Sample records for pose estimation system

  1. Estimating satellite pose and motion parameters using a novelty filter and neural net tracker

    NASA Technical Reports Server (NTRS)

    Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne

    1989-01-01

    A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.

  2. Head pose estimation in computer vision: a survey.

    PubMed

    Murphy-Chutorian, Erik; Trivedi, Mohan Manubhai

    2009-04-01

    The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.

  3. 3D ocular ultrasound using gaze tracking on the contralateral eye: a feasibility study.

    PubMed

    Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert

    2011-01-01

    A gaze-deviated examination of the eye with a 2D ultrasound transducer is a common and informative ophthalmic test; however, the complex task of the pose estimation of the ultrasound images relative to the eye affects 3D interpretation. To tackle this challenge, a novel system for 3D image reconstruction based on gaze tracking of the contralateral eye has been proposed. The gaze fixates on several target points and, for each fixation, the pose of the examined eye is inferred from the gaze tracking. A single camera system has been developed for pose estimation combined with subject-specific parameter identification. The ultrasound images are then transformed to the coordinate system of the examined eye to create a 3D volume. Accuracy of the proposed gaze tracking system and the pose estimation of the eye have been validated in a set of experiments. Overall system error, including pose estimation and calibration, are 3.12 mm and 4.68 degrees.

  4. Exemplar-based human action pose correction.

    PubMed

    Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen

    2014-07-01

    The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems.

  5. Incorporating structure from motion uncertainty into image-based pose estimation

    NASA Astrophysics Data System (ADS)

    Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen

    2015-05-01

    A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.

  6. Face pose tracking using the four-point algorithm

    NASA Astrophysics Data System (ADS)

    Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen

    2017-06-01

    In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.

  7. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    PubMed Central

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-01-01

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555

  8. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems.

    PubMed

    Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui

    2017-02-14

    Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  9. An investigation into multi-dimensional prediction models to estimate the pose error of a quadcopter in a CSP plant setting

    NASA Astrophysics Data System (ADS)

    Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann

    2016-05-01

    The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.

  10. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    PubMed

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  11. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    PubMed Central

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  12. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    PubMed Central

    Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming

    2016-01-01

    Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633

  13. IMU-based Real-time Pose Measurement system for Anterior Pelvic Plane in Total Hip Replacement Surgeries.

    PubMed

    Zhe Cao; Shaojie Su; Hao Tang; Yixin Zhou; Zhihua Wang; Hong Chen

    2017-07-01

    With the aging of population, the number of Total Hip Replacement Surgeries (THR) increased year by year. In THR, inaccurate position of the implanted prosthesis may lead to the failure of the operation. In order to reduce the failure rate and acquire the real-time pose of Anterior Pelvic Plane (APP), we propose a measurement system in this paper. The measurement system includes two parts: Initial Pose Measurement Instrument (IPMI) and Real-time Pose Measurement Instrument (RPMI). IPMI is used to acquire the initial pose of the APP, and RPMI is used to estimate the real-time pose of the APP. Both are composed of an Inertial Measurement Unit (IMU) and magnetometer sensors. To estimate the attitude of the measurement system, the Extended Kalman Filter (EKF) is adopted in this paper. The real-time pose of the APP could be acquired together with the algorithm designed in the paper. The experiment results show that the Root Mean Square Error (RMSE) is within 1.6 degrees, which meets the requirement of THR operations.

  14. Three-Dimensional Object Recognition and Registration for Robotic Grasping Systems Using a Modified Viewpoint Feature Histogram

    PubMed Central

    Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming

    2016-01-01

    This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080

  15. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  16. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    NASA Technical Reports Server (NTRS)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  17. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  18. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  19. A multi-camera system for real-time pose estimation

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin

    2007-04-01

    This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.

  20. A combined vision-inertial fusion approach for 6-DoF object pose estimation

    NASA Astrophysics Data System (ADS)

    Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.

    2015-02-01

    The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.

  1. An eye model for uncalibrated eye gaze estimation under variable head pose

    NASA Astrophysics Data System (ADS)

    Hnatow, Justin; Savakis, Andreas

    2007-04-01

    Gaze estimation is an important component of computer vision systems that monitor human activity for surveillance, human-computer interaction, and various other applications including iris recognition. Gaze estimation methods are particularly valuable when they are non-intrusive, do not require calibration, and generalize well across users. This paper presents a novel eye model that is employed for efficiently performing uncalibrated eye gaze estimation. The proposed eye model was constructed from a geometric simplification of the eye and anthropometric data about eye feature sizes in order to circumvent the requirement of calibration procedures for each individual user. The positions of the two eye corners and the midpupil, the distance between the two eye corners, and the radius of the eye sphere are required for gaze angle calculation. The locations of the eye corners and midpupil are estimated via processing following eye detection, and the remaining parameters are obtained from anthropometric data. This eye model is easily extended to estimating eye gaze under variable head pose. The eye model was tested on still images of subjects at frontal pose (0 °) and side pose (34 °). An upper bound of the model's performance was obtained by manually selecting the eye feature locations. The resulting average absolute error was 2.98 ° for frontal pose and 2.87 ° for side pose. The error was consistent across subjects, which indicates that good generalization was obtained. This level of performance compares well with other gaze estimation systems that utilize a calibration procedure to measure eye features.

  2. Vision based object pose estimation for mobile robots

    NASA Technical Reports Server (NTRS)

    Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry

    1994-01-01

    Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.

  3. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  4. Structure-From-Motion in 3D Space Using 2D Lidars

    PubMed Central

    Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So

    2017-01-01

    This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372

  5. A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity

    PubMed Central

    Lomp, Oliver; Faubel, Christian; Schöner, Gregor

    2017-01-01

    Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145

  6. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  7. Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial

    NASA Astrophysics Data System (ADS)

    Moult, E.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.; Fallavollita, P.

    2011-03-01

    Motivation: In prostate brachytherapy, real-time dosimetry would be ideal to allow for rapid evaluation of the implant quality intra-operatively. However, such a mechanism requires an imaging system that is both real-time and which provides, via multiple C-arm fluoroscopy images, clear information describing the three-dimensional position of the seeds deposited within the prostate. Thus, accurate tracking of the C-arm poses proves to be of critical importance to the process. Methodology: We compute the pose of the C-arm relative to a stationary radiographic fiducial of known geometry by employing a hybrid registration framework. Firstly, by means of an ellipse segmentation algorithm and a 2D/3D feature based registration, we exploit known FTRAC geometry to recover an initial estimate of the C-arm pose. Using this estimate, we then initialize the intensity-based registration which serves to recover a refined and accurate estimation of the C-arm pose. Results: Ground-truth pose was established for each C-arm image through a published and clinically tested segmentation-based method. Using 169 clinical C-arm images and a +/-10° and +/-10 mm random perturbation of the ground-truth pose, the average rotation and translation errors were 0.68° (std = 0.06°) and 0.64 mm (std = 0.24 mm). Conclusion: Fully automated C-arm pose estimation using a 2D/3D hybrid registration scheme was found to be clinically robust based on human patient data.

  8. Tracking Control of Mobile Robots Localized via Chained Fusion of Discrete and Continuous Epipolar Geometry, IMU and Odometry.

    PubMed

    Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas

    2013-08-01

    This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.

  9. Camera pose estimation for augmented reality in a small indoor dynamic scene

    NASA Astrophysics Data System (ADS)

    Frikha, Rawia; Ejbali, Ridha; Zaied, Mourad

    2017-09-01

    Camera pose estimation remains a challenging task for augmented reality (AR) applications. Simultaneous localization and mapping (SLAM)-based methods are able to estimate the six degrees of freedom camera motion while constructing a map of an unknown environment. However, these methods do not provide any reference for where to insert virtual objects since they do not have any information about scene structure and may fail in cases of occlusion of three-dimensional (3-D) map points or dynamic objects. This paper presents a real-time monocular piece wise planar SLAM method using the planar scene assumption. Using planar structures in the mapping process allows rendering virtual objects in a meaningful way on the one hand and improving the precision of the camera pose and the quality of 3-D reconstruction of the environment by adding constraints on 3-D points and poses in the optimization process on the other hand. We proposed to benefit from the 3-D planes rigidity motion in the tracking process to enhance the system robustness in the case of dynamic scenes. Experimental results show that using a constrained planar scene improves our system accuracy and robustness compared with the classical SLAM systems.

  10. Bone orientation and position estimation errors using Cosserat point elements and least squares methods: Application to gait.

    PubMed

    Solav, Dana; Camomilla, Valentina; Cereatti, Andrea; Barré, Arnaud; Aminian, Kamiar; Wolf, Alon

    2017-09-06

    The aim of this study was to analyze the accuracy of bone pose estimation based on sub-clusters of three skin-markers characterized by triangular Cosserat point elements (TCPEs) and to evaluate the capability of four instantaneous physical parameters, which can be measured non-invasively in vivo, to identify the most accurate TCPEs. Moreover, TCPE pose estimations were compared with the estimations of two least squares minimization methods applied to the cluster of all markers, using rigid body (RBLS) and homogeneous deformation (HDLS) assumptions. Analysis was performed on previously collected in vivo treadmill gait data composed of simultaneous measurements of the gold-standard bone pose by bi-plane fluoroscopy tracking the subjects' knee prosthesis and a stereophotogrammetric system tracking skin-markers affected by soft tissue artifact. Femur orientation and position errors estimated from skin-marker clusters were computed for 18 subjects using clusters of up to 35 markers. Results based on gold-standard data revealed that instantaneous subsets of TCPEs exist which estimate the femur pose with reasonable accuracy (median root mean square error during stance/swing: 1.4/2.8deg for orientation, 1.5/4.2mm for position). A non-invasive and instantaneous criteria to select accurate TCPEs for pose estimation (4.8/7.3deg, 5.8/12.3mm), was compared with RBLS (4.3/6.6deg, 6.9/16.6mm) and HDLS (4.6/7.6deg, 6.7/12.5mm). Accounting for homogeneous deformation, using HDLS or selected TCPEs, yielded more accurate position estimations than RBLS method, which, conversely, yielded more accurate orientation estimations. Further investigation is required to devise effective criteria for cluster selection that could represent a significant improvement in bone pose estimation accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Driver head pose tracking with thermal camera

    NASA Astrophysics Data System (ADS)

    Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.

    2016-09-01

    Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.

  12. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on real-time implementation and application-specific analysis.« less

  13. Towards Unmanned Systems for Dismounted Operations in the Canadian Forces

    DTIC Science & Technology

    2011-01-01

    LIDAR , and RADAR) and lower power/mass, passive imaging techniques such as structure from motion and simultaneous localisation and mapping ( SLAM ...sensors and learning algorithms. 5.1.2 Simultaneous localisation and mapping SLAM algorithms concurrently estimate a robot pose and a map of unique...locations and vehicle pose are part of the SLAM state vector and are estimated in each update step. AISS developed a monocular camera-based SLAM

  14. Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space

    PubMed Central

    Chen, Min; Hashimoto, Koichi

    2017-01-01

    Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189

  15. Art critic: Multisignal vision and speech interaction system in a gaming context.

    PubMed

    Reale, Michael J; Liu, Peng; Yin, Lijun; Canavan, Shaun

    2013-12-01

    True immersion of a player within a game can only occur when the world simulated looks and behaves as close to reality as possible. This implies that the game must correctly read and understand, among other things, the player's focus, attitude toward the objects/persons in focus, gestures, and speech. In this paper, we proposed a novel system that integrates eye gaze estimation, head pose estimation, facial expression recognition, speech recognition, and text-to-speech components for use in real-time games. Both the eye gaze and head pose components utilize underlying 3-D models, and our novel head pose estimation algorithm uniquely combines scene flow with a generic head model. The facial expression recognition module uses the local binary patterns with three orthogonal planes approach on the 2-D shape index domain rather than the pixel domain, resulting in improved classification. Our system has also been extended to use a pan-tilt-zoom camera driven by the Kinect, allowing us to track a moving player. A test game, Art Critic, is also presented, which not only demonstrates the utility of our system but also provides a template for player/non-player character (NPC) interaction in a gaming context. The player alters his/her view of the 3-D world using head pose, looks at paintings/NPCs using eye gaze, and makes an evaluation based on the player's expression and speech. The NPC artist will respond with facial expression and synthetic speech based on its personality. Both qualitative and quantitative evaluations of the system are performed to illustrate the system's effectiveness.

  16. Image-based aircraft pose estimation: a comparison of simulations and real-world data

    NASA Astrophysics Data System (ADS)

    Breuers, Marcel G. J.; de Reus, Nico

    2001-10-01

    The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.

  17. The investigation and implementation of real-time face pose and direction estimation on mobile computing devices

    NASA Astrophysics Data System (ADS)

    Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae

    2012-04-01

    The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.

  18. Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D

    ERIC Educational Resources Information Center

    Doliotis, Paul

    2013-01-01

    The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…

  19. An anti-disturbing real time pose estimation method and system

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new method can estimate pose between camera and object when part even all known features are lost, and has a quick response time benefit from GPU parallel computing. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in autonomous navigation and positioning, robots fields at unknown environment. The results of simulation and experiments demonstrate that proposed method could suppress noise effectively, extracted features robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  20. A Simulation Environment for Benchmarking Sensor Fusion-Based Pose Estimators.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2015-12-19

    In-depth analysis and performance evaluation of sensor fusion-based estimators may be critical when performed using real-world sensor data. For this reason, simulation is widely recognized as one of the most powerful tools for algorithm benchmarking. In this paper, we present a simulation framework suitable for assessing the performance of sensor fusion-based pose estimators. The systems used for implementing the framework were magnetic/inertial measurement units (MIMUs) and a camera, although the addition of further sensing modalities is straightforward. Typical nuisance factors were also included for each sensor. The proposed simulation environment was validated using real-life sensor data employed for motion tracking. The higher mismatch between real and simulated sensors was about 5% of the measured quantity (for the camera simulation), whereas a lower correlation was found for an axis of the gyroscope (0.90). In addition, a real benchmarking example of an extended Kalman filter for pose estimation from MIMU and camera data is presented.

  1. Handheld pose tracking using vision-inertial sensors with occlusion handling

    NASA Astrophysics Data System (ADS)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  2. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  3. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  4. Comparative assessment of techniques for initial pose estimation using monocular vision

    NASA Astrophysics Data System (ADS)

    Sharma, Sumant; D`Amico, Simone

    2016-06-01

    This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.

  5. Estimation of Tree Position and STEM Diameter Using Simultaneous Localization and Mapping with Data from a Backpack-Mounted Laser Scanner

    NASA Astrophysics Data System (ADS)

    Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.

    2017-10-01

    A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.

  6. Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation

    NASA Astrophysics Data System (ADS)

    Lim, Tae W.

    2015-06-01

    A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.

  7. Landmark based localization in urban environment

    NASA Astrophysics Data System (ADS)

    Qu, Xiaozhi; Soheilian, Bahman; Paparoditis, Nicolas

    2018-06-01

    A landmark based localization with uncertainty analysis based on cameras and geo-referenced landmarks is presented in this paper. The system is developed to adapt different camera configurations for six degree-of-freedom pose estimation. Local bundle adjustment is applied for optimization and the geo-referenced landmarks are integrated to reduce the drift. In particular, the uncertainty analysis is taken into account. On the one hand, we estimate the uncertainties of poses to predict the precision of localization. On the other hand, uncertainty propagation is considered for matching, tracking and landmark registering. The proposed method is evaluated on both KITTI benchmark and the data acquired by a mobile mapping system. In our experiments, decimeter level accuracy can be reached.

  8. Satellite markers: a simple method for ground truth car pose on stereo video

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-04-01

    Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.

  9. A robust vision-based sensor fusion approach for real-time pose estimation.

    PubMed

    Assa, Akbar; Janabi-Sharifi, Farrokh

    2014-02-01

    Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.

  10. Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren

    2012-01-01

    The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.

  11. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    PubMed Central

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  12. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.

    PubMed

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-07-08

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.

  13. Optimization of multi-image pose recovery of fluoroscope tracking (FTRAC) fiducial in an image-guided femoroplasty system

    NASA Astrophysics Data System (ADS)

    Liu, Wen P.; Armand, Mehran; Otake, Yoshito; Taylor, Russell H.

    2011-03-01

    Percutaneous femoroplasty [1], or femoral bone augmentation, is a prospective alternative treatment for reducing the risk of fracture in patients with severe osteoporosis. We are developing a surgical robotics system that will assist orthopaedic surgeons in planning and performing a patient-specific, augmentation of the femur with bone cement. This collaborative project, sponsored by the National Institutes of Health (NIH), has been the topic of previous publications [2],[3] from our group. This paper presents modifications to the pose recovery of a fluoroscope tracking (FTRAC) fiducial during our process of 2D/3D registration of X-ray intraoperative images to preoperative CT data. We show improved automata of the initial pose estimation as well as lower projection errors with the advent of a multiimage pose optimization step.

  14. A pose estimation method for unmanned ground vehicles in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  15. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  16. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    NASA Astrophysics Data System (ADS)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  17. Optimal accelerometer placement on a robot arm for pose estimation

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  18. Head Pose Estimation on Eyeglasses Using Line Detection and Classification Approach

    NASA Astrophysics Data System (ADS)

    Setthawong, Pisal; Vannija, Vajirasak

    This paper proposes a unique approach for head pose estimation of subjects with eyeglasses by using a combination of line detection and classification approaches. Head pose estimation is considered as an important non-verbal form of communication and could also be used in the area of Human-Computer Interface. A major improvement of the proposed approach is that it allows estimation of head poses at a high yaw/pitch angle when compared with existing geometric approaches, does not require expensive data preparation and training, and is generally fast when compared with other approaches.

  19. Fast human pose estimation using 3D Zernike descriptors

    NASA Astrophysics Data System (ADS)

    Berjón, Daniel; Morán, Francisco

    2012-03-01

    Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

  20. A robust motion estimation system for minimal invasive laparoscopy

    NASA Astrophysics Data System (ADS)

    Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer

    2012-02-01

    Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.

  1. Neuromorphic Event-Based 3D Pose Estimation

    PubMed Central

    Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.

    2016-01-01

    Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547

  2. Estimation and Control of Distributed Models for Certain Elastic Systems Arising in Large Space Structures.

    DTIC Science & Technology

    1987-09-30

    igennfy by ""aU numiir,) PIAL GROUP Sue. Go. RCI (Cm, inve o owuera Ineeemerv 4R an~ b-, bloca number) The goal of this research was to study...estimation and control of elastic systems compoited of beams and plates. Specifically, the research con- sidered the problem of lcating the optimal placement...estimation and control of elastic systems com- posed of beams and plates. This general goal has served as a guide for our research over the last several

  3. Optical correlation based pose estimation using bipolar phase grayscale amplitude spatial light modulators

    NASA Astrophysics Data System (ADS)

    Outerbridge, Gregory John, II

    Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.

  4. Comparison of different methods for gender estimation from face image of various poses

    NASA Astrophysics Data System (ADS)

    Ishii, Yohei; Hongo, Hitoshi; Niwa, Yoshinori; Yamamoto, Kazuhiko

    2003-04-01

    Recently, gender estimation from face images has been studied for frontal facial images. However, it is difficult to obtain such facial images constantly in the case of application systems for security, surveillance and marketing research. In order to build such systems, a method is required to estimate gender from the image of various facial poses. In this paper, three different classifiers are compared in appearance-based gender estimation, which use four directional features (FDF). The classifiers are linear discriminant analysis (LDA), Support Vector Machines (SVMs) and Sparse Network of Winnows (SNoW). Face images used for experiments were obtained from 35 viewpoints. The direction of viewpoints varied +/-45 degrees horizontally, +/-30 degrees vertically at 15 degree intervals respectively. Although LDA showed the best performance for frontal facial images, SVM with Gaussian kernel was found the best performance (86.0%) for the facial images of 35 viewpoints. It is considered that SVM with Gaussian kernel is robust to changes in viewpoint when estimating gender from these results. Furthermore, the estimation rate was quite close to the average estimation rate at 35 viewpoints respectively. It is supposed that the methods are reasonable to estimate gender within the range of experimented viewpoints by learning face images from multiple directions by one class.

  5. Pose estimation of industrial objects towards robot operation

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  6. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  7. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  8. Robust head pose estimation via supervised manifold learning.

    PubMed

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A chance constraint estimation approach to optimizing resource management under uncertainty

    Treesearch

    Michael Bevers

    2007-01-01

    Chance-constrained optimization is an important method for managing risk arising from random variations in natural resource systems, but the probabilistic formulations often pose mathematical programming problems that cannot be solved with exact methods. A heuristic estimation method for these problems is presented that combines a formulation for order statistic...

  10. Trajectory-based visual localization in underwater surveying missions.

    PubMed

    Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel

    2015-01-14

    We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.

  11. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras

    NASA Astrophysics Data System (ADS)

    Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd

    2017-10-01

    This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.

  12. Nonlinear features for classification and pose estimation of machined parts from single views

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-10-01

    A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.

  13. Solving Navigational Uncertainty Using Grid Cells on Robots

    PubMed Central

    Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.

    2010-01-01

    To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments. PMID:21085643

  14. Bone Pose Estimation in the Presence of Soft Tissue Artifact Using Triangular Cosserat Point Elements.

    PubMed

    Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon

    2016-04-01

    Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose.

  15. Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao

    2017-09-01

    Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.

  16. Multi-Cone Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The multi-cone model is a computational model for estimating ionospheric delays of Global Positioning System (GPS) signals. It is a direct descendant of the conical-domain model. A primary motivation for the development of this model is the need to find alternatives for modeling slant delays at low latitudes, where ionospheric behavior poses an acute challenge for GPS signal-delay estimates based upon the thin-shell model of the ionosphere.

  17. Empirical mode decomposition-based facial pose estimation inside video sequences

    NASA Astrophysics Data System (ADS)

    Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing

    2010-03-01

    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.

  18. Estimation of Faults in DC Electrical Power System

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  19. Recovering the 3d Pose and Shape of Vehicles from Stereo Images

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2018-05-01

    The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.

  20. Learning toward practical head pose estimation

    NASA Astrophysics Data System (ADS)

    Sang, Gaoli; He, Feixiang; Zhu, Rong; Xuan, Shibin

    2017-08-01

    Head pose is useful information for many face-related tasks, such as face recognition, behavior analysis, human-computer interfaces, etc. Existing head pose estimation methods usually assume that the face images have been well aligned or that sufficient and precise training data are available. In practical applications, however, these assumptions are very likely to be invalid. This paper first investigates the impact of the failure of these assumptions, i.e., misalignment of face images, uncertainty and undersampling of training data, on head pose estimation accuracy of state-of-the-art methods. A learning-based approach is then designed to enhance the robustness of head pose estimation to these factors. To cope with misalignment, instead of using hand-crafted features, it seeks suitable features by learning from a set of training data with a deep convolutional neural network (DCNN), such that the training data can be best classified into the correct head pose categories. To handle uncertainty and undersampling, it employs multivariate labeling distributions (MLDs) with dense sampling intervals to represent the head pose attributes of face images. The correlation between the features and the dense MLD representations of face images is approximated by a maximum entropy model, whose parameters are optimized on the given training data. To estimate the head pose of a face image, its MLD representation is first computed according to the model based on the features extracted from the image by the trained DCNN, and its head pose is then assumed to be the one corresponding to the peak in its MLD. Evaluation experiments on the Pointing'04, FacePix, Multi-PIE, and CASIA-PEAL databases prove the effectiveness and efficiency of the proposed method.

  1. DECISION-SUPPORT SOFTWARE FOR SOIL VAPOR EXTRACTION TECHNOLOGY APPLICATION: HYPERVENTILATE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) estimate* that 15% to 20% of the approximately 1.7 million underground storage tank (UST) systems containing petroleum products are either leaking or will leak In the near future. These UST systems could pose a serious threat to p...

  2. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  3. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  4. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment

    NASA Astrophysics Data System (ADS)

    Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz

    2010-09-01

    This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.

  5. Machine Vision for Relative Spacecraft Navigation During Approach to Docking

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Baker, Kenneth

    2011-01-01

    This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.

  6. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  7. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  8. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?

    PubMed Central

    Wouda, Frank J.; Giuberti, Matteo; Bellusci, Giovanni; Veltink, Peter H.

    2016-01-01

    Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors. In this work, we contribute to this field by analyzing the capabilities of using either artificial neural networks (eager learning) or nearest neighbor search (lazy learning) for such a problem. Sparse orientation features, resulting from sensor fusion of only five inertial measurement units with magnetometers, are mapped to full-body poses. Both eager and lazy learning algorithms are shown to be capable of constructing this mapping. The full-body output poses are visually plausible with an average joint position error of approximately 7 cm, and average joint angle error of 7∘. Additionally, the effects of magnetic disturbances typical in orientation tracking on the estimation of full-body poses was also investigated, where nearest neighbor search showed better performance for such disturbances. PMID:27983676

  9. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?

