Science.gov

Sample records for portland cement

  1. Respiratory effects of portland cement dust

    SciTech Connect

    Abrons, H.L.; Sanderson, W.T.; Petersen, M.R.

    1985-01-01

    An epidemiologic study of the respiratory effects of Portland cement dust was conducted. The cohort consisted of 2,736 cement workers at 16 facilities in the United States. The comparisons consisted of 2,213 individuals in activities not involving dust exposure. Spirometry testing was performed. Respiratory-symptom questionnaires were administered. Chest x-rays were taken and examined. Personal sampling for total and respirable dust, quartz, and oxides of sulfur and nitrogen was performed. Cement workers had a significantly elevated adjusted-odds ratio for dyspnea, rounded and irregular small x-ray opacities, and pleural abnormalities. None of the ventilatory-function variables were significantly different between cement workers and the comparisons. The authors conclude that cement dust exerts little adverse effect on respiratory symptoms and ventilatory function. To determine whether the increase in x-ray abnormalities represents pneumoconiosis or another pathological process would require histological study. There is insufficient evidence to suggest a change in the exposure limit for cement dust.

  2. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  3. Odor investigation of a Portland cement plant

    SciTech Connect

    Pleus, R.C.

    1998-12-31

    The main concern expressed by Smithville residents is whether the odors they were smelling during odor events were due to chemicals that could cause adverse health effects. Odors were allegedly emanating from the town`s Portland cement plant. The purpose of the study was to measure the ambient air for 20 reduced sulfur, 50 volatile organic compounds, and air samples for olfactometric analysis. Carbonyl sulfide was found to be at a concentration that could create a sense of odor and irritation. This sense of irritation may be due to a physiological response by the central nervous system, and is not associated with any known adverse effects. This physiological response could account for some or all of the irritation experienced by residents during odor events. Comparing chemical concentrations that were detected in air samples to standard and recognized guidelines for acceptable exposure, all measured concentrations were found to be well below the acceptable criteria. From these data the authors conclude that no acute or chronic adverse health effects are expected at the concentrations of the chemicals detected downwind of the cement plant, either routinely or during odor events.

  4. Comparative chemical study of MTA and Portland cements.

    PubMed

    Oliveira, Marília Gerhardt de; Xavier, Cristina Braga; Demarco, Flávio Fernando; Pinheiro, Antônio Luis Barbosa; Costa, Aline Tempel; Pozza, Daniel Humberto

    2007-01-01

    Portland cement has been analyzed and compared to mineral trioxide aggregate (MTA) because of their chemical similarity. The possibility of using this material as a less expensive alternative to MTA in dental practice should be considered. In view of this, the present study compared the components of a Portland cement (Votoran) to two commercial brands of MTA (Pro-Root and MTA-Angelus). Twelve specimens of each material were fabricated and examined by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) to obtain their percentage of chemical elements. The means of the chemical elements found in each material was compared by descriptive statistics. Bismuth was present only in MTA cements to provide radiopacity. In conclusion, the tested cements have similar components, which supports, as far as composition is concerned, the possible clinical use of Portland as an option to MTA.

  5. Apatite formation on calcined kaolin-white Portland cement geopolymer.

    PubMed

    Pangdaeng, S; Sata, V; Aguiar, J B; Pacheco-Torgal, F; Chindaprasirt, P

    2015-06-01

    In this study, calcined kaolin-white Portland cement geopolymer was investigated for use as biomaterial. Sodium hydroxide and sodium silicate were used as activators. In vitro test was performed with simulated body fluid (SBF) for bioactivity characterization. The formation of hydroxyapatite bio-layer on the 28-day soaked samples surface was tested using SEM, EDS and XRD analyses. The results showed that the morphology of hydroxyapatite was affected by the source material composition, alkali concentration and curing temperature. The calcined kaolin-white Portland cement geopolymer with relatively high compressive strength could be fabricated for use as biomaterial. The mix with 50% white Portland cement and 50% calcined kaolin had 28-day compressive strength of 59.0MPa and the hydroxyapatite bio-layer on the 28-day soaked sample surface was clearly evident.

  6. Apatite formation on calcined kaolin-white Portland cement geopolymer.

    PubMed

    Pangdaeng, S; Sata, V; Aguiar, J B; Pacheco-Torgal, F; Chindaprasirt, P

    2015-06-01

    In this study, calcined kaolin-white Portland cement geopolymer was investigated for use as biomaterial. Sodium hydroxide and sodium silicate were used as activators. In vitro test was performed with simulated body fluid (SBF) for bioactivity characterization. The formation of hydroxyapatite bio-layer on the 28-day soaked samples surface was tested using SEM, EDS and XRD analyses. The results showed that the morphology of hydroxyapatite was affected by the source material composition, alkali concentration and curing temperature. The calcined kaolin-white Portland cement geopolymer with relatively high compressive strength could be fabricated for use as biomaterial. The mix with 50% white Portland cement and 50% calcined kaolin had 28-day compressive strength of 59.0MPa and the hydroxyapatite bio-layer on the 28-day soaked sample surface was clearly evident. PMID:25842101

  7. Stabilizing coal-water mixtures with portland cement

    SciTech Connect

    Steinberg, M.; Krishna, C.R.

    1986-07-29

    A coal-water mix is described for use as a fossil fuel containing up to 70% by weight coal particles, based on the total weight of the mix, stabilized by the presence in the mix of up to 15% by weight, based on the weight of the coal, of portland cement, the portland cement stabilizing the mix by greatly extending the time that the coal particles remain in suspension, thus eliminating problems of transporting and storing the mix which result when the coal particles come out of suspension.

  8. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... order on imports of gray portland cement and cement clinker from Japan (56 FR 21658). Following first... clinker from Japan (71 FR 34892). The Commission is now conducting a third review to determine whether... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review...

  9. Influence of limestone on the hydration of Portland cements

    SciTech Connect

    Lothenbach, Barbara Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-06-15

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO{sub 2}, and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration.

  10. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... review. Background The Commission instituted this review on May 2, 2011 (76 FR 24519) and determined on August 5, 2011 that it would conduct an expedited review (76 FR 50252, August 12, 2011). The Commission... COMMISSION Gray Portland Cement and Cement Clinker From Japan Determination On the basis of the record...

  11. Corrosion inhibitor mechanisms on reinforcing steel in Portland cement pastes

    NASA Astrophysics Data System (ADS)

    Martin, Farrel James

    2001-07-01

    The mechanisms of corrosion inhibitor interaction with reinforcing steel are investigated in the present work, with particular emphasis on effects associated with corrosion inhibitors admixed into Portland cement paste. The principal objective in reinforcing steel corrosion inhibition for Portland cement concrete is observed to be preservation of the naturally passive steel surface condition established by the alkaline environment. Introduction of chloride ions to the steel surface accelerates damage to the passive film. Excessive damage to the passive film leads to loss of passivity and a destabilization of conditions that facilitate repair of the passive film. Passive film preservation in presence of chloride ions is achieved either through stabilization of the passive film or by modification of the chemical environment near the steel surface. Availability of inhibitors to the steel surface and their tendency to stabilize passive film defects are observed to be of critical importance. Availability of admixed corrosion inhibitors to the passive film is affected by binding of inhibitors during cement paste hydration. It is determined that pore solution concentrations of inorganic admixed inhibitors tend to be lower than the admixed concentration, while pore solution concentrations of organic admixed inhibitors tend to be higher than the admixed concentration. A fundamental difference of inhibitor function is observed between film-forming and defect stabilizing corrosion inhibitors. Experiments are conducted using coupons of reinforcing steel that are exposed to environments simulating chloride-contaminated Portland cement concrete. A study of the steel/cement paste interface is also performed, and compounds forming at this interface are identified using X-Ray diffraction.

  12. Injectable citrate-modified Portland cement for use in vertebroplasty

    PubMed Central

    Wynn-Jones, Gareth; Shelton, Richard M; Hofmann, Michael P

    2014-01-01

    The injectability of Portland cement (PC) with several citrate additives was investigated for use in clinical applications such as vertebroplasty (stabilization of a fractured vertebra with bone cement) using a syringe. A 2-wt % addition of sodium or potassium citrate with PC significantly improved cement injectability, decreased cement setting times from over 2 h to below 25 min, while increasing the compressive strength to a maximum of 125 MPa. Zeta-potential measurements indicated that the citrate anion was binding to one or more of the positively charged species causing charged repulsion between cement particles which dispersed aggregates and caused the liquefying effect of the anion. Analysis of the hydrating phases of PC indicated that the early strength producing PC phase (ettringite) developed within the first 2 h of setting following addition of the citrate anion, while this did not occur in the control cement (PC only). Within 24 h ettringite developed in PC as well as calcium–silicate–hydrate (C–S–H), the major setting phase of PC, whereas cements containing citrate did not develop this phase. The evidence suggested that in the presence of citrate the cements limited water supply appeared to be utilized for ettringite formation, producing the early strength of the citrate cements. The present study has demonstrated that it is possible to modify PC with citrate to both improve the injectability and crucially reduce the setting times of PC while improving the strength of the cement. © 2014 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1799–1808, 2014. PMID:24711245

  13. Rapid setting of portland cement by greenhouse carbon dioxide capture

    SciTech Connect

    Wagh, A.S.; Singh, D.; Knox, L.J.

    1994-04-01

    Following the work by Berger et al. on rapid setting of calcium silicates by carbonation, a method of high-volume capture of CO{sub 2} in portland cement has been developed. Typically, 10--24 wt. % of CO{sub 2} produced by the calcination of calcium carbonate during clinkering, may be captured, and the set cement acquires most of its full strength in less than a day. The approach will have economic advantages in fabrication of precast structures, in emergency development of infrastructure during natural disasters, and in defense applications. Moreover, it will help the cement industry comply with the Clean Air Act of 1990 by sequestering the greenhouse carbon dioxide.

  14. Early hydration of portland cement with crystalline mineral additions

    SciTech Connect

    Rahhal, V. . E-mail: vrahhal@fio.unicen.edu.ar; Talero, R.

    2005-07-01

    This research presents the effects of finely divided crystalline mineral additions (quartz and limestone), commonly known as filler, on the early hydration of portland cements with very different mineralogical composition. The used techniques to study the early hydration of blended cements were conduction calorimeter, hydraulicity (Fratini's test), non-evaporable water and X-ray diffraction. Results showed that the stimulation and the dilution effects increase when the percentage of crystalline mineral additions used is increased. Depending on the replacement proportion, the mineralogical cement composition and the type of crystalline addition, at 2 days, the prevalence of the dilution effect or the stimulation effect shows that crystalline mineral additions could act as sites of heat dissipation or heat stimulation, respectively.

  15. The properties of Portland cement-limestone-silica fume mortars

    SciTech Connect

    Zelic, J.; Krstulovic, R.; Tkalcec, E.; Krolo, P.

    2000-01-01

    This work has studied the influence of the combined action of silica fume and limestone or strength development, porosity, pore structure and morphological features in the system where 15 wt% of cement was substituted by finely ground limestone. Silica fume was added in amounts of 0, 2, 5, 8, 11 and 15 wt% on a cement basis, respectively. It has been established that limestone addition considerably increases the total porosity of mortars. However, if introduced together with silica fume up to 8 wt% of silica, porosity decreases. More than 8 wt% of silica increases the porosity again. The cement mortar containing 8 wt% of silica fume shows the highest compressive strength, the minimum value of the total porosity, and its pore size distribution curve shows a discontinuous pore structure. Limestone is taken up to the system and reacts with aluminate and ferrite phases from cement. Approximately 5 wt% is available for reaction after 120 days hydration of mortars containing no silica fume. The quantity of limestone incorporated is affected by the silica fume content. The replacement of Portland cement by 15 wt% of silica fume causes reduction both in the amount of cement and in the free CH content available for limestone chemical activity, and in this condition limestone acts only as a filler addition.

  16. Portland Cement (KS and API Class G) and Relative Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    LEE, Seung-Woo; CHAE, Gi-Tak; KIM, Taehee

    2015-04-01

    Portland cement is a common component consisting of a sealing material for wellbores for geological carbon storage to prevent vertical fluid migration and provide mechanical support. Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate a cement-CO2 reaction along the wellbore from the carbon injection depth to the near surface. The reaction of the cement phase with CO2 can lead to important changes in its structure and properties. In this study, two types of cement were used: KS Portland cement and API Class G Portland cement. The hydrated cement sample columns (14 mm diameter X 90 mm long; water-to-cement ratio = 0.5) were reacted with CO2 in the saturated and the unsaturated condition. Fly-ash was used as additives to promote carbonation. These conditions were maintained under high pressure (8 MPa) and temperature (40 degree Celsius) for 10 and 100 days. To analyze the degree of carbonation after cement carbonation, relative quantitative analysis was proposed. And Rietveld method were conducted to evaluate a relative quantitative analysis (RQA) with an aragonite-calcite equation. This method can be an alternative to the general quantitative analysis method to identify the state of cement carbonation between Portland cement and CO2. Based on an understanding of cement carbonation and its relative quantification, we propose that our method should be used to select the optimized cement for CO2 storage. Using our method, KS (Korea Standard) Portland cement (type I) and API Class G Portland cement have been compared with respect to the characterization of each cement and to the cement carbonation of each cement.

  17. An evaluation of accelerated Portland cement as a restorative material.

    PubMed

    Abdullah, D; Ford, T R Pitt; Papaioannou, S; Nicholson, J; McDonald, F

    2002-10-01

    Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct contact assay was undertaken in four samples of each test material, collected at 12, 24, 48 and 72 h. Cell morphology was observed using scanning electron microscopy (SEM) and scored. Culture media were collected for cytokine quantification using enzyme-linked immunosorbent assay (ELISA). On SEM evaluation, healthy SaOS-2 cells were found adhering onto the surfaces of APC variant, RC and MTA. In contrast, rounded and dying cells were observed on GIC. Using ELISA, levels of interleukin (IL)-1beta, IL-6, IL-18 and OC were significantly higher in APC variants compared with controls and GIC (p<0.01), but these levels of cytokines were not statistically significant compared with MTA. The results of this study provide evidence that both APC variants are non-toxic and may have potential to promote bone healing. Further development of APC is indicated to produce a viable dental restorative material and possibly a material for orthopaedic PMID:12162333

  18. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... rule (77 FR 42368, July 18, 2012) should be addressed to Ms. Sharon Nizich, Office of Air Quality... Register on July 18, 2012, and is available at: http://www.gpo.gov/fdsys/pkg/FR-2012-07-18/pdf/2012-16166... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement...

  19. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    SciTech Connect

    Lin Feng Meyer, Christian

    2009-04-15

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  20. Characterization of Slag, Fly Ash and Portland Cement for Saltstone

    SciTech Connect

    Harbour, J

    2006-02-01

    Batch-to-batch variability in the chemical and physical properties of the fly ash, slag and portland cement (binders) will be an ongoing concern over the many years that salt waste from Tank 50 will be processed into grout at the Saltstone Processing Facility. This batch-to-batch variability in the properties of the binder materials translates to variability in the fresh and cured properties of Saltstone. Therefore, it is important to quantify the batch-to-batch variability of the binder materials and the resultant variation in grout properties. This report is the starting point for that process by providing the baseline (reference point) binder properties to which future batches of binder materials can be compared. For this characterization effort, properties of fly ash, slag and portland cement were obtained and documented in this report. These properties included particle size distribution by laser light scattering and dry sieving, particle size and morphology by scanning electron microscopy, true, aerated and tapped densities, chemical composition, rheological properties of the water based slurries made from individual binder material, and volatility through thermogravimetric analysis and differential thermal analysis. The properties presented in this report also provide a baseline data set to assist in problem solving efforts when or if unanticipated and/or unwanted processing events occur at the Saltstone Processing Facility.

  1. Physical evaluation of a new pulp capping material developed from portland cement

    PubMed Central

    Negm, Ahmed; Hassanien, Ehab; Abu-Seida, Ashraf

    2016-01-01

    Background This study examined the effects of addition of 10% and 25% by weight calcium hydroxide on the physicochemical properties of Portland cement associated with 20% bismuth oxide in order to develop a new pulp capping material. Material and Methods The solubility, pH value, setting time, compressive strength, and push out bond strength of modified Portland were evaluated and compared to those of mineral trioxide aggregate (MTA) and Portland cement containing 20% bismuth oxide. Results The statistical analysis was performed with ANOVA and Duncan’s post-hoc test. The results show that the strength properties and push out bond strength of Portland cement were adversely affected by addition of calcium hydroxide especially with a ratio of 25 wt%, however, the setting time and pH were not affected. MTA showed a statistically significant lower setting time than other cements (P≤0.001). Portland cement with bismuth oxide and Port Cal I showed a statistically significant higher Push out Bond strength than MTA and Port Cal II (P=0.001). Conclusions Taking the setting time, push out bond strength and pH value into account, addition of 10 wt% calcium hydroxide to Portland cement associated with 20% bismuth oxide produces a new pulp capping material with acceptable physical and adhesive properties. Further studies are recommended to test this cement biologically as a new pulp capping material. Key words:Calcium hydroxide, MTA, Portland cement, setting time, solubility, strength. PMID:27398178

  2. The Investigation of Properties of Insulating Refractory Concrete with Portland Cement Binder

    NASA Astrophysics Data System (ADS)

    Kudžma, A.; Antonovič, V.; Stonys, R.; Škamat, J.

    2015-11-01

    The present work contains the results of experimental study on properties of insulating refractory concrete created on the basis of Portland cement (PC) binder and modified with microsilica (MS). The experimental compositions were made using Portland cement, lightweight aggregates (expanded clay and vermiculite) and microsilica additives. It was established that MS additives enable significant improvement of mechanical properties and thermal shock resistance of PC-based insulating concrete with values comparable to insulating refractory concrete based on calcium aluminate cement.

  3. In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement.

    PubMed

    Tanomaru-Filho, Mário; Tanomaru, Juliane M G; Barros, Danilo B; Watanabe, Evandro; Ito, Izabel Y

    2007-03-01

    The aim of this study was to evaluate the antimicrobial activity of different root-end filling materials - Sealer 26, Sealapex with zinc oxide, zinc oxide and eugenol, white and gray Portland cement, white and gray MTA-Angelus, and gray Pro Root MTA - against six different microorganism strains. The agar diffusion method was used. A base layer was made using Müller-Hinton agar (MH) and wells were formed by removing the agar. The materials were placed in the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC10538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. Triphenyltetrazolium chloride 0.05% gel was added for optimization, and the zones of inhibition were measured. Data were subjected to the Kruskal-Wallis and Dunn tests at a 5% significance level. The results showed that all materials had antimicrobial activity against all the tested strains. Analysis of the efficacy of the materials against the microbial strains showed that Sealapex with zinc oxide, zinc oxide and eugenol and Sealer 26 created larger inhibition halos than the MTA-based and Portland cements (P < 0.05). On the basis of the methodology used, it may be concluded that all endodontic sealers, MTA-based and Portland cements evaluated in this study possess antimicrobial activity, particularly the endodontic sealers.

  4. Resins and non-portland cements for construction in the cold

    NASA Astrophysics Data System (ADS)

    Johnson, R.

    1980-09-01

    A laboratory investigation was conducted to assess the potential of some resins and non-portland cements for structural concrete at low temperatures. The resins investigated were urethane (non-hydrophilic), epoxy and polyester, as well as a polysulfide polymer. Two non-portland (modified) cements were also tested. The curability of the resins, when mixed with fine aggregate, showed that they had potential for low temperature use in the following decreasing order: urethane, polyester, and epoxy. Of the non-portland cement materials, mixed as individual neat slurries, one showed potential for low temperature use at -10 C (using 3.9 C water).

  5. Chromium stabilization chemistry of paint removal wastes in Portland cement and blast furnace slag

    SciTech Connect

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1995-12-31

    The use of cement based systems for solidification and stabilization of hazardous wastes has been proposed. The stabilization of Cr contaminated paint removal wastes in ordinary Portland cement and in a Portland cement and blast furnace slag matrix was investigated. A loading by volume of 75% waste and 25% cement (or cement + slag) was used. The expression of pore solution was utilized to determine the chemical environment encountered by the waste species in the cement matrix. The highly alkaline conditions of ordinary Portland cement determined the stability of the metal species, with Cr being highly soluble. The replacement of 25% of the Portland cement by blast furnace slag was found to decrease the [OH-] of the pore solution resulting in a decrease of the Cr concentration. For cement wastes forms hydrated for 28 days, the Cr concentration decreased in the expressed pore solution. During the TCLP tests the cement waste form and extraction solution were found to react, changing the chemistry of the extraction solution. The expression of pore solution was found to give a direct measure of the chemistry of the waste species in the cement matrix. This avoids the reaction of the TCLP extraction solution with the cement matrix which changes the solubility of the hazardous metals. 15 refs., 4 figs., 6 tabs.

  6. Effects of acid deposition on portland cement concrete

    SciTech Connect

    Webster, R.P.; Kukacka, L.E.

    1985-05-01

    Presented are the results of a program, sponsored by the Environmental Protection Agency, conducted to determine the state-of-the-art knowledge pertaining to the effects of acid deposition on the properties of portland cement concrete structures (PCC). Information was collected from a computerized literature survey, interviews, and replies to mail and telephone inquiries addressed to cement and concrete researchers and to governmental agencies and private firms active in the maintenance and restoration of concrete structures. In general, the study revealed very little qualitative or quantitative information on the effects of acid deposition on PCC structures. The rate of deterioration of reinforced PCC structures in polluted areas, however, appears to be increasing, and available information makes it readily apparent that acids and acid waters significantly affect the durability of concrete, and that SO/sub 2/, NO/sub x/, and HCl accelerate the corrosion of reinforcing steel. On the basis of this evidence, it was recommended that an experimental test program, consisting of both laboratory and field tests, be developed and implemented to quantitatively measure the effects of acid deposition on PCC structures. 51 refs.

  7. The existence of amorphous phase in Portland cements: Physical factors affecting Rietveld quantitative phase analysis

    SciTech Connect

    Snellings, Ruben Bazzoni, Amélie Scrivener, Karen

    2014-05-01

    Rietveld quantitative phase analysis has become a widespread tool for the characterization of Portland cement, both for research and production control purposes. One of the major remaining points of debate is whether Portland cements contain amorphous content or not. This paper presents detailed analyses of the amorphous phase contents in a set of commercial Portland cements, clinker, synthetic alite and limestone by Rietveld refinement of X-ray powder diffraction measurements using both external and internal standard methods. A systematic study showed that the sample preparation and comminution procedure is closely linked to the calculated amorphous contents. Particle size reduction by wet-grinding lowered the calculated amorphous contents to insignificant quantities for all materials studied. No amorphous content was identified in the final analysis of the Portland cements under investigation.

  8. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    PubMed

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.

  9. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    PubMed

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector. PMID:26615227

  10. Portland cement for SO.sub.2 control in coal-fired power plants

    DOEpatents

    Steinberg, Meyer

    1985-01-01

    There is described a method of removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. There is also described the cement products that result from this method.

  11. Portland cement for SO/sub 2/ control in coal-fired power plants

    DOEpatents

    Steinberg, M.

    1984-10-17

    A method is described for removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. The cement products that result from this method is also described. 1 tab.

  12. An alternative to Portland Cement for waste encapsulation--the calcium sulfoaluminate cement system.

    PubMed

    Zhou, Q; Milestone, N B; Hayes, M

    2006-08-10

    Currently, Portland Cement (PC) is used extensively in the solidification/stabilisation of a wide variety of wastes. In the nuclear industry, low and intermediate level radioactive wastes are encapsulated or immobilised within composite PC cement systems based on high replacement with blast furnace slag or fly ash. However, the high alkalinity of these PC-based systems will corrode reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. Alternative cement systems could provide a different hydration chemistry, which would allow wastes containing these metals to be encapsulated with lower reactivity. Calcium sulfoaluminate (CS A) cement is one such cement. It combines economy of cost and low emission of CO(2) with rapid strength gain and compatibility with other construction materials. Hydration provides an internal pore solution where the pH is considerably lower than that of PC. The main hydration product, ettringite, can incorporate a number of ions into its crystal structure, making it an ideal candidate for waste immobilisation. This paper details some results from a commercial CS A system that examines aspects of mixing, hydration of different formulations and aluminium corrosion behaviour. The fluidity of mixes can be adjusted by changing the formulations. All designed mixes were set within 24 h with little bleeding and the pH values were in the range of 10-11.5. In addition, a significant reduction in Al corrosion was observed compared to a composite OPC system. Although these results provide encouragement for the idea that CS A cement can provide a possible alternative to PC in the immobilisation of difficult and reactive wastes, further investigation is needed. PMID:16406289

  13. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    PubMed

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration <10mg/L. Several treatments satisfied the USEPA TCLP best demonstrated available technology (BDAT) limits (5.7 mg/L) for selenium at pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  14. Enhancement of cemented waste forms by supercritical CO{sub 2} carbonation of standard portland cements

    SciTech Connect

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-08-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented.

  15. Stabilization and solidification of waste phosphate sludge using Portland cement and fly ash as cement substitute

    SciTech Connect

    Vedat Pinarli; Gizem Karaca; Guray Salihoglu; Nezih Kamil Salihoglu

    2005-07-01

    Stabilization and solidification of the waste phosphate sludge (WPS) using Portland cement (PC) and fly ash (FA) were studied in the present work. The WPS content in the cement mortars varied from 5% to 15%. Setting times were measured, and unconfined compressive strengths (UCS) were determined for the mortars cured in water for 3, 7, 28, 56, and 90 days. Zinc and nickel leaching of the solidified products were measured according to the Toxicity Characteristic Leaching Procedure. Setting times were extended as the WPS content in the paste samples increased. The UCS values of the mortar containing 5% WPS solidified by using 95% PC were similar to the reference sample. Use of 10% FA as cement substitute increased the UCS values by 10% at the end of curing period of 56 days. The WPS contained initially 130.2 mg L{sup -1} of zinc and 22.7 mg L{sup -1} of nickel. The zinc and nickel leached from the 5% WPS solidified by using 95% PC were measured as 3.8 mg L{sup -1} and 0.4 mg L{sup -1}, respectively. These metal concentrations were below the limits given by the U.S. Environmental Protection Agency for landfilling the solidified wastes.

  16. Stabilization and solidification of waste phosphate sludge using portland cement and fly ash as cement substitute.

    PubMed

    Pinarli, Vedat; Karaca, Gizem; Salihoglu, Guray; Salihoglu, Nezih Kamil

    2005-01-01

    Stabilization and solidification of the waste phosphate sludge (WPS) using Portland cement (PC) and fly ash (FA) were studied in the present work. The WPS content in the cement mortars varied from 5% to 15%. Setting times were measured, and unconfined compressive strengths (UCS) were determined for the mortars cured in water for 3, 7, 28, 56, and 90 days. Zinc and nickel leaching of the solidified products were measured according to the Toxicity Characteristic Leaching Procedure. Setting times were extended as the WPS content in the paste samples increased. The UCS values of the mortar containing 5% WPS solidified by using 95% PC were similar to the reference sample. Use of 10% FA as cement substitute increased the UCS values by 10% at the end of curing period of 56 days. The WPS contained initially 130.2 mg L(-1) of zinc and 22.7 mg L(-1) of nickel. The zinc and nickel leached from the 5% WPS solidified by using 95% PC were measured as 3.8 mg L(-1) and 0.4 mg L(-1), respectively. These metal concentrations were below the limits given by the U.S. Environmental Protection Agency for landfilling the solidified wastes.

  17. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau Dit Coumes, C.; Gauffinet, S.; Chartier, D.; Le Bescop, P.; Stefan, L.; Nonat, A.

    2013-07-01

    In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs) before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+). Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement) and CEM III (Portland cement + blastfurnace slag) cements at early age and an explanation is proposed for the better stability of CEM III material.

  18. Comparative investigation of corrosion resistance of steel reinforcement in alinite and Portland cement mortars

    SciTech Connect

    Kostogloudis, G.C.; Kalogridis, D.; Ftikos, C.; Malami, C.; Georgali, B.; Kaloidas, V.

    1998-07-01

    The corrosion resistance of steel-reinforced mortar specimens made from alinite cement was investigated using ordinary Portland cement (OPC) specimens as reference. The specimens were prepared and exposed in three different environments: continuous exposure in tap water, interrupted exposure in tap water, and interrupted exposure in 3.5% NaCl solution. The steel weight loss and the half cell potential were measured vs. exposure time, up to the age of 12 months. Pore solution extraction and analysis and porosity determination were also performed. In continuous exposure in tap water, alinite cement provided adequate protection against corrosion. In interrupted exposure in tap water, a higher corrosion was observed for alinite cement compared to OPC. In the case of interrupted exposure in 3.5% NaCl solution, the simultaneous action of free chlorides and oxygen resulted in the depassivation of steel reinforcing bars in alinite and Portland cement mortars, and led to severe corrosion effect.

  19. Energy conservation potential of Portland cement particle size distribution control, Phase 2

    SciTech Connect

    Helmuth, R.A; Whiting, D.A.

    1983-01-01

    The main objectives of Phase 2 are to determine the feasibility of using cements with controlled particle size distributions (CPSD cements) in practical concrete applications, and to refine our estimates of the potential energy savings that may ensue from such use. The work in Phase 2 is divided into two main tasks, some parts of which will be carried out simultaneously: Task 1 will continue cement paste studies to optimize cement performance similar to those of Phase 1, but with particular emphasis on gypsum requirements, blended cements, and water-reducing admixtures. This task will also include preparation of sufficient CPSD cements for use in all Phase 2 work. Task 2 will be a comprehensive examination of the properties of concretes made with CPSD cements. This will include optimization of concrete mix designs to obtain the best possible performance for practical applications of both portland and blended cements. The effects of chemical admixtures and curing temperature variations will also be determined.

  20. Recycling of portland cement concrete pavement, Johnson County. Final report, 1986-1995

    SciTech Connect

    Wojakowski, J.B.; Fager, G.A.; Catron, M.A.

    1995-08-01

    In recent years there has been increasing interest in recycling construction materials. Surface courses of bituminous pavements are currently being actively recycled all over Kansas. The recycling of portland cement concrete pavements (PCCP) can help alleviate any material disposal problems during construction, especially in urban areas and reduce the consumption or importation of virgin aggregate into aggregate poor areas. Two test sections using the coarser fraction from the original crushed portland cement concrete pavement were placed on K-7 in 1985. One section incorporated a recycled base and standard PCCP construction, another section was designed as a recycled base and recycled PCCP. Two other sections were control sections constructed with regular aggregate.

  1. Effect of saliva and blood contamination on the bi-axial flexural strength and setting time of two calcium-silicate based cements: Portland cement and biodentine.

    PubMed

    Alhodiry, W; Lyons, M F; Chadwick, R G

    2014-03-01

    This study evaluated the effect of contamination with saliva and blood on the bi-axial flexural strength and setting time of pure gray Portland cement and Biodentine (Septodont, Allington, UK). A one-way ANOVA showed that contamination caused no significant difference between the cements in bi-axial flexural strength (P> 0.05). However there was a significant difference in setting time (PPortland cement taking longer than Biodentine, regardless of the contaminant, and contamination with blood increased the setting time of both materials. Biodentine was similar in strength to Portland cement, but had a shorter setting time for both contaminated and non-contaminated samples.

  2. Effects of acid deposition on the properties of portland cement concrete: state of knowledge

    SciTech Connect

    Webster, R.P.; Kukacka, L.E.

    1985-02-01

    Presented are the results of a program conducted to determine the state-of-the-art knowledge pertaining to the effects of acid deposition on the properties of portland cement concrete structures. Information was collected from a computerized literature survey, interviews, and replies to mail and telephone inquiries addressed to cement and concrete researchers and to governmental agencies and private firms active in the maintenance and restoration of concrete structures.

  3. Capture of green-house carbon dioxide in Portland cement

    SciTech Connect

    Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

    1993-12-31

    A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

  4. Comparative Analysis of Selected Physicochemical Properties of Pozzolan Portland and MTA-Based Cements

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Villa, Ricardo Dalla; Guedes, Orlando Aguirre; Aranha, Andreza Maria Fábio; Semenoff-Segundo, Alex; Bandeca, Matheus Coelho; Borges, Alvaro Henrique

    2014-01-01

    Physicochemical properties of pozzolan Portland cement were compared to ProRoot MTA and MTA BIO. To test the pH, the samples were immersed in distilled water for different periods of time. After the pH analysis, the sample was retained in the plastic recipient, and the electrical conductivity of the solution was measured. The solubility and radiopacity properties were evaluated according to specification 57 of the American National Standard Institute/American Dental Association (ANSI/ADA). The statistical analyses were performed using ANOVA and Tukey's test at a 5% level of significance. Pozzolan Portland cement exhibited pH and electrical conductivity mean values similar to those of the MTA-based cements. The solubilities of all tested materials were in accordance with the ANSI/ADA standards. Only the MTA-based cements met the ANSI/ADA recommendations for radiopacity. It might be concluded that the pH and electrical conductivity of pozzolan Portland cement are similar to and comparable to those of MTA-based cements. PMID:27437473

  5. Comparative Analysis of Selected Physicochemical Properties of Pozzolan Portland and MTA-Based Cements.

    PubMed

    Dorileo, Maura Cristiane Gonçales Orçati; Villa, Ricardo Dalla; Guedes, Orlando Aguirre; Aranha, Andreza Maria Fábio; Semenoff-Segundo, Alex; Bandeca, Matheus Coelho; Borges, Alvaro Henrique

    2014-01-01

    Physicochemical properties of pozzolan Portland cement were compared to ProRoot MTA and MTA BIO. To test the pH, the samples were immersed in distilled water for different periods of time. After the pH analysis, the sample was retained in the plastic recipient, and the electrical conductivity of the solution was measured. The solubility and radiopacity properties were evaluated according to specification 57 of the American National Standard Institute/American Dental Association (ANSI/ADA). The statistical analyses were performed using ANOVA and Tukey's test at a 5% level of significance. Pozzolan Portland cement exhibited pH and electrical conductivity mean values similar to those of the MTA-based cements. The solubilities of all tested materials were in accordance with the ANSI/ADA standards. Only the MTA-based cements met the ANSI/ADA recommendations for radiopacity. It might be concluded that the pH and electrical conductivity of pozzolan Portland cement are similar to and comparable to those of MTA-based cements.

  6. Galvanic corrosion of Mg-Zr fuel cladding and steel immobilized in Portland cement and geopolymer at early ages

    NASA Astrophysics Data System (ADS)

    Rooses, Adrien; Lambertin, David; Chartier, David; Frizon, Fabien

    2013-04-01

    Galvanic corrosion behaviour of Mg-Zr alloy fuel cladding and steel has been studied in Ordinary Portland cement and Na-geopolymer. Portland cements implied the worse magnesium corrosion performances due to the negative effects of cement hydrates, grinding agents and gypsum on the galvanic corrosion. Galvanic corrosion in Na-geopolymer paste remains very low. Silicates and fluoride from the geopolymer activation solution significantly improve the corrosion resistance of the magnesium alloy while coupling with a cathode.

  7. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... emission limits applicable to the Portland cement industry. See 75 FR 54970 (Sept. 9, 2010). The rule... Clean Air Act, 75 FR 49556, 49561 (Aug. 13, 2010). This interpretation is appropriate in light of the... see 75 FR 49556, 49560-49563 (August 13, 2010) and 76 FR 4780, 4786-4788 (January 26, 2011). II....

  8. 76 FR 78240 - Gray Portland Cement and Clinker From Japan: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Antidumping Order: Gray Portland Cement and Clinker From Japan, 60 FR 39150 (August 1, 1995). As a result of... Tariff Act of 1930, as amended (the Act). See Initiation of Five- Year (``Sunset'') Review, 76 FR 24459 (May 2, 2011) (Notice of Initiation). As a result of the determination by the Department and...

  9. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat

    2008-05-30

    The purpose of this study was to determine an appropriate treatment for steel foundry electric arc furnace dust (EAFD) prior to permanent disposal. Lime and Portland cement (PC)-based stabilization was applied to treat the EAFD that contains lead and zinc above the landfilling limits, and is listed by USEPA as hazardous waste designation K061 and by EU as 10 02 07. Three types of paste samples were prepared with EAFD content varying between 0 and 90%. The first type contained the EAFD and Portland cement, the second contained the EAFD, Portland cement, and lime, and the third contained the EAFD and lime. All the samples were subjected to toxicity characteristics leaching procedure (TCLP) after an air-curing period of 28 days. pH changes were monitored and acid neutralization capacity of the samples were examined. Treatment effectiveness was evaluated in terms of reducing the heavy metal leachability to the levels below the USEPA landfilling criteria. An optimum composition for the EAFD stabilization was formulated as 30% EAFD +35% lime +35% Portland cement to achieve the landfilling criteria. The pH interval, where the solubility of the heavy metals in the EAFD was minimized, was found to be between 8.2 and 9.4.

  10. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  11. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    SciTech Connect

    Boncukcuoglu, Recep . E-mail: rboncuk@yahoo.com; Icelli, Orhan; Erzeneoglu, Salih; Muhtar Kocakerim, M.

