Robot Position Sensor Fault Tolerance
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.
1997-01-01
Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.
Methods for threshold determination in multiplexed assays
Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J
2014-06-24
Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.
Method for Determining Artillery Position
NASA Technical Reports Server (NTRS)
Meuser, Wilfried
1988-01-01
A method is described for determining the position of artillery in which a circle of four closely spaced microphones is located at two measurement sites for acoustic radio direction finding of muzzle blasts. A method for determining the position of artillery using this procedure is discussed.
Method for Determining Artillery Position
NASA Technical Reports Server (NTRS)
Fischer, Johannes; Meuser, Wilfried
1988-01-01
A method is described for determinig artillery positions. Two groups of four closely spaced microphones are placed at known positions, and radio bearings are determined by projectile flight time differences of muzzle blasts. The advantages of the method are discussed.
HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye
NASA Astrophysics Data System (ADS)
Galetskii, S. O.; Cherezova, T. Yu
2009-02-01
An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Direct demodulation method for heavy atom position determination in protein crystallography
NASA Astrophysics Data System (ADS)
Zhou, Liang; Liu, Zhong-Chuan; Liu, Peng; Dong, Yu-Hui
2013-01-01
The first step of phasing in any de novo protein structure determination using isomorphous replacement (IR) or anomalous scattering (AD) experiments is to find heavy atom positions. Traditionally, heavy atom positions can be solved by inspecting the difference Patterson maps. Due to the weak signals in isomorphous or anomalous differences and the noisy background in the Patterson map, the search for heavy atoms may become difficult. Here, the direct demodulation (DD) method is applied to the difference Patterson maps to reduce the noisy backgrounds and sharpen the signal peaks. The real space Patterson search by using these optimized maps can locate the heavy atom positions more accurately. It is anticipated that the direct demodulation method can assist in heavy atom position determination and facilitate the de novo structure determination of proteins.
System and method for controlling a vision guided robot assembly
Lin, Yhu-Tin; Daro, Timothy; Abell, Jeffrey A.; Turner, III, Raymond D.; Casoli, Daniel J.
2017-03-07
A method includes the following steps: actuating a robotic arm to perform an action at a start position; moving the robotic arm from the start position toward a first position; determining from a vision process method if a first part from the first position will be ready to be subjected to a first action by the robotic arm once the robotic arm reaches the first position; commencing the execution of the visual processing method for determining the position deviation of the second part from the second position and the readiness of the second part to be subjected to a second action by the robotic arm once the robotic arm reaches the second position; and performing a first action on the first part using the robotic arm with the position deviation of the first part from the first position predetermined by the vision process method.
Position and orientation determination system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.
A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object atmore » incremental positions around the detector.« less
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Eustace, John G.
1990-01-01
Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.
A method which can enhance the optical-centering accuracy
NASA Astrophysics Data System (ADS)
Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua
2014-09-01
Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.
Real-Time and Post-Processed Orbit Determination and Positioning
NASA Technical Reports Server (NTRS)
Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Mark A. (Inventor); Bar-Sever, Yoaz E. (Inventor); Miller, Kevin J. (Inventor); Romans, Larry J. (Inventor); Dorsey, Angela R. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Bertiger, William I. (Inventor);
2015-01-01
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
Real-Time and Post-Processed Orbit Determination and Positioning
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz E. (Inventor); Romans, Larry J. (Inventor); Weiss, Jan P. (Inventor); Gross, Jason (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Dorsey, Angela R. (Inventor); Miller, Mark A. (Inventor); Sibthorpe, Anthony J. (Inventor); Bertiger, William I. (Inventor);
2016-01-01
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
Using Touchscreens as Position Detectors in Physics Experiments
ERIC Educational Resources Information Center
Dilek, Ufuk; Sengören, Serap Kaya
2017-01-01
The position of a ball was measured by using the touchscreen of a mobile phone during its rolling motion. The translational speed of the ball was determined using the recorded position and time data. The speed was also calculated by a conventional method. The speed values determined by the two methods were consistent, thus it was proven that a…
System and method for clock synchronization and position determination using entangled photon pairs
NASA Technical Reports Server (NTRS)
Shih, Yanhua (Inventor)
2010-01-01
A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.
Method of Controlling Steering of a Ground Vehicle
NASA Technical Reports Server (NTRS)
Guo, Raymond (Inventor); Atluri, Venkata Prasad (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Dawson, Andrew D. (Inventor)
2016-01-01
A method of controlling steering of a vehicle through setting wheel angles of a plurality of modular electronic corner assemblies (eModules) is provided. The method includes receiving a driving mode selected from a mode selection menu. A position of a steering input device is determined in a master controller. A velocity of the vehicle is determined, in the master controller, when the determined position of the steering input device is near center. A drive mode request corresponding to the selected driving mode to the plurality of steering controllers is transmitted to the master controller. A required steering angle of each of the plurality of eModules is determined, in the master controller, as a function of the determined position of the steering input device, the determined velocity of the vehicle, and the selected first driving mode. The eModules are set to the respective determined steering angles.
Ouchi, Kentaro; Sugiyama, Kazuna
2016-04-01
Incorrect endobronchial placement of the tracheal tube can lead to serious complications. Hence, it is necessary to determine the accuracy of tracheal tube positioning. Markers are included on tracheal tubes, in the process of their manufacture, as indicators of approximate intubation depth. In addition, continuous chest auscultation has been used for determining the proper position of the tube. We examined insertion depth using the cuff depth and continuous chest auscultation method (CC method), compared with insertion depth determined by the marker method, to assess the accuracy of these methods. After induction of anesthesia, tracheal intubation was performed in each patient. In the CC method, the depth of tube insertion was measured when the cuff had passed through the glottis, and again when breath sounds changed in quality; the depth of tube insertion was determined from these values. In the marker method, the depth of tube insertion was measured and determined when the marker of the tube had reached the glottis, using insertion depth according to the marker as an index. Insertion depth by the marker method was 26.6 ± 1.2 cm and by the CC method was 28.0 ± 1.2 cm (P < 0.0001). The CC method indicated a significantly greater depth than the marker method. This study determined the safe range of tracheal tube placement. Tube positions determined by the CC method were about 1 cm deeper than those determined by the marker. This information is important to prevent accidental one-lung ventilation and accidental extubation. UMIN No. UMIN000011375.
Control method and system for hydraulic machines employing a dynamic joint motion model
Danko, George [Reno, NV
2011-11-22
A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.
Method for determining artillery position
NASA Technical Reports Server (NTRS)
Fischer, Johannes; Loges, Werner; Meuser, Wilfried
1988-01-01
A method is disclosed for determining the position of cannon from measurement sites whose distance from each other lies in the same order of magnitude as the distance between the cannons -- that distance being in the kilometer range -- with the help of the travel time evaluation of muzzle blasts received at the measurement sites. There are at least two measurement sites, consisting of a cruciform of four microphones each positioned so that one axis is oriented to an arbitrarily chosen reference direction with the microphones spaced closely together. In this arrangement of diametrically opposed microphones, the respective travel times are determined and placed in a relationship whose arctangent is a radio bearing to the reference direction in which radio bearings are determined with consideration of their position and their opposing distance from the cannon position.
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor A. (Inventor)
2000-01-01
A computer-implemented method and apparatus for determining position of a vehicle within 100 km autonomously from magnetic field measurements and attitude data without a priori knowledge of position. An inverted dipole solution of two possible position solutions for each measurement of magnetic field data are deterministically calculated by a program controlled processor solving the inverted first order spherical harmonic representation of the geomagnetic field for two unit position vectors 180 degrees apart and a vehicle distance from the center of the earth. Correction schemes such as a successive substitutions and a Newton-Raphson method are applied to each dipole. The two position solutions for each measurement are saved separately. Velocity vectors for the position solutions are calculated so that a total energy difference for each of the two resultant position paths is computed. The position path with the smaller absolute total energy difference is chosen as the true position path of the vehicle.
Using touchscreens as position detectors in physics experiments
NASA Astrophysics Data System (ADS)
Dilek, Ufuk; Kaya Şengören, Serap
2017-05-01
The position of a ball was measured by using the touchscreen of a mobile phone during its rolling motion. The translational speed of the ball was determined using the recorded position and time data. The speed was also calculated by a conventional method. The speed values determined by the two methods were consistent, thus it was proven that a touchscreen could be used to detect position in physics experiments. Touchscreens of other smart mobile devices and touch tables can also be used for the same purpose.
Using a motion capture system for spatial localization of EEG electrodes
Reis, Pedro M. R.; Lochmann, Matthias
2015-01-01
Electroencephalography (EEG) is often used in source analysis studies, in which the locations of cortex regions responsible for a signal are determined. For this to be possible, accurate positions of the electrodes at the scalp surface must be determined, otherwise errors in the source estimation will occur. Today, several methods for acquiring these positions exist but they are often not satisfyingly accurate or take a long time to perform. Therefore, in this paper we describe a method capable of determining the positions accurately and fast. This method uses an infrared light motion capture system (IR-MOCAP) with 8 cameras arranged around a human participant. It acquires 3D coordinates of each electrode and automatically labels them. Each electrode has a small reflector on top of it thus allowing its detection by the cameras. We tested the accuracy of the presented method by acquiring the electrodes positions on a rigid sphere model and comparing these with measurements from computer tomography (CT). The average Euclidean distance between the sphere model CT measurements and the presented method was 1.23 mm with an average standard deviation of 0.51 mm. We also tested the method with a human participant. The measurement was quickly performed and all positions were captured. These results tell that, with this method, it is possible to acquire electrode positions with minimal error and little time effort for the study participants and investigators. PMID:25941468
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.
2014-05-01
A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.
NASA Technical Reports Server (NTRS)
Blucker, T. J.; Stimmel, G. L.
1971-01-01
A simplified method is described for determining the position of the lunar roving vehicle on the lunar surface during Apollo 15. The method is based upon sun compass azimuth measurements of three lunar landmarks. The difference between the landmark azimuth and the sun azimuth is measured and the resulting data are voice relayed to the Mission Control Center for processing.
Properties of Ni^+ from microwave spectroscopy of n=9 Rydberg levels of Nickel
NASA Astrophysics Data System (ADS)
Woods, Shannon; Keele, Julie; Smith, Chris; Lundeen, Stephen
2012-06-01
The microwave/RESIS method was used to determine the relative positions of 15 of the n=9 Rydberg levels of Nickel with L >= 6. Because the ground state of the Ni^+ ion is a ^2D5/2 level, each Rydberg level (n,L) splits into six eigenstates whose relative positions are determined by long-range e-Ni^+ interactions present in addition to the dominant Coulomb interaction. A previous study with the optical RESIS method determined these positions with precision of +/- 30 MHz [1]. Using the microwave/RESIS method improves that precision by a factor of 300, and leads to much improved determinations of the Ni+ properties that control the long-range interactions. [4pt] [1] Julie A. Keele, Shannon L. Woods, M.E. Hanni, and S.R. Lundeen Phys. Rev. 81, 022506 (2010)
40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...
40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...
40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...
NASA Astrophysics Data System (ADS)
Perov, N. I.
1985-02-01
A physical-geometrical method for computing the orbits of earth satellites on the basis of an inadequate number of angular observations (N3) was developed. Specifically, a new method has been developed for calculating the elements of Keplerian orbits of unidentified artificial satellites using two angular observations (alpha sub k, S sub k, k = 1). The first section gives procedures for determining the topocentric distance to AES on the basis of one optical observation. This is followed by description of a very simple method for determining unperturbed orbits using two satellite position vectors and a time interval which is applicable even in the case of antiparallel AED position vectors, a method designated the R sub 2 iterations method.
Method and system for controlling start of a permanent magnet machine
Walters, James E.; Krefta, Ronald John
2003-10-28
Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.
Method for determining molten metal pool level in twin-belt continuous casting machines
Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.
1989-03-21
A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.
Pseudorange error analysis for precise indoor positioning system
NASA Astrophysics Data System (ADS)
Pola, Marek; Bezoušek, Pavel
2017-05-01
There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.
