Cs(+) in the cement specimen at various stages of the leaching test. The results of leaching studies at 30 degrees C with cement solids simulating the composition of real radioactive wastes, containing NaNO(3), small amounts of inactive CsNO(3) and traces of (137)Cs(+) are also reported. Concentration profiles of Cs(+) in inactive specimens showed that part of the Cs(+) (20-30%) tends to be immobilized in the matrix, while elution of the readily leachable portion follows Fick's law reasonably well. No immobilized Cs(+) was detected in the samples containing considerable amounts of NaNO(3). Long-term leaching experiments (up to 8 years) revealed acceleration of the elution process (not detectable in short-term tests), attributable to increase in porosity caused by erosion of the cement matrix. Sorption experiments of Cs(+) ions by cement granules indicated that adsorption on cement pore surfaces is not significant. On the other hand, the leaching tests at two different temperatures or with intermediate changes in temperature between 30 degrees C and 70 degrees C, yielded activation energies that indicated a more complicated kinetic behavior.

  15. Stability of GO Modified by Different Dispersants in Cement Paste and Its Related Mechanism.

    PubMed

    Long, Wu-Jian; Fang, Changle; Wei, Jingjie; Li, Haodao

    2018-05-18

    Graphene oxide (GO) is a potential material to be used as a nano-reinforcement in cement matrix. However, a prerequisite for GO to fulfill its function in the cement matrix is homogeneous dispersion. In this study, the effects of three different dispersing agents (DAs), including polycarboxylate-based high range water reducer (P-HRWR), naphthalene-based high range water reducer (N-HRWR), and air entraining agent (AEA) on the dispersion of GO in aqueous solution, simulated concrete pore solution (SCPS), and suspension of cement pastes were sequentially investigated. Results showed that the dispersion effect of GO in aqueous solutions was improved with different DAs. However, the homogeneous dispersion of GO in aqueous solution re-agglomerated in SCPS and suspension of cement pastes. It was concluded that as the cement content and pH of aqueous solutions increased, GOs re-agglomerated and precipitated in an alkaline solution. A possible mechanism was proposed in this study and it was believed that electrostatic interactions and steric hindrance provided by the P-HRWR further made GOs stable in aqueous solutions. The ions and pH of cement pastes increased with the increasing amount of cement, which caused the separation of P-HRWR from GOs. Therefore, GOs were re-agglomerated and absorbed on the surface of the cement particles, resulting in GOs sedimentation.

  16. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles.

    PubMed

    Mestieri, Leticia Boldrin; Tanomaru-Filho, Mário; Gomes-Cornélio, Ana Livia; Salles, Loise Pedrosa; Bernardi, Maria Inês Basso; Guerreiro-Tanomaru, Juliane Maria

    2014-01-01

    Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: (1) PC; (2) White MTA; (3) PC+30% Nbµ; (4) PC+30% Nbη. For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA.

  17. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load

    PubMed Central

    2017-01-01

    The article presents the results obtained in the course of a study on the use of carbon nanotubes (CNTs) for the modification of a cement matrix. Carbon nanotubes were introduced into a cement paste in the form of an aqueous dispersion in the presence of a surfactant (SDS—sodium dodecyl sulfate), which was sonicated. The selected physical and mechanical parameters were examined, and the correlations between these parameters were determined. An analysis of the local microstructure of the modified cement pastes has been carried out using scanning electron microscope (SEM) and X-ray microanalysis (EDS). In addition, the effect of carbon nanotubes on the change in characteristics of the cementitious material exposed to the sudden, short-term thermal load, was determined. The obtained material was characterized by a much lower density than a traditional cement matrix because the phenomenon of foaming occurred. The material was also characterized by reduced durability, higher shrinkage, and higher resistance to the effect of elevated temperature. Further research on the carbon nanotube reinforced cement paste, with SDS, may contribute to the development of a modified cement binder for the production of a lightweight or an aerated concrete. PMID:28891976

  18. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load.

    PubMed

    Szeląg, Maciej

    2017-09-11

    The article presents the results obtained in the course of a study on the use of carbon nanotubes (CNTs) for the modification of a cement matrix. Carbon nanotubes were introduced into a cement paste in the form of an aqueous dispersion in the presence of a surfactant (SDS-sodium dodecyl sulfate), which was sonicated. The selected physical and mechanical parameters were examined, and the correlations between these parameters were determined. An analysis of the local microstructure of the modified cement pastes has been carried out using scanning electron microscope (SEM) and X-ray microanalysis (EDS). In addition, the effect of carbon nanotubes on the change in characteristics of the cementitious material exposed to the sudden, short-term thermal load, was determined. The obtained material was characterized by a much lower density than a traditional cement matrix because the phenomenon of foaming occurred. The material was also characterized by reduced durability, higher shrinkage, and higher resistance to the effect of elevated temperature. Further research on the carbon nanotube reinforced cement paste, with SDS, may contribute to the development of a modified cement binder for the production of a lightweight or an aerated concrete.

  19. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage.

    PubMed

    Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching

    2014-12-16

    In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35-36 °C, 55-56 °C and 72-74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55-56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.

  20. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  1. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.

    PubMed

    Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian

    2013-06-01

    The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.

  2. The influence of cellulose nanocrystals on the microstructure of cement paste

    Treesearch

    Yizheng Cao; Nannan Tian; David Bahr; Pablo D. Zavattieri; Jeffrey Youngblood; Robert J. Moon; Jason Weiss

    2016-01-01

    This paper reports the influence of raw and sonicated cellulose nanocrystals (CNCs) on the micro-structure of cement paste. A novel centrifugation method is designed to measure the concentrations of the adsorbed CNCs (aCNCs) on the cement surface, and the free CNCs (fCNCs) which are mobile in water. It is found that, the majority of the CNCs (>94%) are aCNCs....

  3. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage

    PubMed Central

    Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching

    2014-01-01

    In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content. PMID:28788291

  4. Influence of chloride in mortar made of Portland cement types II, III, and V on the near-field microwave reflection properties

    NASA Astrophysics Data System (ADS)

    Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly

    2000-07-01

    Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.

  5. Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš

    2017-09-01

    This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.

  6. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Fei; Yu, Zhenglei; Yang, Fengling

    Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via highmore » resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.« less

  7. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    PubMed Central

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  8. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  9. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    PubMed Central

    MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria

    2014-01-01

    Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023

  10. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  11. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onori, Roberta, E-mail: Roberta.onori@uniroma1.it; Polettini, Alessandra; Pomi, Raffaella

    2011-02-15

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl{sub 2} or CaSO{sub 4}, which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl{sub 2} exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect onmore » mechanical strength was also observed when CaSO{sub 4} was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature.« less

  12. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends.

    PubMed

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-01

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl(2) exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO(4) was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Development of design parameters for virtual cement and concrete testing : [summary].

    DOT National Transportation Integrated Search

    2013-12-01

    At its most basic, concrete is made from cement : and aggregate, often Portland cement and gravel : (or in Florida, limestone). Varying ingredients and : their proportions directly influences the behavior : of the final cement and concrete products. ...

  14. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions

    PubMed Central

    Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.

    2015-01-01

    A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtained by isothermal calorimetry at 23 °C and 38 °C. Steam curing and semi-adiabatic experiments were carried out to obtain the temperature evolution and moisture profiles were assessed by magnetic resonance imaging. Three specimen geometries were simulated and the results were compared with experimental data. Comparisons of temperature had maximum residuals of 2.5 °C and 5 °C for semi-adiabatic and steam curing conditions, respectively. The model correctly predicts the evaporable water distribution obtained by magnetic resonance imaging. PMID:27022208

  15. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions.

    PubMed

    Hernandez-Bautista, E; Bentz, D P; Sandoval-Torres, S; de Cano-Barrita, P F J

    2016-05-01

    A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtained by isothermal calorimetry at 23 °C and 38 °C. Steam curing and semi-adiabatic experiments were carried out to obtain the temperature evolution and moisture profiles were assessed by magnetic resonance imaging. Three specimen geometries were simulated and the results were compared with experimental data. Comparisons of temperature had maximum residuals of 2.5 °C and 5 °C for semi-adiabatic and steam curing conditions, respectively. The model correctly predicts the evaporable water distribution obtained by magnetic resonance imaging.

  16. The Visible Cement Data Set

    PubMed Central

    Bentz, Dale P.; Mizell, Symoane; Satterfield, Steve; Devaney, Judith; George, William; Ketcham, Peter; Graham, James; Porterfield, James; Quenard, Daniel; Vallee, Franck; Sallee, Hebert; Boller, Elodie; Baruchel, Jose

    2002-01-01

    With advances in x-ray microtomography, it is now possible to obtain three-dimensional representations of a material’s microstructure with a voxel size of less than one micrometer. The Visible Cement Data Set represents a collection of 3-D data sets obtained using the European Synchrotron Radiation Facility in Grenoble, France in September 2000. Most of the images obtained are for hydrating portland cement pastes, with a few data sets representing hydrating Plaster of Paris and a common building brick. All of these data sets are being made available on the Visible Cement Data Set website at http://visiblecement.nist.gov. The website includes the raw 3-D datafiles, a description of the material imaged for each data set, example two-dimensional images and visualizations for each data set, and a collection of C language computer programs that will be of use in processing and analyzing the 3-D microstructural images. This paper provides the details of the experiments performed at the ESRF, the analysis procedures utilized in obtaining the data set files, and a few representative example images for each of the three materials investigated. PMID:27446723

  17. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  18. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  19. Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure.

    PubMed

    Long, Wu-Jian; Li, Hao-Dao; Fang, Chang-Le; Xing, Feng

    2018-01-09

    The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate-ether (PCE) mixed with GO-cement or cement mixed with GO-PCE. The experimental results showed that the yield stress and plastic viscosity increased with the uniformly dispersed GO when compared to those of re-agglomerated GO cement paste. Moreover, the 3-day compressive and flexural strengths of uniformly dispersed GO paste were 8% and 27%, respectively, higher than those of re-agglomerated GO pastes. The results of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses demonstrated that uniformly dispersed GO more effectively promotes the formation of hydration products in hardened cement paste. Furthermore, a porosity analysis using mercury intrusion porosimetry revealed that the homogeneous dispersion of GO can better inhibit the formation of large-size pores and optimize the pore size distribution at 3 and 7 days than the re-agglomerated GO.

  20. Rheology and Extrusion of Cement-Fly Ashes Pastes

    NASA Astrophysics Data System (ADS)

    Micaelli, F.; Lanos, C.; Levita, G.

    2008-07-01

    The addition of fly ashes in cement pastes is tested to optimize the forming of cement based material by extrusion. Two sizes of fly ashes grains are examinated. The rheology of concentrated suspensions of ashes mixes is studied with a parallel plates rheometer. In stationary flow state, tested suspensions viscosities are satisfactorily described by the Krieger-Dougherty model. An "overlapped grain" suspensions model able to describe the bimodal suspensions behaviour is proposed. For higher values of solid volume fraction, Bingham viscoplastic behaviour is identified. Results showed that the plastic viscosity and plastic yield values present minimal values for the same optimal formulation of bimodal mixes. The rheological study is extended to more concentrated systems using an extruder. Finally it is observed that the addition of 30% vol. of optimized ashes mix determined a significant reduction of required extrusion load.

  1. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how themore » albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.« less

  2. Effect of Fly Ash and Silica Fume on the Mechanical Properties of Cement Paste at Different Stages of Hydration

    DTIC Science & Technology

    2015-08-10

    All materials were placed in a clean, labeled stainless steel mixing bowl and weighed to the nearest ten thousandth of a pound. The cement and fly...on the Mechanical Properties of Cement Paste at Different Stages of Hydration This thesis investigates the effect of fly ash and silica fume on... cement paste hydration. Percentages of each additive will replace the cement by volume to be studied at five ages. These percentages will be compared

  3. Addition of a Fluoride-containing Radiopacifier Improves Micromechanical and Biological Characteristics of Modified Calcium Silicate Cements.

    PubMed

    Antonijevic, Djordje; Jeschke, Anke; Colovic, Bozana; Milovanovic, Petar; Jevremovic, Danimir; Kisic, Danilo; vom Scheidt, Annika; Hahn, Michael; Amling, Michael; Jokanovic, Vukoman; Busse, Björn; Djuric, Marija

    2015-12-01

    Calcium silicate cements (CSCs) with the addition of nanohydroxyapatite and calcium carbonate play a critical role in dental applications. To further improve their properties, particularly radiopacity and biointeractivity, the fluoride-containing radiopacifier ytterbium trifluoride (YbF3) was added to their composition, and biological and mechanical characteristics were evaluated. YbF3 was added to 3 different CSCs: cement I (CSC + calcium carbonate), cement II (CSC + nanohydroxyapatite), and Portland cement. Material characterization encompassed measurements of pH, calcium, ytterbium, and fluoride ion release; radiopacity; setting time; porosity; microindentation properties; wettability; and Fourier transform infrared spectroscopic, x-ray diffraction, and scanning electron microscopic analyses. Osteoblast- and osteoclast-like cells were grown on the materials' surface to evaluate their adherence. The addition of calcium carbonate, nanohydroxyapatite, and 30 wt% of YbF3 improved radiopacity and the setting time of experimental cements. The pH values did not differ among the groups. The greatest ytterbium and fluoride releases occurred in the Portland cement + YbF3 group. Combined x-ray diffraction and Fourier transform infrared spectroscopic analysis showed the presence of calcium hydroxide and calcium silicate hydrates. In addition, the presence of calcium ytterbium fluoride and ytterbium oxide proved that YbF3 reacted with cement compounds. Wettability of cement I + YbF3 was superior to other formulations, but its porosity and microindentation properties were weaker than in the Portland cement + YbF3 mixture. Cement II + YbF3 presented micromechanical indentation and porosity characteristics similar to the Portland-based cement formulation. Osteoclast- and osteoblast-like cells adhered to the cements' surfaces without alteration of the cell structural integrity. YbF3-containing CSCs with nanostructured hydroxyapatite and calcium carbonate are well suited for

  4. Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: inter-kiln variability and dependence on fuel-types.

    PubMed

    Zemba, Stephen; Ames, Michael; Green, Laura; Botelho, Maria João; Gossman, David; Linkov, Igor; Palma-Oliveira, José

    2011-09-15

    Emissions from Portland cement manufacturing facilities may increase health risks in nearby populations and are thus subject to stringent regulations. Direct testing of pollutant concentrations in exhaust gases provides the best basis for assessing the extent of these risks. However, these tests (i) are often conducted under stressed, rather than typical, operating conditions, (ii) may be limited in number and duration, and (iii) may be influenced by specific fuel-types and attributes of individual kilns. We report here on the results of more than 150 emissions-tests conducted of two kilns at a Portland cement manufacturing plant in Portugal. The tests measured various regulated metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs). Stack-gas concentrations of pollutants were found to be highly variable, with standard deviations on the order of mean values. Emission rates of many pollutants were higher when coal was used as the main kiln fuel (instead of petroleum coke). Use of various supplemental fuels, however, had little effect on stack emissions, and few statistically significant differences were observed when hazardous waste was included in the fuel mix. Significant differences in emissions for some pollutants were observed between the two kilns despite their similar designs and uses of similar fuels. All measured values were found to be within applicable regulatory limits. Published by Elsevier B.V.

  5. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    NASA Astrophysics Data System (ADS)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  6. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    NASA Astrophysics Data System (ADS)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  7. A rapid method for soil cement design : Louisiana slope value method.

    DOT National Transportation Integrated Search

    1964-03-01

    The current procedure used by the Louisiana Department of Highways for laboratory design of cement stabilized soil base and subbase courses is taken from standard AASHO test methods, patterned after Portland Cement Association criteria. These methods...

  8. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    PubMed Central

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  9. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  10. Characterization and modeling of the rheology of cement paste: With applications toward self-flowing materials

    NASA Astrophysics Data System (ADS)

    Saak, Aaron Wilbur

    The objective of this research is to better understand the important mechanisms that control the rheology of cement paste. In order to understand these mechanisms, new experimental techniques are developed. The insights gained through these studies are then applied toward designing self-flowing materials, particularly self-compacting concrete (SCC). A new testing program is developed where both the peak and equilibrium stress flow curves of cement paste are obtained by testing only one sample. Additionally, the influence of wall slip on yield stress and viscoelastic measurements is determined using a vane. The results indicate that a slip layer develops when the shear stress approaches the yield point. A three-dimensional model relating slump to yield stress is derived as a function of cone geometry. The results indicate that the model fits experimental data for cylindrical slumps over a wide range of yield stress values for a variety of materials. When compared to other published models, the results suggest that a fundamental relationship exists between yield stress and slump that is material independent and largely independent of cone geometry. The affect of various mixing techniques on the rheology of cement paste is investigated using a rheometer as a highly controlled mixer. The results suggest that there is a characteristic shear rate where the viscosity of cement paste is minimized. The influence of particle packing density, morphology and surface area on the viscosity of cement paste is quantified. The data suggest that even though packing density increases with the addition of fine particles, the benefits are largely overshadowed by a dramatic increase in surface area. Finally, a new methodology is introduced for designing self-compacting concrete. This approach incorporates a "self-flow zone" where the rheology of the paste matrix provides high workability, yet segregation resistance. The flow properties of fresh concrete are measured using a U

  11. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-02

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity:more » 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.« less

  12. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  13. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features

    PubMed Central

    Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia

    2016-01-01

    For more than a century, several inclusions have been mixed with Portland cement—nowadays the most-consumed construction material worldwide—to improve both the strength and durability required for construction. The present paper describes the different families of inclusions that can be combined with cement matrix and reviews the achievements reported to date regarding mechanical performance, as well as two other innovative functionalities of growing importance: reducing the high carbon footprint of Portland cement, and obtaining new smart features. Nanomaterials stand out in the production of such advanced features, allowing the construction of smart or multi-functional structures by means of thermal- and strain-sensing, and photocatalytic properties. The first self-cleaning concretes (photocatalytic) have reached the markets. In this sense, it is expected that smart concretes will be commercialized to address specialized needs in construction and architecture. Conversely, other inclusions that enhance strength or reduce the environmental impact remain in the research stage, in spite of the promising results reported in these issues. Despite the fact that such functionalities are especially profitable in the case of massive cement consumption, the shift from the deeply established Portland cement to green cements still has to overcome economic, institutional, and technical barriers. PMID:28774091

  14. Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices.