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays of the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.

  12. Precipitation of anionic emulsifier with ordinary Portland cement.

    PubMed

    Fang, Xing; Winnefeld, Frank; Lura, Pietro

    2016-10-01

    Cement has traditionally been used to accelerate bitumen emulsion breaking in cold mix asphalt and cold recycling asphalt. For cold emulsion mixtures, the mixing stability of bitumen emulsion is a crucial property, because it determines the distribution of bitumen and eventually affects the microstructure and the strength development of asphalt mixtures. Recent studies have proven that the interaction between cement and emulsifiers causes the destabilization of bitumen emulsions. The objective of this study is to understand the interaction between cement particles and rosin emulsifiers. For this purpose, the Ca(2+) ions and rosin emulsifier concentration after filtration were measured to identify the interaction between cement and rosin emulsifiers. The consumed emulsifier increases linearly with the amount of added cement or CaCl2 concentration in the case of diluted rosin emulsifier solutions in which the rosin emulsifier concentration is below the CMC (critical micelle concentration). In the case of concentrated rosin emulsifier solutions (above the CMC), the rosin emulsifier concentration shows a sharp decrease when a certain amount of cement or CaCl2 is added. This study indicates that cement destabilizes anionic bitumen emulsion due to the precipitation of rosin emulsifiers caused by Ca(2+) ions which are released by early cement hydration. Further studies on precipitation behavior have shown that micelles of rosin emulsifier can complex Ca(2+) ions but do not precipitate. These findings explain why slow-setting bitumen emulsions, which contain a higher concentration of emulsifier, show better mixing stability. PMID:27376974

  13. Precipitation of anionic emulsifier with ordinary Portland cement.

    PubMed

    Fang, Xing; Winnefeld, Frank; Lura, Pietro

    2016-10-01

    Cement has traditionally been used to accelerate bitumen emulsion breaking in cold mix asphalt and cold recycling asphalt. For cold emulsion mixtures, the mixing stability of bitumen emulsion is a crucial property, because it determines the distribution of bitumen and eventually affects the microstructure and the strength development of asphalt mixtures. Recent studies have proven that the interaction between cement and emulsifiers causes the destabilization of bitumen emulsions. The objective of this study is to understand the interaction between cement particles and rosin emulsifiers. For this purpose, the Ca(2+) ions and rosin emulsifier concentration after filtration were measured to identify the interaction between cement and rosin emulsifiers. The consumed emulsifier increases linearly with the amount of added cement or CaCl2 concentration in the case of diluted rosin emulsifier solutions in which the rosin emulsifier concentration is below the CMC (critical micelle concentration). In the case of concentrated rosin emulsifier solutions (above the CMC), the rosin emulsifier concentration shows a sharp decrease when a certain amount of cement or CaCl2 is added. This study indicates that cement destabilizes anionic bitumen emulsion due to the precipitation of rosin emulsifiers caused by Ca(2+) ions which are released by early cement hydration. Further studies on precipitation behavior have shown that micelles of rosin emulsifier can complex Ca(2+) ions but do not precipitate. These findings explain why slow-setting bitumen emulsions, which contain a higher concentration of emulsifier, show better mixing stability.

  14. Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes.

    PubMed

    Favier, Aurélie; Hot, Julie; Habert, Guillaume; Roussel, Nicolas; d'Espinose de Lacaillerie, Jean-Baptiste

    2014-02-28

    Geopolymers are presented in many studies as alternatives to ordinary Portland cement. Previous studies have focused on their chemical and mechanical properties, their microstructures and their potential applications, but very few have focussed on their rheological behaviour. Our work highlights the fundamental differences in the flow properties, which exist between geopolymers made from metakaolin and Ordinary Portland Cement (OPC). We show that colloidal interactions between metakaolin particles are negligible and that hydrodynamic effects control the rheological behaviour. Metakaolin-based geopolymers can then be described as Newtonian fluids with the viscosity controlled mainly by the high viscosity of the suspending alkaline silicate solution and not by the contribution of direct contacts between metakaolin grains. This fundamental difference between geopolymers and OPC implies that developments made in cement technology to improve rheological behaviour such as plasticizers will not be efficient for geopolymers and that new research directions need to be explored.

  15. To evaluate the biocompatibility of the Indian Portland cement with potential for use in dentistry: An animal study

    PubMed Central

    Mangala, M G; Chandra, S M Sharath; Bhavle, Radhika M.

    2015-01-01

    Aims: This study evaluated the biocompatibility of the Indian Portland cement with potential for use in dentistry. Materials and Methods: This study was performed in Swiss albino mice, by implanting the Indian Portland cement pellets subcutaneously. After 1, 3, and 6 weeks the tissue specimens were prepared for histological examination. Results: The histological analysis showed moderate to severe inflammation at 1 week. The inflammation gradually decreased by 6 weeks, with most of the specimens showing the absence of inflammatory reaction. Conclusions: According to these experimental conditions, the tested Indian Portland cement was biocompatible. PMID:26752835

  16. Low-alumina portland cement from lime-soda sinter residue

    SciTech Connect

    Chesley, J.A.

    1987-01-01

    A byproduct for the Ames Lime-Soda Sinter Process for recovering alumina from power plant fly ash was investigated as a cement raw material. This investigation dealt with a determination of the best method to utilize the process residue from both a clinker quality and an economic perspective. The experimental work was divided into 4 major areas; characterization of the sinter residue, laboratory burnability tests, physical testing of produced residue-cements, and a kinetic study of C{sub 3}S formation. Other important topics were considered such as the effect use of the sinter residue has on the energy requirements of a commercial cement kiln and on the economics of a combined lime-soda sinter, cement plant. It was found that a low-alumina, C{sub 3}S-bearing cement could be readily produced from a raw mix containing significant amounts of sinter residue, which was found to consist of {beta}-C{sub 2}S, C{sub 3}A, CaCO{sub 3}, MgO, and C{sub 4}AF. Based on an energy balance using a typical cement feed containing around 75%{sub w} limestone as a reference, use of the residue in a cement feed allows for a 50% reduction in required energy for the kiln and a 32%{sub w} increased throughput. A laboratory produced residue-cement was found to meet all of the specifications for a Type 5 portland cement. The rate of return found for a combined lime-soda sinter and cement facility processing 43,800 tons per year (TPY) of alumina and 530,400 TPY of portland cement was 4.7%.

  17. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  18. Model for the developing microstructure in Portland cement pastes

    SciTech Connect

    Jennings, H.M.; Tennis, P.D. )

    1994-12-01

    A method is proposed for quantitatively predicting the volume of the major phases in hydrated cement pastes as a function of (1) the composition of the cement, (2) the degree of reaction, and (3) the initial water: cement ratio. This procedure is then used to develop a quantitative model for the surface area and volume of porosity that is accessible to nitrogen in calcium silicate hydrate (C-S-H). Published values for surface areas and volume of pores are compared with the predictions made by the model. An implication of the model is that there are two types of C-S-H, or perhaps regions within the C-S-H: one that nitrogen can penetrate and one that it cannot.

  19. Comparative evaluation of antimicrobial action of MTA, calcium hydroxide and Portland cement.

    PubMed

    Ribeiro, Caroline Sousa; Kuteken, Fernanda Akemi; Hirata Júnior, Raphael; Scelza, Miriam F Zaccaro

    2006-10-01

    The present study aimed to evaluate and compare the antimicrobial effect of MTA Dentsply, MTA Angelus, Calcium Hydroxide and Portland cement. Four reference bacterial strains were used: Pseudomonas aeruginosa, Escherichia coli, Bacteroides fragilis, and Enterococcus faecalis. Plates containing Mueller-Hinton agar supplemented with 5% sheep blood, hemin, and menadione were inoculated with the bacterial suspensions. Subsequently, wells were prepared and immediately filled with materials and incubated at 37 degrees C for 48 hours under anaerobic conditions, except P. aeruginosa. The diameters of inhibition zones were measured, and data analyzed using ANOVA and the Tukey test with 1% level of significance. MTA Dentsply, MTA Angelus and Portland cement inhibited the growth of P. aeruginosa. Calcium Hydroxide was effective against P. aeruginosa and B. fragillis. Under anaerobic conditions, which may hamper the formation of reactive oxygen species, the materials failed to inhibit E. faecalis, and E. coli.

  20. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  1. Effects of composition and exposure on the solar reflectance of Portland Cement Concrete

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem

    2002-06-01

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Lower air temperatures decrease demand for cooling energy and slow the formation of urban smog. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Concrete albedo generally correlated with cement albedo and sand albedo and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance of concrete. Simulated weathering, soiling, and abrasion each reduced average concrete albedo, though some samples became slightly more reflective through weathering or soiling. Concrete albedo grew as the cement hydration reaction progressed, but stabilized within six weeks of casting.

  2. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    PubMed Central

    Bidar, Maryam; Naghavi, Neda; Mohtasham, Nooshin; Sheik-Nezami, Mahshid; Fallahrastegar, Amir; Afkhami, Farzaneh; Attaran Mashhadi, Negin; Nargesi, Iman

    2014-01-01

    Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. Histopathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tissue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposed with a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Portland cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral trioxide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Although the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45%) and the least increase in fibrous tissue were observed adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp capping in dog teeth. PMID:25346831

  3. Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.

    PubMed

    Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael

    2012-02-21

    Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.

  4. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  5. Effects of Using Pozzolan and Portland Cement in the Treatment of Dispersive Clay

    PubMed Central

    Vakili, A. H.; Selamat, M. R.; Moayedi, H.

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone. PMID:23864828

  6. Effects of using pozzolan and Portland cement in the treatment of dispersive clay.

    PubMed

    Vakili, A H; Selamat, M R; Moayedi, H

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.

  7. Effects of using pozzolan and Portland cement in the treatment of dispersive clay.

    PubMed

    Vakili, A H; Selamat, M R; Moayedi, H

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone. PMID:23864828

  8. Comparative SEM study of the marginal adaptation of white and grey MTA and Portland cement.

    PubMed

    Bidar, Maryam; Moradi, Saeed; Jafarzadeh, Hamid; Bidad, Salma

    2007-04-01

    The use of a suitable substance that prevents egress of potential contaminants into the periapical tissues is important in endodontic surgery. The aim of the present study was to compare the marginal adaptation of three root-end filling materials (white mineral trioxide aggregate (MTA), grey MTA and Portland cement), using scanning electron microscopy. Seventy-five single-rooted extracted human teeth were used. The canals were instrumented and filled with gutta-percha. Following root-end resection and cavity preparation, root-end cavities were filled with white MTA, grey MTA or Portland cement. Using a diamond saw, roots were longitudinally sectioned into two halves. Under scanning electron microscopy, the gaps between the material and dentinal wall were measured. The data were analysed using Kruskal-Wallis test. The mean of the gap in grey MTA, white MTA and Portland cement was 211.6, 349 and 326.3 microm, respectively. The results indicate that the gap between grey MTA and the dentinal wall is less than other materials, but there was no significant difference between the materials tested in this study (P > 0.05).

  9. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    PubMed

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications. PMID:19110410

  10. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    PubMed

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  11. Impact of admixtures on the hydration kinetics of Portland cement

    SciTech Connect

    Cheung, J.; Jeknavorian, A.; Roberts, L.; Silva, D.

    2011-12-15

    Most concrete produced today includes either chemical additions to the cement, chemical admixtures in the concrete, or both. These chemicals alter a number of properties of cementitious systems, including hydration behavior, and it has been long understood by practitioners that these systems can differ widely in response to such chemicals. In this paper the impact on hydration of several classes of chemicals is reviewed with an emphasis on the current understanding of interactions with cement chemistry. These include setting retarders, accelerators, and water reducing dispersants. The ability of the chemicals to alter the aluminate-sulfate balance of cementitious systems is discussed with a focus on the impact on silicate hydration. As a key example of this complex interaction, unusual behavior sometimes observed in systems containing high calcium fly ash is highlighted.

  12. Influence of citric acid on the hydration of Portland cement

    SciTech Connect

    Moeschner, Goeril Lothenbach, Barbara; Figi, Renato; Kretzschmar, Ruben

    2009-04-15

    Citric acid can be used to retard the hydration of cement. Experiments were carried out to investigate the influence of citric acid on the composition of solid and liquid phases during cement hydration. Analyses of the solid phases showed that dissolution of alite and aluminate slowed down while analyses of the pore solution showed that citric acid was removed almost completely from the pore solution within the first hours of hydration. The complexation of the ions by citrate was weak, which could also be confirmed by thermodynamic calculations. Only 2% of the dissolved Ca and 0.001% of the dissolved K formed complexes with citrate during the first hours. Thus, citric acid retards cement hydration not by complex formation, but by slowing down the dissolution of the clinker grains. Thermodynamic calculations did not indicate precipitation of a crystalline citrate species. Thus, it is suggested that citrate sorbed onto the clinker surface and formed a protective layer around the clinker grains retarding their dissolution.

  13. Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement

    NASA Astrophysics Data System (ADS)

    Khanna, Om Shervan

    The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different

  14. Use of coir pith particles in composites with Portland cement.

    PubMed

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)).

  15. 76 FR 54206 - Gray Portland Cement and Clinker From Japan: Final Results of the Expedited Third Sunset Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Sales at Less Than Fair Value: Gray Portland Cement and Clinker From Japan, 56 FR 21658 (May 10, 1991... Cement and Clinker From Japan, 60 FR 39150 (August 1, 1995). The Department received notice of intent to... Act of 1930, as amended (the Act). See Initiation of Five-Year (``Sunset'') Review, 76 FR 24459 (May...

  16. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    PubMed

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material. PMID:26312972

  17. Vibrational study on the bioactivity of Portland cement-based materials for endodontic use

    NASA Astrophysics Data System (ADS)

    Taddei, P.; Tinti, A.; Gandolfi, M. G.; Rossi, P. L.; Prati, C.

    2009-04-01

    The bioactivity of a modified Portland cement (wTC) and a phosphate-doped wTC cement (wTC-P) was studied at 37 °C in Dulbecco's Phosphate Buffered Saline (DPBS). The cements, prepared as disks, were analysed at different ageing times (from 1 day to 2 months) by micro-Raman and ATR/FT-IR spectroscopies. The presence of deposits on the surface of the cements and the composition changes as a function of the storage time were investigated. The presence of an apatite deposit on the surface of both cements was already revealed after one day of ageing in DPBS. The trend of the I 965/I 991 Raman intensity ratio indicated the formation of a meanly thicker apatite deposit on the wTC-P cement at all the investigated times. This result was confirmed by the trend of the I 1030/I 945 IR intensity ratio calculated until 14 days of ageing. At 2 months, the thickness of the apatite deposit on wTC and wTC-P was about 200 and 500 μm, respectively, as estimated by micro-Raman spectroscopy, confirming the higher bioactivity of the phosphate-doped cement. Vibrational techniques allowed to gain more insights into the cement transformation and the different hydration rates of the various cement component. The setting of the cement and the formation of the hydrated silicate gel (C-S-H phase) was spectroscopically monitored through the I 830/I 945 IR intensity ratio.

  18. Effects of composition and exposure on the solar reflectance of Portland cement concrete

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem

    2001-12-21

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance of concrete. Efflorescence and surface

  19. Stabilization of geothermal residues by encapsulation in portland cement-based composites

    SciTech Connect

    Webster, R.P.; Kukacka, L.E.

    1988-05-01

    Presented are the results from a laboratory test program conducted to identify and evaluate materials for converting hazardous geothermal residues to a non-hazardous and potentially usable form. Results indicate that the residues can be effectively incorporated, as a fine aggregate, into portland cement-based composites. Five geothermal residues obtained from sites in the Salton Sea area of California were evaluated. Three of these were classified as hazardous. After mixing with cement, the leach rates were all well below specified levels. Although structural-grade composites were produced, gradual reductions in properties with time up to 1 yr were noted. This indicates ongoing chemical reactions between the cement paste and the constituents of the residues. Further research is necessary before the composites could be considered for use in structural applications. 3 refs., 8 tabs.

  20. Lime kiln dust as a potential raw material in portland cement manufacturing

    USGS Publications Warehouse

    Miller, M. Michael; Callaghan, Robert M.

    2004-01-01

    In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.

  1. Effect of fly ash on Portland cement systems. Part 1: Low-calcium fly ash

    SciTech Connect

    Papadakis, V.G.

    1999-11-01

    A typical low-calcium fly ash was used as additive in mortar, replacing part of the volume either of Portland cement or aggregate. The development of the strength, heat, porosity, boundwater, and calcium hydroxide content was measured. In aggregate replacement higher strengths were observed after 14 days, whereas in cement replacement higher strengths were observed after 91 days. The final strength gain was found to be roughly proportional to the content of active silica in the concrete volume. Bound water content and porosity results showed that fly ash reacts with calcium hydroxide, binding small amounts of water. On the basis of the experimental results, a simplified scheme describing the chemical reactions of the low-calcium fly ash in hydrating cement in proposed. Using the reaction stoichiometry, quantitative expressions for the estimation of the chemical and volumetric composition of a fly ash concrete are proposed. The model expressions can be applied in mix design and concrete performance prediction.

  2. Effects of fly ash particle size on strength of Portland cement fly ash mortars

    SciTech Connect

    Erdogdu, K.; Tuerker, P.

    1998-09-01

    Fly ashes do not have the same properties for different size fractions. It can be accepted that the effect of a fly ash on mortar strength is a combined effect of its size fractions. Therefore, it was concluded that by separating the size fractions and replacing cement with them, the combined bulk effect of a fly ash on strength can be better analyzed. In this study, different size fractions of fly ash were used to replace cement partially in standard compressive strength mortars. The authors attempted to interpret the strength of Portland cement-fly ash mortars in terms of the chemical, mineralogical, morphological, and physical properties of different fly ash size fractions used. Strengths of the mortars were compared at 2, 7, 28, and 90 days. Also strength of mortars with all-in ash (original ash containing all the fractions) were estimated by using strength of mortars with size fractions and the suitability of this estimation was discussed.

  3. Properties of Portland cement concretes containing pozzolanic admixtures

    NASA Astrophysics Data System (ADS)

    Simmons, D. D.; Pasko, T. J., Jr.; Jones, W. R.

    1981-04-01

    A laboratory comparison was made of the properties of a concrete containing no pozzolan with several mixtures containing pozzolans. Used were a natural pozzolan (Lassenite), two fly ashes of different fineness and low carbon and an amorphous silica fume dust from a metal-producing plant. One cement, one coarse crushed limestone aggregate, and one fine river aggregate were used. Replacing a faster reacting binder with a slower one, produced lower early strengths and adversely affected the properties which are highly dependent on strength. The measures of durability were greatly affected by the air contents and aging or treatment prior to exposure. The amorphous silica fume dust increased the early strengths of a fly ash mixture.

  4. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    NASA Astrophysics Data System (ADS)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  5. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    NASA Astrophysics Data System (ADS)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  6. Influence of Plasticizer Amount on Rheological and Hydration Properties of CEM II Type Portland Cements

    NASA Astrophysics Data System (ADS)

    Šeputytė-Juciké, J.; Pundienė, I.; Kičaitė, A.; Pranckevičienė, J.

    2015-11-01

    The article analyzes the effect of plasticizer (based on polycarboxilates) amount (0.3 - 1.2% wt. of cement) on the rheological and hydration properties of two Portland cements pastes: CEM II/A-S 42.5N and CEM II/A-LL 42.5N. Increase of plasticizer amount reduces viscosity of CEM II/A-LL 42.5N cement paste from 3 to 12 times, where viscosity of CEM II/A-S 42.5N cement paste reduces from 5 to 20 times. The optimum plasticizer dose (0.3%) in case of CEM II/A-S 42.5N and (1.2%) in case of CEM II/A-LL 42.5N was established. Calorimetry studies have shown that plasticizer reduces the wetting heat release rate in CEM II/A-LL 42.5N cement twice and in CEM II/A-S 42.5N cement - by 25%. Plasticizer prolongs the maximum heat release rate time by 16 h in CEM II/A-LL 42.5N samples and reduces heat release rate by 19%. In CEM II/A-S 42.5N cement samples plasticizer prolongs maximum heat release rate time by 14.5 h and increases heat release rate by 15%. The goal of this study is to analyze the effect of the dosage of the most widely used plasticizer on solubility characteristics, rheological and hydration properties of two cements CEM II/A-S 42.5N and CEM II/A-LL 42.5N to establish the optimum dose of plasticizer in cements pastes.

  7. Prospection of Portland cement raw material: A case study in the Marmara region of Turkey

    NASA Astrophysics Data System (ADS)

    Özgüner, A. M.

    2014-09-01

    Representative sampling of the raw materials used to make Portland cement, correct calculations for the possible clinker mixtures, sufficient reserves of the raw materials and selection of the correct infrastructure for the location of a cement factory are essential to the protection of the great investment in the factory. The results of chemical analyses of pipe samples taken in the field at right angles to the strikes of favourable limestone, clay, shale, and marl outcrops were used in Kind's lime saturation formula for clinker calculations of the possible mixtures. The cement modulus values were calculated using the corresponding clinker oxide ratios and were confirmed to be within the standard intervals for positive cement raw material mixtures. The most promising raw material source, a double lithologic mixture of limestone and mudstone was found during the prospection in north of Bilecik Province, where rhyolitic tuff outcrops with pozzolanic properties also exist. Some marble quarries nearby have been inclined to dispose of their marble wastes for use in cement production to prevent polluting the environment with them. The nearby Gemlik fertiliser factory provides inexpensive waste gypsum that can be used as a cool cement mixing material. The limestone, mudstone and trass raw material reserves in this area were calculated to be sufficient for the factory's requirements for more than 100 years of operation as results of the detailed geological mapping. The regional infrastructure is most suitable for distribution and marketing of cement products. The cement factory described in this study has been producing cement for the last 3 years, after coring and testing of the raw material reserves.

  8. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect

    Walker, B.W.

    2000-04-19

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  9. The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement.

    PubMed

    Li, Qiu; Deacon, Andrew D; Coleman, Nichola J

    2013-01-01

    Zirconium oxide (ZrO2) has been nominated as a radiopacifying agent for use in MTA-like Portland cement-based root-filling materials. This research examines the impact of 20 wt% ZrO2 nanoparticles in the size range 50 to 75 nm on the early hydration chemistry of white Portland cement. Nano-ZrO2 was found to accelerate the degree of hydration by 26% within the first 24 h by presenting efficient nucleation sites for the precipitation and growth of the early C-S-H gel products. The presence of nano-ZrO2 was also found to divert the fate of the aluminium-bearing reaction products by lowering the ettringite to monosulphate ratio, reducing the size of the ettringite crystals and by increasing the Al:Si ratio of the C-S-H gel phase. The chemical and microstructural changes conferred upon the cement matrix by the nano-ZrO2 particles had a positive impact on in vitro biocompatibility with respect to MG63 osteosarcoma cells (via MTT assay).

  10. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement.

    PubMed

    Coleman, Nichola J; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), (29)Si and (27)Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases.

  11. Healing of root perforations treated with Mineral Trioxide Aggregate (MTA) and Portland cement.

    PubMed

    Juárez Broon, Norberto; Bramante, Clovis Monteiro; de Assis, Gerson Francisco; Bortoluzzi, Eduardo Antunes; Bernardineli, Norberti; de Moraes, Ivaldo Gomes; Garcia, Roberto Brandão

    2006-10-01

    Fourteen root perforations were performed for microscopic evaluation of the repair of interradicular tissue in dogs' teeth. These perforations were accomplished at low-speed with a STP 58 bur at the cervical third of the mesial root toward the furcation under irrigation with saline solution, followed by immediate sealing with ProRoot MTA, MTA-Angelus and white Portland cement. The dogs were killed after 90 days, revealing good results. The Kruskal-Wallis test did not demonstrate any statistically significant difference. It was concluded that the three materials showed good sealing in mineralized tissue, with complete closure, and they were free of inflammation in most teeth.

  12. Dimensional stability of materials based on Portland cement at the early stages

    NASA Astrophysics Data System (ADS)

    Mesa Yandy, Angélica; Zerbino, Raúl L.; Giaccio, Graciela M.; Russo, Nélida A.; Duchowicz, Ricardo

    2014-09-01

    In this work two fiber optic sensing techniques are used to study the dimensional stability in fresh state of different cementitious materials. A conventional Portland cement mortar and two commercial grouts were selected. The measurements were performed by using a Bragg grating embedded in the material and a non-contact Fizeau interferometer. The first technique was applied in a horizontal sample scheme, and the second one, by using a vertical configuration. In addition, a mechanical length comparator was used in the first case in order to compare the results. The evolution with time of the dimensional changes of the samples and the analysis of the observed behavior are included.

  13. HEALING OF ROOT PERFORATIONS TREATED WITH MINERAL TRIOXIDE AGGREGATE (MTA) AND PORTLAND CEMENT

    PubMed Central

    Broon, Norberto Juárez; Bramante, Clovis Monteiro; de Assis, Gerson Francisco; Bortoluzzi, Eduardo Antunes; Bernardineli, Norberti; de Moraes, Ivaldo Gomes; Garcia, Roberto Brandão

    2006-01-01

    Fourteen root perforations were performed for microscopic evaluation of the repair of interradicular tissue in dogs' teeth. These perforations were accomplished at low-speed with a STP 58 bur at the cervical third of the mesial root toward the furcation under irrigation with saline solution, followed by immediate sealing with ProRoot MTA, MTA-Angelus and white Portland cement. The dogs were killed after 90 days, revealing good results. The Kruskal-Wallis test did not demonstrate any statistically significant difference. It was concluded that the three materials showed good sealing in mineralized tissue, with complete closure, and they were free of inflammation in most teeth. PMID:19089049

  14. Constitutive modeling of the aging viscoelastic properties of portland cement paste

    NASA Astrophysics Data System (ADS)

    Grasley, Zachary C.; Lange, David A.

    2007-12-01

    Analytical approaches for modeling aging viscoelastic behavior of concrete include the time-shift approach (analogous to time-temperature superposition), the solidification theory, and the dissolution-precipitation approach. The aging viscoelastic properties of concrete are generally attributed solely to the cement paste phase since the aggregates are typically linear elastic. In this study, the aging viscoelastic behavior of four different cement pastes has been measured and modeled according to both the time-shift approach and the solidification theory. The inability of each individual model to fully characterize the aging viscoelastic response of the materials provides insight into the mechanisms for aging of the viscoelastic properties of cement paste and concrete. A model that considers aging due to solidification in combination with inherent aging of the cement paste gel (modeled using the time-shift approach) more accurately predicted the aging viscoelastic behavior of portland cement paste than either the solidification or time-shift approaches independently. The results provide evidence that solidification and other intrinsic gel aging mechanisms are concurrently active in the aging process of cementitious materials.

  15. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    PubMed

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  16. The effect of gyrolite additive on the hydration properties of Portland cement

    SciTech Connect

    Eisinas, A. Baltakys, K.; Siauciunas, R.

    2012-01-15

    The influence of gyrolite additive on the hydration properties of ordinary Portland cement was examined. It was found that the additive of synthetic gyrolite accelerates the early stage of hydration of OPC. This compound binds alkaline ions and serves as a nucleation site for the formation of hydration products (stage I). Later on, the crystal lattice of gyrolite becomes unstable and turns into C-S-H, with higher basicity (C/S {approx} 0.8). This recrystallization process is associated with the consumption of energy (the heat of reaction) and with a decrease in the rate of heat evolution of the second exothermic reaction (stage II). The experimental data and theoretical hypothesis were also confirmed by thermodynamic and the apparent kinetic parameters of the reaction rate of C{sub 3}S hydration calculations. The changes occur in the early stage of hydration of OPC samples and do not have a significant effect on the properties of cement stone.

  17. Modeling the degradation of Portland cement pastes by biogenic organic acids

    SciTech Connect

    De Windt, Laurent; Devillers, Philippe

    2010-08-15

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  18. Study of the dehydration of Portland Cement by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Hassaan, M. Y.; Salah, S. H.; Eissa, N. A.

    1989-03-01

    Egyptian Portland Cement in the form of one inch cube was hydrated at different times of hydration. Nine cubes of each period of hydration were heated for five minutes 200, 300, 400 up to 1000°C then were quenched in air. The compressive strength was measured for these samples and related to unheated ones. These cubes were ground and measured by Mössbauer spectrometry to correlate the effect of dehydration of cement pastes on the states of iron, with the decrease of compressive strength. It was observed that starting from 400°C the central doublet characteristic of the hydration process decreased as the dehydration temperature was increased. At 1000°C the dehydration process was complete, the central doublet disappeared and the compressive strength vanished. The hydration process was found to be reversible. The application of Mössbauer spectrometry to estimate the degree of fire in concrete building was demonstrated.

  19. Dielectric properties of portland cement paste as a function of time since mixing

    NASA Astrophysics Data System (ADS)

    Camp, Paul R.; Bilotta, Stephen

    1989-12-01

    The dielectric properties of portland cement paste and mortar have been measured in the frequency range 100 Hz-7 MHz as a function of time since mixing. Over much of the spectrum, the ac conductance of the samples appears directly related to the amount of unbound water remaining in the sample and ionic conduction predominates. In addition, interesting structure was found in both the conductance and capacitance data at high frequencies as the free water content was reduced. We conclude that relatively simple measurements of this kind can be a useful tool in concrete research and may provide the basis for simple, in situ, nondestructive measurement of the degree of curing of concrete or for monitoring water migration in concrete structures. Measurements on sealed samples of partially or fully cured concrete reveal also the water-cement ratio of the original mix.

  20. Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine

    SciTech Connect

    Ma, Suhua Li, Weifeng; Zhang, Shenbiao; Hu, Yueyang; Shen, Xiaodong

    2015-01-15

    Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the hydration kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the phase development in the process of hydration. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second hydration rate of the aluminate and ferrite phases, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the hydration of alite and reduces the pore size and porosity.

  1. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  2. Solidification and stabilization of fly ash from mixed hazardous waste incinerator using ordinary Portland cement.

    PubMed

    Pariatamby, Agamuthu; Subramaniam, Chitra; Mizutani, Satoshi; Takatsuki, Hiroshi

    2006-01-01

    Fly ash samples from a mixed hazardous waste (MHW) incinerator were subjected to solidification and stabilization (S/S) studies using ordinary Portland cement (OPC) as the binder. Additives (i.e., activated carbon and rice husk) were also homogenized with the binder and waste to determine the effectiveness of the immobilization of heavy metals. The toxicity characteristics leaching procedure (TCLP), Japanese Leaching Test (JLT-13) and the American Nuclear Test 16.1 (modified) ANS 16.1 were used to gauge the leaching of heavy metals from the solidified matrixes. Compressibility strength of the solidified matrixes was also tested using the American Standard Testing Material (ASTM) test procedure for the compressive strength of hydraulic cement mortars. PMID:17096003

  3. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    SciTech Connect

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  4. The regulation of hazardous air pollutants under the Clean Air Act Amendments of 1990: Effects on the Portland cement industry

    SciTech Connect

    Mikols, E.H.; Dougherty, A.

    1996-07-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) addresses the control of hazardous air pollutants (HAPs) from major sources of air pollution in the US. In the CAAA, Congress defined 189 compounds as hazardous air pollutants in need of additional control by the Environmental Protection Agency (EPA). Congress directed EPA to identify the major source categories which emit HAPs and to prepare regulations that would reduce and control future HAP emissions. This paper outlines the activities undertaken by EPA to regulate HAP emissions from Portland cement plants and the program developed by the Portland cement manufacturing industry to cope with Title III.

  5. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.

    PubMed

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-01-01

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant. PMID:27347987

  6. Use of disposed waste ash from landfills to replace Portland cement.

    PubMed

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    2009-09-01

    In this study, waste ash was utilized as a pozzolanic material in blended Portland cement in order to reduce negative environmental effects and landfill volume required to dispose of waste ash. The influence of waste ash, namely palm oil fuel ash, rice husk ash and fly ash on compressive strength and sulfate resistance in mortar were studied and evaluated by some accelerated short-term techniques in sodium sulfate solutions. Ordinary Portland cement (OPC) was partially replaced with ground palm oil fuel ash (POA), ground rice husk ash (RHA) and classified fly ash (FA). Single pozzolan and a blend of equal weight portions of POA, RHA and FA were also used. The resistance to sulfate attack of mortar improves substantially with partial replacement of OPC with POA, RHA and FA. The use of a blend of equal weight portions of FA and POA or RHA produced mixes with good strength and resistance to sulfate attack. POA, RHA and FA have a high potential to be used as a pozzolanic material.

  7. Evaluation of the biocompatibility of experimentally manufactured portland cement: An animal study

    PubMed Central

    Erten, Hülya; Baris, Emre; Türk, Serkan; Alaçam, Tayfun

    2014-01-01

    Objectives: The purpose of this study was to evaluate the biocompatibility of MTA and the experimentally manufactured portland cement (EMPC). Study design: Twenty one Sprague Dawley (SD) rats were allocated to testing of three groups. Group I and Group II included ProRoot MTA and the EMPC. The materials were mixed with distilled water and placed in polyethylene tubes. The tubes were implanted subcutaneously in the dorsal region of the animals. Group III served as control; the implanted polyethylene tubes remained empty. At 7, 14, and 28 days after the implantation, the animals were sacrificed and the implants were removed with the surrounding tissues. The specimens were prepared for histological examination to evaluate the inflammatory response. Results: No significant difference was found between tissue reactions against the tested materials (p>0.05). Also, control group showed similar results (p>0.05). Conclusions: Results suggest that the EMPC has the potential to be used in clinical conditions in which ProRoot MTA is indicated. MTA and the EMPC show comparable biocompatibility when evaluated in vivo. Although the results are supportive for the EMPC, more studies are required before the safe clinical use of the EMPC. Key words:Mineral trioxide aggregate, portland cement, subcutanous implantation. PMID:24596630

  8. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-01-01

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987

  9. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.

    PubMed

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-06-24

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.

  10. Chemical analysis and biological properties of two different formulations of white portland cements.

    PubMed

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2016-07-01

    White Portland cement (WPC) has generated research interests in the field of endodontics. This study compared between the properties of two formulations of white Portland cement (WPC) of different origin (Malaysia [MA] and Egypt [EG]). WPCs with and without calcium chloride dihydrate were prepared. Scanning electron microscope (SEM), energy dispersive X-ray micro-analysis, and X-ray diffraction were used for surface morphology evaluation, elemental, and phase analysis, respectively. After the preparation of optimized serial dilutions, the cytotoxicity was evaluated on human periodontal ligament fibroblasts (HPLFs) and dental pulp stem cells (DPSCs) using methyl-thiazol-diphenyltetrazolium assay after 24 and 72 h. Cell attachment properties were examined under SEM after 24 and 72 h. Results showed that the surface morphology and chemical composition of both formulations demonstrated detectable variations. The cytotoxicity evaluation showed different cellular responses of HPLFs compared to DSPCs. Both formulations favored the viability of HPLFs. However, the fast set formulations demonstrated severe cytotoxicity on DPSCs. Significant differences between EGWPC and MAWPC were identified (p < 0.05). The cell attachment properties were favorable; however, HPLFs attached and spread over the samples better than DPSCs. In conclusion, WPC of different origin may show differences in chemical and biological properties. The addition of CaCl2 ·2H2 O to WPC can affect its properties. Human cell types may react differently towards different formulations of WPCs. SCANNING 38:303-316, 2016. © 2015 Wiley Periodicals, Inc. PMID:26382064

  11. Use of waste gypsum to replace natural gypsum as set retarders in portland cement

    SciTech Connect

    Chandara, Chea; Azizli, Khairun Azizi Mohd; Ahmad, Zainal Arifin Sakai, Etsuo

    2009-05-15

    The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5 wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.

  12. Analysis of metal contents in Portland Type V and MTA-based cements.

    PubMed

    Dorileo, Maura Cristiane Gonçales Orçati; Bandeca, Matheus Coelho; Pedro, Fábio Luis Miranda; Volpato, Luiz Evaristo Ricci; Guedes, Orlando Aguirre; Dalla Villa, Ricardo; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique

    2014-01-01

    The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P < 0.05). Bismuth was found in all cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion.

  13. Analysis of Metal Contents in Portland Type V and MTA-Based Cements

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Bandeca, Matheus Coelho; Pedro, Fábio Luis Miranda; Volpato, Luiz Evaristo Ricci; Guedes, Orlando Aguirre; Villa, Ricardo Dalla; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique

    2014-01-01

    The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P < 0.05). Bismuth was found in all cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion. PMID:25436238

  14. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    SciTech Connect

    Poole, T.S.; Wakeley, L.D.; Young, C.L.

    1994-03-01

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine.