Method and System for Temporal Filtering in Video Compression Systems
NASA Technical Reports Server (NTRS)
Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim
2011-01-01
Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.
de la Fuente-Salcido, Norma M.; Barboza-Corona, J. Eleazar; Espino Monzón, A. N.; Pacheco Cano, R. D.; Balagurusamy, N.; Bideshi, Dennis K.; Salcedo-Hernández, Rubén
2012-01-01
Previously we described a rapid fluorogenic method to measure the activity of five bacteriocins produced by Mexican strains of Bacillus thuringiensis against B. cereus 183. Here we standardize this method to efficiently determine the activity of bacteriocins against both Gram-positive and Gram-negative bacteria. It was determined that the crucial parameter required to obtain reproducible results was the number of cells used in the assay, that is, ~4 × 108 cell/mL and ~7 × 108 cell/mL, respectively, for target Gram-positive and Gram-negative bacteria. Comparative analyses of the fluorogenic and traditional well-diffusion assays showed correlation coefficients of 0.88 to 0.99 and 0.83 to 0.99, respectively, for Gram-positive and Gram-negative bacteria. The fluorogenic method demonstrated that the five bacteriocins of B. thuringiensis have bacteriolytic and bacteriostatic activities against all microorganisms tested, including clinically significant bacteria such as Listeria monocytogenes, Proteus vulgaris, and Shigella flexneri reported previously to be resistant to the antimicrobials as determined using the well-diffusion protocol. These results demonstrate that the fluorogenic assay is a more sensitive, reliable, and rapid method when compared with the well-diffusion method and can easily be adapted in screening protocols for bacteriocin production by other microorganisms. PMID:22919330
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.
Space orientation of total hip prosthesis. A method for three-dimensional determination.
Herrlin, K; Selvik, G; Pettersson, H
1986-01-01
A method for in vivo determination of orientation and relation in space of components of total hip prosthesis is described. The method allows for determination of the orientation of the prosthetic components in well defined anatomic planes of the body. Furthermore the range of free motion from neutral position to the point of contact between the edge of the acetabular opening and the neck of the femoral component can be determined in various directions. To assess the accuracy of the calculations a phantom prosthesis was studied in nine different positions and the measurements of the space oriented parameters according to the present method correlated to measurements of the same parameters according to Selvik's stereophotogrammetric method. Good correlation was found. The role of prosthetic malpositioning and component interaction evaluated with the present method in the development of prosthetic loosening and displacement is discussed.
Gamma-ray tracking method for pet systems
Mihailescu, Lucian; Vetter, Kai M.
2010-06-08
Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.
Garcia, J J; Blanca, M; Moreno, F; Vega, J M; Mayorga, C; Fernandez, J; Juarez, C; Romano, A; de Ramon, E
1997-01-01
The quantitation of in vitro IgE antibodies to the benzylpenicilloyl determinant (BPO) is a useful tool for evaluating suspected penicillin allergic subjects. Although many different methods have been employed, few studies have compared their diagnostic specificity and sensitivity. In this study, the sensitivity and specificity of three different radio allergo sorbent test (RAST) methods for quantitating specific IgE antibodies to the BPO determinant were compared. Thirty positive control sera (serum samples from penicillin allergic subjects with a positive clinical history and a positive penicillin skin test) and 30 negative control sera (sera from subjects with no history of penicillin allergy and negative skin tests) were tested for BPO-specific IgE antibodies by RAST using three different conjugates coupled to the solid phase: benzylpenicillin conjugated to polylysine (BPO-PLL), benzylpenicillin conjugated to human serum albumin (BPO-HSA), and benzylpenicillin conjugated to an aminospacer (BPO-SP). Receiver operator control curves (ROC analysis) were carried out by determining different cut-off points between positive and negative values. Contingence tables were constructed and sensitivity, specificity, negative predictive values (PV-), and positive predictive values (PV+) were calculated. Pearson correlation coefficients (r) and intraclass correlation coefficients (ICC) were determined and the differences between methods were compared by chi 2 analysis. Analysis of the areas defined by the ROC curves showed statistical differences among the three methods. When cut-off points for optimal sensitivity and specificity were chosen, the BPO-HSA assay was less sensitive and less specific and had a lower PV- and PV+ than the BPO-PLL and BPO-SP assays. Assessment of r and ICC indicated that the correlation was very high, but the concordance between the PLL and SP methods was higher than between the PLL and HSA or SP and HSA methods. We conclude that for quantitating IgE antibodies by RAST to the BPO determinant, BPO-SP or BPO-PLL conjugates offer advantages in sensitivity and specificity compared with BPO-HSA. These results support and extend previous in vitro studies by our group and highlight the importance of the carrier for RAST assays.
Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary
2016-07-12
Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.
Comparison of multiple methods for the determination of sulphite in Allium and Brassica vegetables
Robbins Carlos, Katherine S.; de Jager, Lowri S.
2018-01-01
Sulphites are a family of additives regulated for use worldwide in food products. They must be declared on the label if they are present in concentrations greater than 10 mg kg−1, determined as sulphur dioxide (SO2). The current US regulatory method for sulphites, the optimised Monier–Williams method (OMW), produces false-positive results with vegetables from the Allium (garlic) and Brassica (cabbage) genera due to extraction conditions that are thought to cause endogenous sulphur compounds to release SO2. Recently, modifications to the OMW method (2× MW) were published that reportedly reduced this false-positive in garlic. However, no other vegetables from these genera have been investigated. In addition, an LC-MS/MS method was developed for sulphite analysis, but it has not yet been tested with these problematic matrices. Ten vegetable species were analysed using these sulphite methods (OMW titration, OMW gravimetric, 2× MW and LC-MS/MS) to determine the false-positive rate. Sulphite concentrations > 10 mg kg−1 SO2 were observed with the OMW analyses. The 2× MW method reduced the measured concentration in unsulphited samples to ≤ 10 mg kg−1 SO2 for all matrices analysed. The LC-MS/MS method showed concentrations < 10 mg kg−1 for the Brassica samples, but only displayed a slight reduction in the Allium matrices. Spiked recovery studies were conducted to determine if these methods can detect added sulphite. The 2× MW had recoveries of 17% and 42% for water and fresh garlic, respectively, and the LC-MS/MS had recoveries of 108%, 125%, 116% and 107% for water, fresh garlic, roasted garlic, and hummus, respectively. The low recoveries of the 2× MW may indicate that sulphur compounds cannot be properly quantified with this method. The ability to eliminate false-positives will enable accurate determination of added sulphite to ensure compliance with sulphite labelling requirements. PMID:27592824
The gap values in the profile matching method by fuzzy logic
NASA Astrophysics Data System (ADS)
Sitepu, S. A.; Efendi, S.; Situmorang, Z.
2018-03-01
In this research, the determination of the appropriate values of Gap for the assessment of promotion criteria of position in an institution / company. In this study the authors use Fuzzy Sugeno logic on the determination of Gap values used in Profile Matching method. Test results of 5 employees obtained the eligibility of promotion with the position of Z* values between in 3.20 to 4.11.
Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.
1985-12-31
Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less
A study of autonomous satellite navigation methods using the global positioning satellite system
NASA Technical Reports Server (NTRS)
Tapley, B. D.
1980-01-01
Special orbit determination algorithms were developed to accommodate the size and speed limitations of on-board computer systems of the NAVSTAR Global Positioning System. The algorithms use square root sequential filtering methods. A new method for the time update of the square root covariance matrix was also developed. In addition, the time update method was compared with another square root convariance propagation method to determine relative performance characteristics. Comparisions were based on the results of computer simulations of the LANDSAT-D satellite processing pseudo range and pseudo range-rate measurements from the phase one GPS. A summary of the comparison results is presented.
Method and apparatus for shape and end position determination using an optical fiber
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2010-01-01
A method of determining the shape of an unbound optical fiber includes collecting strain data along a length of the fiber, calculating curvature and bending direction data of the fiber using the strain data, curve-fitting the curvature and bending direction data to derive curvature and bending direction functions, calculating a torsion function using the bending direction function, and determining the 3D shape from the curvature, bending direction, and torsion functions. An apparatus for determining the 3D shape of the fiber includes a fiber optic cable unbound with respect to a protective sleeve, strain sensors positioned along the cable, and a controller in communication with the sensors. The controller has an algorithm for determining a 3D shape and end position of the fiber by calculating a set of curvature and bending direction data, deriving curvature, bending, and torsion functions, and solving Frenet-Serret equations using these functions.
Jacob, M E; Bai, J; Renter, D G; Rogers, A T; Shi, X; Nagaraja, T G
2014-02-01
Detection of Escherichia coli O157 in cattle feces has traditionally used culture-based methods; PCR-based methods have been suggested as an alternative. We aimed to determine if multiplex real-time (mq) or conventional PCR methods could reliably detect cattle naturally shedding high (≥10(4) CFU/g of feces) and low (∼10(2) CFU/g of feces) concentrations of E. coli O157. Feces were collected from pens of feedlot cattle and evaluated for E. coli O157 by culture methods. Samples were categorized as (i) high shedders, (ii) immunomagnetic separation (IMS) positive after enrichment, or (iii) culture negative. DNA was extracted pre- and postenrichment from 100 fecal samples from each category (high shedder, IMS positive, culture negative) and subjected to mqPCR and conventional PCR assays based on detecting three genes, rfbE, stx1, and stx2. In feces from cattle determined to be E. coli O157 high shedders by culture, 37% were positive by mqPCR prior to enrichment; 85% of samples were positive after enrichment. In IMS-positive samples, 4% were positive by mqPCR prior to enrichment, while 43% were positive after enrichment. In culture-negative feces, 7% were positive by mqPCR prior to enrichment, and 40% were positive after enrichment. The proportion of high shedder-positive and culture-positive (high shedder and IMS) samples were significantly different from mqPCR-positive samples before and after enrichment (P < 0.01). Similar results were observed for conventional PCR. Our data suggest that mqPCR and conventional PCR are most useful in identifying high shedder animals and may not be an appropriate substitute to culture-based methods for detection of E. coli O157 in cattle feces.