    PubMed

    Wouda, Frank J; Giuberti, Matteo; Bellusci, Giovanni; Veltink, Peter H

    2016-12-15

    Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors. In this work, we contribute to this field by analyzing the capabilities of using either artificial neural networks (eager learning) or nearest neighbor search (lazy learning) for such a problem. Sparse orientation features, resulting from sensor fusion of only five inertial measurement units with magnetometers, are mapped to full-body poses. Both eager and lazy learning algorithms are shown to be capable of constructing this mapping. The full-body output poses are visually plausible with an average joint position error of approximately 7 cm, and average joint angle error of 7 ∘ . Additionally, the effects of magnetic disturbances typical in orientation tracking on the estimation of full-body poses was also investigated, where nearest neighbor search showed better performance for such disturbances.

  10. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1992-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  11. Efficient visual grasping alignment for cylinders

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.

  12. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  13. Classification and pose estimation of objects using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-03-01

    A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.

  14. Motion compensation using origin ensembles in awake small animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gillam, John E.; Angelis, Georgios I.; Kyme, Andre Z.; Meikle, Steven R.

    2017-02-01

    In emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data. Motion compensation can be conducted when rigid head pose is measured during the scan. However, errors in pose measurements used for compensation can degrade the data and hence quantitative outcomes. In this investigation motion compensation and detector resolution models were incorporated into the basic origin ensembles algorithm and an efficient approach to computation was developed. The approach was validated against maximum liklihood—expectation maximisation and tested using simulated data. The resultant algorithm was then used to analyse quantitative uncertainty in regional activity estimates arising from changes in pose measurement precision. Finally, the posterior covariance acquired from a single data set was used to describe correlations between regions of interest providing information about pose measurement precision that may be useful in system analysis and design. The investigation demonstrates the use of origin ensembles as a powerful framework for evaluating statistical uncertainty of voxel and regional estimates. While in this investigation rigid motion was considered in the context of awake animal PET, the extension to arbitrary motion may provide clinical utility where respiratory or cardiac motion perturb the measured data.

  15. Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.

    PubMed

    Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios

    2017-03-01

    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.

  16. Vision-guided gripping of a cylinder

    NASA Technical Reports Server (NTRS)

    Nicewarner, Keith E.; Kelley, Robert B.

    1991-01-01

    The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.

  17. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  18. Soldier-worn augmented reality system for tactical icon visualization

    NASA Astrophysics Data System (ADS)

    Roberts, David; Menozzi, Alberico; Clipp, Brian; Russler, Patrick; Cook, James; Karl, Robert; Wenger, Eric; Church, William; Mauger, Jennifer; Volpe, Chris; Argenta, Chris; Wille, Mark; Snarski, Stephen; Sherrill, Todd; Lupo, Jasper; Hobson, Ross; Frahm, Jan-Michael; Heinly, Jared

    2012-06-01

    This paper describes the development and demonstration of a soldier-worn augmented reality system testbed that provides intuitive 'heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a robust soldier pose estimation capability with a helmet mounted see-through display to accurately overlay geo-registered iconography (i.e., navigation waypoints, blue forces, aircraft) on the soldier's view of reality. Applied Research Associates (ARA), in partnership with BAE Systems and the University of North Carolina - Chapel Hill (UNC-CH), has developed this testbed system in Phase 2 of the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program. The ULTRA-Vis testbed system functions in unprepared outdoor environments and is robust to numerous magnetic disturbances. We achieve accurate and robust pose estimation through fusion of inertial, magnetic, GPS, and computer vision data acquired from helmet kit sensors. Icons are rendered on a high-brightness, 40°×30° field of view see-through display. The system incorporates an information management engine to convert CoT (Cursor-on-Target) external data feeds into mil-standard icons for visualization. The user interface provides intuitive information display to support soldier navigation and situational awareness of mission-critical tactical information.

  19. Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target.

    PubMed

    Yin, Fang; Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song

    2018-03-28

    This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method.

  20. Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target

    PubMed Central

    Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song

    2018-01-01

    This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method. PMID:29597323

  1. Dual Quaternions as Constraints in 4D-DPM Models for Pose Estimation.

    PubMed

    Martinez-Berti, Enrique; Sánchez-Salmerón, Antonio-José; Ricolfe-Viala, Carlos

    2017-08-19

    The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was formerly defined based only on red-green-blue (RGB) channels, in order to obtain a four-dimensional DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematics models. In this context, the main goal of this paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve the inverse kinematics.

  2. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  3. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.

  4. First-Order System Least-Squares for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Bochev, P.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least-squares principle yields optimal discretization error estimates in the H(sup 1) norm in each variable (including the velocity flux) and optimal multigrid convergence estimates for the resulting algebraic system.

  5. Real-time upper-body human pose estimation from depth data using Kalman filter for simulator

    NASA Astrophysics Data System (ADS)

    Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.

    2014-08-01

    Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.

  6. An improved silhouette for human pose estimation

    NASA Astrophysics Data System (ADS)

    Hawes, Anthony H.; Iftekharuddin, Khan M.

    2017-08-01

    We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.

  7. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors

  8. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.

  9. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-01-01

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758

  10. Estimation of Antenna Pose in the Earth Frame Using Camera and IMU Data from Mobile Phones

    PubMed Central

    Wang, Zhen; Jin, Bingwen; Geng, Weidong

    2017-01-01

    The poses of base station antennas play an important role in cellular network optimization. Existing methods of pose estimation are based on physical measurements performed either by tower climbers or using additional sensors attached to antennas. In this paper, we present a novel non-contact method of antenna pose measurement based on multi-view images of the antenna and inertial measurement unit (IMU) data captured by a mobile phone. Given a known 3D model of the antenna, we first estimate the antenna pose relative to the phone camera from the multi-view images and then employ the corresponding IMU data to transform the pose from the camera coordinate frame into the Earth coordinate frame. To enhance the resulting accuracy, we improve existing camera-IMU calibration models by introducing additional degrees of freedom between the IMU sensors and defining a new error metric based on both the downtilt and azimuth angles, instead of a unified rotational error metric, to refine the calibration. In comparison with existing camera-IMU calibration methods, our method achieves an improvement in azimuth accuracy of approximately 1.0 degree on average while maintaining the same level of downtilt accuracy. For the pose estimation in the camera coordinate frame, we propose an automatic method of initializing the optimization solver and generating bounding constraints on the resulting pose to achieve better accuracy. With this initialization, state-of-the-art visual pose estimation methods yield satisfactory results in more than 75% of cases when plugged into our pipeline, and our solution, which takes advantage of the constraints, achieves even lower estimation errors on the downtilt and azimuth angles, both on average (0.13 and 0.3 degrees lower, respectively) and in the worst case (0.15 and 7.3 degrees lower, respectively), according to an evaluation conducted on a dataset consisting of 65 groups of data. We show that both of our enhancements contribute to the performance improvement offered by the proposed estimation pipeline, which achieves downtilt and azimuth accuracies of respectively 0.47 and 5.6 degrees on average and 1.38 and 12.0 degrees in the worst case, thereby satisfying the accuracy requirements for network optimization in the telecommunication industry. PMID:28397765

  11. Enhancement Strategies for Frame-To Uas Stereo Visual Odometry

    NASA Astrophysics Data System (ADS)

    Kersten, J.; Rodehorst, V.

    2016-06-01

    Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.

  12. Frequency domain surface EMG sensor fusion for estimating finger forces.

    PubMed

    Potluri, Chandrasekhar; Kumar, Parmod; Anugolu, Madhavi; Urfer, Alex; Chiu, Steve; Naidu, D; Schoen, Marco P

    2010-01-01

    Extracting or estimating skeletal hand/finger forces using surface electro myographic (sEMG) signals poses many challenges due to cross-talk, noise, and a temporal and spatially modulated signal characteristics. Normal sEMG measurements are based on single sensor data. In this paper, array sensors are used along with a proposed sensor fusion scheme that result in a simple Multi-Input-Single-Output (MISO) transfer function. Experimental data is used along with system identification to find this MISO system. A Genetic Algorithm (GA) approach is employed to optimize the characteristics of the MISO system. The proposed fusion-based approach is tested experimentally and indicates improvement in finger/hand force estimation.

  13. Testing and evaluation of a wearable augmented reality system for natural outdoor environments

    NASA Astrophysics Data System (ADS)

    Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg

    2013-05-01

    This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.

  14. Pose estimation for augmented reality applications using genetic algorithm.

    PubMed

    Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen

    2005-12-01

    This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.

  15. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    NASA Astrophysics Data System (ADS)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between one and ten centimeters from tachymeter reference measurements.

  16. Reentry survivability modeling

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.; Maher, Robert L.

    1997-10-01

    Statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by re-entering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was recently demonstrated in dramatic fashion by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This paper examines reentry survivability estimation methodology, including the specific methodology used by Caiman Sciences' 'Survive' model. Comparison between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and Survive estimates are presented for selected upper stage or spacecraft components and a Delta launch vehicle second stage.

  17. A deep learning approach for pose estimation from volumetric OCT data.

    PubMed

    Gessert, Nils; Schlüter, Matthias; Schlaefer, Alexander

    2018-05-01

    Tracking the pose of instruments is a central problem in image-guided surgery. For microscopic scenarios, optical coherence tomography (OCT) is increasingly used as an imaging modality. OCT is suitable for accurate pose estimation due to its micrometer range resolution and volumetric field of view. However, OCT image processing is challenging due to speckle noise and reflection artifacts in addition to the images' 3D nature. We address pose estimation from OCT volume data with a new deep learning-based tracking framework. For this purpose, we design a new 3D convolutional neural network (CNN) architecture to directly predict the 6D pose of a small marker geometry from OCT volumes. We use a hexapod robot to automatically acquire labeled data points which we use to train 3D CNN architectures for multi-output regression. We use this setup to provide an in-depth analysis on deep learning-based pose estimation from volumes. Specifically, we demonstrate that exploiting volume information for pose estimation yields higher accuracy than relying on 2D representations with depth information. Supporting this observation, we provide quantitative and qualitative results that 3D CNNs effectively exploit the depth structure of marker objects. Regarding the deep learning aspect, we present efficient design principles for 3D CNNs, making use of insights from the 2D deep learning community. In particular, we present Inception3D as a new architecture which performs best for our application. We show that our deep learning approach reaches errors at our ground-truth label's resolution. We achieve a mean average error of 14.89 ± 9.3 µm and 0.096 ± 0.072° for position and orientation learning, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems with Noisy Data.

    DTIC Science & Technology

    1980-02-01

    to estimate f -..ell, -noderately ,-ell, or- poorly. 1 ’The sansitivity *of a rec-ilarized estimate of f to the noise is made explicit. After giving the...AD-A 7 .SA92 925 WISCONSIN UN! V-MADISON DEFT OF STATISTICS F /S 11,’ 1 ILL POSED PRORLEMS: NUMERICAL ANn STATISTICAL METHODS FOR MILOL-ETC(U FEB 80 a...estimate f given z. We first define the 1 intrinsic rank of the problem where jK(tit) f (t)dt is known exactly. This 0 definition is used to provide insight

  19. Precise visual navigation using multi-stereo vision and landmark matching

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Oskiper, Taragay; Samarasekera, Supun; Kumar, Rakesh

    2007-04-01

    Traditional vision-based navigation system often drifts over time during navigation. In this paper, we propose a set of techniques which greatly reduce the long term drift and also improve its robustness to many failure conditions. In our approach, two pairs of stereo cameras are integrated to form a forward/backward multi-stereo camera system. As a result, the Field-Of-View of the system is extended significantly to capture more natural landmarks from the scene. This helps to increase the pose estimation accuracy as well as reduce the failure situations. Secondly, a global landmark matching technique is used to recognize the previously visited locations during navigation. Using the matched landmarks, a pose correction technique is used to eliminate the accumulated navigation drift. Finally, in order to further improve the robustness of the system, measurements from low-cost Inertial Measurement Unit (IMU) and Global Positioning System (GPS) sensors are integrated with the visual odometry in an extended Kalman Filtering framework. Our system is significantly more accurate and robust than previously published techniques (1~5% localization error) over long-distance navigation both indoors and outdoors. Real world experiments on a human worn system show that the location can be estimated within 1 meter over 500 meters (around 0.1% localization error averagely) without the use of GPS information.

  20. Meteoroids and Meteor Storms: A Threat to Spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. Jeffrey

    1999-01-01

    Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.

  1. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  2. Estimating aquatic hazards posed by prescription pharmaceutical residues from municipal wastewater

    EPA Science Inventory

    Risks posed by pharmaceuticals in the environment are hard to estimate due to limited monitoring capacity and difficulty interpreting monitoring results. In order to partially address these issues, we suggest a method for prioritizing pharmaceuticals for monitoring, and a framewo...

  3. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  4. A Single Camera Motion Capture System for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  5. Flight Results from the HST SM4 Relative Navigation Sensor System

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel

    2010-01-01

    On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms

  6. Fiducial Marker Detection and Pose Estimation From LIDAR Range Data

    DTIC Science & Technology

    2010-03-01

    of View FPA Focal Plane Array FPS Frames Per Second FRE Fiducial Registration Error GIS Geographic Information Systems GPS Global...applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. Bradski, G., & Kaehler, A. (2008). Learning OpenCV

  7. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  8. Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.

    PubMed

    Xiao Yang; Jianjiang Feng; Jie Zhou

    2014-05-01

    Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.

  9. A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences

    PubMed Central

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933

  10. Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm

    PubMed Central

    Hashimoto, Koichi

    2017-01-01

    Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216

  11. An evaluation of 3D head pose estimation using the Microsoft Kinect v2.

    PubMed

    Darby, John; Sánchez, María B; Butler, Penelope B; Loram, Ian D

    2016-07-01

    The Kinect v2 sensor supports real-time non-invasive 3D head pose estimation. Because the sensor is small, widely available and relatively cheap it has great potential as a tool for groups interested in measuring head posture. In this paper we compare the Kinect's head pose estimates with a marker-based record of ground truth in order to establish its accuracy. During movement of the head and neck alone (with static torso), we find average errors in absolute yaw, pitch and roll angles of 2.0±1.2°, 7.3±3.2° and 2.6±0.7°, and in rotations relative to the rest pose of 1.4±0.5°, 2.1±0.4° and 2.0±0.8°. Larger head rotations where it becomes difficult to see facial features can cause estimation to fail (10.2±6.1% of all poses in our static torso range of motion tests) but we found no significant changes in performance with the participant standing further away from Kinect - additionally enabling full-body pose estimation - or without performing face shape calibration, something which is not always possible for younger or disabled participants. Where facial features remain visible, the sensor has applications in the non-invasive assessment of postural control, e.g. during a programme of physical therapy. In particular, a multi-Kinect setup covering the full range of head (and body) movement would appear to be a promising way forward. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  13. Autocalibration of a projector-camera system.

    PubMed

    Okatani, Takayuki; Deguchi, Koichiro

    2005-12-01

    This paper presents a method for calibrating a projector-camera system that consists of multiple projectors (or multiple poses of a single projector), a camera, and a planar screen. We consider the problem of estimating the homography between the screen and the image plane of the camera or the screen-camera homography, in the case where there is no prior knowledge regarding the screen surface that enables the direct computation of the homography. It is assumed that the pose of each projector is unknown while its internal geometry is known. Subsequently, it is shown that the screen-camera homography can be determined from only the images projected by the projectors and then obtained by the camera, up to a transformation with four degrees of freedom. This transformation corresponds to arbitrariness in choosing a two-dimensional coordinate system on the screen surface and when this coordinate system is chosen in some manner, the screen-camera homography as well as the unknown poses of the projectors can be uniquely determined. A noniterative algorithm is presented, which computes the homography from three or more images. Several experimental results on synthetic as well as real images are shown to demonstrate the effectiveness of the method.

  14. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  15. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  16. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera.

    PubMed

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-04-14

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  17. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    PubMed Central

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-01-01

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera. PMID:27089344

  18. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  19. Attribute And-Or Grammar for Joint Parsing of Human Pose, Parts and Attributes.

    PubMed

    Park, Seyoung; Nie, Xiaohan; Zhu, Song-Chun

    2017-07-25

    This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i)Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii)Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii)Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.

  20. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation

    PubMed Central

    Airò Farulla, Giuseppe; Pianu, Daniele; Cempini, Marco; Cortese, Mario; Russo, Ludovico O.; Indaco, Marco; Nerino, Roberto; Chimienti, Antonio; Oddo, Calogero M.; Vitiello, Nicola

    2016-01-01

    Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator’s hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers’ hands movements. PMID:26861333

  1. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation.

    PubMed

    Airò Farulla, Giuseppe; Pianu, Daniele; Cempini, Marco; Cortese, Mario; Russo, Ludovico O; Indaco, Marco; Nerino, Roberto; Chimienti, Antonio; Oddo, Calogero M; Vitiello, Nicola

    2016-02-05

    Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master-slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator's hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers' hands movements.

  2. Discriminating Projections for Estimating Face Age in Wild Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokola, Ryan A; Bolme, David S; Ricanek, Karl

    2014-01-01

    We introduce a novel approach to estimating the age of a human from a single uncontrolled image. Current face age estimation algorithms work well in highly controlled images, and some are robust to changes in illumination, but it is usually assumed that images are close to frontal. This bias is clearly seen in the datasets that are commonly used to evaluate age estimation, which either entirely or mostly consist of frontal images. Using pose-specific projections, our algorithm maps image features into a pose-insensitive latent space that is discriminative with respect to age. Age estimation is then performed using a multi-classmore » SVM. We show that our approach outperforms other published results on the Images of Groups dataset, which is the only age-related dataset with a non-trivial number of off-axis face images, and that we are competitive with recent age estimation algorithms on the mostly-frontal FG-NET dataset. We also experimentally demonstrate that our feature projections introduce insensitivity to pose.« less

  3. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  4. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  5. Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment

    PubMed Central

    Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang

    2013-01-01

    Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620

  6. The ART of representation: Memory reduction and noise tolerance in a neural network vision system

    NASA Astrophysics Data System (ADS)

    Langley, Christopher S.

    The Feature Cerebellar Model Arithmetic Computer (FCMAC) is a multiple-input-single-output neural network that can provide three-degree-of-freedom (3-DOF) pose estimation for a robotic vision system. The FCMAC provides sufficient accuracy to enable a manipulator to grasp an object from an arbitrary pose within its workspace. The network learns an appearance-based representation of an object by storing coarsely quantized feature patterns. As all unique patterns are encoded, the network size grows uncontrollably. A new architecture is introduced herein, which combines the FCMAC with an Adaptive Resonance Theory (ART) network. The ART module categorizes patterns observed during training into a set of prototypes that are used to build the FCMAC. As a result, the network no longer grows without bound, but constrains itself to a user-specified size. Pose estimates remain accurate since the ART layer tends to discard the least relevant information first. The smaller network performs recall faster, and in some cases is better for generalization, resulting in a reduction of error at recall time. The ART-Under-Constraint (ART-C) algorithm is extended to include initial filling with randomly selected patterns (referred to as ART-F). In experiments using a real-world data set, the new network performed equally well using less than one tenth the number of coarse patterns as a regular FCMAC. The FCMAC is also extended to include real-valued input activations. As a result, the network can be tuned to reject a variety of types of noise in the image feature detection. A quantitative analysis of noise tolerance was performed using four synthetic noise algorithms, and a qualitative investigation was made using noisy real-world image data. In validation experiments, the FCMAC system outperformed Radial Basis Function (RBF) networks for the 3-DOF problem, and had accuracy comparable to that of Principal Component Analysis (PCA) and superior to that of Shape Context Matching (SCM), both of which estimate orientation only.

  7. Examination of Observation Impacts derived from OSEs and Adjoint Models

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald

    2008-01-01

    With the adjoint of a data assimilation system, the impact of any or all assimilated observations on measures of forecast skill can be estimated accurately and efficiently. The approach allows aggregation of results in terms of individual data types, channels or locations, all computed simultaneously. In this study, adjoint-based estimates of observation impact are compared with results from standard observing system experiments (OSEs) in the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) GEOS-5 system. The two approaches are shown to provide unique, but complimentary, information. Used together, they reveal both redundancies and dependencies between observing system impacts as observations are added or removed. Understanding these dependencies poses a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.

  8. Squeezeposenet: Image Based Pose Regression with Small Convolutional Neural Networks for Real Time Uas Navigation

    NASA Astrophysics Data System (ADS)

    Müller, M. S.; Urban, S.; Jutzi, B.

    2017-08-01

    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.

  9. A model-based 3D template matching technique for pose acquisition of an uncooperative space object.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2015-03-16

    This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented.

  10. Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose

    NASA Astrophysics Data System (ADS)

    Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.

  11. Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Shenoy, Rajesh

    1997-10-01

    Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.

  12. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    PubMed

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  13. Hand pose estimation in depth image using CNN and random forest

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cao, Zhiguo; Xiao, Yang; Fang, Zhiwen

    2018-03-01

    Thanks to the availability of low cost depth cameras, like Microsoft Kinect, 3D hand pose estimation attracted special research attention in these years. Due to the large variations in hand`s viewpoint and the high dimension of hand motion, 3D hand pose estimation is still challenging. In this paper we propose a two-stage framework which joint with CNN and Random Forest to boost the performance of hand pose estimation. First, we use a standard Convolutional Neural Network (CNN) to regress the hand joints` locations. Second, using a Random Forest to refine the joints from the first stage. In the second stage, we propose a pyramid feature which merges the information flow of the CNN. Specifically, we get the rough joints` location from first stage, then rotate the convolutional feature maps (and image). After this, for each joint, we map its location to each feature map (and image) firstly, then crop features at each feature map (and image) around its location, put extracted features to Random Forest to refine at last. Experimentally, we evaluate our proposed method on ICVL dataset and get the mean error about 11mm, our method is also real-time on a desktop.

  14. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Vision Based SLAM in Dynamic Scenes

    DTIC Science & Technology

    2012-12-20

    the correct relative poses between cameras at frame F. For this purpose, we detect and match SURF features between cameras in dilierent groups, and...all cameras in s uch a challenging case. For a compa rison, we disabled the ’ inte r-camera pose estimation’ and applied the ’ intra-camera pose esti

  16. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  17. Marker Registration Technique for Handwritten Text Marker in Augmented Reality Applications

    NASA Astrophysics Data System (ADS)

    Thanaborvornwiwat, N.; Patanukhom, K.

    2018-04-01

    Marker registration is a fundamental process to estimate camera poses in marker-based Augmented Reality (AR) systems. We developed AR system that creates correspondence virtual objects on handwritten text markers. This paper presents a new method for registration that is robust for low-content text markers, variation of camera poses, and variation of handwritten styles. The proposed method uses Maximally Stable Extremal Regions (MSER) and polygon simplification for a feature point extraction. The experiment shows that we need to extract only five feature points per image which can provide the best registration results. An exhaustive search is used to find the best matching pattern of the feature points in two images. We also compared performance of the proposed method to some existing registration methods and found that the proposed method can provide better accuracy and time efficiency.

  18. Loose fusion based on SLAM and IMU for indoor environment

    NASA Astrophysics Data System (ADS)

    Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing

    2018-04-01

    The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.

  19. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  20. A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating.

    PubMed

    Knips, Guido; Zibner, Stephan K U; Reimann, Hendrik; Schöner, Gregor

    2017-01-01

    Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.

  1. A Neural Dynamic Architecture for Reaching and Grasping Integrates Perception and Movement Generation and Enables On-Line Updating

    PubMed Central

    Knips, Guido; Zibner, Stephan K. U.; Reimann, Hendrik; Schöner, Gregor

    2017-01-01

    Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp. PMID:28303100

  2. Increasing the automation of a 2D-3D registration system.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2013-02-01

    Routine clinical use of 2D-3D registration algorithms for Image Guided Surgery remains limited. A key aspect for routine clinical use of this technology is its degree of automation, i.e., the amount of necessary knowledgeable interaction between the clinicians and the registration system. Current image-based registration approaches usually require knowledgeable manual interaction during two stages: for initial pose estimation and for verification of produced results. We propose four novel techniques, particularly suited to vertebra-based registration systems, which can significantly automate both of the above stages. Two of these techniques are based upon the intraoperative "insertion" of a virtual fiducial marker into the preoperative data. The remaining two techniques use the final registration similarity value between multiple CT vertebrae and a single fluoroscopy vertebra. The proposed methods were evaluated with data from 31 operations (31 CT scans, 419 fluoroscopy images). Results show these methods can remove the need for manual vertebra identification during initial pose estimation, and were also very effective for result verification, producing a combined true positive rate of 100% and false positive rate equal to zero. This large decrease in required knowledgeable interaction is an important contribution aiming to enable more widespread use of 2D-3D registration technology.

  3. An Improved Method of Pose Estimation for Lighthouse Base Station Extension.

    PubMed

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-10-22

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.