  15. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  16. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements

    SciTech Connect

    Schmidt, Thomas; Lothenbach, Barbara; Romer, Michael; Neuenschwander, Juerg; Scrivener, Karen

    2009-12-15

    The consequences of external sulfate attack were investigated by traditional test methods, i.e. length and mass change, as well as by a newly developed, surface sensitive ultrasonic method, using Leaky Rayleigh waves (1 MHz). The macroscopic changes are discussed and compared with thermodynamic calculations and microstructural findings (SEM/EDS). The results show that the main impact of limestone additions on resistance to sulfate degradation are physical - i.e. addition of a few percent in Portland cement reduces the porosity and increases the resistance of Portland cement systems to sulfate; but higher addition of 25% increase porosity and lower resistance to sulfate. The kinetics of degradation were dramatically affected by the solution concentration (4 or 44 g Na{sub 2}SO{sub 4}/l) and the higher concentration also resulted in the formation of gypsum, which did not occur at the low concentration. However the pattern of cracking was similar in both cases and it appears that gypsum precipitates opportunistically in pre-formed cracks so it is not considered as making a significant contribution to the degradation. At 8 deg. C limited formation of thaumasite occurred in the surface region of the samples made from cement with limestone additions. This thaumasite formation led to loss of cohesion of the paste and loss of material from the surface of the samples. However thaumasite formation was always preceded by expansion and cracking of the samples due to ettringite formation and given the very slow kinetics of thaumasite formation it was probably facilitated by the opening up of the structure due to ettringite induced cracking. The expansion of the samples showed a steady stage, followed by a rapidly accelerating stage, with destruction of the samples. The onset of the rapidly accelerating stage occurred when the thickness of the cracked surface layer reached about 1-1.5 mm-10-15% of the total specimen thickness (10 mm).

  17. Comparing the Environmental Impacts of Alkali Activated Mortar and Traditional Portland Cement Mortar using Life Cycle Assessment

    NASA Astrophysics Data System (ADS)

    Matheu, P. S.; Ellis, K.; Varela, B.

    2015-11-01

    Since the year 1908 there has been research into the use alkali activated materials (AAM) in order to develop cementitious materials with similar properties to Ordinary Portland Cement. AAMs are considered green materials since their production and synthesis is not energy intensive. Even though AAMs have a high compressive strength, the average cost of production among other issues limits its feasibility. Previous research by the authors yielded a low cost AAM that uses mine tailings, wollastonite and ground granulated blast furnace slag (GGBFS). This mortar has an average compressive strength of 50MPa after 28 days of curing. In this paper the software SimaPro was used to create a product base cradle to gate Life Cycle Assessment (LCA). This compared the environmental impact of the AAM mortar to an Ordinary Portland Cement mortar (PCHM) with similar compressive strength. The main motivation for this research is the environmental impact of producing Ordinary Portland Cement as compared to alkali activated slag materials. The results of this LCA show that the Alkali Activated Material has a lower environmental impact than traditional Portland cement hydraulic mortar, in 10 out of 12 categories including Global Warming Potential, Ecotoxicity, and Smog. Areas of improvement and possible future work were also discovered with this analysis.

  18. Arsenic Encapsulation Using Portland Cement With Ferrous Sulfate/Lime And Terra-BondTM Technologies - Microcharacterization And Leaching Studies

    EPA Science Inventory

    This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-BondTM, a commercially available patented technology. The arsenic materials treated we...

  19. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    NASA Astrophysics Data System (ADS)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  20. Geochemistry of Wellbore Integrity in CO2 Sequestration: Portland Cement-Steel-Brine-CO2 Interactions (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.

    2013-12-01

    Effective geologic sequestration of CO2 requires long-term storage with very low leak rates. Numerous studies have identified wells as one of the key risk factors for CO2 leakage including purpose-built injection and monitoring wells in addition to older wells in and above the storage reservoir. All wells have the potential to leak due to faulty construction or other defects. However, geochemical reactions induced by CO2 could result in damage to Portland cement and steel that are used in the well to isolate reservoir fluids from underground drinking water sources and the surface. This concern is based on the thermodynamic incompatibility of CO2-saturated aqueous fluids with Portland cement and steel, which leads to relatively rapidly reactions that form, principally, calcium carbonate and iron carbonate. Despite this thermodynamic fate, wellbore materials perform and maintain zonal isolation in field and experimental observations. This is understood as a consequence of coupled behavior between flow of reactants (CO2-water) and the rate of dissolution and precipitation of cement or corrosion of steel. In the restricted flow environments found in wellbore systems, cements are carbonated but do not suffer significant deterioration of hydrologic or mechanical properties. In fact, cement carbonation often results in reduced permeability and enhanced mechanical strength. While steel is susceptible to corrosion, wellbore environments allow development of protective iron carbonate scale. In addition, the presence of Portland cement, even carbonated cement, provides protection against significant rates of corrosion. The impact of geochemical reactions in the wellbore environment cannot be separated from coupled flow, thermal and mechanical processes. CO2-induced chemical reactions migrating upward from a storage reservoir will not result in the creation of defects or the wholesale dissolution of cement or steel. Defects must exist that allow CO2×brine to flow and to come

  1. CO2-saturated brine reactivity at the Portland cement-shale interface and the integrity of wellbore systems

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lichtner, P. C.; Wigand, M. O.

    2006-12-01

    Long-term geologic storage of CO2 requires trapping the buoyant CO2 plume beneath impermeable caprocks such as shale. Given a high-quality caprock, wells that penetrate the caprock represent the most significant potential leak point in the sequestration system. This is particularly so because the Portland cement used to create the primary fluid barrier in the wellbore system is reactive with CO2 and may degrade over time. In this study, we used a combination of field observations obtained at the SACROC Unit in West Texas (the oldest CO2-enhanced oil recovery field in the US), experimental studies of cement-CO2-brine interactions, and numerical modeling to investigate the stability of the primary seal. The field observations and the recognition of the large thickness of Portland cement used in the wellbore annulus shows that the primary concern for potential leakage is not matrix flow due to carbonation of the Portland cement, but is the interfaces between the casing and cement and the cement and caprock. We focused on the dynamics of the cement- caprock interface in this study. Both field observations and experiments show that cement carbonation is accompanied by loss of primary cement phases such as portlandite and their replacement by a combination of carbonate minerals (calcite, aragonite, vaterite, and dolomite) and an amorphous alumino-silica residue. The carbonation reaction is accompanied by a transformation of the cement to a distinctive orange color. We have used the field and laboratory observations to construct a numerical model of carbonation at the cement-shale interface. The initial focus was on obtaining an adequate simulation of the cement alteration mineralogy with a 1-D, diffusion-based model. The primary variables controlling the reaction characteristics were porosity, tortuosity, and mineral reaction rates. By suitable adjustment of these parameters, the model successfully reproduces many of the alteration features of the cement including the

  2. Microstructure and properties of the binder of fly ash-fluorogypsum-Portland cement

    SciTech Connect

    Yan, P.; Yang, W.; Qin, X.; You, Y.

    1999-03-01

    The hydration process, mortar microstructure, and properties of the binder consisting of fly ash, fluorogypsum, and Portland cement were investigated with X-ray diffraction, differential thermal analysis, scanning electron microscopy with energy dispersing spectrum, and mercury intrusion porosimetry. Its major hydrates are hydraulic gypsum solid solution, CSH gel, and ettringite. The addition of alum activator enhanced the formation of ettringite and the transformation of anhydrite into gypsum. They intermix uniformly to form a dense mortar structure with very low porosity and low proportion of large pores. The binder shows high strength, good volume stability, and excellent water resistance. The properties of the binder can be adjusted by the quantity of alum added to prepare shrinkage-free or microexpansive concrete.

  3. Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature

    SciTech Connect

    Irassar, E.F.; Bonavetti, V.L.; Gonzalez, M

    2003-01-01

    This paper presents an investigation on the mechanism of sulfate attack on Portland cements (PCs) containing limestone filler. It is based on the analysis of microstructure and composition of mortar specimens (ASTM C 1012) stored for 2 years in sodium sulfate solution (0.352 M). Microstructure was studied using quantitative X-ray diffraction (XRD) on samples taken from the surface to the core of the specimens. The profile of compounds formed by sulfate attack was determined millimeter by millimeter at 1 and 2 years. Results show that sulfate attack in mortars containing limestone filler is characterized by an inward movement of the reaction front leading first to the formation of ettringite, later to gypsum deposition, and finally to thaumasite formation when the decalcification of mortar leads to the breakdown of C-S-H.

  4. A study of the effects of nickel chloride and calcium chloride on hydration of Portland cement

    SciTech Connect

    Akhter, H.; Cartledge, F.K.; Roy, A.; Tittlebaum, M.E. . Department of Chemistry and Institute for Recyclable Materials)

    1993-07-01

    Portland cement samples containing amounts of CaCl[sub 2] and NiCl[sub 2] ranging from approximately 1% to 20% by weight have been examined by [sup 29]Si and [sup 27]Al solid-state MAS NMR as a function of time, and some of the mature pastes have been characterized by X-ray diffraction. Changes in physical properties that had been previously observed as a function of amounts of salt added are clearly traceable to differences in the silicate matrices. Low concentrations of both salts promote Q[sup 1] formation, but high concentrations result in formation of much more Q[sup 2] at the expense of Q[sup 1]. Both salts accelerate both aluminate and silicate hydration, and the effects appear to be almost entirely due to chloride. Minor variations in hydration rates at high Ni concentrations may be the result of nickel salt precipitation.

  5. Quantification of fly ash in hydrated, blended Portland cement pastes by backscattered electron imaging.

    PubMed

    Deschner, F; Münch, B; Winnefeld, F; Lothenbach, B

    2013-08-01

    An automated image analysis procedure for the segmentation of anhydrous fly ash from backscattered electron images of hydrated, fly ash blended Portland cement paste is presented. A total of six hundred backscattered electron images per sample are acquired at a magnification of 2000. Characteristic features of fly ash particles concerning grey level, shape and texture were used to segment anhydrous fly ash by a combination of grey level filtering, grey level segmentation and morphological filtering techniques. The thresholds for the grey level segmentation are determined for each sample by semiautomatic histogram analysis of the full image stack of each sample. The analysis of the presented dataset reveals a standard deviation of the reaction degree of fly ash of up to 4.3%. The results agree with a selective dissolution method to quantify the reaction degree of fly ash showing the potential of the presented image analysis procedure.

  6. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.

    PubMed

    Khan, Shahbaz; Kaleem, Muhammad; Fareed, Muhammad Amber; Habib, Amir; Iqbal, Kefi; Aslam, Ayesha; Ud Din, Shahab

    2016-01-01

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

  7. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. PMID:25966327

  8. Rat subcutaneous tissue response to MTA Fillapex® and Portland cement.

    PubMed

    Marques, Nádia Carolina Teixeira; Lourenço Neto, Natalino; Fernandes, Ana Paula; Rodini, Camila de Oliveira; Duarte, Marco Antônio Hungaro; Oliveira, Thais Marchini

    2013-01-01

    The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (α=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.

  9. Waste brick's potential for use as a pozzolan in blended Portland cement.

    PubMed

    Lin, Kae-Long; Chen, Bor-Yann; Chiou, Chyow-San; An Cheng

    2010-07-01

    This study investigated the pozzolanic reactions and engineering properties of waste brick-blended cements in relation to various replacement ratios (0-50%). The waste brick consisted of SiO(2) (63.21%), Al(2)O(3) (16.41%), Fe(2)O(3) (6.05%), Na(2)O (1.19%), K(2)O (2.83%) and MgO (1.11%), and had a pozzolanic activity index of 107%. The toxic characteristic leaching procedure (TCLP) results demonstrate that the heavy-metal content in waste bricks met the Environmental Protection Agency regulatory limits. Experimental results indicate that 10, 20, 30, 40 and 50% of cement can be replaced by waste brick, which causes the initial and final setting times to increase. Compressive strength development was slower in waste brick-blended cement (WBBC) pastes in the early ages; however, strength at the later ages increased significantly. Species analyses demonstrate that the hydrates in WBBC pastes primarily consisted of Ca(OH)(2) and calcium silicate hydrate (C-S-H) gel, like those found in ordinary Portland cement (OPC) paste. Pozzolanic reaction products formed in the WBBC pastes, in particular, various reaction products, including hydrates of calcium silicates (CSH), aluminates (CAH) and aluminosilicates (CASH), formed as expected, resulting in consumption of Ca(OH)(2) during the late ages of curing. The changes in the properties of WBBC pastes were significant as blend ratio increased, due to the pores of C-S-H gels and CAH filling via pozzolanic reactions. This filling of gel pores resulted in densification and subsequently enhanced the gel/space ratio and degree of hydration. Experimental results demonstrate waste brick can be supplementary cementitious material.

  10. Use of waste gypsum to replace natural gypsum as set retarders in portland cement.

    PubMed

    Chandara, Chea; Azizli, Khairun Azizi Mohd; Ahmad, Zainal Arifin; Sakai, Etsuo

    2009-05-01

    The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC. PMID:19131236

  11. Hydration kinetics, ion-release and antimicrobial properties of white Portland cement blended with zirconium oxide nanoparticles.

    PubMed

    Li, Qiu; Coleman, Nichola J

    2014-01-01

    This study examines the impact of 20 wt% zirconium oxide nanoparticles on the early hydration kinetics of white Portland cement by isothermal conduction calorimetry and transmission electron microscopy. The findings confirm that the nano-ZrO2 particles do not directly participate in the chemical reactions during cement hydration; although, they do divert the normal hydration processes and accelerate the initial setting reactions. The rate of heat evolution and the extent of the exotherm associated with these reactions are reduced in the presence of nano-ZrO2. The incorporation of nano-ZrO2 into the cement also decreases the solubility of the silicate phases but does not compromise its capacity to release hydroxide ions. There was no observed difference in the antimicrobial activity of the nano-ZrO2-blended and unblended cement pastes against S. aureus and E. coli; however, a modest reduction in this property was noted against P. aeruginosa for the blended cement.

  12. Detailed characterization of current North American portland cements and clinkers and the implications for the durability of modern concrete

    NASA Astrophysics Data System (ADS)

    Arjunan, P.

    The current study has been undertaken with a view to rationalize the relation between the cement characteristics and concrete properties with the fresh set of data collected from the North American portland cements. The important chemical and physical characteristics of the cement discussed are (a) chemical analysis, (b) phase calculations, (c) various particle characterizations and (d) rheological properties. The important concrete properties discussed are (a) alkali silica reactivity, (b) sulfate attack, (c) delayed ettringite formation (d) chloride ion permeability and (e) compressive strength. Relationship between the cement characteristics and concrete durability was determined using regression methods. The heat of hydration was mainly influenced by the variation in C 3A, SO3, equivalent Na2O contents, and fineness of portland cements. When there was no variation in C3A, SO 3, and fineness, the hydration kinetics of the cement was mainly controlled by the silicate phase hydration. The 7-day hydration was negatively correlated to C2S or C4AF content. As the C2S or C 4AF content increased, the 7-day heat of hydration decreased. C 3S content showed a positive correlation to 1 and 7-day heats of hydration, but significant negative correlation to 14 and 28-day hydration. Equivalent alkalis showed a strong positive correlation to ASR at 2 weeks. SO3 content of portland cement also showed a positive correlation to ASR expansion. A strong negative correlation was observed between C4AF content of portland cement and sulfate attack expansion at 4 and 6 months of exposure. The correlation to sulfate attack was stronger when the ratios of C3A/C4AF were taken into account. C3A content exhibited a negative correlation to chloride ion permeability. This correlation decreased as the curing period increased. SO 3 content also exhibited a negative correlation to the chloride ion permeability. Only alkalis showed a strong negative correlation to the compressive strength after 3

  13. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends.

    PubMed

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-01

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl(2) exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO(4) was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. PMID:20646923

  14. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples. PMID:17084503

  15. The hydration products of Portland cement in the presence of tin(II) chloride

    SciTech Connect

    Hill, J.; Sharp, J.H

    2003-01-01

    The hydration products of Portland cement pastes cured using water containing tin(II) chloride have been compared with those using distilled water. In the latter case, the expected products - portlandite, ettringite and calcite - were observed. The X-ray diffraction patterns of the cement pastes cured in the presence of tin(II) chloride showed several additional peaks that have been attributed to the formation of calcium hydroxo-stannate, CaSn(OH){sub 6}, and Friedel's salt (tetracalcium aluminate dichloride-10-hydrate), Ca{sub 3}Al{sub 2}O{sub 6}{center_dot}CaCl{sub 2}{center_dot}10H{sub 2}O. The amount of portlandite formed was reduced in the presence of tin(II) chloride. Calcium hydroxo-stannate contains tin in the +IV oxidation state and equations are presented to account for the oxidation of Sn(II) to Sn(IV) preceding the formation of CaSn(OH){sub 6} and Friedel's salt.

  16. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    SciTech Connect

    De Weerdt, K.; Orsáková, D.; Geiker, M.R.

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding for NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.

  17. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.

  18. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends

    SciTech Connect

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-15

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl{sub 2} or CaSO{sub 4}, which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl{sub 2} exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO{sub 4} was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature.

  19. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust.

    PubMed

    Yoon, In-Ho; Moon, Deok Hyun; Kim, Kyoung-Woong; Lee, Keun-Young; Lee, Ji-Hoon; Kim, Min Gyu

    2010-11-01

    In this study, the mechanism for the stabilization/solidification (S/S) of arsenic (As)-contaminated soils with Portland cement (PC), and cement kiln dust (CKD) using 1 N HCl extraction fluid, X-ray powder diffraction (XRPD), X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy was investigated. The degree of As immobilization after stabilization was assessed using a 1 N HCl extraction on the basis of the Korean Standard Test (KST). After 1 day of curing with 30 wt% PC and 7 days of curing with 50 wt% CKD, the concentration of As leached from the amended soils was less than the Korean countermeasure standard (3 mg L(-1)). The As concentrations in the leachate treated with PC and CKD were significantly decreased at pH > 3, indicating that pH had a prevailing influence on As mobility. XRPD results indicated that calcium arsenite (Ca-As-O) and sodium calcium arsenate hydrate (NaCaAsO(4).7.5H(2)O) were present in the PC- and CKD-treated slurries as the key phases responsible for As(III) and As(V) immobilization, respectively. The XANES spectroscopy confirmed that the As(III) and As(V) oxidation states of the PC and CKD slurry samples were consistent with the speciated forms in the crystals identified by XRPD. EXAFS spectroscopy showed As-Ca bonding in the As(III)-PC and As(III)-CKD slurries. The main mechanism for the immobilization of As-contaminated soils with PC and CKD was strongly associated with the bonding between As(III) or As(V) and Ca.

  20. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    NASA Astrophysics Data System (ADS)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  1. In vitro sealing ability of white and gray mineral trioxide aggregate (MTA) and white Portland cement used as apical plugs.

    PubMed

    Coneglian, Patrícia Zanatta Aranha; Orosco, Fernando Accorsi; Bramante, Clóvis Monteiro; de Moraes, Ivaldo Gomes; Garcia, Roberto Brandão; Bernardineli, Norberti

    2007-06-01

    This study evaluated the sealing ability of apical plugs made of white and gray MTA-Angelus and white Portland cement placed via the root canal and having different thicknesses (2, 5 and 7 mm). Ninety extracted human single-rooted teeth were instrumented using a size 40 K-file to standardize the foraminal opening by the stepback technique. The teeth were assigned to 3 groups (n=30), according to the material used for fabrication of the apical plugs: A = gray MTA; B = white MTA; C = white Portland cement. The groups were subdivided into groups of 10 teeth each according to the apical plug thickness (2, 5 and 7 mm). Marginal apical dye leakage was assessed using 0.2% Rhodamine B solution in which the specimens were immersed for 72 hours at 37 degrees C. The roots were sectioned longitudinally in a buccolingual direction for apical plug exposure, and digital photographs were taken and analyzed by Image Tool image-analysis software. Data were analyzed statistically by Kruskal-Wallis and Dunn's tests. Significance level was set at 5%. The least percent leakage was observed for 5- and 7-mm-thick plugs (p<0.05). No significant difference (p>0.05) was found between gray MTA and white Portland cement. Among the three materials analyzed, white MTA presented the highest marginal leakage (p<0.05). The findings of the present study showed that gray MTA and Portland cement had better sealing ability than white MTA when used as apical plugs. Dye leakage was smaller for 5- and 7-mm-thick plugs compared to 2-mm-thick plugs.

  2. IN VITRO SEALING ABILITY OF WHITE AND GRAY MINERAL TRIOXIDE AGGREGATE (MTA) AND WHITE PORTLAND CEMENT USED AS APICAL PLUGS

    PubMed Central

    Coneglian, Patrícia Zanatta Aranha; Orosco, Fernando Accorsi; Bramante, Clóvis Monteiro; de Moraes, Ivaldo Gomes; Garcia, Roberto Brandão; Bernardineli, Norberti

    2007-01-01

    This study evaluated the sealing ability of apical plugs made of white and gray MTA-Angelus® and white Portland cement placed via the root canal and having different thicknesses (2, 5 and 7 mm). Ninety extracted human single-rooted teeth were instrumented using a size 40 K-file to standardize the foraminal opening by the stepback technique. The teeth were assigned to 3 groups (n=30), according to the material used for fabrication of the apical plugs: A = gray MTA; B = white MTA; C = white Portland cement. The groups were subdivided into groups of 10 teeth each according to the apical plug thickness (2, 5 and 7 mm). Marginal apical dye leakage was assessed using 0.2% Rhodamine B solution in which the specimens were immersed for 72 hours at 37°C. The roots were sectioned longitudinally in a buccolingual direction for apical plug exposure, and digital photographs were taken and analyzed by Image Tool image-analysis software. Data were analyzed statistically by Kruskal-Wallis and Dunn's tests. Significance level was set at 5%. The least percent leakage was observed for 5- and 7-mm-thick plugs (p<0.05). No significant difference (p>0.05) was found between gray MTA and white Portland cement. Among the three materials analyzed, white MTA presented the highest marginal leakage (p<0.05). The findings of the present study showed that gray MTA and Portland cement had better sealing ability than white MTA when used as apical plugs. Dye leakage was smaller for 5- and 7-mm-thick plugs compared to 2-mm-thick plugs. PMID:19089127

  3. Analysis of the physical and chemical aspects of leaching behavior in lead and chromium-doped portland cement

    SciTech Connect

    Davis, R.C. ); Cocke, D.L. . Dept. of Chemistry)

    1991-01-01

    Interactions between simulated waste and Type 1 Portland cement were evaluated. Cr(NO{sub 3}){sub 3} and Pb(NO{sub 3}){sub 2} were mixed with cement to produce waste forms; these samples were leached using a Modified Extraction Procedure. Mercury intrusion porosimetry was used to correlate matrix structural changes to the addition of metal nitrates and subsequent leaching of waste forms. Changes in elemental composition through the leached samples were measured for the added metals and Ca, Si, Al, Fe and S using electron dispersion spectroscopy.

  4. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    SciTech Connect

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.; Romero, D.A.; Smith, C.A.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiring cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process.

  5. Impact of chloride on the mineralogy of hydrated Portland cement systems

    SciTech Connect

    Balonis, Magdalena; Lothenbach, Barbara; Le Saout, Gwenn; Glasser, Fredrik P.

    2010-07-15

    Chloride ion is in part bound into ordinary Portland cement paste and modifies its mineralogy. To understand this a literature review of its impacts has been made and new experimental data were obtained. Phase pure preparations of Friedel's salt, Ca{sub 4}Al{sub 2}(Cl){sub 1.95}(OH){sub 12.05}.4H{sub 2}O, and Kuzel's salt, Ca{sub 4}Al{sub 2}(Cl)(SO{sub 4}){sub 0.5}(OH){sub 12}.6H{sub 2}O, were synthesized and their solubilities were measured at 5, 25, 55 and 85 {sup o}C. After equilibration, solid phases were analysed by X-ray diffraction while the aqueous solutions were analysed by atomic absorption spectroscopy and ion chromatography. The solid solutions and interactions of Friedel's salt with other AFm phases were determined at 25 {sup o}C experimentally and by calculations. In hydrated cements, anion sites in AFm are potentially occupied by OH, SO{sub 4} and CO{sub 3} ions whereas Cl may be introduced under service conditions. Chloride readily displaces hydroxide, sulfate and carbonate in the AFm structures. A comprehensive picture of phase relations of AFm phases and their binding capacity for chloride is provided for pH {approx} 12 and 25 {sup o}C. The role of chloride in AFt formation and its relevance to corrosion of embedded steel are discussed in terms of calculated aqueous [Cl{sup -}]/[OH{sup -}] molar ratios.

  6. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    PubMed Central

    MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria

    2014-01-01

    Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023

  7. Biocompatibility of Portland Cement Modified with Titanium Oxide and Calcium Chloride in a Rat Model

    PubMed Central

    Hoshyari, Narjes; Labbaf, Hossein; Jalayer Naderi, Nooshin; Kazemi, Ali; Bastami, Farshid; Koopaei, Maryam

    2016-01-01

    Introduction: The aim of the present study was to evaluate the biocompatibility of two modified formulations of Portland cement (PC) mixed with either titanium oxide or both titanium oxide and calcium chloride. Methods and Materials: Polyethylene tubes were filled with modified PCs or Angelus MTA as the control; the tubes were then implanted in 28 Wistar rats subcutaneously. One tube was left empty as a negative control in each rat. Histologic samples were taken after 7, 15, 30 and 60 days. Sections were assessed histologically for inflammatory responses and presence of fibrous capsule and granulation tissue formation. Data were analyzed using the Fisher’s exact and Kruskal-Wallis tests. Result: PC mixed with titanium oxide showed the highest mean scores of inflammation compared with others. There was no statistically significant difference in the mean inflammatory grades between all groups in each of the understudy time intervals. Conclusion: The results showed favorable biocompatibility of these modified PC mixed with calcium chloride and titanium oxide. PMID:27141221

  8. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive

    NASA Astrophysics Data System (ADS)

    Phoo-ngernkham, Tanakorn; Chindaprasirt, Prinya; Sata, Vanchai; Pangdaeng, Saengsuree; Sinsiri, Theerawat

    2013-02-01

    The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60°C for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.

  9. EFFECT OF NaF AND SnO{sub 2} ON PORTLAND CEMENT CLINKER FABRICATION

    SciTech Connect

    Paceagiu, Jenica; Amzica, Florin; Chendrean, Teofil; Paraschiv, Tatiana

    2008-08-28

    The paper aimed at studying the effect of NaF and SnO{sub 2} employed as mineralisers on Portland cement clinker fabrication. In order to do this, the raw mix included in turn 0.5% NaF, 0.5% SnO{sub 2}, and a combination of 0.5% NaF and 0.5% SnO{sub 2}, all expressed as weight percentages of the raw mix. The effects of the presence of NaF and SnO{sub 2} mineralisers on the raw mix were studied by investigations of the loss on ignition at 700 deg. C and 800 deg. C with calculating the corresponding decarbonation ratio of the raw mix, determination of free lime and XRD analysis. NaF was found to have a positive effect both during the decarbonation of the raw mix and during the formation of minerals in clinker. On the other hand, SnO{sub 2} has but a little effect on the decarbonation process. Finally, the combined use of NaF and SnO{sub 2} modifies the kinetics of binding the free lime to the effect of accelerating the process as compared to the separate use of each mineraliser.

  10. Simultaneous Differential Scanning Calorimetry and Thermogravimetric Analysis of Portland Cement as a Function of Age

    NASA Astrophysics Data System (ADS)

    Trník, Anton; Scheinherrová, Lenka; Kulovaná, Tereza; Černý, Robert

    2016-01-01

    We study the hydration and pozzolanic reactions of an ordinary Portland cement as a function of age, using the differential scanning calorimetry and thermogravimetry. The measurements are done for 2 days, 7 days, 28 days, 90 days, 180 days, and 360 days cured samples in order to monitor the rate of hydration. The investigation is performed in the temperature range from 25° C to 1000° C with a heating rate 5° C {\\cdot} min^{-1} in an argon atmosphere. The temperature, enthalpy, and mass change during the decomposition of calcium silicate hydrate gels, ettringite, portlandite, vaterite, and calcite are determined, and the changes in the portlandite amount are estimated in dependence on the time of hydration. We found out that the temperature and enthalpy of liberation of physically bound water, C-S-H gels and ettringite decomposition (all occurring from 50° C to 250° C) and Portlandite decomposition (420° C to 530° C) decrease with hydration time of studied samples. On the other hand, vaterite and calcite decomposition (530° C to 850° C) the temperature varies and the enthalpy increases with hydration time of samples.

  11. Solidification/stabilisation of air pollution control residues using Portland cement: Physical properties and chloride leaching.

    PubMed

    Lampris, C; Stegemann, J A; Cheeseman, C R

    2009-03-01

    Portland cement (CEMI) was used to solidify air pollution control (APC) residues from an energy-from-waste plant burning municipal solid waste. APC residue/CEMI mixes were prepared with CEMI additions ranging from 0 to 50 weight% (wt%) of total dry mass and water/solids ratios between 0.40 and 0.80. Isothermal conduction calorimetry was used to assess the effect of APC residues on the hydration of CEMI. Although up to 30wt% additions of APC residues accelerated CEMI hydration, the total heat of hydration during the initial 98h was significantly reduced. Higher levels of APC residues severely inhibited CEMI hydration. The consistence, setting time, compressive strength, porosity and chloride leaching characteristics of the solidified products were determined. As might be expected, increasing the CEMI addition and reducing the water content resulted in increased compressive strengths. All mixes achieved compressive strengths greater than 1MPa at 7 and 28days but only 50wt% samples did not show significant strength reduction when tested after immersion in water. Monolithic leaching tests indicated low physical immobilisation of chloride in the CEMI solidified APC residues, with chloride leaching in excess of relevant UK landfill waste acceptance criteria (WAC). The results of this study show that greater than 50% CEMI additions would be required to effectively treat APC residues to meet current WAC limits. PMID:18849156

  12. Stabilization of geothermal residues by encapsulation in polymer concrete and portland cement mortar composites

    SciTech Connect

    Webster, R.P.; Kukacka, L.E.

    1987-11-01

    Presented are the results from the preliminary phase of a laboratory test program conducted to identify and evaluate materials for converting hazardous geothermal residues to a non-hazardous and potentially usable form. Laboratory test results indicate that geothermal residues can be effectively incorporated, as a fine aggregate, into polymer concrete (PC) and portland cement mortar (PCM) composites. PC composites made using an emulsifiable polyester resin and a methyl methacrylate (MMA)-based monomer system exhibited compressive strengths varying between 3700 and 16,500 psi (25.5 and 113.8 MPa), depending upon the type of binder used and the moisture content of the residue. Waste extraction tests (WET) performed on ground samples of the composites indicate elemental levels of leachable heavy metals are below specified soluble threshold limit concentrations (STLC), thereby allowing the composites to be classified as non-hazardous. PCM composites exhibited compressive strengths varying between 2875 and 5530 psi (19.8 and 38.1 MPa), depending upon the type, amount and moisture content of the residue. WET analysis indicates that all but one of the PCM composites evaluated can be classified as non-hazardous. 8 tabs.

  13. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  14. Resistance of fly ash-Portland cement blends to thermal shock

    SciTech Connect

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydration of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators

  15. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  16. Experimental determination of carbonation rate in Portland cement at 25°C and relatively high CO2 partial pressure

    NASA Astrophysics Data System (ADS)

    Hernández-Rodríguez, Ana; Montegrossi, Giordano; Huet, Bruno; Virgili, Giorgio; Orlando, Andrea; Vaselli, Orlando; Marini, Luigi

    2016-04-01

    The aim of this work is to study the alteration of Portland class G Cement at ambient temperature under a relatively high CO2 partial pressure through suitably designed laboratory experiments, in which cement hydration and carbonation are taken into account separately. First, the hydration process was carried out for 28 days to identify and quantify the hydrated solid phases formed. After the completion of hydration, accompanied by partial carbonation under atmospheric conditions, the carbonation process was investigated in a stirred micro-reactor (Parr instrument) with crushed cement samples under 10 bar or more of pure CO2(g) and MilliQ water adopting different reaction times. The reaction time was varied to constrain the reaction kinetics of the carbonation process and to investigate the evolution of secondary solid phases. Chemical and mineralogical analyses (calcimetry, chemical composition, SEM and X-ray Powder Diffraction) were carried out to characterize the secondary minerals formed during cement hydration and carbonation. Water analyses were also performed at the end of each experimental run to measure the concentrations of relevant solutes. The specific surface area of hydrated cement was measured by means of the BET method to obtain the rates of cement carbonation. Experimental outcomes were simulated by means of the PhreeqC software package. The obtained results are of interest to understand the comparatively fast cement alteration in CO2 production wells with damaged casing.

  17. Soil Remediation of an Arsenic-Contaminated Site With Ferrous Sulfate and Type V Portland Cement

    NASA Astrophysics Data System (ADS)

    Illera, V.; O'Day, P. A.; Rivera, N.; Root, R.; Rafferty, M. T.; Vlassopoulos, D.

    2005-12-01

    High levels of arsenic are present in a site adjacent to San Francisco Bay (in East Palo Alto, CA) as a consequence of the activity of a former pesticide manufacturing plant. Most of the readily accessible arsenic at the site has been removed by remedial excavation and surface capping. In-situ fixation of residual arsenic was performed close to the source about 10 years ago where arsenic values in capped soils ranged from 500 to 5000 mg kg-1. The fixation method consisted of the addition of ferrous sulfate (3% w/w), type V Portland cement (10% w/w) and water. Both products were mixed with the contaminated soil to a treatment depth between 1.5 and 9 meters. The treated soil was then capped to prevent weathering. This long-term amended soil offers an opportunity to compare the processes that prevent microbial arsenic reduction and control the immobilization of arsenic in the treated soils versus natural soils, and to study the aging effects of arsenic sorption. Solid phase characterization of soil samples from both the field and controlled laboratory experiments were carried out to study the speciation and bioavailability of arsenic and to ascertain the mechanisms of the arsenic immobilization in the treated soil. These methods included physical description by field observations, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy, total elemental concentrations, and solid phase fractionation by sequential extraction. Both synchrotron X-ray absorption spectroscopy (XAS) and XRD measurements were used to determine oxidation state of arsenic and iron and host phases present in the soil. The remedial treatment was successful in immobilizing the arsenic in the contaminated soil, and decreasing its leachability. Measurements taken at short aging times (during the first month) showed that the treatment was effective in reducing leachable arsenic as evidenced by the TCLP wet test (< 5 mg l-1 leached). The field amendment influenced

  18. Reaction of CO2 and brine at the interface between Portland cement and casing steel: Application to CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Zhang, J.; Lichtner, P. C.; Grigg, R.; Svec, B.; Pawar, R.

    2008-12-01

    Prediction of CO2 leakage through wellbore systems is a multiscale problem in geologic sequestration. In order for wellbore leakage to occur, km-scale processes must deliver CO2 from the point of injection to the wellbore. But, in order for the wellbore to actually leak, μm-scale processes must operate to allow CO2 to flow up the wellbore. In this study, we describe experiments and modeling of microscale processes accompanying CO2 leakage along the cement-casing interface. This work fits within a broader predictive study of CO2 sequestration performance (Viswanathan et al. 2008, Env Sci and Tech, in press) that includes calculation of CO2-migration times to wellbores. Experiments carried out in this report consisted of synthetic wellbore systems constructed of Portland cement and casing-grade steel in which a mixture of CO2 and brine were forced along the cement-casing interface at in situ sequestration conditions (40 °C and 14 MPa). The CO2-brine mixture was pre- equilibrated by flow through limestone before encountering the cement-casing composite. (The limestone- equilibrated fluid was calculated to be strongly out of equilibrium with both cement and the casing.) We used a high CO2-brine flux (10-20 ml/hour along the interface) and hypothesized that the interface would widen with time due to dissolution of either or both cement and steel. In addition to experiments, we conducted reactive transport modeling of cement reactivity using FLOTRAN, which was modified to allow representation of solid solution in the dominant cement phase, calcium-silicate-hydrate. We also developed a corrosion model for the steel. The experimental results showed that the steel was more reactive than the Portland cement. Extensive deposits or oxidation products of FeCO3-rich material developed at the interface and in some places led to an apparent closure of the interface despite the large flux through the system. In contrast, alteration of the cement appeared to be limited by

  19. The influence of fly ash on obtaining quality plastic and hardened properties of portland cement concrete

    SciTech Connect

    Mohamad, A.B.