    PubMed

    Shi, Hui-Sheng; Kan, Li-Li

    2009-03-15

    The study of cementitious activity of chromium residue (CR) was carried out to formulate the properties of chromium residue-cement matrices (CRCM) by blending CR with Ordinary Portland Cement (OPC). The particle size distribution, microstructures of CR were investigated by some apparatuses, and physical properties, leaching behavior of hexavalent chromium [Cr(VI)] of CRCM were also determined by some experiments. Three types of commonly used superplasticizers (sulphonated acetone formaldehyde superplasticizer (J1), polycarboxylate-based superplasticizer (J2) and naphthalene superplasticizer (J3)) were chosen to investigate their influences on the physical properties and the Cr(VI)-immobilisation in the leachate of the CRCM hardened pastes. The results show that the CR has a certain cementitious activity. The incorporation of CR improves the pore size distribution of CRCM. The Cr(VI) concentrations in the leachate of CRCM significantly decrease by incorporation of J2. Among three superplasticizers, J2 achieves lowest Cr(VI) leaching ratio. Based on this study, it is likely to develop CR as a potential new additive used in cement-based materials.

  15. Reducing CO2-Emission by using Eco-Cements

    NASA Astrophysics Data System (ADS)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  16. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts.

    PubMed

    Yoshino, Patrícia; Nishiyama, Celso Kenji; Modena, Karin Cristina da Silva; Santos, Carlos Ferreira; Sipert, Carla Renata

    2013-01-01

    The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5x3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.

  17. Chemical Reactions of Portland Cement with Aqueous CO2 and Their Impacts on Cement's Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin

    2015-05-19

    To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage.

  18. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husillos Rodriguez, N., E-mail: nuriah@ietcc.csic.e; Martinez Ramirez, S.; Blanco Varela, M.T.

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphousmore » material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.« less

  19. Minimising alkalinity and pH spikes from Portland cement-bound Bauxsol (seawater-neutralized red mud) pellets for pH circum-neutral waters.

    PubMed

    Despland, Laure M; Clark, Malcolm W; Aragno, Michel; Vancov, Tony

    2010-03-15

    Bauxsol reagents (powder, slurry, or pellet forms) are powerful tools in environmental remediation and water and sewage treatment However, when used in circum-neutral water treatments, cement-bound Bauxsol pellets produce a sustained pH and alkalinity spike due to the presence of unreacted CaO in the cement binder. This study developed a pellet treatment system to minimize the alkalinity/pH spike. The recipe for pelletization consisted of Bauxsol powder, ordinary Portland cement (OPC), hydrophilic fumed silica, aluminum powder, a viscosity modifier, and water. Several batches (including different ratios and sizes) were run using modified makeup waters (H(2)0 + CO(2) or NaHCO(3)) or curing brines (CO(2), NaHCO(3), or Mg/CaCl(2)). Alkalinity, pH stability, and slake durability tests were performed on pellets before and/or after curing. The best result for reducing the alkalinity/pH spike was obtained from a MgCl(2), CaCl(2) bath treatment using a Bauxsol:cement ratio of 2.8:1 (pH 8.28; alkalinity 75.1 mg/L) for a 100 g batch or 245:1 (pH 8.05; alkalinity 35.4 mg/L) for a 1 kg batch. Although brine curing does provide a control on pH/alkalinity release, the pellets may still contain unreacted CaO. Therefore, a freshwater rinse of pellets before treating circum-neutral waters is recommended as is the continued investigation of alternative pellet binders.

  20. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua; Snellings, Ruben; Li, Xuerun

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phasemore » composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.« less

  1. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  2. The influence of silanized nano-SiO{sub 2} on the hydration of cement paste: NMR investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bede, A., E-mail: Andrea.Bede@phys.utcluj.ro; Pop, A.; Ardelean, I.

    2015-12-23

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticlesmore » was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.« less

  3. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less

  4. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C)more » for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of

  5. Effect of Metakaolin on Strength and Efflorescence Quantity of Cement-Based Composites

    PubMed Central

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight. PMID:23737719

  6. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cwirzen, Andrzej; Penttala, Vesa

    2005-04-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing andmore » thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ.« less

  7. Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete

    NASA Astrophysics Data System (ADS)

    Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.

    2016-06-01

    This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.

  8. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tingting; Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed andmore » that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.« less

  9. Recycled concrete aggregate in portland cement concrete.

    DOT National Transportation Integrated Search

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  10. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    PubMed

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  11. Modeling Nanomechanical Behavior of Calcium-Silicate-Hydrate

    DTIC Science & Technology

    2012-08-01

    applicability to hardened pastes of tricalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag , metakaolin, or silica...Hydrated Nanocomposites: Concrete, Bone, and Shale. J. Am. Ceram . Soc., 90(9): 2677-2692. Wu, Jianzhong. and John M. Prausnitz. 2002. Generalizations for

  12. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    NASA Astrophysics Data System (ADS)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  13. Limestone and Silica Powder Replacements for Cement: Early-Age Performance.

    PubMed

    Bentz, Dale P; Ferraris, Chiara F; Jones, Scott Z; Lootens, Didier; Zunino, Franco

    2017-04-01

    Developing functional concrete mixtures with less ordinary portland cement (OPC) has been one of the key objectives of the 21 st century sustainability movement. While the supplies of many alternatives to OPC (such as fly ash or slag) may be limited, those of limestone and silica powders produced by crushing rocks seem virtually endless. The present study examines the chemical and physical influences of these powders on the rheology, hydration, and setting of cement-based materials via experiments and three-dimensional microstructural modeling. It is shown that both limestone and silica particle surfaces are active templates (sites) for the nucleation and growth of cement hydration products, while the limestone itself is also somewhat soluble, leading to the formation of carboaluminate hydration products. Because the filler particles are incorporated as active members of the percolated backbone that constitutes initial setting of a cement-based system, replacements of up to 50 % of the OPC by either of these powders on a volumetric basis have minimal impact on the initial setting time, and even a paste with only 5 % OPC and 95 % limestone powder by volume achieves initial set within 24 h. While their influence on setting is similar, the limestone and silica powders produce pastes with quite different rheological properties, when substituted at the same volume level. When proceeding from setting to later age strength development, one must also consider the dilution of the system due to cement removal, along with the solubility/reactivity of the filler. However, for applications where controlled (prompt) setting is more critical than developing high strengths, such as mortar tile adhesives, grouts, and renderings, significant levels of these powder replacements for cement can serve as sustainable, functional alternatives to the oft-employed 100 % OPC products.

  14. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    NASA Astrophysics Data System (ADS)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  15. Fast Setting Cement - Literature Survey

    DTIC Science & Technology

    1973-01-01

    materials tested that did not meet the requirements were Portland c~ment, Lumnite cement, Por-rock, Mirament, Speed Crete, Floc-roc, Sika accelerators...Sika’Chemical Corp., Data sheets on Sigunit and other Sika quick-setting. imaterials. (F) Simeonov, Bozhinov, et al, "Acceleration of Hardening of Concrete

  16. The effect of ageing and heat treatment on microstructure evolution of a commercial cement paste

    NASA Astrophysics Data System (ADS)

    Sabeur, Hassen; Platret, Gérard; Vincent, Julien

    2017-08-01

    This paper reports the microstructural changes on a 2 year-old cement paste, unprotected from contact with air, heated to various temperature regimes up to 1000 °C in steps of 100 °C for a constant period of 6 h. This work has been carried out using a thermal analysis technique and XRD. The parameter involved in this study is the state of the samples: powdered samples and blocks of paste. As a result, it is possible to monitor the major features of the experiments, i.e. the phase's existence domains and their growing of hydrated calcium silicate, portlandite, calcite as well as their decaying: alite, belite and lime. The result shows higher amounts of portlandite and carbonate calcium for the aged cement paste compared to fresh OPC. The carbonation is more marked for the blocks of paste while the crystallinity degree is higher for the powdered cement paste samples. The new portlandite formed during cooling continues to exist until the 1000 °C temperature plateau. Nevertheless, this portlandite is less crystalline than the original one, and its temperature of thermal decomposition gets lower. An increase in the total weight loss and in the crystallinity at 900 and 1000 °C, compared to 800 °C is also noted. The CSH dehydration to β-C2S and C3S become significant above 600 °C and the corresponding rate increases with increasing temperature.

  17. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  18. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    PubMed Central

    Pérez-Nicolás, María; Alvarez, José Ignacio

    2017-01-01

    Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2) or vanadium (V-TiO2)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars. PMID:29036917

  19. Report of investigation on underground limestone mines in the Ohio region. [Jonathan Mine, Alpha Portland Cement Mine, and Lewisburg Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Minemore » located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio.« less

  20. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  1. Research of Cemented Paste Backfill in Offshore Environments

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Peng; Lyu, Wensheng; Lin, Zhixiang

    2018-01-01

    To promote comprehensive utilization of mine waste tailings and control ground pressure, filling mine stopes with cement paste backfill (CPB) is becoming the most widely used and applicable method in contemporary underground mining. However, many urgent new problems have arisen during the exploitation in offshore mines owing to the complex geohydrology conditions. A series of rheological, settling and mechanical tests were carried out to study the influences of bittern ions on CPB properties in offshore mining. The results showed that: (1) the bittern ion compositions and concentrations of backfill water sampled in mine filling station were similar to seawater. Backfill water mixed CPB slurry with its higher viscosity coefficient was adverse to pipeline gravity transporting; (2) Bleeding rate of backfill water mixed slurry was lower than that prepared with tap water at each cement-tailings ratio; (3) The UCS values of backfill water mixed samples were higher at early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 28d. Therefore, for mine production practice, the offshore environments can have adverse effects on the pipeline gravity transporting and have positive effects on stope dewatering process and early-age strength growth.

  2. Expansive cements for the manufacture of the concrete protective bandages

    NASA Astrophysics Data System (ADS)

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  3. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, G.; Boccaleri, E., E-mail: enrico.boccaleri@mfn.unipmn.it; Buzzi, L.

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the mostmore » effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.« less

  4. Non-autoclaved aerated concrete with mineral additives

    NASA Astrophysics Data System (ADS)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  5. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    PubMed Central

    Yim, Hong Jae; Kim, Jae Hong; Kwon, Seung Hee

    2016-01-01

    When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50. PMID:28773273

  6. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  7. Freezing temperature protection admixture for Portland cement concrete

    DOT National Transportation Integrated Search

    1996-10-01

    A number of experimental admixtures were compared to Pozzutec 20 admixture for their ability to protect fresh concrete from freezing and for increasing the rate of cement hydration at below-freezing temperatures. The commercial accelerator and low-te...

  8. Use of cemented paste backfill in arsenic-rich tailings

    NASA Astrophysics Data System (ADS)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  9. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  10. The cement solidification systems at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cementmore » type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.« less

  11. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement

    PubMed Central

    Karim, Md. Rezaul; Hossain, Md. Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan

    2014-01-01

    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement. PMID:28788277

  12. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement.

    PubMed

    Karim, Md Rezaul; Hossain, Md Maruf; Khan, Mohammad Nabi Newaz; Zain, Muhammad Fauzi Mohd; Jamil, Maslina; Lai, Fook Chuan

    2014-12-05

    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.

  13. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    PubMed

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  14. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  15. Direct observation of void evolution during cement hydration

    DOE PAGES

    Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed; ...

    2017-09-28

    This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less

  16. Direct observation of void evolution during cement hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed

    This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less

  17. Reactions in Portland cement-clay mixtures : final report.

    DOT National Transportation Integrated Search

    1970-01-01

    This study was an extension of earlier work by Sherwood and Noble to determine the nature of the clay content of common Virginia soils and the strength development of those soils in cement mixtures. In addition attempts were made (1) to study the rel...

  18. SCM Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.

    This report summarizes experimental work performed by SIMCO Technologies Inc. (SIMCO) as part of the Cementitious Barriers Partnership (CBP) project. The test series followed an experimental program dedicated to the study of ordinary Portland cement (OPC) hydrated cement pastes exposed to aggressive solutions. In the present study, the scope is extended to hydrated cement pastes incorporating supplementary cementitious materials (SCM) such as fly ash and ground granulated blast furnace slag (GGBFS). Also, the range of aggressive contact solutions was expanded. The experimental program aimed at testing aggressive contact solutions that more closely mimic the chemical composition of saltstone pore solution.more » Five different solutions, some of which incorporated high levels of carbonate and nitrate, were placed in contact with four different hydrated cement paste mixes. In all solutions, 150 mmol/L of SO 4 2– (14 400 ppm) were present. The solutions included different pH conditions and different sodium content. Two paste mixes were equivalent to Vault 1/4 and Vault 2 concrete mixes used at SRS in storage structures. Two additional paste mixes, cast at the same water-to-cement ratio and using the same cements but without SCMs, were also tested. The damage evolution in samples was monitored using ultrasonic pulse velocity (UPV) and mass measurements. After three and twelve months of exposure conditions, samples were taken out of solution containers and analyzed to perform migration tests and porosity measurements. Globally, results were in line with the previous study and confirmed that high pH may limit the formation of some deleterious phases like gypsum. In this case, ettringite may form but is not necessarily associated with damage. However, the high concentration of sodium may be associated with the formation of an AFm-like mineral called U-phase. The most significant evidences of damage were all associated with the Vault 2 paste analog. This material

  19. A study on super-sulfated cement using Dinh Vu phosphogypsum

    NASA Astrophysics Data System (ADS)

    Lam, Nguyen Ngoc

    2018-04-01

    Super-sulfated cement (SSC) is a newly developed unburnt cementitious material. It is a kind of environmental-friendly cementitious material due to its energy-saving, carbon emission reducing, and waste-utilization. It mainly composes of phosphogysum (PG) and ground granulated blast furnace slag (GFS), with a small amount of cement. In Vietnam, the Diammonium Phosphate DAP – Dinh Vu fertilizer plant in Dinh Vu industrial zone in the northern port city of Hai Phong – has discharged millions of tons of solid waste containing gypsum after 9 years of operation. The waste has changed the color of the water, eroded metal and destroyed fauna and floral systems in the surrounding area. Notably, according to the environmental impact assessment, the gypsum landfill area is supposed to be 13 hectares and the storage time reaches up to five years. This paper presents the experimental results on SSC using a high amount of Dinh Vu phosphogypsum and GFS in comparison with those of ordinary Portland cement (PC). The results show that the setting time of SSC is much longer than that of Portland cement but the compressive strength of SSC can be obtained 45-50 MPa at the age of 28 days, similar to that of the control sample using 100% PC40, and 69MPa at the age of 90 days. This value even exceeds the compressive strength of the PC40 cement.

  20. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags ), volcanic glass , fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...solidified with alkali- activated glass slag US Army Corps of Engineers 4 Pohakuloa Training Area (PTA) as a Test Site • Serious dust problem at site...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass ( slag , fly ash) can be used • More alkaline solution is

  1. Microstructural Properties of Cement Paste and Mortar Modified by Low Cost Nanoplatelets Sourced from Natural Materials.

    PubMed

    Huang, Piao; Lv, Liming; Liao, Wei; Lu, Chunhua; Xu, Zhongzi

    2018-05-11

    Nanomaterials have been widely used in cement-based materials. Graphene has excellent properties for improving the durability of cement-based materials. Given its high production budget, it has limited its wide potential for application in the field of engineering. Hence, it is very meaningful to obtain low cost nanoplatelets from natural materials that can replace graphene nanoplatelets (GNPs) The purpose of this paper is to improve the resistance to chloride ion penetration by optimizing the pore structure of cement-based materials, and another point is to reduce investment costs. The results illustrated that low cost CaCO₃ nanoplatelets (CCNPs) were successfully obtained under alkali treatment of seashell powder, and the chloride ion permeability of cement-based materials significantly decreased by 15.7% compared to that of the control samples when CCNPs were incorporated. Furthermore, the compressive strength of cement pastes at the age of 28 days increased by 37.9% than that of the plain sample. Improvement of performance of cement-based materials can be partly attributed to the refinement of the pore structure. In addition, AFM was employed to characterize the nanoplatelet thickness of CCNPs and the pore structures of the cement-based composites were analyzed by MIP, respectively. CCNPs composite cement best performance could lay the foundation for further study of the durability of cement-based materials and the application of decontaminated seashells.