  4. An Improved Method of Pose Estimation for Lighthouse Base Station Extension

    PubMed Central

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-01-01

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509

  5. First stereo video dataset with ground truth for remote car pose estimation using satellite markers

    NASA Astrophysics Data System (ADS)

    Gil, Gustavo; Savino, Giovanni; Pierini, Marco

    2018-04-01

    Leading causes of PTW (Powered Two-Wheeler) crashes and near misses in urban areas are on the part of a failure or delayed prediction of the changing trajectories of other vehicles. Regrettably, misperception from both car drivers and motorcycle riders results in fatal or serious consequences for riders. Intelligent vehicles could provide early warning about possible collisions, helping to avoid the crash. There is evidence that stereo cameras can be used for estimating the heading angle of other vehicles, which is key to anticipate their imminent location, but there is limited heading ground truth data available in the public domain. Consequently, we employed a marker-based technique for creating ground truth of car pose and create a dataset∗ for computer vision benchmarking purposes. This dataset of a moving vehicle collected from a static mounted stereo camera is a simplification of a complex and dynamic reality, which serves as a test bed for car pose estimation algorithms. The dataset contains the accurate pose of the moving obstacle, and realistic imagery including texture-less and non-lambertian surfaces (e.g. reflectance and transparency).

  6. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  7. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  8. Temporal subtraction of chest radiographs compensating pose differences

    NASA Astrophysics Data System (ADS)

    von Berg, Jens; Dworzak, Jalda; Klinder, Tobias; Manke, Dirk; Kreth, Adrian; Lamecker, Hans; Zachow, Stefan; Lorenz, Cristian

    2011-03-01

    Temporal subtraction techniques using 2D image registration improve the detectability of interval changes from chest radiographs. Although such methods are well known for some time they are not widely used in radiologic practice. The reason is the occurrence of strong pose differences between two acquisitions with a time interval of months to years in between. Such strong perspective differences occur in a reasonable number of cases. They cannot be compensated by available image registration methods and thus mask interval changes to be undetectable. In this paper a method is proposed to estimate a 3D pose difference by the adaptation of a 3D rib cage model to both projections. The difference between both is then compensated for, thus producing a subtraction image with virtually no change in pose. The method generally assumes that no 3D image data is available from the patient. The accuracy of pose estimation is validated with chest phantom images acquired under controlled geometric conditions. A subtle interval change simulated by a piece of plastic foam attached to the phantom becomes visible in subtraction images generated with this technique even at strong angular pose differences like an anterior-posterior inclination of 13 degrees.

  9. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.

    PubMed

    Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.

  10. Inertial Motion Capture Costume Design Study

    PubMed Central

    Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad

    2017-01-01

    The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results. PMID:28304337

  11. Real-time UAV trajectory generation using feature points matching between video image sequences

    NASA Astrophysics Data System (ADS)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  12. Body Parts Dependent Joint Regressors for Human Pose Estimation in Still Images.

    PubMed

    Dantone, Matthias; Gall, Juergen; Leistner, Christian; Van Gool, Luc

    2014-11-01

    In this work, we address the problem of estimating 2d human pose from still images. Articulated body pose estimation is challenging due to the large variation in body poses and appearances of the different body parts. Recent methods that rely on the pictorial structure framework have shown to be very successful in solving this task. They model the body part appearances using discriminatively trained, independent part templates and the spatial relations of the body parts using a tree model. Within such a framework, we address the problem of obtaining better part templates which are able to handle a very high variation in appearance. To this end, we introduce parts dependent body joint regressors which are random forests that operate over two layers. While the first layer acts as an independent body part classifier, the second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This helps to overcome typical ambiguities of tree structures, such as self-similarities of legs and arms. In addition, we introduce a novel data set termed FashionPose that contains over 7,000 images with a challenging variation of body part appearances due to a large variation of dressing styles. In the experiments, we demonstrate that the proposed parts dependent joint regressors outperform independent classifiers or regressors. The method also performs better or similar to the state-of-the-art in terms of accuracy, while running with a couple of frames per second.

  13. Pose estimation of teeth through crown-shape matching

    NASA Astrophysics Data System (ADS)

    Mok, Vevin; Ong, Sim Heng; Foong, Kelvin W. C.; Kondo, Toshiaki

    2002-05-01

    This paper presents a technique for determining a tooth's pose given a dental plaster cast and a set of generic tooth models. The ultimate goal of pose estimation is to obtain information about the sizes and positions of the roots, which lie hidden within the gums, without the use of X-rays, CT or MRI. In our approach, the tooth of interest is first extracted from the 3D dental cast image through segmentation. 2D views are then generated from the extracted tooth and are matched against a target view generated from the generic model with known pose. Additional views are generated in the vicinity of the best view and the entire process is repeated until convergence. Upon convergence, the generic tooth is superimposed onto the dental cast to show the position of the root. The results of applying the technique to canines demonstrate the excellent potential of the algorithm for generic tooth fitting.

  14. Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.

    PubMed

    Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2009-01-01

    Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.

  15. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  16. The relative pose estimation of aircraft based on contour model

    NASA Astrophysics Data System (ADS)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  17. Gradient-based stochastic estimation of the density matrix

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  18. A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2018-05-01

    This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.

  19. Maximal likelihood correspondence estimation for face recognition across pose.

    PubMed

    Li, Shaoxin; Liu, Xin; Chai, Xiujuan; Zhang, Haihong; Lao, Shihong; Shan, Shiguang

    2014-10-01

    Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous image matching-based correspondence learning methods: 1) fail to fully exploit face specific structure information in correspondence estimation and 2) fail to learn personalized correspondence for each probe image. To this end, we first build a model, termed as morphable displacement field (MDF), to encode face specific structure information of semantic correspondence from a set of real samples of correspondences calculated from 3D face models. Then, we propose a maximal likelihood correspondence estimation (MLCE) method to learn personalized correspondence based on maximal likelihood frontal face assumption. After obtaining the semantic correspondence encoded in the learned displacement, we can synthesize virtual frontal images of the profile faces for subsequent recognition. Using linear discriminant analysis method with pixel-intensity features, state-of-the-art performance is achieved on three multipose benchmarks, i.e., CMU-PIE, FERET, and MultiPIE databases. Owe to the rational MDF regularization and the usage of novel maximal likelihood objective, the proposed MLCE method can reliably learn correspondence between faces in different poses even in complex wild environment, i.e., labeled face in the wild database.

  20. An Automated Strategy for Binding-Pose Selection and Docking Assessment in Structure-Based Drug Design.

    PubMed

    Ballante, Flavio; Marshall, Garland R

    2016-01-25

    Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.

  1. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations

    NASA Astrophysics Data System (ADS)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-08-01

    The capability of an active spacecraft to accurately estimate its relative position and attitude (pose) with respect to an active/inactive, artificial/natural space object (target) orbiting in close-proximity is required to carry out various activities like formation flying, on-orbit servicing, active debris removal, and space exploration. According to the specific mission scenario, the pose determination task involves both theoretical and technological challenges related to the search for the most suitable algorithmic solution and sensor architecture, respectively. As regards the latter aspect, electro-optical sensors represent the best option as their use is compatible with mass and power limitation of micro and small satellites, and their measurements can be processed to estimate all the pose parameters. Overall, the degree of complexity of the challenges related to pose determination largely varies depending on the nature of the targets, which may be actively/passively cooperative, uncooperative but known, or uncooperative and unknown space objects. In this respect, while cooperative pose determination has been successfully demonstrated in orbit, the uncooperative case is still under study by universities, research centers, space agencies and private companies. However, in both the cases, the demand for space applications involving relative navigation maneuvers, also in close-proximity, for which pose determination capabilities are mandatory, is significantly increasing. In this framework, a review of state-of-the-art techniques and algorithms developed in the last decades for cooperative and uncooperative pose determination by processing data provided by electro-optical sensors is herein presented. Specifically, their main advantages and drawbacks in terms of achieved performance, computational complexity, and sensitivity to variability of pose and target geometry, are highlighted.

  2. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  3. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  4. Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting

    2012-01-01

    A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…

  5. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation

    PubMed Central

    Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo

    2011-01-01

    In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397

  6. Benchmarking real-time RGBD odometry for light-duty UAVs

    NASA Astrophysics Data System (ADS)

    Willis, Andrew R.; Sahawneh, Laith R.; Brink, Kevin M.

    2016-06-01

    This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.

  7. Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern

    NASA Astrophysics Data System (ADS)

    Steger, Teena; Hoßbach, Martin; Wesarg, Stefan

    2013-03-01

    C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.

  8. A Support System for the Electric Appliance Control Using Pose Recognition

    NASA Astrophysics Data System (ADS)

    Kawano, Takuya; Yamamoto, Kazuhiko; Kato, Kunihito; Hongo, Hitoshi

    In this paper, we propose an electric appliance control support system for aged and bedridden people using pose recognition. We proposed a pose recognition system that distinguishes between seven poses of the user on the bed. First, the face and arm regions of the user are detected by using the skin color. Our system focuses a recognition region surrounding the face region. Next, the higher order local autocorrelation features within the region are extracted. The linear discriminant analysis creates the coefficient matrix that can optimally distinguish among training data from the seven poses. Our algorithm can recognize the seven poses even if the subject wears different clothes and slightly shifts or slants on the bed. From the experimental results, our system achieved an accuracy rate of over 99 %. Then, we show that it possibles to construct one of a user-friendly system.

  9. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    NASA Astrophysics Data System (ADS)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  10. Baseline Face Detection, Head Pose Estimation, and Coarse Direction Detection for Facial Data in the SHRP2 Naturalistic Driving Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paone, Jeffrey R; Bolme, David S; Ferrell, Regina Kay

    Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver s attention is focused. Manual analysis of this data is infeasible, therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume,more » and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.« less

  11. Constrained model predictive control, state estimation and coordination

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    In this dissertation, we study the interaction between the control performance and the quality of the state estimation in a constrained Model Predictive Control (MPC) framework for systems with stochastic disturbances. This consists of three parts: (i) the development of a constrained MPC formulation that adapts to the quality of the state estimation via constraints; (ii) the application of such a control law in a multi-vehicle formation coordinated control problem in which each vehicle operates subject to a no-collision constraint posed by others' imperfect prediction computed from finite bit-rate, communicated data; (iii) the design of the predictors and the communication resource assignment problem that satisfy the performance requirement from Part (ii). Model Predictive Control (MPC) is of interest because it is one of the few control design methods which preserves standard design variables and yet handles constraints. MPC is normally posed as a full-state feedback control and is implemented in a certainty-equivalence fashion with best estimates of the states being used in place of the exact state. However, if the state constraints were handled in the same certainty-equivalence fashion, the resulting control law could drive the real state to violate the constraints frequently. Part (i) focuses on exploring the inclusion of state estimates into the constraints. It does this by applying constrained MPC to a system with stochastic disturbances. The stochastic nature of the problem requires re-posing the constraints in a probabilistic form. In Part (ii), we consider applying constrained MPC as a local control law in a coordinated control problem of a group of distributed autonomous systems. Interactions between the systems are captured via constraints. First, we inspect the application of constrained MPC to a completely deterministic case. Formation stability theorems are derived for the subsystems and conditions on the local constraint set are derived in order to guarantee local stability or convergence to a target state. If these conditions are met for all subsystems, then this stability is inherited by the overall system. For the case when each subsystem suffers from disturbances in the dynamics, own self-measurement noises, and quantization errors on neighbors' information due to the finite-bit-rate channels, the constrained MPC strategy developed in Part (i) is appropriate to apply. In Part (iii), we discuss the local predictor design and bandwidth assignment problem in a coordinated vehicle formation context. The MPC controller used in Part (ii) relates the formation control performance and the information quality in the way that large standoff implies conservative performance. We first develop an LMI (Linear Matrix Inequality) formulation for cross-estimator design in a simple two-vehicle scenario with non-standard information: one vehicle does not have access to the other's exact control value applied at each sampling time, but to its known, pre-computed, coupling linear feedback control law. Then a similar LMI problem is formulated for the bandwidth assignment problem that minimizes the total number of bits by adjusting the prediction gain matrices and the number of bits assigned to each variable. (Abstract shortened by UMI.)

  12. Object recognition and localization from 3D point clouds by maximum-likelihood estimation

    NASA Astrophysics Data System (ADS)

    Dantanarayana, Harshana G.; Huntley, Jonathan M.

    2017-08-01

    We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike `interest point'-based algorithms which normally discard such data. Compared to the 6D Hough transform, it has negligible memory requirements, and is computationally efficient compared to iterative closest point algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degrees of freedom (d.f.) example is given, followed by a full 6 d.f. analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an RMS alignment error as low as 0.3 mm.

  13. Robust feature tracking for endoscopic pose estimation and structure recovery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.

    2013-03-01

    Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.

  14. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  15. An Architecture for Cooperative Localization in Underwater Acoustic Networks

    DTIC Science & Technology

    2015-10-24

    range. (b) Independent navigation and control system onboard Iver AUVs . The cooperative localization process is highlighted in red. Figure 1: Block...Iver2 AUVs (Fig. 3) and a topside ship. While we make spe- cific notes about this three vehicle network, the architecture is vehicle independent. 3.1...Single vehicle subsystem Each vehicle executes several processes including sensor drivers, a pose estimator (Section 2), and, in the case of the AUVs

  16. Automated Docking Screens: A Feasibility Study

    PubMed Central

    2009-01-01

    Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 Å rmsd 50−60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 Å rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org. PMID:19719084

  17. Automated docking screens: a feasibility study.

    PubMed

    Irwin, John J; Shoichet, Brian K; Mysinger, Michael M; Huang, Niu; Colizzi, Francesco; Wassam, Pascal; Cao, Yiqun

    2009-09-24

    Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 A rmsd 50-60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 A rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org .

  18. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  19. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.

    PubMed

    Song, Yu; Nuske, Stephen; Scherer, Sebastian

    2016-12-22

    State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.

  20. Correlation Techniques as Applied to Pose Estimation in Space Station Docking

    NASA Technical Reports Server (NTRS)

    Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-01-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.

  1. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  2. The image-interpretation-workstation of the future: lessons learned

    NASA Astrophysics Data System (ADS)

    Maier, S.; van de Camp, F.; Hafermann, J.; Wagner, B.; Peinsipp-Byma, E.; Beyerer, J.

    2017-05-01

    In recent years, professionally used workstations got increasingly complex and multi-monitor systems are more and more common. Novel interaction techniques like gesture recognition were developed but used mostly for entertainment and gaming purposes. These human computer interfaces are not yet widely used in professional environments where they could greatly improve the user experience. To approach this problem, we combined existing tools in our imageinterpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a special task in the image interpreting process: a geo-information system to geo-reference the images and provide a spatial reference for the user, an interactive recognition support tool, an annotation tool and a reporting tool. To further support the complex task of image interpreting, self-developed interaction systems for head-pose estimation and hand tracking were used in addition to more common technologies like touchscreens, face identification and speech recognition. A set of experiments were conducted to evaluate the usability of the different interaction systems. Two typical extensive tasks of image interpreting were devised and approved by military personal. They were then tested with a current setup of an image interpreting workstation using only keyboard and mouse against our image-interpretationworkstation of the future. To get a more detailed look at the usefulness of the interaction techniques in a multi-monitorsetup, the hand tracking, head pose estimation and the face recognition were further evaluated using tests inspired by everyday tasks. The results of the evaluation and the discussion are presented in this paper.

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  4. Optical fringe-reflection deflectometry with bundle adjustment

    NASA Astrophysics Data System (ADS)

    Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng

    2018-06-01

    Liquid crystal display (LCD) screens are located outside of a camera's field of view in fringe-reflection deflectometry. Therefore, fringes that are displayed on LCD screens are obtained through specular reflection by a fixed camera. Thus, the pose calibration between the camera and LCD screen is one of the main challenges in fringe-reflection deflectometry. A markerless planar mirror is used to reflect the LCD screen more than three times, and the fringes are mapped into the fixed camera. The geometrical calibration can be accomplished by estimating the pose between the camera and the virtual image of fringes. Considering the relation between their pose, the incidence and reflection rays can be unified in the camera frame, and a forward triangulation intersection can be operated in the camera frame to measure three-dimensional (3D) coordinates of the specular surface. In the final optimization, constraint-bundle adjustment is operated to refine simultaneously the camera intrinsic parameters, including distortion coefficients, estimated geometrical pose between the LCD screen and camera, and 3D coordinates of the specular surface, with the help of the absolute phase collinear constraint. Simulation and experiment results demonstrate that the pose calibration with planar mirror reflection is simple and feasible, and the constraint-bundle adjustment can enhance the 3D coordinate measurement accuracy in fringe-reflection deflectometry.

  5. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    PubMed

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  6. Segmentation, classification, and pose estimation of military vehicles in low resolution laser radar images

    NASA Astrophysics Data System (ADS)

    Neulist, Joerg; Armbruster, Walter

    2005-05-01

    Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.

  7. 3-D rigid body tracking using vision and depth sensors.

    PubMed

    Gedik, O Serdar; Alatan, A Aydn

    2013-10-01

    In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.

  8. DIAC object recognition system

    NASA Astrophysics Data System (ADS)

    Buurman, Johannes

    1992-03-01

    This paper describes the object recognition system used in an intelligent robot cell. It is used to recognize and estimate pose and orientation of parts as they enter the cell. The parts are mostly metal and consist of polyhedral and cylindrical shapes. The system uses feature-based stereo vision to acquire a wireframe of the observed part. Features are defined as straight lines and ellipses, which lead to a wireframe of straight lines and circular arcs (the latter using a new algorithm). This wireframe is compared to a number of wire frame models obtained from the CAD database. Experimental results show that image processing hardware and parallelization may add considerably to the speed of the system.

  9. Horizon Based Orientation Estimation for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.

    2016-01-01

    Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.

  10. A study on facial expressions recognition

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing

    2017-09-01

    In terms of communication, postures and facial expressions of such feelings like happiness, anger and sadness play important roles in conveying information. With the development of the technology, recently a number of algorithms dealing with face alignment, face landmark detection, classification, facial landmark localization and pose estimation have been put forward. However, there are a lot of challenges and problems need to be fixed. In this paper, a few technologies have been concluded and analyzed, and they all relate to handling facial expressions recognition and poses like pose-indexed based multi-view method for face alignment, robust facial landmark detection under significant head pose and occlusion, partitioning the input domain for classification, robust statistics face formalization.

  11. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    PubMed

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  12. The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.

    Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.

  13. The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation

    DOE PAGES

    Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.

    2017-11-27

    Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.

  14. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  15. Quantitative Compactness Estimates for Hamilton-Jacobi Equations

    NASA Astrophysics Data System (ADS)

    Ancona, Fabio; Cannarsa, Piermarco; Nguyen, Khai T.

    2016-02-01

    We study quantitative compactness estimates in {W^{1,1}_{loc}} for the map {S_t}, {t > 0} that is associated with the given initial data {u_0in Lip (R^N)} for the corresponding solution {S_t u_0} of a Hamilton-Jacobi equation u_t+Hbig(nabla_{x} ubig)=0, qquad t≥ 0,quad xinR^N, with a uniformly convex Hamiltonian {H=H(p)}. We provide upper and lower estimates of order {1/\\varepsilon^N} on the Kolmogorov {\\varepsilon}-entropy in {W^{1,1}} of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of "resolution" of a numerical method implemented for this equation.

  16. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  17. An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N. V.

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172

  18. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors

    PubMed Central

    Song, Yu; Nuske, Stephen; Scherer, Sebastian

    2016-01-01

    State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524

  19. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement.

    PubMed

    Nguyen, N; Milanfar, P; Golub, G

    2001-01-01

    In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.

  20. Efficient feature-based 2D/3D registration of transesophageal echocardiography to x-ray fluoroscopy for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.

    2014-03-01

    We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.

  1. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    PubMed

    White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K

    2016-12-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  2. Inverse statistical estimation via order statistics: a resolution of the ill-posed inverse problem of PERT scheduling

    NASA Astrophysics Data System (ADS)

    Pickard, William F.

    2004-10-01

    The classical PERT inverse statistics problem requires estimation of the mean, \\skew1\\bar{m} , and standard deviation, s, of a unimodal distribution given estimates of its mode, m, and of the smallest, a, and largest, b, values likely to be encountered. After placing the problem in historical perspective and showing that it is ill-posed because it is underdetermined, this paper offers an approach to resolve the ill-posedness: (a) by interpreting a and b modes of order statistic distributions; (b) by requiring also an estimate of the number of samples, N, considered in estimating the set {m, a, b}; and (c) by maximizing a suitable likelihood, having made the traditional assumption that the underlying distribution is beta. Exact formulae relating the four parameters of the beta distribution to {m, a, b, N} and the assumed likelihood function are then used to compute the four underlying parameters of the beta distribution; and from them, \\skew1\\bar{m} and s are computed using exact formulae.

  3. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.

    PubMed

    Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos

    2013-12-01

    Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Parameter Estimation for Geoscience Applications Using a Measure-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Dawson, C.; Butler, T.; Mattis, S. A.; Graham, L.; Westerink, J. J.; Vesselinov, V. V.; Estep, D.

    2016-12-01

    Effective modeling of complex physical systems arising in the geosciences is dependent on knowing parameters which are often difficult or impossible to measure in situ. In this talk we focus on two such problems, estimating parameters for groundwater flow and contaminant transport, and estimating parameters within a coastal ocean model. The approach we will describe, proposed by collaborators D. Estep, T. Butler and others, is based on a novel stochastic inversion technique based on measure theory. In this approach, given a probability space on certain observable quantities of interest, one searches for the sets of highest probability in parameter space which give rise to these observables. When viewed as mappings between sets, the stochastic inversion problem is well-posed in certain settings, but there are computational challenges related to the set construction. We will focus the talk on estimating scalar parameters and fields in a contaminant transport setting, and in estimating bottom friction in a complicated near-shore coastal application.

  5. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  6. Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.

    2017-05-01

    In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.

  7. On three dimensional object recognition and pose-determination: An abstraction based approach. Ph.D. Thesis - Michigan Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Quek, Kok How Francis

    1990-01-01

    A method of computing reliable Gaussian and mean curvature sign-map descriptors from the polynomial approximation of surfaces was demonstrated. Such descriptors which are invariant under perspective variation are suitable for hypothesis generation. A means for determining the pose of constructed geometric forms whose algebraic surface descriptors are nonlinear in terms of their orienting parameters was developed. This was done by means of linear functions which are capable of approximating nonlinear forms and determining their parameters. It was shown that biquadratic surfaces are suitable companion linear forms for cylindrical approximation and parameter estimation. The estimates provided the initial parametric approximations necessary for a nonlinear regression stage to fine tune the estimates by fitting the actual nonlinear form to the data. A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders and planes which merge smoothly into other surfaces was developed. It was shown that all split-merge algorithms are hypothesis-based. A finite-state algorithm for the extraction of the boundaries of run-length regions was developed. The computation takes advantage of the run list topology and boundary direction constraints implicit in the run-length encoding.

  8. Re-entry survivability and risk

    NASA Astrophysics Data System (ADS)

    Fudge, Michael L.

    1998-11-01

    This paper is the culmination of the research effort which was reported on last year while still in-progress. As previously reported, statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by reentering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was demonstrated in dramatic fashion in January 1997 by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This report details reentry survivability estimation methodology, including the specific methodology used by ITT Systems' (formerly Kaman Sciences) 'SURVIVE' model. The major change to the model in the last twelve months has been the increase in the fidelity with which upper- atmospheric aerodynamics has been modeled. This has resulted in an adjustment in the factor relating the amount of kinetic energy loss to the amount of heating entering and reentering body, and also validated and removed the necessity for certain empirically-based adjustments made to the theoretical heating expressions. Comparisons between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and SURVIVE estimates are presented for selected generic upper stage or spacecraft components, a Soyuz launch vehicle second stage, and for a Delta II launch vehicle second stage and its significant components. Significant similarity is demonstrated between the type and dispersion pattern of the recovered debris from the January 1997 Delta II 2nd stage event and the simulation of that reentry and breakup.

  9. Estimating ecological integrity in the interior Columbia River basin.

    Treesearch

    Thomas M. Quigley; Richard W. Haynes; Wendel J. Hann

    2001-01-01

    The adoption of ecosystem-based management strategies focuses attention on the need for broad scale estimates of ecological conditions; this poses two challenges for the science community: estimating broad scale ecosystem conditions from highly disparate data, often observed at different spatial scales, and interpreting these conditions relative to goals such as...

  10. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2012-01-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  11. Video auto stitching in multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang

    2011-12-01

    This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.

  12. Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).

    PubMed

    Bürger, C M; Kolditz, O; Fowler, H J; Blenkinsop, S

    2007-08-01

    Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.

  13. Boundary conditions estimation on a road network using compressed sensing.

    DOT National Transportation Integrated Search

    2016-02-01

    This report presents a new boundary condition estimation framework for transportation networks in which : the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a : Hamilton-Jacobi equation, we pose th...

  14. Decentralized State Estimation and Remedial Control Action for Minimum Wind Curtailment Using Distributed Computing Platform

    DOE PAGES

    Liu, Ren; Srivastava, Anurag K.; Bakken, David E.; ...