    1989-01-01

    An experimental test burn was done substituting coal with Refuse-Derived-Fuel(RDF) consisting mainly of waste paper and plastic with heating value of 6000 to 8000 BTU/lb. Twelve test burn days were run with 4 days of 5% RDF and 8 days of 10% RDF. The effect of RDF on the chemical and physical properties of fly ash and the effect of coal-RDF fly ash on the properties of plastic and hardened concrete were investigated. Coal fly ash from Merrimack Power Station was classified as an ASTM class F complying to the chemical and physical properties of ASTM C-618 specifications. Coal-RDF fly ash produced during the test burn showed chemical and physical properties comparable to coal fly ash. The average chemical and physical properties of coal-RDF fly ash complied to ASTM C-618 specifications. Concrete made with coal fly ash and coal-RDF fly ash showed increased slump in high paste mixes and decreased slump in low paste mixes. Air content decreased with increased fly ash at a constant dosage of air entrainment. Compressive strength the fly ash concrete at and beyond 28 days were comparable to ordinary portland cement concrete. Heavy metals were not leached from coal fly ash and coal-RDF fly ash concrete during a column test using a synthetic acid rain of pH 4.5 even though small quantities of cadmium and lead were found to leach from coal fly ash and coal-RDF fly ash during the beginning of the test. The volume of the acid rain was approximately equivalent to 7 years of precipitation, assuming 36 inches of rain per year. A microscopic investigation comparing the structure of pastes made with coal fly ash, coal-RDF fly ash, incinerator fly ash and incinerator bottom ash was conducted.

  20. Solidification/stabilization of used abrasive media for non-structural concrete using portland cement. Interim research report

    SciTech Connect

    Webster, M.T.; Carrasquillo, R.L.; Loehr, R.C.; Fowler, D.W.

    1994-11-01

    Highway bridges in the United States are painted to resist corrosion and to help maintain the structural integrity of the bridge. Periodically, it is necessary to remove the existing paint so that the surface can be repainted. Most often the removal process consists of blasting the surface with an abrasive such as sand or slag. The blast media then contains elements present in the paint, such as cadmium, chromium and lead. The spent media may be a hazardous waste as defined by EPA`s Toxicity Characteristic (TC) criterion. This criterion uses the Toxicity Characteristic Leaching Procedure (TCLP) to determine whether a waste is classified as a hazardous waste. This procedure subjects the waste to a highly acidic environment in which chemicals can leach out of the waste. The leachate enviornment is then analyzed to determine the concentration of chemical leached, which must fall within the TC criterion. Some spent blasting material has been shown to have TCLP metal concentrations exceeding the TC criterion. The Texas Department of Transportation (TxDOT) has begun to recycle spent abrasive media in portland cement-based concrete using solidification/stabilization (S/S) techniques. This technology is designed to immobilize the metals while recycling the spent abrasive media as a component in non-structural concrete. The study has revealed the effectiveness of portland cement-based S/S systems in recycling contaminated spent abrasive media in portland cement-based concrete. The long-term leaching behavior of metals from these concrete products was examined using sequential extraction leaching tests.

  1. Determination of the Apical Sealing Abilities of Mineral Trioxide Aggregate, Portland Cement, and Bioaggregate After Irrigation with Different Solutions

    PubMed Central

    Bayram, H Melike; Saklar, Feridun; Bayram, Emre; Orucoglu, Hasan; Bozkurt, Alperen

    2015-01-01

    Objectives: The purpose of this study was to investigate the sealing ability of root-end filling materials such as mineral trioxide aggregate (MTA), Portland cement, and bioaggregate (BA) after irrigation with different solutions. Materials and Methods: We examined 130 human maxillar central teeth. After cutting the teeth at the cementoenamel junction, the root canals were expanded using nickel-titanium rotary instruments. Root canals were filled with AH-plus and gutta-percha. Then, the roots were cut apically, and 3 mm deep retrograde cavities were prepared. The roots were divided 12 experimental groups, consisting 10 teeth each; the positive and negative control groups contained five teeth each. The retrograde cavities were rinsed using ethylenediaminetetraacetic acid (EDTA), chlorhexidine (CHX), BioPure™ mixture of a tetracycline isomer, an acid, and a detergent (MTAD), or distilled water. Next, groups 1, 2, 3, and 4 were sealed with MTA; groups 5, 6, 7, and 8 were sealed with Portland cement; and groups 9, 10, 11, and 12 were sealed with BA. Then, apical microleakage was evaluated by using a computerized fluid filtration method. The results of the leakage test were statistically evaluated by the post-hoc Tukey’s test. Results: MTA, Portland cement, and BA root-end filling materials showed the least leakage in the CHX and distilled water groups. The highest leakage was observed in the EDTA and MTAD groups. Conclusions: The sealing ability of BA was as good as that of MTA. EDTA and MTAD increased the apical leakage and CHX and distilled water decreased the leakage of the root-end filling materials examined in this study. PMID:26124593

  2. Temperature dependence, 0 to 40 deg. C, of the mineralogy of Portland cement paste in the presence of calcium carbonate

    SciTech Connect

    Matschei, Thomas; Glasser, Fredrik P.

    2010-05-15

    Thermodynamic calculations disclose that significant changes of the AFm and AFt phases and amount of Ca(OH){sub 2} occur between 0 and 40 deg. C; the changes are affected by added calcite. Hydrogarnet, C{sub 3}AH{sub 6}, is destabilised at low carbonate contents and/or low temperatures < 8 deg. C and is unlikely to form in calcite-saturated Portland cement compositions cured at < 40 deg. C. The AFm phase actually consists of several structurally-related compositions which form incomplete solid solutions. The AFt phase is close to its ideal stoichiometry at 25 deg. C but at low temperatures, < 20 deg. C, extensive solid solutions occur with CO{sub 3}-ettringite. A nomenclature scheme is proposed and AFm-AFt phase relations are presented in isothermal sections at 5, 25 and 40 deg. C. The AFt and AFm phase relations are depicted in terms of competition between OH, CO{sub 3} and SO{sub 4} for anion sites. Diagrams are presented showing how changing temperatures affect the volume of the solid phases with implications for space filling by the paste. Specimen calculations are related to regimes likely to occur in commercial cements and suggestions are made for testing thermal impacts on cement properties by defining four regimes. It is concluded that calculation provides a rapid and effective tool for exploring the response of cement systems to changing composition and temperature and to optimise cement performance.

  3. Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter

    SciTech Connect

    Halamickova, P.; Detwiler, R.J.; Bentz, D.P.; Garboczi, E.J.

    1995-05-01

    The pore structure of hydrated cement in mortar and concrete is quite different from that of neat cement paste. The porous transition zones formed at the aggregate-paste interfaces affect the pore size distribution. The effect of the sand content on the development of pore structure, the permeability to water, and the diffusivity of chloride ions was studied on portland cement mortars. Mortars of two water-to-cement ratios and three sand volume fractions were cast together with pastes and tested at degrees of hydration ranging from 45 to 70%. An electrically-accelerated concentration cell test was used to determine the coefficient of chloride ion diffusion while a high pressure permeability cell was employed to assess liquid permeability. The coefficient of chloride ion diffusion varied linearly with the critical pore radius as determined by mercury intrusion porosimetry while permeability was found to follow a power-law relationship vs. this critical radius. The data set provides an opportunity to directly examine the application of the Katz-Thompson relationship to cement-based materials.

  4. The radiation stability of ground granulated blast furnace slag/ordinary Portland cement grouts containing organic admixtures

    SciTech Connect

    Palmer, J.D.; Fairhall, G.A.

    1993-12-31

    At the British Nuclear Fuels (BNFL) Sellafield reprocessing plant in the United Kingdom, cement grouts based on ground granulated blast-furnace slag (BFS) and ordinary Portland cement (OPC) are used extensively for immobilizing radioactive wastes. These grouts have excluded organic admixtures in order to reduce process complexity and uncertainties, regarding the performance of organic admixtures with BFS/OPC grouts, particularly under irradiation. This study has investigated the effects of sulfonated melamine formaldehyde and naphthalene condensates on grout properties. The results show grout settlement and strengths increase on addition of additives, with the additives remaining largely in the pore solution. Under irradiation the additives breakdown liberating hydrogen and carbon dioxide. Strength and product dimensions are unaffected by irradiation.

  5. Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal model

    PubMed Central

    Schembri Wismayer, P.; Lung, C. Y. K.; Rappa, F.; Cappello, F.; Camilleri, J.

    2016-01-01

    Portland cement used in the construction industry improves its properties when wet. Since most dental materials are used in a moist environment, Portland cement has been developed for use in dentistry. The first generation material is mineral trioxide aggregate (MTA), used in surgical procedures, thus in contact with blood. The aim of this study was to compare the setting of MTA in vitro and in vivo in contact with blood by subcutaneous implantation in rats. The tissue reaction to the material was also investigated. ProRoot MTA (Dentsply) was implanted in the subcutaneous tissues of Sprague-Dawley rats in opposite flanks and left in situ for 3 months. Furthermore the material was also stored in physiological solution in vitro. At the end of the incubation time, tissue histology and material characterization were performed. Surface assessment showed the formation of calcium carbonate for both environments. The bismuth was evident in the tissues thus showing heavy element contamination of the animal specimen. The tissue histology showed a chronic inflammatory cell infiltrate associated with the MTA. MTA interacts with the host tissues and causes a chronic inflammatory reaction when implanted subcutaneously. Hydration in vivo proceeds similarly to the in vitro model with some differences particularly in the bismuth oxide leaching patterns. PMID:27683067

  6. Mössbauer and calorimetric studies of portland cement hydration in the presence of black gram pulse

    NASA Astrophysics Data System (ADS)

    Rai, Sarita; Kurian, Sajith; Dwivedi, V. N.; Das, S. S.; Singh, N. B.; Gajbhiye, N. S.

    2009-01-01

    Effect of different concentrations of naturally occurring admixture in the form of fine powder of black gram pulse (BGP) on the hydration of Portland cement was studied by isothermal calorimetry and 57Fe Mössbauer spectroscopy. The spectra were recorded for anhydrous cement and the hydration products at room temperature and 77 K. In the presence of BGP, the spectra showed superparamagnetic doublets at room temperature and the sextet at 77 K, due to the presence of fine particles of iron containing component. Mössbauer studies of hydration products confirmed the formation of nanosize hydration products containing Fe3 + . The isomer shift ( δ) and the quadrupole splitting (Δ E Q) values of C4AF in the cement confirmed iron in an octahedral and tetrahedral environment with +3 oxidation state. The high value of quadrupole splitting showed the high asymmetry of the electron environment around the iron atom. The overall mechanism of the hydration of cement in presence of BGP is discussed.

  7. Influence of addition of calcium oxide on physicochemical properties of Portland cement with zirconium or niobium oxide

    PubMed Central

    Tanomaru-Filho, Mario; Garcia, André Cresto; Bosso-Martelo, Roberta; Berbert, Fabio Luis Camargo V.; Nunes Reis, José Mauricio Santos; Guerreiro-Tanomaru, Juliane Maria

    2015-01-01

    Context: Calcium oxide (CaO) may be added to mineral trioxide aggregate (MTA) or Portland cement (PC) to improve physicochemical and biological properties. Aims: To evaluate the physicochemical properties of PC associated with radiopacifiers and CaO. Materials and Methods: MTA Angelus, PC + 30% zirconium oxide (Zr), or 30% niobium oxide (Nb) associated with 10 or 20% of CaO were evaluated. Gilmore needles were used to evaluate initial and final setting time. Compressive strength was evaluated after the periods of 24 hours and 21 days. pH was analyzed after 3, 12, 24 hours, 7, 14, 21 days. Solubility and flow tests were performed based on the ISO 6876. The data obtained were submitted to analysis of variance and Tukey tests (P ≤ 0.05). Results: The associations with 10% CaO showed greater strength that the associations with 20% CaO. The shortest initial setting time was observed for the association PC + Zr + 20% CaO and MTA. All the cements presented alkaline pH. The flow of all cements was similar. The highest solubility was found in the associations with 20% CaO. Conclusion: The addition of CaO to PC favored the alkaline property and the PC + Zr + 20% CaO presented setting time similar to MTA. PMID:25829686

  8. Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling.

    PubMed

    Bortoluzzi, Eduardo Antunes; Broon, Norberto Juárez; Bramante, Clovis Monteiro; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes; Bernardineli, Norberti

    2006-09-01

    The aim of this study was to evaluate the influence of calcium chloride (CaCl(2)) on the sealing ability of three Mineral Trioxide Aggregate (MTA) cements, ProRoot MTA, MTA-Angelus, and radiopaque White Portland cement (WPC), for retrograde root filling. Seventy roots of extracted single-rooted teeth were instrumented and obturated. After sectioning the samples at 2 mm from the apex, they received one layer of Araldite and two coats of nail enamel, except for the apical dentinal surface submitted to apicectomy. Standardized retrograde cavities were prepared, filled with one of the materials, and immersed in 0.2% Rhodamine B solution for 72 hours. Dye leakage was analyzed on a light microscope with ocular micrometer. Kruskal-Wallis and Miller tests were used to compare groups arranged in increasing order of leakage, according to mean rank of scores: WPC+CaCl(2), MTA-Angelus+CaCl(2), ProRoot MTA+CaCl(2), MTA-Angelus, ProRoot MTA, and WPC. CaCl(2) improved the sealing ability of all three MTA cements.

  9. Influence of mixture ratio and pH to solidification/stabilization process of hospital solid waste incineration ash in Portland cement.

    PubMed

    Sobiecka, Elzbieta; Obraniak, Andrzej; Antizar-Ladislao, Blanca

    2014-09-01

    Solidification/stabilization (S/S) is an established utilization technology to treat hazardous wastes. This research explored the influence of pH (3-12) on the immobilization of heavy metals present in five mixtures of hospital solid waste incinerator ash and Portland cement, following two different processes of waste solidification/stabilization (cement hydration and granulation). In general, cement hydration process resulted in more stable products than granulation process. A high ash content in the mixture with Portland cement (60wt%) resulted in the highest immobilization of Pb(2+) and Cu(2+), while a low ash content in the mixture (10wt%) resulted in the lowest leachability of Zn(2+). When ash and Portland cement was mixed in equal proportions (50wt%) the highest encapsulation was observed for Ni(2+), Cd(2+) and Cr(3+). Neutral and weak alkaline pH values within the range pH=7-8 resulted in the lowest leachability of the monitored heavy metals.

  10. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    PubMed

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    2016-01-01

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal. PMID:27642826

  11. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    PubMed

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    2016-01-01

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal.

  12. Determination of strontium and simultaneous determination of strontium oxide, magnesium oxide and calcium oxide content of Portland cement by derivative ratio spectrophotometry.

    PubMed

    Idriss, K A; Sedaira, H; Ahmed, S S

    2009-04-15

    A derivative spectrophotometric method has been developed for the determination of strontium in Portland cement. The method is applied successfully for the simultaneous determination of SrO, MgO and CaO. It is based on the use of Alizarin Complexone (AC) as a complexing agent and measurement of the derivative ratio spectra of the analytes. Interferences of manganese(II) and zinc(II) were eliminated by precipitation. The validity of the method was examined by analyzing several Standard Reference Material (SRM) Portland cement samples. The strontium complex formed at pH 9.5 allows precise and accurate determination of strontium over the concentration range of 1.5-18 mg L(-1) of strontium. The MDL (at 95% confidence level) was found to be 25 ng mL(-1) for strontium in National Institute of Standards and Technology (NIST) cement samples using the proposed method.

  13. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  14. Low-alumina portland cement from lime-soda sinter residue

    SciTech Connect

    Chesley, J.A.

    1987-11-01

    A byproduct for the Ames Lime-Soda Sinter Process for recovering alumina from power plant fly ash was investigated as a cement raw material. This investigation dealt with a determination of the best method to utilize the process residue from both a clinker quality and an economic perspective. The experimental work was divided into characterization of the sinter residue, laboratory burnability tests, physical testing of produced residue-cements, and a kinetic study of C/sub 3/S formation. Other important topics were considered such as the effect use of te sinter residue has on the energy requirements of a commercial cement kiln and on the economics of a combined lime-soda sinter, cement plant. (130 refs., 61 figs., 56 tabs

  15. The use of Devonian oil shales in the production of portland cement

    SciTech Connect

    Schultz, C.W.; Lamont, W.E.; Daniel, J.

    1991-12-31

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  16. The use of Devonian oil shales in the production of portland cement

    SciTech Connect

    Schultz, C.W.; Lamont, W.E. ); Daniel, J. )

    1991-01-01

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  17. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts.

    PubMed

    Yoshino, Patrícia; Nishiyama, Celso Kenji; Modena, Karin Cristina da Silva; Santos, Carlos Ferreira; Sipert, Carla Renata

    2013-01-01

    The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5x3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.

  18. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    SciTech Connect

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-04-30

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.

  19. Calcium looping spent sorbent as a limestone replacement in the manufacture of portland and calcium sulfoaluminate cements.

    PubMed

    Telesca, Antonio; Marroccoli, Milena; Tomasulo, Michele; Valenti, Gian Lorenzo; Dieter, Heiko; Montagnaro, Fabio

    2015-06-01

    The calcium looping (CaL) spent sorbent (i) can be a suitable limestone replacement in the production of both ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement, and (ii) promotes environmental benefits in terms of reduced CO2 emission, increased energy saving and larger utilization of industrial byproducts. A sample of CaL spent sorbent, purged from a 200 kWth pilot facility, was tested as a raw material for the synthesis of two series of OPC and CSA clinkers, obtained from mixes heated in a laboratory electric oven within temperature ranges 1350°-1500 °C and 1200°-1350 °C, respectively. As OPC clinker-generating mixtures, six clay-containing binary blends were investigated, three with limestone (reference mixes) and three with the CaL spent sorbent. All of them showed similar burnability indexes. Moreover, three CSA clinker-generating blends (termed RM, MA and MB) were explored. They included, in the order: (I) limestone, bauxite and gypsum (reference mix); (II) CaL spent sorbent, bauxite and gypsum; (III) CaL spent sorbent plus anodization mud and a mixture of fluidized bed combustion (FBC) fly and bottom ashes. The maximum conversion toward 4CaO·3Al2O3·SO3, the chief CSA clinker component, was the largest for MB and almost the same for RM and MA. PMID:25915150

  20. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    SciTech Connect

    Bortolotti, Villiam; Fantazzini, Paola; Sauro, Salvatore; Zanna, Silvano

    2012-03-15

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of {sup 1}H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The 'Solid-liquid' separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C-S-H gel. {sup 1}H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C-S-H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  1. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash

    SciTech Connect

    De Weerdt, K.; Haha, M. Ben; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.

    2011-03-15

    The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction.

  2. Study of leaching mechanisms of caesium ions incorporated in Ordinary Portland Cement.

    PubMed

    Papadokostaki, Kyriaki G; Savidou, Anastasia

    2009-11-15

    In this work, a study of the leaching kinetics of Cs(+) ions from cement paste solids, containing inactive Cs(2)SO(4), is presented, involving (i) the parallel performance of leaching experiments at two temperatures (30 degrees C and 70 degrees C); (ii) the performance of leaching tests with intermediate changes in temperature between 30 degrees C and 70 degrees C; (iii) the use of specimens of two different thicknesses and (iv) the determination of the distribution of Cs(+) in the cement specimen at various stages of the leaching test. The results of leaching studies at 30 degrees C with cement solids simulating the composition of real radioactive wastes, containing NaNO(3), small amounts of inactive CsNO(3) and traces of (137)Cs(+) are also reported. Concentration profiles of Cs(+) in inactive specimens showed that part of the Cs(+) (20-30%) tends to be immobilized in the matrix, while elution of the readily leachable portion follows Fick's law reasonably well. No immobilized Cs(+) was detected in the samples containing considerable amounts of NaNO(3). Long-term leaching experiments (up to 8 years) revealed acceleration of the elution process (not detectable in short-term tests), attributable to increase in porosity caused by erosion of the cement matrix. Sorption experiments of Cs(+) ions by cement granules indicated that adsorption on cement pore surfaces is not significant. On the other hand, the leaching tests at two different temperatures or with intermediate changes in temperature between 30 degrees C and 70 degrees C, yielded activation energies that indicated a more complicated kinetic behavior.

  3. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer.

    PubMed

    Komabayashi, Takashi; Spångberg, Larz S W

    2008-01-01

    The aim of this study is to characterize the particle size distribution and circularity of various Mineral Trioxide Aggregates (MTA) (ProRoot MTA/ MTA Angelus/Gray and White) and Portland cements with effective size ranges of 1.5-160 microm using a flow particle analyzer (Sysmex FPIA-3000, Kobe, Japan). Cumulative percentage of particles between 6 and 10 microm were, 65, 73, 48, 53, and 70 %, for Gray ProRoot MTA, White ProRoot MTA, Gray MTA Angelus, White MTA Angelus, and Portland cement, respectively. ProRoot MTA contains fewer large particles than MTA Angelus. MTA Angelus contains a higher number of small particles than ProRoot MTA. White MTA contains smaller particles with a narrower range of size distribution than Gray MTA. MTA Angelus particles have relatively low circularity and wide size distribution and are less homogeneous than ProRoot MTA.

  4. Removal of arsenic from aqueous solution using pottery granules coated with cyst of Azotobacter and portland cement: characterization, kinetics and modeling.

    PubMed

    Gauri, Samiran S; Archanaa, S; Mondal, Keshab C; Pati, Bikas R; Mandal, Santi M; Dey, Satyahari

    2011-05-01

    A new low cost adsorbents, pottery granules coated with cyst of Azotobacter and portland cement has been developed for aqueous arsenic removal. The developed granule is solid and porous structure forms a stable complex of Fe-Al-Si-O(2) allied with cyst biomass. Batch experiments were revealed that As removal was up to 96% using PGAC beads, whereas 65% by cyst biomass. Immobilization of cyst biomass to pottery granules through portland cement improved the stability of granules and adsorption capacity. Kinetics studies revealed that Langmuir isotherm was followed with a better correlation than the Freundlich isotherm and adsorption was first order diffusion controlled. Presence of Fe-Al-Si-O(2) and polysaccharide complex on the granule surface may be responsible for the adsorption of arsenic and preferentially binds to biomass containing composite than only biomass. Thus, this recently developed cost-effective novel biocomposite, PGAC granule can be used as household level to mitigate the arsenic problem.

  5. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals

    SciTech Connect

    Tailby, Jonathan; MacKenzie, Kenneth J.D.

    2010-05-15

    The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.

  6. 78 FR 10005 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... that there are 24 cement kilns which combust solid waste. 77 FR 42372. During the comment period, one... proposal. \\1\\ The company burns dried biosolids as a fuel which are not classified as solid wastes. Refer... Regulations CISWI commercial and industrial solid waste incinerators CMS continuous monitoring system...

  7. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  8. Degradation of recycled PET fibers in Portland cement-based materials

    SciTech Connect

    Silva, D.A. . E-mail: denise@ecv.ufsc.br; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gomez, L.A.; Ribeiro, J.L.D.

    2005-09-01

    In order to investigate the durability of recycled PET fibers embedded in cement-based materials, fiber-reinforced mortar specimens were tested until 164 days after mixing. Compressive, tensile, and flexural strengths, elasticity modulus, and toughness of the specimens were determined. The mortars were also analyzed by SEM. The results have shown that PET fibers have no significant influence on mortars strengths and elasticity modulus. However, the toughness indexes I {sub 5}, I {sub 10}, and I {sub 20} decreased with time due to the degradation of PET fibers by alkaline hydrolysis when embedded in the cement matrix. Fourier transform infrared spectroscopy (FT-IR) and SEM analysis of PET fibers immersed and kept for 150 days in alkaline solutions supported the conclusions.

  9. Effect of various Portland cement paste compositions on early-age strain

    NASA Astrophysics Data System (ADS)

    Guzzetta, Alana G.

    Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.

  10. Effect of high doses of chemical admixtures on the strength development and freeze-thaw durability of portland cement mortar

    NASA Astrophysics Data System (ADS)

    Korhonen, Charles J.

    This thesis examines the low-temperature strength development of portland cement concrete made with high doses of chemical admixtures dissolved in the mixing water and the possible beneficial effect of these admixtures on that concrete's long-term freeze-thaw durability. The literature shows that high doses of chemical admixtures can protect fresh concrete against freezing and that, under certain conditions, these admixtures can enhance the freeze-thaw durability of concrete. The challenge is that there are no acceptance standards in the U.S. that allow chemicals to be used to protect concrete against freezing. Also, the perception is that chemicals might somehow harm the concrete. This perception seems to be based on the fact that deicing salts, when applied to concrete pavement, cause roadways to scale away. This study investigated the effect of high doses of commercially available admixtures on fresh concrete while it gained strength at low temperature and on hardened concrete exposed to repeated cycles of freezing and thawing in a moist environment. The reason for studying off-the-shelf admixtures was that these materials are approved for use in concrete; they were already governed by their own set of standards. Four mortars were examined, each with a different cement and water content, when dosed with five commercial admixtures. This allowed the fresh mortar to gain appreciable strength when it was kept at nearly -10C. The admixtures also enhanced the freeze-thaw durability of the mortar, even when it was not air-entrained. Clearly, as the dosage of admixture increased beyond approximately 22% by weight of water, the mortar appeared to be unaffected by up to 700 cycles of freezing and thawing.

  11. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials.

    PubMed

    Shahi, Shahriar; Yavari, Hamid R; Rahimi, Saeed; Eskandarinezhad, Mahsa; Shakouei, Sahar; Unchi, Mahsa

    2011-12-01

    Inadequate apical seal is the major cause of surgical endodontic failure. The root-end filling material used should prevent egress of potential contaminants into periapical tissue. The purpose of this study was to compare the sealing ability of four root-end filling materials: white mineral trioxide aggregate (MTA), gray MTA, white Portland cement (PC) and gray PC by dye leakage test. Ninety-six human single-rooted teeth were instrumented, and obturated with gutta-percha. After resecting the apex, an apical cavity was prepared. The teeth were randomly divided into four experimental groups (A: white MTA, B: gray MTA, C: white PC and D: gray PC; n = 20) and two control groups (positive and negative control groups; n = 8). Root-end cavities in the experimental groups were filled with the experimental materials. The teeth were exposed to Indian ink for 72 hours. The extent of dye penetration was measured with a stereomicroscope at 16× magnification. The negative controls showed no dye penetration and dye penetration was seen in the entire root-end cavity of positive controls. However, there was no statistically significant difference among the four experimental groups (P > 0.05). All retrograde filling materials tested in this study showed the same microleakage in vitro. Given the low cost and apparently similar sealing ability of PC, PC could be considered as a substitute for MTA as a root-end filling material.

  12. Evaluation of the Apical Sealability of Mineral Trioxide Aggregate and Portland Cement as Root Canal Filling Cements: An in Vitro Study

    PubMed Central

    Rekab, M.S.; Ayoubi, H. Rushdi

    2010-01-01

    Objective: One of the principle purposes of root canal obturation is to obtain hermetic sealing of the root canal system. According to the development of technology, many materials are now used in root canal filling. An in vitro dye leakage study was performed to evaluate the apical sealability of White-colored Mineral Trioxide Aggregate (WMTA) and Gray-colored Portland Cement (GPC) when used alone or as a sealer with gutta-percha points in root canal filling. Materials and Methods: Seventy-five single-rooted extracted human teeth were used in this study. After cleaning and shaping, the teeth were randomly divided into five equal groups of 15 teeth each based on the root canal filling material used; Group 1, (WMTA) alone; Group 2, (GPC) alone; Group 3, (Gutta-percha points + WMTA); Group 4, (Gutta-percha points + GPC); Group 5, (Gutta-percha points + AH26). Methylene blue was used to determine the apical leakage. After sectioning the teeth longitudinally, linear dye penetration was measured with a caliper under the stereomicroscope. Data were analyzed by Kruskal-Wallis and one-way ANOVA tests with (P ≤ 0.05) as the level of significance. Results: The results showed that there were no statistically significant differences among the materials of five groups. Conclusion: (WMTA) alone, (Gutta-percha points + WMTA), (GPC) alone and (Gutta-percha points + GPC) may be used in the root canal filling. PMID:21998797

  13. Constitution of green rust and its significance to the corrosion of steel in Portland cement

    SciTech Connect

    Sagoe-Crentsil, K.K. . Div. of Building Construction and Engineering); Glasser, F.P. . Dept. of Chemistry)

    1993-06-01

    Studies of the corrosion of pure iron showed green rust, approximately Fe[sub 4][sup 2+]Fe[sub 2][sup 3+] (OH)[sub 12](Cl,OH)[sub 2], was a stable corrosion product at high pH and low E[sub h] in the presence of chloride. The structure, constitution, preparation, and characterization of green rust was reviewed. A diagram relevant to the corrosion of iron in cement, constructed for pH 12, showed stability fields of green rust, [alpha],[delta] FeO(OH), and [beta]FeO(OH,Cl). Overall implications of chloride to the corrosion process were investigated.

  14. Impact of the associated cation on chloride binding of Portland cement paste

    SciTech Connect

    De Weerdt, K.; Colombo, A.; Coppola, L.; Justnes, H.; Geiker, M.R.

    2015-02-15

    Well hydrated cement paste was exposed to MgCl{sub 2}, CaCl{sub 2} and NaCl solutions at 20 °C. The chloride binding isotherms for free chloride concentrations ranging up to 1.5 mol/l were determined experimentally. More chlorides were found to be bound when the associated cation was Mg{sup 2} {sup +} or Ca{sup 2} {sup +} compared to Na{sup +}. The chloride binding capacity of the paste appeared to be related to the pH of the exposure solution. In order to explain the cation dependency of the chloride binding a selection of samples was investigated in detail using experimental techniques such as TG, XRD and SEM–EDS to identify the phases binding the chlorides. The experimentally obtained data were compared with the calculations of a thermodynamic model, GEMS. It was concluded that the measured change in chloride binding depending on the cation was mainly governed by the pH of the exposure solution and thereby the binding capacity of the C-S-H.

  15. Solidification/Stabilization of High Nitrate and Biodenitrified Heavy Metal Sludges with a Portland Cement/Flyash System

    SciTech Connect

    Canonico, J.S.

    1995-07-26

    Pond 207C at Rocky Flats Environmental Technology Site (RFETS) contains process wastewaters characterized by high levels of nitrates and other salts, heavy metal contamination, and low level alpha activity. The purpose of this research was to investigate the feasibility of treating a high-nitrate waste, contaminated with heavy metals, with a coupled dewateriug and S/S process, as well as to investigate the effects of biodenitrification pretreatment on the S/S process. Pond 207C residuals served as the target waste. A bench-scale treatability study was conducted to demonstrate an S/S process that would minimize final product volume without a significant decrease in contaminant stabilization or loss of desirable physical characteristics. The process formulation recommended as a result a previous S/S treatability study conducted on Pond 207C residuals was used as the baseline formulation for this research. Because the actual waste was unavailable due to difficulties associated with radioactive waste handling and storage, a surrogate waste, of known composition and representative of Pond 207C residuals, was used throughout this research. The contaminants of regulatory concern added to the surrogate were cadmium, chromium, nickel, and silver. Product volume reduction was achieved by dewatering the waste prior to S/S treatment. The surrogate was dewatered by evaporation at 60 to 80 C to total solids contents from 43% to 78% by weight, and treated with Portland cement and fly ash. Two cement to flyash ratios were tested, 2:1 and 1:2, by weight. Contaminant leachability testing was conducted with a 0.5 water to pozzolan (the cement/flyash mixture) ratio and both cement to flyash ratios. Each product was tested for unconfined compressive strength (UCS) and for contaminant leachability by the Toxicity Characteristics Leaching Procedure (TCLP). At the highest solids content achieved by dewatering, 78% solids by weight, the predicted final waste form volume f or Pond 207C

  16. Arsenic encapsulation using Portland cement with ferrous sulfate/lime and Terra-Bond™ technologies - Microcharacterization and leaching studies.

    PubMed

    Randall, Paul M

    2012-03-15

    This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-Bond™, a commercially available patented technology. The arsenic materials included: chromated copper arsenate (CCA)-treated wood materials; scorodite-rich mine tailings from the La Trinidad Mine in California; and a soil/smelter dust mixture from the Anaconda Superfund site spiked with monosodium methyl arsenate (MSMA) to simulate an organoarsenic soil material. SEM/EDS and XRD spectra of PFL treated samples showed similarity across all three waste materials while Terra-Bond treated samples showed predominance of elemental sulfur. SEM/EDS of PFL treated samples showed that calcium was imbedded in the structure while micrographs of Terra-Bond treated samples showed the appearance of an epoxy material on the surface. The epoxy material appears to be responsible for encapsulating and reducing the leachability of arsenic. XANES spectra for the PFL treatment of CCA-containing samples showed that arsenic has a predominant pentavalent form (As +5), and the PFL treatment process did not alter the arsenic oxidation state. But, distinct differences were observed for XANES spectra of untreated and PFL treated scorodite-rich mine tailing which changed the arsenic coordination structure from a mixture of As (+3/+5) to exclusively As (+5). Both S/S techniques reduced the amount of arsenic released in the leaching tests. Most cases show lower amounts of arsenic released from wastes treated by the Terra-Bond™ technique when compared to the PFL technique. The pH of the solution significantly affected the leachability, with the amount of arsenic released increasing with pH. Sequential extraction results indicate that sodium hydroxide was favorable in releasing arsenic in the mine tailings. This is due to ligand displacement reactions of hydroxyl ions with arsenic species and high pH conditions that

  17. Influence of chloride in mortar made of Portland cement types II, III, and V on the near-field microwave reflection properties

    NASA Astrophysics Data System (ADS)

    Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly

    2000-07-01

    Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.

  18. The ability of Portland cement, MTA, and MTA Bio to prevent through-and-through fluid movement in repaired furcal perforations.

    PubMed

    De-Deus, Gustavo; Reis, Claudia; Brandão, Claudia; Fidel, Sandra; Fidel, Rivail Antonio Sergio

    2007-11-01

    This study assessed the ability of Portland cement, white Angelus-mineral trioxide aggregate (MTA), and MTA Bio to seal furcal perforations in extracted human molar teeth. Fifty-five human mandibular molar teeth were accessed, and the canal orifices were located. The roots were horizontally sectioned in the middle third. Resin composite was used to fill the root canal orifices and the apical end of the root. Perforations were created in the center of the pulp chamber floor by using a size 3 round bur. The teeth were divided into 3 groups (n = 15), and an additional 10 teeth served as controls. In G1, the perforation defects were repaired with MTA, whereas in G2 and G3, MTA Bio and Portland cement were used, respectively. Each tooth was assembled in a hermetic cell to allow the evaluation of fluid filtration. Leakage was measured by the movement of an air bubble traveling within a pipette connected to the teeth. Measurements of the air bubble movement were made after 10 minutes at a constant pressure of 20 cm H(2)O. Kruskal-Wallis H test was applied to the fluid flow data to detect differences between the experimental groups (P < .05). Leakage existed in every sample and was very variable in all the experimental groups, ranging from 0.098-0.51 microL/min. Kruskal-Wallis H-test results showed that there was no significant difference in mean fluid flow between the experimental groups (P = .874). The sealing ability promoted by the 3 cements was similar; no cement was able to produce a fluid-tight seal.

  19. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  20. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    NASA Astrophysics Data System (ADS)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  1. Application of Neutron imaging in pore structure of hydrated wellbore cement: comparison of hydration of H20 with D2O based Portland cements

    NASA Astrophysics Data System (ADS)

    Dussenova, D.; Bilheux, H.; Radonjic, M.