  2. Microstructural Properties of Cement Paste and Mortar Modified by Low Cost Nanoplatelets Sourced from Natural Materials

    PubMed Central

    Lv, Liming; Liao, Wei; Lu, Chunhua; Xu, Zhongzi

    2018-01-01

    Nanomaterials have been widely used in cement-based materials. Graphene has excellent properties for improving the durability of cement-based materials. Given its high production budget, it has limited its wide potential for application in the field of engineering. Hence, it is very meaningful to obtain low cost nanoplatelets from natural materials that can replace graphene nanoplatelets (GNPs) The purpose of this paper is to improve the resistance to chloride ion penetration by optimizing the pore structure of cement-based materials, and another point is to reduce investment costs. The results illustrated that low cost CaCO3 nanoplatelets (CCNPs) were successfully obtained under alkali treatment of seashell powder, and the chloride ion permeability of cement-based materials significantly decreased by 15.7% compared to that of the control samples when CCNPs were incorporated. Furthermore, the compressive strength of cement pastes at the age of 28 days increased by 37.9% than that of the plain sample. Improvement of performance of cement-based materials can be partly attributed to the refinement of the pore structure. In addition, AFM was employed to characterize the nanoplatelet thickness of CCNPs and the pore structures of the cement-based composites were analyzed by MIP, respectively. CCNPs composite cement best performance could lay the foundation for further study of the durability of cement-based materials and the application of decontaminated seashells. PMID:29751666

  3. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes

    PubMed Central

    Manzanares, Maria-Cristina; Ginebra, Maria-Pau; Franch, Jordi

    2015-01-01

    The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed. PMID:26132468

  4. Matrix model of the grinding process of cement clinker in the ball mill

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  5. Durability of saw-cut joints in plain cement concrete pavements.

    DOT National Transportation Integrated Search

    2011-01-01

    The objective of this project was to evaluate factors influencing the durability of the joints in portland cement concrete : pavement in the state of Indiana. Specifically this work evaluated the absorption of water, the absorption of deicing solutio...

  6. In situ measurement of the rheological properties and agglomeration on cementitious pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Hong; Yim, Hong Jae, E-mail: yimhj@knu.ac.kr; Ferron, Raissa Douglas

    2016-07-15

    Various factors influence the rheology of cementitious pastes, with the most important being the mixing protocol, mixture proportions, and mixture composition. This study investigated the influence of ground-granulated blast-furnace slag, on the rheological behavior of cementitious pastes. In tandem with the rheological measurements, fresh state microstructural measurements were conducted using three different techniques: A coupled stroboscope-rheometer, a coupled laser backscattering-rheometer, and a conventional laser diffraction technique. Laser diffraction and the coupled stroboscope-rheometer were not good measures of the in situ state of flocculation of a sample. Rather, only the laser backscattering technique allowed for in situ measurement on a highlymore » concentrated suspension (cementitious paste). Using the coupled laser backscattering-rheometer technique, a link between the particle system and rheological behavior was determined through a modeling approach that takes into account agglomeration properties. A higher degree of agglomeration was seen in the ordinary Portland cement paste than pastes containing the slag and this was related to the degree of capillary pressure in the paste systems.« less

  7. The use of waste ceramic tile in cement production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, N.; Uenal, M.

    In ceramic tile production, because of various reasons, unsold fired products come out. These are waste tiles and only a little part of them are used. Remainings create environmental problems. If these waste tiles are used in cement production, this pollution decreases. In this study, usage of waste tile as pozzolan was studied. Waste tile was added into Portland cement in 25%, 30%, 35%, and 40% weight ratios. Pozzolanic properties of waste tile and setting time, volume stability, particle size, density, specific surface area, and strength of cement including waste tile were investigated. The test results indicated that the wastemore » tiles show pozzolanic properties, and chemical and physical properties of the cement including tile conforms to cement standard up to the addition of 35% waste tile.« less

  8. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  9. Influence of Pore Structure on Compressive Strength of Cement Mortar

    PubMed Central

    Zhao, Haitao; Xiao, Qi; Huang, Donghui

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  10. Characterization of PCC Cement by Addition of Napa Soil from Subdistrict Sarilamak 50 Kota District as Alternative Additional Material for Semen Padang

    NASA Astrophysics Data System (ADS)

    Mawardi, M.; Deyundha, D.; Zainul, R.; Zalmi P, R.

    2018-04-01

    The study has been conducted to determine characteristics of the portland composite cement by the addition of napa soil from Sarilamak subdistrict, 50 Kota District as an alternative additional material at PT. Semen Padang. Napa soil is a natural material highly containing silica and alumina minerals so that it can be one of material in producing cement. This study aims to determine the effect of napa soil on the quality of portland composite cement. Napa soil used in the variation compositions 0%, 4%, 8%, 12% and 16%, for control of cement used 8 % of pozzolan and 0 % of napa soil. Determination of cement quality by testing cement characteristics include blaine test, sieving, lost of ignition or LOI, insoluble residue, normal consistency, setting time and compressive strength. Cement was characterized using XRF. Fineness of cement decreases with the addition of napa soil. Lost of Ignition of cement decreased, while the insoluble residue increased with the addition of napa soil. Normal consistency of cement increasing, so does initial setting time and final setting time of cement. While the resultant compressive strength decreases with the addition of napa soil on 28 days, 342, 325, 307, 306, and 300 kg / cm2.

  11. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such

  12. Weight loss of endodontic sealers, cements and pastes in water.

    PubMed

    Orstavik, D

    1983-08-01

    A solubility test based on weight loss in water, as proposed for standard testing programs (ADA & ISO), was adapted for assessing the solubility of 10 root canal sealers, cements and pastes. The weight loss of the set materials during 24 hr in distilled water at 37 degrees C ranged from -0.84 (AH26) to 22.71 (Kloroperka N-O) weight per cent. The results were reproducible, and the test was considered suitable for routine testing of weight loss in water of endodontic materials. However, the test may not provide information which is directly related to the clinical behavior of the materials.

  13. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    PubMed

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    PubMed

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  15. Properties, sustainability and elevated temperature behavior of concrete containing Portland limestone cement

    NASA Astrophysics Data System (ADS)

    El-Hawary, Moetaz; Ahmed, Mahmoud

    2017-09-01

    The utilization of some type of cheap filler as partial cement replacement is an effective way of improving concrete sustainability. With the recent trends to reduce water to cement ratio and improve compaction, there is no enough space or water for complete hydration of cement. This means that actually, a portion of mixed cement acts as expensive filler. Replacing this portion with cheaper filler that requires less energy to produce is, therefore, beneficial. Crushed limestone is the most promising filler. This work is to investigate the effect of the amount of limestone fillers on the sustainability and the fresh and mechanical properties of the resulting concrete. A rich mix is designed with a low water/cement ratio of 0.4. Lime is introduced as a replacement percentage of cement. Ratios of 0, 10, 20 and 30% were used. Slump, compressive strength, specific gravity and water absorption are evaluated for every mix. In addition, the effect of the amount of lime on the residual strength of concrete subjected to elevated temperatures is also investigated. Samples are subjected to six different temperature stations of 20, 100, 200, 300, 500 and 700°C for six hours before being cooled and subsequently tested for compressive strength and specific gravity. Sustainability of the tested mixes is evaluated through reductions in the emitted carbon dioxide, energy and reduction in cost. Based on the annual use of concrete in Kuwait, the sustainability benefits resulting from the use of limestone filler in Kuwait are evaluated and assessed. The paper is concluded with the recommendation of the use of 15% limestone filler as partial cement replacement where the properties and the behavior under high temperature of the resulting concrete are almost the same as those of conventional concrete with considerable cost and sustainability benefits.

  16. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    NASA Astrophysics Data System (ADS)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  17. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snellings, R., E-mail: ruben.snellings@epfl.ch; Salze, A.; Scrivener, K.L., E-mail: karen.scrivener@epfl.ch

    2014-10-15

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standardmore » addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements.« less

  18. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Esteban, María Dolores; Rodríguez, Raúl Rubén; Ibanco, Francisco José; Sánchez, Isidro

    2017-01-01

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement. PMID:28767078

  19. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-08-02

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.

  20. Quantum Mechanical Metric for Internal Cohesion in Cement Crystals

    PubMed Central

    Dharmawardhana, C. C.; Misra, A.; Ching, Wai-Yim

    2014-01-01

    Calcium silicate hydrate (CSH) is the main binding phase of Portland cement, the single most important structural material in use worldwide. Due to the complex structure and chemistry of CSH at various length scales, the focus has progressively turned towards its atomic level comprehension. We study electronic structure and bonding of a large subset of the known CSH minerals. Our results reveal a wide range of contributions from each type of bonding, especially hydrogen bonding, which should enable critical analysis of spectroscopic measurements and construction of realistic C-S-H models. We find the total bond order density (TBOD) as the ideal overall metric for assessing crystal cohesion of these complex materials and should replace conventional measures such as Ca:Si ratio. A rarely known orthorhombic phase Suolunite is found to have higher cohesion (TBOD) in comparison to Jennite and Tobermorite, which are considered the backbone of hydrated Portland cement. PMID:25476741

  1. Suppression of phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng-Peng Ye; Fan-Zhong Chen; Yan-Qing Sheng

    2006-08-15

    In this study, the effect of suppression on phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement (OPC) was investigated by small scale experiment. A system including sediment, lake water, and several kinds of capping materials was designed to clarify the suppression of phosphate liberation from sediment under the anaerobic condition. The suppression efficiencies of fly ash, OPC and glass bead used as control material were also determined, and these effects were discussed. The suppression efficiency of glass bead was 44.4%, and those of fly ash and OPC were 84.4%, 94.9%, respectively. The suppression bymore » fly ash and OPC was mainly carried out by the adsorption effect, in addition to the covering effect. The suppression efficiency depended on the amounts of the material used, and about 90% of liberated phosphate was suppressed by fly ash of 10.0 Kg m{sup -2}, and OPC of 6.0 Kg m{sup -2}. The concentrations of heavy metals, such as mercury, cadmium, lead, copper, zinc, chromium, silver, arsenic and nickel, in fly ash and OPC were lower than those in the environmental materials. And it was considered that the concentrations of heavy metals in fly ash and OPC were too low to influence the ecosystem in natural water region.« less

  2. Validation of RAP and/or RAS in hydraulic cement concrete : technical report.

    DOT National Transportation Integrated Search

    2017-05-01

    The increasing maintenance and rehabilitation actions lead to considerable amounts of reclaimed asphalt pavement : (RAP) left in stockpiles in the United States. The possible use of RAP in Portland cement concrete (PCC) as aggregate : replacement not...

  3. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    PubMed

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  4. Possibilities of using aluminate cements in high-rise construction

    NASA Astrophysics Data System (ADS)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  5. Long-term modeling of glass waste in portland cement- and clay-based matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra,more » Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.« less

  6. Environmental assessment of cement/foundry sludge products.

    PubMed

    Ruiz, M C; Andrés, A; Irabien, A

    2003-05-01

    This work deals with the environmental assessment of products based on cement and a waste from a cast iron activity. The waste is a foundry sludge from wastewater treatment previously characterized. This industrial waste shows a high water content (62.4%) and a hazardous behavior due to its metallic content mainly Zn (16.5%), together with a low fraction of organic pollutants, mainly phenolic compounds. The feasibility of immobilizing both typs of contaminants was studied using Portland cement as binder at different cement/waste ratios. The parameters of environmental control were the ecotoxicity and mobilization of zinc and phenolic compounds, all determined on the basis of compliance leaching tests. The acid neutralization capacity of the cement/waste products was measured in order to obtain information on their buffering capacity. Experimental results from chemical analysis of leachates led to a non ecotoxic character of cement/waste products Although the metallic ions were mobilized within the cement mattices, the organic matter did not allow the formation of monolithic forms and an efficient immobilization of phenolic compounds. Concerning the acid neutralization capacity, this parameter was shown to depend mainly on the quantity of cement, although a decrease in alkalinity was observed when the amount of water in the cement/waste products increased.

  7. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Teramoto, A.

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflectionmore » point and with increase in temperature inside concrete members with large cross sections.« less

  8. Recycling of red muds with the extraction of metals and special additions to cement

    NASA Astrophysics Data System (ADS)

    Zinoveev, D. V.; Diubanov, V. G.; Shutova, A. V.; Ziniaeva, M. V.

    2015-01-01

    The liquid-phase reduction of iron oxides from red mud is experimentally studied. It is shown that, in addition to a metal, a slag suitable for utilization in the construction industry can be produced as a result of pyrometallurgical processing of red mud. Portland cement is shown to be produced from this slag with mineral additions and a high-aluminate expansion addition to cement.

  9. Axial compression behaviour of reinforced wallettes fabricated using wood-wool cement panel

    NASA Astrophysics Data System (ADS)

    Noh, M. S. Md; Kamarudin, A. F.; Mokhatar, S. N.; Jaudin, A. R.; Ahmad, Z.; Ibrahim, A.; Muhamad, A. A.

    2018-04-01

    Wood-wool cement composite panel (WWCP) is one of wood based composite material that produced in a stable panel form and suitable to be used as building wall system to replace non-ecofriendly material such as brick and other masonry element. Heavy construction material such as brick requires more manpower and consume a lot of time to build the wall panel. WWCP is a lightweight material with a density range from 300 kg/m3 to 500 kg/m3 and also capable to support an imposed load from the building. This study reported on the axial compression behaviour of prefabricated reinforced wallettes constructed with wood-wool cement panel. A total of six specimens were fabricated using two layers of cross laminated WWCP bonded with normal mortar paste (Portland cement) at a mix ratio of 1:3 (cement : sand). As part of lifting mechanism, the wallettes were equipped with three steel reinforcement (T12) that embedded inside the core of wallettes. Three replicates of wallettes specimens with dimension 600 mm width and 600 mm length were fabricated without surface plaster and with 16 mm thickness of surface plaster. The wallettes were tested under axial compression load after 28 days of fabrication until failure. The result indicated that, the application of surface plaster significantly increases the loading capacity about 35 % and different orientation of the panels improve the bonding strength of the wall.

  10. Durability of saw-cut joints in plain cement concrete pavements : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    The main objective of this study was to evaluate factors influencing the durability of the joints in portland cement concrete pavement in the state of Indiana. : The scope of the research included the evaluation of the absorption of water in concrete...

  11. Incorporation mode effect of Nano-silica on the rheological and mechanical properties of cementitious pastes and cement mortars

    NASA Astrophysics Data System (ADS)

    Safi, B.; Aknouche, H.; Mechakra, H.; Aboutaleb, D.; Bouali, K.

    2018-04-01

    Previous research indicates that the inclusion of nanosilica (NS) modifies the properties of the fresh and hardened state, compared to the traditional mineral additions. NS decreases the setting times of the cement mortar compared to silica fume (SF) and reduce of required water while improving the cohesion of the mixtures in the fresh state. Some authors estimate that the appropriate percentage of Nano-silica should be small (1 to 5% by weight) because of difficulties caused by agglomeration to particles during mixing, while others indicate that 10% by weight, if adjustments are made to the formulation to avoid an excess of self-drying and micro cracks that could impede strength. For this purpose, the present work aim to see the effect of the introduction mode of the nanosilica on the rheological and physic mechanical properties of cement mortars. In this study, NS was used either powdered with cement or in solution with the superplasticizer (Superplasticizer doped in nanosilica). Results show that the use of nanosilica powder (replacing cement on the one hand) has a negative influence on the rheological parameters and the rheological behavior of cementitious pastes. However, the introduction of nanosilica in solution in the superplasticizer (SP) was significantly improved the rheological parameters and the rheological behavior of cementitious pastes. Indeed, more the dosage of NS-doped SP increases more the shear stress and viscosities of the cementitious pastes become more fluid and manageable. A significant reduction of shear stress and plastic viscosity were observed that due to the increase in superplasticizer. A dosage of 1.5% NS-doped SP gave adequate fluidity and the shear rate was lower.

  12. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite,more » whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.« less

  13. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan-Rong, Zhang; School of Civil Engineering, Beijing Key Laboratory of Track Engineering, Beijing Jiaotong University, Beijing 100044; Xiang-Ming, Kong

    The influences of triethanolamine (TEA) on the portlandite in hardened cement pastes (HCPs) were systematically investigated. Results show that the addition of TEA in cement pastes leads to a visible reduction of Ca(OH){sub 2} (CH) content and considerably alters the morphology of CH crystals from large and parallel-stacked lamellar shape to smaller and distorted actinomorphic one. For the first time, the CH micro-crystals and even non-crystalline CH in HCPs were observed in the presence of TEA. Due to integration of CH micro-crystals in C–S–H phase, remarkable higher Ca/Si ratio of C–S–H phase was found. The formation of TEA-Ca{sup 2+} complexmore » via the interaction between Ca{sup 2+} and the oxygen atoms in TEA molecule was evidenced by the results of NMR and UV. It is believed that TEA can be introduced into the crystallization process of portlandite and thus significantly alters the morphology of CH crystals and even the content of the crystalline CH phase.« less

  14. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    NASA Astrophysics Data System (ADS)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  15. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibilitymore » issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].« less

  16. Influence of Titanium Dioxide Nanoparticles on the Sulfate Attack upon Ordinary Portland Cement and Slag-Blended Mortars

    PubMed Central

    Atta-ur-Rehman; Qudoos, Abdul; Kim, Hong Gi

    2018-01-01

    In this study, the effects of titanium dioxide (TiO2) nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC) and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50) were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC) tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack. PMID:29495616

  17. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yio, M.H.N., E-mail: marcus.yio11@imperial.ac.uk; Phelan, J.C.; Wong, H.S.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3more » days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.« less

  18. Molecular architecture requirements for polymer-grafted lignin superplasticizers.

    PubMed

    Gupta, Chetali; Sverdlove, Madeline J; Washburn, Newell R

    2015-04-07

    Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.