    2017-08-17

    Intermittency of wind energy poses a great challenge for power system operation and control. Wind curtailment might be necessary at the certain operating condition to keep the line flow within the limit. Remedial Action Scheme (RAS) offers quick control action mechanism to keep reliability and security of the power system operation with high wind energy integration. In this paper, a new RAS is developed to maximize the wind energy integration without compromising the security and reliability of the power system based on specific utility requirements. A new Distributed Linear State Estimation (DLSE) is also developed to provide the fast andmore » accurate input data for the proposed RAS. A distributed computational architecture is designed to guarantee the robustness of the cyber system to support RAS and DLSE implementation. The proposed RAS and DLSE is validated using the modified IEEE-118 Bus system. Simulation results demonstrate the satisfactory performance of the DLSE and the effectiveness of RAS. Real-time cyber-physical testbed has been utilized to validate the cyber-resiliency of the developed RAS against computational node failure.« less

  15. Decentralized State Estimation and Remedial Control Action for Minimum Wind Curtailment Using Distributed Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Srivastava, Anurag K.; Bakken, David E.

    Intermittency of wind energy poses a great challenge for power system operation and control. Wind curtailment might be necessary at the certain operating condition to keep the line flow within the limit. Remedial Action Scheme (RAS) offers quick control action mechanism to keep reliability and security of the power system operation with high wind energy integration. In this paper, a new RAS is developed to maximize the wind energy integration without compromising the security and reliability of the power system based on specific utility requirements. A new Distributed Linear State Estimation (DLSE) is also developed to provide the fast andmore » accurate input data for the proposed RAS. A distributed computational architecture is designed to guarantee the robustness of the cyber system to support RAS and DLSE implementation. The proposed RAS and DLSE is validated using the modified IEEE-118 Bus system. Simulation results demonstrate the satisfactory performance of the DLSE and the effectiveness of RAS. Real-time cyber-physical testbed has been utilized to validate the cyber-resiliency of the developed RAS against computational node failure.« less

  16. Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors

    PubMed Central

    Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz

    2014-01-01

    This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640

  17. Pose-Invariant Face Recognition via RGB-D Images.

    PubMed

    Sang, Gaoli; Li, Jing; Zhao, Qijun

    2016-01-01

    Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions.

  18. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  19. Biosonar-inspired technology: goals, challenges and insights.

    PubMed

    Müller, Rolf; Kuc, Roman

    2007-12-01

    Bioinspired engineering based on biosonar systems in nature is reviewed and discussed in terms of the merits of different approaches and their results: biosonar systems are attractive technological paragons because of their capabilities, built-in task-specific knowledge, intelligent system integration and diversity. Insights from the diverse set of sensing tasks solved by bats are relevant to a wide range of application areas such as sonar, biomedical ultrasound, non-destructive testing, sensors for autonomous systems and wireless communication. Challenges in the design of bioinspired sonar systems are posed by transducer performance, actuation for sensor mobility, design, actuation and integration of beamforming baffle shapes, echo encoding for signal processing, estimation algorithms and their implementations, as well as system integration and feedback control. The discussed examples of experimental systems have capabilities that include localization and tracking using binaural and multiple-band hearing as well as self-generated dynamic cues, classification of small deterministic and large random targets, beamforming with bioinspired baffle shapes, neuromorphic spike processing, artifact rejection in sonar maps and passing range estimation. In future research, bioinspired engineering could capitalize on some of its strengths to serve as a model system for basic automation methodologies for the bioinspired engineering process.

  20. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    EPA Science Inventory

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concent...

  1. Evaluation of Fuel Oxygenate Degradation in the Vadose Zone

    DTIC Science & Technology

    2005-03-01

    Goltz (Member) date AFIT/GES/ENV/05M-05 Abstract Groundwater contamination by petroleum products poses a potential human health...this experiment. The column porosity was estimated from work conducted by a contractor, Jason Lach. An estimate of the column soil porosity

  2. Autonomous Vision-Based Tethered-Assisted Rover Docking

    NASA Technical Reports Server (NTRS)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  3. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    PubMed Central

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  4. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  5. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    NASA Astrophysics Data System (ADS)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  6. Locating binding poses in protein-ligand systems using reconnaissance metadynamics

    PubMed Central

    Söderhjelm, Pär; Tribello, Gareth A.; Parrinello, Michele

    2012-01-01

    A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin–benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations. PMID:22440749

  7. Locating binding poses in protein-ligand systems using reconnaissance metadynamics.

    PubMed

    Söderhjelm, Pär; Tribello, Gareth A; Parrinello, Michele

    2012-04-03

    A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin-benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations.

  8. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination

    PubMed Central

    Fasano, Giancarmine; Grassi, Michele

    2017-01-01

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651

  9. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-09-24

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.

  10. Methodology for an occupational risk assessment: an evaluation of four processes for the fabrication of photovoltaic cells.

    PubMed

    Ungers, L J; Moskowitz, P D; Owens, T W; Harmon, A D; Briggs, T M

    1982-02-01

    Determining occupational health and safety risks posed by emerging technologies is difficult because of limited statistics. Nevertheless, estimates of such risks must be constructed to permit comparison of various technologies to identify the most attractive processes. One way to estimate risks is to use statistics on related industries. Based on process labor requirements and associated occupational health data, risks to workers and to society posed by an emerging technology can be calculated. Using data from the California semiconductor industry, this study applies a five-step occupational risk assessment procedure to four processes for the fabrication of photovoltaic cells. The validity of the occupational risk assessment method is discussed.

  11. New Data from EPA's Exposure Forecasting (ExpoCast) Project (ISES meeting)

    EPA Science Inventory

    The health risks posed by the chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting risk estimations for thousands of chemicals. The U.S. EPA Exposure Forecasting (ExpoCast) projec...

  12. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.

    PubMed

    Makeneni, Spandana; Thieker, David F; Woods, Robert J

    2018-03-26

    In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.

  13. Electrical Stimulation and Swallowing: How Much Do We Know?

    PubMed Central

    Humbert, Ianessa A.; Michou, Emilia; MacRae, Phoebe R.; Crujido, Lisa

    2012-01-01

    Consequences of dysphagia substantially reduce quality of life, increase the risk of medical complications and mortality, and pose a substantial cost to healthcare systems. As a result, it is of no wonder that the clinical and scientific communities are showing interest in new avenues for dysphagia rehabilitation. Electrical stimulation (e-stim) for the treatment of swallowing impairments is among the most studied swallowing interventions in the published literature, yet many unanswered questions about its efficacy remain. In the meantime, many speech-language pathologists who treat dysphagia are attending educational and training sessions to obtain certifications to use this technique. Here, we review the values and limitations of the published literature on the topic of e-stim for swallowing to assist clinicians in decision making in their clinical practice. The discussion provides a review of swallowing anatomy and physiology, the fundamentals of e-stim, and information essential for the readers’ independent critique of these studies—all of which are crucial for evaluating the possible effects of e-stim. PMID:22851342

  14. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging

    PubMed Central

    Mukherjee, Joyeeta Mitra; Hutton, Brian F; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A

    2014-01-01

    Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference (MSD), mutual information (MI), normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation (NCC) and entropy of the difference (EDI). Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in 1 of the 5 patient studies, and with external-surrogate based correction in 3 out of 5 patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. PMID:24107647

  15. Illegal fishing and territorial user rights in Chile.

    PubMed

    Oyanedel, Rodrigo; Keim, Andres; Castilla, Juan Carlos; Gelcich, Stefan

    2017-11-07

    Illegal fishing poses a major threat to conservation of marine resources worldwide. However, there is still limited empirical research that quantifies illegal catch levels. We used the randomized response technique to estimate the proportion of divers and the quantities of loco (Concholepas concholepas) they extracted illegally. Loco have been managed for the past 17 years through a territorial user rights for fisheries system (TURFs) in Chile. Illegal fishing of loco was widespread within the TURFs system. Official reported landings (i.e., legal landings) accounted for 14-30% of the total loco extraction. Our estimates suggest that ignoring the magnitude of illegal fishing and considering only official landing statistics may lead to false conclusions about the status and trends of a TURFs managed fishery. We found evidence of fisher associations authorizing their members to poach inside TURFs, highlighting the need to design TURFs systems so that government agencies and fishers' incentives and objectives align through continuous adaptation. Government support for enforcement is a key element for the TURFs system to secure the rights that are in place. © 2017 Society for Conservation Biology.

  16. Combining facial dynamics with appearance for age estimation.

    PubMed

    Dibeklioglu, Hamdi; Alnajar, Fares; Ali Salah, Albert; Gevers, Theo

    2015-06-01

    Estimating the age of a human from the captured images of his/her face is a challenging problem. In general, the existing approaches to this problem use appearance features only. In this paper, we show that in addition to appearance information, facial dynamics can be leveraged in age estimation. We propose a method to extract and use dynamic features for age estimation, using a person's smile. Our approach is tested on a large, gender-balanced database with 400 subjects, with an age range between 8 and 76. In addition, we introduce a new database on posed disgust expressions with 324 subjects in the same age range, and evaluate the reliability of the proposed approach when used with another expression. State-of-the-art appearance-based age estimation methods from the literature are implemented as baseline. We demonstrate that for each of these methods, the addition of the proposed dynamic features results in statistically significant improvement. We further propose a novel hierarchical age estimation architecture based on adaptive age grouping. We test our approach extensively, including an exploration of spontaneous versus posed smile dynamics, and gender-specific age estimation. We show that using spontaneity information reduces the mean absolute error by up to 21%, advancing the state of the art for facial age estimation.

  17. Improved pose and affinity predictions using different protocols tailored on the basis of data availability

    NASA Astrophysics Data System (ADS)

    Prathipati, Philip; Nagao, Chioko; Ahmad, Shandar; Mizuguchi, Kenji

    2016-09-01

    The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

  18. Evolutionary Initial Poses of Reduced D.O.F’s Quadruped Robot

    NASA Astrophysics Data System (ADS)

    Iida, Ken-Ichi; Nakata, Yoshitaka; Hira, Toshio; Kamano, Takuya; Suzuki, Takayuki

    In this paper, an application of genetic algorithm for generation of evolutionary initial poses of a quadrupedal robot which reduced degrees of freedom is described. To reduce degree of freedom, each leg of the robot has a slider-crank mechanism and is driven by an actuator. Furthermore we introduced the forward movement mode and the rotating mode because the omnidirection movement should be made possible. To generate the suitable initial pose, the initial angle of four legs are coded under gray code and tuned by an estimation function in each mode with the genetic algorithm. As a result of generation, the cooperation of the legs is realized to move toward the omnidirection. The experimental results demonstrate that the proposed scheme is effective for generation of the suitable initial poses and the robot can walk smoothly with the generated patterns.

  19. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    PubMed Central

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  20. AN INFORMATIC APPROACH TO ESTIMATING ECOLOGICAL RISKS POSED BY PHARMACEUTICAL USE

    EPA Science Inventory

    A new method for estimating risks of human prescription pharmaceuticals based on information found in regulatory filings as well as scientific and trade literature is described in a presentation at the Pharmaceuticals in the Environment Workshop in Las Vegas, NV, August 23-25, 20...

  1. Theoretical implications for the estimation of dinitrogen fixation by large perennial plant species using isotope dilution

    Treesearch

    Dwight D. Baker; Maurice Fried; John A. Parrotta

    1995-01-01

    Estimation of symbiotic N2 fixation associated with large perennial plant species, especially trees, poses special problems because the process must be followed over a potentially long period of time to integrate the total amount of fixation. Estimations using isotope dilution methodology have begun to be used for trees in field studies. Because...

  2. Computer vision research with new imaging technology

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Liu, Fei; Sun, Zhenan

    2015-12-01

    Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.

  3. 3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy.

    PubMed

    Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi

    2015-04-01

    Total knee arthroplasty (TKA) 3D kinematic analysis requires 2D/3D image registration of X-ray fluoroscopic images and a computer-aided design (CAD) model of the knee implant. However, these techniques cannot provide information on the radiolucent polyethylene insert, since the insert silhouette does not appear clearly in X-ray images. Therefore, it is difficult to obtain the 3D kinematics of the polyethylene insert, particularly the mobile-bearing insert. A technique for 3D kinematic analysis of a mobile-bearing insert used in TKA was developed using X-ray fluoroscopy. The method was tested and a clinical application was evaluated. Tantalum beads and a CAD model of the mobile-bearing TKA insert are used for 3D pose estimation of the mobile-bearing insert used in TKA using X-ray fluoroscopy. The insert model was created using four identical tantalum beads precisely located at known positions in a polyethylene insert using a specially designed insertion device. Finally, the 3D pose of the insert model was estimated using a feature-based 2D/3D registration technique, using the silhouette of beads in fluoroscopic images and the corresponding CAD insert model. In vitro testing for the repeatability of the positioning of the tantalum beads and computer simulations for 3D pose estimation of the mobile-bearing insert were performed. The pose estimation accuracy achieved was sufficient for analyzing mobile-bearing TKA kinematics (RMS error: within 1.0 mm and 1.0°, except for medial-lateral translation). In a clinical application, nine patients with mobile-bearing TKA were investigated and analyzed with respect to a deep knee bending motion. A 3D kinematic analysis technique was developed that enables accurate quantitative evaluation of mobile-bearing TKA kinematics. This method may be useful for improving implant design and optimizing TKA surgical techniques.

  4. Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem

    NASA Astrophysics Data System (ADS)

    Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe

    2014-10-01

    Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.

  5. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  6. Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems.

    PubMed

    Giovanni, Marcella; Tay, Chor Yong; Setyawati, Magdiel Inggrid; Xie, Jianping; Ong, Choon Nam; Fan, Rongli; Yue, Junqi; Zhang, Lifeng; Leong, David Tai

    2015-12-01

    Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by-products contained within the effluent of domestic and industrial run-off. The partial recycling of water laden with ENPs, albeit at ultra-low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water-relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico-predicted water-relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc.

  7. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

    NASA Astrophysics Data System (ADS)

    Yin, Xi; Liu, Xiaoming

    2018-02-01

    This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

  8. Finite dimensional approximation of a class of constrained nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Hou, L. S.

    1994-01-01

    An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.

  9. Autonomous intelligent assembly systems LDRD 105746 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control frameworkmore » for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.« less

  10. Control and System Theory, Optimization, Inverse and Ill-Posed Problems

    DTIC Science & Technology

    1988-09-14

    Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The

  11. Model-based recognition of 3D articulated target using ladar range data.

    PubMed

    Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi

    2015-06-10

    Ladar is suitable for 3D target recognition because ladar range images can provide rich 3D geometric surface information of targets. In this paper, we propose a part-based 3D model matching technique to recognize articulated ground military vehicles in ladar range images. The key of this approach is to solve the decomposition and pose estimation of articulated parts of targets. The articulated components were decomposed into isolate parts based on 3D geometric properties of targets, such as surface point normals, data histogram distribution, and data distance relationships. The corresponding poses of these separate parts were estimated through the linear characteristics of barrels. According to these pose parameters, all parts of the target were roughly aligned to 3D point cloud models in a library and fine matching was finally performed to accomplish 3D articulated target recognition. The recognition performance was evaluated with 1728 ladar range images of eight different articulated military vehicles with various part types and orientations. Experimental results demonstrated that the proposed approach achieved a high recognition rate.

  12. Emissions from ships in the northwestern United States.

    PubMed

    Corbett, James J

    2002-03-15

    Recent inventory efforts have focused on developing nonroad inventories for emissions modeling and policy insights. Characterizing these inventories geographically and explicitly treating the uncertaintiesthat result from limited emissions testing, incomplete activity and usage data, and other important input parameters currently pose the largest methodological challenges. This paper presents a commercial marine vessel (CMV) emissions inventory for Washington and Oregon using detailed statistics regarding fuel consumption, vessel movements, and cargo volumes for the Columbia and Snake River systems. The inventory estimates emissions for oxides of nitrogen (NOx), particulate matter (PM), and oxides of sulfur (SOx). This analysis estimates that annual NOx emissions from marine transportation in the Columbia and Snake River systems in Washington and Oregon equal 6900 t of NOx (as NO2) per year, 2.6 times greater than previous NO, inventories for this region. Statewide CMV NO, emissions are estimated to be 9,800 t of NOx per year. By relying on a "bottom-up" fuel consumption model that includes vessel characteristics and transit information, the river system inventory may be more accurate than previous estimates. This inventory provides modelers with bounded parametric inputs for sensitivity analysis in pollution modeling. The ability to parametrically model the uncertainty in commercial marine vessel inventories also will help policy-makers determine whether better policy decisions can be enabled through further vessel testing and improved inventory resolution.

  13. Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS

    NASA Astrophysics Data System (ADS)

    Bang, Eugene; Lee, Jiyun

    2013-11-01

    ionospheric anomalies occurring during severe ionospheric storms can pose integrity threats to Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS). Ionospheric anomaly threat models for each region of operation need to be developed to analyze the potential impact of these anomalies on GBAS users and develop mitigation strategies. Along with the magnitude of ionospheric gradients, the speed of the ionosphere "fronts" in which these gradients are embedded is an important parameter for simulation-based GBAS integrity analysis. This paper presents a methodology for automated ionosphere front velocity estimation which will be used to analyze a vast amount of ionospheric data, build ionospheric anomaly threat models for different regions, and monitor ionospheric anomalies continuously going forward. This procedure automatically selects stations that show a similar trend of ionospheric delays, computes the orientation of detected fronts using a three-station-based trigonometric method, and estimates speeds for the front using a two-station-based method. It also includes fine-tuning methods to improve the estimation to be robust against faulty measurements and modeling errors. It demonstrates the performance of the algorithm by comparing the results of automated speed estimation to those manually computed previously. All speed estimates from the automated algorithm fall within error bars of ± 30% of the manually computed speeds. In addition, this algorithm is used to populate the current threat space with newly generated threat points. A larger number of velocity estimates helps us to better understand the behavior of ionospheric gradients under geomagnetic storm conditions.

  14. Real-Time Identification of Wheel Terrain Interaction Models for Enhanced Autonomous Vehicle Mobility

    DTIC Science & Technology

    2014-04-24

    tim at io n Er ro r ( cm ) 0 2 4 6 8 10 Color Statistics Angelova...Color_Statistics_Error) / Average_Slip_Error Position Estimation Error: Global Pose Po si tio n Es tim at io n Er ro r ( cm ) 0 2 4 6 8 10 12 Color...get some kind of clearance for releasing pose and odometry data) collected at the following sites – Taylor, Gascola, Somerset, Fort Bliss and

  15. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.

  16. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    NASA Technical Reports Server (NTRS)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  17. Detection of tunnel excavation using fiber optic reflectometry: experimental validation

    NASA Astrophysics Data System (ADS)

    Linker, Raphael; Klar, Assaf

    2013-06-01

    Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.

  18. Rapid transfer alignment of an inertial navigation system using a marginal stochastic integration filter

    NASA Astrophysics Data System (ADS)

    Zhou, Dapeng; Guo, Lei

    2018-01-01

    This study aims to address the rapid transfer alignment (RTA) issue of an inertial navigation system with large misalignment angles. The strong nonlinearity and high dimensionality of the system model pose a significant challenge to the estimation of the misalignment angles. In this paper, a 15-dimensional nonlinear model for RTA has been exploited, and it is shown that the functions for the model description exhibit a conditionally linear substructure. Then, a modified stochastic integration filter (SIF) called marginal SIF (MSIF) is developed to incorporate into the nonlinear model, where the number of sample points is significantly reduced but the estimation accuracy of SIF is retained. Comparisons between the MSIF-based RTA and the previously well-known methodologies are carried out through numerical simulations and a van test. The results demonstrate that the newly proposed method has an obvious accuracy advantage over the extended Kalman filter, the unscented Kalman filter and the marginal unscented Kalman filter. Further, the MSIF achieves a comparable performance to SIF, but with a significantly lower computation load.

  19. Watching Grass - a Pilot Study on the Suitability of Photogrammetric Techniques for Quantifying Change in Aboveground Biomass in Grassland Experiments

    NASA Astrophysics Data System (ADS)

    Kröhnert, M.; Anderson, R.; Bumberger, J.; Dietrich, P.; Harpole, W. S.; Maas, H.-G.

    2018-05-01

    Grassland ecology experiments in remote locations requiring quantitative analysis of the biomass in defined plots are becoming increasingly widespread, but are still limited by manual sampling methodologies. To provide a cost-effective automated solution for biomass determination, several photogrammetric techniques are examined to generate 3D point cloud representations of plots as a basis, to estimate aboveground biomass on grassland plots, which is a key ecosystem variable used in many experiments. Methods investigated include Structure from Motion (SfM) techniques for camera pose estimation with posterior dense matching as well as the usage of a Time of Flight (TOF) 3D camera, a laser light sheet triangulation system and a coded light projection system. In this context, plants of small scales (herbage) and medium scales are observed. In the first pilot study presented here, the best results are obtained by applying dense matching after SfM, ideal for integration into distributed experiment networks.

  20. Natural gas use is taking off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffmann, B.G.

    1995-07-01

    The paper describes an infrared radiant heat process to de-ice aircraft. A typical 727 aircraft de-icing costs $2000--3000 using the current glycol method. The natural gas powered heater would only cost $400 per aircraft and would not pose the environmental problems that the glycol does. It is estimated that one Infratek system could consume 3.8 million cubic feet of natural gas each year during the de-icing season. Large airports might have as many as 10 units. 3.8 million cu. ft. of gas is equal to about 40 New York residential customers or eight New York commercial customers.

  1. Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consumption of fish from Taihu Lake, China.

    PubMed

    Yu, Yingxin; Wang, Xinxin; Yang, Dan; Lei, Bingli; Zhang, Xiaolan; Zhang, Xinyu

    2014-07-01

    The present study estimated the human daily intake and uptake of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and toxic trace elements [mercury (Hg), chromium (Cr), cadmium (Cd), and arsenic (As)] due to consumption of fish from Taihu Lake, China, and the associated potential health risks posed by these contaminants. The health risks posed by the contaminants were assessed using a risk quotient of the fish consumption rate to the maximum allowable fish consumption rate considering the contaminants for carcinogenic and non-carcinogenic effect endpoints. The results showed that fish consumption would not pose non-cancer risks. However, some species would cause a cancer risk. Relative risks of the contaminants were calculated to investigate the contaminant which posed the highest risk to humans. As a result, in view of the contaminants for carcinogenic effects, As was the contaminant which posed the highest risk to humans. However, when non-carcinogenic effects of the contaminants were considered, Hg posed the highest risk. The risk caused by PBDEs was negligible. The results demonstrated that traditional contaminants, such as As, Hg, DDTs (dichlorodiphenyltrichloroethane and its metabolites), and PCBs, require more attention in Taihu Lake than the other target contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  3. Material and shape perception based on two types of intensity gradient information

    PubMed Central

    Nishida, Shin'ya

    2018-01-01

    Visual estimation of the material and shape of an object from a single image includes a hard ill-posed computational problem. However, in our daily life we feel we can estimate both reasonably well. The neural computation underlying this ability remains poorly understood. Here we propose that the human visual system uses different aspects of object images to separately estimate the contributions of the material and shape. Specifically, material perception relies mainly on the intensity gradient magnitude information, while shape perception relies mainly on the intensity gradient order information. A clue to this hypothesis was provided by the observation that luminance-histogram manipulation, which changes luminance gradient magnitudes but not the luminance-order map, effectively alters the material appearance but not the shape of an object. In agreement with this observation, we found that the simulated physical material changes do not significantly affect the intensity order information. A series of psychophysical experiments further indicate that human surface shape perception is robust against intensity manipulations provided they do not disturb the intensity order information. In addition, we show that the two types of gradient information can be utilized for the discrimination of albedo changes from highlights. These findings suggest that the visual system relies on these diagnostic image features to estimate physical properties in a distal world. PMID:29702644

  4. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling

    PubMed Central

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-01-01

    RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method. PMID:27690028

  5. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.

    PubMed

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-09-27

    RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method.

  6. Pose determination of a blade implant in three dimensions from a single two-dimensional radiograph.

    PubMed

    Toti, Paolo; Barone, Antonio; Marconcini, Simone; Menchini-Fabris, Giovanni Battista; Martuscelli, Ranieri; Covani, Ugo

    2018-05-01

    The aim of the study was to introduce a mathematical method to estimate the correct pose of a blade by evaluating the radiographic features obtained from a single two-dimensional image. Blade-form implant bed preparation was performed using the piezosurgery device, and placement was attained with the use of magnetic mallet. The pose determination of the blade was described by means of three consecutive rotations defined by three angles of orientation (triplet φ, θ and ψ). Retrospective analysis on periapical radiographs was performed. This method was used to compare implant (axial length along the marker, i.e. the implant structure) vs angular correction factor (a trigonometric function of the triplet). The accuracy of the method was tested by generating two-dimensional radiographic simulations of the blades, which were then compared with the images of the implants as appearing on the real radiographs. Two patients had to be excluded from further evaluation because the values of the estimated pose angles showed a too-wide range to be effective for a good standardization of serial radiographs: intrapatient range from baseline to 1-year survey was > of a threshold determined by the clinicians (30°). The linear dependence between implant (CF°) and angular correction factor (CF^) was estimated by a robust linear regression, yielding the following coefficients: slope, 0.908; intercept, -0.092; and coefficient of determination, 0.924. The absolute error in accuracy was -0.29 ± 4.35, 0.23 ± 3.81 and 0.64 ± 1.18°, respectively, for the angles φ, θ and ψ. The present theoretical and experimental study established the possibility of determining, a posteriori, a unique triplet of angles (φ, θ and ψ) which described the pose of a blade upon a single two-dimensional radiograph, and of suggesting a method to detect cases in which the standardized geometric projection failed. The angular correction of the bone level yielded results very close to those obtained with an internal marker related to the implant length.