    2012-12-01

    Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main

  2. Effect of Exposure to Portland Cement Dust on the Periodontal Status and on the Outcome of Non-Surgical Periodontal Therapy

    PubMed Central

    Abdelhamid, Alaa

    2016-01-01

    Background Cement dust contains heavy metals like nickel, cobalt, lead and chromium, pollutants hazardous to the biotic environment, with adverse impact for vegetation, human and animal health and ecosystems. Objective To investigate if long term exposure to cement dust can affect the periodontal health and affect the outcome of non-surgical periodontal therapy. Methods A total of sixty subjects were included in this study. Forty patients with chronic periodontitis were grouped into; Group I comprised of 20 patients with chronic periodontitis working in the Portland Cement Company and Group II comprised of 20 patients with chronic periodontitis who does not work in cement factories nor live near any of them. Twenty healthy subjects were included in this study as healthy control group (Group III). Clinical parameters including gingival index (GI), plaque index (PI), pocket depth (PD) and clinical attachment loss (CLA) were scored for all patients before and after periodontal therapy. All patients received non-surgical periodontal therapy together with strict oral hygiene program for one month. Gingival crevicular fluid (GCF) samples were collected from both groups at baseline and one month after periodontal therapy. Real time PCR (RT-PCR) was used to analyze the GCF samples for detection and assessment of the levels of IL-1β and TNFα. Results The two studied groups responded well to non-surgical periodontal treatment and there was no significant difference between GI and GII (P>0.05). The levels of TNFα was higher in GI than in GII before and after periodontal therapy (P<0.05). The levels of IL-1β did not show any significant difference between the two groups at base line (P>0.05), but represented with a highly significant difference between G1 and GII after periodontal therapy (P<0.001). A significant positive correlation was found between the levels of both IL-1β and TNFα and all the clinical parameters in GI before and after periodontal therapy and in GII

  3. Effect of Exposure to Portland Cement Dust on the Periodontal Status and on the Outcome of Non-Surgical Periodontal Therapy

    PubMed Central

    Abdelhamid, Alaa

    2016-01-01

    Background Cement dust contains heavy metals like nickel, cobalt, lead and chromium, pollutants hazardous to the biotic environment, with adverse impact for vegetation, human and animal health and ecosystems. Objective To investigate if long term exposure to cement dust can affect the periodontal health and affect the outcome of non-surgical periodontal therapy. Methods A total of sixty subjects were included in this study. Forty patients with chronic periodontitis were grouped into; Group I comprised of 20 patients with chronic periodontitis working in the Portland Cement Company and Group II comprised of 20 patients with chronic periodontitis who does not work in cement factories nor live near any of them. Twenty healthy subjects were included in this study as healthy control group (Group III). Clinical parameters including gingival index (GI), plaque index (PI), pocket depth (PD) and clinical attachment loss (CLA) were scored for all patients before and after periodontal therapy. All patients received non-surgical periodontal therapy together with strict oral hygiene program for one month. Gingival crevicular fluid (GCF) samples were collected from both groups at baseline and one month after periodontal therapy. Real time PCR (RT-PCR) was used to analyze the GCF samples for detection and assessment of the levels of IL-1β and TNFα. Results The two studied groups responded well to non-surgical periodontal treatment and there was no significant difference between GI and GII (P>0.05). The levels of TNFα was higher in GI than in GII before and after periodontal therapy (P<0.05). The levels of IL-1β did not show any significant difference between the two groups at base line (P>0.05), but represented with a highly significant difference between G1 and GII after periodontal therapy (P<0.001). A significant positive correlation was found between the levels of both IL-1β and TNFα and all the clinical parameters in GI before and after periodontal therapy and in GII

  4. Utilization of cathode ray tube waste: encapsulation of PbO-containing funnel glass in Portland cement clinker.

    PubMed

    Lairaksa, Nirut; Moon, Anthony R; Makul, Natt

    2013-03-15

    The disposal of cathode ray tube (CRT) generates large quantities of leaded glass waste. The encapsulation of glass from the funnel portion of CRT in cement clinker was investigated. Samples of cement raw material containing 0 (control), 0.1, 0.2, 0.3, 0.4, or 0.5 wt% of CRT funnel glass ground to less than 75 μm were heated to 1480 °C in an electric furnace for 1.5 h at a heating rate of 5 °C/min to produce cement clinker. The Pb encapsulation and chemical composition of the clinkers were analysed using X-ray techniques and atomic absorption spectroscopy (AAS). The maximum PbO encapsulation occurred in mixtures containing 0.1 wt% funnel glass.

  5. Shotcrete -- Understanding of the hydration process of mixes containing CAC and Portland cement and proposal for a simple rheological characterization

    SciTech Connect

    Bayoux, J.P.; Testud, M.; Guinot, D.; Willocq, J.; Capmas, A.

    1995-12-31

    In order to better understand the performances of CAC-slag cement and CAC--PC cement the hydration study of these mixes was undertaken. The hydrates which are responsible for the early stiffening/strengthening are identical in both mixes; it is only the time of appearance and amount which varies. Ettringite always forms first followed by the precipitation of C{sub 4}AH{sub 13}. They will both form faster then the temperature rises. As a complement, a simple laboratory equipment is proposed to characterize the stiffening behavior of the mixes straight after gauging.

  6. 77 FR 5573 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... February 5, 1985 (50 FR 5015). The last notification was filed with the Department on May 12, 2011. A notice was published in the Federal Register pursuant to Section 6(b) of the Act on June 13, 2011 (76 FR... Cement Association Notice is hereby given that, on January 6, 2012, pursuant to Section 6(a) of...

  7. 75 FR 4423 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... February 5, 1985 (50 FR 5015). The last notification was filed with the Department on May 18, 2009. A notice was published in the Federal Register pursuant to Section 6(b) of the Act on August 9, 2009 (74 FR... damages under specified circumstances. Specifically, Continental Cement, Hannibal, MO has been added as...

  8. 76 FR 12370 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... pursuant to Section 6(b) of the Act on February 5, 1985 (50 FR 5015). The last notification was filed with... Section 6(b) of the Act January 27, 2010 (75 FR 4423). Patricia A. Brink, Director of Civil Enforcement... Cement Association Notice is hereby given that, on February 02, 2011, pursuant to Section 6(a) of...

  9. 76 FR 34252 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... published a notice in the Federal Register pursuant to Section 6(b) of the Act on February 5, 1985 (50 FR... in the Federal Register pursuant to Section 6(b) of the Act on March 7, 2011 (76 FR 12370). Patricia... Cement Association Notice is hereby given that, on May 12, 2011, pursuant to Section 6(a) of the...

  10. Chemical Reactions of Portland Cement with Aqueous CO2 and Their Impacts on Cement's Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin

    2015-05-19

    To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage.

  11. Chemical Reactions of Portland Cement with Aqueous CO2 and Their Impacts on Cement's Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Flores, Katharine M; Kranjc, Kelly; Jun, Young-Shin

    2015-05-19

    To provide information on wellbore cement integrity in the application of geologic CO2 sequestration (GCS), chemical and mechanical alterations were analyzed for cement paste samples reacted for 10 days under GCS conditions. The reactions were at 95 °C and had 100 bar of either N2 (control condition) or CO2 contacting the reaction brine solution with an ionic strength of 0.5 M adjusted by NaCl. Chemical analyses showed that the 3.0 cm × 1.1 cm × 0.3 cm samples were significantly attacked by aqueous CO2 and developed layer structures with a total attacked depth of 1220 μm. Microscale mechanical property analyses showed that the hardness and indentation modulus of the carbonated layer were 2-3 times greater than for the intact cement, but those in the portlandite-dissolved region decreased by ∼50%. The strength and elastic modulus of the bulk cement samples were reduced by 93% and 84%, respectively. The properties of the microscale regions, layer structure, microcracks, and swelling of the outer layers combined to affect the overall mechanical properties. These findings improve understanding of wellbore integrity from both chemical and mechanical viewpoints and can be utilized to improve the safety and efficiency of CO2 storage. PMID:25893278

  12. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    SciTech Connect

    Cruz, J.M.; Fita, I.C.; Soriano, L.; Payá, J.; Borrachero, M.V.

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  13. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    SciTech Connect

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  14. Radiopacity, pH and antimicrobial activity of Portland cement associated with micro- and nanoparticles of zirconium oxide and niobium oxide.

    PubMed

    Guerreiro Tanomaru, Juliane Maria; Storto, Inara; Da Silva, Guilherme Ferreira; Bosso, Roberta; Costa, Bernardo Cesar; Bernardi, Maria Inês Basso; Tanomaru-Filho, Mário

    2014-01-01

    The aim of this study was to evaluate some properties of the calcium silicate materials Mineral Trioxide Aggregate (MTA) and Portland cement (PC) with microparticulated (micro) and nanoparticulated (nano) zirconium oxide (ZrO2) or niobium oxide (Nb2O5). The experimental materials: White PC (PC), MTA-Angelus(®) (MTA), PC+ZrO2micro, PC+ZrO2nano, PC+Nb2O5micro and PC+Nb2O5nano were submitted to radiopacity and pH evaluations. Furthermore, the antimicrobial activity against different microorganisms was assessed by agar diffusion test. MTA presented higher radiopacity than other materials. However, all materials except PC presented higher radiopacity than recommended by ISO/ADA. MTA promoted higher pH values in all analyzed periods (p≤0.05). At the initial periods, PC and PC+ZrO2micro showed pH similar to MTA. All materials showed antimicrobial activity against the evaluated microorganisms. In conclusion, ZrO2 and Nb2O5 could be alternative radiopacifiers to be added to calcium silicate materials.

  15. Improved Photodegradation of Organic Contaminants Using Nano-TiO2 and TiO2 -SiO2 Deposited on Portland Cement Concrete Blocks.

    PubMed

    Jafari, Hoda; Afshar, Shahrara

    2016-01-01

    The photocatalytic activity of TiO2 nanoparticles (nano-TiO2 ) and its hybrid with SiO2 (nano-TiO2 -SiO2 ) for degradation of some organic dyes on cementitious materials was studied in this work. Nanohybrid photocatalysts were prepared using an inorganic sol-gel precursor and then characterized using XRD, SEM and UV-Vis. The grain sizes were estimated by Scherrer's equation to be around 10 nm. Then, a thin layer was applied to Portland cement concrete (PCC) blocks by dipping them into nano-TiO2 and nano-TiO2 -SiO2 solution. The efficiency of coated PCC blocks for the photocatalytic decomposition of two dyes, Malachite Green oxalate (MG) and Methylene Blue (MB), was examined under UV and visible irradiation and then monitored by the chemical oxygen demand tests. The results showed that more than 80% and 92% of MG and MB were decomposed under UV-Vis irradiation using blocks coated with nano-TiO2 -SiO2 . TiO2 /PCC and TiO2 -SiO2 /PCC blocks showed a significant ability to oxidize dyes under visible and UV lights and TiO2 -SiO2 /PCC blocks require less time for dye degradation. Based on these results, coated blocks have increased photocatalytic activity which can make them commercially accessible photocatalysts. PMID:26648581

  16. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation.

    PubMed

    Garrabrants, A C; Sanchez, F; Kosson, D S

    2004-01-01

    Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.

  17. An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy

    PubMed Central

    Baranwal, Akash Kumar; Paul, Mohan L.; Mazumdar, Dibyendu; Adhikari, Haridas Das; Vyavahare, Nishant K.; Jhajharia, Kapil

    2015-01-01

    Context: Where nonsurgical endodontic intervention is not possible, or it will not solve the problem, surgical endodontic treatment must be considered. A major cause of surgical endodontic failures is an inadequate apical seal, so the use of the suitable substance as root-end filling material that prevents egress of potential contaminants into periapical tissue is very critical. Aims: The aim of the present ex-vivo study was to compare and evaluate the three root-end filling materials of mineral trioxide aggregate (MTA) family (white MTA [WMTA], grey MTA [GMTA] and Portland cement [PC]) for their marginal adaptation at the root-end dentinal wall using scanning electron microscopy (SEM). Materials and Methods: Sixty human single-rooted teeth were decoronated, instrumented, and obturated with Gutta-percha. After the root-end resection and apical cavity preparation, the teeth were randomly divided into three-experimental groups (each containing 20 teeth) and each group was filled with their respective experimental materials. After longitudinal sectioning of root, SEM examination was done to determine the overall gap between retrograde materials and cavity walls in terms of length and width of the gap (maximum) at the interface. Descriptive statistical analysis was performed to calculate the means with corresponding standard errors, median and ranges along with an analysis of variance and Tukey's test. Results: The least overall gap was observed in GMTA followed by PC and WMTA. While after statistically analyzing the various data obtained from different groups, there was no significant difference among these three groups in terms of marginal adaptation. Conclusion: GMTA showed the best overall adaptation to root dentinal wall compared to PC and WMTA. Being biocompatible and cheaper, the PC may be an alternative but not a substitute for MTA. PMID:26430305

  18. In Vitro Antibacterial Activity of a Novel Resin-Based Pulp Capping Material Containing the Quaternary Ammonium Salt MAE-DB and Portland Cement

    PubMed Central

    Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua

    2014-01-01

    Background Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. Methods The experimental material was prepared from a 2∶1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4∶3∶1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. Results S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. Conclusion The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution

  19. Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: inter-kiln variability and dependence on fuel-types.

    PubMed

    Zemba, Stephen; Ames, Michael; Green, Laura; Botelho, Maria João; Gossman, David; Linkov, Igor; Palma-Oliveira, José

    2011-09-15

    Emissions from Portland cement manufacturing facilities may increase health risks in nearby populations and are thus subject to stringent regulations. Direct testing of pollutant concentrations in exhaust gases provides the best basis for assessing the extent of these risks. However, these tests (i) are often conducted under stressed, rather than typical, operating conditions, (ii) may be limited in number and duration, and (iii) may be influenced by specific fuel-types and attributes of individual kilns. We report here on the results of more than 150 emissions-tests conducted of two kilns at a Portland cement manufacturing plant in Portugal. The tests measured various regulated metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs). Stack-gas concentrations of pollutants were found to be highly variable, with standard deviations on the order of mean values. Emission rates of many pollutants were higher when coal was used as the main kiln fuel (instead of petroleum coke). Use of various supplemental fuels, however, had little effect on stack emissions, and few statistically significant differences were observed when hazardous waste was included in the fuel mix. Significant differences in emissions for some pollutants were observed between the two kilns despite their similar designs and uses of similar fuels. All measured values were found to be within applicable regulatory limits.

  20. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions

    SciTech Connect

    Famy, C.; Brough, A.R.; Taylor, H.F.W

    2003-09-01

    Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probable composition C{sub 6}A{sub 2}S-bar{sub 2}H{sub 34} or {l_brace}Ca{sub 6}[Al(OH){sub 6}]{sub 2}{center_dot}24H{sub 2}O{r_brace}(SO{sub 4}){sub 2}[Al(OH){sub 4}]{sub 2}. If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125.

  1. Sulfate ingress in Portland cement

    SciTech Connect

    Lothenbach, Barbara; Bary, Benoit; Le Bescop, Patrick; Leterrier, Nikos

    2010-08-15

    The interaction of mortar with sulfate solutions leads to a reaction front within the porous material and to expansion. Thermodynamic modelling coupled with transport codes was used to predict sulfate ingress. Alternatively, 'pure' thermodynamic models - without consideration of transport - were used as a fast alternative to coupled models: they are more flexible and allow easy parameter variations but the results relate neither to distance nor to time. Both transport and pure thermodynamic modelling gave comparable results and were able to reproduce the changes observed in experiments. The calculated total volume of the solids did not exceed the initial volume of the paste indicating that not the overall volume restriction leads to the observed expansion but rather the formation of ettringite within the matrix and the development of crystallisation pressure in small pores. The calculations indicate that periodic changing of the Na{sub 2}SO{sub 4} solution results in more intense degradation.

  2. Climate change: The impact of the third conference of the parties at Kyoto on the U.S. Portland cement industry

    SciTech Connect

    Cahn, D.; Nisbet, M.; O`Hare, A.

    1998-12-31

    The paper provides, as background, a brief review of the structure of the US cement industry. It outlines the growth trends of the industry over the last 20 years. It describes the sources and significance of cement imports in the US market, and the importance of exports to Canadian cement producers. The sources of CO{sub 2}, the primary greenhouse gas emitted in the cement manufacturing process, are explained and the impact of improved energy efficiency and fuel switching on CO{sub 2} emissions per ton of product are discussed. The aspects of the Kyoto Protocol relevant to the US cement industry are analyzed as are the types of impacts they can be expected to have on: cement trade, domestic cement production, long term growth of the US cement industry, and US cement industry CO{sub 2} emissions. The paper projects the US cement industry CO{sub 2} emissions to 2010, taking into account anticipated improvements in energy efficiency. It discusses manufacturing process and changes that could be made to reduce CO{sub 2} emissions. The paper also covers the types of product modifications that might be made to reduce the embodied CO{sub 2} content. Where possible the potential reductions in CO{sub 2} emissions from process and product changes are quantified.

  3. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  4. Effects of Sulfate during CO2 Attack on Portland Cement and Their Impacts on Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Jun, Young-Shin

    2015-06-01

    To investigate the effects of sulfate on CO2 attack on wellbore cement (i.e., chemical and mechanical alterations) during geologic CO2 sequestration (GCS), we reacted cement samples in brine with 0.05 M sulfate and 0.4 M NaCl at 95 °C under 100 bar of either N2 or supercritical CO2. The results were compared to those obtained from systems without additional sulfate at the same temperature, pressure, salinity, and initial brine pHs. After 10 reaction days, chemical analyses using scanning electron microscopy with a backscattered electron detector (SEM-BSE) and inductively coupled plasma optical emission spectrometry (ICP-OES) showed that the CO2 attack in the presence of additional sulfate was much less severe than that in the system without additional sulfate. The results from three-point bending tests also indicated that sulfate significantly mitigated the deterioration of the cement's strength and elastic modulus. In all our systems, typical sulfate attacks on cement via formation of ettringite were not observed. The protective effects of sulfate on cement against CO2 attack resulted from sulfate adsorption, coating of CaSO4 on the CaCO3 grains in the carbonated layer, or both, which inhibited dissolution of CaCO3. Findings from this study provide new, important information for understanding the integrity of wellbores at GCS sites and thus promote safer GCS operations. PMID:25938805

  5. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  6. Slurry Consistency and In-situ Synchrotron X-ray Diffraction during the Early Hydration of Portland Cements with Calcium Chloride

    SciTech Connect

    Jupe, A.C.; Wilkinson, A.P.; Luke, K.; Funkhouser, G.P.

    2008-07-08

    Class A and H oil well cements are compared at 25 and 50 C with 0%, 1%, 2%, and 4% CaCl{sub 2}. Up to 4% CaCl{sub 2} accelerated Class A thickening, but 4% led to slower thickening than 2% for Class H. C{sub 3}S hydration in the two cements responded differently to CaCl{sub 2}. CaCl{sub 2} always accelerated aluminate hydration. For Class A, CaCl{sub 2} accelerated early Ca(OH){sub 2} precipitation, but sometimes reduced the amount at longer times. This may be coupled to C-S-H gel composition changes. For Class H, Ca(OH){sub 2} precipitation changes nonlinearly with CaCl{sub 2} concentration. Ettringite to monosulfate conversion and Friedel's salt formation were sometimes seen.

  7. Cytotoxicity of accelerated white MTA and Malaysian white Portland cement on stem cells from human exfoliated deciduous teeth (SHED): An in vitro study.

    PubMed

    Ong, Ren Ming; Luddin, Norhayati; Ahmed, Hany Mohamed Aly; Omar, Nor Shamsuria

    2012-12-01

    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications. PMID:23739319

  8. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    SciTech Connect

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration products are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.

  9. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  10. Advances in understanding hydration of Portland cement

    SciTech Connect

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  11. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  12. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  13. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  14. 40 CFR 427.20 - Applicability; description of the asbestos-cement sheet subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-cement sheet subcategory. 427.20 Section 427.20 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Sheet Subcategory § 427.20 Applicability; description of the asbestos-cement sheet... asbestos, Portland cement, silica, and other ingredients are used in the manufacturing of...

  15. 40 CFR 427.10 - Applicability; description of the asbestos-cement pipe subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-cement pipe subcategory. 427.10 Section 427.10 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Pipe Subcategory § 427.10 Applicability; description of the asbestos-cement pipe... asbestos. Portland cement, silica and other ingredients are used in the manufacturing of...

  16. 40 CFR 427.20 - Applicability; description of the asbestos-cement sheet subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-cement sheet subcategory. 427.20 Section 427.20 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Sheet Subcategory § 427.20 Applicability; description of the asbestos-cement sheet... asbestos, Portland cement, silica, and other ingredients are used in the manufacturing of...

  17. 40 CFR 427.10 - Applicability; description of the asbestos-cement pipe subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-cement pipe subcategory. 427.10 Section 427.10 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Pipe Subcategory § 427.10 Applicability; description of the asbestos-cement pipe... asbestos. Portland cement, silica and other ingredients are used in the manufacturing of...

  18. Radon emanation from concrete and the influence of using flyash in cement.

    PubMed

    van der Lugt, G; Scholten, L C

    1985-10-01

    In the Netherlands both Portland cement and blast furnace cement (slags from blast furnaces with about 30% Portland cement) are used for concrete. Radon exhalation measurements were carried out on concrete blocks made with these two types of cement and blocks with 15, 25 and 35% of the cement substituted by three different types of flyash. The results show that substituting part of the cement by flyash has no drastic effect on the exhalation rate. For concrete with Portland cement the exhalation rate decreases using flyash with an average radium content. With blast furnace cement a slight increase may be expected. The exhalation of concrete is greater than the sum of the exhalation values of the constituting components. The water in the pores of the concrete plays an essential role in the emanation process. PMID:3853271

  19. Radon emanation from concrete and the influence of using flyash in cement.

    PubMed

    van der Lugt, G; Scholten, L C

    1985-10-01

    In the Netherlands both Portland cement and blast furnace cement (slags from blast furnaces with about 30% Portland cement) are used for concrete. Radon exhalation measurements were carried out on concrete blocks made with these two types of cement and blocks with 15, 25 and 35% of the cement substituted by three different types of flyash. The results show that substituting part of the cement by flyash has no drastic effect on the exhalation rate. For concrete with Portland cement the exhalation rate decreases using flyash with an average radium content. With blast furnace cement a slight increase may be expected. The exhalation of concrete is greater than the sum of the exhalation values of the constituting components. The water in the pores of the concrete plays an essential role in the emanation process.

  20. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  1. Rock Creek Center, Portland Community College, Portland, Oregon

    ERIC Educational Resources Information Center

    American School and University, 1977

    1977-01-01

    The Portland Community College was given an award in the AS&U 1977 College & University Architectural Competition for the Rock Creek Center, designed like a shopping center that lets people view the various activities inside. (Author/MLF)

  2. Utilization of waste glass in ECO-cement: Strength properties and microstructural observations

    SciTech Connect

    Sobolev, Konstantin Tuerker, Pelin; Soboleva, Svetlana; Iscioglu, Gunsel

    2007-07-01

    Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement.

  3. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    PubMed

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.

  4. Sustainable cement production-present and future

    SciTech Connect

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.

    2011-07-15

    Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

  5. Micro-thermal stress analysis of cement based pavement composite

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Huang, W.

    1998-12-31

    A four-layer sphere model for microscopic thermal analysis was proposed based upon the structural form of cement based pavement composites. Using temperature induced stresses of pavement structure as the external field, the micro-thermal stresses of two types of cement based pavement composite were calculated. The results showed that, by introducing the low stiffness rubberized asphalt in the interphase of coarse aggregate phase and cement mortar phase of Portland cement concrete, the interfacial thermal stresses could be reduced significantly, thus improving crack resistance of the pavement material under low temperature environment. Factors affecting micro-thermal stress of cement based pavement composite were discussed.

  6. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    SciTech Connect

    Mehta, P.K.; Persoff, P.

    1980-04-01

    A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

  7. The suitability of a supersulfated cement for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  8. [Task 1.] Biodenitrification of low nitrate solar pond waters using sequencing batch reactors. [Task 2.] Solidification/stabilization of high strength and biodenitrified heavy metal sludges with a Portland cement/flyash system

    SciTech Connect

    Figueroa, L.; Cook, N.E.; Siegrist, R.L.; Mosher, J.; Terry, S.; Canonico, S.

    1995-09-22

    Process wastewater and sludges were accumulated on site in solar evaporation ponds during operations at the Department of Energy's Rocky Flats Plant (DOE/RF). Because of the extensive use of nitric acid in the processing of actinide metals, the process wastewater has high concentrations of nitrate. Solar pond waters at DOE/RF contain 300-60,000 mg NO{sub 3}{sup {minus}}/L. Additionally, the pond waters contain varying concentrations of many other aqueous constituents, including heavy metals, alkali salts, carbonates, and low level radioactivity. Solids, both from chemical precipitation and soil material deposition, are also present. Options for ultimate disposal of the pond waters are currently being evaluated and include stabilization and solidification (S/S) by cementation. Removal of nitrates can enhance a wastes amenability to S/S, or can be a unit operation in another treatment scheme. Nitrate removal is also a concern for other sources of pollution at DOE/RF, including contaminated groundwater collected by interceptor trench systems. Finally, nitrate pollution is a problem at many other DOE facilities where actinide metals were processed. The primary objective of this investigation was to optimize biological denitrification of solar pond waters with nitrate concentrations of 300--2,100 mg NO{sub 3}{sup {minus}}/L to below the drinking water standard of 45 mg NO{sub 3}{sup {minus}}/L (10 mg N/L). The effect of pH upon process stability and denitrification rate was determined. In addition, the effect Cr(VI) on denitrification and fate of Cr(VI) in the presence of denitrifying bacteria was evaluated.

  9. Effects of ground hazelnut shell, wood, and tea waste on the mechanical properties of cement

    SciTech Connect

    Demirbas, A.; Aslan, A.

    1998-08-01

    In this study, the mechanical properties of Portland cement mixes with an admixture such as ground hazelnut shell, spruce and beech woods, and tea waste were studied. The compressive and bending strengths test results obtained from these mixes were investigated with comparing to the control mix. From results, it was obtained that especially ground hazelnut shell and beech wood can be used as additives or partial replacement for Portland cement.

  10. 77 FR 15263 - Security Zone; Portland Rose Festival on Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... SECURITY Coast Guard 33 CFR Part 165 Security Zone; Portland Rose Festival on Willamette River; Portland... will enforce the Portland Rose Festival Security Zone in 33 CFR 165.1312 from 11 a.m. on June 6, 2012..., including the public vessels present on the Willamette River during the Portland Rose festival. During...

  11. Retention of alkali ions by hydrated low-pH cements: Mechanism and Na{sup +}/K{sup +} selectivity

    SciTech Connect

    Bach, T.T.H.; Chabas, E.; Cau Dit Coumes, C.; Frizon, F.

    2013-09-15

    Low-pH cements, also referred to as low-alkalinity cements, can be designed by replacing significant amounts of Portland cement by pozzolanic materials. Their pore solution is characterized by a pH near 11, and an alkali concentration much lower than that of Portland cement. This work investigates the retention of sodium and potassium by a hydrated low-pH cement comprising 60% Portland cement and 40% silica fume. It is shown that sorption of potassium is higher than that of sodium and mainly results from counterion charge balancing of the C-S-H negative surface charge. To explain the greater retention of potassium compared to sodium, it is postulated that potassium, unlike sodium, may enter the interlayer of C-S-H to compensate the negative charges in the interlayer, in addition to the external surfaces. This assumption is supported by structural characterization of C-S-H using X-ray diffraction.

  12. Soft X-ray Microscopy of Green Cements

    NASA Astrophysics Data System (ADS)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  13. Soft X-ray Microscopy of Green Cements

    SciTech Connect

    Monteiro, P. J. M.; Mancio, M.; Chae, R.; Ha, J.; Kirchheim, A. P.; Fischer, P.; Tyliszczak, T.

    2011-09-09

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO{sub 2} emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  14. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement.

  15. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.

  16. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis. PMID:27002788

  17. Permeability of Consolidated Incinerator Facility Wastes Stabilized with Portland Cement

    SciTech Connect

    Walker, B.W.

    1999-08-23

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and off-gas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as waste water. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete and will continue to be treated this way for listed waste burns and scrubber solution that do not meet the Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC).

  18. Solidification of low-level radioactive wastes in masonry cement. [Masonry cement-boric acid waste forms

    SciTech Connect

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH/sub 2/) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na/sub 2/SO/sub 4/ can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs.

  19. 75 FR 20523 - Regulated Navigation Areas; Port of Portland Terminal 4, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ..., Portland, OR'' in the Federal Register (74 FR 69047). We received one comment on the proposed rule. There... establishing two Regulated Navigation Areas (RNA) at the Port of Portland Terminal 4 on the Willamette River in ] Portland, Oregon. The RNAs are necessary to preserve the integrity of engineered sediment caps...

  20. 75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Portland Rose Festival Fleet Week... Hawthorne and Steel Bridges in Portland, Oregon during the Portland Rose Festival Fleet Week from June 2... and other vessels participating in Fleet Week as well as the maritime public in general and will do...

  1. Global warming impact on the cement and aggregates industries

    SciTech Connect

    Davidovits, J. . Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  2. Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI)

    SciTech Connect

    Trezza, M.A.; Ferraiuelo, M.F

    2003-07-01

    Considering the increasing use of limestone cement manufacture, the present paper tends to characterize limestone behavior in the presence of Cr(VI). The research reported herein provides information regarding the effect of Cr(VI) from industrial wastes in the limestone cement hydration. The cementitious materials were ordinary Portland cement, as reference, and limestone blended cement. The hydration and physicomechanical properties of cementitious materials and the influence of chromium at an early age were studied with X-ray diffraction (XRD), infrared spectroscopy (FTIR), conductimetric and mechanical tests. Portland cement pastes with the addition of Cr(VI) were examined and leaching behavior with respect to water and acid solution were investigated. This study indicates that Cr(VI) modifies the rate and the components obtained during the cement hydration.

  3. 9. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING SOUTHWEST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING SOUTHWEST, SHOWING CHAIN-LINK FENCE IN FOREGROUND AND FOUNDATION STRUCTURE IN THE MIDDLE OF RESERVOIR BASIN - Portland Reservoir No. 2, 6007 Southeast Division Street, Portland, Multnomah County, OR

  4. 13. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING EAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING EAST FROM NORTHWEST CORNER OF RESERVOIR. POST OF ORIGINAL FENCE IS IN FOREGROUND - Portland Reservoir No. 2, 6007 Southeast Division Street, Portland, Multnomah County, OR

  5. 14. Photocopy of photograph (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (from Station 'L' office files, Portland, Oregon) Photographer unknown, c.1930 HISTORIC VIEW OF STEPHENS SUBSTATION - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  6. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics.

    PubMed

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi

    2008-03-01

    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.

  7. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics.

    PubMed

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi

    2008-03-01

    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant. PMID:17658684

  8. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  9. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    SciTech Connect

    Husillos Rodriguez, N.; Martinez Ramirez, S.; Blanco Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J.

    2010-05-15

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

  10. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  11. Class G cement in Brazil - A statistical approach

    SciTech Connect

    Rosa, F.C.; Coelho, O. Jr.; Parente, F.J. )

    1993-09-01

    Since 1975, Petrobras has worked with Brazilian Portland cement manufacturers to develop high-quality Class G cements. The Petrobras R and D Center has analyzed each batch of Class G cement manufactured by prequalified producers to API Spec. 10 standards and to Brazilian Assoc. of Technical Standards (ABNT) NBR 9831 standards. As a consequence, the Drilling Dept. at Petrobras now is supplied by three approved Class G cement factories strategically located in Brazil. This paper statistically analyzes test results on the basis of physical parameters of these Class G cements over 3 years. Statistical indices are reported to evaluate dispersion of the physical properties to obtain a reliability index for each Class G cement.

  12. Portland Public School Children Move with Propane

    SciTech Connect

    Not Available

    2004-04-01

    This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

  13. Cements with low Clinker Content

    NASA Astrophysics Data System (ADS)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (<30%) of Portland clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  14. Chromium speciation in hazardous, cement-based waste forms

    NASA Astrophysics Data System (ADS)

    Lee, J. F.; Bajt, S.; Clark, S. B.; Lamble, G. M.; Langton, C. A.; Oji, L.

    1995-02-01

    XANES and EXAFS techniques were used to determine the oxidation states and local structural environment of Cr in cement-based waste forms. Results show that Cr in untreated Portland cement formulations remains as toxic Cr 6+, while slag additives to the cement reduce Cr 6+ to the less toxic, less mobile Cr 3+ species. EXAFS analysis suggests that the Cr 6+ species is surrounded by four nearest oxygen atoms, while the reduced Cr 3+ sp ecies is surrounded by six oxygen atoms. The fitted CrO bond lengths for Cr 6+ and Cr 3+ species are around 1.66 and 1.98 Å, respectively.

  15. Neutron Scattering Studies of Cement

    NASA Astrophysics Data System (ADS)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  16. Reuse of grits waste for the production of soil--cement bricks.

    PubMed

    Siqueira, F B; Holanda, J N F

    2013-12-15

    This investigation focuses on the reuse of grits waste as a raw material for replacing Portland cement by up to 30 wt.% in soil-cement bricks. The grits waste was obtained from a cellulose factory located in south-eastern Brazil. We initially characterized the waste sample with respect to its chemical composition, X-ray diffraction, fineness index, morphology, pozzolanic activity, and pollution potential. Soil-cement bricks were then prepared using the waste material and were tested to determine their technological properties (e.g., water absorption, apparent density, volumetric shrinkage, and compressive strength). Microstructural evolution was accompanied by confocal microscopy. It was found that the grits waste is mainly composed of calcite (CaCO3) particles. Our results indicate that grits waste can be used economically, safely, and sustainably at weight percentages of up to 20% to partially replace Portland cement in soil-cement bricks. PMID:24140481

  17. Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete

    NASA Astrophysics Data System (ADS)

    Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.

    2016-06-01

    This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.

  18. Effect of Metakaolin on Strength and Efflorescence Quantity of Cement-Based Composites

    PubMed Central

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight. PMID:23737719

  19. Reuse of grits waste for the production of soil--cement bricks.

    PubMed

    Siqueira, F B; Holanda, J N F

    2013-12-15

    This investigation focuses on the reuse of grits waste as a raw material for replacing Portland cement by up to 30 wt.% in soil-cement bricks. The grits waste was obtained from a cellulose factory located in south-eastern Brazil. We initially characterized the waste sample with respect to its chemical composition, X-ray diffraction, fineness index, morphology, pozzolanic activity, and pollution potential. Soil-cement bricks were then prepared using the waste material and were tested to determine their technological properties (e.g., water absorption, apparent density, volumetric shrinkage, and compressive strength). Microstructural evolution was accompanied by confocal microscopy. It was found that the grits waste is mainly composed of calcite (CaCO3) particles. Our results indicate that grits waste can be used economically, safely, and sustainably at weight percentages of up to 20% to partially replace Portland cement in soil-cement bricks.

  20. Effect of metakaolin on strength and efflorescence quantity of cement-based composites.

    PubMed

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.

  1. Evaluation of ternary blended cements for use in transportation concrete structures

    NASA Astrophysics Data System (ADS)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  2. Coagulated silica - a-SiO2 admixture in cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Rovnaníková, Pavla; Pavlík, Zbyšek

    2016-07-01

    Amorphous silica (a-SiO2) in fine-grained form possesses a high pozzolanic activity which makes it a valuable component of blended binders in concrete production. The origin of a-SiO2 applied in cement-based composites is very diverse. SiO2 in amorphous form is present in various amounts in quite a few supplementary cementing materials (SCMs) being used as partial replacement of Portland cement. In this work, the applicability of a commercially produced coagulated silica powder as a partial replacement of Portland cement in cement paste mix design is investigated. Portland cement CEM I 42.5R produced according to the EU standard EN 197-1 is used as a reference binder. Coagulated silica is applied in dosages of 5 and 10 % by mass of cement. The water/binder ratio is kept constant in all the studied pastes. For the applied silica, specific surface area, density, loss on ignition, pozzolanic activity, chemical composition, and SiO2 amorphous phase content are determined. For the developed pastes on the basis of cement-silica blended binder, basic physical properties as bulk density, matrix density, and total open porosity are accessed. Pore size distribution is determined using MIP analysis. Initial and final setting times of fresh mixtures are measured by automatic Vicat apparatus. Effect of silica admixture on mechanical resistivity is evaluated using compressive strength, bending strength, and dynamic Young's modulus measurement. The obtained data gives evidence of a decreased workability of paste mixtures with silica, whereas the setting process is accelerated. On the other hand, reaction activity of silica with Portland cement minerals results in a slight decrease of porosity and improvement of mechanical resistivity of cement pastes containing a-SiO2.

  3. 77 FR 4006 - Foreign-Trade Zone 45-Portland, Oregon; Expansion of Manufacturing Authority; Epson Portland, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... Foreign-Trade Zones Board Foreign-Trade Zone 45--Portland, Oregon; Expansion of Manufacturing Authority; Epson Portland, Inc. (Inkjet Ink Manufacturing); Portland, OR An application has been submitted to the... of the scope of manufacturing authority approved within Subzone 45F, on behalf of Epson Portland,...

  4. Development of an Improved Cement for Geothermal Wells

    SciTech Connect

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  5. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  6. Influence of Pore Structure on Compressive Strength of Cement Mortar

    PubMed Central

    Zhao, Haitao; Xiao, Qi; Huang, Donghui

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  7. The use of waste ceramic tile in cement production

    SciTech Connect

    Ay, N.; Uenal, M.

    2000-03-01

    In ceramic tile production, because of various reasons, unsold fired products come out. These are waste tiles and only a little part of them are used. Remainings create environmental problems. If these waste tiles are used in cement production, this pollution decreases. In this study, usage of waste tile as pozzolan was studied. Waste tile was added into Portland cement in 25%, 30%, 35%, and 40% weight ratios. Pozzolanic properties of waste tile and setting time, volume stability, particle size, density, specific surface area, and strength of cement including waste tile were investigated. The test results indicated that the waste tiles show pozzolanic properties, and chemical and physical properties of the cement including tile conforms to cement standard up to the addition of 35% waste tile.

  8. High-temperature cementing materials for completion of geothermal wells. Final report

    SciTech Connect

    Kalyoncu, R.S.; Snyder, M.J.

    1981-05-01

    Several portland cement types, oil well cements, and various additives and admixtures were evaluated during the course of development of a number of promising compositions suitable for geothermal applications. Among the cements and various materials considered were portland cement Types I, III, and V; oil well cement Classes G, H, and J; and additives such as silica flour, blast furnace slags, pozzolan, hydrated lime, perlite, and aluminum phosphate. Properties of interest in the study were thickening time, compressive strength, cement-to-metal bond strength, and effects of the cements on the corrosion of steel well casings. Testing procedures and property data obtained on a number of compositions are presented and discussed. Several cementing compositions comprised of Class J oil well cement, pozzolan, blast furnace slags, and silica flour were found to possess properties which appear to make them suitable for use in geothermal well completions. Five of the promising cementing compositions have been submitted to the National Bureau of Standards for additional testing.