  19. Magnitude assessment of free and hydrated limes present in RPCC aggregates : research implementation plan.

    DOT National Transportation Integrated Search

    2005-10-11

    Aggregates obtained from recycled reinforced Portland cement concrete (RPCC) pavement used as base or : subbase may produce tufa in the underdrain outlet pipes. The most likely source of the tufa is related to the : fine aggregate and cement paste. I...

  20. Utilization of flotation wastes of copper slag as raw material in cement production.

    PubMed

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  1. Guide for curing of Portland cement concrete pavements : volume II.

    DOT National Transportation Integrated Search

    2006-08-01

    Information on the current state of knowledge of curing hydraulic-cement concrete and on current curing practice : was gathered by means of a literature review and a review of current standard guidance. From this information, a : draft guide for curi...

  2. Influence of thermally activated paper sludge on the behaviour of blended cements subjected to saline and non-saline environments.

    PubMed

    García, Rosario; Rubio, Virginia; Vegas, Iñigo; Frías, Moisés

    2009-05-01

    One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700 degrees C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion

  3. Original behavior of pore water radiolysis in cement-based materials containing sulfide: Coupling between experiments and simulations

    NASA Astrophysics Data System (ADS)

    Bouniol, P.; Guillot, W.; Dauvois, V.; Dridi, W.; Le Caër, S.

    2018-09-01

    Blended cements with high content of blast furnace slag (CEM III/C) can be used for nuclear waste conditioning because of their low hydration heat as compared to ordinary Portland cements (CEM I). They however contain some sulfide, an impurity whose role needs to be investigated. Indeed, they can have an effect on the radiolytic H2 production under irradiation. To study the impact of sulfide species on H2 production, gamma irradiation, at a dose rate of 356 Gy h-1, was performed during 6 months in a closed system without O2 on a cement paste made with CEM III/C. At short time, the radiolytic H2 production rate is higher than that measured using CEM I. On the basis of reaction data collected in the literature on sulfur species, radiolysis simulations performed for both systems confirm this behavior. Moreover, they suggest that the sulfide concentration, initially imposed in pore solution by the slag is of the order of 180 mM, and is responsible for this H2 production. For the first two irradiation months, the following phenomena are then evidenced in CEM III/C: 1) conversion of sulfide into polysulfide anions; 2) pH increase; 3) production of H2 due to the H•+ H2S reaction having a very high rate constant. Nevertheless, in the medium term, the residual sulfide concentration is not sufficient any more for this mechanism to occur. It imposes a reducing environment, leading to a very efficient recombination of H2 in pore solution. The resulting equilibrium state is reinforced by the high liquid saturation level in the cement paste porosity. Therefore, even if the presence of sulfide species in blended cements momentarily increases the H2 production rate, it strongly reduces it at long times.

  4. Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Omid; Menceloglu, Yusuf Ziya; Akbulut, Ozge

    2017-01-01

    Calcium aluminate cement (CAC) suffers from loss of workability in less than an hour (~15 minutes) after first touch of water. Current superplasticizers that are utilized to modify the viscosity of cement admixtures are designed to target ordinary Portland cement (OPC). The high affinity between these superplasticizers and cement particles were found to be detrimental in CAC systems. Utilization of a monomer that, instead, facilitates gradual adsorption of a superplasticizer provides workability retention. For the first time in literature, we report a superplasticizer that caters to the properties of CAC such as high rate of surface development and surface charge. While neat CAC was almost unworkable after 1 hour, with the addition of only 0.4% of the optimized superplasticizer, 90% fluidity retention was achieved.

  5. 77 FR 15263 - Security Zone; Portland Rose Festival on Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... Zone; Portland Rose Festival on Willamette River; Portland, OR AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival... Willamette River during the Portland Rose festival. During the enforcement period, no person or vessel may...

  6. Detecting the Water-soluble Chloride Distribution of Cement Paste in a High-precision Way.

    PubMed

    Chang, Honglei; Mu, Song

    2017-11-21

    To improve the accuracy of the chloride distribution along the depth of cement paste under cyclic wet-dry conditions, a new method is proposed to obtain a high-precision chloride profile. Firstly, paste specimens are molded, cured, and exposed to cyclic wet-dry conditions. Then, powder samples at different specimen depths are grinded when the exposure age is reached. Finally, the water-soluble chloride content is detected using a silver nitrate titration method, and chloride profiles are plotted. The key to improving the accuracy of the chloride distribution along the depth is to exclude the error in the powderization, which is the most critical step for testing the distribution of chloride. Based on the above concept, the grinding method in this protocol can be used to grind powder samples automatically layer by layer from the surface inward, and it should be noted that a very thin grinding thickness (less than 0.5 mm) with a minimum error less than 0.04 mm can be obtained. The chloride profile obtained by this method better reflects the chloride distribution in specimens, which helps researchers to capture the distribution features that are often overlooked. Furthermore, this method can be applied to studies in the field of cement-based materials, which require high chloride distribution accuracy.

  7. Interaction between BaCO{sub 3} and OPC/BFS composite cements at 20 {sup o}C and 60 {sup o}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utton, C.A., E-mail: c.utton@sheffield.ac.u; Gallucci, E.; Hill, J.

    2011-03-15

    A BaCO{sub 3} slurry, containing radioactive {sup 14}C, is produced during the reprocessing of spent nuclear fuel. This slurry is encapsulated in a Portland-blastfurnace slag composite cement. The effect of BaCO{sub 3} on the hydration of OPC and Portland-blastfurnace slag cements has been studied in this work. Samples containing a simulant BaCO{sub 3} slurry were cured for up to 720 days at 20 and 60 {sup o}C and analysed by XRD, SEM(EDX) and ICC. BaCO{sub 3} reacted with OPC to precipitate BaSO{sub 4} from a reaction between soluble sulfate and BaCO{sub 3}. Calcium monocarboaluminate subsequently formed from the carbonate released.more » The monocarboaluminate precipitated as crystals in voids formed during hydration. At 60 {sup o}C in OPC, it was not identified by XRD, suggesting the phase is unstable in this system around this temperature. In the Portland-blastfurnace slag cements containing BaCO{sub 3}, less monocarboaluminate and BaSO{sub 4} were formed, but the hydration of BFS was promoted and monocarboaluminate was stable up to 60 {sup o}C.« less

  8. Effect of Metakaolin and Slag blended Cement on Corrosion Behaviour of Concrete

    NASA Astrophysics Data System (ADS)

    Borade, Anita N.; Kondraivendhan, B.

    2017-06-01

    The present paper is aimed to investigate the influence of Metakaolin (MK) and Portland slag Cement (PSC) on corrosion behaviour of concrete. For this purpose, Ordinary Portland Cement (OPC) was replaced by 15% MK by weight and readymade available PSC were used. The standard concrete specimens were prepared for both compressive strength and half- cell potential measurement. For the aforesaid experiments, the specimens were cast with varying water to binder ratios (w/b) such as 0.45, 0.5 and 0.55 and exposed to 0%, 3%, 5% and 7.5% of sodium chloride (NaCl) solution. The specimens were tested at wide range of curing ages namely 7, 28, 56, 90 and 180 days. The effects of MK, w/b ratio, age, and NaCl exposure upon concrete were demonstrated in this investigation along with the comparison of results of both MK and PSC concrete were done. It was also observed that concrete with MK shows improved performance as compared to concrete with PSC.

  9. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  10. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  11. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  12. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  13. 33 CFR 110.6a - Fore River, Portland Harbor, Portland, Maine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fore River, Portland Harbor, Portland, Maine. 110.6a Section 110.6a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.6a Fore River, Portland Harbor...

  14. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  15. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  16. Nano-scale hydrogen-bond network improves the durability of greener cements

    PubMed Central

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  17. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, J.M.; Fita, I.C., E-mail: infifer@fis.upv.es; Soriano, L.

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration andmore » allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.« less

  18. Low-Temperature Curing Strength Enhancement in Cement-Based Materials Containing Limestone Powder.

    PubMed

    Bentz, Dale P; Stutzman, Paul E; Zunino, Franco

    2017-06-01

    With the ongoing sustainability movement, the incorporation of limestone powder in cementitious binders for concrete in the U.S. has become a subject of renewed interest. In addition to accelerating the early age hydration reactions of cementitious systems by providing additional surfaces for nucleation and growth of products, limestone powder is also intriguing based on its influence on low-temperature curing. For example, previous results have indicated that the utilization of limestone powder to replace one quarter of the fly ash in a high volume fly ash mixture (40 % to 60 % cement replacement) produces a reduction in the apparent activation energy for setting for temperatures below 25 °C. In the present study, the relationship between heat release and compressive strength of mortars at batching/curing temperatures of 10 °C and 23 °C is investigated. For Portland-limestone cements (PLC) with limestone additions on the order of 10 %, a higher strength per unit heat release is obtained after only 7 d of curing in lime water. Surprisingly, in some cases, the absolute strength of these mortar cubes measured at 7 d is higher when cured at 10 °C than at 23 °C. Solubilities vs. temperature, reaction stoichiometries and enthalpies, and projected phase distributions based on thermodynamic modeling for the cementitious phases are examined to provide some theoretical insight into this strength enhancement. For a subset of the investigated cements, thermogravimetric analysis (TGA), quantitative X-ray diffraction (XRD), and scanning electron microscopy (SEM) are conducted on 7-d paste specimens produced at the two temperatures to examine differences in their reaction rates and the phases produced. The strength enhancement observed in the PLC cements is related to the cement hydration products formed in the presence of carbonates as a function of temperature.

  19. 75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...

  20. Development of an Improved Cement for Geothermal Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s andmore » early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.« less

  1. APC fly ashes stabilized with Portland cement for further development of road sub-base aggregates

    NASA Astrophysics Data System (ADS)

    Formosa, J.; Giro-Paloma, J.; Maldonado-Alameda, A.; Huete-Hernández, S.; Chimenos, J. M.

    2017-10-01

    Although waste-to-energy plants allow reducing the mass and volume of municipal solid waste (MSW) incinerated, an average around 30 % of the total content remains as bottom ash (BA) and air pollution control (APC) ashes at the end of combustion process. While weathered bottom ash (WBA) is considered a non-hazardous residue that can be revalorized as a secondary aggregate, APC fly ashes generated during the flue gas treatment are classified as hazardous waste and are handled in landfill disposal after stabilization, usually with Portland cement (OPC). However, taking into account the amount of APC residues produced and the disposing cost in landfill, their revalorization is an important issue that could be effectively addressed. As MSW can be incinerated producing bottom ashes (BA) or air pollutant control (APC) residues, the development of a mortar formulated with APC fly ash as secondary building material is a significant risk to the environment for their content of heavy metals. In this way, Design of Experiment (DoE) was used for the improvement of granular material (GM) formulation composed by APC and OPC for further uses as road sub-base aggregate. DoE analysis was successful in the modelling and optimization the formulation as function of the mechanical properties and APC amount. Consequently, an optimal mortar formulation (OMF) of around 50 wt.% APC and 50 wt.% OPC was considered. The OMF leachates and abrasion resistance have been analyzed. These results have demonstrated the viability of OMF as non-hazardous material feasible to be used as secondary aggregate. Moreover, it would be possible to consider the environmental assessment of a GM composed by ≈20 wt.% of OMF and ≈80 wt.% of WBA in order to improve mechanical properties and heavy metals stabilization.

  2. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  3. Photoactive glazed polymer-cement composite

    NASA Astrophysics Data System (ADS)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  4. Calcium silicate-based cements and functional impacts of various constituents

    PubMed Central

    SAGHIRI, Mohammad Ali; ORANGI, Jafar; ASATOURIAN, Armen; GUTMANN, James L.; Garcia-Godoy, Franklin; LOTFI, Mehrdad; SHEIBANI, Nader

    2016-01-01

    Calcium silicate-based cements have superior sealing ability, bioactivity, and marginal adaptation, which make them suitable for different dental treatment applications. However, they exhibit some drawbacks such as long setting time and poor handling characteristics. To overcome these limitations calcium silicates are engineered with various constituents to improve specific characteristics of the base material, and are the focus of this review. An electronic search of the PubMed, MEDLINE, and EMBASE via OVID databases using appropriate terms and keywords related to the use, application, and properties of calcium silicate-based cements was conducted. Two independent reviewers obtained and analyzed the full texts of the selected articles. Although the effects of various constituents and additives to the base Portland cement-like materials have been investigated, there is no one particular ingredient that stands out as being most important. Applying nanotechnology and new synthesis methods for powders most positively affected the cement properties. PMID:27773894

  5. Accelerated ageing of blended OPC cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quillin, K.C.; Duerden, S.L.; Majumdar, A.J.

    1994-12-31

    An accelerated experimental technique using high water:cement ratios has been developed to study the long term hydration of blended cements that may be used in a repository for the disposal of radioactive waste. This technique has been used to investigate the hydration reactions of Ordinary Portland Cement (OPC) blended with ground granulated blastfurnace slag (ggbs) or pulverised fuel ash (pfa). The effects of high sulphate-bearing and high carbonate-bearing ground waters on the compounds formed on hydration were investigated. Solid/solution compositional data were collected during the course of the hydration process for periods up to 2 years. Thomsonite, thaumasite, afwillite andmore » a tobermorite-like phase were found in addition to the expected cement hydration products. The pH of the aqueous solution in contact with 60 pfa:40 OPC blends hydrated at 90{degrees}C fell to below 8. This is lower than the value required to inhibit the corrosion of steel canisters in a repository. The pH of the aqueous solution in contact with OPC and 75 ggbs:25 OPC blends remained above 11, although if the ground waters in contact with the OPC/ggbs blends were periodically replaced the pH eventually fell below 10.« less

  6. Application of Neutron imaging in pore structure of hydrated wellbore cement: comparison of hydration of H20 with D2O based Portland cements

    NASA Astrophysics Data System (ADS)

    Dussenova, D.; Bilheux, H.; Radonjic, M.

    2012-12-01

    Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main

  7. Treatments for clays in aggregates used to produce cement concrete, bituminous materials, and chip seals : technical report.

    DOT National Transportation Integrated Search

    2013-07-01

    The clay contamination of coarse and fine aggregates and its effects on pavement performance of portland cement concrete, bituminous mixes and chip seals is a major concern for Texas Department of Transportation. We proposed (i) to determine what typ...

  8. Brownfield reuse of dredged New York Harbor sediment by cement-based solidification/stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loest, K.; Wilk, C.M.

    1998-12-31

    Newly effective federal regulations restrict the ocean disposal of sediments dredged from the harbors of New York and Newark. The New York Port Authority is faced with a critical situation: find land-based disposal/uses for 10`s of millions cubic yards of sediments or lose standing as a commercial port for ocean-going ships. One of the technologies now being employed to manage the sediments is portland cement-based solidification/stabilization (S/S) treatment. At least 4 million cubic yards of the sediments will undergo cement-based S/S treatment. This treatment will immobilize heavy metals, dioxin, PCBs and other organic contaminants in the sediment. The treatment changesmore » the sediment from a environmental liability into a valuable structural fill. This structural fill is being used at two properties. The first property is an old municipal landfill in Port Newark, New Jersey. The treated sediments are being used as structural fill to cover about 20 acres of the landfill. This will allow planned redevelopment of the landfill property into a shopping mall. The second property called the Seaboard site, was the location of a coal gasification facility and later a wood preservation facility. This 160-acre property has been designated for brownfield redevelopment. Over 4 million cubic yards of treated sediments will eventually cover this site. Portland cement is the selected S/S binding reagent. Nearly 500,000 tons of cement will eventually be used to treat the sediments. Cement was selected for its ability to (a) change the peanut butter-like consistency of the sediments into a structural material and (b) to physically and chemically immobilize hazardous constituents in the sediment.« less

  9. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent; Ye, G.