  7. Taking the Missing Propensity Into Account When Estimating Competence Scores

    PubMed Central

    Pohl, Steffi; Carstensen, Claus H.

    2014-01-01

    When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically made when using these models: (1) The missing propensity is unidimensional and (2) the missing propensity and the ability are bivariate normally distributed. These assumptions may, however, be violated in real data sets and could, thus, pose a threat to the validity of this approach. The present study focuses on modeling competencies in various domains, using data from a school sample (N = 15,396) and an adult sample (N = 7,256) from the National Educational Panel Study. Our interest was to investigate whether violations of unidimensionality and the normal distribution assumption severely affect the performance of the model-based approach in terms of differences in ability estimates. We propose a model with a competence dimension, a unidimensional missing propensity and a distributional assumption more flexible than a multivariate normal. Using this model for ability estimation results in different ability estimates compared with a model ignoring missing responses. Implications for ability estimation in large-scale assessments are discussed. PMID:29795844

  8. Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring

    NASA Astrophysics Data System (ADS)

    Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.

    2017-03-01

    This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.

  9. History matching by spline approximation and regularization in single-phase areal reservoirs

    NASA Technical Reports Server (NTRS)

    Lee, T. Y.; Kravaris, C.; Seinfeld, J.

    1986-01-01

    An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.

  10. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-08-01

    Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS's navigation system overcoming the earlier version's issues, aiming to move the RAFS system into a surgical environment. The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance. Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about [Formula: see text] (phantom) and [Formula: see text] (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error [Formula: see text], [Formula: see text]. Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application.

  11. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    PubMed Central

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  12. Contactless and pose invariant biometric identification using hand surface.

    PubMed

    Kanhangad, Vivek; Kumar, Ajay; Zhang, David

    2011-05-01

    This paper presents a novel approach for hand matching that achieves significantly improved performance even in the presence of large hand pose variations. The proposed method utilizes a 3-D digitizer to simultaneously acquire intensity and range images of the user's hand presented to the system in an arbitrary pose. The approach involves determination of the orientation of the hand in 3-D space followed by pose normalization of the acquired 3-D and 2-D hand images. Multimodal (2-D as well as 3-D) palmprint and hand geometry features, which are simultaneously extracted from the user's pose normalized textured 3-D hand, are used for matching. Individual matching scores are then combined using a new dynamic fusion strategy. Our experimental results on the database of 114 subjects with significant pose variations yielded encouraging results. Consistent (across various hand features considered) performance improvement achieved with the pose correction demonstrates the usefulness of the proposed approach for hand based biometric systems with unconstrained and contact-free imaging. The experimental results also suggest that the dynamic fusion approach employed in this work helps to achieve performance improvement of 60% (in terms of EER) over the case when matching scores are combined using the weighted sum rule.

  13. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150/person and 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300/person or the bottled water cost increases to 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  14. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A.; Rosenberg, D.; McKee, M.

    2012-12-01

    Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by managers' recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  15. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Ahamed, Aakash; Bolten, John; Doyle, C.; Fayne, Jessica

    2016-01-01

    Floods are the costliest natural disaster (United Nations 2004), causing approximately6.8 million deaths in the twentieth century alone (Doocy et al. 2013).Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD(Munich Re 2013). Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries (Davies et al. 2014).Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assessflooding and extend analytical methods to estimate impacted population and infrastructure.

  16. 3D tomographic reconstruction using geometrical models

    NASA Astrophysics Data System (ADS)

    Battle, Xavier L.; Cunningham, Gregory S.; Hanson, Kenneth M.

    1997-04-01

    We address the issue of reconstructing an object of constant interior density in the context of 3D tomography where there is prior knowledge about the unknown shape. We explore the direct estimation of the parameters of a chosen geometrical model from a set of radiographic measurements, rather than performing operations (segmentation for example) on a reconstructed volume. The inverse problem is posed in the Bayesian framework. A triangulated surface describes the unknown shape and the reconstruction is computed with a maximum a posteriori (MAP) estimate. The adjoint differentiation technique computes the derivatives needed for the optimization of the model parameters. We demonstrate the usefulness of the approach and emphasize the techniques of designing forward and adjoint codes. We use the system response of the University of Arizona Fast SPECT imager to illustrate this method by reconstructing the shape of a heart phantom.

  17. Using climate models to estimate the quality of global observational data sets.

    PubMed

    Massonnet, François; Bellprat, Omar; Guemas, Virginie; Doblas-Reyes, Francisco J

    2016-10-28

    Observational estimates of the climate system are essential to monitoring and understanding ongoing climate change and to assessing the quality of climate models used to produce near- and long-term climate information. This study poses the dual and unconventional question: Can climate models be used to assess the quality of observational references? We show that this question not only rests on solid theoretical grounds but also offers insightful applications in practice. By comparing four observational products of sea surface temperature with a large multimodel climate forecast ensemble, we find compelling evidence that models systematically score better against the most recent, advanced, but also most independent product. These results call for generalized procedures of model-observation comparison and provide guidance for a more objective observational data set selection. Copyright © 2016, American Association for the Advancement of Science.

  18. Security systems engineering overview

    NASA Astrophysics Data System (ADS)

    Steele, Basil J.

    1997-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at 70 billion dollars in direct costs and up to 300 billion dollars in indirect costs. Health insurance fraud alone is estimated to cost American businesses 100 billion dollars. Theft, warranty fraud, and counterfeiting of computer hardware totaled 3 billion dollars in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies; industrial espionage detection and prevention; security barrier technology.

  19. Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case

    PubMed Central

    Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique

    2017-01-01

    This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144

  20. Load identification approach based on basis pursuit denoising algorithm

    NASA Astrophysics Data System (ADS)

    Ginsberg, D.; Ruby, M.; Fritzen, C. P.

    2015-07-01

    The information of the external loads is of great interest in many fields of structural analysis, such as structural health monitoring (SHM) systems or assessment of damage after extreme events. However, in most cases it is not possible to measure the external forces directly, so they need to be reconstructed. Load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response functions are usually the knowns. Generally, this leads to a so called ill-posed inverse problem, which involves solving an underdetermined linear system of equations. For most practical applications it can be assumed that the applied loads are not arbitrarily distributed in time and space, at least some specific characteristics about the external excitation are known a priori. In this contribution this knowledge was used to develop a more suitable force reconstruction method, which allows identifying the time history and the force location simultaneously by employing significantly fewer sensors compared to other reconstruction approaches. The properties of the external force are used to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The possibility of reconstructing loads based on noisy structural measurement signals will be demonstrated by considering two frequently occurring loading conditions: harmonic excitation and impact events, separately and combined. First a simulation study of a simple plate structure is carried out and thereafter an experimental investigation of a real beam is performed.

  1. Taking the Missing Propensity into Account When Estimating Competence Scores: Evaluation of Item Response Theory Models for Nonignorable Omissions

    ERIC Educational Resources Information Center

    Köhler, Carmen; Pohl, Steffi; Carstensen, Claus H.

    2015-01-01

    When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically…

  2. A review of unmanned aircraft system ground risk models

    NASA Astrophysics Data System (ADS)

    Washington, Achim; Clothier, Reece A.; Silva, Jose

    2017-11-01

    There is much effort being directed towards the development of safety regulations for unmanned aircraft systems (UAS). National airworthiness authorities have advocated the adoption of a risk-based approach, whereby regulations are driven by the outcomes of a systematic process to assess and manage identified safety risks. Subsequently, models characterising the primary hazards associated with UAS operations have now become critical to the development of regulations and in turn, to the future of the industry. Key to the development of airworthiness regulations for UAS is a comprehensive understanding of the risks UAS operations pose to people and property on the ground. A comprehensive review of the literature identified 33 different models (and component sub models) used to estimate ground risk posed by UAS. These models comprise failure, impact location, recovery, stress, exposure, incident stress and harm sub-models. The underlying assumptions and treatment of uncertainties in each of these sub-models differ significantly between models, which can have a significant impact on the development of regulations. This paper reviews the state-of-the-art in research into UAS ground risk modelling, discusses how the various sub-models relate to the different components of the regulation, and explores how model-uncertainties potentially impact the development of regulations for UAS.

  3. Economic impact of primary open-angle glaucoma in Australia.

    PubMed

    Dirani, Mohamed; Crowston, Jonathan G; Taylor, Penny S; Moore, Peter T; Rogers, Sophie; Pezzullo, M Lynne; Keeffe, Jill E; Taylor, Hugh R

    2011-01-01

    Glaucoma is the World's leading cause of irreversible blindness, and poses serious public health and economic concerns.   Review. Published randomized trials and population-based studies since 1985. We report the economic impact of primary open-angle glaucoma and model the effect of changes in detection rates and management strategies. The cost-effectiveness of different interventions to prevent vision loss from primary open-angle glaucoma was measured in terms of financial cost (Australian dollars) and disability-adjusted life years. The prevalence of glaucoma in Australia is expected to increase from 208 000 in 2005 to 379 000 in 2025 because of the aging population. Health system costs over the same time period are estimated to increase from $AU355 million to $AU784 million. Total costs (health system costs, indirect costs and costs of loss of well-being) will increase from $AU1.9 billion to $AU4.3 billion in Australia. Primary open-angle glaucoma poses a significant economic burden, which will increase substantially by 2025. This dynamic model provides a valuable tool for ongoing policy formulation and determining the economic impact of interventions to better prevent visual impairment and blindness from glaucoma. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  4. Projector-Based Augmented Reality for Quality Inspection of Scanned Objects

    NASA Astrophysics Data System (ADS)

    Kern, J.; Weinmann, M.; Wursthorn, S.

    2017-09-01

    After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object's surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector's pose later on for projecting textures with information onto the object's surface. Changes within the projected 3D information or of the projector's pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.

  5. A novel teaching system for industrial robots.

    PubMed

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  6. A Novel Teaching System for Industrial Robots

    PubMed Central

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-01-01

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles. PMID:24681669

  7. Prostate Brachytherapy Seed Reconstruction with Gaussian Blurring and Optimal Coverage Cost

    PubMed Central

    Lee, Junghoon; Liu, Xiaofeng; Jain, Ameet K.; Song, Danny Y.; Burdette, E. Clif; Prince, Jerry L.; Fichtinger, Gabor

    2009-01-01

    Intraoperative dosimetry in prostate brachytherapy requires localization of the implanted radioactive seeds. A tomosynthesis-based seed reconstruction method is proposed. A three-dimensional volume is reconstructed from Gaussian-blurred projection images and candidate seed locations are computed from the reconstructed volume. A false positive seed removal process, formulated as an optimal coverage problem, iteratively removes “ghost” seeds that are created by tomosynthesis reconstruction. In an effort to minimize pose errors that are common in conventional C-arms, initial pose parameter estimates are iteratively corrected by using the detected candidate seeds as fiducials, which automatically “focuses” the collected images and improves successive reconstructed volumes. Simulation results imply that the implanted seed locations can be estimated with a detection rate of ≥ 97.9% and ≥ 99.3% from three and four images, respectively, when the C-arm is calibrated and the pose of the C-arm is known. The algorithm was also validated on phantom data sets successfully localizing the implanted seeds from four or five images. In a Phase-1 clinical trial, we were able to localize the implanted seeds from five intraoperative fluoroscopy images with 98.8% (STD=1.6) overall detection rate. PMID:19605321

  8. Camera-pose estimation via projective Newton optimization on the manifold.

    PubMed

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  9. Airborne DoA estimation of gunshot acoustic signals using drones with application to sniper localization systems

    NASA Astrophysics Data System (ADS)

    Fernandes, Rigel P.; Ramos, António L. L.; Apolinário, José A.

    2017-05-01

    Shooter localization systems have been subject of a growing attention lately owing to its wide span of possible applications, e.g., civil protection, law enforcement, and support to soldiers in missions where snipers might pose a serious threat. These devices are based on the processing of electromagnetic or acoustic signatures associated with the firing of a gun. This work is concerned with the latter, where the shooter's position can be obtained based on the estimation of the direction-of-arrival (DoA) of the acoustic components of a gunshot signal (muzzle blast and shock wave). A major limitation of current commercially available acoustic sniper localization systems is the impossibility of finding the shooter's position when one of these acoustic signatures is not detected. This is very likely to occur in real-life situations, especially when the microphones are not in the field of view of the shockwave or when the presence of obstacles like buildings can prevent a direct-path to sensors. This work addresses the problem of DoA estimation of the muzzle blast using a planar array of sensors deployed in a drone. Results supported by actual gunshot data from a realistic setup are very promising and pave the way for the development of enhanced sniper localization systems featuring two main advantages over stationary ones: (1) wider surveillance area; and (2) increased likelihood of a direct-path detection of at least one of the gunshot signals, thereby adding robustness and reliability to the system.

  10. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  11. Close-Range Tracking of Underwater Vehicles Using Light Beacons

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-01-01

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time. PMID:27023547

  12. Close-Range Tracking of Underwater Vehicles Using Light Beacons.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-03-25

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time.

  13. Integration and Assessment of Component Health Prognostics in Supervisory Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Bonebrake, Christopher A.; Dib, Gerges

    Enhanced risk monitors (ERMs) for active components in advanced reactor concepts use predictive estimates of component failure to update, in real time, predictive safety and economic risk metrics. These metrics have been shown to be capable of use in optimizing maintenance scheduling and managing plant maintenance costs. Integrating this information with plant supervisory control systems increases the potential for making control decisions that utilize real-time information on component conditions. Such decision making would limit the possibility of plant operations that increase the likelihood of degrading the functionality of one or more components while maintaining the overall functionality of the plant.more » ERM uses sensor data for providing real-time information about equipment condition for deriving risk monitors. This information is used to estimate the remaining useful life and probability of failure of these components. By combining this information with plant probabilistic risk assessment models, predictive estimates of risk posed by continued plant operation in the presence of detected degradation may be estimated. In this paper, we describe this methodology in greater detail, and discuss its integration with a prototypic software-based plant supervisory control platform. In order to integrate these two technologies and evaluate the integrated system, software to simulate the sensor data was developed, prognostic models for feedwater valves were developed, and several use cases defined. The full paper will describe these use cases, and the results of the initial evaluation.« less

  14. FDA-iRISK--a comparative risk assessment system for evaluating and ranking food-hazard pairs: case studies on microbial hazards.

    PubMed

    Chen, Yuhuan; Dennis, Sherri B; Hartnett, Emma; Paoli, Greg; Pouillot, Régis; Ruthman, Todd; Wilson, Margaret

    2013-03-01

    Stakeholders in the system of food safety, in particular federal agencies, need evidence-based, transparent, and rigorous approaches to estimate and compare the risk of foodborne illness from microbial and chemical hazards and the public health impact of interventions. FDA-iRISK (referred to here as iRISK), a Web-based quantitative risk assessment system, was developed to meet this need. The modeling tool enables users to assess, compare, and rank the risks posed by multiple food-hazard pairs at all stages of the food supply system, from primary production, through manufacturing and processing, to retail distribution and, ultimately, to the consumer. Using standard data entry templates, built-in mathematical functions, and Monte Carlo simulation techniques, iRISK integrates data and assumptions from seven components: the food, the hazard, the population of consumers, process models describing the introduction and fate of the hazard up to the point of consumption, consumption patterns, dose-response curves, and health effects. Beyond risk ranking, iRISK enables users to estimate and compare the impact of interventions and control measures on public health risk. iRISK provides estimates of the impact of proposed interventions in various ways, including changes in the mean risk of illness and burden of disease metrics, such as losses in disability-adjusted life years. Case studies for Listeria monocytogenes and Salmonella were developed to demonstrate the application of iRISK for the estimation of risks and the impact of interventions for microbial hazards. iRISK was made available to the public at http://irisk.foodrisk.org in October 2012.

  15. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  16. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE PAGES

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...

    2016-04-04

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  17. Using improved technology for filter paper-based blood collection to survey wild Sika deer for antibodies to hepatitis E virus.

    PubMed

    Yu, Claro; Zimmerman, Carl; Stone, Roger; Engle, Ronald E; Elkins, William; Nardone, Glenn A; Emerson, Suzanne U; Purcell, Robert H

    2007-06-01

    Recent reports from Japan implicated wild Sika deer (Cervus nippon) in the zoonotic transmission of hepatitis E to humans. Seroprevalence studies were performed to determine if imported feral populations of Sika deer in Maryland and Virginia posed a similar risk of transmitting hepatitis E virus (HEV). Hunters collected blood on filter paper discs from freshly killed deer. The discs were desiccated and delivered to a collection point. The dried filters were weighed to estimate the amount of blood absorbed and were eluted and collected in one tube via a novel extraction system. The procedure was quantified and validated with negative and positive serum and blood samples obtained from domestic Sika deer before and after immunization with HEV recombinant capsid protein, respectively. None of the 155 tested samples contained antibody to HEV, suggesting that Sika deer in these populations, unlike those in Japan, do not pose a significant zoonotic threat for hepatitis E. However, the new method developed for collecting and eluting the samples should prove useful for field studies of many other pathogens.

  18. Using improved technology for filter paper-based blood collection to survey wild Sika deer for antibodies to hepatitis E virus

    PubMed Central

    Zimmerman, Carl; Stone, Roger; Engle, Ronald E.; Elkins, William; Nardone, Glenn A.; Emerson, Suzanne U.; Purcell, Robert H.

    2009-01-01

    Recent reports from Japan implicated wild Sika deer (Cervus nippon) in the zoonotic transmission of hepatitis E to humans. Seroprevalence studies were performed to determine if imported feral populations of Sika deer in Maryland and Virginia posed a similar risk of transmitting hepatitis E virus (HEV). Hunters collected blood on filter paper disks from freshly killed deer. The disks were desiccated and delivered to a collection point. The dried filters were weighed to estimate the amount of blood absorbed and were eluted and collected in one tube via a novel extraction system. The procedure was quantified and validated with negative and positive serum and blood samples obtained from domestic Sika deer before and after immunization with HEV recombinant capsid protein, respectively. None of the 155 tested samples contained antibody to HEV, suggesting that Sika deer in these populations, unlike those in Japan, do not pose a significant zoonotic threat for hepatitis E. However, the new method developed for collecting and eluting the samples should prove useful for field studies of many other pathogens. PMID:17336401

  19. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications

    PubMed Central

    Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas

    2013-01-01

    Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933

  20. Three-dimensional kinematic estimation of mobile-bearing total knee arthroplasty from x-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi

    2011-03-01

    To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.

  1. Adaptive relative pose control for autonomous spacecraft rendezvous and proximity operations with thrust misalignment and model uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2017-04-01

    An adaptive relative pose control strategy is proposed for a pursue spacecraft in proximity operations on a tumbling target. Relative position vector between two spacecraft is required to direct towards the docking port of the target while the attitude of them must be synchronized. With considering the thrust misalignment of pursuer, an integrated controller for relative translational and relative rotational dynamics is developed by using norm-wise adaptive estimations. Parametric uncertainties, unknown coupled dynamics, and bounded external disturbances are compensated online by adaptive update laws. It is proved via Lyapunov stability theory that the tracking errors of relative pose converge to zero asymptotically. Numerical simulations including six degrees-of-freedom rigid body dynamics are performed to demonstrate the effectiveness of the proposed controller.

  2. An automated hand hygiene training system improves hand hygiene technique but not compliance.

    PubMed

    Kwok, Yen Lee Angela; Callard, Michelle; McLaws, Mary-Louise

    2015-08-01

    The hand hygiene technique that the World Health Organization recommends for cleansing hands with soap and water or alcohol-based handrub consists of 7 poses. We used an automated training system to improve clinicians' hand hygiene technique and test whether this affected hospitalwide hand hygiene compliance. Seven hundred eighty-nine medical and nursing staff volunteered to participate in a self-directed training session using the automated training system. The proportion of successful first attempts was reported for each of the 7 poses. Hand hygiene compliance was collected according to the national requirement and rates for 2011-2014 were used to determine the effect of the training system on compliance. The highest pass rate was for pose 1 (palm to palm) at 77% (606 out of 789), whereas pose 6 (clean thumbs) had the lowest pass rate at 27% (216 out of 789). One hundred volunteers provided feedback to 8 items related to satisfaction with the automated training system and most (86%) expressed a high degree of satisfaction and all reported that this method was time-efficient. There was no significant change in compliance rates after the introduction of the automated training system. Observed compliance during the posttraining period declined but increased to 82% in response to other strategies. Technology for training clinicians in the 7 poses played an important education role but did not affect compliance rates. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    PubMed

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  4. A Foot-Arch Parameter Measurement System Using a RGB-D Camera.

    PubMed

    Chun, Sungkuk; Kong, Sejin; Mun, Kyung-Ryoul; Kim, Jinwook

    2017-08-04

    The conventional method of measuring foot-arch parameters is highly dependent on the measurer's skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were -0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system.

  5. A Foot-Arch Parameter Measurement System Using a RGB-D Camera

    PubMed Central

    Kong, Sejin; Mun, Kyung-Ryoul; Kim, Jinwook

    2017-01-01

    The conventional method of measuring foot-arch parameters is highly dependent on the measurer’s skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were −0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system. PMID:28777349

  6. Using velocity dispersion to estimate halo mass: Is the Local Group in tension with ΛCDM?

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Power, Chris; Lagos, Claudia del P.; Poulton, Rhys; Robotham, Aaron S. G.

    2018-06-01

    Satellite galaxies are commonly used as tracers to measure the line-of-sight (LOS)velocity dispersion (σLOS) of the dark matter halo associated with their central galaxy, and thereby to estimate the halo's mass. Recent observational dispersion estimates of the Local Group, including the Milky Way and M31, suggest σ ˜50 km s-1, which is surprisingly low when compared to the theoretical expectation of σ ˜100 km s-1 for systems of their mass. Does this pose a problem for Lambda cold dark matter (ΛCDM)? We explore this tension using the SURFS suite of N-body simulations, containing over 10000 (sub)haloes with well tracked orbits. We test how well a central galaxy's host halo velocity dispersion can be recovered by sampling σLOS of subhaloes and surrounding haloes. Our results demonstrate that σLOS is biased mass proxy. We define an optimal window in vLOS and projected distance (Dp) - 0.5 ≲ Dp/Rvir ≲ 1.0 and vLOS ≲ 0.5Vesc, where Rvir is the virial radius and Vesc is the escape velocity - such that the scatter in LOS to halo dispersion is minimized - σLOS = (0.5 ± 0.1)σv, H. We argue that this window should be used to measure LOS dispersions as a proxy for mass, as it minimises scatter in the σLOS-Mvir relation. This bias also naturally explains the results from McConnachie (2012), who used similar cuts when estimating σLOS, LG, producing a bias of σLG = (0.44 ± 0.14)σv, H. We conclude that the Local Group's velocity dispersion does not pose a problem for ΛCDM and has a mass of log M_{LG, vir}/M_{⊙}=12.0^{+0.8}_{-2.0}.

  7. [Skin symptoms associated with human immunodeficiency virus infection].

    PubMed

    Tamási, Béla; Marschalkó, Márta; Kárpáti, Sarolta

    2015-01-04

    The recently observed accelerated increase of human immunodeficiency virus infection in Hungary poses a major public concern for the healthcare system. Given the effective only but not the curative therapy, prevention should be emphasized. Current statistics estimate that about 50% of the infected persons are not aware of their human immunodeficiency virus-positivity. Thus, early diagnosis of the infection by serological screening and timely recognition of the disease-associated symptoms are crucial. The authors' intention is to facilitate early infection detection with this review on human immunodeficiency virus-associated skin symptoms, and highlight the significance of human immunodeficiency virus care in the everyday medical practice.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and racemore » classification.« less

  9. A practical method to assess model sensitivity and parameter uncertainty in C cycle models

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2015-04-01

    The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results. We consider adjoint based methods to investigate inverse problems using DALEC and various data streams. Using resolution matrices we study the nature of the inverse problems (solution existence, uniqueness and stability) and show how standard regularization techniques affect resolution and stability properties. Instead of using standard prior information as a penalty term in the cost function to regularize the problems we constraint the parameter space using ecological balance conditions and inequality constraints. The efficiency and rapidity of this approach allows us to compute ensembles of solutions to the inverse problems from which we can establish the robustness of the variational method and obtain non Gaussian posterior distributions for the model parameters and initial carbon stocks.

  10. Postprocessing of docked protein-ligand complexes using implicit solvation models.

    PubMed

    Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna

    2011-02-28

    Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.

  11. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  12. Methods for intraoperative, sterile pose-setting of patient-specific microstereotactic frames

    NASA Astrophysics Data System (ADS)

    Vollmann, Benjamin; Müller, Samuel; Kundrat, Dennis; Ortmaier, Tobias; Kahrs, Lüder A.