Park, Jeong Mee; Yong, Sang Yeol; Kim, Jong Heon; Kim, Hee; Park, Sang-Yoo
2014-01-01
Objective To compare the differences of diagnostic rates, of the two widely used test positions, in measuring vestibular evoked myogenic potentials (VEMP) and selecting the most appropriate analytical method for diagnostic criteria for the patients with vertigo. Methods Thirty-two patients with vertigo were tested in two comparative testing positions: turning the head to the opposite side of the evaluating side and bowing while in seated position, and bowing while in supine positions. Abnormalities were determined by prolonged latency of p13 or n23, shortening of the interpeak latency, and absence of VEMP formation. Results Using the three criteria above for determining abnormalities, both the seated and supine positions showed no significant differences in diagnostic rates, however, the concordance correlation of the two positions was low. When using only the prolonged latency of p13 or n23 in the two positions, diagnostic rates were not significantly different and their concordance correlation was high. On the other hand, using only the shortened interpeak latency in both positions showed no significant difference of diagnostic rates, and the degree of agreement between two positions was low. Conclusion Bowing while in seated position with the head turned in the opposite direction to the area being evaluated is found to be the best VEMP test position due to the consistent level of sternocleidomastoid muscle tension and the high level of compliance. Also, among other diagnostic analysis methods, using prolonged latency of p13 or n23 as the criterion is found to be the most appropriate method of analysis for the VEMP test. PMID:24855617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z; Jiang, W; Stuart, B
Purpose: Since electrons are easily scattered, the virtual source position for electrons is expected to locate below the x-ray target of Medical Linacs. However, the effective SSD method yields the electron virtual position above the x-ray target for some applicators for some energy in Siemens Linacs. In this study, we propose to use IC Profiler (Sun Nuclear) for evaluating the electron virtual source position for the standard electron applicators for various electron energies. Methods: The profile measurements for various nominal source-to-detector distances (SDDs) of 100–115 cm were carried out for electron beam energies of 6–18 MeV. Two methods were used:more » one was to use a 0.125 cc ion chamber (PTW, Type 31010) with buildup mounted in a PTW water tank without water filled; and the other was to use IC Profiler with a buildup to achieve charge particle equilibrium. The full width at half-maximum (FWHM) method was used to determine the field sizes for the measured profiles. Backprojecting (by a straight line) the distance between the 50% points on the beam profiles for the various SDDs, yielded the virtual source position for each applicator. Results: The profiles were obtained and the field sizes were determined by FWHM. The virtual source positions were determined through backprojection of profiles for applicators (5, 10, 15, 20, 25). For instance, they were 96.415 cm (IC Profiler) vs 95.844 cm (scanning ion chamber) for 9 MeV electrons with 10×10 cm applicator and 97.160 cm vs 97.161 cm for 12 MeV electrons with 10×10 cm applicator. The differences in the virtual source positions between IC profiler and scanning ion chamber were within 1.5%. Conclusion: IC Profiler provides a practical method for determining the electron virtual source position and its results are consistent with those obtained by profiles of scanning ion chamber with buildup.« less
VAN Noort, Kim; Schuurmann, Richte C; Slump, Cornelis H; Vos, Jan A; Devries, Jean P
2016-10-01
Follow-up imaging after endovascular aortic aneurysm repair (EVAR) focuses on detection of gross abnormalities: endoleaks and significant (>10 mm) migration. Precise determination of endograft position and wall apposition may predict late complications. We present a new measurement method to determine precise position and apposition of endografts in the aortic neck. Four patients were selected from our EVAR database. These patients had late (>1 year) type IA endoleak or >1 cm endograft migration. Twenty patients with uneventful follow-up were measured as controls. The new software adds six parameters to define endograft position and neck apposition: fabric distance to renal arteries, tilt, endograft expansion (% of the maximum original diameter), neck surface, apposition surface, and shortest apposition length. These parameters were determined on preoperative and all available postoperative CT-scans, to detect subtle changes during follow-up. All patients with endoleak or migration had increases in fabric distance, tilt, or endograft expansion or decrease of apposition surface. Changes occurred at least one CT scan before the endoleak or migration was noted in the CT reports. The patient without complications showed no changes in position or apposition during follow-up. The new measurement method detected subtle changes in endograft position and apposition during CT follow-up, not recognized initially. It can potentially determine endograft movements and decrease of apposition surface before they lead to complications like type IA endoleaks or uncorrectable migration. A larger follow-up study comparing complicated and non-complicated EVAR patients is needed to corroborate these results.
A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer
NASA Technical Reports Server (NTRS)
Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin
2007-01-01
In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.
Detector Position Estimation for PET Scanners.
Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul
2012-06-11
Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.
Advanced Multipurpose Rendezvous Tracking System Study
NASA Technical Reports Server (NTRS)
Laurie, R. J.; Sterzer, F.
1982-01-01
Rendezvous and docking (R&D) sensors needed to support Earth orbital operations of vehicles were investigated to determine the form they should take. An R&D sensor must enable an interceptor vehicle to determine both the relative position and the relative attitude of a target vehicle. Relative position determination is fairly straightforward and places few constraints on the sensor. Relative attitude determination, however, is more difficult. The attitude is calculated based on relative position measurements of several reflectors placed in a known arrangement on the target vehicle. The constraints imposed on the sensor by the attitude determination method are severe. Narrow beamwidth, wide field of view (fov), high range accuracy, and fast random scan capability are all required to determine attitude by this method. A consideration of these constraints as well as others imposed by expected operating conditions and the available technology led to the conclusion that the sensor should be a cw optical radar employing a semiconductor laser transmitter and an image dissector receiver.
Three-dimensional, position-sensitive radiation detection
He, Zhong; Zhang, Feng
2010-04-06
Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.
Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.
Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing
2017-12-14
Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.
Wada, Atsushi; Kono, Mari; Kawauchi, Sawako; Takagi, Yuri; Morikawa, Takashi; Funakoshi, Kunihiro
2012-01-01
Background For precise diagnosis of urinary tract infections (UTI), and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. Methodology/Principal Findings We employed the NaOH-sodium dodecyl sulfate (SDS) solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation) for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. Conclusions/Significance Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history of UTIs. The method may be easily applied in order to obtain additional information for clinical prescriptions from bacteriuria. PMID:23077549
Astronomical Methods in Aerial Navigation
NASA Technical Reports Server (NTRS)
Beij, K Hilding
1925-01-01
The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.
Beam position monitor for energy recovered linac beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Thomas; Evtushenko, Pavel
A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.
Translation position determination in ptychographic coherent diffraction imaging.
Zhang, Fucai; Peterson, Isaac; Vila-Comamala, Joan; Diaz, Ana; Berenguer, Felisa; Bean, Richard; Chen, Bo; Menzel, Andreas; Robinson, Ian K; Rodenburg, John M
2013-06-03
Accurate knowledge of translation positions is essential in ptychography to achieve a good image quality and the diffraction limited resolution. We propose a method to retrieve and correct position errors during the image reconstruction iterations. Sub-pixel position accuracy after refinement is shown to be achievable within several tens of iterations. Simulation and experimental results for both optical and X-ray wavelengths are given. The method improves both the quality of the retrieved object image and relaxes the position accuracy requirement while acquiring the diffraction patterns.
Tang, Yongsheng; Ren, Zhongdao
2017-01-01
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated. PMID:28230747
Tang, Yongsheng; Ren, Zhongdao
2017-02-20
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.
New computational tools for H/D determination in macromolecular structures from neutron data.
Siliqi, Dritan; Caliandro, Rocco; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Mazzone, Annamaria
2010-11-01
Two new computational methods dedicated to neutron crystallography, called n-FreeLunch and DNDM-NDM, have been developed and successfully tested. The aim in developing these methods is to determine hydrogen and deuterium positions in macromolecular structures by using information from neutron density maps. Of particular interest is resolving cases in which the geometrically predicted hydrogen or deuterium positions are ambiguous. The methods are an evolution of approaches that are already applied in X-ray crystallography: extrapolation beyond the observed resolution (known as the FreeLunch procedure) and a difference electron-density modification (DEDM) technique combined with the electron-density modification (EDM) tool (known as DEDM-EDM). It is shown that the two methods are complementary to each other and are effective in finding the positions of H and D atoms in neutron density maps.
A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.
Li, Xin; Wang, Jian; Liu, Chunyan
2015-09-25
This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians' different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians' moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the "go and back" phenomenon caused by the instability of the Bluetooth-based positioning system and the "cross-wall" phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision.
A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System
Li, Xin; Wang, Jian; Liu, Chunyan
2015-01-01
This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians’ different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians’ moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the “go and back” phenomenon caused by the instability of the Bluetooth-based positioning system and the “cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. PMID:26404277
A three-station lightning detection system
NASA Technical Reports Server (NTRS)
Ruhnke, L. H.
1972-01-01
A three-station network is described which senses magnetic and electric fields of lightning. Directional and distance information derived from the data are used to redundantly determine lightning position. This redundancy is used to correct consistent propagation errors. A comparison is made of the relative accuracy of VLF direction finders with a newer method to determine distance to and location of lightning by the ratio of magnetic-to-electric field as observed at 400 Hz. It was found that VLF direction finders can determine lightning positions with only one-half the accuracy of the method that uses the ratio of magnetic-to-electric field.
Bellomo-Brandao, Maria Angela; Andrade, Paula D; Costa, Sandra CB; Escanhoela, Cecilia AF; Vassallo, Jose; Porta, Gilda; De Tommaso, Adriana MA; Hessel, Gabriel
2009-01-01
AIM: To determine cytomegalovirus (CMV) frequency in neonatal intrahepatic cholestasis by serology, histological revision (searching for cytomegalic cells), immunohistochemistry, and polymerase chain reaction (PCR), and to verify the relationships among these methods. METHODS: The study comprised 101 non-consecutive infants submitted for hepatic biopsy between March 1982 and December 2005. Serological results were obtained from the patient’s files and the other methods were performed on paraffin-embedded liver samples from hepatic biopsies. The following statistical measures were calculated: frequency, sensibility, specific positive predictive value, negative predictive value, and accuracy. RESULTS: The frequencies of positive results were as follows: serology, 7/64 (11%); histological revision, 0/84; immunohistochemistry, 1/44 (2%), and PCR, 6/77 (8%). Only one patient had positive immunohistochemical findings and a positive PCR. The following statistical measures were calculated between PCR and serology: sensitivity, 33.3%; specificity, 88.89%; positive predictive value, 28.57%; negative predictive value, 90.91%; and accuracy, 82.35%. CONCLUSION: The frequency of positive CMV varied among the tests. Serology presented the highest positive frequency. When compared to PCR, the sensitivity and positive predictive value of serology were low. PMID:19610143
NASA Astrophysics Data System (ADS)
Swanson, Steven Roy
The objective of the dissertation is to improve state estimation performance, as compared to a Kalman filter, when non-constant, or changing, biases exist in the measurement data. The state estimation performance increase will come from the use of a fuzzy model to determine the position and velocity gains of a state estimator. A method is proposed for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model. This method consists of using a fuzzy model to determine the gains of the state estimator, converting the heuristic knowledge into the fuzzy model, and then optimizing the fuzzy model with a genetic algorithm. This method is applied to the problem of state estimation of a cascaded global positioning system (GPS)/inertial reference unit (IRU) navigation system. The GPS position data contains two major sources for position bias. The first bias is due to satellite errors and the second is due to the time delay or lag from when the GPS position is calculated until it is used in the state estimator. When a change in the bias of the measurement data occurs, a state estimator will converge on the new measurement data solution. This will introduce errors into a Kalman filter's estimated state velocities, which in turn will cause a position overshoot as it converges. By using a fuzzy model to determine the gains of a state estimator, the velocity errors and their associated deficiencies can be reduced.
Immunoturbidimetric quantification of serum immunoglobulin G concentration in foals.
Bauer, J E; Brooks, T P
1990-08-01
Immunoturbidimetric determination of serum IgG concentration in foals was compared with the reference methods of single radial immunodiffusion and serum protein electrophoresis. High positive correlations were discovered when the technique was compared with either of these reference methods. The zinc sulfate turbidity test for serum IgG estimation was also evaluated. Although a positive correlation was discovered when the latter method was compared with reference methods, it was not as strong as the correlation between reference methods and the immunoturbidimetric method. The immunoturbidimetric method used in this study is specific and precise for equine serum IgG determination. It is rapid and, thus, is advantageous when timely evaluation of critically ill foals is necessary. The technique should be adaptable to various spectrophotometers and microcomputers for widespread application in veterinary medicine.
Method and apparatus for controlling an earthworking implement to preserve a crown on a road surface
NASA Technical Reports Server (NTRS)
Lundquist, Steve D. (Inventor); Staub, Michael D. (Inventor); Alster, Louis G. (Inventor)
1999-01-01
A method and apparatus for controlling an earthworking implement on an earthworking machine to preserve a crown on the surface of a road, including determining the position of the crown on the road surface, choosing a sloped grade on one side of the crown, positioning the earthworking implement on the sloped grade so that a first end of the earthworking implement is on the road surface. The processor determines a desired position of a second end of the earthworking implement so that the second end overlaps the crown and the earthworking implement does not cut the crown.
Determination of the structure of lecithins.
Blank, M L; Nutter, L J; Privett, O S
1966-03-01
A method is described for the determination of the classes of lecithins in terms of unsaturated and saturated fatty acids based on a total fatty acid composition, the composition of the fatty acids in the beta-position, and the amount of disaturated class determined via mercuric acetate adduct formation. The accuracy of the method was determined on lecithins of known composition and the method was applied to lecithins isolated from milk serum and egg lipids, safflower and soybean oils.
Position Accuracy Analysis of a Robust Vision-Based Navigation
NASA Astrophysics Data System (ADS)
Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.