    2008-04-15

    With the increasing application of self-compacting concrete (SCC) in construction and infrastructure, the fire spalling behavior of SCC has been attracting due attention. In high performance concrete (HPC), addition of polypropylene fibers (PP fibers) is widely used as an effective method to prevent explosive spalling. Hence, it would be useful to investigate whether the PP fibers are also efficient in SCC to avoid explosive spalling. However, no universal agreement exists concerning the fundamental mechanism of reducing the spalling risk by adding PP fiber. For SCC, the reduction of flowability should be considered when adding a significant amount of fibres. Inmore » this investigation, both the micro-level and macro-level properties of pastes with different fiber contents were studied in order to investigate the role of PP fiber at elevated temperature in self-compacting cement paste samples. The micro properties were studied by backscattering electron microscopy (BSE) and mercury intrusion porosimetry (MIP) tests. The modification of the pore structure at elevated temperature was investigated as well as the morphology of the PP fibers. Some macro properties were measured, such as the gas permeability of self-compacting cement paste after heating at different temperatures. The factors influencing gas permeability were analyzed. It is shown that with the melting of PP fiber, no significant increase in total pore volume is obtained. However, the connectivity of isolated pores increases, leading to an increase of gas permeability. With the increase of temperature, the addition of PP fibers reduces the damage of cement pastes, as seen from the total pore volume and the threshold pore diameter changes. From this investigation, it is concluded that the connectivity of pores as well as the creation of micro cracks are the major factors which determine the gas permeability after exposure to high temperatures. Furthermore, the connectivity of the pores acts as a

  10. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  11. Natural Cellulose Nanofibers As Sustainable Enhancers in Construction Cement

    PubMed Central

    Jiao, Li; Su, Ming; Chen, Liao; Wang, Yuangang; Zhu, Hongli; Dai, Hongqi

    2016-01-01

    Cement is one of the mostly used construction materials due to its high durability and low cost, but it suffers from brittle fracture and facile crack initiation. This article describes the use of naturally-derived renewable cellulose nanofibers (CNFs) to reinforce cement. The effects of CNFs on the mechanical properties, degree of hydration (DOH), and microstructure of cement pastes have been studied. It is found that an addition of 0.15% by weight of CNFs leads to a 15% and 20% increase in the flexural and compressive strengths of cement paste. The enhancement in mechanical strength is attributed to high DOH and dense microstructure of cement pastes after adding CNFs. PMID:28005917

  12. Experimental study of the caprock / cement interface under CO2 geological storage conditions

    NASA Astrophysics Data System (ADS)

    Jobard, Emmanuel; Sterpenich, Jérôme; Pironon, Jacques; Randi, Aurélien; Caumon, Marie-Camille

    2013-04-01

    In the framework of CO2 geological storage, one of the critical point leading to possible massive CO2 leakages is the behavior of the interfaces crossed by the injection well. The lack of relevant data on the behavior of these interfaces (rock/well materials) in the presence of CO2 under high pressure and temperature conditions led to the development of a new experimental model called "Sandwich". These batch experiments consisted in putting a caprock (Callovo-Oxfordian claystone of the Paris Basin) in contact with cement (Portland class G) in the presence of supercritical CO2 with or without aqueous solution. The new experimental device was designed in order to follow the evolution of a clayey caprock, a Portland cement and their interface submitted to the acidic attack of carbonic acid through a study of the initial and final states. This model should help to document the behavior of interfaces in the proximal zone at the injection site. After one month of ageing at 80° C under 100 bar of CO2 pressure, the caprock, the cement and the interface between caprock and cement are investigated thanks to SEM, cathodoluminescence and Raman spectrometry. The main results reveal i) the influence of the presence of an aqueous solution since the carbonation mechanisms are quite different under dry and wet atmospheres, ii) the good cohesion of the different interfaces despite the carbonation of the cement, iii) the precipitation of different carbonate phases, which relates the changes in the chemistry of the solution to time, iv) the enrichment of silica in the cement phase submitted to the action of CO2 putting into evidence new mechanisms of in situ silica re-condensation, v) the very good behavior of the caprock despite the alkaline flux from cement and the acidic attack from the dissolved CO2. These experimental results will be compared to those obtained by geochemical simulations performed with PHREEQC. This study was financially supported by the French agency ANR (ANR-08

  13. Oxalate Acid-Base Cements as a Means of Carbon Storage

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  14. Development of cement solidification process for sodium borate waste generated from PWR plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji

    2013-07-01

    A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less

  15. Evaluation of the suitability of tin slag in cementitious materials: Mechanical properties and Leaching behaviour

    NASA Astrophysics Data System (ADS)

    Rustandi, Andi; Wafa' Nawawi, Fuad; Pratesa, Yudha; Cahyadi, Agung

    2018-01-01

    Tin slag, a by-product of tin production has been used in cementitious application. The present investigation focuses on the suitability of tin slag as primary component in cement and as component that substitute some amount of Portland Cement. The tin slags studied were taken from Bangka, Indonesia. The main contents of the tin slag are SiO2, Al2O3, and Fe2O3 according to the XRF investigation. The aim of this article was to study the mechanical behaviour (compressive strength), microstructure and leaching behaviour of tin slag blended cement. This study used air-cooled tin slag that had been passed through 400# sieve to replace Portland Cement with ratio 0, 10, 20, 30, 40 by weight. Cement pastes and tin slag blended cement pastes were prepared by using water/cement ratio (W/C) of 0.40 by weight and hydrated for various curing ages of 3, 7, 14 days The microstructure of the raw tin slag was investigated using Scanning Electron Microscope (SEM). The phase composition of each cement paste was investigated using X-ray Diffraction (XRD). The aim of the leachability test was to investigate the environmental impacts of tin slag blended cement product in the range 4-8 pH by using static pH-dependent leaching test. The result show that the increase of the tin slag content decreasing the mortar compressive strength at early ages. The use of tin slag in cement provide economic benefits for all related industries.

  16. Polished sample preparing and backscattered electron imaging and of fly ash-cement paste

    NASA Astrophysics Data System (ADS)

    Feng, Shuxia; Li, Yanqi

    2018-03-01

    In recent decades, the technology of backscattered electron imaging and image analysis was applied in more and more study of mixed cement paste because of its special advantages. Test accuracy of this technology is affected by polished sample preparation and image acquisition. In our work, effects of two factors in polished sample preparing and backscattered electron imaging were investigated. The results showed that increasing smoothing pressure could improve the flatness of polished surface and then help to eliminate interference of morphology on grey level distribution of backscattered electron images; increasing accelerating voltage was beneficial to increase gray difference among different phases in backscattered electron images.

  17. 76 FR 29180 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... regulation to control NO X emissions from Portland cement kilns. Portland cement manufacturing is an energy... Pa. Code) Chapter 145, Subchapter C (Emissions of NO X from Cement Manufacturing), for Portland... Portland Cement Kilns AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is...

  18. Deciphering mineralogical changes and carbonation development during hydration and ageing of a consolidated ternary blended cement paste

    PubMed Central

    Grangeon, Sylvain; De Nolf, Wout; Harker, Nicholas; Boulahya, Faiza; Bourbon, Xavier

    2018-01-01

    To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement’s properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and in situ. However, traditional methods of cement mineralogy analysis (e.g. chemical mapping) involve sample preparation (e.g. slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts (e.g. dehydration). In addition, the kinetics of mineralogical development during hydration, and associated porosity development, cannot be examined. To circumvent these issues, X-ray diffraction computed tomography (XRD-CT) has been used. This allowed the mineralogy of ternary blended cement composed of clinker, fly ash and blast furnace slag to be deciphered. Consistent with previous results obtained for both powdered samples and dilute systems, it was possible, using a consolidated cement paste (with a water-to-solid ratio akin to that used in civil engineering), to determine that the mineralogy consists of alite (only detected in the in situ hydration experiment), calcite, calcium silicate hydrates (C-S-H), ettringite, mullite, portlandite, and an amorphous fraction of unreacted slag and fly ash. Mineralogical evolution during the first hydration steps indicated fast ferrite reactivity. Insights were also gained into how the cement porosity evolves over time and into associated spatially and time-resolved carbonation mechanisms. It was observed that macroporosity developed in less than 30 h of hydration, with pore sizes reaching about 100–150 µm in width. Carbonation was not observed for this time scale, but was found to affect the first 100 µm of cement located around macropores

  19. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... hydrocarbons (THC), and particulate matter (PM) from new and existing cement kilns located at major and area... appreciably is the floor for THC, which would become significantly more stringent because the revised data base would reflect cement kilns experiencing less variability in THC emissions.\\10\\ Given the minimal...

  20. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days

    PubMed Central

    Esteban, María Dolores

    2017-01-01

    Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO2 emissions, the clinker replacement by ground granulated blast–furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement. PMID:29088107

  1. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Sánchez, Isidro; Climent, Miguel Ángel

    2017-10-31

    Nowadays, cement manufacture is one of the most polluting worldwide industrial sectors. In order to reduce its CO₂ emissions, the clinker replacement by ground granulated blast-furnace slag and fly ash is becoming increasingly common. Both additions are well-studied when the hardening conditions of cementitious materials are optimum. Therefore, the main objective of this research was to study the short-term effects of exposure, to both laboratory simulated and real in situ Mediterranean climate environments, on the microstructure and durability-related properties of mortars made using commercial slag and fly ash cements, as well as ordinary Portland cement. The real in situ condition consisted of placing the samples at approximately 100 m away from the Mediterranean Sea. The microstructure was analysed using mercury intrusion porosimetry. The effective porosity, the capillary suction coefficient and the non-steady state chloride migration coefficient were also studied. In view of the results obtained, the non-optimum laboratory simulated Mediterranean environment was a good approach to the real in situ one. Finally, mortars prepared using sustainable cements with slag and fly ash exposed to both Mediterranean climate environments, showed adequate service properties in the short-term (90 days), similar to or even better than those in mortars made with ordinary Portland cement.

  2. Assessment of the leaching of metallic elements in the technology of solidification in aqueous solution.

    PubMed

    Rossetti, V Alunno; Di Palma, L; Medici, F

    2002-01-01

    Results are presented of experiments performed to optimize the solidification/stabilization system for metallic elements in aqueous solution. This system involves mixing cement and a solution of metallic elements in a conventional mixer: the paste thus obtained is transferred drop by drop into a recipient filled with an aqueous solution of NaOH at 20% by weight, in which it solidifies immediately. The separate use of chloride solutions of Li+, Cr3+, Pb2+ and Zn2+ makes it possible to obtain granules displaying various levels of compressive strength. Three different inertization matrices were used in the experiments, the first consisting solely of Portland cement, the second of Portland cement and a superplasticizer additive, and the third of Portland cement partially replaced with silica-fume and superplasticizer. The results of the tests performed showed a very low level of leaching into the alkaline solidification solution for Cr3+, the quantity leached being under 2% as against higher levels for the other metallic elements. For all the considered elements, the best results were obtained by using silica-fume in the inertization matrix.

  3. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  4. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    PubMed

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Analysis of Cement-Based Pastes Mixed with Waste Tire Rubber

    NASA Astrophysics Data System (ADS)

    Sola, O. C.; Ozyazgan, C.; Sayin, B.

    2017-03-01

    Using the methods of thermal gravimetry, differential thermal analysis, Furier transform infrared analysis, and capillary absorption, the properties of a cement composite produced by introducing waste tyre rubber into a cement mixture were investigated. It was found that the composite filled with the rubber had a much lower water absorption ability than the unfilled one.

  6. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes

    NASA Astrophysics Data System (ADS)

    Kurumisawa, Kiyofumi; Haga, Kazuko; Hayashi, Daisuke; Owada, Hitoshi

    2017-06-01

    It is very important to predict alterations in the concrete used for fabricating disposal containers for radioactive waste. Therefore, it is necessary to understand the alteration of cementitious materials caused by calcium leaching when they are in contact with ground water in the long term. To evaluate the long-term transport characteristics of cementitious materials, the microstructural behavior of these materials should be considered. However, many predictive models of transport characteristics focus on the pore structure, while only few such models consider both, the spatial distribution of calcium silicate hydrate (C-S-H), portlandite, and the pore spaces. This study focused on the spatial distribution of these cement phases. The auto-correlation function of each phase of cementitious materials was calculated from two-dimensional backscattered electron imaging, and the three-dimensional spatial image of the cementitious material was produced using these auto-correlation functions. An attempt was made to estimate the diffusion coefficient of chloride from the three-dimensional spatial image. The estimated diffusion coefficient of the altered sample from the three-dimensional spatial image was found to be comparable to the measured value. This demonstrated that it is possible to predict the diffusion coefficient of the altered cement paste by using the proposed model.

  7. Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastaldi, D., E-mail: dgastaldi@buzziunicem.it; Paul, G., E-mail: geo.paul@uniupo.it; Marchese, L.

    The hydration of four sulfoaluminate cements have been studied: three sulfoaluminate systems, having different content of sulfate and silicate, and one blend Portland-CSA-calcium sulfate binder. Hydration was followed up to 90 days by means of a combination of X-ray diffraction and solid state MAS-NMR; Differential scanning calorimetry and Scanning electron microscopy were also performed in order to help the interpretation of experimental data. High amount of amorphous phases were found in all the four systems: in low-sulfate cements, amorphous part is mainly ascribed to monosulfate and aluminium hydroxide, while strätlingite is observed if belite is present in the cement; inmore » the blend system, C-S-H contributes to the amorphous phase beyond monosulfate.« less

  8. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copuroglu, O.; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-08-15

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies themore » microstructure and improves the resistance of carbonated BFSC paste against frost salt attack.« less

  9. Retardation effect of different alcohols on the cement coagulation in polycarboxylate- and naphthalene-based cement admixtures

    NASA Astrophysics Data System (ADS)

    Huang, S. M.; Zhou, F. L.

    2017-12-01

    Alcohol has great potential to delay the coagulation of cement. The effects of alcohol on paste fluidity and normal consistency coagulation time have been studied for polycarboxylate superplasticizer and naphthene cement admixture. Seven alcohols were combined with polycarboxylate superplasticizer and naphthene at a concentration of 0.01-0.09%, respectively, including n-propanol, methanol, sorbitol, ethylene glycol, glycerol, ethanol, and mannitol. The fluidity and normal consistency coagulation time of each cement admixture were measured. The performance of both polycarboxylate superplasticizer and naphthene cement admixtures were compared to develop cement admixture with delayed coagulation.

  10. Reaction processes and permeability changes during CO2-rich brine flow through fractured Portland cement

    NASA Astrophysics Data System (ADS)

    Abdoulghafour, H.; Luquot, L.; Gouze, P.

    2012-12-01

    So far, cement alteration was principally studied experimentally using batch reactor (with static or renewed fluid). All exhibit similar carbonation mechanisms. The acidic solution, formed by the dissolution of the CO2 into the pore water or directly surrounding the cement sample, diffuses into the cement and induces dissolution reactions of the cement hydrates in particular portlandite and CSH. The calcium released by the dissolution of these calcium bearing phases combining with carbonate ions of the fluid forms calcium carbonates. The cement pH, initially around 13, falls to values where carbonate ion is the most dominant element (pH ~ 9), then CaCO3 phases can precipitate. These studies mainly associate carbonation process with a reduction of porosity and permeability. Indeed an increase of volume (about 10%) is expected during the formation of calcite from portlandite (equation 2) assuming a stoichiometric reaction. Here we investigated the cement alteration mechanisms in the frame of a controlled continuous renewal of CO2-rich fluid in a fracture. This situation is that expected when seepage is activated by the mechanical failure of the cement material that initially seals two layers of distinctly different pressure: the storage reservoir and the aquifer above the caprock, for instance. We study the effect of flow rates from quasi-static flow to higher flow rates for well-connected fractures. In the quasi-static case we observed an extensive conversion of portlandite (Ca(OH)2) to calcite in the vicinity of the fracture similar to that observed in the published batch experiments. Eventually, the fracture was almost totally healed. The experiments with constant flow revealed a different behaviour triggered by the continuous renewing of the reactants and withdrawal of reaction products. We showed that calcite precipitation is more efficient for low flow rate. With intermediate flow rate, we measured that permeability increases slowly at the beginning of the

  11. Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes

    NASA Astrophysics Data System (ADS)

    Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.

    2018-04-01

    Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment

  12. 40 CFR 63.1340 - Applicability and designation of affected sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... portland cement plant which is a major source or an area source as defined in § 63.2. (b) The affected... portland cement plant which is a major source; (3) Each raw mill at any portland cement plant which is a...

  13. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Tian, Xichun; Cao, Peiwang

    2018-04-01

    Cemented paste backfill (CPB) is an emerging mine backfill technique that allows environmentally hazardous tailings to return to the underground openings or stopes, thereby maximising the safety, efficiency and productivity of operation. Uniaxial compressive strength (UCS) is one of the most commonly used parameters for evaluating the mechanical performance of CPB; the prediction of the UCS of CPB structures from early to advanced ages is of great practical importance. This study aims to investigate the predictability of the UCS of CPB during the hydration process based on electrical resistivity (ER) measurement. For this purpose, the samples prepared at different cement-to-tailing ratios and solid contents were subjected to the ER test during the whole hydration process and UCS tests at 3, 7, 28 days of curing periods. The effect of cement-to-tailing ratio and solid content on the ER and UCS of CPB samples was obtained; the UCS values were correlated with the corresponding ER data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the ER data. The result shows that the ER of CPB decreases first and then increases with the speed which is faster in the previous part than the latter. The ER and UCS of CPB samples increased with increasing cement-to-tailing ratio and solid content and curing periods. A logarithmic relationship is established for each mixture in order to predict the UCS of CPB based on ER. Scanning electron microscope analyses have revealed that the microstructure of the CPB changes with the age from the initial floc to honeycomb, and eventually to the compact clumps. The ER properties of CPB samples were highly associated with their respective microstructural properties. The major output of this study is that ER test is effectively capable for a preliminary prediction of the UCS of CPB.

  14. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements.

    PubMed

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-05-20

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.

  15. Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer

    DTIC Science & Technology

    1993-08-01

    Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements

  16. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integratedmore » XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore

  17. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data setmore » supports the modeling of cement alteration by CO 2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.« less

  18. German 'Smart Bus' Systems, Potential For Application In Portland, Oregon, Volume 1, Technical Report

    DOT National Transportation Integrated Search

    1993-01-01

    THE TRI-COUNTY METROPOLITAN TRANSPORTATION DISTRICT OF OREGON (TRI-MET) PROVIDES TRANSIT, PARATRANSIT AND RIDESHARING SERVICES WITHIN MULTNOMAH, CLACKAMAS AND WASHINGTON COUNTIES IN THE PORTLAND METROPOLITAN AREA. FOR THE PAST TWO DECADES, TRI-MET HA...

  19. The evaluation of ordinary Portland cement concrete subject to elevated temperatures in conjunction with acoustic emission and splitting tensile test

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hou, Tsung-Chin; Chen, Guan-Ying; Hou, Ping-Ni

    2017-04-01

    The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.45 was proportioned. Concrete specimens were cast and placed in the curing tank in which water was saturated with calcium hydroxide. After ninety days of moist-cure, three elevated temperatures, namely 300, 600, and 900-°C, were carried out upon hardened concrete specimens. Furthermore, two post-damaged curing conditions were executed to recover damaged concrete specimens: one was to recure under 23°C with 50% humidity in a controlled environmental chamber and the other was to recure in the same curing tank. Acoustic emission apparatus coupled with the splitting tensile test was utilized and found able to assess damaged concrete. Before concrete subject to elevated temperatures, the development of indirect tensile strength versus displacement diagram fit well with the tendency of AE energy release. It was found there was a large amount of AE energy released when stress and displacement diagram developed about 40-50%. As such could be identified as the onset of first fracture and the plain concrete generally exhibited a quasi-brittle fracture with two major series of AE energy dissipations; however when concrete specimens were subject to elevated temperatures, the damaged concrete specimens displayed neither fracture pattern nor the "double-hump" AE energy dissipation in comparison with those of plain concrete.