    2015-03-01

    This work proposes new methods for a microstereotactic frame based on bone cement fixation. Microstereotactic frames are under investigation for minimal invasive temporal bone surgery, e.g. cochlear implantation, or for deep brain stimulation, where products are already on the market. The correct pose of the microstereotactic frame is either adjusted outside or inside the operating room and the frame is used for e.g. drill or electrode guidance. We present a patientspecific, disposable frame that allows intraoperative, sterile pose-setting. Key idea of our approach is bone cement between two plates that cures while the plates are positioned with a mechatronics system in the desired pose. This paper includes new designs of microstereotactic frames, a system for alignment and first measurements to analyze accuracy and applicable load.

  13. Attenuating Stereo Pixel-Locking via Affine Window Adaptation

    NASA Technical Reports Server (NTRS)

    Stein, Andrew N.; Huertas, Andres; Matthies, Larry H.

    2006-01-01

    For real-time stereo vision systems, the standard method for estimating sub-pixel stereo disparity given an initial integer disparity map involves fitting parabolas to a matching cost function aggregated over rectangular windows. This results in a phenomenon known as 'pixel-locking,' which produces artificially-peaked histograms of sub-pixel disparity. These peaks correspond to the introduction of erroneous ripples or waves in the 3D reconstruction of truly Rat surfaces. Since stereo vision is a common input modality for autonomous vehicles, these inaccuracies can pose a problem for safe, reliable navigation. This paper proposes a new method for sub-pixel stereo disparity estimation, based on ideas from Lucas-Kanade tracking and optical flow, which substantially reduces the pixel-locking effect. In addition, it has the ability to correct much larger initial disparity errors than previous approaches and is more general as it applies not only to the ground plane.

  14. Estimating the burden of foodborne diseases in Japan

    PubMed Central

    Kumagai, Yuko; Gilmour, Stuart; Ota, Erika; Momose, Yoshika; Onishi, Toshiro; Bilano, Ver Luanni Feliciano; Kasuga, Fumiko; Sekizaki, Tsutomu

    2015-01-01

    Abstract Objective To assess the burden posed by foodborne diseases in Japan using methods developed by the World Health Organization’s Foodborne Disease Burden Epidemiology Reference Group (FERG). Methods Expert consultation and statistics on food poisoning during 2011 were used to identify three common causes of foodborne disease in Japan: Campylobacter and Salmonella species and enterohaemorrhagic Escherichia coli (EHEC). We conducted systematic reviews of English and Japanese literature on the complications caused by these pathogens, by searching Embase, the Japan medical society abstract database and Medline. We estimated the annual incidence of acute gastroenteritis from reported surveillance data, based on estimated probabilities that an affected person would visit a physician and have gastroenteritis confirmed. We then calculated disability-adjusted life-years (DALYs) lost in 2011, using the incidence estimates along with disability weights derived from published studies. Findings In 2011, foodborne disease caused by Campylobacter species, Salmonella species and EHEC led to an estimated loss of 6099, 3145 and 463 DALYs in Japan, respectively. These estimated burdens are based on the pyramid reconstruction method; are largely due to morbidity rather than mortality; and are much higher than those indicated by routine surveillance data. Conclusion Routine surveillance data may indicate foodborne disease burdens that are much lower than the true values. Most of the burden posed by foodborne disease in Japan comes from secondary complications. The tools developed by FERG appear useful in estimating disease burdens and setting priorities in the field of food safety. PMID:26478611

  15. Invasive Plant Management in the United States National Wildlife Refuge

    USGS Publications Warehouse

    Lusk, Michael; Ericson, Jenny

    2011-01-01

    Invasive species pose a significant challenge to the National Wildlife Refuge System and have been identified as the single most important threat to habitat management on refuges. At present, it is estimated that over 2 million acres of refuge lands are invaded by invasive plants. The current and potential costs of controlling invasive plants, as well as monitoring and restoring refuge lands, are significant both financially and ecologically. Budgetary expenditures for invasive species projects in FY 2009 totaled $18.4 million. A number of strategies are used to confront this threat and have resulted in success on a variety of levels. The Refuge System utilizes key partnerships, invasive species strike teams, and a dedicated cadre of volunteers to implement projects that incorporate mechanical, chemical and biological control methods.

  16. The Challenge Posed by Geomagnetic Activity to Electric Power Reliability: Evidence From England and Wales

    NASA Astrophysics Data System (ADS)

    Forbes, Kevin F.; St. Cyr, O. C.

    2017-10-01

    This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.

  17. In-the-wild facial expression recognition in extreme poses

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    In the computer research area, facial expression recognition is a hot research problem. Recent years, the research has moved from the lab environment to in-the-wild circumstances. It is challenging, especially under extreme poses. But current expression detection systems are trying to avoid the pose effects and gain the general applicable ability. In this work, we solve the problem in the opposite approach. We consider the head poses and detect the expressions within special head poses. Our work includes two parts: detect the head pose and group it into one pre-defined head pose class; do facial expression recognize within each pose class. Our experiments show that the recognition results with pose class grouping are much better than that of direct recognition without considering poses. We combine the hand-crafted features, SIFT, LBP and geometric feature, with deep learning feature as the representation of the expressions. The handcrafted features are added into the deep learning framework along with the high level deep learning features. As a comparison, we implement SVM and random forest to as the prediction models. To train and test our methodology, we labeled the face dataset with 6 basic expressions.

  18. Destructive materials thermal characteristics determination with application for spacecraft structures testing

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Budnik, S. A.; Nenarokomov, A. V.; Netelev, A. V.; Titov, D. M.

    2013-04-01

    In many practical situations it is impossible to measure directly thermal and thermokinetic properties of analyzed composite materials. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurements is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The general method of iterative regularization is concerned with application to the estimation of materials properties. The objective of this paper is to estimate thermal and thermokinetic properties of advanced materials using the approach based on inverse methods. An experimental-computational system is presented for investigating the thermal and kinetics properties of composite materials by methods of inverse heat transfer problems and which is developed at the Thermal Laboratory of Department Space Systems Engineering, of Moscow Aviation Institute (MAI). The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium.

  19. Empirical Estimates of 0Day Vulnerabilities in Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles A. McQueen; Wayne F. Boyer; Sean M. McBride

    2009-01-01

    We define a 0Day vulnerability to be any vulnerability, in deployed software, which has been discovered by at least one person but has not yet been publicly announced or patched. These 0Day vulnerabilities are of particular interest when assessing the risk to well managed control systems which have already effectively mitigated the publicly known vulnerabilities. In these well managed systems the risk contribution from 0Days will have proportionally increased. To aid understanding of how great a risk 0Days may pose to control systems, an estimate of how many are in existence is needed. Consequently, using the 0Day definition given above,more » we developed and applied a method for estimating how many 0Day vulnerabilities are in existence on any given day. The estimate is made by: empirically characterizing the distribution of the lifespans, measured in days, of 0Day vulnerabilities; determining the number of vulnerabilities publicly announced each day; and applying a novel method for estimating the number of 0Day vulnerabilities in existence on any given day using the number of vulnerabilities publicly announced each day and the previously derived distribution of 0Day lifespans. The method was first applied to a general set of software applications by analyzing the 0Day lifespans of 491 software vulnerabilities and using the daily rate of vulnerability announcements in the National Vulnerability Database. This led to a conservative estimate that in the worst year there were, on average, 2500 0Day software related vulnerabilities in existence on any given day. Using a smaller but intriguing set of 15 0Day software vulnerability lifespans representing the actual time from discovery to public disclosure, we then made a more aggressive estimate. In this case, we estimated that in the worst year there were, on average, 4500 0Day software vulnerabilities in existence on any given day. We then proceeded to identify the subset of software applications likely to be used in some control systems, analyzed the associated subset of vulnerabilities, and characterized their lifespans. Using the previously developed method of analysis, we very conservatively estimated 250 control system related 0Day vulnerabilities in existence on any given day. While reasonable, this first order estimate for control systems is probably far more conservative than those made for general software systems since the estimate did not include vulnerabilities unique to control system specific components. These control system specific vulnerabilities were unable to be included in the estimate for a variety of reasons with the most problematic being that the public announcement of unique control system vulnerabilities is very sparse. Consequently, with the intent to improve the above 0Day estimate for control systems, we first identified the additional, unique to control systems, vulnerability estimation constraints and then investigated new mechanisms which may be useful for estimating the number of unique 0Day software vulnerabilities found in control system components. We proceeded to identify a number of new mechanisms and approaches for estimating and incorporating control system specific vulnerabilities into an improved 0Day estimation method. These new mechanisms and approaches appear promising and will be more rigorously evaluated during the course of the next year.« less

  20. On the impact of different approaches to classify age-related macular degeneration: Results from the German AugUR study.

    PubMed

    Brandl, Caroline; Zimmermann, Martina E; Günther, Felix; Barth, Teresa; Olden, Matthias; Schelter, Sabine C; Kronenberg, Florian; Loss, Julika; Küchenhoff, Helmut; Helbig, Horst; Weber, Bernhard H F; Stark, Klaus J; Heid, Iris M

    2018-06-06

    While age-related macular degeneration (AMD) poses an important personal and public health burden, comparing epidemiological studies on AMD is hampered by differing approaches to classify AMD. In our AugUR study survey, recruiting residents from in/around Regensburg, Germany, aged 70+, we analyzed the AMD status derived from color fundus images applying two different classification systems. Based on 1,040 participants with gradable fundus images for at least one eye, we show that including individuals with only one gradable eye (n = 155) underestimates AMD prevalence and we provide a correction procedure. Bias-corrected and standardized to the Bavarian population, late AMD prevalence is 7.3% (95% confidence interval = [5.4; 9.4]). We find substantially different prevalence estimates for "early/intermediate AMD" depending on the classification system: 45.3% (95%-CI = [41.8; 48.7]) applying the Clinical Classification (early/intermediate AMD) or 17.1% (95%-CI = [14.6; 19.7]) applying the Three Continent AMD Consortium Severity Scale (mild/moderate/severe early AMD). We thus provide a first effort to grade AMD in a complete study with different classification systems, a first approach for bias-correction from individuals with only one gradable eye, and the first AMD prevalence estimates from a German elderly population. Our results underscore substantial differences for early/intermediate AMD prevalence estimates between classification systems and an urgent need for harmonization.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  2. Advanced human machine interaction for an image interpretation workstation

    NASA Astrophysics Data System (ADS)

    Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.

    2016-05-01

    In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs

  3. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory Francis; Zhang, Jinghe

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less

  4. Modeling and Calculator Tools for State and Local Transportation Resources

    EPA Pesticide Factsheets

    Air quality models, calculators, guidance and strategies are offered for estimating and projecting vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.

  5. Prioritizing pharmaceuticals in municipal wastewater

    EPA Science Inventory

    Oral presentation at SETAC North America 32nd annual meeting, describing our prioritization of active pharmaceutical ingredients (APIs), based on estimates of risks posed by API residues originating from municipal wastewater. Goals of this project include prioritization of APIs f...

  6. Fuzzy Set Methods for Object Recognition in Space Applications

    NASA Technical Reports Server (NTRS)

    Keller, James M. (Editor)

    1992-01-01

    Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.

  7. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  8. Synthesis and identification of three-dimensional faces from image(s) and three-dimensional generic models

    NASA Astrophysics Data System (ADS)

    Liu, Zexi; Cohen, Fernand

    2017-11-01

    We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.

  9. Dense 3D Face Alignment from 2D Video for Real-Time Use

    PubMed Central

    Jeni, László A.; Cohn, Jeffrey F.; Kanade, Takeo

    2018-01-01

    To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resolution 3D face-scans of posed and spontaneous emotion expression. The algorithm first estimates the location of a dense set of landmarks and their visibility, then reconstructs face shapes by fitting a part-based 3D model. Because no assumptions are required about illumination or surface properties, the method can be applied to a wide range of imaging conditions that include 2D video and uncalibrated multi-view video. The method has been validated in a battery of experiments that evaluate its precision of 3D reconstruction, extension to multi-view reconstruction, temporal integration for videos and 3D head-pose estimation. Experimental findings strongly support the validity of real-time, 3D registration and reconstruction from 2D video. The software is available online at http://zface.org. PMID:29731533

  10. Real-time depth camera tracking with geometrically stable weight algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming

    2017-03-01

    We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.

  11. Dynamic Federalism and Wind Farm Siting

    DTIC Science & Technology

    2014-05-18

    drawbacks, however. Among these, the mechanical and electromagnetic properties of wind turbines pose significant hazards and complications to U.S...have drawbacks, however. Among these, the mechanical and electromagnetic properties of wind turbines pose significant hazards and complications to...benefits. Wind energy conversion systems are no exception. Wind power systems use elevated turbines to capture mechanical energy from the wind

  12. PharmDock: a pharmacophore-based docking program

    PubMed Central

    2014-01-01

    Background Protein-based pharmacophore models are enriched with the information of potential interactions between ligands and the protein target. We have shown in a previous study that protein-based pharmacophore models can be applied for ligand pose prediction and pose ranking. In this publication, we present a new pharmacophore-based docking program PharmDock that combines pose sampling and ranking based on optimized protein-based pharmacophore models with local optimization using an empirical scoring function. Results Tests of PharmDock on ligand pose prediction, binding affinity estimation, compound ranking and virtual screening yielded comparable or better performance to existing and widely used docking programs. The docking program comes with an easy-to-use GUI within PyMOL. Two features have been incorporated in the program suite that allow for user-defined guidance of the docking process based on previous experimental data. Docking with those features demonstrated superior performance compared to unbiased docking. Conclusion A protein pharmacophore-based docking program, PharmDock, has been made available with a PyMOL plugin. PharmDock and the PyMOL plugin are freely available from http://people.pharmacy.purdue.edu/~mlill/software/pharmdock. PMID:24739488

  13. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng

    2017-10-01

    A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.

  14. Measurement of the PPN parameter γ by testing the geometry of near-Earth space

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Tian, Yuan; Wang, Dian-Hong; Qin, Cheng-Gang; Shao, Cheng-Gang

    2016-06-01

    The Beyond Einstein Advanced Coherent Optical Network (BEACON) mission was designed to achieve an accuracy of 10^{-9} in measuring the Eddington parameter γ , which is perhaps the most fundamental Parameterized Post-Newtonian parameter. However, this ideal accuracy was just estimated as a ratio of the measurement accuracy of the inter-spacecraft distances to the magnitude of the departure from Euclidean geometry. Based on the BEACON concept, we construct a measurement model to estimate the parameter γ with the least squares method. Influences of the measurement noise and the out-of-plane error on the estimation accuracy are evaluated based on the white noise model. Though the BEACON mission does not require expensive drag-free systems and avoids physical dynamical models of spacecraft, the relatively low accuracy of initial inter-spacecraft distances poses a great challenge, which reduces the estimation accuracy in about two orders of magnitude. Thus the noise requirements may need to be more stringent in the design in order to achieve the target accuracy, which is demonstrated in the work. Considering that, we have given the limits on the power spectral density of both noise sources for the accuracy of 10^{-9}.

  15. Compressive power spectrum sensing for vibration-based output-only system identification of structural systems in the presence of noise

    NASA Astrophysics Data System (ADS)

    Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis

    2015-05-01

    Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.

  16. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  17. Risks to aquatic organisms posed by human pharmaceutical use

    EPA Science Inventory

    In order to help prioritize future research efforts within the US, risks associated with exposure to human prescription pharmaceutical residues in wastewater were estimated from marketing and pharmacological data. Masses of 371 active pharmaceutical ingredients (APIs) dispensed ...

  18. A well-posed and stable stochastic Galerkin formulation of the incompressible Navier–Stokes equations with random data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, Per, E-mail: per.pettersson@uib.no; Nordström, Jan, E-mail: jan.nordstrom@liu.se; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2016-02-01

    We present a well-posed stochastic Galerkin formulation of the incompressible Navier–Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimatemore » for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.« less

  19. Computational approaches to motor learning by imitation.

    PubMed Central

    Schaal, Stefan; Ijspeert, Auke; Billard, Aude

    2003-01-01

    Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking-indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions. PMID:12689379

  20. An estimate for the thermal photon rate from lattice QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Harris, Tim; Meyer, Harvey B.; Steinberg, Aman

    2018-03-01

    We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.

  1. ILIAD Testing; and a Kalman Filter for 3-D Pose Estimation

    NASA Technical Reports Server (NTRS)

    Richardson, A. O.

    1996-01-01

    This report presents the results of a two-part project. The first part presents results of performance assessment tests on an Internet Library Information Assembly Data Base (ILIAD). It was found that ILLAD performed best when queries were short (one-to-three keywords), and were made up of rare, unambiguous words. In such cases as many as 64% of the typically 25 returned documents were found to be relevant. It was also found that a query format that was not so rigid with respect to spelling errors and punctuation marks would be more user-friendly. The second part of the report shows the design of a Kalman Filter for estimating motion parameters of a three dimensional object from sequences of noisy data derived from two-dimensional pictures. Given six measured deviation values represendng X, Y, Z, pitch, yaw, and roll, twelve parameters were estimated comprising the six deviations and their time rate of change. Values for the state transiton matrix, the observation matrix, the system noise covariance matrix, and the observation noise covariance matrix were determined. A simple way of initilizing the error covariance matrix was pointed out.

  2. A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.

    PubMed

    Kadi, Adiveppa S; Avaradi, Shivakumari R

    2015-01-01

    Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (R0), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated R0 from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase. The estimated R0 with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of R0. Basic reproduction number R0 provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth.

  3. Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen

    2018-05-01

    Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.

  4. Pose and Wind Estimation for Autonomous Parafoils

    DTIC Science & Technology

    2014-09-01

    Communications GT Georgia Institute of Technology IDVD Inverse Dynamics in the Virtual Domain IMU inertial measurement unit INRIA Institut National de Recherche en...sensor. The method used is a nonlinear estimator that combines the visual sensor measurements with those of an inertial measurement unit ( IMU ) on... isolated on the left side of the equation. On the other hand, when the measurement equation of (3.27) is implemented, the probabil- 58 ity

  5. Free-viewpoint video of human actors using multiple handheld Kinects.

    PubMed

    Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian

    2013-10-01

    We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.

  6. Assimilating data into open ocean tidal models

    NASA Astrophysics Data System (ADS)

    Kivman, Gennady A.

    The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.

  7. Early warning of climate tipping points

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.

    2011-07-01

    A climate 'tipping point' occurs when a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future state. Human-induced climate change could push several large-scale 'tipping elements' past a tipping point. Candidates include irreversible melt of the Greenland ice sheet, dieback of the Amazon rainforest and shift of the West African monsoon. Recent assessments give an increased probability of future tipping events, and the corresponding impacts are estimated to be large, making them significant risks. Recent work shows that early warning of an approaching climate tipping point is possible in principle, and could have considerable value in reducing the risk that they pose.

  8. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory

    NASA Astrophysics Data System (ADS)

    Bona, J. L.; Chen, M.; Saut, J.-C.

    2004-05-01

    In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.

  9. Teaching Human Poses Interactively to a Social Robot

    PubMed Central

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  10. Teaching human poses interactively to a social robot.

    PubMed

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A

    2013-09-17

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  11. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  12. SCREENING TO IDENTIFY AND PREVENT URBAN STORM WATER PROBLEMS: ESTIMATING IMPERVIOUS AREA ACCURATELY AND CHEAPLY

    EPA Science Inventory

    Complete identification and eventual prevention of urban/suburban water quality problems pose significant monitoring challenges. Uncontrolled growth of impervious surfaces (roads, buildings and parking) causes detrimental hydrologic changes, stream channel erosion, habitat degra...

  13. 20171015 - Predicting Exposure Pathways with Machine Learning (ISES)

    EPA Science Inventory

    Prioritizing the risk posed to human health from the thousands of chemicals in the environment requires tools that can estimate exposure rates from limited information. High throughput models exist to make predictions of exposure via specific, important pathways such as residenti...

  14. Improving estimation of phytoplankton isotopic values from bulk POM samples in rivers

    EPA Science Inventory

    Background/Questions/MethodsResponses of phytoplankton to excessive nutrients in rivers cause many ecological problems, including harmful algal blooms, hypoxia and even food web collapse, posing serious risks to fish and human health. Successful remediation requires identificati...

  15. SCREENING TO IDENTIFY AND PREVENT URBAN STORM WATER PROBLEMS: ESTIMATING IMPERVIOUS AREA ACCURATELY AND INEXPENSIVELY

    EPA Science Inventory

    Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...

  16. Exposure-Based Prioritization of Chemicals for Risk Assessment

    EPA Science Inventory

    Manufactured chemicals are used extensively to produce a wide variety of consumer goods and are required by important industrial sectors. Presently, information is insufficient to estimate risks posed to human health and the environment from the over ten thousand chemical substan...

  17. Advances in marker-assisted breeding of sugarcane

    USDA-ARS?s Scientific Manuscript database

    Despite the challenges posed by sugarcane, geneticists and breeders have actively sought to use DNA marker technology to enhance breeding efforts. Markers have been used to explore taxonomy, estimate genetic diversity, and to develop unique molecular fingerprints. Numerous studies have been undertak...

  18. Intra-operative 3D guidance in prostate brachytherapy using a non-isocentric C-arm.

    PubMed

    Jain, A; Deguet, A; Iordachita, I; Chintalapani, G; Blevins, J; Le, Y; Armour, E; Burdette, C; Song, D; Fichtinger, G

    2007-01-01

    Intra-operative guidance in Transrectal Ultrasound (TRUS) guided prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical C-arm, and exported to a commercial brachytherapy system for dosimetry analysis. Technical obstacles for 3D reconstruction on a non-isocentric C-arm included pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. In precision-machined hard phantoms with 40-100 seeds, we correctly reconstructed 99.8% seeds with a mean 3D accuracy of 0.68 mm. In soft tissue phantoms with 45-87 seeds and clinically realistic 15 degrees C-arm motion, we correctly reconstructed 100% seeds with an accuracy of 1.3 mm. The reconstructed 3D seed positions were then registered to the prostate segmented from TRUS. In a Phase-1 clinical trial, so far on 4 patients with 66-84 seeds, we achieved intra-operative monitoring of seed distribution and dosimetry. We optimized the 100% prescribed iso-dose contour by inserting an average of 3.75 additional seeds, making intra-operative dosimetry possible on a typical C-arm, at negligible additional cost to the existing clinical installation.

  19. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking

    PubMed Central

    Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong

    2018-01-01

    Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features. PMID:29723974

  20. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking.

    PubMed

    Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Darwish, Walid; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong

    2018-05-01

    Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.

  1. Quantum Linear System Algorithm for Dense Matrices.

    PubMed

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-02

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

  2. A Real-Time Augmented Reality System to See-Through Cars.

    PubMed

    Rameau, Francois; Ha, Hyowon; Joo, Kyungdon; Choi, Jinsoo; Park, Kibaek; Kweon, In So

    2016-11-01

    One of the most hazardous driving scenario is the overtaking of a slower vehicle, indeed, in this case the front vehicle (being overtaken) can occlude an important part of the field of view of the rear vehicle's driver. This lack of visibility is the most probable cause of accidents in this context. Recent research works tend to prove that augmented reality applied to assisted driving can significantly reduce the risk of accidents. In this paper, we present a real-time marker-less system to see through cars. For this purpose, two cars are equipped with cameras and an appropriate wireless communication system. The stereo vision system mounted on the front car allows to create a sparse 3D map of the environment where the rear car can be localized. Using this inter-car pose estimation, a synthetic image is generated to overcome the occlusion and to create a seamless see-through effect which preserves the structure of the scene.

  3. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments.

    PubMed

    Ionescu, Catalin; Papava, Dragos; Olaru, Vlad; Sminchisescu, Cristian

    2014-07-01

    We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.

  4. Design and bidding of UV disinfection equipment -- Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyurek, M.

    1998-07-01

    Ultraviolet (UV) disinfection systems are being widely considered for application to treated wastewaters, in lieu of conventional chlorination facilities. The number of UV systems operating in the US was approximately 50 in 1984. In 1990 there were over 500 systems, a ten-fold increase. The use of UV disinfection has increased since 1990, and will likely to increase in the future. It is anticipated that as many chlorine disinfection facilities reach their useful life, most of them will be replaced with UV disinfection systems. Several manufacturers offer different UV disinfection equipment. Each offers something different for the designer. There are alsomore » different approaches used in estimating the number of lamps needed for the disinfection system. The lack of standardization in determination of the number of lamps for a UV system poses problems for the designer. Such was the case during the design of the disinfection system for the Watertown, SD Wastewater Treatment Plant (WWRP). The purpose of this paper is to present a case study for the design and bidding of UV disinfection equipment.« less

  5. Uncertainty quantification metrics for whole product life cycle cost estimates in aerospace innovation

    NASA Astrophysics Data System (ADS)

    Schwabe, O.; Shehab, E.; Erkoyuncu, J.

    2015-08-01

    The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis for future work in this field.