2018-05-01
Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.
Measuring Positions of Objects using Two or More Cameras
NASA Technical Reports Server (NTRS)
Klinko, Steve; Lane, John; Nelson, Christopher
2008-01-01
An improved method of computing positions of objects from digitized images acquired by two or more cameras (see figure) has been developed for use in tracking debris shed by a spacecraft during and shortly after launch. The method is also readily adaptable to such applications as (1) tracking moving and possibly interacting objects in other settings in order to determine causes of accidents and (2) measuring positions of stationary objects, as in surveying. Images acquired by cameras fixed to the ground and/or cameras mounted on tracking telescopes can be used in this method. In this method, processing of image data starts with creation of detailed computer- aided design (CAD) models of the objects to be tracked. By rotating, translating, resizing, and overlaying the models with digitized camera images, parameters that characterize the position and orientation of the camera can be determined. The final position error depends on how well the centroids of the objects in the images are measured; how accurately the centroids are interpolated for synchronization of cameras; and how effectively matches are made to determine rotation, scaling, and translation parameters. The method involves use of the perspective camera model (also denoted the point camera model), which is one of several mathematical models developed over the years to represent the relationships between external coordinates of objects and the coordinates of the objects as they appear on the image plane in a camera. The method also involves extensive use of the affine camera model, in which the distance from the camera to an object (or to a small feature on an object) is assumed to be much greater than the size of the object (or feature), resulting in a truly two-dimensional image. The affine camera model does not require advance knowledge of the positions and orientations of the cameras. This is because ultimately, positions and orientations of the cameras and of all objects are computed in a coordinate system attached to one object as defined in its CAD model.
Determining position inside building via laser rangefinder and handheld computer
Ramsey, Jr James L. [Albuquerque, NM; Finley, Patrick [Albuquerque, NM; Melton, Brad [Albuquerque, NM
2010-01-12
An apparatus, computer software, and a method of determining position inside a building comprising selecting on a PDA at least two walls of a room in a digitized map of a building or a portion of a building, pointing and firing a laser rangefinder at corresponding physical walls, transmitting collected range information to the PDA, and computing on the PDA a position of the laser rangefinder within the room.
Precisely detecting atomic position of atomic intensity images.
Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe
2015-03-01
We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
A Study of Impact Point Detecting Method Based on Seismic Signal
NASA Astrophysics Data System (ADS)
Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong
The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.
A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings
NASA Technical Reports Server (NTRS)
Gainer, Thomas G.
2002-01-01
A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.
Automatic approach to deriving fuzzy slope positions
NASA Astrophysics Data System (ADS)
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
FORTRAN program for analyzing ground-based radar data: Usage and derivations, version 6.2
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Whitmore, Stephen A.
1995-01-01
A postflight FORTRAN program called 'radar' reads and analyzes ground-based radar data. The output includes position, velocity, and acceleration parameters. Air data parameters are also provided if atmospheric characteristics are input. This program can read data from any radar in three formats. Geocentric Cartesian position can also be used as input, which may be from an inertial navigation or Global Positioning System. Options include spike removal, data filtering, and atmospheric refraction corrections. Atmospheric refraction can be corrected using the quick White Sands method or the gradient refraction method, which allows accurate analysis of very low elevation angle and long-range data. Refraction properties are extrapolated from surface conditions, or a measured profile may be input. Velocity is determined by differentiating position. Accelerations are determined by differentiating velocity. This paper describes the algorithms used, gives the operational details, and discusses the limitations and errors of the program. Appendices A through E contain the derivations for these algorithms. These derivations include an improvement in speed to the exact solution for geodetic altitude, an improved algorithm over earlier versions for determining scale height, a truncation algorithm for speeding up the gradient refraction method, and a refinement of the coefficients used in the White Sands method for Edwards AFB, California. Appendix G contains the nomenclature.
[Determination of ethylene glycol in biological fluids--propylene glycol interferences].
Gomółka, Ewa; Cudzich-Czop, Sylwia; Sulka, Adrianna
2013-01-01
Many laboratories in Poland do not use gas chromatography (GC) method for determination of ethylene glycol (EG) and methanol in blood of poisoned patients, they use non specific spectrophotometry methods. One of the interfering substances is propylene glycol (PG)--compound present in many medical and cosmetic products: drops, air freshens, disinfectants, electronic cigarettes and others. In Laboratory of Analytical Toxicology and Drug Monitoring in Krakow determination of EG is made by GC method. The method enables to distinguish and make resolution of (EG) and (PG) in biological samples. In the years 2011-2012 in several serum samples from diagnosed patients PG was present in concentration from several to higher than 100 mg/dL. The aim of the study was to estimate PG interferences of serum EG determination by spectrophotometry method. Serum samples containing PG and EG were used in the study. The samples were analyzed by two methods: GC and spectrophotometry. Results of serum samples spiked with PG with no EG analysed by spectrophotometry method were improper ("false positive"). The results were correlated to PG concentration in samples. Calculated cross-reactivity of PG in the method was 42%. Positive results of EG measured by spectrophotometry method must be confirmed by reference GC method. Spectrophotometry method shouldn't be used for diagnostics and monitoring of patients poisoned by EG.
Project SQUID. Quarterly Progress Report
1949-07-01
the sodium line reversal method for flame temperature determination ., Determination of Point Temperatures in Turbulent Flames Using the Sodium Line...taken to determine the approximate position of the line. Then, with the G-M tube in position and using the photo graph as an indicator, the region... beams are wide, the latter yielding a greater source of X-rays. Hence, by using that window yielding the broadest beam greater intensity of X-rays
1976-09-01
The purpose of this research effort was to determine the financial management educational needs of USAF graduate logistics positions. Goal analysis...was used to identify financial management techniques and task analysis was used to develop a method to identify the use of financial management techniques...positions. The survey identified financial management techniques in five areas: cost accounting, capital budgeting, working capital, financial forecasting, and programming. (Author)
Osborne, Louis S.; Lanza, Richard C.
1984-01-01
A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.
Pan, Hong-Wei; Li, Wei; Li, Rong-Guo; Li, Yong; Zhang, Yi; Sun, En-Hua
2018-01-01
Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.
Distributed magnetic field positioning system using code division multiple access
NASA Technical Reports Server (NTRS)
Prigge, Eric A. (Inventor)
2003-01-01
An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.
A simplex method for the orbit determination of maneuvering satellites
NASA Astrophysics Data System (ADS)
Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa
2018-02-01
A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.
Method and apparatus for determining the coordinates of an object
Pedersen, Paul S; Sebring, Robert
2003-01-01
A method and apparatus is described for determining the coordinates on the surface of an object which is illuminated by a beam having pixels which have been modulated according to predetermined mathematical relationships with pixel position within the modulator. The reflected illumination is registered by an image sensor at a known location which registers the intensity of the pixels as received. Computations on the intensity, which relate the pixel intensities received to the pixel intensities transmitted at the modulator, yield the proportional loss of intensity and planar position of the originating pixels. The proportional loss and position information can then be utilized within triangulation equations to resolve the coordinates of associated surface locations on the object.
[Ultrasound in monitoring of the second stage of labour].
Fouché, C J; Simon, E G; Potin, J; Perrotin, F
2012-11-01
In the second stage of labor, fetal head rotation and fetal head position are determinant for the management of labor to attempt a vaginal delivery or a cesarean section. However, digital examination is highly subjective. Nowadays, delivery rooms are often equipped with compact and high performance ultrasound systems. The clinical examination can be easily completed by quantified and reproducible methods. Transabdominal ultrasonography is a well-known and efficient way to determine the fetal head position. Nevertheless, ultrasound approach to assess fetal head descent is less widespread. We can use translabial or transperineal way to evaluate fetal head position. We describe precisely two different types of methods: the linear methods (3 different types) and the angles of progression (4 different types of measurement). Among all those methods, the main pelvic landmarks are the symphysis pubis and the fetal skull. The angle of progression appears promising but the assessment was restricted to occipitoanterior fetal position cases. In the coming years, ultrasound will likely play a greater role in the management of labor. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Precise orbit determination based on raw GPS measurements
NASA Astrophysics Data System (ADS)
Zehentner, Norbert; Mayer-Gürr, Torsten
2016-03-01
Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.
Manglos, S.H.
1988-03-10
A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.
Wren, J. J.; Wiggall, P. H.
1965-01-01
1. The conditions required for sensitive and specific colorimetric determination of proline with acidified ninhydrin were investigated. 2. A method applicable to protein samples was developed. 3. The only compound found to interfere appreciably was a hydroxyproline. PMID:14342233
NASA Astrophysics Data System (ADS)
Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.
2018-06-01
Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.
NASA Astrophysics Data System (ADS)
Peng, Bo; Zheng, Sifa; Liao, Xiangning; Lian, Xiaomin
2018-03-01
In order to achieve sound field reproduction in a wide frequency band, multiple-type speakers are used. The reproduction accuracy is not only affected by the signals sent to the speakers, but also depends on the position and the number of each type of speaker. The method of optimizing a mixed speaker array is investigated in this paper. A virtual-speaker weighting method is proposed to optimize both the position and the number of each type of speaker. In this method, a virtual-speaker model is proposed to quantify the increment of controllability of the speaker array when the speaker number increases. While optimizing a mixed speaker array, the gain of the virtual-speaker transfer function is used to determine the priority orders of the candidate speaker positions, which optimizes the position of each type of speaker. Then the relative gain of the virtual-speaker transfer function is used to determine whether the speakers are redundant, which optimizes the number of each type of speaker. Finally the virtual-speaker weighting method is verified by reproduction experiments of the interior sound field in a passenger car. The results validate that the optimum mixed speaker array can be obtained using the proposed method.
Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng
2012-11-19
We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.
1974-01-01
Tests were conducted to determine the dynamic characteristics of the Centaur/RL-10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were determined by applying power spectral methods to noise-generated data from hot firings of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps on resonant frequency characteristics was determined to be a straight-line relation. Power spectral methods were also used to determine the dynamic characteristics of the boost pumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level basedmore » on the one of the predetermined value and the input received from the nitrogen oxide sensor.« less
ERIC Educational Resources Information Center
Yalcin, Sinan
2016-01-01
In this study it was aimed to determine the relationship between teachers' positive psychological capital levels and organisational commitment. The study was conducted as a correlational survey which is one of the quantitative methods. The sample group consists of 244 teachers selected by using random sampling method among 1270 teachers working in…
Positive Exercise Experience Facilitates Behavior Change via Self-Efficacy
ERIC Educational Resources Information Center
Parschau, Linda; Fleig, Lena; Warner, Lisa Marie; Pomp, Sarah; Barz, Milena; Knoll, Nina; Schwarzer, Ralf; Lippke, Sonia
2014-01-01
Purpose: Motivational processes can be set in motion when positive consequences of physical exercise are experienced. However, relationships between positive exercise experience and determinants of the motivational and the volitional phases of exercise change have attracted only sparse attention in research. Method: This research examines direct…
Horn, Kevin M.
2013-07-09
A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.
NASA Astrophysics Data System (ADS)
Rodríguez Cielos, Ricardo; Aguirre de Mata, Julián; Díez Galilea, Andrés; Álvarez Alonso, Marina; Rodríguez Cielos, Pedro; Navarro Valero, Francisco
2016-08-01
Various geomatic measurement techniques can be efficiently combined for surveying glacier fronts. Aerial photographs and satellite images can be used to determine the position of the glacier terminus. If the glacier front is easily accessible, the classic surveys using theodolite or total station, GNSS (Global Navigation Satellite System) techniques, laser-scanner or close-range photogrammetry are possible. When the accessibility to the glacier front is difficult or impossible, close-range photogrammetry proves to be useful, inexpensive and fast. In this paper, a methodology combining photogrammetric methods and other techniques is applied to determine the calving front position of Johnsons Glacier. Images taken in 2013 with an inexpensive nonmetric digital camera are georeferenced to a global coordinate system by measuring, using GNSS techniques, support points in accessible areas close to the glacier front, from which control points in inaccessible points on the glacier surface near its calving front are determined with theodolite using the direct intersection method. The front position changes of Johnsons Glacier during the period 1957-2013, as well as those of the land-terminating fronts of Argentina, Las Palmas and Sally Rocks lobes of Hurd glacier, are determined from different geomatic techniques such as surface-based GNSS measurements, aerial photogrammetry and satellite optical imagery. This provides a set of frontal positions useful, e.g., for glacier dynamics modeling and mass balance studies.Link to the data repository: https://doi.pangaea.de/10.1594/PANGAEA.845379.