  20. Nanotechnology-based system for damage-resistant concrete pavements.

    DOT National Transportation Integrated Search

    2012-08-01

    The focus of this study was to explore the use of nanotechnology-based nanofilaments, such as carbon nanotubes (CNTs) and nanofibers (CNFs), as reinforcement for improving the mechanical properties of Portland cement paste and creating multifunctiona...

  1. Biogeochemical interactions between of coal mine water and gas well cement

    NASA Astrophysics Data System (ADS)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  2. Reactive Silicate Coatings for Protecting and Bonding Reinforcing Steel in Cement-Based Composites

    DTIC Science & Technology

    2008-12-01

    wire. Selected sections of cracked enamel were maintained in the wet condition and examine periodical for evidence of gel formation and crack ... enamel containing portland cement will protect the underlying reinforcing steel in an aggressive environment. d) If the enamel coating is cracked ...oxidized. The increase in volume cracks the concrete around the reinforcement and weakens the steel members. When the steel is separated from the

  3. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seungmin, E-mail: lim76@illinois.edu; Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis.more » Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.« less

  4. Effects of coarse aggregate on the physical properties of Florida concrete mixes.

    DOT National Transportation Integrated Search

    2015-10-01

    Portland cement concrete is a heterogeneous, composite material composed of coarse and fine granular material : embedded in a matrix of hardened paste. The coarse material is aggregate, which is primarily used as inexpensive filler : and comprises th...

  5. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    PubMed Central

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-01-01

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517

  6. 77 FR 5573 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ..., Newark, DE, has been added as a party to this venture. Also, Texas-Lehigh Cement Company, Buda, TX...; and Slag Cement Association, Sugar Land, TX, have withdrawn as parties to this venture. No other...

  7. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... subpart apply to each new and existing portland cement plant which is a major source or an area source as... this part; (2) Each clinker cooler at any portland cement plant; (3) Each raw mill at any portland...

  8. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing... subpart apply to each new and existing portland cement plant which is a major source or an area source as... this part; (2) Each clinker cooler at any portland cement plant; (3) Each raw mill at any portland...

  9. Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal

    NASA Astrophysics Data System (ADS)

    Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush

    2016-10-01

    Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.

  10. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    PubMed

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. © 2013 Wiley Periodicals, Inc.

  11. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    NASA Astrophysics Data System (ADS)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  12. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called "A", based on the washing, phosphation and calcination of the ash, and a modified process, called "B", intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non

  13. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnefeld, Frank, E-mail: Frank.Winnefeld@empa.c; Lothenbach, Barbara

    Calcium sulfoaluminate cements (CSA) are a promising low-CO{sub 2} alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH){sub 3} until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additionalmore » hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.« less

  14. "MTA"-an Hydraulic Silicate Cement: review update and setting reaction.

    PubMed

    Darvell, B W; Wu, R C T

    2011-05-01

    To review the current status and understanding of Portland cement-like endodontic materials commonly referred to by the trade designation "MTA" (alias "Mineral Trioxide Aggregate"), and to present an outline setting reaction scheme, hitherto unattempted. The literature was searched using on-line tools, overlapping an earlier substantial review to pick up any omissions, including that in respect of ordinary Portland cement (OPC), with which MTA shares much. The search was conducted for the period January 2005 to December 2009 using 'MTA', 'GMTA', 'WMTA', and 'mineral AND trioxide AND aggregate' as keywords, with various on-line search engines including ScienceDirect (http://www.sciencedirect.com), SAGE Journals Online (http://online.sagepub.com), Wiley Online Library (http://onlinelibrary.wiley.com), SciELO Scientific electronic library online (http://www.scielo.br/scielo.php), JSTOR (http://www.jstor.org), and Scopus (http://www.scopus.com). References of articles found were cross-checked where appropriate for missed publications. Manufacturers' and related websites were searched with Google Search (http://www.google.com.hk). A generic name for this class of materials, Hydraulic Silicate Cement (HSC), is proposed, and an outline reaction scheme has been deduced. HSC has distinct advantages apparent, including sealing, sterilizing, mineralizing, dentinogenic and osteogenic capacities, which research continues to demonstrate. However, ad hoc modifications have little supporting justification. While HSC has a definite place in dentistry, with few of the drawbacks associated with other materials, some improvements in handling and other properties are highly desirable, as are studies of the mechanisms of the several beneficial physiological effects. Reference to the extensive, but complex, literature on OPC may provide the necessary insight. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. 40 CFR 63.1352 - Additional test methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... bypass stacks at portland cement manufacturing facilities, for use in applicability determinations under... kiln/raw mills and associated bypass stacks at portland cement manufacturing facilities, for use in...

  16. Mechanical properties of cement concrete composites containing nano-metakaolin

    NASA Astrophysics Data System (ADS)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  17. Buonocore Memorial Lecture. Glass-ionomer cements: past, present and future.

    PubMed

    Mount, G J

    1994-01-01

    It was Michael Buonocore who focused the attention of the profession on adhesion in the oral cavity. He expanded the concept of adhesion of resins to enamel and investigated adhesion to dentin. The problem has been solved through the glass-ionomer cements rather than with resins, but sadly, he did not live to see them achieve maturity. The glass-ionomer cements were introduced to the profession in 1976, and they provide adhesion to both enamel and dentin through an ion exchange with the additional benefit of a continuing fluoride release throughout the life of the restoration. Solubility is low, abrasion resistance is high, and biocompatability is excellent. As a water-based material, they have an excellent chance of survival in the hostile environment of the oral cavity. Acceptance of the early versions was slow because of perceived problems with water exchange, a poor color range, and a lack of translucency. Considerable research has been carried out over the last 20 years by members of the profession and the manufacturers; at this point, the glass-ionomer cements make a very valuable contribution to everyday practice. They are now available as both an autocure and a dual-cure cement, and the color range and translucency are excellent. Problems of clinical placement have been overcome, and it is now a simple matter to take advantage of the adhesion and the fluoride release and place a restoration that is esthetic, resistant to microleakage, long lasting, and a deterent to recurrent caries. Their only limitation lies in the fact that they lack the fracture strength to rebuild marginal ridges and incisal corners. In spite of this limitation, they have opened the way for the introduction of a new range of microcavity designs that allow for conservation of remaining tooth structure to an extent never before available. In the near future physical properties will be improved still further, and the use of these cements will expand considerably.

  18. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  19. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  20. Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial.

    PubMed

    Erfanparast, L; Iranparvar, P; Vafaei, A

    2018-05-16

    This study was to compare the success of resin-modified Portland cement-based material (TheraCal) with MTA in direct pulp capping (DPC) of primary molars. Symmetrical bilateral primary molars (92) from 46 healthy subjects aged 5-7 years were included in this split-mouth randomised clinical trial. DPC for small non-contaminated pulp exposures using either TheraCal or MTA were randomly performed in symmetrical molars. Thereafter, teeth were restored with amalgam. Clinical and radiographic evaluations were performed at 6 and 12 month follow-ups. Data were analysed using Chi square test at a significance level of 0.05. At the final follow-up session 74 teeth were available. After 12 months, the overall success rates for MTA and TheraCal were 94.5 and 91.8%, respectively. The difference between outcomes of the two groups was not statistically significant (P > 0.05). Within the limitations of the current study, radiographic and clinical findings revealed that TheraCal exhibited a comparable outcome to MTA in DPC of primary molars after 12 months.

  1. Development of fluorapatite cement for dental enamel defects repair.

    PubMed

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  2. 40 CFR 63.1352 - Additional test methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing... specific organic HAP from raw material dryers, kilns and in-line kiln/raw mills at Portland cement...

  3. 40 CFR 63.1352 - Additional test methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry Monitoring and... rates of emission of HCl from kilns and associated bypass stacks at portland cement manufacturing... specific organic HAP from raw material dryers, kilns and in-line kiln/raw mills at Portland cement...

  4. 40 CFR 63.1352 - Additional test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry... determine the rates of emission of HCl from kilns and associated bypass stacks at portland cement... emission of specific organic HAP from raw material dryers, and kilns at Portland cement manufacturing...

  5. Cement-based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs.

    PubMed

    Karamalidis, Athanasios K; Voudrias, Evangelos A

    2007-09-05

    Stabilization/solidification is a process widely applied for the immobilization of inorganic constituents of hazardous wastes, especially for metals. Cement is usually one of the most common binders for that purpose. However, limited results have been presented on immobilization of hydrocarbons in cement-based stabilized/solidified petroleum solid waste. In this study, real oil refinery sludge samples were stabilized and solidified with various additions of I42.5 and II42.5 cement (Portland and blended cement, respectively) and subject to leaching. The target analytes were total petroleum hydrocarbons, alkanes and 16 polycyclic aromatic hydrocarbons of the EPA priority pollutant list. The experiments showed that the waste was confined in the cement matrix by macroencapsulation. The rapture of the cement structure led to the increase of leachability for most of the hydrocarbons. Leaching of n-alkanes from II42.5 cement-solidified samples was lower than that from I42.5 solidified samples. Leaching of alkanes in the range of n-C(10) to n-C(27) was lower than that of long chain alkanes (>n-C(27)), regardless the amount of cement addition. Generally, increasing the cement content in the solidified waste samples, increased individual alkane leachability. This indicated that cement addition resulted in destabilization of the waste. Addition of I42.5 cement favored immobilization of anthracene, benzo[a]anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene, benzo[a]pyrene and dibenzo[a,h]anthracene. However, addition of II42.5 favored 5 out of 16, i.e., naphthalene, anthracene, benzo[b]fluoroanthene, benzo[k]fluoroanthene and dibenzo[a,h]anthracene.

  6. Development of the Use of Alternative Cements for the Treatment of Intermediate Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, M.; Godfrey, I.H.

    2007-07-01

    This paper describes initial development studies undertaken to investigate the potential use of alternative, non ordinary Portland cement (OPC) based encapsulation matrices to treat historic legacy wastes within the UK's Intermediate Level Waste (ILW) inventory. Currently these wastes are encapsulated in composite OPC cement systems based on high replacement with blast furnace slag of pulverised fuel ash. However, the high alkalinity of these cements can lead to high corrosion rates with reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. This paper therefore details preliminary results from studies on two commercial products, calcium sulfo-aluminate (CSA) andmore » magnesium phosphate (MP) cement which react with a different hydration chemistry, and which may allow wastes containing these metals to be encapsulated with lower reactivity. The results indicate that grouts can be formulated from both cements over a range of water contents and reactant ratios that have significantly improved fluidity in comparison to typical OPC cements. All designed mixes set in 24 hours with zero bleed and the pH values in the plastic state were in the range 10-11 for CSA and 5-7 for MP cements. In addition, a marked reduction in aluminium corrosion rate has been observed in both types of cements compared to a composite OPC system. These results therefore provide encouragement that both cement types can provide a possible alternative to OPC in the immobilisation of reactive wastes, however further investigation is needed. (authors)« less

  7. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossa, Nathan, E-mail: bossanathan@gmail.com; INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte; iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence

    2015-01-15

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) andmore » nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.« less

  8. [Endodontics in motion: new concepts, materials and techniques 1. Hydraulic Calcium Silicate Cements].

    PubMed

    Moinzadeh, A T; Jongsma, L; de Groot-Kuin, D; Cristescu, R; Neirynck, N; Camilleri, J

    2015-01-01

    Hydraulic Calcium Silicate Cements (HCSCs) constitute a group of materials that have become increasingly popular in endodontics since the introduction of Mineral Trioxide Aggregate (MTA) in the 1990s. MTA is Portland cement to which bismuth oxide has been added to increase its radiopacity. The most important property of MTA is its capacity to set in water or a humid environment. However, MTA also has important limitations, for example, it's difficult to work with and can discolour teeth. Recently, numerous products based on HCSC chemistry, which can be considered as modifications of MTA intended to reduce its limitations, have become available on the market. Despite their potential advantages, all of these materials have their own specific limitations that are currently insufficiently known and investigated.

  9. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    PubMed Central

    Lee, Swoo-Heon; Hong, Ki-Nam; Park, Jae-Kyu; Ko, Jung

    2014-01-01

    This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA) to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C). However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete. PMID:28788703

  10. High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites

    NASA Astrophysics Data System (ADS)

    Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.

    2017-12-01

    Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.

  11. Grout Impregnation of Pre-Placed Recycled Concrete Pavement (RCP) for Rapid Repair of Deteriorated Portland Cement Concrete Airfield Pavement

    DTIC Science & Technology

    2007-04-01

    generation, to reduce the amount of cement required, and to provide additional tensile strength to the concrete. Although there was limited success with...generally less workable and requires more cement due to the increased water requirements. He further states that with the equipment currently...52- Table 9. Results of the Type III Grout Scoping Study Mixture Water Cement Ratio Sand Replicate Compressive Strength MPa (psi) Flow Cone

  12. Glass ionomer cements functionalised with a concentrated paste of chlorhexidine hexametaphosphate provides dose-dependent chlorhexidine release over at least 14 months.

    PubMed

    Bellis, Candice A; Nobbs, Angela H; O'Sullivan, Dominic J; Holder, James A; Barbour, Michele E

    2016-02-01

    The aim of this study was to create prototype glass ionomer cements (GICs) incorporating a concentrated paste of chlorhexidine-hexametaphosphate (CHX-HMP), and to investigate the long-term release of soluble chlorhexidine and the mechanical properties of the cements. The purpose is the design of a glass ionomer with sustained anticaries efficacy. CHX-HMP paste was prepared by mixing equimolar solutions of chlorhexidine digluconate and sodium hexametaphosphate, adjusting ionic strength, decanting and centrifuging. CHX-HMP paste was incorporated into a commercial GIC in substitution for glass powder at 0.00, 0.17, 0.34, 0.85 and 1.70% by mass CHX-HMP. Soluble chlorhexidine release into artificial saliva was observed over 436 days using absorbance at 255nm. Diametral tensile and compressive strength were measured after 7 days' setting (37°C, 100% humidity) and tensile strength after 436 days' aging in artificial saliva. 0.34% CHX-HMP GICs were tested for their ability to inhibit growth of Streptococcus mutans in vitro. GICs supplemented with CHX-HMP exhibited a sustained dose-dependent release of soluble chlorhexidine. Diametral tensile strength of new specimens was unaffected up to and including 0.85% CHX-HMP, and individual values of tensile strength were unaffected by aging, but the proportion of CHX-HMP required to adversely affect tensile strength was lower after aging, at 0.34%. Compressive strength was adversely affected by CHX-HMP at substitutions of 0.85% CHX-HMP and above. Supplementing a GIC with CHX-HMP paste resulted in a cement which released soluble chlorhexidine for over 14 months in a dose dependent manner. 0.17% and 0.34% CHX-HMP did not adversely affect strength at baseline, and 0.17% CHX-HMP did not affect strength after aging. 0.34% CHX-HMP GICs inhibited growth of S. mutans at a mean distance of 2.34mm from the specimen, whereas control (0%) GICs did not inhibit bacterial growth. Although GICs release fluoride in vivo, there is inconclusive

  13. Design and test properties of super water reducers in Portland cement concrete : final report.

    DOT National Transportation Integrated Search

    1980-12-01

    Recently, new concrete admixtures (super water reducers) have been developed and marketed by private industry. These admixtures permit the mixing and placement of very low water-cement ratio (0.32 to 0.38) concretes at conventional consistencies (slu...

  14. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    PubMed Central

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  15. A New Biphasic Dicalcium Silicate Bone Cement Implant.

    PubMed

    Zuleta, Fausto; Murciano, Angel; Gehrke, Sergio A; Maté-Sánchez de Val, José E; Calvo-Guirado, José L; De Aza, Piedad N

    2017-07-06

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C₂S) cement. Biphasic α´ L + β-C₂S ss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C₂S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement's surface after soaking in SBF. The cell attachment test showed that α´ L + β-C₂S ss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  16. Physicochemical properties and cytotoxicity of an experimental resin-based pulp capping material containing the quaternary ammonium salt and Portland cement.

    PubMed

    Yang, Y W; Yu, F; Zhang, H C; Dong, Y; Qiu, Y N; Jiao, Y; Xing, X D; Tian, M; Huang, L; Chen, J H

    2018-01-01

    To evaluate in vitro the physicochemical properties, cytotoxicity and calcium phosphate nucleation of an experimental light-curable pulp capping material composed of a resin with antibacterial monomer (MAE-DB) and Portland cement (PC). The experimental material was prepared by mixing PC with a resin containing MAE-DB at a 2 : 1 ratio. Cured pure resin containing MAE-DB served as control resin. ProRoot MTA and Dycal served as commercial controls. The depth of cure, degree of monomer conversion, water absorption and solubility of dry samples, calcium release, alkalinizing activity, calcium phosphate nucleation and the cytotoxicity of materials were evaluated. Statistical analysis was carried out using anova followed by Tukey's HSD test (equal variance assumed) or Tamhane test (equal variance not assumed) and independent-samples t-tests. The experimental material had a cure depth of 1.19 mm, and the mean degree of monomer conversion was 70.93% immediately post-cure and 88.75% at 24 h post-cure. The water absorption of the experimental material was between those of MTA and Dycal, and its solubility was significantly less (P < 0.05) than that of Dycal and higher than that of MTA. The experimental material exhibited continuous calcium release and an alkalinizing power between those of MTA and Dycal throughout the test period. Freshly set experimental material, control resin and all 24-h set materials had acceptable cytotoxicity. The experimental material, MTA and Dycal all exhibited the formation of apatite precipitates after immersion in phosphate-buffered saline. The experimental material possessed adequate physicochemical properties, low cytotoxicity and good calcium phosphate nucleation. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From the Portland Cement... this subpart apply to each new and existing portland cement plant which is a major source or an area... to and regulated under subpart EEE of this part; (2) Each clinker cooler at any portland cement plant...