  9. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  10. Urban carbon dioxide in Portland, Oregon

    NASA Astrophysics Data System (ADS)

    Bostrom, G. A.; Brooks, M.; Rice, A. L.

    2010-12-01

    Ambient concentrations of atmospheric carbon dioxide (CO2) are reported for the Portland, Oregon (USA) metropolitan region since late July, 2009. Three stationary locations were established: a downtown location on the campus of Portland State University; a residential site in southeast Portland; and a rural station on Sauvie Island, located ~30km northwest of Portland in the Columbia River Gorge. Continuous measurements of CO2 at the sites average 400-410ppm and show considerable variability due to CO2 sources, sinks and meteorological drivers of ventilation. Within this variability, a marked 20-30ppm diurnal cycle is observed due to photosynthetic activity and variations in the planetary boundary layer. In-city CO2 concentrations are on average enhanced by 5-6ppm over the Sauvie Island site during upgorge wind conditions, a difference which is greatest in the afternoon. Measurements of the 13C/12C ratio of CO2 in downtown Portland are significantly depleted in 13C relative to 12C compared with background air and suggest that regional CO2 is dominated by petroleum sources (70-80%). High degrees of relationship between CO2 variability and primary air pollutants CO and NO (r2=0.70 to 0.80), measured by the Oregon Department of Environmental Quality at the Southeast Portland location, corroborate this finding and illustrate the importance of traffic emissions on elevated ambient CO2 concentrations. In addition to CO2 at the fixed sites, measurements of street-level CO2 concentrations were obtained using a mobile instrument mounted in a bike trailer. Results from these field data show relatively homogenous CO2 concentrations throughout residential Portland neighborhoods with significant enhancements in CO2 on busy roadways or near areas of traffic congestion.

  11. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  12. Laboratory-produced high-volume fly ash blended cements: Physical properties and compressive strength of mortars

    SciTech Connect

    Bouzoubaa, N.; Zhang, M.H.; Bilodeau, A.; Malhotra, V.M.

    1998-11-01

    This paper describes the production of laboratory-produced high-volume fly ash blended cements. The effect of grinding of the Portland cement clinker, fly ash, and gypsum with or without a superplasticizer on the physical properties of the cements, and the compressive strength of the mortars made with the resulting blended cements, is discussed. The use of ground fly ash compared with unground fly ash resulted in a substantial increase in the compressive strength of the mortars; the improvement in the strength seems to increase with an increase in the fineness of the fly ash. This was particularly significant for the coarser fly ash. The superplasticizer interground with the clinker seems to act as a grinding aid in the production of Portland cement.

  13. Recycling of red muds with the extraction of metals and special additions to cement

    NASA Astrophysics Data System (ADS)

    Zinoveev, D. V.; Diubanov, V. G.; Shutova, A. V.; Ziniaeva, M. V.

    2015-01-01

    The liquid-phase reduction of iron oxides from red mud is experimentally studied. It is shown that, in addition to a metal, a slag suitable for utilization in the construction industry can be produced as a result of pyrometallurgical processing of red mud. Portland cement is shown to be produced from this slag with mineral additions and a high-aluminate expansion addition to cement.

  14. Quantum Mechanical Metric for Internal Cohesion in Cement Crystals

    PubMed Central

    Dharmawardhana, C. C.; Misra, A.; Ching, Wai-Yim

    2014-01-01

    Calcium silicate hydrate (CSH) is the main binding phase of Portland cement, the single most important structural material in use worldwide. Due to the complex structure and chemistry of CSH at various length scales, the focus has progressively turned towards its atomic level comprehension. We study electronic structure and bonding of a large subset of the known CSH minerals. Our results reveal a wide range of contributions from each type of bonding, especially hydrogen bonding, which should enable critical analysis of spectroscopic measurements and construction of realistic C-S-H models. We find the total bond order density (TBOD) as the ideal overall metric for assessing crystal cohesion of these complex materials and should replace conventional measures such as Ca:Si ratio. A rarely known orthorhombic phase Suolunite is found to have higher cohesion (TBOD) in comparison to Jennite and Tobermorite, which are considered the backbone of hydrated Portland cement. PMID:25476741

  15. Sulfate attack on cement-stabilized sand

    SciTech Connect

    Rollings, R.S.; Burkes, J.P.; Rollings, M.P.

    1999-05-01

    A 3.5-km (2.2 mi) section of a road in Georgia developed unexpected transverse bumps within 6 months after construction. The source of the bumps appeared to be expansion within the cement-stabilized base course. Laboratory examination of samples from areas showing distress revealed the presence of ettringite, a calcium sulfoaluminate the formation of which can be accompanied by severe expansion. This expansive materials was the probable cause of the volume changes causing the transverse bumps. The calcium and alumina needed to form ettringite ware available from the portland cement and the stabilized soil`s clay minerals. The source of the sulfur was identified as the well water that was mixed with the cement-stabilized base. Sulfate attack of cement-stabilized soils is a relatively infrequent problem, but it is highly destructive when it occurs. Currently, there are no firm criteria for identifying when sulfate attack of a cement-stabilized soil is a potential problem nor are there established methods of preventing the attack.

  16. Long-term performance of the steel-cement interface in CO2 sequestration wells

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Han, J.

    2011-12-01

    Long-term performance of CO2 storage reservoirs will require that wells (injection, monitoring, and pre-existing) continue to provide isolation of the buoyant CO2 plume. Short-term leakage concerns are driven by the quality of the well completions, particularly placement of Portland cement. However, operational and CO2-injection induced stresses in the reservoir may introduce small defects in the well isolation system, allowing migration of small quantities of CO2 and brine. Evidence for such leaks has been observed in a CO2-enhanced oil recovery well (Carey et al. 2007) and in a natural CO2 reservoir (Crow et al. 2010). The key question in long-term performance is whether these leaks will grow as wellbore materials degrade or whether carbonate precipitation reactions will self-heal the defects. In this study, we focus on the interface between steel casing and Portland cement. In a properly completed well, Portland cement provides a protective, alkaline environment for carbon steel that precludes the possibility of external corrosion. The protective cement can be damaged either by the formation of small gaps at the interface, known as microannuli, or by the carbonation of cement which eliminates cement alkalinity. To investigate these issues, we conducted experiments on cement-steel composites at conditions ranging from atmospheric to high-pressure to determine the susceptibility of steel to corrosion in the presence of well-bonded cement, carbonated cement, and cement separated from the steel by varying gap distances. The presence of cement greatly reduces corrosion rates of steel because an iron carbonate scale forms rapidly and provides a mass-transfer barrier. Similarly, a small gap at the cement-steel interface provides a mass-transfer barrier. Our results show that scale formation provides a more significant barrier to corrosion and that even small gaps (<100 um) do not enhance protection in the cement-steel system. For steel embedded in cement, corrosion

  17. Portland Magnet Project 1989-1991. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Thacker, Peter

    In 1989, the Portland (Oregon) Public Schools received a grant to create an elementary arts magnet school and to enhance magnet programs at four other schools in Portland (Oregon). The Portland Magnet Program emphasized improvements in programing, marketing, and articulation between magnet programs, allowing the schools to purchase…

  18. 23. Photocopy of photograph (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (from Station 'L' office files, Portland, Oregon) Photographer unknown, c.1930 BUCKET USED TO UNLOAD SAWDUST FROM BARGES ONTO CONVEYORS, CONVEYORS LED TO EITHER THE SAWDUST PILE OR DIRECTLY TO THE BOILER FURNACES - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  19. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... INFORMATION: Trimet of Portland and the Oregon Department of Transportation have requested that the upper deck... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Willamette River, Portland, OR AGENCY... across the Willamette River, mile 12.1, at Portland, OR. This deviation is necessary to accommodate...

  20. 78 FR 18480 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... across the Willamette River, miles 12.4, at Portland, Oregon. This deviation is necessary to accommodate... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Willamette River, Portland, OR..., crossing the Willamette River at Portland, OR. The Burnside Bridge provides a vertical clearance of 64...

  1. 54. Photocopy of diagram (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of diagram (from Station 'L' office files, Portland, Oregon) General Electric Company pamphlet, c.1930 SECTIONAL ELEVATION OF THE 35,000 KW GENERATOR BUILDING L5 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  2. 53. Photocopy of diagram (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of diagram (from Station 'L' office files, Portland, Oregon) General Electric Company pamphlet, c.1925 SECTIONAL ELEVATION OF THE 20,000 KW GENERATOR BUILDING L1 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  3. 51. Photocopy of diagram (from Station 'L' office files, Portland, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of diagram (from Station 'L' office files, Portland, Oregon) General Electric Company pamphlet, c.1923 SECTIONAL ARRANGEMENT OF THE 6,000 KW TURBINE GENERATOR BUILDING L1 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  4. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  5. Cloride ion diffusion in low water-to-solid cement pastes

    SciTech Connect

    Clifton, J.R.; Knab, L.I.; Garboczi, E.J. ); Xiong, L.X. )

    1991-06-01

    Diffusion coefficients of 0.3 water to solids ratio (w/s) hydrated portland cement paste specimens were measured using a conventional diffusion cell. Specimens were made from both ASTM Type 1 and Type 2 portland cements and blends containing mineral admixtures (fly ash, granulated blastfurnace slag, or silica fume). The average diffusion coefficient for the portland cement paste specimens was 14 {times} 10{sup {minus}13} m{sup 2}/s. The diffusion coefficients for the specimens containing mineral admixtures were such more variable than those for the portland cement paste specimens. A probable cause of the variability in the test results was the presence of cracks observed in the test specimens. The effects of the depth of concrete cover over reinforcing steel and of the chloride ion diffusion coefficient on the service life of reinforced concrete exposed to chloride ions were predicted based on a diffusion model. Based on the model, the effect of the cover was shown to be proportional to the square of the cover depth. 18 refs., 5 figs., 6 tabs.

  6. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  7. Directory of Tribal Officials. Portland Area.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Portland, OR.

    This tribal directory lists the specific Indian agency, Indian tribe, and all administrative offices and divisions of the Portland Area Office, Bureau of Indian Affairs. The following Indian agencies, with superintendent's name, address, and telephone number are listed: Colville, Fort Hall, Northern Idaho, Spokane, Umatilla, Warm Springs, Western…

  8. Portland's Gypsies See School in Their Future.

    ERIC Educational Resources Information Center

    Egan, Yvonne Michie

    1980-01-01

    Gypsy children have been disadvantaged in education by poor attendance and parental attitudes toward education and child rearing. The Portland Schools' Gypsy Education Project attempts the gradual mainstreaming of Gypsies into regular classrooms through special group instruction within a normal elementary school environment. (SK)

  9. Portland, Oregon: Solar in Action (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Sulfate attack monitored by microCT and EDXRD: Influence of cement type, water-to-cement ratio, and aggregate

    SciTech Connect

    Naik, N.N.; Jupe, A.C.; Stock, S.R.; Wilkinson, A.P.; Lee, P.L.; Kurtis, K.E. . E-mail: kkurtis@ce.gatech.edu

    2006-01-15

    X-ray microtomography (microCT) and spatially resolved energy dispersive X-ray diffraction (EDXRD) were used in combination to non-destructively monitor the physical and chemical manifestations of damage in Portland cement paste samples subjected to severe sodium sulfate attack. Additional measurements of expansion and compressive strength were made on complementary mortar and cement paste specimens. Specifically, the influences of cement type (ASTM Types I and V), water-to-cement ratio (0.485 and 0.435), and the presence of aggregate on the rate and forms of damage were examined. As expected, Type V cement samples exhibited less cracking and expansion than the Type I cement samples. EDXRD indicated an anticorrelation between ettringite and gypsum in the near-surface region for Type V samples, which may be associated with crack formation. An unanticipated result for Type I cement pastes was that cracking was apparent at earlier exposure times and progressed more rapidly for samples with w/c of 0.435, than for those with w/c of 0.485. Possible mechanisms for this behavior are proposed. The presence of aggregate particles resulted in a more rapid rate of cracking, as compared to the corresponding cement paste sample.

  11. Response of a PGNAA setup for pozzolan-based cement concrete specimens.

    PubMed

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Raashid, M

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  12. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    SciTech Connect

    Kinoshita, Hajime; Swift, Paul; Utton, Claire; Carro-Mateo, Beatriz; Collier, Nick; Milestone, Neil

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  13. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  14. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  15. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  16. Influence of cement kiln dust substitution on the mechanical properties of concrete

    SciTech Connect

    Shoaib, M.M.; Balaha, M.M.; Abdel-Rahman, A.G.

    2000-03-01

    Large quantities of cement kiln dust (CKD) are produced during the manufacture of cement clinker by the dry process. The technical and economical problems that arise for the semi-manufacture of raw materials used, energy and transportation of dust from the plant to outside, as well as the severe pollution to the surrounding atmosphere show the necessity of utilizing cement dust as one of the main objectives of the investigation. The cement dust contains a mixture of raw feed as well as calcined materials with some volatile salts. The aim of the present work is to study the effect of cement dust substitution instead of ordinary Portland cement (OPC), blast furnace slag cement (BFSC), and sulfate resistance cement (SRC) on the mechanical properties of some concrete mixes containing them, and also, to determine the optimum quantity of CKD which could be recycled in the manufacture of these types of cements. Useful conclusions and recommendations concerning the use of different amounts of CKD in the production of some blended cements as a partial substitution from different types of cements were obtained.

  17. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending. PMID:21047057

  18. Characterization of eco-cement paste produced from waste sludges.

    PubMed

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Lin, Tung-Tsan

    2011-06-01

    In this study, marble sludge, sewage sludge, drinking water treatment plant sludge, and basic oxygen furnace sludge were used as replacements for limestone, sand, clay, and iron slag, respectively, as the raw materials for the production of cement in order to produce eco-cement. It was found that it is feasible to use marble sludge to replace up to 50% of the limestone and also that other materials can serve as total replacements for the raw materials typically used in the production of cement. The major components of Portland cement were all found in eco-cement clinkers. The eco-cement was confirmed to produce calcium hydroxide and calcium silicate hydrates during the hydration process, increasing densification with the curing age. The compressive strength (S(c)) and microstructural evaluations conducted at 28 d revealed the usefulness of eco-cement. It was observed that the S(c) data correlated linearly with the pore volume (P) data at 28 d. The proposed model equation could be represented as S(c)=178-461P (correlation coefficient, R(2)=0.96). Two parameters, the large capillary pore volume and the medium capillary pore volume, were evaluated using multiple regression analysis. PMID:21570706

  19. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  20. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    SciTech Connect

    Snellings, R.; Salze, A.; Scrivener, K.L.

    2014-10-15

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standard addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements.

  1. Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography.

    PubMed

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-01

    X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm(3), porosity: 40%) and the carbonated zone (density: 2.27 g/cm(3), porosity: 23%) after reaction with CO(2)-saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm(3), porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO(2) attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO(2) leakage.

  2. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography

    SciTech Connect

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-02

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.

  3. Lightweight CO{sub 2}-resistant cements for geothermal well completions

    SciTech Connect

    Kukacka, L.E.; Sugama, T.

    1994-05-01

    Alkali metal catalyzed reactions between CO{sub 2}-containing brines and portland cement-based well cements can result in rapid strength reductions, increased permeability and casing corrosion, reduced well life, increased costs, and environmental concerns. Materials formed by acid-base reactions between calcium aluminate compounds and phosphate-containing solutions yield high strength, low permeability and CO{sub 2}-resistant cements when cured in hydrothermal environments. The cementing formulations are pumpable for several hours at temperatures up to 150C, thereby making their use for well completions technically feasible. When this cementing matrix was exposed in an autoclave containing Na{sub 2}CO{sub 3}-saturated brine for 120 days, < 0.4 wt% CaCO{sub 3} was produced. A conventional portland cement-based well completion material will form {approx} 10 wt% CaCO{sub 3} after only 7 days exposure. Addition of hollow aluminosilicate microspheres to the uncured matrix constituents yields slurries with densities as low as {approx} 1.2 g/cc which cure to produce materials with properties meeting the criteria for well cementing. Laboratory characterization is nearing completion, engineering scale-up is underway, and plans for field testing in a variety of geothermal fluids are being made.

  4. Properties of radioactive wastes and waste containers. Quarterly progress report, July-September 1980. [Resin/bitumen composites; cement/ion exchange resin

    SciTech Connect

    Morcos, N.; Weiss, A.J.

    1981-01-01

    A study was initiated to evaluate the leachability and integrity of bitumen/organic ion exchange resin composites. Mixtures of anionic and cationic resins in the SO/sub 4//sup -2/, H/sup +/, Cs/sup +/, and Sr/sup +2/ forms were used. The leachability of sodium and cesium from the bitumen/organic ion exchange resin composites was observed to increase when anionic resins in the sulfate form were incorporated in the composite. Topical application of a coat of bitumen on these composites decreased Na leachability by sixfold. The leachability of cesium-137 from cement waste forms and cement/organic ion exchange resin (H/sup +/ form) was studied. Portland II and lumnite cements were used in making the forms. Cesium-137 was leached at a faster rate from portland II/ion exchange resin composites that contained the higher ratio of cement to resins, and also from portland II cement waste forms than from that were made with lumnite cement. An experiment was initiated to study the volumetric changes of organic ion exchange resin beds in aquwous media as a function of ionic species and their concentrations in an aqueous milieu. The species studied were cesium, strontium, and aluminum. The resin volumes were observed to decrease when the solute ionic concentration increased, and a hysteresis effect was observed when the solute concentration was then decreased. The resin bed volumes were observed to increase as the solute concentrations decreased, but the resin volumes did not return to their original values. This observed shrinking and swelling is used to explain the disintegration of cement/organic ion exchange resin composites when immersed in water. The paper on ''Radiation effects on ion exchangers used in radioactive waste management'' in Appendix A has been processed separately for inclusion in the Energy Data Base. 18 refs., 15 figs., 13 tabs.

  5. A review of binders used in cemented paste tailings for underground and surface disposal practices.

    PubMed

    Tariq, Amjad; Yanful, Ernest K

    2013-12-15

    Increased public awareness of environmental issues coupled with increasingly stringent environmental regulations pertaining to the disposal of sulphidic mine waste necessitates the mining industry to adopt more competent and efficient approaches to manage acid rock drainage. Cemented paste tailings (CPT) is an innovative form of amalgamated material currently available to the mining industry in developed countries. It is made usually from mill tailings mingled with a small amount of binder (customarily Portland cement) and water. The high cost associated with production and haulage of ordinary Portland cement and its alleged average performance as a sole binder in the long term (due to vulnerability to internal sulphate attack) have prompted users to appraise less expensive and technically efficient substitutes for mine tailings paste formulations. Generally, these binders include but are not limited to sulphate resistant cements, and/or as a partial replacement for Portland cement by artificial pozzolans, natural pozzolans, calcium sulphate substances and sodium silicates. The approach to designing environmentally efficient CPT is to ensure long-term stability and effective control over environmental contaminants through the use of composite binder systems with enhanced engineering properties to cater for inherit deficiencies in the individual constituents. The alkaline pore solution created by high free calcium rich cement kiln dust (CKD) (byproduct of cement manufacturing) is capable of disintegrating the solid glassy network of artificial pozzolans to produce reactive silicate and aluminate species when attacked by (OH(-)) ions. The augmented pozzolanic reactivity of CKD-slag and CKD-fly ash systems may produce resilient CPT. Since cemented paste comprising mine tailings and binders is a relatively new technology, a review of the binding materials used in such formulations and their performance evaluation in mechanical fill behaviour was considered pertinent in

  6. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    NASA Astrophysics Data System (ADS)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  7. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products

    SciTech Connect

    Arjunan, P.; Silsbee, M.R.; Roy, D.M.

    1999-08-01

    The study describes the preparation and characterization of an environmentally friendly cement with performance characteristics similar to those of Portland cement, from a lime kiln bag house dust, a low-calcium fly ash, and a scrubber sludge. Promising preliminary results show the formation of relatively low-temperature phases calcium sulfoaluminate (4CaO{center{underscore}dot}3Al{sub 2}O{sub 3}{center{underscore}dot}SO{sub 3}) and dicalcium silicate (2CaO{center{underscore}dot}SiO{sub 2}) at {approximately} 1,250 C if nodulized raw means used for clinker preparation and at 1,175 C if powdered raw meal is used as compared to the {approximately} 1,500 C sintering temperature required for Portland cement. Phases of the developed cements were predicted using modified Bogue calculations. Isothermal calorimetric measurements indicate the hydration properties of the cements are comparable to ordinary Portland cement. Mechanical properties and microstructural evaluations also were carried out.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  9. Mechanical properties of magnesium ammonium phosphate cements and their zeolite composites

    SciTech Connect

    Wagh, A.S.; Singh, D.; Subhan, W.; Chawla, N.

    1993-04-01

    Phosphate-bonded cements have been proposed as candidates for solidification and stabilization of mixed wastes. Magnesium ammonium phosphate (MAP) has been investigated as a candidate material. Detailed physical and mechanical properties of MAP cement are reported. It is synthesized by the route of reaction of calcined MgO and ammonium phosphate solution. Samples are made by setting the cement at room temperature and slight pressure. The porosity is reduced to {approximately}11% by impregnation of ammonium phosphate solution. Detailed mechanical properties such as flexural strength, fracture toughness and compression strength are reported and fracture mechanical analyses supported with scanning electron microscopy are provided. Properties of composites of these cements with zeolites, which may be used for containment of radioactive as well as chemical waste are studied. We demonstrate that the strengths of these composites compare well with portland cement even after 50% loading of zeolites. Fracture mechanical implications of such loadings are given.

  10. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    PubMed

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar.

  11. Nano-scale hydrogen-bond network improves the durability of greener cements

    PubMed Central

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  12. Nano-scale hydrogen-bond network improves the durability of greener cements.

    PubMed

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T F; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P; Bordallo, Heloisa N

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free "greener" building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  13. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    SciTech Connect

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-15

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.

  14. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  15. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    PubMed

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.

  16. Waste tires as auxiliary fuel for cement kilns

    SciTech Connect

    Dodds, J.

    1987-01-01

    The subject I have been asked to speak about is the utilization of scrap tires as an auxiliary fuel for cement kilns. My experience with scrap tires began five years ago when we performed a technical and economic evaluation for tire pyrolysis. I work for the Idaho National Engineering Laboratory which is supported by the Department of Energy. My interest in scrap tires continued; in 1984 the Department of Energy and the Portland Cement Association jointly sponsored a conference on the utilization of scrap tires in cement kilns. Most of my remarks today are based upon that conference along with some current information in the US. Mr. Sladek requested that I speak on the combustion process, the progress to date, and the factors that impede or encourage implementation of using scrap tires in cement kilns. For discussion purposes it would help if we had a common understanding of the cement manufacturing process. Cement is made by heating a mixture of finely ground limestone and silica from clay or sand to about 1450/degree/C in a large rotating kiln. The heat causes the limestone to decarbonate and subsequently react with the silica to form calcium silicates. 5 figs.

  17. Active iron-rich belite sulfoaluminate cements: clinkering and hydration.

    PubMed

    Cuberos, Antonio J M; De la Torre, Angeles G; Alvarez-Pinazo, G; Martín-Sedeño, M Carmen; Schollbach, Katrin; Pöllmann, Herbert; Aranda, Miguel A G

    2010-09-01

    Ordinary Portland cement (OPC) is an environmentally contentious material, as for every ton of OPC produced, on average, 0.97 tons of CO2 are released. Conversely, belite sulfoaluminate (BSA) cements are promising eco-friendly building materials, as their production may deplete CO2 emissions up to 35% (compared to OPC). However, the hydration rate of belite is slow. Here, we report the clinkering of iron-rich BSA materials, their activation with B2O3, and establishing a methodology to measure their improved reactivities. Nonactivated BSA clinker contained only beta belite phase, 52 wt %. Meanwhile, BSA clinkers activated with 1 and 2 wt % of B2O3 contained 28 wt % of beta and 25 wt % of alpha'H; and 54 wt % of alpha'H phase, respectively. Therefore, activation of BSA has been proved as alpha'H-belite is stabilized. The hydration of the cements has been studied by laboratory and synchrotron X-ray powder diffraction (using Rietveld method and chemical constraints), calorimetry, and environmental scanning electron microscopy. Cement pastes have different hydration rates. For nonactivated BSA cement, 20 and 48% of the belite reacted after one and three months, respectively. Conversely, 37-49% after one month and 52-62% after three months of overall belite reactivities have been measured for BSA cements activated with B2O3. PMID:20701316

  18. Reducing CO2-Emission by using Eco-Cements

    NASA Astrophysics Data System (ADS)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  19. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  20. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  1. Solidification and stabilization of asbestos waste from an automobile brake manufacturing facility using cement.

    PubMed

    Chan, Y M; Agamuthu, P; Mahalingam, R

    2000-10-01

    Currently, the generated brake lining waste dust, which contains asbestos as its major component, is disposed of into a secure landfill without any additional treatment. As an alternative to this, solidification/stabilization (S/S) disposal of the dust was investigated using Portland cement alone and Portland cement mixed with activated carbon (AC), as the binders. Toxicity Characteristics Leaching Procedure (TCLP) results on the solidified matrix showed that cement was able to immobilize the heavy metals, Ba, Zn, Cr, Pb, Cu and Fe, to within the limits set by the US EPA for TCLP. Addition of AC to the cement reduced the leaching of heavy metals by an additional 4-24% compared to cement alone. The pH of the TCLP leachate extracted from virgin cement, and from dust treated with cement with or without AC was found to increase to 10.9-12.5 as opposed to an initial value of 4.93 for the TCLP extract for the untreated dust. Results of ANS 16.1 (modified) leach protocol revealed that Ba in cement-treated samples showed the highest leach rate, followed by Zn, Pb, Cr, Cu and Fe. The leach rate of heavy metals decreased with progress in time. Cement mixed with AC exhibited similar leach characteristics, however, the leach rate was lower. The linear relationship between the cumulative fraction leached (CFL) and the square root of leaching time in all cement-based samples indicate that a diffusional process is the controlling transport mechanism for the leaching of the heavy metals. The obtained Leachability Indices (L(i)) of 7.6-9.1 and 8.3-9.5 for cement and cement with AC, respectively, were low but exceeded the guidance value of 6, which clearly indicates that all the heavy metals studied are retained well within solid matrices. Cement-based S/S hardening times increased from 30 to 96 h as the dust content increased from 40 to 70 wt.%. The resulting solid matrices exhibited a compressive strength ranging from 1 to 12 MPa, which was well above the specified limit of 414 k

  2. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens.

    PubMed

    Coussy, Samuel; Benzaazoua, Mostafa; Blanc, Denise; Moszkowicz, Pierre; Bussière, Bruno

    2012-01-01

    Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, indicating that As is well immobilized in the two types of CPB. PMID:22054566

  3. The effect of various types of cement dust on sulphur dioxide oxidation in the air.

    PubMed

    Vadjić, V; Gentilizza, M; Halle, R

    1988-07-01

    The effect of various types of cement dust on the behaviour of sulphur dioxide in the air was investigated on model systems in different experimental conditions.Experiments were carried out with PC-15z-45s (Portland-blast furnace cement containing 15% blast furnace slag), PC-25p-35s (Portland-pozzolan cement containing 25% pozzolan) and EFD (electrofilter dust).EFD most effectively removed SO2 from the air stream. The next efficacious was PC-15z-45s, whereas PC-25p-35s was the least efficient. The efficacy of cement dusts for SO2 removal from the air stream depended on their chemical and granulometric composition and in particular on the size of specific surface.The rate of reaction was also influenced by experimental conditions-relative humidity, the length of contact, that is, the flow rate of gaseous mixture through the reactor, and the amount of cement dust.The experimental data show that in the contact between SO2 and cement dust catalytic oxidation of SO2 to sulphates takes place. Sulphates remain bound to the surface, from which they cannot be thermally desorbed, but can be released by extraction in the Soxhlet apparatus.

  4. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    PubMed

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  5. 75 FR 39197 - Safety Zone; Fireworks Display, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Fireworks Display, Portland, OR AGENCY... support of the Oregon Symphony Celebration Fireworks Display, Portland, Oregon. The safety zone...

  6. 77 FR 58491 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Portland Marathon. This deviation allows the bridge to remain in the down or closed position during the marathon. DATES: This deviation is effective from 7:30 a.m. October 7, 2012 through 3 p.m. October 7, 2012..., uninterrupted roadway passage of participants of the Portland Marathon. The Broadway Bridge crosses...

  7. 77 FR 41685 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Willamette River, mile 13.1, at Portland, OR. This deviation is necessary to accommodate Portland's Big Float..., uninterrupted roadway passage of participants of the Big Float event. The Hawthorne Bridge crosses the Willamette River at mile 13.1 and provides 49 feet of vertical clearance above Columbia River Datum 0.0...

  8. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oregon Slough (North Portland... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough (North Portland Harbor). The draw of the Burlington Northern Santa Fe railroad bridge, mile 3.2...

  9. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oregon Slough (North Portland... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough (North Portland Harbor). The draw of the Burlington Northern Santa Fe railroad bridge, mile 3.2...

  10. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable... Areas § 110.6 Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). Beginning at the southeasterly corner of the wharf, at the most southerly point of Great Diamond Island...

  11. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable... Areas § 110.6 Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). Beginning at the southeasterly corner of the wharf, at the most southerly point of Great Diamond Island...

  12. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable... Areas § 110.6 Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). Beginning at the southeasterly corner of the wharf, at the most southerly point of Great Diamond Island...

  13. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable... Areas § 110.6 Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). Beginning at the southeasterly corner of the wharf, at the most southerly point of Great Diamond Island...

  14. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable... Areas § 110.6 Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). Beginning at the southeasterly corner of the wharf, at the most southerly point of Great Diamond Island...

  15. Impact of Wellbore Cement Degradation on CO2 Storage Integrity

    NASA Astrophysics Data System (ADS)

    Kutchko, B.; Strazisar, B.; Lowry, G.; Dzombak, D.; Thaulow, N.

    2007-12-01

    zone. Over the one-year time period of the experiments, this condition led to a smaller amount of total degradation than in the aqueous phase. However, in this case, there was no deceleration of the reaction observed. It is unlikely that the diffusion controlled degradation process observed in these experiments would lead to well failure in well completions that are well cemented with neat Portland cement (without additives). Further investigation is required to evaluate the effect of cement additives, fractures or channels in the cement, and geomechanical stress.

  16. Development of the Use of Alternative Cements for the Treatment of Intermediate Level Waste

    SciTech Connect

    Hayes, M.; Godfrey, I.H.

    2007-07-01

    This paper describes initial development studies undertaken to investigate the potential use of alternative, non ordinary Portland cement (OPC) based encapsulation matrices to treat historic legacy wastes within the UK's Intermediate Level Waste (ILW) inventory. Currently these wastes are encapsulated in composite OPC cement systems based on high replacement with blast furnace slag of pulverised fuel ash. However, the high alkalinity of these cements can lead to high corrosion rates with reactive metals found in some wastes releasing hydrogen and forming expansive corrosion products. This paper therefore details preliminary results from studies on two commercial products, calcium sulfo-aluminate (CSA) and magnesium phosphate (MP) cement which react with a different hydration chemistry, and which may allow wastes containing these metals to be encapsulated with lower reactivity. The results indicate that grouts can be formulated from both cements over a range of water contents and reactant ratios that have significantly improved fluidity in comparison to typical OPC cements. All designed mixes set in 24 hours with zero bleed and the pH values in the plastic state were in the range 10-11 for CSA and 5-7 for MP cements. In addition, a marked reduction in aluminium corrosion rate has been observed in both types of cements compared to a composite OPC system. These results therefore provide encouragement that both cement types can provide a possible alternative to OPC in the immobilisation of reactive wastes, however further investigation is needed. (authors)

  17. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    PubMed

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  18. Application of solvlent change techniques to blended cements used to immobilize low-level radioactive liquid waste

    SciTech Connect

    Kruger, A.A.

    1996-07-01

    The microstructures of hardened portland and blended cement pastes, including those being considered for use in immobilizing hazardous wastes, have a complex pore structure that changes with time. In solvent exchange, the pore structure is examined by immersing a saturated sample in a large volume of solvent that is miscible with the pore fluid. This paper reports the results of solvent replacement measurements on several blended cements mixed at a solution:solids ratio of 1.0 with alkaline solutions from the simulation of the off- gas treatment system in a vitrification facility treating low-level radioactive liquid wastes. The results show that these samples have a lower permeability than ordinary portland cement samples mixed at a water:solids ratio of 0.70, despite having a higher volume of porosity. The microstructure is changed by these alkaline solutions, and these changes have important consequences with regard to durability.

  19. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  20. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  1. Dust exposure and respiratory health effects in cement production.

    PubMed

    Kakooei, Hossein; Gholami, Abdollah; Ghasemkhani, Mehdi; Hosseini, Mostapha; Panahi, Davoud; Pouryaghoub, Golamreza

    2012-01-01

    Dust can be produced by almost all production processes in Portland cement factory. Dust exposure potentially can affect respiratory function. But evidence for respiratory effect of cement dust exposure has not been conclusive. In this study we assessed effect of cement dust exposure on respiratory function in a cement production factory. A respiratory symptoms questionnaire was completed and pulmonary function tests were carried out on 94 exposed and 54 non exposed workers at a cement factory in the east of Iran. Additionally, respirable dust level was determined by the gravimetric method. X-ray fluorescence (XRF) technique was performed to determine the silica phases and the SiO(2) contents of the bulk samples. The arithmetic means (AM) of personal respirable dust were 30.18 mg/m(3) in the crushing, 27 mg/m(3) in the packing, 5.4 mg/m(3) in the cement mill, 5.9 mg/m(3) in the kiln and 5.48 mg/m(3) in the maintenance that were higher than threshold limit value (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH) which is 5 mg/m(3). This value in the unexposed group was 0.93 mg/m(3). In this study cough, sputum, wheezing and dyspnea were more prevalent among exposed subjects. Exposed workers compared to the unexposed group showed significant reduction in Forced Expiratory Volume in one second (FEV(1)), Forced Vital Capacity (FVC), and Forced Expiratory Flow between 25% and 75% of the FVC (FEF(25-75%)) (P<0.05). It can be concluded that in our study there was close and direct association between cement dust exposure and functional impairment among the cement factory workers. PMID:22359082

  2. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    SciTech Connect

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore

  3. Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites.

    PubMed

    Payá, J; Bonilla, M; Borrachero, M V; Monzó, J; Peris-Mora, E; Lalinde, L F

    2007-01-01

    New composite materials based on an alkali-resistant glass-fibre reinforced cement (AR-GRC) system are being developed by using fly ash (FA) produced at coal thermoelectric power plants, and fluid catalytic cracking catalyst residue (FC3R) from the petrol industry as cement replacement materials. These wastes are reactive from the pozzolanic viewpoint, and modify the nature and the microstructure of the cement matrix when a part of the Portland cement is replaced in the formulation of GRC. Several microstructural and mechanical aspects are being studied for AR-GRC systems. The behaviour of composites exposed to ageing shows that the pozzolanic activity of the ground FA added in high amounts and its mixture with the FC3R increase the flexural strength and no evidences of strength decay are observed. Additionally, the fibres due to the high alkalinity of the cementing matrix can be deteriorated. Fibres in the control (only Portland cement) and FC3R containing composites were attacked, whereas composites with FA and their mixture with FC3R show that the fibres have not been attacked, due to the pozzolanic activity of replacing materials that reduce the calcium hydroxide content in the cementing matrix. PMID:17512718

  4. Age-Friendly Portland: a university-city-community partnership.

    PubMed

    Neal, Margaret B; DeLaTorre, Alan K; Carder, Paula C

    2014-01-01

    This article addresses the question of how creating an age-friendly city has come to be an important policy and planning issue in Portland, Oregon. In 2006, researchers from Portland State University's Institute on Aging examined the meanings of age friendliness among a broad range of participants in Portland, Oregon. The research was conducted in conjunction with the World Health Organization's (WHO) Age-Friendly Cities project and followed the completion of two earlier non-WHO-related projects. The city of Portland, through the Institute on Aging, was one of nine original members to apply for and be accepted into the WHO Global Network of Age-Friendly Cities and Communities. An Age-Friendly Portland Advisory Council was formed to guide the development of an action plan, monitor progress over time, and suggest additional research. To understand how Portland's age-friendly policy effort has developed over time, we use Kingdon's (1984) agenda-setting framework to explain how the policy problem was formulated, how solutions were developed, and the influence of local politics. The policy actors, including individuals and organizations working within and outside of government, are described. The Portland experience provides a case study that other cities, especially those with a strong commitment to community-engaged urban planning, may find useful as they develop age-friendly initiatives. PMID:24266636

  5. Age-Friendly Portland: a university-city-community partnership.

    PubMed

    Neal, Margaret B; DeLaTorre, Alan K; Carder, Paula C

    2014-01-01

    This article addresses the question of how creating an age-friendly city has come to be an important policy and planning issue in Portland, Oregon. In 2006, researchers from Portland State University's Institute on Aging examined the meanings of age friendliness among a broad range of participants in Portland, Oregon. The research was conducted in conjunction with the World Health Organization's (WHO) Age-Friendly Cities project and followed the completion of two earlier non-WHO-related projects. The city of Portland, through the Institute on Aging, was one of nine original members to apply for and be accepted into the WHO Global Network of Age-Friendly Cities and Communities. An Age-Friendly Portland Advisory Council was formed to guide the development of an action plan, monitor progress over time, and suggest additional research. To understand how Portland's age-friendly policy effort has developed over time, we use Kingdon's (1984) agenda-setting framework to explain how the policy problem was formulated, how solutions were developed, and the influence of local politics. The policy actors, including individuals and organizations working within and outside of government, are described. The Portland experience provides a case study that other cities, especially those with a strong commitment to community-engaged urban planning, may find useful as they develop age-friendly initiatives.