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods.
Method for measuring the three-dimensional distribution of a fluorescent dye in a cell membrane
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuya; Ishimaru, Ichirou; Fujii, Yoshiki; Yasokawa, Toshiki; Kuriyama, Shigeki; Masaki, Tsutomu; Takegawa, Kaoru; Tanaka, Naotaka
2007-01-01
This letter reports on a method for accurately determining the component distribution in a cell membrane over the entire cell surface. This method involves exciting a fluorescent-dyed cell membrane using evanescent light and scanning the entire cell surface by rotating the cell using a noncontact technique, namely, proximal two-beam optical tweezers. To position the cell membrane in the thin evanescent field, the authors designed an optical system capable of precisely positioning the focal position. Using this method, they were able to measure the surface distribution of glycoprotein labeled by lectin in a breast cancer cell membrane.
System and method for the identification of radiation in contaminated rooms
Coleman, Jody Rustyn; Farfan, Eduardo B.
2015-09-29
Devices and methods for the characterization of areas of radiation in contaminated rooms are provided. One such device is a collimator with a collimator shield for reducing noise when measuring radiation. A position determination system is provided that may be used for obtaining position and orientation information of the detector in the contaminated room. A radiation analysis method is included that is capable of determining the amount of radiation intensity present at known locations within the contaminated room. Also, a visual illustration system is provided that may project images onto the physical objects, which may be walls, of the contaminated room in order to identify the location of radioactive materials for decontamination.
NASA Astrophysics Data System (ADS)
Ilieva, Tamara; Gekov, Svetoslav
2017-04-01
The Precise Point Positioning (PPP) method gives the users the opportunity to determine point locations using a single GNSS receiver. The accuracy of the determined by PPP point locations is better in comparison to the standard point positioning, due to the precise satellite orbit and clock corrections that are developed and maintained by the International GNSS Service (IGS). The aim of our current research is the accuracy assessment of the PPP method applied for surveys and tracking moving objects in GIS environment. The PPP data is collected by using preliminary developed by us software application that allows different sets of attribute data for the measurements and their accuracy to be used. The results from the PPP measurements are directly compared within the geospatial database to different other sets of terrestrial data - measurements obtained by total stations, real time kinematic and static GNSS.
Lateral position detection and control for friction stir systems
Fleming, Paul [Boulder, CO; Lammlein, David H [Houston, TX; Cook, George E [Brentwood, TN; Wilkes, Don Mitchell [Nashville, TN; Strauss, Alvin M [Nashville, TN; Delapp, David R [Ashland City, TN; Hartman, Daniel A [Fairhope, AL
2011-11-08
Friction stir methods are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.
Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus.
Maxson, Tucker; Taylor-Howell, Cheryl L; Minogue, Timothy D
2017-01-01
Antibiotic resistant bacterial infections are a significant problem in the healthcare setting, in many cases requiring the rapid administration of appropriate and effective antibiotic therapy. Diagnostic assays capable of quickly and accurately determining the pathogen resistance profile are therefore crucial to initiate or modify care. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a standard method for species identification in many clinical microbiology laboratories and is well positioned to be applied towards antimicrobial susceptibility testing. One recently reported approach utilizes semi-quantitative MALDI-TOF MS for growth rate analysis to provide a resistance profile independent of resistance mechanism. This method was previously successfully applied to Gram-negative pathogens and mycobacteria; here, we evaluated this method with the Gram-positive pathogen Staphylococcus aureus. Specifically, we used 35 strains of S. aureus and four antibiotics to optimize and test the assay, resulting in an overall accuracy rate of 95%. Application of the optimized assay also successfully determined susceptibility from mock blood cultures, allowing both species identification and resistance determination for all four antibiotics within 3 hours of blood culture positivity.
Grey situation group decision-making method based on prospect theory.
Zhang, Na; Fang, Zhigeng; Liu, Xiaqing
2014-01-01
This paper puts forward a grey situation group decision-making method on the basis of prospect theory, in view of the grey situation group decision-making problems that decisions are often made by multiple decision experts and those experts have risk preferences. The method takes the positive and negative ideal situation distance as reference points, defines positive and negative prospect value function, and introduces decision experts' risk preference into grey situation decision-making to make the final decision be more in line with decision experts' psychological behavior. Based on TOPSIS method, this paper determines the weight of each decision expert, sets up comprehensive prospect value matrix for decision experts' evaluation, and finally determines the optimal situation. At last, this paper verifies the effectiveness and feasibility of the method by means of a specific example.
Grey Situation Group Decision-Making Method Based on Prospect Theory
Zhang, Na; Fang, Zhigeng; Liu, Xiaqing
2014-01-01
This paper puts forward a grey situation group decision-making method on the basis of prospect theory, in view of the grey situation group decision-making problems that decisions are often made by multiple decision experts and those experts have risk preferences. The method takes the positive and negative ideal situation distance as reference points, defines positive and negative prospect value function, and introduces decision experts' risk preference into grey situation decision-making to make the final decision be more in line with decision experts' psychological behavior. Based on TOPSIS method, this paper determines the weight of each decision expert, sets up comprehensive prospect value matrix for decision experts' evaluation, and finally determines the optimal situation. At last, this paper verifies the effectiveness and feasibility of the method by means of a specific example. PMID:25197706
Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Kascak, Peter E.
2002-01-01
This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.
Roof Overhangs for Solar Houses
NASA Technical Reports Server (NTRS)
Gracey, W.
1985-01-01
Convenient graphical method determines both width and vertical position of overhangs for standard wall section having "typical" window arrangement. Overhangs for this wall section determined for two extremes of latitude in United States.
Conditional data watchpoint management
Burdick, Dean Joseph; Vaidyanathan, Basu
2010-08-24
A method, system and computer program product for managing a conditional data watchpoint in a set of instructions being traced is shown in accordance with illustrative embodiments. In one particular embodiment, the method comprises initializing a conditional data watchpoint and determining the watchpoint has been encountered. Upon that determination, examining a current instruction context associated with the encountered watchpoint prior to completion of the current instruction execution, further determining a first action responsive to a positive context examination; otherwise, determining a second action.
NASA Astrophysics Data System (ADS)
You, Xu; Zhi-jian, Zong; Qun, Gao
2018-07-01
This paper describes a methodology for the position uncertainty distribution of an articulated arm coordinate measuring machine (AACMM). First, a model of the structural parameter uncertainties was established by statistical method. Second, the position uncertainty space volume of the AACMM in a certain configuration was expressed using a simplified definite integration method based on the structural parameter uncertainties; it was then used to evaluate the position accuracy of the AACMM in a certain configuration. Third, the configurations of a certain working point were calculated by an inverse solution, and the position uncertainty distribution of a certain working point was determined; working point uncertainty can be evaluated by the weighting method. Lastly, the position uncertainty distribution in the workspace of the ACCMM was described by a map. A single-point contrast test of a 6-joint AACMM was carried out to verify the effectiveness of the proposed method, and it was shown that the method can describe the position uncertainty of the AACMM and it was used to guide the calibration of the AACMM and the choice of AACMM’s accuracy area.
Biological Evaluation of Methods for the Determination of Free Available Chlorine.
1980-03-01
tri • :., t at pH 6.0, 20’C. Lowest C1 level for false positive, mg/l Chloramine Species Test NH2CI NHC1 2 NCI1 DPDT 4.8 b 0.8 DPDTSF 4.8 b 0.6 DPDP 1.1...Available Chlorine Chlorine Membrane Electrode T )PD FACTS biofac Amperometric titration 20. ASIST’IACT C’ntAtmoe so &eJie .b f nerandm Idenwlry by block...methods tested yielded false positive determinations of free chlorine with one or more of the inorganic chloramines . The FACTS procedure was the most
NASA Astrophysics Data System (ADS)
Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.
2015-07-01
Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.
Exploring the positional identities of high school science teachers
NASA Astrophysics Data System (ADS)
Blackwell, Edith Lavonne
The identity of the teacher has been determined to influence classroom practices. Positional identity is defined as one's perception of self relative to others. This qualitative research study investigates the positional identity of five high school science teachers of different ethnicities and how their positional identities influence their classroom practices. Positional identity is thought to be determined by one's perception of how one's race, ethnicity, gender, age, religion and socioeconomic status position one relative to others. The methods of data collection included classroom observations, structured and semi-structured interviews, book club meetings, teacher journals, and researcher journals, demographic and online questionnaires. The teachers that overcame stereotypes based on race/ethnicity, gender and socioeconomic status felt empowered in their positional identities and were able to empower their students. The data also identified those teachers that struggle the most with finding their power within their positional identities were the immigrants that were not able to merge their personal identities within the pre-determined social positions they encountered in this society. The empowerment or powerlessness of the science teachers' positional identities impacted instruction and practices within the science classroom.
System and Method for Wirelessly Determining Fluid Volume
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2009-01-01
A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.
ERIC Educational Resources Information Center
Sundara, Megha; Demuth, Katherine; Kuhl, Patricia K.
2011-01-01
Purpose: Two-year-olds produce third person singular "-s" more accurately on verbs in sentence-final position as compared with verbs in sentence-medial position. This study was designed to determine whether these sentence-position effects can be explained by perceptual factors. Method: For this purpose, the authors compared 22- and 27-month-olds'…
Determining characteristics of artificial near-Earth objects using observability analysis
NASA Astrophysics Data System (ADS)
Friedman, Alex M.; Frueh, Carolin
2018-03-01
Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.
NASA Astrophysics Data System (ADS)
Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.
2018-02-01
The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.
PaDe - The particle detection program
NASA Astrophysics Data System (ADS)
Ott, T.; Drolshagen, E.; Koschny, D.; Poppe, B.
2016-01-01
This paper introduces the Particle Detection program PaDe. Its aim is to analyze dust particles in the coma of the Jupiter-family comet 67P/Churyumov-Gerasimenko which were recorded by the two OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras onboard the ESA spacecraft Rosetta, see e.g. Keller et al. (2007). In addition to working with the Rosetta data, the code was modified to work with images from meteors. It was tested with data recorded by the ICCs (Intensified CCD Cameras) of the CILBO-System (Canary Island Long-Baseline Observatory) on the Canary Islands; compare Koschny et al. (2013). This paper presents a new method for the position determination of the observed meteors. The PaDe program was written in Python 3.4. Its original intent is to find the trails of dust particles in space from the OSIRIS images. For that it determines the positions where the trail starts and ends. They were found using a fit following the so-called error function (Andrews, 1998) for the two edges of the profiles. The positions where the intensities fall to the half maximum were found to be the beginning and end of the particle. In the case of meteors, this method can be applied to find the leading edge of the meteor. The proposed method has the potential to increase the accuracy of the position determination of meteors dramatically. Other than the standard method of finding the photometric center, our method is not influenced by any trails or wakes behind the meteor. This paper presents first results of this ongoing work.
Antibacterial activities of β-glucan (laminaran) against gram-negative and gram-positive bacteria
NASA Astrophysics Data System (ADS)
Chamidah, A.; Hardoko, Prihanto, A. A.