  18. 40 CFR 63.1340 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From the Portland Cement... this subpart apply to each new and existing portland cement plant which is a major source or an area... to and regulated under subpart EEE of this part; (2) Each clinker cooler at any portland cement plant...

  19. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  20. Failure of cement hydrates: freeze-thaw and fracture

    NASA Astrophysics Data System (ADS)

    Ioannidou, Katerina; Del Gado, Emanuela; Ulm, Franz-Josef; Pellenq, Roland

    Mechanical and viscoelastic behavior of concrete crucially depends on cement hydrates, the ``glue'' of cement. Even more than the atomistic structure, the mesoscale amorphous texture of cement hydrates over hundreds of nanometers plays a crucial role for material properties. We use simulations that combine information of the nano-scale building units of cement hydrates and on their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles.Our mesoscale model was able to reconcile different experimental results ranging from small-angle neutron scattering, SEM, adsorption/desorption of N2, and water to nanoindentation and gain the new fundamental insights into the microscopic origin of the properties measured. Our results suggest that heterogeneities developed during the early stages of hydration persist in the structure of C-S-H, impacting the rheological and mechanical performance of the hardened cement paste. In this talk I discuss recent investigation on failure mechanism at the mesoscale of hardened cement paste such as freeze-thaw and fracture. Using correlations between local volume fractions and local stress we provide a link between structural and mechanical heterogeneities during the failure mechanisms.

  1. Shape Comparison Between 0.4–2.0 and 20–60 lm Cement Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzer, L.; Flatt, R; Erdogan, S

    Portland cement powder, ground from much larger clinker particles, has a particle size distribution from about 0.1 to 100 {micro}m. An important question is then: does particle shape depend on particle size? For the same cement, X-ray computed tomography has been used to examine the 3-D shape of particles in the 20-60 {micro}m sieve range, and focused ion beam nanotomography has been used to examine the 3-D shape of cement particles found in the 0.4-2.0 {micro}m sieve range. By comparing various kinds of computed particle shape data for each size class, the conclusion is made that, within experimental uncertainty, bothmore » size classes are prolate, but the smaller size class particles, 0.4-2.0 {micro}m, tend to be somewhat more prolate than the 20-60 {micro}m size class. The practical effect of this shape difference on the set-point was assessed using the Virtual Cement and Concrete Testing Laboratory to simulate the hydration of five cement powders. Results indicate that nonspherical aspect ratio is more important in determining the set-point than are the actual shape details.« less

  2. 77 FR 4006 - Foreign-Trade Zone 45-Portland, Oregon; Expansion of Manufacturing Authority; Epson Portland, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ..., Oregon; Expansion of Manufacturing Authority; Epson Portland, Inc. (Inkjet Ink Manufacturing); Portland... manufacturing (injection molding, assembly, finishing), warehousing and distribution of inkjet printer cartridges. The current request involves the production of ink for inkjet printer cartridges using foreign...

  3. Novel Injectable Calcium Phosphate Bone Cement from Wet Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Hablee, S.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    Calcium phosphate cement has been prepared via chemical precipitation method for injectable bone filling materials. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as calcium and phosphorus precursors respectively. The synthesized powder was mixed with water at different powder-to-liquid (P/L) ratios, which was adjusted at 0.8, 0.9, 1.0, 1.1 and 1.2. The influence of P/L ratio on the injectability, setting time and mechanical strength of calcium phosphate cement paste has been evaluated. The synthesized powder appeared as purely hydroxyapatite with nanosized and agglomerated spherical particles. All cement pastes show excellent injectability except for the paste with P/L ratio 1.2. Calcium phosphate cement with P/L ratio 1.1 shows the ideal cement for bone filler application with good injectability, the initial and final setting times of 30 min and 160 min, and the compression strength of 2.47 MPa. The result indicated that the newly developed calcium phosphate cement is physically suitable for bone filler application. This paper presents our investigation on the effect of P/L ratio on the handling and mechanical properties of calcium phosphate cement prepared via wet chemical precipitation method.

  4. Cements of doped calcium phosphates for bone implantation =

    NASA Astrophysics Data System (ADS)

    Pina, Sandra Cristina de Almeida

    The main objective of this study was the development of cements based on calcium phosphates doped with Mg, Sr and Zn, for clinical applications. Powder synthesis was obtained through precipitation reactions, followed by heat treatment in order to obtain appropriate phases, alpha and beta-TCP. The cements were prepared through mixing the powders with different liquids, using citric acid as setting accelerator, and polyethyleneglycol and hydroxyl propylmethylcellulose as gelling agents. Brushite was the end product of the hydration reaction. Injectability and setting behaviour were accessed through rheological measurements, extrusion, calorimetric analysis, Vicat and Gilmore needles. Phase quantification and the structural refinement of powders and cements were determined through X-ray diffraction with Rietveld refinement, as well as, BET specific surface area and particle size analysis. Mechanical strengths of wet hardened cements were evaluated. The results obtained showed that the incorporation of ions into cements led to a significant improvement of their overall properties. Initial setting time increased in the presence of rheological modifiers due to their specific roles at the solid/liquid interface and with increasing L/P ratio. Acceptable workability pastes were obtained for L/P ratios in the range of 0.30-0.34 mL g-1. The cement pastes presented good injectability even under a maximum applied force of 100 N. Filter pressing effects were absent, and all cement pastes could be fully injected for LPR > 0.36 mL g-1. Isothermal calorimetry revealed that hydration reactions produce exothermic effects due to: (i) dissolution of the starting powders and formation of intermediate phases; and (ii) nucleation and growth of brushite crystals. The intensity of the exothermic effects depended on doping element, being stronger in the case of Sr. Wet compressive strength of the cement specimens (after immersion in PBS solution for 48 h) was in the range of values reported

  5. Dissociation of sarin on a cement analogue surface: Effects of humidity and confined geometry

    DOE PAGES

    O’Brien, Christopher J.; Greathouse, Jeffery A.; Tenney, Craig M.

    2016-11-22

    Here, first-principles molecular dynamics simulations were used to investigate the dissociation of sarin (GB) on the calcium silicate hydrate (CSH) mineral tobermorite (TBM), a surrogate for cement. CSH minerals (including TBM) and amorphous materials of similar composition are the major components of Portland cement, the binding agent of concrete. Metadynamics simulations were used to investigate the effect of the TBM surface and confinement in a microscale pore on the mechanism and free energy of dissociation of GB. Our results indicate that both the adsorption site and the humidity of the local environment significantly affect the sarin dissociation energy. In particular,more » sarin dissociation in a low-water environment occurs via a dealkylation mechanism, which is consistent with previous experimental studies.« less

  6. Geopolymers and Their Uses: Review

    NASA Astrophysics Data System (ADS)

    Burduhos Nergis, D. D.; Abdullah, M. M. A. B.; Vizureanu, P.; Tahir, M. F. M.

    2018-06-01

    Outlining the past-present history of the study of alumino-silicate materials, it is well known that geopolymers are inorganic polymers obtained from chemical reaction, also known as geopolymerisation, between an alkaline solution and a solid reach in aluminium and silicone. There is still some controversy surrounding the alkaline activators used to create geopolymer concrete, because homogeneous mixture composed of two (NaOH and Na2SO3) or more chemical in varying proportions are usually highly corrosive and hard to handle. In order to overcome Portland cement many wastes have been used in recent studies to create “friendly” cements by geopolymerisation. In this short review we present basic information’s about how to create and use geopolymers, alkaline activators and raw materials that can be used and conclusions. One question that needs to be asked: Can those materials replace on large scale Portland cement?

  7. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage...

  8. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage...

  9. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage...

  10. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage...

  11. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage...

  12. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.

    PubMed

    Lee, Dongkyoung; Pyo, Sukhoon

    2018-02-10

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.

  13. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar

    PubMed Central

    2018-01-01

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431

  14. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers.

    PubMed

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-05-08

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  15. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers

    PubMed Central

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-01-01

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges. PMID:28481296

  16. A New Biphasic Dicalcium Silicate Bone Cement Implant

    PubMed Central

    Murciano, Angel; Maté-Sánchez de Val, José E.

    2017-01-01

    This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S) cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF) and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23) obtained higher bone-to-implant contact (BIC) percentage values (better quality, closer contact) in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic). The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration. PMID:28773119

  17. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  18. A parallel reaction-transport model applied to cement hydration and microstructure development

    NASA Astrophysics Data System (ADS)

    Bullard, Jeffrey W.; Enjolras, Edith; George, William L.; Satterfield, Steven G.; Terrill, Judith E.

    2010-03-01

    A recently described stochastic reaction-transport model on three-dimensional lattices is parallelized and is used to simulate the time-dependent structural and chemical evolution in multicomponent reactive systems. The model, called HydratiCA, uses probabilistic rules to simulate the kinetics of diffusion, homogeneous reactions and heterogeneous phenomena such as solid nucleation, growth and dissolution in complex three-dimensional systems. The algorithms require information only from each lattice site and its immediate neighbors, and this localization enables the parallelized model to exhibit near-linear scaling up to several hundred processors. Although applicable to a wide range of material systems, including sedimentary rock beds, reacting colloids and biochemical systems, validation is performed here on two minerals that are commonly found in Portland cement paste, calcium hydroxide and ettringite, by comparing their simulated dissolution or precipitation rates far from equilibrium to standard rate equations, and also by comparing simulated equilibrium states to thermodynamic calculations, as a function of temperature and pH. Finally, we demonstrate how HydratiCA can be used to investigate microstructure characteristics, such as spatial correlations between different condensed phases, in more complex microstructures.

  19. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  20. Environmental behavior of cement-based stabilized foundry sludge products incorporating additives.

    PubMed

    Ruiz, M C; Irabien, A

    2004-06-18

    A series of experiments were conducted to stabilize the inorganic and organic pollutants in a foundry sludge from a cast iron activity using Portland cement as binder and three different types of additives, organophilic bentonite, lime and coal fly ash. Ecotoxicological and chemical behavior of stabilized mixes of foundry sludge were analyzed to assess the feasibility to immobilize both types of contaminants, all determined on the basis of compliance leaching tests. The incorporation of lime reduces the ecotoxicity of stabilized mixes and enhances stabilization of organic pollutants obtaining better results when a 50% of cement is replaced by lime. However, the alkalinity of lime increases slightly the leached zinc up to concentrations above the limit set under neutral conditions by the European regulations. The addition of organophilic bentonite and coal fly ash can immobilize the phenolic compounds but are inefficient to reduce the ecotoxicity and mobility of zinc of final products.

  1. 76 FR 42558 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... from Cement Manufacturing), for Portland cement kilns during the ozone season, from May 1 through... C (Emissions of NO X from Cement Manufacturing), for the control of NO X emissions from Portland... 145--Interstate Pollution Transport Reduction Subchapter C--Emissions of NOX From Cement Manufacturing...

  2. Early-age monitoring of cement structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  3. Age-Friendly Portland: a university-city-community partnership.

    PubMed

    Neal, Margaret B; DeLaTorre, Alan K; Carder, Paula C

    2014-01-01

    This article addresses the question of how creating an age-friendly city has come to be an important policy and planning issue in Portland, Oregon. In 2006, researchers from Portland State University's Institute on Aging examined the meanings of age friendliness among a broad range of participants in Portland, Oregon. The research was conducted in conjunction with the World Health Organization's (WHO) Age-Friendly Cities project and followed the completion of two earlier non-WHO-related projects. The city of Portland, through the Institute on Aging, was one of nine original members to apply for and be accepted into the WHO Global Network of Age-Friendly Cities and Communities. An Age-Friendly Portland Advisory Council was formed to guide the development of an action plan, monitor progress over time, and suggest additional research. To understand how Portland's age-friendly policy effort has developed over time, we use Kingdon's (1984) agenda-setting framework to explain how the policy problem was formulated, how solutions were developed, and the influence of local politics. The policy actors, including individuals and organizations working within and outside of government, are described. The Portland experience provides a case study that other cities, especially those with a strong commitment to community-engaged urban planning, may find useful as they develop age-friendly initiatives.

  4. Ion release, fluoride charge of and adhesion of an orthodontic cement paste containing microcapsules.

    PubMed

    Burbank, Brant D; Slater, Michael; Kava, Alyssa; Doyle, James; McHale, William A; Latta, Mark A; Gross, Stephen M

    2016-02-01

    Dental materials capable of releasing calcium, phosphate and fluoride are of great interest for remineralization. Microencapsulated aqueous solutions of these ions in orthodontic cement demonstrate slow, sustained release by passive diffusion through a permeable membrane without the need for dissolution or etching of fillers. The potential to charge a dental material formulated with microencapsulated water with fluoride by toothbrushing with over the counter toothpaste and the effect of microcapsules on cement adhesion to enamel was determined. Orthodontic cements that contained microcapsules with water and controls without microcapsules were brushed with over-the-counter toothpaste and fluoride release was measured. Adhesion measurements were performed loading orthodontic brackets to failure. Cements that contained microencapsulated solutions of 5.0M Ca(NO3)2, 0.8M NaF, 6.0MK2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. A greater fluoride charge and re-release from toothbrushing was demonstrated compared to a control with no microcapsules. Adhesion of an orthodontic cement that contained microencapsulated remineralizing agents was 8.5±2.5MPa compared to the control without microcapsules which was of 8.3±1.7MPa. Sustained release of fluoride, calcium and phosphate ions from cement formulated with microencapsulated remineralizing agents was demonstrated. Orthodontic cements with microcapsules show a release of bioavailable fluoride, calcium, and phosphate ions near the tooth surface while having the ability to charge with fluoride and not effect the adhesion of the material to enamel. Incorporation of microcapsules in dental materials is promising for promoting remineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    PubMed

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  6. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    PubMed Central

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-01-01

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823

  7. Influence of nano-dispersive modified additive on cement activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It maymore » intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.« less

  8. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroefl, Ch.; Gruber, M.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    UHPC is fluidized particularly well when a blend of MPEG- and APEG-type PCEs is applied. Here, the mechanism for this behavior was investigated. Testing individual cement and micro silica pastes revealed that the MPEG-PCE disperses cement better than silica whereas the APEG-PCE fluidizes silica particularly well. This behavior is explained by preferential adsorption of APEG-PCE on silica while MPEG-PCEs exhibit a more balanced affinity to both cement and silica. Adsorption data obtained from individual cement and micro silica pastes were compared with those found for the fully formulated UHPC containing a cement/silica blend. In the UHPC formulation, both PCEs stillmore » exhibit preferential and selective adsorption similar as was observed for individual cement and silica pastes. Preferential adsorption of PCEs is explained by their different stereochemistry whereby the carboxylate groups have to match with the steric position of calcium ions/atoms situated at the surfaces of cement hydrates or silica.« less

  9. A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelo, Laurent, E-mail: laurent.barcelo@lafarge.com; Lafarge Centre de Recherche, 95 rue du Montmurier, 38291 St Quentin Fallavier; Gartner, Ellis

    2014-09-15

    Blended Portland cements containing up to 15% limestone have recently been introduced into Canada and the USA. These cements were initially not allowed for use in sulfate environments but this restriction has been lifted in the Canadian cement specification, provided that the “limestone cement” includes sufficient SCM and that it passes a modified version of the CSA A3004-C8 (equivalent to ASTM C1012) test procedure run at a low temperature (5 °C). This new procedure is proposed as a means of predicting the risk of the thaumasite form of sulfate attack in concretes containing limestone cements. The goal of the presentmore » study was to better understand how this approach works both in practice and in theory. Results from three different laboratories utilizing the CSA A3004-C8 test procedure are compared and analyzed, while also taking into account the results of thermodynamic modeling and of thaumasite formation experiments conducted in dilute suspensions.« less

  10. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.

    PubMed

    Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet

    2013-01-30

    This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mechanism of Hg(II) Immobilization in Sediments by Sulfate-Cement Amendment.

    PubMed

    Serrano, Susana; Vlassopoulos, Dimitri; O'Day, Peggy A

    2016-04-01

    Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO 4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg L III - and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 . 26H 2 O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20-25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg-Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg-Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a

  12. The influence of pozzolanic materials on the mechanical stability of aluminous cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collepardi, M.; Monosi, S.; Piccioli, P.

    1995-07-01

    High alumina cement is particularly suitable for manufacturing sulphate resistant concretes and in particular cement mixes which are able resist the sear water aggression. High alumina cement paste, in the presence of silica fume, shows an increasing strength trend even at 20 C and 40 C, since this pozzolan causes the formation of gehlenite hydrate (C{sub 2}ASH{sub 8}) and therefore strongly reduces the transformation of hexagonal aluminate hydrates (CAH{sub 10}, C{sub 2}AH{sub 8}) into the cubic hydrate (C{sub 3}AH{sub 6}) which is responsible for the strength loss of high-alumina cement mixes at higher temperatures (>20 C). On the contrary, flymore » ash is not suitable for reducing the transformation of hexagonal hydrates into the cubic phase. Consequently, the strength at 20 C and 40 C of the fly ash-high alumina cement mixes decrease as well as the high alumina cement pastes in the absence of pozzolan.« less

  13. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-05-30

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.