  6. A Bayesian Framework for Coupled Estimation of Key Unknown Parameters of Land Water and Energy Balance Equations

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.

    2015-12-01

    The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states

  7. Learning Inverse Rig Mappings by Nonlinear Regression.

    PubMed

    Holden, Daniel; Saito, Jun; Komura, Taku

    2017-03-01

    We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  8. 14 CFR 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  9. 14 CFR 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  10. 14 CFR 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  11. Product Deformulation to Inform High-throughput Exposure Predictions (SOT)

    EPA Science Inventory

    The health risks posed by the thousands of chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting the understanding of risks. We have previously developed a heuristics-based exposur...

  12. Assessing nanoparticle risk poses prodigious challenges

    EPA Science Inventory

    Risk assessment is used both formally and informally to estimate the likelihood of an adverse event occurring, for example, as a consequence of exposure to a hazardous chemical, drug or other agent. Formal risk assessments in government regulatory agencies have a long history of ...

  13. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.

    PubMed

    Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A

    2011-11-01

    Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.

  14. 3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach

    PubMed Central

    Vlaminck, Michiel; Luong, Hiep; Goeman, Werner; Philips, Wilfried

    2016-01-01

    In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main novelty of this work is that the proposed LiDAR mapping approach deals explicitly with the inhomogeneous density of point clouds produced by LiDAR scanners. To this end, we keep track of a global 3D map of the environment, which is continuously improved and refined by means of a surface reconstruction technique. Moreover, we perform surface analysis on consecutive generated point clouds in order to assure a perfect alignment with the global 3D map. In order to cope with drift, the system incorporates loop closure by determining the pose error and propagating it back in the pose graph. Our algorithm was exhaustively tested on data captured at a conference building, a university campus and an industrial site of a chemical company. Experiments demonstrate that it is capable of generating highly accurate 3D maps in very challenging environments. We can state that the average distance of corresponding point pairs between the ground truth and estimated point cloud approximates one centimeter for an area covering approximately 4000 m2. To prove the genericity of the system, it was tested on the well-known Kitti vision benchmark. The results show that our approach competes with state of the art methods without making any additional assumptions. PMID:27854315

  15. Fast 5DOF needle tracking in iOCT.

    PubMed

    Weiss, Jakob; Rieke, Nicola; Nasseri, Mohammad Ali; Maier, Mathias; Eslami, Abouzar; Navab, Nassir

    2018-06-01

    Intraoperative optical coherence tomography (iOCT) is an increasingly available imaging technique for ophthalmic microsurgery that provides high-resolution cross-sectional information of the surgical scene. We propose to build on its desirable qualities and present a method for tracking the orientation and location of a surgical needle. Thereby, we enable the direct analysis of instrument-tissue interaction directly in OCT space without complex multimodal calibration that would be required with traditional instrument tracking methods. The intersection of the needle with the iOCT scan is detected by a peculiar multistep ellipse fitting that takes advantage of the directionality of the modality. The geometric modeling allows us to use the ellipse parameters and provide them into a latency-aware estimator to infer the 5DOF pose during needle movement. Experiments on phantom data and ex vivo porcine eyes indicate that the algorithm retains angular precision especially during lateral needle movement and provides a more robust and consistent estimation than baseline methods. Using solely cross-sectional iOCT information, we are able to successfully and robustly estimate a 5DOF pose of the instrument in less than 5.4 ms on a CPU.

  16. Sampling in rugged terrain

    USGS Publications Warehouse

    Dawson, D.K.; Ralph, C. John; Scott, J. Michael

    1981-01-01

    Work in rugged terrain poses some unique problems that should be considered before research is initiated. Besides the obvious physical difficulties of crossing uneven terrain, topography can influence the bird species? composition of a forest and the observer's ability to detect birds and estimate distances. Census results can also be affected by the slower rate of travel on rugged terrain. Density figures may be higher than results obtained from censuses in similar habitat on level terrain because of the greater likelihood of double-recording of individuals and of recording species that sing infrequently. In selecting a census technique, the researcher should weigh the efficiency and applicability of a technique for the objectives of his study in light of the added difficulties posed by rugged terrain. The variable circular-plot method is probably the most effective technique for estimating bird numbers. Bird counts and distance estimates are facilitated because the observer is stationary, and calculations of species? densities take into account differences in effective area covered amongst stations due to variability in terrain or vegetation structure. Institution of precautions that minimize the risk of injury to field personnel can often enhance the observer?s ability to detect birds.

  17. Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics

    DOE PAGES

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...

    2016-10-18

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  18. Minimum Detectable Activity for Tomographic Gamma Scanning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, Ram; Smith, Susan; Kirkpatrick, J. M.

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographicmore » Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities are at or just above MDA levels. The paper examines methods used to estimate MDAs for a TGS system, and explores possible solutions that can be rigorously defended.« less

  19. Ill-posedness of the 3D incompressible hyperdissipative Navier–Stokes system in critical Fourier-Herz spaces

    NASA Astrophysics Data System (ADS)

    Nie, Yao; Zheng, Xiaoxin

    2018-07-01

    We study the Cauchy problem for the 3D incompressible hyperdissipative Navier–Stokes equations and consider the well-posedness and ill-posedness in critical Fourier-Herz spaces . We prove that if and , the system is locally well-posed for large initial data as well as globally well-posed for small initial data. Also, we obtain the same result for and . More importantly, we show that the system is ill-posed in the sense of norm inflation for and q  >  2. The proof relies heavily on particular structure of initial data u 0 that we construct, which makes the first iteration of solution inflate. Specifically, the special structure of u 0 transforms an infinite sum into a finite sum in ‘remainder term’, which permits us to control the remainder.

  20. Real-time 3D human pose recognition from reconstructed volume via voxel classifiers

    NASA Astrophysics Data System (ADS)

    Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo

    2014-03-01

    This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.

  1. Three-dimensional deformable-model-based localization and recognition of road vehicles.

    PubMed

    Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong

    2012-01-01

    We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.

  2. 14 CFR § 1214.805 - Unforeseen customer delay.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...

  3. 76 FR 50904 - Thiamethoxam; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... exposure and risk. A separate assessment was done for clothianidin. i. Acute exposure. Quantitative acute... not expected to pose a cancer risk, a quantitative dietary exposure assessment for the purposes of...-dietary sources of post application exposure to obtain an estimate of potential combined exposure. These...

  4. AN INFORMATIC APPROACH TO ESTIMATING ECOLOGICAL RISKS POSED BY PHARMACEUTICAL USE

    EPA Science Inventory

    Pharmaceuticals administered to humans and other animals are often excreted from treated organisms as intact drug or as active metabolites. Some of these active materials have been shown to make their way into the environment. However, the environmental concentrations of the vast...

  5. Using Elicited Choice Probabilities in Hypothetical Elections to Study Decisions to Vote

    PubMed Central

    Delavande, Adeline; Manski, Charles F.

    2015-01-01

    This paper demonstrates the feasibility and usefulness of survey research asking respondents to report voting probabilities in hypothetical election scenarios. Posing scenarios enriches the data available for studies of voting decisions, as a researcher can pose many more and varied scenarios than the elections that persons actually face. Multiple scenarios were presented to over 4,000 participants in the American Life Panel (ALP). Each described a hypothetical presidential election, giving characteristics measuring candidate preference, closeness of the election, and the time cost of voting. Persons were asked the probability that they would vote in this election and were willing and able to respond. We analyzed the data through direct study of the variation of voting probabilities with election characteristics and through estimation of a random utility model of voting. Voting time and election closeness were notable determinants of decisions to vote, but not candidate preference. Most findings were corroborated through estimation of a model fit to ALP data on respondents' actual voting behavior in the 2012 election. PMID:25705068

  6. Autonomous proximity operations using machine vision for trajectory control and pose estimation

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Sternberg, Stanley R.

    1991-01-01

    A machine vision algorithm was developed which permits guidance control to be maintained during autonomous proximity operations. At present this algorithm exists as a simulation, running upon an 80386 based personal computer, using a ModelMATE CAD package to render the target vehicle. However, the algorithm is sufficiently simple, so that following off-line training on a known target vehicle, it should run in real time with existing vision hardware. The basis of the algorithm is a sequence of single camera images of the target vehicle, upon which radial transforms were performed. Selected points of the resulting radial signatures are fed through a decision tree, to determine whether the signature matches that of the known reference signatures for a particular view of the target. Based upon recognized scenes, the position of the maneuvering vehicle with respect to the target vehicles can be calculated, and adjustments made in the former's trajectory. In addition, the pose and spin rates of the target satellite can be estimated using this method.

  7. Traffic Light Detection Using Conic Section Geometry

    NASA Astrophysics Data System (ADS)

    Hosseinyalmdary, S.; Yilmaz, A.

    2016-06-01

    Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.

  8. Microplastics in bivalves cultured for human consumption.

    PubMed

    Van Cauwenberghe, Lisbeth; Janssen, Colin R

    2014-10-01

    Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Relative cancer risks of chemical contaminants in the great lakes

    NASA Astrophysics Data System (ADS)

    Bro, Kenneth M.; Sonzogni, William C.; Hanson, Mark E.

    1987-08-01

    Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.

  10. Implication of adaptive smoothness constraint and Helmert variance component estimation in seismic slip inversion

    NASA Astrophysics Data System (ADS)

    Fan, Qingbiao; Xu, Caijun; Yi, Lei; Liu, Yang; Wen, Yangmao; Yin, Zhi

    2017-10-01

    When ill-posed problems are inverted, the regularization process is equivalent to adding constraint equations or prior information from a Bayesian perspective. The veracity of the constraints (or the regularization matrix R) significantly affects the solution, and a smoothness constraint is usually added in seismic slip inversions. In this paper, an adaptive smoothness constraint (ASC) based on the classic Laplacian smoothness constraint (LSC) is proposed. The ASC not only improves the smoothness constraint, but also helps constrain the slip direction. A series of experiments are conducted in which different magnitudes of noise are imposed and different densities of observation are assumed, and the results indicated that the ASC was superior to the LSC. Using the proposed ASC, the Helmert variance component estimation method is highlighted as the best for selecting the regularization parameter compared with other methods, such as generalized cross-validation or the mean squared error criterion method. The ASC may also benefit other ill-posed problems in which a smoothness constraint is required.

  11. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects

    NASA Astrophysics Data System (ADS)

    Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo

    2017-01-01

    Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.

  12. Infrared needle mapping to assist biopsy procedures and training.

    PubMed

    Shar, Bruce; Leis, John; Coucher, John

    2018-04-01

    A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.

  13. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    PubMed

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  14. Robust dead reckoning system for mobile robots based on particle filter and raw range scan.

    PubMed

    Duan, Zhuohua; Cai, Zixing; Min, Huaqing

    2014-09-04

    Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method.

  15. Robust Dead Reckoning System for Mobile Robots Based on Particle Filter and Raw Range Scan

    PubMed Central

    Duan, Zhuohua; Cai, Zixing; Min, Huaqing

    2014-01-01

    Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method. PMID:25192318

  16. Security systems engineering overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, B.J.

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at $70 billion in direct costs and up to $300 billion in indirect costs. Health insurance fraud alone is estimated to cost American businesses $100 billion. Theft, warranty fraud, andmore » counterfeiting of computer hardware totaled $3 billion in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies (counterfeit currency, cellular phone billing, credit card fraud, health care fraud, passport, green cards, and questionable documents); industrial espionage detection and prevention (intellectual property, computer chips, etc.); and security barrier technology (creation of delay such as gates, vaults, etc.).« less

  17. Characterizing hydrological hazards and trends with the NASA South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Ghatak, D.; Zaitchik, B. F.; Limaye, A. S.; Searby, N. D.; Doorn, B.; Bolten, J. D.; Toll, D. L.; Lee, S.; Mourad, B.; Narula, K.; Nischal, S.; Iceland, C.; Bajracharya, B.; Kumar, S.; Shrestha, B. R.; Murthy, M.; Hain, C.; Anderson, M. C.

    2015-12-01

    South Asia faces severe challenges to meet the need of water for agricultural, domestic and industrial purposes while coping with the threats posed by climate and land use/cover changes on regional hydrology. South Asia is also characterized by extreme climate contrasts, remote and poorly-monitored headwaters regions, and large uncertainties in estimates of consumptive water withdrawals. Here, we present results from the South Asia Land Data Assimilation System (South Asia LDAS) that apply multiple simulations involving different combination of forcing datasets, land surface models, and satellite-derived parameter datasets to characterize the distributed water balance of the subcontinent. The South Asia LDAS ensemble of simulations provides a range of uncertainty associated with model products. The system includes customized irrigation schemes to capture water use and HYMAP streamflow routing for application to floods. This presentation focuses on two key application areas for South Asia LDAS: the representation of extreme floods in transboundary rivers, and the estimate of water use in irrigated agriculture. We show that South Asia LDAS captures important features of both phenomena, address opportunities and barriers for the use of South Asia LDAS in decision support, and review uncertainties and limitations.This work is being performed by an interdisciplinary team of scientists and decision makers, to ensure that the modeling system meets the needs of decision makers at national and regional levels.

  18. Hanford Tank Farm Vapors Abatement Technology and Vendor Proposals Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Farrar, M. E.; Fink, S. D.

    2016-09-20

    Suspected chemical vapor releases from the Hanford nuclear waste tank system pose concerns for worker exposure. Washington River Protection Solutions (WRPS) contracted the Savannah River National Laboratory (SRNL) to explore abatement technologies and strategies to remediate the vapors emitted through the ventilation system. In response, SRNL conducted an evaluation of technologies to abate, or reduce, vapor emissions to below 10% of the recognized occupational exposure limits (OELs). The evaluation included a review of published literature and a broadly communicated Request for Information to commercial vendors through a Federal Business Opportunities (Fed Biz Opps) web posting. In addition, SRNL conducted amore » workshop and post-workshop conference calls with interested suppliers (vendors) to assess proposals of relevant technologies. This report reviews applicable technologies and summarizes the approaches proposed by the vendors who participated in the workshop and teleconference interviews. In addition, the report evaluates the estimated performance of the individual technologies for the various classes of chemical compounds present in the Hanford Chemicals of Potential Concern (COPCs) list. Similarly, the report provides a relative evaluation of the vendor proposed approaches against criteria of: technical feasibility (and maturity), design features, operational considerations, secondary waste generation, safety/regulatory, and cost / schedule. These rough order-of-magnitude (ROM) cost estimates are intended to provide a comparison basis between technologies and are not intended to be actual project estimates.« less

  19. An evaluation of the efficiency of minnow traps for estimating the abundance of minnows in desert spring systems

    USGS Publications Warehouse

    Peterson, James T.; Scheerer, Paul D.; Clements, Shaun

    2015-01-01

    Desert springs are sensitive aquatic ecosystems that pose unique challenges to natural resource managers and researchers. Among the most important of these is the need to accurately quantify population parameters for resident fish, particularly when the species are of special conservation concern. We evaluated the efficiency of baited minnow traps for estimating the abundance of two at-risk species, Foskett Speckled Dace Rhinichthys osculus ssp. and Borax Lake Chub Gila boraxobius, in desert spring systems in southeastern Oregon. We evaluated alternative sample designs using simulation and found that capture–recapture designs with four capture occasions would maximize the accuracy of estimates and minimize fish handling. We implemented the design and estimated capture and recapture probabilities using the Huggins closed-capture estimator. Trap capture probabilities averaged 23% and 26% for Foskett Speckled Dace and Borax Lake Chub, respectively, but differed substantially among sample locations, through time, and nonlinearly with fish body size. Recapture probabilities for Foskett Speckled Dace were, on average, 1.6 times greater than (first) capture probabilities, suggesting “trap-happy” behavior. Comparison of population estimates from the Huggins model with the commonly used Lincoln–Petersen estimator indicated that the latter underestimated Foskett Speckled Dace and Borax Lake Chub population size by 48% and by 20%, respectively. These biases were due to variability in capture and recapture probabilities. Simulation of fish monitoring that included the range of capture and recapture probabilities observed indicated that variability in capture and recapture probabilities in time negatively affected the ability to detect annual decreases by up to 20% in fish population size. Failure to account for variability in capture and recapture probabilities can lead to poor quality data and study inferences. Therefore, we recommend that fishery researchers and managers employ sample designs and estimators that can account for this variability.

  20. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    NASA Technical Reports Server (NTRS)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  1. Vision Assisted Navigation for Miniature Unmanned Aerial Vehicles (MAVs)

    DTIC Science & Technology

    2009-11-01

    commanded to orbit a target of known location. The error in target geolocation is shown for 200 frames with filtering (dashed line) and without (solid...so the performance of the filter was determined by using the estimated poses to solve a geolocation problem. An MAV flying at an altitude of 70 meters... geolocation as well as significantly reducing the short-term variance in the estimates based on the GPS/IMU alone. Due to the nature of the autopilot

  2. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of halving pesticide use on wheat production

    PubMed Central

    Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M. H.; Richard, G.; Makowski, D.

    2014-01-01

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export. PMID:24651597

  4. Effects of halving pesticide use on wheat production

    NASA Astrophysics Data System (ADS)

    Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M. H.; Richard, G.; Makowski, D.

    2014-03-01

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export.

  5. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  6. Towards development of a mobile RF Doppler sensor for continuous heart rate variability and blood pressure monitoring.

    PubMed

    Insoo Kim; Bhagat, Yusuf A

    2016-08-01

    The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.

  7. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  8. Effects of halving pesticide use on wheat production.

    PubMed

    Hossard, L; Philibert, A; Bertrand, M; Colnenne-David, C; Debaeke, P; Munier-Jolain, N; Jeuffroy, M H; Richard, G; Makowski, D

    2014-03-20

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export.

  9. Mobile camera-space manipulation

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David S. (Inventor); Skaar, Steven B. (Inventor)

    2001-01-01

    The invention is a method of using computer vision to control systems consisting of a combination of holonomic and nonholonomic degrees of freedom such as a wheeled rover equipped with a robotic arm, a forklift, and earth-moving equipment such as a backhoe or a front-loader. Using vision sensors mounted on the mobile system and the manipulator, the system establishes a relationship between the internal joint configuration of the holonomic degrees of freedom of the manipulator and the appearance of features on the manipulator in the reference frames of the vision sensors. Then, the system, perhaps with the assistance of an operator, identifies the locations of the target object in the reference frames of the vision sensors. Using this target information, along with the relationship described above, the system determines a suitable trajectory for the nonholonomic degrees of freedom of the base to follow towards the target object. The system also determines a suitable pose or series of poses for the holonomic degrees of freedom of the manipulator. With additional visual samples, the system automatically updates the trajectory and final pose of the manipulator so as to allow for greater precision in the overall final position of the system.

  10. A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP

    NASA Astrophysics Data System (ADS)

    Gao, Zhanyu; Gu, Yingying; Lv, Yaoyu; Xu, Zhenbang; Wu, Qingwen

    2018-06-01

    A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.

  11. Theory research of seam recognition and welding torch pose control based on machine vision

    NASA Astrophysics Data System (ADS)

    Long, Qiang; Zhai, Peng; Liu, Miao; He, Kai; Wang, Chunyang

    2017-03-01

    At present, the automation requirement of the welding become higher, so a method of the welding information extraction by vision sensor is proposed in this paper, and the simulation with the MATLAB has been conducted. Besides, in order to improve the quality of robot automatic welding, an information retrieval method for welding torch pose control by visual sensor is attempted. Considering the demands of welding technology and engineering habits, the relative coordinate systems and variables are strictly defined, and established the mathematical model of the welding pose, and verified its feasibility by using the MATLAB simulation in the paper, these works lay a foundation for the development of welding off-line programming system with high precision and quality.

  12. AN INFORMATIC APPROACH TO ESTIMATING ECOLOGICAL RISKS POSED BY PHARMACEUTICAL USE: HUMAN PRESCRIPTION PHARMACEUTICALS

    EPA Science Inventory

    Pharmaceuticals are often excreted from patients as the parent compound or as active metabolites. Some of these compounds have been found in the environment. However, the environmental concentrations of the majority of pharmaceuticals and their metabolites are not known. The re...

  13. A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely

    NASA Astrophysics Data System (ADS)

    Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.

    2018-02-01

    In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.

  14. Uncertainty Considerations for Ballistic Limit Equations

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.; Evans, H. J.; Williamsen, J. E; Boyer, R. L.; Nakayama, G. S.

    2005-01-01

    The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA determines the overall risk associated with a particular mission by factoring in all known risks to the spacecraft during its mission. The threat to mission and human life posed by the micro-meteoroid and orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the ISS. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. In this paper, we present possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the Shuttle and Station versions of BUMPER II.

  15. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  16. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    NASA Astrophysics Data System (ADS)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  17. Shared sensory estimates for human motion perception and pursuit eye movements.

    PubMed

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  18. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  19. Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.

    PubMed

    Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej

    2016-02-01

    This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. OpenSim: open-source software to create and analyze dynamic simulations of movement.

    PubMed

    Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G

    2007-11-01

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

  1. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  2. Stabilization and robustness of non-linear unity-feedback system - Factorization approach

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Kabuli, M. G.

    1988-01-01

    The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.

  3. Improved Feature Matching for Mobile Devices with IMU.

    PubMed

    Masiero, Andrea; Vettore, Antonio

    2016-08-05

    Thanks to the recent diffusion of low-cost high-resolution digital cameras and to the development of mostly automated procedures for image-based 3D reconstruction, the popularity of photogrammetry for environment surveys is constantly increasing in the last years. Automatic feature matching is an important step in order to successfully complete the photogrammetric 3D reconstruction: this step is the fundamental basis for the subsequent estimation of the geometry of the scene. This paper reconsiders the feature matching problem when dealing with smart mobile devices (e.g., when using the standard camera embedded in a smartphone as imaging sensor). More specifically, this paper aims at exploiting the information on camera movements provided by the inertial navigation system (INS) in order to make the feature matching step more robust and, possibly, computationally more efficient. First, a revised version of the affine scale-invariant feature transform (ASIFT) is considered: this version reduces the computational complexity of the original ASIFT, while still ensuring an increase of correct feature matches with respect to the SIFT. Furthermore, a new two-step procedure for the estimation of the essential matrix E (and the camera pose) is proposed in order to increase its estimation robustness and computational efficiency.

  4. Evaluation of uncertainty for regularized deconvolution: A case study in hydrophone measurements.

    PubMed

    Eichstädt, S; Wilkens, V

    2017-06-01

    An estimation of the measurand in dynamic metrology usually requires a deconvolution based on a dynamic calibration of the measuring system. Since deconvolution is, mathematically speaking, an ill-posed inverse problem, some kind of regularization is required to render the problem stable and obtain usable results. Many approaches to regularized deconvolution exist in the literature, but the corresponding evaluation of measurement uncertainties is, in general, an unsolved issue. In particular, the uncertainty contribution of the regularization itself is a topic of great importance, because it has a significant impact on the estimation result. Here, a versatile approach is proposed to express prior knowledge about the measurand based on a flexible, low-dimensional modeling of an upper bound on the magnitude spectrum of the measurand. This upper bound allows the derivation of an uncertainty associated with the regularization method in line with the guidelines in metrology. As a case study for the proposed method, hydrophone measurements in medical ultrasound with an acoustic working frequency of up to 7.5 MHz are considered, but the approach is applicable for all kinds of estimation methods in dynamic metrology, where regularization is required and which can be expressed as a multiplication in the frequency domain.

  5. Dioxin-like polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in seafood samples from Malaysia: estimated human intake and associated risks.

    PubMed

    Leong, Yin-Hui; Gan, Chee-Yuen; Majid, Mohamed Isa Abdul

    2014-07-01

    A total of 127 and 177 seafood samples from Malaysia were analyzed for polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), respectively. The World Health Organization-toxic-equivalency quotients (WHO-TEQ) of PCDD/Fs varied from 0.13 to 1.03 pg TEQ g(-1), whereas dl-PCBs ranged from 0.33 to 1.32 pg TEQ g(-1). Based on food-consumption data from the global environment monitoring system-food contamination monitoring and assessment programme, calculated dietary exposures to PCDD/Fs and dl-PCBs from seafood for the general population in Malaysia were 0.042 and 0.098 pg TEQ kg(-1) body weight day(-1), respectively. These estimations were quite different from the values calculated using the Malaysian food-consumption statistics (average of 0.313 and 0.676 pg TEQ kg(-1) body weight day(-1) for PCDD/Fs and PCBs, respectively). However, both of the dietary exposure estimations were lower than the tolerable daily intake recommended by WHO. Thus, it is suggested that seafood from Malaysia does not pose a notable risk to the health of the average consumer.

  6. A Bayesian Inferential Approach to Quantify the Transmission Intensity of Disease Outbreak

    PubMed Central

    Kadi, Adiveppa S.; Avaradi, Shivakumari R.