2017-05-01
This study aimed to determine the antibacterial activity of β-Glucan (laminaran) of LAE and LME extracts from brown algae Sargassum crassifolium using HPMS and Ultrasonication against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Salmonella typhimurium and Escherichia coli). The highest antibacterial activities of LME extract obtained using the HPMS method against Gram-positive bacteria (B. subtilis and S. aureus) were at 18:10 and 18.80 mm. The ultrasonication method showed a lower inhibition trend than the HPMS method, with MIC and MBC values of 250 mg/ml and 2-8 CFU/ml, respectively, in all Gram-negative and Gram-positive bacteria. The results showed that LME extract at a concentration of 250 mg/mL is bacteriostatic against Gram-positive and -negative bacteria.
NASA Astrophysics Data System (ADS)
Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.
2017-07-01
This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.
Determination Of The Activity Space By The Stereometric Method
NASA Astrophysics Data System (ADS)
Deloison, Y.; Crete, N.; Mollard, R.
1980-07-01
To determine the activity space of a sitting subject, it is necessary to go beyond the mere statistical description of morphology and the knowledge of the displacement volume. An anlysis of the positions or variations of the positions of the diverse segmental elements (arms, hands, lower limbs, etc...) in the course of a given activity is required. Of the various methods used to locate quickly and accurately the spatial positions of anatomical points, stereometry makes it possible to plot the three-dimensional coordinates of any point in space in relation to a fixed trirectangle frame of reference determined by the stereome-tric measuring device. Thus, regardless of the orientation and posture of the subject, his segmental elements can be easily pin-pointed, throughout the experiment, within the space they occupy. Using this method, it is possible for a sample of operators seated at an operation station and applying either manual controls or pedals and belonging to a population statistically defined from the data collected and the analyses produced by the anthropometric study to determine a contour line of reach capability marking out the usable working space and to know, within this working space, a contour line of preferential activity that is limited, in space, by the whole range of optimal reach capability of all the subjects.
Pham, Quang Duc; Kusumi, Yuichi; Hasegawa, Satoshi; Hayasaki, Yoshio
2012-10-01
We propose a new method for three-dimensional (3D) position measurement of nanoparticles using an in-line digital holographic microscope. The method improves the signal-to-noise ratio of the amplitude of the interference fringes to achieve higher accuracy in the position measurement by increasing weak scattered light from a nanoparticle relative to the reference light by using a low spatial frequency attenuation filter. We demonstrated the improvements of signal-to-noise ratio of the optical system and contrast of the interference fringes, allowing the 3D positions of nanoparticles to be determined more precisely.
Real-Time Detection Method And System For Identifying Individual Aerosol Particles
Gard, Eric Evan; Fergenson, David Philip
2005-10-25
A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Syam; Sitha
2015-06-15
Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on themore » 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.« less
MR-based source localization for MR-guided HDR brachytherapy
NASA Astrophysics Data System (ADS)
Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.
2018-04-01
For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.
Acoustic positioning and orientation prediction
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)
1990-01-01
A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.
Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program
NASA Astrophysics Data System (ADS)
Li, P. J.
2015-07-01
This dissertation studies the precise orbit determination (POD) and positioning of the Chinese lunar exploration spacecraft, emphasizing the variety of VLBI (very long baseline interferometry) technologies applied for the deep-space exploration, and their contributions to the methods and accuracies of the precise orbit determination and positioning. In summary, the main contents are as following: In this work, using the real-time data measured by the CE-2 (Chang'E-2) detector, the accuracy of orbit determination is analyzed for the domestic lunar probe under the present condition, and the role played by the VLBI tracking data is particularly reassessed through the precision orbit determination experiments for CE-2. The experiments of the short-arc orbit determination for the lunar probe show that the combination of the ranging and VLBI data with the arc of 15 minutes is able to improve the accuracy by 1-1.5 order of magnitude, compared to the cases for only using the ranging data with the arc of 3 hours. The orbital accuracy is assessed through the orbital overlapping analysis, and the results show that the VLBI data is able to contribute to the CE-2's long-arc POD especially in the along-track and orbital normal directions. For the CE-2's 100 km× 100 km lunar orbit, the position errors are better than 30 meters, and for the CE-2's 15 km× 100 km orbit, the position errors are better than 45 meters. The observational data with the delta differential one-way ranging (Δ DOR) from the CE-2's X-band monitoring and control system experimental are analyzed. It is concluded that the accuracy of Δ DOR delay is dramatically improved with the noise level better than 0.1 ns, and the systematic errors are well calibrated. Although it is unable to support the development of an independent lunar gravity model, the tracking data of CE-2 provided the evaluations of different lunar gravity models through POD, and the accuracies are examined in terms of orbit-to-orbit solution differences for several gravity models. It is found that for the 100 km× 100 km lunar orbit, with a degree and order expansion up to 165, the JPL's gravity model LP165P does not show noticeable improvement over Japan's SGM series models (100× 100), but for the 15 km× 100 km lunar orbit, a higher degree-order model can significantly improve the orbit accuracy. After accomplished its nominal mission, CE-2 launched its extended missions, which involving the L2 mission and the 4179 Toutatis mission. During the flight of the extended missions, the regime offers very little dynamics thus requires an extensive amount of time and tracking data in order to attain a solution. The overlap errors are computed, and it is indicated that the use of VLBI measurements is able to increase the accuracy and reduce the total amount of tracking time. An orbit determination method based on the polynomial fitting is proposed for the CE-3's planned lunar soft landing mission. In this method, spacecraft's dynamic modeling is not necessary, and its noise reduction is expected to be better than that of the point positioning method by making full use of all-arc observational data. The simulation experiments and real data processing showed that the optimal description of the CE-1's free-fall landing trajectory is a set of five-order polynomial functions for each of the position components as well as velocity components in J2000.0. The combination of the VLBI delay, the delay rate data, and the USB (united S-band) ranging data significantly improved the accuracy than the use of USB data alone. In order to determine the position for the CE-3's Lunar Lander, a kinematic statistical method is proposed. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander's position on the lunar surface with high accuracy. Application of the lunar digital elevation model (DEM) as constraints in the lander positioning is helpful. The positioning method for the traverse of lunar rover is also investigated. The integration of delay-rate method is able to achieve higher precise positioning results than the point positioning method. This method provides a wide application of the VLBI data. In the automated sample return mission, the lunar orbit rendezvous and docking are involved. Precise orbit determination using the same-beam VLBI (SBI) measurement for two spacecraft at the same time is analyzed. The simulation results showed that the SBI data is able to improve the absolute and relative orbit accuracy for two targets by 1-2 orders of magnitude. In order to verify the simulation results and test the two-target POD software developed by SHAO (Shanghai Astronomical Observatory), the real SBI data of the SELENE (Selenological and Engineering Explorer) are processed. The POD results for the Rstar and the Vstar showed that the combination of SBI data could significantly improve the accuracy for the two spacecraft, especially for the Vstar with less ranging data, and the POD accuracy is improved by approximate one order of magnitude to the POD accuracy of the Rstar.
Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel
2015-01-01
Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction. PMID:26099070
Laan, Nick; de Bruin, Karla G; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel
2015-06-22
Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin's location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin's location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.
NASA Astrophysics Data System (ADS)
Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel
2015-06-01
Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.
Flight Mechanics/Estimation Theory Symposium
NASA Technical Reports Server (NTRS)
Fuchs, A. J. (Editor)
1980-01-01
Methods of determining satellite orbit and attitude parameters are considered. The Goddard Trajectory Determination System, the Global Positioning System, and the Tracking and Data Relay Satellites are among the satellite navigation systems discussed. Satellite perturbation theory, orbit/attitude determination using landmark data, and star measurements are also covered.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.
Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun
2018-05-08
Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.
Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.
2014-01-01
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330
Integrated GNSS attitude determination and positioning for direct geo-referencing.
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G
2014-07-17
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.
Assessment of maxillary position. Implant vs cephalometric methods.
Verayannont, Panisha; Hägg, Urban; Wong, Ricky W K; McGrath, Colman; Yeung, Shadow
2010-09-01
To compare changes in maxillary position assessed from a maxillary implant and three cephalometric methods based on linear measurements. Series of tracings of the maxilla obtained around puberty from an implant study were analyzed. The displacement of the implant was used to determine the direction and amount of "actual" maxillary growth. Displacement of point A was measured according to three cephalometric methods. The values obtained from absolute, horizontal, and vertical displacement of point A by three cephalometric methods and by the implant method were compared. Results showed that estimation of displacement of the maxilla by three cephalometric methods (point A) was significantly larger than that of the implant method in all directions. The average difference in the horizontal plane was 0.7 mm, 1.2 mm, and 1.6 mm, respectively; the average difference in the vertical plane was 2.2 mm, 2.5 mm, and 3.6 mm, respectively. Estimations of changes in maxillary position by the implant method and by cephalometric methods were not proportional. All three cephalometric methods overestimated changes in the position of the maxilla.
A computer program for the localization of small areas in roentgenological images
NASA Technical Reports Server (NTRS)
Keller, R. A.; Baily, N. A.
1976-01-01
A method and associated algorithm are presented which allow a simple and accurate determination to be made of the location of small symmetric areas presented in roentgenological images. The method utilizes an operator to visually spot object positions but eliminates the need for critical positioning accuracy on the operator's part. The rapidity of measurement allows results to be evaluated on-line. Parameters associated with the algorithm have been analyzed, and methods to facilitate an optimum choice for any particular experimental setup are presented.
Williams, R.R.
1980-09-03
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.
Williams, Richard R.
1982-01-01
The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.
Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle
Boberg, Evan S.; Gebby, Brian P.
1999-09-28
A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.
Method For Detecting The Presence Of A Ferromagnetic Object
Roybal, Lyle G.
2000-11-21
A method for detecting a presence or an absence of a ferromagnetic object within a sensing area may comprise the steps of sensing, during a sample time, a magnetic field adjacent the sensing area; producing surveillance data representative of the sensed magnetic field; determining an absolute value difference between a maximum datum and a minimum datum comprising the surveillance data; and determining whether the absolute value difference has a positive or negative sign. The absolute value difference and the corresponding positive or negative sign thereof forms a representative surveillance datum that is indicative of the presence or absence in the sensing area of the ferromagnetic material.
Single photon imaging and timing array sensor apparatus and method
Smith, R. Clayton
2003-06-24
An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.
Monitoring of manufacturing processes in the automotive industry using indoor location system
NASA Astrophysics Data System (ADS)
Ionescu, LM; Belu, N.; Rachieru, N.; Mazăre, AG; Anghel, D.-C.
2016-08-01
This paper presents a method for locating the operators, equipment and parts using radio communications systems. Specifically there will be radio transceiver arranged in a network of active and passive radio receivers placed on personnel, equipment or parts. Based on a radio triangulation method, it is determined the location of the all resources and parts involved in manufacturing process. The transceivers communicate with each other via “routers” - also components of the network. Such a structure may extend over large distances even in indoor spaces where there are obstacles (walls between rooms). The location is done by determining the power of transmission signal for at least three end points. The receiver position is then transmitted over the network through routers, to a central server where all positions of the resources are centralized. Our solution is a non-invasive and low cost method for determining resource position in the factory. The system can be used for both resource planning production for current process more efficient and for further analysis of the movement of resources during previous processes with possible adjustments to the workspace and re-planning of resources for future processes.
Screening for tinea unguium by Dermatophyte Test Strip.
Tsunemi, Y; Takehara, K; Miura, Y; Nakagami, G; Sanada, H; Kawashima, M
2014-02-01
The direct microscopy, fungal culture and histopathology that are necessary for the definitive diagnosis of tinea unguium are disadvantageous in that detection sensitivity is affected by the level of skill of the person who performs the testing, and the procedures take a long time. The Dermatophyte Test Strip, which was developed recently, can simply and easily detect filamentous fungi in samples in a short time, and there are expectations for its use as a method for tinea unguium screening. With this in mind, we examined the detection capacity of the Dermatophyte Test Strip for tinea unguium. The presence or absence of fungal elements was judged by direct microscopy and Dermatophyte Test Strip in 165 nail samples obtained from residents in nursing homes for the elderly. Moreover, the minimum sample amount required for positive determination was estimated using 32 samples that showed positive results by Dermatophyte Test Strip. The Dermatophyte Test Strip showed 98% sensitivity, 78% specificity, 84·8% positive predictive value, 97% negative predictive value and a positive and negative concordance rate of 89·1%. The minimum sample amount required for positive determination was 0·002-0·722 mg. The Dermatophyte Test Strip showed very high sensitivity and negative predictive value, and was considered a potentially useful method for tinea unguium screening. Positive determination was considered to be possible with a sample amount of about 1 mg. © 2013 British Association of Dermatologists.