  6. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack

    PubMed Central

    Feng, Pan; Garboczi, Edward J.; Miao, Changwen; Bullard, Jeffrey W.

    2015-01-01

    A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields. Constrained ettringite growth happens primarily at the expense of calcium monosulfoaluminate, carboaluminate and aluminum-rich hydrotalcite, if any, respectively. Expansion and damage can be mitigated chemically by increasing carbonate and magnesium concentrations or microstructurally by inducing a finer dispersion of monosulfate. PMID:26722191

  7. Swelling and Stress Relaxation in Portland Brownstone

    NASA Astrophysics Data System (ADS)

    Jimenez, I.; Scherer, G.

    2003-04-01

    Portland Brownstone (PB) is an arkose sandstone extensively used in the northeast-ern USA during the nineteenth century. This reddish-brown stone contains a fraction of swelling clays that are thought to contribute to its degradation upon cycles of wet-ting and drying. During drying events, contraction of the drying surface leads to stresses approaching the tensile strength of the stone. However, we have found that the magnitude of these stresses is limited by the ability of the stone to undergo stress relaxation. In this paper we describe novel methods to determine the magnitude of the stresses and the rate at which they develop and relax. We also discuss the influ-ence of surfactants on the magnitude of swelling and the rate of the stress relaxation of PB. The implications of our findings for the understanding of damage due to swelling of clays are discussed.

  8. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  9. The role of calcium ions and lignosulphonate plasticiser in the hydration of cement

    SciTech Connect

    Grierson, L.H.; Knight, J.C.; Maharaj, R

    2005-04-01

    Experiments involving equilibrium dialysis, conductivity, X-ray diffraction analysis (XRD), differential thermal analysis (DTA) and isothermal titration calorimetry (ITC) have been carried out to investigate the role of calcium ions and polymeric plasticisers in cement/admixture hydration. Results from a study of lignosulphonic acid, sodium salt, acetate as a plasticiser shows that a plasticiser has dual role; one mainly as a kinetic inhibitor (poison) in cement hydration mechanism and the other as a dispersant. Evidence of a weak Ca{sup 2+} binding to lignosulphonate sulphonic moieties was found at low ionic strengths of 0.1 M using ITC. No evidence of formal Ca{sup 2+} binding to lignosulphonate sulphonic acid moieties was found using equilibrium dialysis at higher ionic strength of 1 M (ionic strengths of 0.4 M are typically found in Portland cement pore solution), as is often suggested in cement/admixture literature.

  10. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress

    SciTech Connect

    Papadakis, V.G.

    2000-02-01

    In this work the durability of Portland cement systems incorporating supplementary cementing materials (SCM; silica fume, low- and high-calcium fly ash) is investigated. Experimental tests simulating the main deterioration mechanisms is reinforced concrete (carbonation and chloride penetration) were carried out. It was found that for all SCM tested, the carbonation depth decreases as aggregate replacement by SCM increases, and increases as cement replacement by SCM increases. The specimens incorporating an SCM, whether it substitutes aggregate or cement, when exposed to chlorides exhibit significantly lower total chloride content for all depths from the surface, apart from a thin layer near the external surface. New parameter values were estimated and existing mathematical models were modified to describe the carbonation propagation and the chloride penetration in concrete incorporating SCM.

  11. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods.

    PubMed

    Mason, Harris E; Walsh, Stuart D C; DuFrane, Wyatt L; Carroll, Susan A

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining "effective linear activity coefficients" (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment. PMID:24869420

  12. Mathematical modeling of cement paste microstructure by mosaic pattern. Part II. Application

    SciTech Connect

    Tennis, P.D.; Xi, Y.; Jennings, H.M.

    1997-07-01

    A model based on mosaic pattern analysis is shown to have the potential to describe the complex shapes and spatial distribution of phases in the microstructures of multiphase materials. Several characteristics of both micrographs of portland cement pastes and images generated using the few parameters of the model are determined and, for the most part, agreement is good. The advantage is that spatial features of the microstructures can be captured by a few parameters. {copyright} {ital 1997 Materials Research Society.}

  13. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    SciTech Connect

    Walker, B.W.

    2000-01-11

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials.

  14. The effect of sulfate activation on the early age hydration of BFS:PC composite cement

    NASA Astrophysics Data System (ADS)

    Collier, N. C.; Li, X.; Bai, Y.; Milestone, N. B.

    2015-09-01

    Blast furnace slag/Portland cement composites are routinely used for immobilising intermediate level nuclear wastes in the UK. Using high cement replacement levels reduces hydration exotherm and lowers pH. Although a lower grout pH will be beneficial in reducing the corrosion of certain encapsulated reactive metals such as aluminium, the degree of slag reaction will also be lower which may result in the formation of less hydration products and which in turn may reduce the capacity to immobilise waste ions. Adding neutral salts such as calcium and sodium sulfate to the composite cement can potentially increase slag activation without significantly altering the pH of the cement matrix. Thus the corrosion of any encapsulated metals would not be affected. This paper describes some of the properties of a hydrated 9:1 blast furnace slag:Portland cement matrix containing added sulfates of calcium and sodium. The findings show that all additives caused an increase in the amount of slag that reacted when cured for up to 28 days. This produced more material able to chemically bind waste ions. Activation with gypsum produced the highest rate of slag reaction.

  15. Design and characterization of low-heat and low-alkalinity cements

    SciTech Connect

    Codina, M.; Cau-dit-Coumes, C.

    2008-04-15

    Investigations were carried out to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Several systems comprising Portland cement, a pozzolan (silica fume or fly ash) and blastfurnace slag were compared. All blends were characterized by high amounts of additions, the Portland cement (PC) fraction ranging only from 20 to 60%. Cement hydration was studied using several techniques: X-ray Diffraction, TGA-DTA, calorimetry, pore solution extraction and microscopy. The most important result obtained with some ternary blends was the drop in the pore solution pH by more than one unit as compared with control samples elaborated with commercial cements. The alkali content ({approx} 1 to 4 mmol/L) of the interstitial solution was also strongly reduced. The blends exhibited a low-heat output as required. Leaching tests carried out in pure water indicated a very slow decalcification of the samples. Several techniques such as optical microscopy, SEM/BSE, X-ray microanalysis or X-ray diffraction were compared to estimate the degraded thickness.

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  17. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  18. Interfacial Evolution of Cement and Steel in CO2 Dissolved Solution Under High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Ren, Chengqiang; Peng, Ye; Li, Bing; Wang, Shuliang; Shi, Taihe

    2016-09-01

    The experiments were operated for the cylindrical sample (cement/steel) in high temperature and high pressure (HTHP) CO2 environment to simulate surrounding CO2 attack in oil and gas well. The interfacial evolutions between well cement and casing steel were measured, including mechanical property, structure alteration, chemical change and electrochemical character. The interfacial behaviors are attributed to the competition of hydration and degradation of Portland cement. The damage at the interface was faster than the cement bulk deterioration by carbonation. Thus, the interface provided a potential flow leakage pathway for the HTHP gas and fluid in the well, so improving interfacial stability between well cement and casing steel is the key issue to long-term zonal isolation.

  19. Utilization of flotation wastes of copper slag as raw material in cement production.

    PubMed

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  20. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    NASA Astrophysics Data System (ADS)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  1. Self-cleaning and mechanical properties of modified white cement with nanostructured TiO2.

    PubMed

    Khataee, R; Heydari, V; Moradkhannejhad, L; Safarpour, M; Joo, S W

    2013-07-01

    In the present study, self-cleaning and mechanical properties of white Portland cement by addition of commercial available TiO2 nanoparticles with the average particle size of 80 nm were investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET were used to characterize TiO2 nanoparticles. For determination of self-cleaning properties of TiO2-modified white cement, colorimetric tests in decolorization of C.I. Basic Red 46 (BR46) in comparison to unmodified cement samples was applied. The results indicated that with increasing the amount of TiO2 nanoparticles in modified cement, self-cleaning property of the samples increased. The mechanical properties of TiO2-modified and unmodified cement samples, such as time of setting of hydraulic cement, compressive strength of hydraulic cement mortar and flexural strength of hydraulic cement mortar were examined. The results indicated that addition of TiO2 nanoparticles up to maximum replacement level of 1.0% improved compressive and flexural strength and decreased its setting time.

  2. Characterization and restoration of historic Rosendale cement mortars for the purpose of restoration

    NASA Astrophysics Data System (ADS)

    Hart, Stephanie Anne

    Mortar was a very common building material in today's historic sites. Before Portland cement was manufactured at a global level, Rosendale cement was commonly used in these mortars. Over time, these mortars in historic sites have begun to break down and wear away. With Rosendale cement in production again, measures can be taken to restore and repair the historic mortars. However, little testing has been done to establish durability of modern Rosendale cement mortars. This presentation highlights the common mix techniques used at the time, and undergoes experiments to establish general properties and predict future durability. Six different mortar mixes were tested with varying cement content and using various lime additions. Properties observed include compressive strength, absorption, porosity, permeability, and bond strength. Ion chromatography was used on seawater-soaked samples to determine how the Rosendale cement mortar would react with the seawater. Relationships between these properties were also addressed. It was found that cement content played a large role in compressive strength, while lime content had an effect on bond strength. Ion chromatography was used on seawater-soaked samples to determine how the Rosendale cement mortar would react with the seawater. Magnesium sulfates, and chloride were taken up into the mortars, indicating that Rosendale would be venerable to salt attack.

  3. 91. VIEW OF PORTLAND FILTER VACUUM RECEIVER FROM NORTHWEST. AGITATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF PORTLAND FILTER VACUUM RECEIVER FROM NORTHWEST. AGITATORS No. 4 AND No. 5 VISIBLE IN BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. 77 FR 26437 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... of Portland's Rock-n-Roll Half Marathon. This deviation allows the bridge to remain in the closed... facilitate safe, uninterrupted roadway passage of participants of the Rock-n-Roll Half Marathon event....

  5. 78 FR 21064 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Portland's Rock-n-Roll Half Marathon. This deviation allows the bridge to remain in the closed position to... roadway passage of participants of the Rock-n-Roll Half Marathon event. The Hawthorne Bridge crosses...

  6. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... efficient movement of light rail and roadway traffic associated with the Rose Parade in Portland, Oregon... roadway traffic associated with the Rose Parade. The Steel Bridge crosses the Willamette River at mile...

  7. 77 FR 43164 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Hawthorne Bridge, mile 13.1, all crossing the Willamette River at Portland, OR. This deviation is necessary..., the Morrison Bridge, mile 12.8, and the Hawthorne Bridge, mile 13.1, all crossing the Willamette...

  8. Solidification/stabilization of technetium in cement-based grouts

    SciTech Connect

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.; Oak Ridge Gaseous Diffusion Plant, TN; Oak Ridge National Lab., TN; Oak Ridge Gaseous Diffusion Plant, TN )

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs.

  9. Hydration reactions of cement combinations containing vitrified incinerator fly ash

    SciTech Connect

    Dyer, Thomas D.; Dhir, Ravindra K

    2004-05-01

    One treatment option for municipal solid waste incinerator fly ash (IFA) is vitrification. The process yields a material containing reduced levels of trace metals relative to the original ash. The material is glassy and potentially suitable as a cement component in concrete. This paper examines the vitrification of an IFA and studies the hydration reactions of combinations of this vitrified material and Portland cement (PC). Isothermal conduction calorimetry, powder X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy were employed to study the hydration reactions. As the levels of vitrified ash increase, the quantities of AFt phase produced decrease, whilst quantities of AFm phase increase, due to the reduced levels of sulfate in the vitrified ash. The levels of calcium silicate hydrate (CSH) gel (inferred from estimates of quantities of gel-bound water) remain constant at 28 days regardless of vitrified ash content, indicating that the material is contributing toward the formation of this product.

  10. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.

    PubMed

    Lee, Tzen-Chin; Rao, Ming-Kang

    2009-06-01

    Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38microm for use as a cement substitute (20-40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3-11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.

  11. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    SciTech Connect

    Winnefeld, Frank; Lothenbach, Barbara

    2010-08-15

    Calcium sulfoaluminate cements (CSA) are a promising low-CO{sub 2} alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH){sub 3} until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additional hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.

  12. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much

  13. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE PAGES

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  14. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  15. Radioactive wastes dispersed in stabilized ash cements

    SciTech Connect

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  16. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... the domestic interested party group response to its notice of institution (76 FR 24519, May 2, 2011... section 201.8 of the Commission's rules, as amended, 67 FR 68036 (November 8, 2002). Even where electronic... II(C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173 (November...

  17. Iterated transportation simulations for Dallas and Portland

    SciTech Connect

    Nagel, K.; Simon, P.; Rickert, M.; Esser, J.

    1998-09-02

    The goal of the TRansportation ANalysis and SIMulation System (TRANSIMS) is to combine the most important aspects of human decision-making related to transportation, from activities planning (sleep, work, eat, shop,...) via modal and route planning to driving, into a single, consistent methodological and software framework. This is meant to combine the functionalities of activities-based travel demand generation, modal choice and route assignment, and micro-simulation. TRANSIMS attempts to employ advanced methodologies in all these modules. Yet, it is probably the overall framework that is the most important part of this attempt. It is, for example, possible to replace the TRANSIMS microsimulation by another micro-simulation that uses the same input and generates the same output. TRANSIMS uses specific regions as examples in order to ensure that the technology is rooted in the real world. Until about the middle of 1997, an approximately five miles by five miles area in Dallas/Texas was used. Since then, TRANSIMS has moved to using data from Portland/Oregon; a case study for this region is planned to be completed by the end of the year 2000. In this paper the authors give short descriptions of these projects and give references to related publications.

  18. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  19. Cementation of indirect restorations: an overview of resin cements.

    PubMed

    Stamatacos, Catherine; Simon, James F

    2013-01-01

    The process of ensuring proper retention, marginal seal, and durability of indirect restorations depends heavily on effective cementation. Careful consideration must be made when selecting an adhesive cement for a given application. This article provides information on resin cements that can guide clinicians in determining which type of cement is best suited to their clinical needs regarding cementation of indirect restorations. Emphasis is placed on successful cementation of all-ceramic restorations.

  20. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  1. Radon exhalation of cementitious materials made with coal fly ash: Part 2--testing hardened cement-fly ash pastes.

    PubMed

    Kovler, K; Perevalov, A; Levit, A; Steiner, V; Metzger, L A

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash (FA), cement and other components of building products is due to the concern about health hazards of naturally occurring radioactive materials (NORM). The paper focuses on studying the influence of FA on radon exhalation rate (radon flux) from cementitious materials. In the previous part of the paper the state of the art was presented, and the experiments for testing raw materials, Portland cement and coal fly ash, were described. Since the cement and FA have the most critical role in the radon release process relative to other concrete constituents (sand and gravel), and their contribution is dominant in the overall radium content of concrete, tests were carried out on cement paste specimens with different FA contents, 0-60% by weight of the binder (cement+FA). It is found that the dosage of FA in cement paste has a limited influence on radon exhalation rate, if the hardened material is relatively dense. The radon flux of cement-FA pastes is lower than that of pure cement paste: it is about approximately 3 mBq m(-2) s(-1) for cement-FA pastes with FA content as high as 960 kg m(-3).

  2. Characterization of modified calcium-silicate cements exposed to acidic environment

    SciTech Connect

    Camilleri, Josette

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  3. Photocatalytic cementitious materials: influence of the microstructure of cement paste on photocatalytic pollution degradation.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-12-01

    Incorporation of nanophotocatalysts into cementitious materials is an important development in the field of photocatalytic pollution mitigation. In this study, the photocatalytic nitrogen oxides (NO(x)) conversion by titanium dioxide (TiO(2)) blended cement pastes was used as a standard process to evaluate the internal factors that may influence the depollution performance. The chemical composition and microstructure of the TiO(2) modified cement pastes were characterized and analyzed. The active photocatalytic sites related to the surface area of TiO(2) are the key factor in determining the photocatalytic activity. Ordinary Portland cement pastes showed lower photocatalytic activity than white cement pastes probably due to the influence of minor metallic components. X-ray diffraction and thermal gravity analysis demonstrated that TiO(2) was chemically stable in the hydrated cement matrix. The NO(x) removal ability decreased with the increase of curing age. This could be attributed to the cement hydration products which filled up capillary pores forming diffusion barriers to both reactants and photons. It was also proved that surface carbonation could reduce the photocatalytic pollution removal efficiency after the hydration of cement.

  4. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability.

    PubMed

    Berger, Stéphane; Cau Dit Coumes, Céline; Le Bescop, Patrick; Damidot, Denis

    2011-10-30

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize wastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl(2) mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled its rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrates assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, strätlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes.

  5. Mortality and cancer incidence among Lithuanian cement producing workers

    PubMed Central

    Smailyte, G; Kurtinaitis, J; Andersen, A

    2004-01-01

    Aims: To investigate mortality and cancer incidence of cement producing workers. Methods: A total of 2498 cement workers who have been employed at Portland cement producing departments for at least one year from 1956 to 2000 were followed up from 1 January 1978 to 31 December 2000. The cohort contributed 43 490 person-years to the study. Standardised incidence ratios (SIR) and standardised mortality ratios (SMR) were calculated as ratios between observed and expected numbers of cancers and deaths. The expected numbers were based on sex specific incidence and mortality rates for the total Lithuanian population. Results: Significantly increased SMRs were found for all malignant neoplasms (SMR 1.3, 95% CI 1.0 to 1.5) and for lung cancer (SMR 1.4, 95% CI 1.0 to 1.9) among male cement workers. SIR for all cancer sites was 1.2 (95% CI 1.0 to 1.4). Excess risk was found for cancer of the lung (SIR 1.5, 95% CI 1.1 to 2.1). The SIR for urinary bladder cancer was also increased (SIR 1.8, 95% CI 0.9 to 3.5). The overall cancer incidence was not increased among females (SIR 0.8, 95% CI 0.6 to 1.1). With increasing cumulated exposure to cement dust, there were indications of an increasing risk of lung and stomach cancers among males. Conclusions: This study supported the hypothesis that exposure to cement dust may increase the lung and bladder cancer risk. A dose related risk was found for stomach cancer, but no support was found for an increased risk of colorectal cancer. PMID:15150393

  6. Impact of zeolite-based nanomodified additive on the structure and strength of the cement stone

    NASA Astrophysics Data System (ADS)

    Egorova, A. D.; Filippova, K. E.

    2015-01-01

    Portland cement is the main binder in the building materials industry; its properties strongly influence properties of mortars and concretes. Some regions experience difficulties with delivery and storage of Portland cement, raising the need to develop an effective additive from the available raw materials. Such materials for the Republic of Sakha (Yakutia) are zeolite-containing rocks. Studies have shown that introducing of dibutylphthalate to the composition of modified additive during mechanochemical activation leads to achievement of up to 11% of total amount particles with the size of 3-30 nm. After introducing 0.5% of the obtained additives, the compressive strength of cement-sand slurry samples increases up to 28%. Positive effect of additives introduction is also observed at high flow rate of water (W / C = 0.7). Gaining strength reaches 23%, allowing the efficient use of additive for movable mixtures with enhanced strength properties. In general, the proposed supplement allows reducing the water flow in the solution without decreasing its mobility, and increasing strength properties, which makes it possible to obtain a whole class of solutions of modified cement binder. The market value of the developed additives is 18 rubles per 1 kg, making sound competition in the market of modifying additives.

  7. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.

    PubMed

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2010-07-15

    This study presents the effect of three different water-reducing admixtures (WRAs) on the rheological and mechanical properties of cemented paste backfill (CPB) samples. A 28-day strength of > or = 0.7 MPa and the maintenance of the stability (i.e. > or = 0.7 MPa) over 360 days of curing were desired as the design criteria. Ordinary Portland cement (OPC) and Portland composite cement (PCC) were used as binders at 5 wt.% dose. WRAs were initially tested to determine the dosage of a WRA for a required consistency of 7'' for CPB mixtures. A total of 192 CPB samples were then prepared using WRAs. The utilization of WRAs enhanced the flow characteristics of the CPB mixture and allowed to achieve the same consistency at a lower water-to-cement ratio. For OPC, the addition of WRAs appeared to improve the both short- and long-term performance of CPB samples. However, only polycarboxylate-based superplasticiser produced the desired 28-day strength of > or = 0.7 MPa when PCC was used as the binder. These findings suggest that WRAs can be suitably exploited for CPB of sulphide-rich tailings to improve the strength and stability in short and long terms allowing to reduce binder costs in a CPB plant. PMID:20382473

  8. CO2 Sequestraion by Mineral Carbonation of Cement Material

    NASA Astrophysics Data System (ADS)

    Jo, H.; Jang, Y.

    2010-12-01

    CO2 sequestration by mineral carbonation with cement materials was investigated in this study. Ca extraction and CO2 injection tests were conducted on three different materials (lime, Portland cement, waste concrete) using different extract reagents (NH4Cl, CH3COOH, HCl, and Deionized water) under ambient temperature and pressure conditions. CO2 gas (99.9%) was injected to either supernatant without solids or suspension with solids obtained from extraction tests at 4 ml/min of flow rate. Ca concentrations were measured from filtered solutions before and after CO2 injection. The chemical and mineralogical composition of raw materials and precipitates were determined using X-ray fluorescence and X-ray diffraction, respectively. The morphology and chemical composition of precipitates were analyzed with Field Emission Scanning Electron Microscopy equipped with the Energy Dispersive X-ray analysis. For the extraction tests, Ca concentrations of the extracts were related with the CaO content and type of CaO bearing minerals of the materials, regardless of the extraction solutions. Lime had a higher Ca concentration ranging between 942.7 and 39945.0 mg/L in the extracts than waste concrete (188.4 ~ 2978.1 mg/L) in the extracts due to its higher content of CaO (CaO : 24.5% and waste concrete : 20.3%). In contrast, the Portland cement (6346.0 and 28903.5 mg/L) had lower Ca concentrations than lime (94.27 ~ 39945.0 mg/L), even though the Portland cement (56.3%) had a higher CaO content than lime (24.5%). For a given extraction solution, lime had the highest CO2 carbonation efficiency. In addition, for a given material, the CO2 carbonation efficiency was the highest when NH4Cl solution was used as an extraction solution. Results of material analyses indicate that precipitates from the CO2 injection tests consisted of mostly CaCO3, regardless of types of materials and extraction solutions.

  9. 76 FR 2860 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... and Review Under Executive Order 12866, Regulatory Planning and Review (58 FR 51735, October 4, 1993... Office of Management and Budget (OMB). (See 75 FR 55029-30) This action is a correction to certain text... the information collection requirements contained in the existing regulations (75 FR 54970,...

  10. 75 FR 54969 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... requirements through the Integrated Urban Air Toxics Strategy (64 FR 38715, July 19, 1999).\\2\\ \\1\\ An area... Industry (64 FR 31898, June 14, 1999) included emission limits based on performance of MACT for the control... of CAA section 112(c)(6), we set MACT standards for these pollutants. 63 FR 17838, 17848, April...

  11. 77 FR 42367 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... index. Although listed in the index, some information is not publicly available (e.g., CBI or other... 111(b) E. Summary of Proposed Standards Resulting From Reconsideration F. Standards for Fugitive... evaluated? C. What are the air quality impacts? D. What are the water quality impacts? E. What are the...

  12. Influence of magnetic and acoustic treatment of superplasticizer solutions on the properties of portland cement concretes

    NASA Astrophysics Data System (ADS)

    Belous, N. Kh.; Azharonok, V. V.; Rodtsevich, S. P.; Koshevar, V. D.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.; Rubannik, V. V.

    2012-05-01

    We have investigated the influence of the regimes of high-frequency magnetic-impulse and acoustic action on the physicochemical properties of water solutions of polycarboxylate superplasticizers and technological indices of fine concretes plasticized by them. The dependences of technological properties of concretes on the concentration of water solutions of the superplasticizers, the content of impurity ions in the water used for dilution, and the conditions of acousto-radiowave treatment have been determined. The regimes of activation of superplasticizer solutions, which permit increasing the mobility and keeping quality of concrete and solution mixes tempered with water and the density and strength of fine concretes formed from them, have been established.

  13. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... amendments? On September 9, 2010 (75 FR 54970), EPA issued final amendments to National Emission Standards... production if significant adverse comments are filed. II. What are the changes to the final rules (75 FR... FR at 54993), and never discussed or otherwise suggested (in either the proposed or final rule)...

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  16. Chemistry and performance of blended cements and backfills for use in radioactive waste disposal

    SciTech Connect

    Duerden, S.; Glasser, F.P.; Goldthorpe, K.; Pedersen, J.; Stronach, S.A.; Quillin, K.; Ross, D.; Tyrer, M.

    1997-12-31

    The ability of NaCl and MgSO{sub 4} to impair the performance of Portland cement, blended cements containing slag and fly ash and of a permeable backfill have been measured. Performance is determined by decrease in pH, changes in mineralogy and loss of physical coherence. Experiments have been made at 25, 55 and 85 C and extensively backed up by chemical models of cement performance. NaCl, up to 1.5M, has a comparatively slight impact on performance but MgSO{sub 4} rapidly and almost quantitatively reacts, lowering system pH`s to <10, conditioned by mixtures of Mg(OH){sub 2} and magnesium silicates with gypsum.

  17. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    SciTech Connect

    Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D.

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  18. Effect of calcium chloride on the hydration and leaching of lead-retarded cement

    SciTech Connect

    Cheeseman, C.R.; Asavapisit, S. )

    1999-06-01

    The effect of adding CaCl[sub 2] to ordinary portland cement containing 10% (by weight) of a synthetic lead hydroxide waste has been investigated using differential thermal analysis, conduction calorimetry, and by analyzing solutions extracted from mixes during the early stages of hydration. Lead wastes are known to retard initial cement hydration reactions, and for the waste loading used in these experiments the peak in the heat of hydration curve was delayed from 8.7 to 172 h. The addition of CaCl[sub 2] reduced this retarding effect but was associated with a decrease in the overall extent of cement hydration, particularly at high CaCl[sub 2] concentrations. The acceleration induced is associated with lower concentrations of hydroxyl ions in solution. This reduces dissolution and subsequent adsorption of Pb(OH)[sub 3][sup [minus

  19. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement

    SciTech Connect

    Song, Fei; Yu, Zhenglei; Yang, Fengling; Lu, Yinong Liu, Yunfei

    2015-05-15

    Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via high resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.

  20. Anthropogenic carbon dioxide in the Portland metropolitan region

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; Bostrom, G. A.; Brooks, M. K.; Hill, L.; Shandas, V.

    2011-12-01

    The Portland metropolitan region, located in the Columbia River Gorge, is the most populous region in Oregon. Greenhouse gas emissions inventories for Multnomah County (population ~710k) estimate 2008 emissions to be 8.5 million metric tons carbon dioxide equivalent, of which CO2 is the dominant source. These inventories suggest that County-wide greenhouse gas emissions are near 1990 levels, despite a 22% growth in population. This contrasts with US National greenhouse gas emissions, which are estimated to have grown ~14% since 1990. Despite this apparent progress, there has been no validation of either emissions inventories for the Portland metropolitan region or their trends in time. We present more than two years of measurements of CO2 at three stationary locations in the Portland metropolitan region: a downtown location on the campus of Portland State University; a residential site in southeast Portland; and a rural station on Sauvie Island, located ~30km northwest of Portland in the Columbia River Gorge. Beginning in July 2009, continuous measurements of CO2 at the sites show considerable variability due to global and regional CO2 sources, sinks and boundary layer meteorology. Here we focus on the enhancement of in-city concentrations above the rural Sauvie Island site (CO2 excess), a difference which averages ~6ppm during upgorge wind conditions. The southeast Portland residential site shows a significant enhancement of ~5ppm in CO2 concentration throughout the day. The downtown site shows a substantial diurnal cycle in CO2 excess with 10-15ppm higher values during the day and negative values for CO2 excess during the early morning hours, the cause of which is not well understood. Both in-city sites show an increase in CO2 excess centered around 7-8 am and 5-6 pm during the two rush-hour periods. To examine spatial variability, measurements of street-level CO2 concentrations were obtained using a mobile instrument mounted in a bike trailer during a summer

  1. Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF{sub 2}

    SciTech Connect

    Dominguez, O.; Torres-Castillo, A.; Flores-Velez, L.M.; Torres, R.

    2010-04-15

    In this work, the sintering process of Portland cement was studied by combining thermomechanical analysis (TMA) and differential thermal analysis (DTA), together with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal analysis results employing both techniques indicted that phase transformations appeared at lower temperatures when CaF{sub 2} was incorporated in the raw materials. Besides, it was observed at high temperature that in some phase transformations TMA conducts to better resolution compared with the DTA measurements. Furthermore, mechanical properties and X-ray diffraction patterns corroborate the TMA and DTA results, corroborating that the final amount of alite (Ca{sub 3}SiO{sub 5}) is higher when a certain amount of CaF{sub 2} was present during the clinkerization process.

  2. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  4. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland...

  5. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland...

  6. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland...

  7. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Portland Interstate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland...

  8. 76 FR 28315 - Security Zone; Portland Rose Festival on Willamette River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... SECURITY Coast Guard 33 CFR Part 165 Security Zone; Portland Rose Festival on Willamette River AGENCY... Portland Rose Festival Security Zone in 33 CFR 165.1312 from 11 a.m. on June 8, 2011 until 11 a.m. on June... vessels present, on the Willamette River during the Portland Rose festival. During the enforcement...

  9. 33 CFR 80.115 - Portland Head, ME to Cape Ann, MA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Portland Head, ME to Cape Ann, MA... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.115 Portland Head, ME to Cape Ann... harbors, bays, and inlets on the east coast of Maine, New Hampshire, and Massachusetts from Portland...

  10. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  11. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  12. Bone cement implantation syndrome.

    PubMed

    Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

    2013-06-01

    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

  13. Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes

    SciTech Connect

    Aiad, Ismail

    2003-08-01

    It is well known that the fluidity and the fluidity loss of fresh cement pastes are affected by the kind and the time of addition of organic admixtures. The influence of the time addition of two chemical admixtures, namely, melamine formaldehyde sulfonate (MFS) and naphthalene formaldehyde sulfonate (NFS), on the rheological properties of ordinary Portland and sulfate-resisting cement pastes through the first 120 min of hydration was investigated. The admixture addition was delayed by 0, 5, 10, 15, 20, and 25 min. Shear stress and apparent viscosity of the cement pastes were determined at different shear rates (3-146 s{sup -1}) and hydration times of 30, 60, 90, and 120 min. The concentration of Ca{sup 2+} and the combined water content of the cement pastes were determined after 120 min. Yield stress and plastic viscosity values were also determined by using the Bingham model. The results show that an increase in the addition time of the admixture reduces the shear stress, the yield stress, and the plastic viscosity of the cement pastes at the early ages (15 min) as well as at later early ages (120 min). The optimum delaying time of admixture addition is found to be 10-15 min. This time does not depend on the cement and superplasticizer type.

  14. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    PubMed

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control.

  15. Effect of CO2-induced reactions on the mechanical behaviour of fractured wellbore cement

    NASA Astrophysics Data System (ADS)

    Wolterbeek, Timotheus; Hangx, Suzanne; Spiers, Christopher

    2016-04-01

    Geomechanical damage, such as fracturing of wellbore cement, can severely impact well integrity in CO2 storage fields. Chemical reactions between the cement and CO2-bearing fluids may subsequently alter the cement's mechanical properties, either enhancing or inhibiting damage accumulation during ongoing changes in wellbore temperature and stress-state. To evaluate the potential for such effects, we performed triaxial compression tests on Class G Portland cement, conducted at down-hole temperature (80 ° C) and effective confining pressures ranging from 1 to 25 MPa. After deformation, samples displaying failure on localised shear fractures were reacted with CO2-H2O, and then subjected to a second triaxial test to assess changes in mechanical properties. Using results from the first phase of deformation, baseline yield and failure criteria were constructed for virgin cement. These delineate stress conditions where unreacted cement is most prone to dilatational (permeability-enhancing) failure. Once shear-fractures formed, later reaction with CO2 did not produce further geomechanical weakening. Instead, after six weeks of reaction, we observed up to 83% recovery of peak-strength and increased frictional strength (15-40%) in the post-failure regime, due to calcium carbonate precipitation in the fractures. As such, our results suggest more or less complete mechanical healing on timescales of the order of months.

  16. 75 FR 72939 - Modification of Class E Airspace; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... U.S.C. 106(g), 40103, 40113, 40120; E. O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. Sec. 71... proposed rulemaking to modify controlled airspace at Portland, OR (75 FR 54057). Interested parties were... Executive Order 12866; (2) is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44...

  17. 169. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    169. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO SUMP, LOWER RIGHT QUADRANT. DIAGONAL PIPE IN UPPER RIGHT IS AIR LINE TO AGITATORS. LAUNDER PARALLEL TO LEFT EDGE (FILLED WITH DEBRIS) RUNS FROM PRIMARY THICKENER No. 2 TO GOLD TANK No. 2 - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  18. 90. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO SUMP, LOWER RIGHT QUADRANT. DIAGONAL PIPE IN UPPER RIGHT IS AIR LINE TO AGITATORS. LAUNDER PARALLEL TO LEFT EDGE (FILLED WITH DEBRIS) RUNS FROM PRIMARY THICKENER No. 2 TO GOLD TANK No. 2. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. Law-Related Education in Portland: A Teacher Resource.

    ERIC Educational Resources Information Center

    Burco, Donna Kay; And Others

    This document identifies resources and suggests teaching strategies for use by elementary and secondary classroom teachers as they develop and implement legal education programs. Although the program was developed by teachers and legal experts for use in schools in Portland, Oregon, the developers believe that the materials can be adapted for use…

  20. Portland Public Schools Project Chrysalis: Year 2 Evaluation Report.

    ERIC Educational Resources Information Center

    Mitchell, Stephanie J.; Gabriel, Roy M.; Hahn, Karen J.; Laws, Katherine E.

    In 1994, the Chrysalis Project in Portland Public Schools received funding to prevent or delay the onset of substance abuse among a special target population: high-risk, female adolescents with a history of childhood abuse. Findings from the evaluation of the project's second year of providing assistance to these students are reported here. During…

  1. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  2. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  3. The influence of phosphorous pentoxide on the phase composition and formation of Portland clinker

    SciTech Connect

    Stanek, T.; Sulovsky, P.

    2009-07-15

    The influence of phosphorous pentoxide (P{sub 2}O{sub 5}) on the phase composition and formation of Portland clinker was studied in laboratory conditions. Phosphorous pentoxide in the form of calcium phosphate was added to common cement-making raw meal in graded quantities up to 5 wt.%. The raw meal properties were studied by thermal analysis. The development of clinker formation by burning for periods ranging from 20 s to 30 min in a special semi-automatic oven with a manipulator was followed using light optical microscopy. The phase composition of clinkers burnt to equilibrium was quantified by the optical point counting method. The entry of P{sub 2}O{sub 5} into clinker minerals was determined by electron microprobe analyses. The laboratory tests show that at 0.7 wt.% of P{sub 2}O{sub 5} in the clinker the alite (Ca{sub 3}SiO{sub 5}) content decreases and belite (Ca{sub 2}SiO{sub 4}) content increases. At a P{sub 2}O{sub 5} content of 4.5 wt.% alite formation was totally blocked and the resulting clinker contained free lime in equilibrium with belite.

  4. Determining controls on element concentrations in cement kiln dust leachate

    SciTech Connect

    Duchesne, J.; Reardon, E.J.