    2015-01-01

    Background. Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social mixing patterns. Method. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter basic reproduction number (R 0), using effective contacts, defined as sum of the product of incidence cases and probability of generation time distribution. We have estimated R 0 from daily case incidence data for pandemic influenza A/H1N1 2009 in India, for the initial phase. Result. The estimated R 0 with 95% credible interval is consistent with several other studies on the same strain. Through sensitivity analysis our study indicates that infectiousness affects the estimate of R 0. Conclusion. Basic reproduction number R 0 provides the useful information to the public health system to do some effort in controlling the disease by using mitigation strategies like vaccination, quarantine, and so forth. PMID:25784956

  7. Security, development and human rights: normative, legal and policy challenges for the international drug control system.

    PubMed

    Barrett, Damon

    2010-03-01

    This commentary addresses some of the challenges posed by the broader normative, legal and policy framework of the United Nations for the international drug control system. The 'purposes and principles' of the United Nations are presented and set against the threat based rhetoric of the drug control system and the negative consequences of that system. Some of the challenges posed by human rights law and norms to the international drug control system are also described, and the need for an impact assessment of the current system alongside alternative policy options is highlighted as a necessary consequence of these analyses. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Investigating the Impact of Field Trips on Teachers' Mathematical Problem Posing

    ERIC Educational Resources Information Center

    Courtney, Scott A.; Caniglia, Joanne; Singh, Rashmi

    2014-01-01

    This study examines the impact of field trip experiences on teachers' mathematical problem posing. Teachers from a large urban public school system in the Midwest participated in a professional development program that incorporated experiential learning with mathematical problem formulation experiences. During 2 weeks of summer 2011, 68 teachers…

  9. Abattoir based survey of bovine cystic echinococcosis in selected commercial abattoir in Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Hydatidosis is a widespread parasitic disease posing a significant public health and economic burden in developing countries. Abattoir survey was conducted to determine the prevalence of cystic echinococcosis (CE) in cattle, its organ distribution and to estimate financial loss due to organ condemna...

  10. A Monocular SLAM Method to Estimate Relative Pose During Satellite Proximity Operations

    DTIC Science & Technology

    2015-03-26

    localization and mapping with efficient outlier handling. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013. 5. Herbert Bay...S.H. Spencer . Next generation advanced video guidance sensor. In Aerospace Conference, 2008 IEEE, pages 1–8, March 2008. 12. Michael Calonder, Vincent

  11. Exposure Pathways, Biomarkers and the Exposome: Predictions, Insight, and Uncertainty (SOT presentation - CE lecture)

    EPA Science Inventory

    The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the hazard presented by the chemical and the extent of exposure. However, many chemicals lack estimates of exposure intake, limiting the understandi...

  12. Emerging Tools to Estimate and to Predict Exposures to Chemicals

    EPA Science Inventory

    The timely assessment of the human and ecological risk posed by thousands of existing and emerging commercial chemicals is a critical challenge facing EPA in its mission to protect public health and the environment The US EPA has been conducting research to enhance methods used t...

  13. Rank and Sparsity in Language Processing

    ERIC Educational Resources Information Center

    Hutchinson, Brian

    2013-01-01

    Language modeling is one of many problems in language processing that have to grapple with naturally high ambient dimensions. Even in large datasets, the number of unseen sequences is overwhelmingly larger than the number of observed ones, posing clear challenges for estimation. Although existing methods for building smooth language models tend to…

  14. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.

    PubMed

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation.

  15. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture

    PubMed Central

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation. PMID:28381998

  16. Hydrological Parameter Estimations from a Conservative Tracer Test With Variable-Density Effects at the Boise Hydrogeophysical Research Site

    DTIC Science & Technology

    2011-12-15

    the measured porosity values can be taken as equivalent to effective porosity values for this aquifer with the risk of only very limited overestimation...information to constrain/control an increasingly ill-posed problem, and (3) risk estimation of a model with more heterogeneity than is needed to explain...coarse fluvial deposits: Boise Hydrogeophysical Research Site, Geological Society of America Bulletin, 116(9–10), 1059–1073. Barrash, W., T. Clemo

  17. Community Response to Impaired Drinking Water Quality: Evidence from Bottled Water Sales

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Drinking water contaminants pose a harm to public health. When confronted with elevated contaminate levels, individuals can take averting actions to reduce exposure, such as bottled water purchases. This study addresses a problem of national interest given that 9 to 45 million people have been affected by drinking water quality violations in each of the past 34 years. Moreover, few studies address averting behavior and avoidance costs due to water quality violations. This study assesses how responses might differ across baseline risk of impaired water quality and demographics of service area. We match a panel of weekly supermarket sales data with geocoded violations data for 67 counties in the Southeast from 2006-2015. We estimate the change in bottled water sales due to drinking water violations using a fixed effects model. Observing market behavior also allows us to calculate the cost of these averting actions. Critical findings from this study contribute to understanding how communities respond to water quality violations. We find that violations have considerable effects on bottled water consumption. Sales increase 8.1 percent due to violations related to microorganisms and 31.2 percent due to Tier 1 violations, which pose an immediate health risk. In addition, we calculate a national cost of averting actions of $26 million for microorganism violations from 2006-2015, which represents a lower-bound estimate. Averting costs vary considerably across the U.S. and some counties bear a particularly large burden, such as in California and Texas. Overall, this study provides insight into how averting behavior differs across contaminant type, water utility characteristics, and community demographics. Such knowledge can aid public health agencies, water systems, and environmental regulators to direct assistance to communities most in need.

  18. Optimal Lateral Guidance for Automatic Landing of a Lightweight High Altitude Long Endurance Unmanned Aerial System with Crosswind Rejection

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Allen

    Unmanned aerial systems will be the dominant force in the aviation industry. Among these aircraft the use of high altitude long endurance unmanned aerial systems has increased dramatically. Based on the geometry of these types of aircraft the possible changing weather conditions during long flights poses many problems. These difficulties are compounded by the push towards fully autonomous systems. Large wingspan and, typically, small in-line landing gear make a landing in crosswind exceedingly difficult. This study uses a modified gain scheduling technique for optimizing the landing attitude for a generic vehicle based on geometry and crosswind speed. This is performed by directly utilizing the crosswind estimation to calculate a desired crab and roll angle that gives the lowest risk attitude for landing. An extended Kalman filter is developed that estimates the aircraft states as well as the 3D wind component acting on the aircraft. The aircraft used in this analysis is the DG808S, a large wingspan lightweight electric glider. The aircraft is modelled using Advanced Aircraft Analysis software and a six degree of freedom nonlinear simulation is implemented for testing. The controller used is a nonlinear model predictive controller. The simulations show that the extended Kalman filter is capable of estimating the crosswind and can therefore be used in the full aircraft simulation. Different crosswind settings are used which include both constant crosswind and gust conditions. Crosswind landing capabilities are increased by 35%. Deviation from the desired path in the cruise phase is reduced by up to 68% and time to path convergence is reduced by up to 53%.

  19. Demonstration of UAV deployment and control of mobile wireless sensing networks for modal analysis of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Hirose, Mitsuhito; Greenwood, William; Xiao, Yong; Lynch, Jerome; Zekkos, Dimitrios; Kamat, Vineet

    2016-04-01

    Unmanned aerial vehicles (UAVs) can serve as a powerful mobile sensing platform for assessing the health of civil infrastructure systems. To date, the majority of their uses have been dedicated to vision and laser-based spatial imaging using on-board cameras and LiDAR units, respectively. Comparatively less work has focused on integration of other sensing modalities relevant to structural monitoring applications. The overarching goal of this study is to explore the ability for UAVs to deploy a network of wireless sensors on structures for controlled vibration testing. The study develops a UAV platform with an integrated robotic gripper that can be used to install wireless sensors in structures, drop a heavy weight for the introduction of impact loads, and to uninstall wireless sensors for reinstallation elsewhere. A pose estimation algorithm is embedded in the UAV to estimate the location of the UAV during sensor placement and impact load introduction. The Martlet wireless sensor network architecture is integrated with the UAV to provide the UAV a mobile sensing capability. The UAV is programmed to command field deployed Martlets, aggregate and temporarily store data from the wireless sensor network, and to communicate data to a fixed base station on site. This study demonstrates the integrated UAV system using a simply supported beam in the lab with Martlet wireless sensors placed by the UAV and impact load testing performed. The study verifies the feasibility of the integrated UAV-wireless monitoring system architecture with accurate modal characteristics of the beam estimated by modal analysis.

  20. Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia.

    PubMed

    Teklu, Berhan M; Hailu, Amare; Wiegant, Daniel A; Scholten, Bernice S; Van den Brink, Paul J

    2018-05-01

    The area around Lake Ziway in Ethiopia is going through a major agricultural transformation with both small-scale farmers and large horticultural companies using pesticides and fertilisers at an increased rate. To be able to understand how this influences the water quality of Lake Ziway, water quality data was gathered to study the dynamics of pesticide concentrations and physicochemical parameters for the years from 2009 to 2015. Results indicate that for some physicochemical parameters, including pH, potassium and iron, over 50 % of the values were above the maximum permissible limit of the Ethiopian standard for drinking water. The fungicide spiroxamine poses a high chronic risk when the water is used for drinking water, while the estimated intake of diazinon was approximately 50 % of the acceptable daily intake. Higher-tier risk assessment indicated that the fungicide spiroxamine poses a high acute risk to aquatic organisms, while possible acute risks were indicated for the insecticides deltamethrin and endosulfan. Longer-term monitoring needs to be established to show the water quality changes across time and space, and the current study can be used as a baseline measurement for further research in the area as well as an example for other surface water systems in Ethiopia and Africa.

  1. Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins

    PubMed Central

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2014-01-01

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734

  2. Locally linear regression for pose-invariant face recognition.

    PubMed

    Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-07-01

    The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.

  3. Human action recognition based on kinematic similarity in real time

    PubMed Central

    Chen, Longting; Luo, Ailing; Zhang, Sicong

    2017-01-01

    Human action recognition using 3D pose data has gained a growing interest in the field of computer robotic interfaces and pattern recognition since the availability of hardware to capture human pose. In this paper, we propose a fast, simple, and powerful method of human action recognition based on human kinematic similarity. The key to this method is that the action descriptor consists of joints position, angular velocity and angular acceleration, which can meet the different individual sizes and eliminate the complex normalization. The angular parameters of joints within a short sliding time window (approximately 5 frames) around the current frame are used to express each pose frame of human action sequence. Moreover, three modified KNN (k-nearest-neighbors algorithm) classifiers are employed in our method: one for achieving the confidence of every frame in the training step, one for estimating the frame label of each descriptor, and one for classifying actions. Additional estimating of the frame’s time label makes it possible to address single input frames. This approach can be used on difficult, unsegmented sequences. The proposed method is efficient and can be run in real time. The research shows that many public datasets are irregularly segmented, and a simple method is provided to regularize the datasets. The approach is tested on some challenging datasets such as MSR-Action3D, MSRDailyActivity3D, and UTD-MHAD. The results indicate our method achieves a higher accuracy. PMID:29073131

  4. Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States

    USGS Publications Warehouse

    Wang, Z.

    2007-01-01

    Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.

  5. Pose tracking for augmented reality applications in outdoor archaeological sites

    NASA Astrophysics Data System (ADS)

    Younes, Georges; Asmar, Daniel; Elhajj, Imad; Al-Harithy, Howayda

    2017-01-01

    In recent years, agencies around the world have invested huge amounts of effort toward digitizing many aspects of the world's cultural heritage. Of particular importance is the digitization of outdoor archaeological sites. In the spirit of valorization of this digital information, many groups have developed virtual or augmented reality (AR) computer applications themed around a particular archaeological object. The problem of pose tracking in outdoor AR applications is addressed. Different positional systems are analyzed, resulting in the selection of a monocular camera-based user tracker. The limitations that challenge this technique from map generation, scale, anchoring, to lighting conditions are analyzed and systematically addressed. Finally, as a case study, our pose tracking system is implemented within an AR experience in the Byblos Roman theater in Lebanon.

  6. Temporally Scalable Visual SLAM using a Reduced Pose Graph

    DTIC Science & Technology

    2012-05-25

    m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u MIT-CSAIL-TR-2012-013 May 25, 2012 Temporally Scalable Visual SLAM using a...00-00-2012 4. TITLE AND SUBTITLE Temporally Scalable Visual SLAM using a Reduced Pose Graph 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...demonstrate a system for temporally scalable visual SLAM using a reduced pose graph representation. Unlike previous visual SLAM approaches that use

  7. Catchment scale assessment of risk posed by traffic generated heavy metals and polycyclic aromatic hydrocarbons.

    PubMed

    Ma, Yukun; McGree, James; Liu, An; Deilami, Kaveh; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2017-10-01

    Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants present in urban stormwater. Consequently, urban stormwater reuse is constrained due to the human health risk posed by these pollutants. This study developed a scientifically robust approach to assess the risk to human health posed by HMs and PAHs in urban stormwater in order to enhance its reuse. Accordingly, an innovative methodology was created consisting of four stages: quantification of traffic and land use parameters; estimation of pollutant concentrations for model development; risk assessment, and risk map presentation. This methodology will contribute to catchment scale assessment of the risk associated with urban stormwater and for risk mitigation. The risk map developed provides a simple and efficient approach to identify the critical areas within a large catchment. The study also found that heavy molecular weight PAHs (PAHs with 5-6 benzene rings) in urban stormwater pose higher risk to human health compared to light molecular PAHs (PAHs with 2-4 benzene rings). These outcomes will facilitate the development of practical approaches for applying appropriate mitigation measures for the safe management of urban stormwater pollution and for the identification of enhanced reuse opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Random-Profiles-Based 3D Face Recognition System

    PubMed Central

    Joongrock, Kim; Sunjin, Yu; Sangyoun, Lee

    2014-01-01

    In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation. PMID:24691101

  9. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  10. Situation exploration in a persistent surveillance system with multidimensional data

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.

    2013-03-01

    There is an emerging need for fusing hard and soft sensor data in an efficient surveillance system to provide accurate estimation of situation awareness. These mostly abstract, multi-dimensional and multi-sensor data pose a great challenge to the user in performing analysis of multi-threaded events efficiently and cohesively. To address this concern an interactive Visual Analytics (VA) application is developed for rapid assessment and evaluation of different hypotheses based on context-sensitive ontology spawn from taxonomies describing human/human and human/vehicle/object interactions. A methodology is described here for generating relevant ontology in a Persistent Surveillance System (PSS) and demonstrates how they can be utilized in the context of PSS to track and identify group activities pertaining to potential threats. The proposed VA system allows for visual analysis of raw data as well as metadata that have spatiotemporal representation and content-based implications. Additionally in this paper, a technique for rapid search of tagged information contingent to ranking and confidence is explained for analysis of multi-dimensional data. Lastly the issue of uncertainty associated with processing and interpretation of heterogeneous data is also addressed.

  11. Ultrasonic Multiple-Access Ranging System Using Spread Spectrum and MEMS Technology for Indoor Localization

    PubMed Central

    Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah

    2014-01-01

    Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084

  12. Quantum Linear System Algorithm for Dense Matrices

    NASA Astrophysics Data System (ADS)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  13. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  14. Industrial machine systems risk assessment: a critical review of concepts and methods.

    PubMed

    Etherton, John R

    2007-02-01

    Reducing the risk of work-related death and injury to machine operators and maintenance personnel poses a continuing occupational safety challenge. The risk of injury from machinery in U.S. workplaces is high. Between 1992 and 2001, there were, on average, 520 fatalities per year involving machines and, on average, 3.8 cases per 10,000 workers of nonfatal caught-in-running-machine injuries involving lost workdays. A U.S. task group recently developed a technical reference guideline, ANSI B11 TR3, "A Guide to Estimate, Evaluate, & Reduce Risks Associated with Machine Tools," that is intended to bring machine tool risk assessment practice in the United States up to or above the level now required by the international standard, ISO 14121. The ANSI guideline emphasizes identifying tasks and hazards not previously considered, particularly those associated with maintenance; and it further emphasizes teamwork among line workers, engineers, and safety professionals. The value of this critical review of concepts and methods resides in (1) its linking current risk theory to machine system risk assessment and (2) its exploration of how various risk estimation tools translate into risk-informed decisions on industrial machine system design and use. The review was undertaken to set the stage for a field evaluation study on machine risk assessment among users of the ANSI B11 TR3 method.

  15. The Autoregressive Method: A Method of Approximating and Estimating Positive Functions

    DTIC Science & Technology

    1976-08-01

    in drawing the curves, thanks to computer graphics. A few people ha’ very imaginatively pro- posed - td developed new ways of visualizing the data...k= -= it turns out that , , 0ki < 0 is a sufficient condition for all our k= -cc ( operations to be valid. Ii_ _ _ _ _ _ __ __ _ _ _ _ -106- We will

  16. Policies To Help Disadvantaged Children: Financing Options for the 1990s. Changing Domestic Priorities Discussion Paper.

    ERIC Educational Resources Information Center

    Barnes, Roberta Ott; And Others

    This paper estimates the costs of several approaches to increasing federal assistance to disadvantaged children and evaluates major funding strategies that could overcome the restrictions posed by the federal budget deficit. Approaches favored by conservatives, such as strengthening behavioral standards for children, sponsoring demonstration…

  17. Managing the emerald ash borer in Canada

    Treesearch

    Kenneth R. Marchant

    2007-01-01

    The Emerald ash borer, (EAB, Agrilus planipennis Fairmaire) continues to pose a major risk to Canadian urban and rural forests and parklands. EAB now occurs in four counties in southwestern Ontario. An estimated 1 million ash trees in Essex County, Ontario, and millions more in adjacent counties are in peril. Little natural resistance has been...

  18. Evaluating source area contributions from aircraft flux measurements over heterogeneous land cover by large eddy simulation

    USDA-ARS?s Scientific Manuscript database

    The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behavior of passive (e.g. moisture) versus active (e.g. temperature) scalar...

  19. Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species?

    USDA-ARS?s Scientific Manuscript database

    There are approximately 55,000 described Acari species, accounting for almost half of all known Arachnida species, but total estimated Acari diversity is reckoned to be far greater. One important source of currently hidden Acari diversity is cryptic speciation, which poses challenges to taxonomists ...

  20. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    PubMed

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hybrid Orientation Based Human Limbs Motion Tracking Method

    PubMed Central

    Glonek, Grzegorz; Wojciechowski, Adam

    2017-01-01

    One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832

  2. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information

    PubMed Central

    Di, Kaichang; Zhao, Qiang; Wan, Wenhui; Wang, Yexin; Gao, Yunjun

    2016-01-01

    In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geometric relationship between the image plane coordinates and the depth values is constructed through RGB-D camera calibration. Then, 2D and 3D feature points are automatically extracted and matched between consecutive frames to build a continuous image network. Finally, extended bundle adjustment based on the new projection model, which takes both image and depth measurements into consideration, is applied to the image network for high-precision pose estimation. Field experiments show that the proposed method has a notably better performance than the traditional method, and the experimental results demonstrate the effectiveness of the proposed method in improving localization accuracy. PMID:27529256

  3. Depth and thermal sensor fusion to enhance 3D thermographic reconstruction.

    PubMed

    Cao, Yanpeng; Xu, Baobei; Ye, Zhangyu; Yang, Jiangxin; Cao, Yanlong; Tisse, Christel-Loic; Li, Xin

    2018-04-02

    Three-dimensional geometrical models with incorporated surface temperature data provide important information for various applications such as medical imaging, energy auditing, and intelligent robots. In this paper we present a robust method for mobile and real-time 3D thermographic reconstruction through depth and thermal sensor fusion. A multimodal imaging device consisting of a thermal camera and a RGB-D sensor is calibrated geometrically and used for data capturing. Based on the underlying principle that temperature information remains robust against illumination and viewpoint changes, we present a Thermal-guided Iterative Closest Point (T-ICP) methodology to facilitate reliable 3D thermal scanning applications. The pose of sensing device is initially estimated using correspondences found through maximizing the thermal consistency between consecutive infrared images. The coarse pose estimate is further refined by finding the motion parameters that minimize a combined geometric and thermographic loss function. Experimental results demonstrate that complimentary information captured by multimodal sensors can be utilized to improve performance of 3D thermographic reconstruction. Through effective fusion of thermal and depth data, the proposed approach generates more accurate 3D thermal models using significantly less scanning data.

  4. Detailed 3D representations for object recognition and modeling.

    PubMed

    Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad

    2013-11-01

    Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.

  5. Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.

    PubMed

    Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang

    2016-08-01

    We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.

  6. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in a standard DEM format and used for projection.

  7. Benefits of Application of Advanced Technologies for a Neptune Orbiter, Atmospheric Probes and Triton Lander

    NASA Technical Reports Server (NTRS)

    Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig

    2005-01-01

    Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.

  8. Improving chemical species tomography of turbulent flows using covariance estimation.

    PubMed

    Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J

    2017-05-01

    Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.

  9. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  10. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot.

    PubMed

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking.

  11. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot

    PubMed Central

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking. PMID:28951719

  12. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U.

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources.more » This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.« less

  14. Natural radionuclide and radiological assessment of building materials in high background radiation areas of Ramsar, Iran.

    PubMed

    Bavarnegin, Elham; Moghaddam, Masoud Vahabi; Fathabadi, Nasrin

    2013-04-01

    Building materials, collected from different sites in Ramsar, a northern coastal city in Iran, were analyzed for their natural radionuclide contents. The measurements were carried out using a high resolution high purity Germanium (HPGe) gamma-ray spectrometer system. The activity concentration of (226)Ra, (232)Th, and (40)K content varied from below the minimum detection limit up to 86,400 Bqkg(-1), 187 Bqkg(-1), and 1350 Bqkg(-1), respectively. The radiological hazards incurred from the use of these building materials were estimated through various radiation hazard indices. The result of this survey shows that values obtained for some samples are more than the internationally accepted maximum limits and as such, the use of them as a building material pose significant radiation hazard to individuals.

  15. Maximum surgical blood order schedule for pancreatoduodenectomy: a long way from uniform applicability!

    PubMed

    Barreto, Savio G; Singh, Amanjeet; Perwaiz, Azhar; Singh, Tanveer; Singh, Manish Kumar; Chaudhary, Adarsh

    2017-04-01

    Unnecessary preoperative ordering of blood and blood products results in wastage of a valuable life-saving resource and poses a significant financial burden on healthcare systems. To determine patient-specific factors associated with intra-operative transfusions, and if intra-operative blood transfusions impact postoperative morbidity. Analysis of consecutive patients undergoing pancreatoduodenectomy (PD) for pancreatic tumors. A total of 384 patients underwent a classical PD with an estimated median blood loss of 200 cc and percentage transfused being 9.6%. Pre-existing hypertension, synchronous vascular resection, end-to-side pancreaticojejunostomy and nodal disease burden significantly associated with the need for intra-operative transfusions. Intra-operative blood transfusion not associated with postoperative morbidity. Optimization of MSBOS protocols for PD is required for more judicious use of blood products.

  16. Estimation and impact assessment of input and parameter uncertainty in predicting groundwater flow with a fully distributed model

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke

    2017-04-01

    Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.

  17. Development of a Mobile Learning System Based on a Collaborative Problem-Posing Strategy

    ERIC Educational Resources Information Center

    Sung, Han-Yu; Hwang, Gwo-Jen; Chang, Ya-Chi

    2016-01-01

    In this study, a problem-posing strategy is proposed for supporting collaborative mobile learning activities. Accordingly, a mobile learning environment has been developed, and an experiment on a local culture course has been conducted to evaluate the effectiveness of the proposed approach. Three classes of an elementary school in southern Taiwan…

  18. Opportunities to Pose Problems Using Digital Technology in Problem Solving Environments

    ERIC Educational Resources Information Center

    Aguilar-Magallón, Daniel Aurelio; Fernández, Willliam Enrique Poveda

    2017-01-01

    This article reports and analyzes different types of problems that nine students in a Master's Program in Mathematics Education posed during a course on problem solving. What opportunities (affordances) can a dynamic geometry system (GeoGebra) offer to allow in-service and in-training teachers to formulate and solve problems, and what type of…

  19. Deep learning-based depth estimation from a synthetic endoscopy image training set

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Durr, Nicholas J.

    2018-03-01

    Colorectal cancer is the fourth leading cause of cancer deaths worldwide. The detection and removal of premalignant lesions through an endoscopic colonoscopy is the most effective way to reduce colorectal cancer mortality. Unfortunately, conventional colonoscopy has an almost 25% polyp miss rate, in part due to the lack of depth information and contrast of the surface of the colon. Estimating depth using conventional hardware and software methods is challenging in endoscopy due to limited endoscope size and deformable mucosa. In this work, we use a joint deep learning and graphical model-based framework for depth estimation from endoscopy images. Since depth is an inherently continuous property of an object, it can easily be posed as a continuous graphical learning problem. Unlike previous approaches, this method does not require hand-crafted features. Large amounts of augmented data are required to train such a framework. Since there is limited availability of colonoscopy images with ground-truth depth maps and colon texture is highly patient-specific, we generated training images using a synthetic, texture-free colon phantom to train our models. Initial results show that our system can estimate depths for phantom test data with a relative error of 0.164. The resulting depth maps could prove valuable for 3D reconstruction and automated Computer Aided Detection (CAD) to assist in identifying lesions.

  20. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

Top