Distributed antenna system and method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)
2004-01-01
System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.
NASA Astrophysics Data System (ADS)
Song, Y.; Ai, Y.; Zhu, H.
2018-04-01
In urban coast, coastline is a direct factor to reflect human activities. It is of crucial importance to the understanding of urban growth, resource development and ecological environment. Due to complexity and uncertainty in this type of coast, it is difficult to detect accurate coastline position and determine the subtypes of the coastline. In this paper, we present a multiscale feature-based subtype coastline determination (MFBSCD) method to extract coastline and determine the subtypes. In this method, uncertainty-considering coastline detection (UCCD) method is proposed to separate water and land for more accurate coastline position. The MFBSCD method can well integrate scale-invariant features of coastline in geometry and spatial structure to determine coastline in subtype scale, and can make subtypes verify with each other during processing to ensure the accuracy of final results. It was applied to Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) images of Tianjin, China, and the accuracy of the extracted coastlines was assessed with the manually delineated coastline. The mean ME (misclassification error) and mean LM (Line Matching) are 0.0012 and 24.54 m respectively. The method provides an inexpensive and automated means of coastline mapping with subtype scale in coastal city sectors with intense human interference, which can be significant for coast resource management and evaluation of urban development.
[Determination of cost-effective strategies in colorectal cancer screening].
Dervaux, B; Eeckhoudt, L; Lebrun, T; Sailly, J C
1992-01-01
The object of the article is to implement particular methodologies in order to determine which strategies are cost-effective in the mass screening of colorectal cancer after a positive Hemoccult test. The first approach to be presented consists in proposing a method which enables all the admissible diagnostic strategies to be determined. The second approach enables a minimal cost function to be estimated using an adaptation of "Data Envelopment Analysis". This method proves to be particularly successful in cost-efficiency analysis, when the performance indicators are numerous and hard to aggregate. The results show that there are two cost-effective strategies after a positive Hemoccult test: coloscopy and sigmoidoscopy; they put into question the relevance of double contrast barium enema in the diagnosis of colo-rectal lesions.
A dynamic model to determine vibrations in involute helical gears
NASA Astrophysics Data System (ADS)
Andersson, A.; Vedmar, L.
2003-02-01
A method to determine the dynamic load between two rotating elastic helical gears is presented. The stiffness of the gear teeth is calculated using the finite element method and includes the contribution from the elliptic distributed tooth load. To make sure that the new incoming contacts which are the main excitation source are properly simulated, the necessary deformation of the gears is determined by using the true geometry and positions of the gears for every time step of the dynamic calculation. This allows the contact to be positioned outside the plane of action. A numerical example is presented with figures that show the behaviour of the dynamic transmission error as well as the variation of the contact pressure due to the dynamic load for different rotational speeds.
Novel method for determining sex of live adult Laricobius nigrinus (Coleoptera: Derodontidae).
William Shepherd; Michael Montgomery; Brian Sullivan; Albert (Bud) Mayfield
2014-01-01
A method for determining the sex of live adult Laricobius nigrinus Fender (Coleoptera:Derodontidae) is described. Beetles were briefly chilled and positioned ventral-side-up under a dissecting microscope. Two forceps with blunted ends were used to gently brace the beetle and press on the centre of the abdomen to extrude its terminal segments. Male beetles were...
Assembly of greek marble inscriptions by isotopic methods.
Herz, N; Wenner, D B
1978-03-10
Classical Greek inscriptions cut in marble, whose association as original stelai by archeological methods was debatable, were selected for study. Using traditional geological techniques and determinations of the per mil increments in carbon-13 and oxygen-18, it was determined that fragments could be positively assigned to three stelai, but that fragments from three other stelai had been incorrectly associated.
Analysis of helicopter position determination methods
DOT National Transportation Integrated Search
1992-01-01
The Federal Aviation Administration (FAA), along with members of the helicopter industry, is continually searching for methods to reduce the cost and effort required for helicopter noise certification. In September 1992, the FAA adopted Appendix J of...
Imudia, Anthony N.; Detti, Laura; Puscheck, Elizabeth E.; Yelian, Frank D.
2008-01-01
Purpose To determine the prevalence of positive test for Ureaplasma urealyticum (UU), Mycoplasma hominis (MH), Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG) infections, and their corresponding Rubella status when undergoing workup for infertility. Methods Retrospective chart review to determine infection status for UU, MH, CT, and NG as determined by cervical swab, as well as the serum Rubella antibody titer. Results A total of 46 patients of the patients reviewed were positive for UU (20.1%), three patients were positive for MH (1.3%), five patients were positive for CT (2.2%) and one patient was positive for NG (0.4%). Rubella immunity was confirmed in 90.3% of patients. Conclusion Approximately one quarter of women presenting to an infertility clinic seeking to conceive were found to have a positive test for UU, MH, CT or NG infection. Additionally, almost 10% of the patients were Rubella non-immune at the time of presentation for infertility evaluation. PMID:18202910
Krzek, Jan; Piotrowska, Joanna
2011-01-01
A fast spectrophotometric method has been developed for bacitracin identification and determination after condensation reaction with dabsyl chloride. In addition, determination of dye stability of sulfonamide derivative and identification of the molar ratio of reagents was done at various time-points. The developed method has a good linearity with very broad spectrum, correlation coefficient of r = 0.9972, good precision (RSD = 1.54 +/- 0.11%), and recovery at three different levels of concentration was found between 98.33% and 103.47%. Usefulness of the method was demonstrated by positive results obtained during determination of bacitracin concentration in bulk drug.
Fang, Cheng; Butler, David Lee
2013-05-01
In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.
Ion-trajectory analysis for micromotion minimization and the measurement of small forces
NASA Astrophysics Data System (ADS)
Gloger, Timm F.; Kaufmann, Peter; Kaufmann, Delia; Baig, M. Tanveer; Collath, Thomas; Johanning, Michael; Wunderlich, Christof
2015-10-01
For experiments with ions confined in a Paul trap, minimization of micromotion is often essential. In order to diagnose and compensate micromotion we have implemented a method that allows for finding the position of the radio-frequency (rf) null reliably and efficiently, in principle, without any variation of direct current (dc) voltages. We apply a trap modulation technique and focus-scanning imaging to extract three-dimensional ion positions for various rf drive powers and analyze the power dependence of the equilibrium position of the trapped ion. In contrast to commonly used methods, the search algorithm directly makes use of a physical effect as opposed to efficient numerical minimization in a high-dimensional parameter space. Using this method we achieve a compensation of the residual electric field that causes excess micromotion in the radial plane of a linear Paul trap down to 0.09 Vm-1 . Additionally, the precise position determination of a single harmonically trapped ion employed here can also be utilized for the detection of small forces. This is demonstrated by determining light pressure forces with a precision of 135 yN. As the method is based on imaging only, it can be applied to several ions simultaneously and is independent of laser direction and thus well suited to be used with, for example, surface-electrode traps.
A determination of the fragmentation functions of u-quarks into charged pions
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration (EMC)
1985-10-01
The fragmentation functions of u-quarks into positive and negative pions are determined from an analysis of identified pions produced in deep inelastic muon-deuterium scattering. The method adopted is not sensitive to the knowledge of the primary quark distribution functions. The fragmentation of u quarks to positive pions is found to fall less steeply in z than that to negative pions as expected in the quark parton model.
Methods for calculating the electrode position Jacobian for impedance imaging.
Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A
2017-03-01
Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.
Landsat-4 (TDRSS-user) orbit determination using batch least-squares and sequential methods
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
1992-01-01
TDRSS user orbit determination is analyzed using a batch least-squares method and a sequential estimation method. It was found that in the batch least-squares method analysis, the orbit determination consistency for Landsat-4, which was heavily tracked by TDRSS during January 1991, was about 4 meters in the rms overlap comparisons and about 6 meters in the maximum position differences in overlap comparisons. The consistency was about 10 to 30 meters in the 3 sigma state error covariance function in the sequential method analysis. As a measure of consistency, the first residual of each pass was within the 3 sigma bound in the residual space.
Krzysztof, Naus; Aleksander, Nowak
2016-01-01
The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884
Krzysztof, Naus; Aleksander, Nowak
2016-08-15
The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.
NASA Astrophysics Data System (ADS)
Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding
2018-04-01
The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.
Positive geometries and canonical forms
NASA Astrophysics Data System (ADS)
Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas
2017-11-01
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.
Dar, Nasser Rashid; Khurshid, Tariq
2005-12-01
To determine and compare the diagnostic value of skin biopsy, saline aspirate smears, skin slit smears and skin biopsy impression smears to demonstrate Leishmania tropica (LT) bodies in cutaneous leishmaniasis and to determine any association within the applied diagnostic tests. An analytical study. Department of Dermatology, PNS Shifa, Karachi from January to December 2003. Seventyeight patients of cutaneous leishmaniasis were subjected to saline aspirate smears, skin slit smears, skin biopsy impression smears and skin biopsy and looked for LT bodies. The percentage positivity of all methods was calculated. McNemar test was applied to determine the association between percentage positivities of methods. Skin biopsy showed LT bodies in 70 (89.74%) patients, saline aspirate smears in 24 (30.76%), skin slit smears in 25 (32.05%) and skin biopsy impression smears in 27 (34.61%) patients. Smears demonstrated LT bodies in 10.25% cases in which biopsy was negative. Skin biopsy impression smears showed concordant results with skin biopsy in 20.51%, skin slit smears in 16.66% and saline aspirate smears in 19.25% of cases. Saline aspirate smears were positive in 48.1% of cases in which biopsy impression smears were negative, slit smears were positive in 50.9 % of cases in which biopsy impression smears were negative and slit smears were positive in 37% of cases in which saline aspirate smears were negative. Skin biopsy for histopathology is the most useful method in the demonstration of Leishmania parasite. Sensitivity of smears can be increased by a combination of various skin smears.
[The smile line, a literature search].
van der Geld, P A; van Waas, M A
2003-09-01
Beautiful teeth, visible when smiling, are in line with the present ideal of beauty. The display of teeth when smiling is determined by the smile line: the projection of the lower border of the upper lip on the maxillary teeth when smiling. On the basis of a literature search the determining methods of the smile line are discussed, demographic data of the position of the smile line are given, and factors of influence are examined. There is no unequivocal method for determining the position of the smile line. A rough distinction can be made between qualitative and (semi)-quantitative methods. The (semi)-quantitative methods have clear advantages for research purposes, but their reliability is unknown. It was demonstrated that among minimally 40% of subjects the maxillary gingiva was not visible when smiling. The mandibular gingiva was not visible when smiling among more than 90% of subjects. Furthermore, it appeared that among women the smile line was on average higher situated than among men and that it has not yet been proven that the smile line will be situated lower when growing older.
Liang, Qionglin; Qu, Jun; Luo, Guoan; Wang, Yiming
2006-02-13
In recent years, dietary supplements and herbal medicines are increasing in popularity all over the world. However, it is problematic that some manufacturers illegally included synthetic drugs in their products. Due to the extremely complex matrices of those products, most existing methods for screening illegal adulterations are time-consuming and liable to false positive. In this paper, a robust LC/MS/MS method for the high-throughput, sensitive and reliable determination of illegal adulterations from herbal medicines and dietary supplements was established. Minimal LC separation was employed and MRM was used to simultaneously monitor the three transitions under their respective optimal collision energy for each compound. Positive results were determined only if well-defined peaks appeared at all of the three transitions and the ratios among the peak areas were within given threshold. In this study, the method had been applied for the screening of nine most commonly adulterated therapeutic substances, such as sildenafil (Viagra) and famotidine, and the lower limits of detection of these compounds ranged from 0.05 to 1.5 ng/ml. Little sample preparation was needed for this method and the analysis time was less than 5 min/sample. The reliability has been demonstrated by the test with blank matrix. Over 200 products that were under suspicion by SDA of China had been assayed and till now no false negative or positive result was found. This method is rapid, simple, reliable and capable of screening multiple adulterants in one run.