  14. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-01-01

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958

  15. Microstructural and bulk property changes in hardened cement paste during the first drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Nishioka, Yukiko; Igarashi, Go

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreasedmore » for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.« less

  16. Handbook: Approaches for the Remediation of Federal Facility Sites Contaminated with Explosive or Radioactive Wastes

    DTIC Science & Technology

    1993-09-01

    ash, and incinerator fly ash in modified sulfur cement and Portland cement waste forms ................................. 70 6-10 Drawing of full-scale...6-17 Economic analysis of encapsulating sodium nitrate at Rocky Flats Plant ..................... 74 6-18 Portland cement and modified sulfur cement...environment. DP-1629. Savannah and modified sulfur cement encapsulation. Both methods River Laboratory, Aiken, South Carolina. have advantages over

  17. 78 FR 10005 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... are the health effects of these pollutants? VII. Statutory and Executive Order Reviews A. Executive... into account the effect of the EPA's Nonhazardous Secondary Materials (NHSM) rule on the standards. The NHSM rule, issued after the NESHAP was promulgated, had the effect of reclassifying some cement kilns...

  18. α-TCP cements prepared by syringe-foaming: Influence of Na2HPO4 and surfactant concentration.

    PubMed

    Vásquez, A F; Domínguez, S; Loureiro Dos Santos, L A

    2017-12-01

    The lack of intrinsic open porosity in calcium phosphate cements slows down the resorption rate and bone ingrowth when implanted In Vivo. In this study, macroporous structures were obtained by mixing α-TCP cement with a foamed liquid phase containing different concentrations of sodium hydrogen phosphate and a nonionic surfactant. The cement paste was prepared by hand mixing in a novel system of two syringes connected by a tube. Two different liquid to powder (L/P) ratios were used to prepare the cement paste. The cement samples showed open macropores with diameters>100μm. The specimens prepared with lower L/P ratio showed smaller porosity, macroporosity and pore size distribution. The cohesion of the cement paste in liquid solutions was assessed by adding 2wt% sodium alginate to the liquid phase. This study suggests that the final macrostructure of the foamed cements can be controlled by varying the phosphate and surfactant concentrations in the liquid phase and the L/P ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Portland regionwide advanced traffic management system plan

    DOT National Transportation Integrated Search

    1993-10-01

    The Portland Regional Transportation Plan indicates that by the year 2010, $5 billion dollars will be spent on transportation, and the region will have even more congestion on major corridors than today. The Portland region cannot rid itself of co...

  20. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

    PubMed Central

    Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2017-01-01

    Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948

  1. Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective.

    PubMed

    Cao, Zhi; Shen, Lei; Løvik, Amund N; Müller, Daniel B; Liu, Gang

    2017-10-03

    Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown an increasing trend of per capita cement in-use stock in the past century. The present per capita cement in-use stocks vary from 10 to 40 tonnes in major industrialized and transiting countries and are below 10 tonnes in developing countries. Evolutionary modes identified from historical patterns suggest that per capita in-use cement stock growth generally complies with an S-shape curve and relates closely to affluence and urbanization of a country, but more in-depth and bottom-up investigations are needed to better understand socioeconomic drivers behind stock growth. These identified in-use stock patterns can help us better estimate future demand of cement, explore strategies for emissions reduction in the cement industry, and inform CO 2 uptake potentials of cement based products and infrastructure in service.

  2. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Claire E., E-mail: whitece@princeton.edu; Andlinger Center for Energy and the Environment, Princeton University, Princeton; Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicatemore » (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.« less

  3. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl; Ye, Guang; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling,more » when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.« less

  4. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less

  5. Evaluation of Nontraditional Airfield Pavement Surfaces for Contingency Operations

    DTIC Science & Technology

    2014-01-01

    such as asphalt or portland cement concrete are not readily available or are too cost-, labor-, or equipment-intensive to use. This report presents a...courses) are generally constructed using hot mix asphalt (HMA) or portland cement concrete (PCC), both of which are suitable for C-17 and C-130...associated with PCC or HMA surfacing. Stabilization can be accomplished by blending additives such as portland cement , lime, fly ash, asphalt binder

  6. Ternary blends containing demercurated lighting phosphor and MSWI fly ash as high-performance binders for stabilizing and recycling electroplating sludge.

    PubMed

    Huang, Wu-Jang; Wu, Chia-Teng; Wu, Chang-En; Hsieh, Lin-Huey; Li, Chang-Chien; Lain, Chi-Yuan; Chu, Wei

    2008-08-15

    This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio.

  7. Retention of metal-ceramic crowns with contemporary dental cements.

    PubMed

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  8. Impact of drying on pore structures in ettringite-rich cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, I., E-mail: isabelgalan@abdn.ac.uk; Beltagui, H.; García-Maté, M.

    Drying techniques affect the properties of cement pastes to varying extents. The effect of different drying techniques on calcium sulfoaluminate-based (C$A) cements and their constituent phases is reported for a range of simulated and commercial C$A pastes which are benchmarked against an OPC paste. The recommended methodologies used to dry samples were identified from the literature and include D-drying and solvent exchange. These methods were used in conjunction with mercury intrusion porosimetry (MIP) and X-ray powder diffraction (XRPD) measurements to assess the changes in pore structure and the damage to crystalline phases, respectively. D-drying and isopropanol exchange are the mostmore » satisfactory and least damaging methods for drying C$A based pastes.« less

  9. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 1: Theoretical study on influence of interfacial transition zone on properties of concrete materials; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Chen, W.F.

    1998-08-01

    This research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  10. Poet Portland Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves the petition, with modifications, from Poet Biorefining-Portland, LLC, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  11. 40 CFR 60.60 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...

  12. 40 CFR 60.60 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...

  13. 40 CFR 60.60 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...

  14. 40 CFR 60.60 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...

  15. 40 CFR 60.60 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Portland Cement Plants § 60.60 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities in portland cement plants...

  16. Comparison of solidification/stabilization effects of calcite between Australian and South Korean cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongjin; Waite, T. David; Swarbrick, Gareth

    2005-11-15

    The differences in the effect of calcite on the strength and stability of Pb-rich wastes solidified and stabilized using Australian and South Korean ordinary Portland cements are examined in this study. Pb-rich waste stabilized using Australian OPC has been shown to possess both substantially higher unconfined compressive strength and lead immobilization ability than South Korean OPC as a result of its higher C{sub 3}S content and the associated enhanced degree of precipitation of lead on the surfaces of silicate phases present. Calcite addition is observed to have an accelerating effect on the OPC-induced solidification/stabilization of Pb-rich wastes as gauged bymore » the unconfined compressive strength and leachability of the solids formed. This effect is observed to be far more dramatic for South Korean OPC than for Australian OPC. Using scanning electron microscopy, waste stabilized with cement and calcite was observed to develop significantly greater proportions of hydrated crystals than wastes stabilized with cement alone. The results of X-ray diffraction studies have shown that the presence of calcite in South Korean OPC results in greater acceleration in the formation of portlandite than is the case for Australian OPC.« less

  17. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-26

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  18. 54. Photocopy of diagram (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of diagram (from Station 'L' office files, Portland, Oregon) General Electric Company pamphlet, c.1930 SECTIONAL ELEVATION OF THE 35,000 KW GENERATOR BUILDING L5 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  19. 53. Photocopy of diagram (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of diagram (from Station 'L' office files, Portland, Oregon) General Electric Company pamphlet, c.1925 SECTIONAL ELEVATION OF THE 20,000 KW GENERATOR BUILDING L1 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  20. 51. Photocopy of diagram (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of diagram (from Station 'L' office files, Portland, Oregon) General Electric Company pamphlet, c.1923 SECTIONAL ARRANGEMENT OF THE 6,000 KW TURBINE GENERATOR BUILDING L1 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  1. Evaluation of ternary cementitious combinations : tech summary.

    DOT National Transportation Integrated Search

    2012-02-01

    Portland cement concrete (PCC) is the worlds most versatile and utilized construction material. Modern concrete consists of six : main ingredients: coarse aggregate, sand, portland cement, supplementary cementitious materials (SCMs), chemical admi...

  2. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.

    PubMed

    Li, Jiang-Shan; Wang, Lei; Tsang, Daniel C W; Beiyuan, Jingzi; Poon, Chi Sun

    2017-12-01

    Cement-based stabilization/solidification (S/S) is a practical treatment approach for hazardous waste with anthropogenic As sources; however, its applicability for geogenic As-containing soil and the long-term leaching potential remain uncertain. In this study, semi-dynamic leaching test was performed to investigate the influence of S/S binders (cement blended with fuel ash (FA), furnace bottom ash (FBA), or ground granulated blast furnace slag (GGBS)) on the long-term leaching characteristics of geogenic As. The results showed that mineral admixtures with higher Ca content and pozzolanic activity were more effective in reducing the leached As concentrations. Thus, cement blended with FBA was inferior to other binders in suppressing the As leaching, while 20% replacement of ordinary Portland cement by GGBS was considered most feasible for the S/S treatment of As-containing soils. The leachability of geogenic As was suppressed by the encapsulation effect of solidified matrix and interlocking network of hydration products that were supported by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results. The long-term leaching of geogenic As from the monolithic samples was diffusion-controlled. Increasing the Ca content in the samples led to a decrease in diffusion coefficient and an increase in feasibility for "controlled utilization" of the S/S-treated soils.

  3. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland Interstate...

  4. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland Interstate...

  5. Characterization of environmentally-friendly alkali activated slag cements and ancient building materials

    NASA Astrophysics Data System (ADS)

    Sakulich, Aaron Richard

    Alternative cement technologies are an area of increasing interest due to growing environmental concerns and the relatively large carbon footprint of the cement industry. Many new cements have been developed, but one of the most promising is that made from granulated, ground blast furnace slag activated by a high-pH solution. Another is related to the discovery that some of the pyramid limestone blocks may have been cast using a combination of diatomaceous earth activated by lime which provides the high pH needed to dissolve the diatomaceous earth and bind the limestone aggregate together. The emphasis of this thesis is not on the latter---which was explored elsewhere---but on the results supplying further evidence that some of the pyramid blocks were indeed reconstituted limestone. The goal of this work is to chemically and mechanically characterize both alkali-activated slag cements as well as a number of historic materials, which may be ancient analogues to cement. Alkali activated slag cements were produced with a number of additives; concretes were made with the addition of a fine limestone aggregate. These materials were characterized mechanically and by XRD, FTIR, SEM, and TGA. Samples from several Egyptian pyramids, an 'ancient floor' in Colorado, and the 'Bosnian Pyramids' were investigated. In the cements, it has been unequivocally shown that C-S-H, the same binding phase that is produced in ordinary portland cement, has been produced, as well as a variety of mineral side products. Significant recarbonation occurs during the first 20 months, but only for the Na2CO3-activated formulae. Radiocarbon dating proves that the 'Bosnian Pyramids' and 'ancient floors' are not made from any type of recarbonated lime; however, Egyptian pyramid limestones were finite, thus suggesting that they are of a synthetic nature. XRD and FTIR results were inconclusive, while TGA results indicate the limestones are identical to naturally occurring limestones, and SEM

  6. 40 CFR 63.1356 - Exemption from new source performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry... from the mill to the kiln that are associated with coal preparation at a portland cement plant that is...

  7. Calcium Orthophosphate Cements and Concretes

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  8. 40 CFR 60.63 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Portland Cement Plants § 60.63 Monitoring of operations. (a) The owner or operator of any portland cement plant subject to the...

  9. 40 CFR 63.1341 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product prior to further processing at a portland cement plant. Clinker cooler means equipment into which... a system in a portland cement production process where a dry kiln system is integrated with the raw...

  10. Different Effects of NSF and PCE Superplasticizer on Adsorption, Dynamic Yield Stress and Thixotropy of Cement Pastes

    PubMed Central

    2018-01-01

    This study compares the differences and similarities of two types of superplasticizers—NSF (Naphthalene Sulfonate Formaldehyde) and PCE (PolyCarboxylate Ester)—in fresh cement paste systems, in terms of adsorption, dynamic yield stress, and thixotropic index. Results show that with either NSF or PCE addition, the more superplasticizer is added, the more it is adsorbed and the more it remains in the interstitial pore solution. The dynamic yield stress and thixotropic index also decrease with increasing addition the amount of either superplasticizer. However, NSF is less efficient in decreasing the dynamic yield stress than PCE. More importantly, the decreasing patterns of dynamic yield stress and thixotropic index are different with NSF and PCE additions; this is tied to the adsorption and dispersing mechanisms of these two types of superplasticizers. PMID:29710782

  11. Dust exposure and the risk of cancer in cement industry workers in Korea.

    PubMed

    Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seunghee; Ryu, Hyang-Woo

    2013-03-01

    Cement is used widely in the construction industry, though it contains hazardous chemicals such as hexavalent chromium. Several epidemiological studies have examined the association between cement dust exposure and cancer, but these associations have proved inconclusive. In the present study, we examined the association between dust exposure and cancer in cement industry workers in Korea. Our cohort consisted of 1,324 men who worked at two Portland cement manufacturing factories between 1997 and 2005. We calculated cumulative dust exposures, then categorized workers into high and low dust exposure groups. Cancer cases were identified between 1997 and 2005 by linking with the national cancer registry. Standardized incidence ratios (SIRs) were calculated for all workers and the high and low dust exposure groups, respectively. The SIR for overall cancers in all workers was increased (1.35, 95% CI: 1.01-1.78). The SIR for stomach cancer in the high dust exposure group was increased (2.18, 95% CI: 1.19-3.65), but there was no increased stomach cancer risk in the low dust exposure group. The SIR for rectal cancer in all workers was increased (3.05, 95% CI: 1.32-6.02). Rectal cancer risk was similar in the high and low exposure groups. Our findings suggest a potential association between exposure in the cement industry and an increased risk of stomach and rectal cancers. However, due to the small number of cases, this association should be further investigated in a study with a longer follow-up period and adjustment for confounders. Copyright © 2012 Wiley Periodicals, Inc.

  12. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    PubMed

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  13. Microstructural and Microanalytical Study on Concrete Exposed to the Sulfate Environment

    NASA Astrophysics Data System (ADS)

    Qing, Fang; Beixing, Li; Jiangang, Yin; Xiaolu, Yuan

    2017-11-01

    Microstructural properties have been examined to investigate the effect of mineral admixtures on the sulfate resistance of concrete. Concrete and cement paste specimens made with ordinary Portland cement (OPC) or ordinary Portland cement incorporating 20% fly ash (FA) or 30% ground blast furnace slag (GBFS), were made and exposed to 250 cycles of the cyclic sulfate environment. Microstructural and Microanalytical study was conducted by means of x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Results indicate that the pore structure of concrete after sulfate exposure possesses the fractal feature. The OPC concrete presents more complex pore internal surface, higher porosity and less micro-pores than the concrete incorporating fly ash and GBFS. Portlandite in OPC concrete and OPC-FA concrete is mainly converted to gypsum; while for OPC-GBFS concrete, both gypsum and ettringite are formed. In the cyclic sulfate environment, repeated hydration and dehydration of sulfates produce the expansive stress in pores, aggravating the demolishment of concrete structure.

  14. Evaluation of concrete patching materials : final report.

    DOT National Transportation Integrated Search

    1985-01-01

    The project evaluated numerous repairs on portland cement concrete pavements and bridge decks made with a number of laboratory accepted, proprietary patching materials and portland cement concrete mixtures of different designs. It was ascertained tha...

  15. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  16. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  17. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    PubMed

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (P<.05). The highest push-out strength results with root location were obtained with Luting and Lining (S3) (19.5 ±4.9 MPa), Ketac Cem (S2) (18.6 ±5.5 MPa), and Luting and Lining (S1) (18.0 ±7.6 MPa). The lowest mean values were recorded with Variolink II (S1) (4.6 ±4.0 MPa), Variolink II (S2) (1.6 ±1.5 MPa), and Rely X ARC (S3) (0.9 ±1.1 MPa). Self-adhesive cements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of

  18. Observation of exchange of micropore water in cement pastes by two-dimensional T(2)-T(2) nuclear magnetic resonance relaxometry.

    PubMed

    Monteilhet, L; Korb, J-P; Mitchell, J; McDonald, P J

    2006-12-01

    The first detailed analysis of the two-dimensional (2D) NMR T(2)-T(2) exchange experiment with a period of magnetization storage between the two T(2) relaxation encoding periods (T(2)-store-T(2)) is presented. It is shown that this experiment has certain advantages over the T(1)-T(2) variant for the quantization of chemical exchange. New T(2)-store-T(2) 2D 1H NMR spectra of the pore water within white cement paste are presented. Based on these spectra, the exchange rate of water between the two smallest porosity reservoirs is estimated for the first time. It is found to be of the order of 5 ms{-1}. Further, a careful estimate of the pore sizes of these reservoirs is made. They are found to be of the order of 1.4 nm and 10-30 nm , respectively. A discussion of the results is developed in terms of possible calcium silicate hydrate products. A water diffusion coefficient inferred from the exchange rate and the cement particle size is found to compare favorably with the results of molecular-dynamics simulations to be found in the literature.

  19. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-01

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874

  20. Polymeric additives to enhance the functional properties of calcium phosphate cements

    PubMed Central

    Perez, Roman A; Kim, Hae-Won

    2012-01-01

    The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties. PMID:22511991