    1998-12-31

    Cement kiln dust is a waste residue composed chiefly of oxidized, anhydrous, micron-sized particles generated as a by-product of the manufacture of Portland cement. When cement kiln dust is brought into contact with water, high concentrations of potassium, sulfate and caustic alkalinity are leached. Other constitutents are leached to a lesser extent. The objective of this study was to determine whether the concentration of a given chemical constituent in kiln dust leachate is controlled by the precipitation of a secondary mineral phase or whether its concentration depends on its initial availability to the leachate solution and its subsequent diffusive flux from hydrating particles with time. Differentiating between these two distinctive styles of leaching behavior is necessary to predict the chemical composition of kiln dust leachate under dynamic flow conditions in disposal environments. Evidence of solubility control was found for Si, Ca, Mg, Al, Zn, Ti, Sr, and Ba. The concentrations of Na, Cl, K, Mo, Cr and Se, however, were found to have no solubility control. Because of the observed lack of solubility control and the particularly high concentrations of Cr and Mo in kiln dust leachate, The authors tested two additives to reduce their concentrations: (1) aluminum oxide to promote the precipitation of calcium aluminosulfates and the proxying of chromate and molybdate for sulfate in their structures; and (2) iron metal to promote the reduction of chromate and molybdate to lower valent and less soluble forms. Neither treatment had any effect on the concentration levels of Cr and Mo in solution.

  5. 77 FR 26252 - Foreign-Trade Zone 45-Portland, Oregon, Expansion of Manufacturing Authority, Epson Portland, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Hillsboro, Oregon, submitted by the Port of Portland (77 FR 4006-4007, 1/26/2012 and 77 FR 21082, 4/9/2012...) 482-1367. Dated: April 27, 2012. Andrew McGilvray, Executive Secretary. BILLING CODE P...

  6. 77 FR 17409 - Foreign-Trade Zone 45-Portland, OR Expansion of Manufacturing Authority Epson Portland, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... of certain PF status inputs in the manufacturing of ink for inkjet printer cartridges within Subzone... Portland, Inc. (Inkjet Ink); Notice of Approval of Restricted Authority On December 22, 2011, the Port of... involved the use of privileged foreign (PF) status (19 CFR 146.41) inputs in manufacturing of ink...

  7. Effect of exposure to dust on lung function of cement factory workers.

    PubMed

    Noor, H; Yap, C L; Zolkepli, O; Faridah, M

    2000-03-01

    Exposure to Portland cement dust has long been associated with the prevalence of respiratory symptoms and varying degrees of airway obstruction in man. Apart from respiratory diseases, it was also found to be the cause of lung and laryngeal cancer, gastrointestinal tumours and also dermatitis. This study was done to investigate the effect of dust exposure on ventilatory lung function of Portland cement factory workers in Rawang, Selangor. Spirometry tests of 62 male workers (exposed to total dust concentration of 10,180 micrograms/m3 and PM10 of 8049 micrograms/m3) and 70 subjects from UPM (exposed to mean total dust of 192 micrograms/m3 and PM10 of 177 micrograms/m3--controls) revealed significant differences in spirometry values between the groups. The workers showed i) significantly lower FEV1% and FEF25-75%, and higher FMFT, ii) reduced FEV1% with increasing level of dust exposure and iii) higher prevalence of respiratory symptoms. Therefore, we suggest that exposure to dust in the cement factory leads to higher incidence of respiratory symptoms and impaired lung function.

  8. Effect of exposure to dust on lung function of cement factory workers.

    PubMed

    Noor, H; Yap, C L; Zolkepli, O; Faridah, M

    2000-03-01

    Exposure to Portland cement dust has long been associated with the prevalence of respiratory symptoms and varying degrees of airway obstruction in man. Apart from respiratory diseases, it was also found to be the cause of lung and laryngeal cancer, gastrointestinal tumours and also dermatitis. This study was done to investigate the effect of dust exposure on ventilatory lung function of Portland cement factory workers in Rawang, Selangor. Spirometry tests of 62 male workers (exposed to total dust concentration of 10,180 micrograms/m3 and PM10 of 8049 micrograms/m3) and 70 subjects from UPM (exposed to mean total dust of 192 micrograms/m3 and PM10 of 177 micrograms/m3--controls) revealed significant differences in spirometry values between the groups. The workers showed i) significantly lower FEV1% and FEF25-75%, and higher FMFT, ii) reduced FEV1% with increasing level of dust exposure and iii) higher prevalence of respiratory symptoms. Therefore, we suggest that exposure to dust in the cement factory leads to higher incidence of respiratory symptoms and impaired lung function. PMID:11072491

  9. Pore Distribution and Water Uptake in a Cenosphere-Cement Paste Composite Material

    NASA Astrophysics Data System (ADS)

    Baronins, J.; Setina, J.; Sahmenko, G.; Lagzdina, S.; Shishkin, A.

    2015-11-01

    Alumina silicate cenospheres (CS) is a significant waste material from power plants that use a coal. Use CS as Portland cement replacement material gives opportunity to control physical and mechanical properties and makes a product lighter and more cost-effective. In the frame of this study, Portland cement paste samples were produced by adding CS in the concentration range from 0 to 40 volume %. Water uptake of hardened samples was checked and pore size distribution by using the mercury porosimetry was determined. In a cold climate where the temperature often falls below 0 °C, it is important to avoid the amount of micrometer sized pores in the final structure and to decrease water absorption capacity of material. In winter conditions, water fills such pores and causes additional stresses to their walls by expansion while freezing. It was found that generally water uptake capacity for cement paste samples decreased up to 20% by increasing the concentration of CS up to 40 volume %, at the same time, the volume of micrometer sized opened pores increases.

  10. Measurements of Carbon Dioxide in the Portland, Oregon Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Bostrom, G. A.; Rice, A. L.

    2009-12-01

    Urban centers provide large sources of carbon dioxide (CO2) to the atmosphere through intensive use of fossil fuels. Due to a lack of federal regulatory framework in the United States, a patchwork of regional and statewide approaches to reducing CO2 emissions has emerged. The City of Portland together with Multnomah County established itself as an early frontier in this regard by creating greenhouse gas emissions inventories in 1990 and adopting a regional plan to reduce emissions in 1993. Most recent emissions inventories suggest that County-wide emissions of CO2 are near 1990 levels, despite a growing population, with an ambitious goal of reducing emissions 80% by 2050. However, there has been no validation of either emissions inventories or their trends in time. Here, we detail preliminary results of a study aimed at testing regional CO2 emissions inventories through measurements of CO2 concentrations and its 13C isotopic composition. In collaboration with Oregon Department of Environmental Quality three test sites were established: a downtown Portland location on the campus of Portland State University; a residential Southeast Portland location; and at Sauvie Island, located ~30km northwest (upwind, rural) of Portland in the Columbia River Gorge. Continuous measurements of summertime CO2 concentrations since late July, 2009 range from approximately 370ppm to 420ppm (±2.7σ) for downtown and residential sites, and 360ppm to 420ppm for Sauvie Island, while maximum outlier levels at all three sites exceed 480ppm. Measurements at all three sites show a marked diurnal cycle averaging 25-35ppm. Maximum CO2 concentrations typically occur 6-8 am and minimum concentrations 5-7 pm. The two dominant forcing mechanisms of this strong diurnal cycle are varying biological sources and sinks and the dynamics of the planetary boundary layer. There is also a significant enhancement of ~7ppm in the average measured concentrations at the two urban sites (~395ppm) compared with

  11. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  12. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  13. Brownfield reuse of dredged New York Harbor sediment by cement-based solidification/stabilization

    SciTech Connect

    Loest, K.; Wilk, C.M.

    1998-12-31

    Newly effective federal regulations restrict the ocean disposal of sediments dredged from the harbors of New York and Newark. The New York Port Authority is faced with a critical situation: find land-based disposal/uses for 10`s of millions cubic yards of sediments or lose standing as a commercial port for ocean-going ships. One of the technologies now being employed to manage the sediments is portland cement-based solidification/stabilization (S/S) treatment. At least 4 million cubic yards of the sediments will undergo cement-based S/S treatment. This treatment will immobilize heavy metals, dioxin, PCBs and other organic contaminants in the sediment. The treatment changes the sediment from a environmental liability into a valuable structural fill. This structural fill is being used at two properties. The first property is an old municipal landfill in Port Newark, New Jersey. The treated sediments are being used as structural fill to cover about 20 acres of the landfill. This will allow planned redevelopment of the landfill property into a shopping mall. The second property called the Seaboard site, was the location of a coal gasification facility and later a wood preservation facility. This 160-acre property has been designated for brownfield redevelopment. Over 4 million cubic yards of treated sediments will eventually cover this site. Portland cement is the selected S/S binding reagent. Nearly 500,000 tons of cement will eventually be used to treat the sediments. Cement was selected for its ability to (a) change the peanut butter-like consistency of the sediments into a structural material and (b) to physically and chemically immobilize hazardous constituents in the sediment.

  14. Retention of crowns cemented on implant abutments with temporary cements.

    PubMed

    Nagasawa, Yuko; Hibino, Yasushi; Nakajima, Hiroshi

    2014-01-01

    This study was to examine the retentive force of crowns to implant abutments with commercial temporary cements. Six different temporary cements were investigated. Cast crowns were cemented to the abutments using each cement and their retentive forces to abutments were determined 7 or 28 days after cementing (n=10). The retentive force of the cements to abutments varied widely among the products [27-109 N (7-day), 18-80 N (28-days)]. The retentive force of all the cements was not reduced as the time elapsed, except for two products tested. The polycarboxylate cements and paste-mixing type eugenol-free cements revealed comparable retentive force after 28 days of storage. The powder-liquid type cements showed a positive correlation (p<0.05) between the retentive force and the shear strength, while a negative correlation (p<0.05) was obtained for paste-mixing type cement between the retentive force and compressive strength. Mechanical strength of temporary cements could not be a prominent predicting factor for retention of the crowns on the abutments.

  15. Cement substitution by a combination of metakaolin and limestone

    SciTech Connect

    Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K.

    2012-12-15

    This study investigates the coupled substitution of metakaolin and limestone in Portland cement (PC). The mechanical properties were studied in mortars and the microstructural development in pastes by X-ray diffraction, thermogravimetry analysis, mercury intrusion porosimetry and isothermal calorimetry. We show that 45% of substitution by 30% of metakaolin and 15% of limestone gives better mechanical properties at 7 and 28 days than the 100% PC reference. Our results show that calcium carbonate reacts with alumina from the metakaolin, forming supplementary AFm phases and stabilizing ettringite. Using simple mass balance calculations derived from thermogravimetry results, we also present the thermodynamic simulation for the system, which agrees fairly well with the experimental observations. It is shown that gypsum addition should be carefully balanced when using calcined clays because it considerably influences the early age strength by controlling the very rapid reaction of aluminates.

  16. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  17. The hydration of dental cements.

    PubMed

    Wilson, A D; Paddon, J M; Crisp, S

    1979-03-01

    A study was made of the hydration of dental cements, water being classified as "non-evaporable" and "evaporable". The ratio of these two types of water was found to vary greatly among different cement types, being lesser in zinc oxide and ionic polymer cements and greater in ion-leachable glass and phosphoric acid cements. The cement with the least "non-evaporable" water, i.e., showing least hydration (the zinc polycarboxylate cement), had the lowest strength and modulus and the greatest deformation at failure. A linear relationship was found to exist between strength and the degree of hydration of dental cements. All the cements were found to become more highly hydrated and stronger as they aged. PMID:284040

  18. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  19. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  20. The effect of supercritical carbon dioxide treatment on the leachability and structure of cemented radioactive waste-forms

    SciTech Connect

    Hartmann, T.; Paviet-Hartmann, P.; Rubin, J.B.; Fitzsimmons, M.R.; Sickafus, K.E.

    1999-11-01

    The former process for the cementation of transuranic (TRU) low-level wastes poses several technical problems. Specifically in the US a TRU waste-form has not yet passed the Waste Isolation Pilot Plant prohibition for free liquid. For the reason, treatment of the portland cement based waste-form with supercritical carbon dioxide (SCCO{sub 2}) is shown to satisfy regulations. The effect of SCCO{sub 2} treatment by applying different CO{sub 2} pressure and temperature conditions on the leachability, phase constitution, and microstructure of surrogate-groped portland cement type I/II samples is presented. Leaching studies were performed using a synthetic groundwater leaching procedure. Changes in phase constitution of the major crystalline phases (Ca(OH){sub 2}, CaCO{sub 3}) as well as the microstructure were measured by X-ray diffraction and scanning electron microscopy. SCCO{sub 2} treatment at 8.4 MPa and 25 C can be shown as the most promising conditions to satisfy the requirements of the Department of Transportation (DOT) and to enhance the natural aging reaction of cement paste by carbonation, combined with the lowest release rate of the surrogates {sup 232}Th, and {sup 151/153}Eu.

  1. City of Portland: Businesses for an environmentally sustainable tomorrow

    SciTech Connect

    1995-12-01

    The sustainable business development program in Portland (OR) is known as BEST. BEST stands for Businesses for an Environmentally Sustainable Tomorrow. The Portland Energy Office operates BEST as a {open_quotes}one-stop service center{close_quotes} for business owners and managers. BEST provides information and assistance on resource efficient buildings and business practices. The results of BEST`s two years of operation have been generally impressive. Nearly 150 new or expanding businesses have been connected with utility design assistance programs. Businesses have also received assistance with water conservation, telecommuting, construction debris recycling, and alternative fuel vehicles. BEST has received local and national publicity and BEST services have been the topic at more than a dozen conferences, meetings, or other speaking engagements. A guidebook for communities wishing to start a similar program will be available in early 1996.

  2. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  3. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  4. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  5. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  6. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  7. Permeability Changes on Wellbore Cement Fractures Modified by Geochemical and Geomechanical Processes

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Um, W.

    2015-12-01

    Experimental studies were conducted using batch reactors, X-ray microtomography (XMT), and computational fluid dynamics (CFD) modeling to determine changes in cement fracture surfaces, fluid flow pathways and permeability, and cement fracture propagation with geochemical and geomechanical processes. Portland cement-basalt interface sample with artificial fractures was prepared to study the geochemical and geomechanical effects on the integrity of wellbores containing defects caused by subsurface activities. Cement-basalt interface sample was subjected to mechanical stress at 2.7 MPa before the chemical reaction. CFD modeling was performed to simulate flow of supercritical CO2 within the fractures before and after the application of mechanical stress. The model results highlighted the complex flow characteristics within the fracture and also changes in flow patterns due to application of geomechanical stress. The CFD model predicted ~45% increase in permeability after the application of geomechanical force, which increases the fracture aperture. The same sample was reacted with CO2-saturated groundwater with impurity H2S (1 wt.%) at 50°C and 10 MPa for 3 to 3.5 months under static conditions. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Even after a 3.5-month reaction with CO2-H2S-saturated groundwater at 50°C and 10 MPa, CaCO3 (s) precipitation occurred more extensively within the cement fracture rather than along the cement-basalt interfaces. Micro X-ray diffraction analysis also showed that major cement carbonation products of CO2-saturated groundwater reacting with impurity H2S were calcite, aragonite, and vaterite, consistent with cement carbonation by pure CO2-saturated groundwater, while pyrite was not identified due to low H2S content. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated

  8. Retention of posts cemented with various dentinal bonding cements.

    PubMed

    Mendoza, D B; Eakle, W S

    1994-12-01

    This investigation evaluated the retention of preformed posts with four different cements: C & B Metabond, Panavia, All-Bond 2, and Ketac-Cem. Sixty intact maxillary canines were selected for the study. The clinical crowns were removed and endodontic therapy done on each root, which was then prepared to receive prefabricated posts. The 60 samples were divided into four groups of 15, and the posts in each group were cemented with one of the four cements. The roots were mounted in acrylic resin blocks and the posts were separated from the canals with an Instron testing machine. Analysis of the forces needed to dislodge the posts with analysis of variance and Student-Newman-Keuls test disclosed that C & B Metabond cement was the most retentive (p < 0.05). No difference in retention was recorded between Ketac-Cem and Panavia cements. All-Bond 2 cement was the least retentive of cements. PMID:7853255

  9. Structure and mechanical properties of cement and intermetallic compounds via ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, Chamila Chathuranga

    Calcium silicate hydrates comprise a class of minerals formed synthetically during Portland cement hydration or naturally through various geological processes. The importance of these minerals is immense since they are the primary binding phases for Portland cement derived construction materials. Efforts spanning centuries have been devoted to understand the structural aspects of cohesion in these minerals. In recent years, the focus has progressively turned to atomic level comprehension. Structurally these minerals can range from crystalline to highly disordered amorphous phases. This thesis focuses upon unraveling the nature of chemical bonding in a large subset of calcium silicate hydrate (CSH) crystals. Thus their electronic structure was calculated and bonding mechanisms were investigated quantitatively. Results highlight a wide range of contributions from each type of bonding (Si-O, Ca-O, O-H and hydrogen bond) with respect to silicate polymerization, crystal symmetry, water and OH content. Consequently, total bond order density (TBOD) was designated as the overall single criterion for characterizing crystal cohesion. The TBOD categorization indicates that a rarely known orthorhombic phase Suolunite is closest to the ideal composition and structure of cement. Present work finds the relationship of partial bond order density (PBOD) of each bond species, especially HBs to the mechanical properties of CSH crystals. This can be used as a basis to validate existing C-S-H models and to build improved ones. This work goes further and validates the recently proposed models (2014) for C-S-H (I) phase on the same basis of proposed electronic structure parameters. Then the respective Calcium aluminosilicate hydrates C-A-S-H (I) phase models are proposed. Finally, these results lead to improved interpretations and construction of realistic atomistic models of cement hydrates. Ab initio molecular dynamics (AIMD) could be vital to solve critical problems in complex

  10. Evaluation of sulfur polymer cement as a waste form for the immobilization of low-level radioactive or mixed waste

    SciTech Connect

    Mattus, C.H.; Mattus, A.J.

    1994-03-01

    Sulfur polymer cement (SPC), also called modified sulphur cements, is a relatively new material in the waste immobilization field, although it was developed in the late seventies by the Bureau of Mines. The physical and chemical properties of SPC are interesting (e.g., development of high mechanical strength in a short time and high resistance to many corrosive environments). Because of its very low permeability and porosity, SPC is especially impervious to water, which, in turn, has led to its consideration for immobilization of hazardous or radioactive waste. Because it is a thermosetting process, the waste is encapsulated by the sulfur matrix; therefore, very little interaction occurs between the waste species and the sulfur (as there can be when waste prevents the set of portland cement-based waste forms).

  11. A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments

    SciTech Connect

    Barcelo, Laurent; Gartner, Ellis; Barbarulo, Rémi; Hossack, Ashlee; Ahani, Reza; Thomas, Michael; Hooton, Doug; Brouard, Eric; Delagrave, Anik; Blair, Bruce

    2014-09-15

    Blended Portland cements containing up to 15% limestone have recently been introduced into Canada and the USA. These cements were initially not allowed for use in sulfate environments but this restriction has been lifted in the Canadian cement specification, provided that the “limestone cement” includes sufficient SCM and that it passes a modified version of the CSA A3004-C8 (equivalent to ASTM C1012) test procedure run at a low temperature (5 °C). This new procedure is proposed as a means of predicting the risk of the thaumasite form of sulfate attack in concretes containing limestone cements. The goal of the present study was to better understand how this approach works both in practice and in theory. Results from three different laboratories utilizing the CSA A3004-C8 test procedure are compared and analyzed, while also taking into account the results of thermodynamic modeling and of thaumasite formation experiments conducted in dilute suspensions.

  12. Influence of calcium sulfoaluminate cement on the pullout performance of reinforcing fibers: An evaluation of the micro-mechanical behavior

    NASA Astrophysics Data System (ADS)

    Jewell, Robert Benjamin

    The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel. Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement (OPC), which is more energy intensive and produces more CO2 emissions. However, widespread use of CSA cement requires a more in-depth understanding of the engineering characteristics that govern its performance, including interaction with reinforcing fibers. The overarching objective of this research was to provide the engineering base needed for the utilization of reinforcing fibers in CSA cement-based construction materials. The aims of the research were (1) to develop an ettringite-rich calcium sulfoaluminate cement, and (2) evaluate the pullout characteristics of reinforcing fibers embedded in a CSA-cement matrix. Key elements of the strategy included (1) Compare the performance of a laboratory-fabricated CSA cement to a commercial CSA cement and OPC, (2) Evaluate the peak load, and toughness of reinforcing fibers in CSA cement and OPC, (3) Evaluate the debonding-energy density and multiple-cracking behavior of fibers in CSA cement and OPC, and (4) Evaluate the shear bond strength of reinforcing fibers in CSA cement and OPC. Based on the findings of this PhD dissertation, calcium sulfoaluminate cement has a significant influence on the characteristics and behavior of embedded reinforcing fibers. An important factor contributing to the bond strength between fiber and matrix was the ability to transfer interfacial

  13. Osteotransductive bone cements.

    PubMed

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  14. Gentamicin in bone cement

    PubMed Central

    Chang, Y.; Tai, C-L.; Hsieh, P-H.; Ueng, S. W. N.

    2013-01-01

    Objectives The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA). Methods We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro. Results The ALBC containing gentamicin provided a much longer duration of antibiotic release than those containing other antibiotic. Imipenem-loading on the cement had a significant adverse effect on the compressive strength of the ALBC, which made it insufficient for use in prosthesis fixation. All of the tested antibiotics maintained their antibacterial properties after being mixed with PMMA. The gentamicin-loaded ALBC provided a broad antibacterial spectrum against all the test organisms and had the greatest duration of antibacterial activity against MSSA, CoNS, P. aeruginosa and E. coli. Conclusion When considering the use of ALBC as infection prophylaxis in TJA, gentamicin-loaded ALBC may be a very effective choice. Cite this article: Bone Joint Res 2013;2:220–6. PMID:24128666

  15. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    PubMed

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such. PMID:18068299

  16. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    PubMed

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  17. Interaction between BaCO{sub 3} and OPC/BFS composite cements at 20 {sup o}C and 60 {sup o}C

    SciTech Connect

    Utton, C.A.; Gallucci, E.; Hill, J.; Milestone, N.B.

    2011-03-15

    A BaCO{sub 3} slurry, containing radioactive {sup 14}C, is produced during the reprocessing of spent nuclear fuel. This slurry is encapsulated in a Portland-blastfurnace slag composite cement. The effect of BaCO{sub 3} on the hydration of OPC and Portland-blastfurnace slag cements has been studied in this work. Samples containing a simulant BaCO{sub 3} slurry were cured for up to 720 days at 20 and 60 {sup o}C and analysed by XRD, SEM(EDX) and ICC. BaCO{sub 3} reacted with OPC to precipitate BaSO{sub 4} from a reaction between soluble sulfate and BaCO{sub 3}. Calcium monocarboaluminate subsequently formed from the carbonate released. The monocarboaluminate precipitated as crystals in voids formed during hydration. At 60 {sup o}C in OPC, it was not identified by XRD, suggesting the phase is unstable in this system around this temperature. In the Portland-blastfurnace slag cements containing BaCO{sub 3}, less monocarboaluminate and BaSO{sub 4} were formed, but the hydration of BFS was promoted and monocarboaluminate was stable up to 60 {sup o}C.

  18. Effect of carbon nanotubes on properties of cement-sand-based piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Zhao, Ping; Enemuoh, Emmanuel

    2015-04-01

    Carbon Nanotubes (CNTs) were dispersed in a cement-sand-based piezoelectric smart composite as conductive fillers to improve its poling efficiency, leading to a desirable piezoelectric effect. By introducing a small amount of CNTs, continuous electric networks between Lead Zirconate Titanate (PZT) particles were created, thus making the composite poling easier. Specimens were prepared by mixing PZT powders, Portland cement and sand with CNTs, followed by pressing it with a load frame system. The effect of quantity of CNTs ranging from 0 to 1.0 volume percent on properties of the composite, including its piezoelectric coefficient, dielectric constant and loss, and sensing effects, were characterized. It was found that the addition of CNTs facilitated effective poling at room temperature and improved the piezoelectric and dielectric properties of the composite. The composite modified by CNTs achieved optimal properties when the CNTs content was 0.7 vol.%.

  19. Pulmonary and hepatic granulomatous disorders due to the inhalation of cement and mica dusts.

    PubMed Central

    Cortex Pimentel, J; Peixoto Menezes, A

    1978-01-01

    Hepatic and pulmonary granulomas were recognised in two workers exposed respectively to Portland cement and to muscovite dusts. The pulmonary lesions in the patient exposed to cement consisted of histiocytic granulomas and irregular fibrohyaline scars, and in the patient exposed to mica of a diffuse thickening of all interalveolar septa due to new formation of reticulin and collagen fibres and proliferation of fibroblasts and histiocytes. In the liver the following pathological findings were observed: focal or diffuse swelling of sinusoidal lining cells, sarcoid-type granulomas, and, in the case of mica exposure, perisinusoidal and portal tract fibrosis. Abundant inclusions of the inhaled material were identified within the pulmonary and hepatic lesions by histochemical and x-ray diffraction techniques. Images PMID:663882

  20. Measuring permeability and stress relaxation of young cement paste by beam bending

    SciTech Connect

    Vichit-Vadakan, W.; Scherer, George W

    2003-12-01

    When a saturated rod of a porous material is deflected in three-point bending, two types of time-dependent relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body, and viscoelastic (VE) relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability from the hydrodynamic relaxation function, in addition to the VE stress relaxation function of the sample. We report the early-age evolution of permeability, elastic modulus, and stress relaxation function for Type III Portland cement paste with water-cement (w/c) ratios of 0.45, 0.50, and 0.55. The stress relaxation function is shown to preserve its shape during aging; that function is numerically transformed into the creep function.

  1. Deterioration of hardened cement paste under combined sulphate-chloride attack investigated by synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Stroh, J.; Meng, B.; Emmerling, F.

    2016-06-01

    The exact mechanisms of the phase transitions caused by a combined sulphate-chloride attack are discussed controversially. The main points concern the mutual influences of sulphate and chloride ions during the secondary binding processes of these anions within cement hydrate phases. We simulated combined sulphate-chloride attack under laboratory conditions using solutions containing NaCl and Na2SO4 in different concentrations. Three sample compositions were used for the preparation of the specimens. In two of them, 30% of Portland cement was replaced by supplementary cementitious materials (fly ash, slag). The phase distribution in the samples was determined using synchrotron X-ray diffraction. The analysis with high spatial resolution allows the localisation of the secondary phase formation in the microstructural profile of the sample. A mechanism of the phase developments under combined sulphate-chloride attack is derived.

  2. Cementation and solidification of miscellaneous mixed wastes at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Phillips, J.A.; Semones, G.B.

    1995-02-01

    The Rocky Flats Environmental Technology Site produces a variety of wastes which are amenable to micro-encapsulation in cement Portland cement is an inexpensive and readily available material for this application. The Waste Projects (WP) group at Rocky Flats evaluated cementation to determine its effectiveness in encapsulating several wastes. These included waste analytical laboratory solutions, incinerator ash, hydroxide precipitation sludge, and an acidic solution from the Delphi process (a chemical oxidation technology being evaluated as an alternative to incineration). WP prepared surrogate wastes and conducted designed experiments to optimize the cement formulation for the waste streams. These experiments used a Taguchi or factorial experimental design, interactions between the variables were also considered in the testing. Surrogate waste samples were spiked with various levels of each of six Resource Conservation and Recovery Act (RCRA) listed metals (Cd, Cr, Ba, Pb, Ni, and Ag), cemented using the optimized formulation, and analyzed for leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP). The metal spike levels chosen were based on characterization data, and also based on an estimate of the highest levels of contaminants suspected in the waste. This paper includes laboratory test results for each waste studied. These include qualitative observations as well as quantitative data from TCLP analyses and environmental cycling studies. The results from these experiments show that cement stabilization of the different wastes can produce final waste forms which meet the current RCRA Land Disposal Restriction (LDR) requirements. Formulations that resulted in LDR compliant waste forms are provided. The volume increases associated with cementation are also lower than anticipated. Future work will include verification studies with actual mixed radioactive waste as well as additional formulation development studies on other waste streams.

  3. Contribution to the physical-mechanical study of cement CRS basis of dune-sand powder and other minerals

    NASA Astrophysics Data System (ADS)

    Dahmani, Saci; Kriker, Abdelouahed

    2016-07-01

    The Portland cements are increasingly used for the manufacture of cement materials (mortar or concrete). Sighting the increasing demand of the cement in the field of construction, and the wealth of our country of minerals. It is time to value these local materials in construction materials and in the manufacture of cement for the manufacture of a new type of cement or for the improvement of the cement of characteristics for several reasons either technical, or ecological or economic or to improve certain properties to the State fees or hardened. The uses of mineral additions remain associated to disadvantages on the time of solidification and the development of the mechanical resistance at the young age [8]. The objective of our work is to study the effects of the incorporation of additions minerals such the pozzolan (active addition) [3], slag of blast furnace (active addition) [4] and the sand dune powder (inert addition) on the physico-mechanical properties of compositions of mortar collaborated compositions according to different binary combinations basis of these additions. This will allow selecting of optimal dosages of these combinations the more efficient, from the point of view of mechanical resistanceas well. The results of this research work confirm that the rate of 10% of pozzolan, slag or powder of dune sand contributes positively on the development of resistance in the long term, at of this proportion time,there is a decrease in the latter except for the slag (20 - 40%) [4]Seems the more effective resistors and physical properties.

  4. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    SciTech Connect

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  5. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.

    PubMed

    Menéndez, E; Álvaro, A M; Hernández, M T; Parra, J L

    2014-01-15

    This paper assess the mechanical an environmental behaviour of cement mortars manufactured with addition of fly ash (FA) and bottom ash (BA), as partial cement replacement (10%, 25% and 35%). The environmental behaviour was studied by leaching tests, which were performed under several temperature (23 °C and 60 °C) and pH (5 and 10) conditions, and ages (1, 2, 4 and 7 days). Then, the accumulated amount of the different constituents leached was analysed. In order to obtain an environmental burden (EB) value of each cement mixture, a new methodology was developed. The EB value obtained is related to the amount leached and the hazardous level of each constituent. Finally, the integral study of compressive strength and EB values of cement mixtures allowed their classification. The results showed that mortars manufactured with ordinary Portland cement (OPC) and with coal BA had similar or even better environmental and mechanical behaviour than mortars with FA. Therefore, the partial replacement of cement by BA might be as suitable or even better as the replacement by FA.

  6. Sulfur cement production using by products of the perchloroethylene coal cleaning process and the FC4-1 cleaned soil

    SciTech Connect

    Bassam Masri, K.L.; Fullerton, S.L.

    1995-12-31

    An introductory set of experiments to show the feasibility of making sulfur cement were carried out at the University of Akron according to Parrett and Currett`s patent which requires the use of sulfur, a filler, a plasticizer, and a vulcanization accelerator. Small blocks of cement were made using byproducts of the perchloroethylene coal cleaning process. Extracted elemental and organic sulfur, ash and mineral matters from the float sink portion of the PCE process, and FC4-1 cleaned soil were used as substitutes for sulfur and filler needed for the production of sulfur cement. Leaching tests in different solutions and under different conditions were conducted on the sulfur blocks. Other tests such as strength, durability, resistance to high or low temperatures will be conducted in the future. Sulfur cement can be used as a sealing agent at a joint, roofing purposes, forming ornamental figures, and coating of exposed surfaces of iron or steel. When mixed with an aggregate, sulfur concrete is formed. This concrete can be used for structural members, curbings, guthers, slabs, and can be precast or cast at the job site. An advantage of sulfur cement over Portland cement is that it reaches its design strength in two to three hours after processing and it can be remelted and recast.

  7. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.

    PubMed

    Menéndez, E; Álvaro, A M; Hernández, M T; Parra, J L

    2014-01-15

    This paper assess the mechanical an environmental behaviour of cement mortars manufactured with addition of fly ash (FA) and bottom ash (BA), as partial cement replacement (10%, 25% and 35%). The environmental behaviour was studied by leaching tests, which were performed under several temperature (23 °C and 60 °C) and pH (5 and 10) conditions, and ages (1, 2, 4 and 7 days). Then, the accumulated amount of the different constituents leached was analysed. In order to obtain an environmental burden (EB) value of each cement mixture, a new methodology was developed. The EB value obtained is related to the amount leached and the hazardous level of each constituent. Finally, the integral study of compressive strength and EB values of cement mixtures allowed their classification. The results showed that mortars manufactured with ordinary Portland cement (OPC) and with coal BA had similar or even better environmental and mechanical behaviour than mortars with FA. Therefore, the partial replacement of cement by BA might be as suitable or even better as the replacement by FA. PMID:24412590

  8. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  9. Synthesis of tobermorite: A cement phase expected under repository conditions

    SciTech Connect

    Martin, S.I.

    1994-11-01

    In this study I have synthesized tobermorite, Ca{sub 5}Si{sub 6}O{sub l6}(OH){sub 2.}4H{sub 2}0, a principal crystalline phase expected to form in cementitious materials subjected to elevated temperatures in a potential nuclear waste repository. Fluids interacting with these materials may have a profound effect on the integrity of the waste package and on transport of radionuclides. At ambient temperature, Portland cement reacts with water to form an amorphous calcium-silicate-hydrate (C-S-H) gel. At elevated temperatures, crystalline phases of various hydration states form. The C-S-H system has not been well characterized at elevated temperatures up to 250{degrees}C, which has been considered a bounding temperature for the potential Yucca Mountain repository. Physical, chemical, and thermodynamic data for these cement minerals that are predicted to be stable at these temperatures must be obtained from synthetic or natural samples to help predict fluid chemistry. For some of these minerals natural samples are difficult to obtain in sufficient quantity and purity. Therefore, monomineralic phases must be synthesized in order to unambiguously define their behavior. The synthetic or natural phases will be characterized as part of a comprehensive study to define the behavior of cementitious materials in a repository environment.

  10. Micromechanics of expansive mechanisms in expansive cement concretes

    NASA Astrophysics Data System (ADS)

    Cohen, M. D.

    The kinetics of hydration were studied by monitoring the presence of various compounds by X-ray diffractometer, a chemical extraction method, and scanning electron microscope. These studies indicated that the rates of depletion of the expanding particles and sulfates are higher in the finer blends, which is why expansion stops earlier in these blends. It is shown that the double curvature phenomenon (strength-drop and sudden increase in the rate of expansion) is caused by mechanical failure (e.g., microcracking) of the matrix surrounding the expanding particles that are producing ettringite crystals. The theory of protective and partial protective coating is reviewed. A hypothesis is introduced which assumes that monosulfate is not formed immediately when ettringite stops forming but is preceded by an intermediate phase. Shrinkage studies show that expansive cements shrink more than portland cements. The results of these studies were used to develop a modified model of the expansive process. It was shown theoretically that the time of expansion is inversely proportional to the surface area of the expansive clinker and directly proportional to the amount of sulfate used.

  11. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  12. PAA/PEO comb polymer effects on the rheological property evolution in concentrated cement suspensions

    NASA Astrophysics Data System (ADS)

    Kirby, Glen Harold

    We have studied the behavior of polyelectrolyte-based comb polymers in dilute solution and on the rheological property evolution of concentrated Portland cement suspensions. These species consisted of charge-neutral, poly(ethylene oxide) (PEO) "teeth" grafted onto a poly(acrylic acid) (PAA) "backbone" that contains one ionizable carboxylic acid group (COOH) per monomer unit. As a benchmark, our observations were compared to those obtained for pure cement pastes and systems containing pure polyelectrolyte species, i.e., sulfonated naphthalene formaldehyde (SNF) and poly(acrylic acid) (PAA). The behavior of PAA/PEO comb polymers, SNF, and PAA in dilute solution was studied as a function of pH in the absence and presence of mono-, di-, and trivalent counterions. Light scattering and turbidity measurements were carried out to assess their hydrodynamic radius and stability in aqueous solution, respectively. PAA experienced large conformational changes as a function of solution pH and ionic strength. Moreover, dilute solutions of ionized SNF and PAA species became unstable in the presence of multivalent counterions due to ion-bridging interactions. PAA/PEO solutions exhibited enhanced stability relative to pure polyelectrolytes under analogous conditions. The charge neutral PEO teeth shielded the underlying PAA backbone from ion-bridging interactions. In addition, such species hindered conformational changes in solution due to steric interactions between adjacent teeth. A new oscillatory shear technique was developed to probe the rheological property evolution of concentrated cement systems. The rheological property evolution of ordinary and white Portland cement systems were studied in the absence and presence of pure polyelectrolytes and PAA/PEO comb polymers with a wide range of PAA backbone molecular weight, PEO teeth molecular weight, and acid:imide ratio. Cement-PAA suspensions experienced rapid irreversible stiffening and set at 6 min due to ion

  13. Tympanoplasty with ionomeric cement.

    PubMed

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  14. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  15. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  16. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  17. 33 CFR 100.1302 - Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. 100.1302 Section 100.1302 Navigation and Navigable Waters COAST... § 100.1302 Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. (a) Regulated area....

  18. 33 CFR 100.1302 - Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. 100.1302 Section 100.1302 Navigation and Navigable Waters COAST... § 100.1302 Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. (a) Regulated area....

  19. 33 CFR 100.1302 - Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. 100.1302 Section 100.1302 Navigation and Navigable Waters COAST... § 100.1302 Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. (a) Regulated area....

  20. 33 CFR 100.1302 - Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. 100.1302 Section 100.1302 Navigation and Navigable Waters COAST... § 100.1302 Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. (a) Regulated area....