[Analysis for Discordance of Positive and Negative Blood Typing by Gel Card].
Li, Cui-Ying; Xu, Hong; Lei, Hui-Fen; Liu, Juan; Li, Xiao-Wei
2017-08-01
To explore the method of Gel card identifying ABO blood group, determine the inconsistent cause and the distribution of disease affecting factors, and put forward a method of its solutions. To collect 240 positive and negative typing-discordant blood speciments from patients examined by Gel card and send these speciments to blood type reference laboratory for examining with the classic tube method and serological test, such as salivary blood-group substance, in order to performe genotyping method when serologic test can not be determined. Among 240 positive and negative typing-discordant blood speciments from patients examined by Gel card, 107 blood speciments were positive and negative consistent examined by false agglutination test (44.58%), 133 blood specinents were discordent examined by false agglutination (55.42%), out of them, 35 cases (14.58%) with inconsistent cold agglutination test, 22 cases (9.17%) with weakened AB antigenicity, 16 cases (6.67%) with ABO subtyping, 12 cases (5.00%) with positive direct antiglobulin test, 11 cases (4.58%) with reduced or without antibodies, 11 cases (4.58%) with false aggregation caused by drugs or protein, 11 cases (4.58%) with salivary blood-type substances, 8 cases (3.33%) with non-ABO alloantibody, and 7 cases (2.92%) with allogeneic bone marrow transplantation. The distribution of disease were following: blood disease (16.83%), tumor (11.88%), and cardiopulmonary diseases (11.39%); chi-square test results indicated that the distribution significantly different. The analysis of ABO blood grouping shows a variety factors influencing positive and negative blood typing, and the Gel Card identification can produc more false positive blood types. Therefore, more attention should be paid on the high incidence diseases, such as blood disease, tumor, and cardiopulmonary disease.
THE LCIA MIDPOINT-DAMAGE FRAMEWORK OF THE UNEP/SETAC LIFE CYCLE INITIATIVE
LCIA methods can be grouped into two families: midpoint methods determining impact category indicators at an intermediate position of the impact pathways (e.g., ozone depletion potentials) and damage-oriented methods aiming at more easily interpretable results in the form of da...
Method and apparatus for optimizing determination of the originating depth of borehole cuttings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mc Auley, J.A.; Eppler, S.G.
1987-11-24
This patent describes a method for determining the arrival at the surface of an identifiable material from a predetermined drilling depth independent of pump stroke rate and intermittent operations during the utilization of at least a drill bit, a positive displacement mud pump and drilling mud during the drilling of a well. The method comprises the steps of: adding identifiable material to the drilling mud as the drilling mud is being pumped downwardly into the well; initiate count of the pump strokes of the positive displacement mud pump as the previous step occurs; observe arrival of the identifiable material atmore » the surface of the earth as the drilling mud exits from the well; observe the accumulated count of the pump strokes of the positive displacement mud pump which occur between step one and step three; subtract, from the accumulated count of the previous step, the number of pump strokes of the positive displacement mud pump required to pump the identifiable material down to the drill bit to establish a number of lag strokes; and utilize the number obtained in the previous step to identify the arrival of drill cuttings from a predetermined depth.« less
Bell, Edward F; Johnson, Karen J; Dove, Edwin L
2017-04-01
Background Indirect calorimetry is the standard method for estimating energy expenditure in clinical research. Few studies have evaluated indirect calorimetry in infants by comparing it with simultaneous direct calorimetry. Our purpose was (1) to compare the energy expenditure of preterm infants determined by these two methods, direct calorimetry and indirect calorimetry; and (2) to examine the effect of body position, supine or prone, on energy expenditure. Study Design We measured energy expenditure by simultaneous direct (heat loss by gradient-layer calorimeter corrected for heat storage) and indirect calorimetry (whole-body oxygen consumption and carbon dioxide production) in 15 growing preterm infants during two consecutive interfeeding intervals, once in the supine position and once in the prone position. Results The mean energy expenditure for all measurements in both positions did not differ significantly by the method used: 2.82 (standard deviation [SD] 0.42) kcal/kg/h by direct calorimetry and 2.78 (SD 0.48) kcal/kg/h by indirect calorimetry. The energy expenditure was significantly lower, by 10%, in the prone than in the supine position, whether examined by direct calorimetry (2.67 vs. 2.97 kcal/kg/h, p < 0.001) or indirect calorimetry (2.64 vs. 2.92 kcal/kg/h, p = 0.017). Conclusion Direct calorimetry and indirect calorimetry gave similar estimates of energy expenditure. Energy expenditure was 10% lower in the prone position than in the supine position. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
2018-01-01
ECBC-TR-1506 NIST-TRACEABLE NMR METHOD TO DETERMINE QUANTITATIVE WEIGHT PERCENTAGE PURITY OF MUSTARD (HD) FEEDSTOCK SAMPLES David J...McGarvey RESEARCH AND TECHNOLOGY DIRECTORATE William R. Creasy LEIDOS, INC. Abingdon, MD 21009-1261 Theresa R. Connell EXCET, INC...be construed as an official Department of the Army position unless so designated by other authorizing documents. REPORT DOCUMENTATION PAGE
Geophysics-based method of locating a stationary earth object
Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM
2008-05-20
A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.
2016-01-01
Purpose: This study aimed at conducting a systematic review in health professions education of determinants, mediators and outcomes of students’ motivation to engage in academic activities based on the self-determination theory’s perspective. Methods: A search was conducted across databases (MEDLINE, CINHAL, EMBASE, PsycINFO, and ERIC databases), hand-search of relevant journals, grey literature, and published research profile of key authors. Quantitative and qualitative studies were included if they reported research in health professions education focused on determinants, mediators, and/or outcomes of motivation from the self-determination and if meeting the quality criteria. Results: A total of 17 studies met the inclusion and quality criteria. Articles retrieved came from diverse locations and mainly from medical education and to a lesser extent from psychology and dental education. Intrapersonal (gender and personality traits) and interpersonal determinants (academic conditions and lifestyle, qualitative method of selection, feedback, and an autonomy supportive learning climate) have been reported to have a positive influence on students’ motivation to engage in academic activities. No studies were found that tested mediation effects between determinants and students’ motivation. In turn, students’ self-determined motivation has been found to be positively associated with different cognitive, affective, and behavioural outcomes. Conclusion: This study has found that generally, motivation could be enhanced by changes in the educational environment and by an early detection of students’ characteristics. Doing so may support future health practitioners’ self-determined motivation and positively influence how they process information and their emotions and how they approach their learning activities. PMID:27134006
Multiple target laser ablation system
Mashburn, Douglas N.
1996-01-01
A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.
NASA Technical Reports Server (NTRS)
Pilling, M. J.; Bass, A. M.; Braun, W.
1971-01-01
The curve of growth method has been employed to determine f-values for the fourth positive system of CO and the magnetic dipole and electric quadrupole components of the Lyman-Birge-Hopfield system of N2. No significant dependence on r-centroid was found. The mean value of the ratio of the electric quadrupole to magnetic dipole f-values was 0.076.
Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic
2010-04-06
A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.
GNSS Ephemeris with Graceful Degradation and Measurement Fusion
NASA Technical Reports Server (NTRS)
Garrison, James Levi (Inventor); Walker, Michael Allen (Inventor)
2015-01-01
A method for providing an extended propagation ephemeris model for a satellite in Earth orbit, the method includes obtaining a satellite's orbital position over a first period of time, applying a least square estimation filter to determine coefficients defining osculating Keplarian orbital elements and harmonic perturbation parameters associated with a coordinate system defining an extended propagation ephemeris model that can be used to estimate the satellite's position during the first period, wherein the osculating Keplarian orbital elements include semi-major axis of the satellite (a), eccentricity of the satellite (e), inclination of the satellite (i), right ascension of ascending node of the satellite (.OMEGA.), true anomaly (.theta.*), and argument of periapsis (.omega.), applying the least square estimation filter to determine a dominant frequency of the true anomaly, and applying a Fourier transform to determine dominant frequencies of the harmonic perturbation parameters.
Fiber optic liquid mass flow sensor and method
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)
2010-01-01
A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.
System and method for evaluating wind flow fields using remote sensing devices
Schroeder, John; Hirth, Brian; Guynes, Jerry
2016-12-13
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng
2014-08-01
Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.
NASA Astrophysics Data System (ADS)
Shibata, Hisaichi; Takaki, Ryoji
2017-11-01
A novel method to compute current-voltage characteristics (CVCs) of direct current positive corona discharges is formulated based on a perturbation technique. We use linearized fluid equations coupled with the linearized Poisson's equation. Townsend relation is assumed to predict CVCs apart from the linearization point. We choose coaxial cylinders as a test problem, and we have successfully predicted parameters which can determine CVCs with arbitrary inner and outer radii. It is also confirmed that the proposed method essentially does not induce numerical instabilities.
Finding trap stiffness of optical tweezers using digital filters.
Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G
2018-02-01
Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.
Shariati, Laleh; Validi, Majid; Hasheminia, Ali Mohammad; Ghasemikhah, Reza; Kianpour, Fariborz; Karimi, Ali; Nafisi, Mohammad Reza; Tabatabaiefar, Mohammad Amin
2016-01-01
Background: A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Objectives: The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. Materials and Methods: In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. Results: In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Conclusions: Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness. PMID:27099685
Optimal Measurement Conditions for Spatiotemporal EEG/MEG Source Analysis.
ERIC Educational Resources Information Center
Huizenga, Hilde M.; Heslenfeld, Dirk J.; Molenaar, Peter C. M.
2002-01-01
Developed a method to determine the required number and position of sensors for human brain electromagnetic source analysis. Studied the method through a simulation study and an empirical study on visual evoked potentials in one adult male. Results indicate the method is fast and reliable and improves source precision. (SLD)
Vedantham, Haripriya; Silver, Michelle I.; Kalpana, B.; Rekha, C.; Karuna, B.P.; Vidyadhari, K.; Mrudula, S.; Ronnett, Brigitte M.; Vijayaraghavan, K.; Ramakrishna, Gayatri; Sowjanya, Pavani; Laxmi, Shantha; Shah, Keerti V.; Gravitt, Patti E.
2010-01-01
Objectives Visual inspection of the cervix after acetic acid application (VIA) is widely recommended as the method of choice in cervical cancer screening programs in resource-limited settings because of its simplicity and ability to link with immediate treatment. In testing the effectiveness of VIA, human papillomavirus DNA testing, and Pap cytology in a population-based study in a peri-urban area in Andhra Pradesh, India, we found the sensitivity of VIA for detection of cervical intraepithelial neoplasia grade 2 and worse (CIN2+) to be 26.3%, much lower than the 60% to 90% reported in the literature. We therefore investigated the determinants of VIA positivity in our study population. Methods We evaluated VIA positivity by demographics and reproductive history, results of clinical examination, and results from the other screening methods. Results Of the 19 women diagnosed with CIN2+, only 5 were positive by VIA (positive predictive value, 3.1%). In multivariate analysis, VIA positivity (12.74%) was associated with older age, positive Pap smear, visually apparent cervical inflammation, and interobserver variation. Cervical inflammation of unknown cause was present in 21.62% of women. In disease-negative women, cervical inflammation was associated with an increase in VIA positivity from 6.1% to 15.5% (P < 0.001). Among the six gynecologists who performed VIA, the positivity rate varied from 4% to 31%. Conclusions The interpretation of VIA is subjective and its performance cannot be readily evaluated against objective standards. Impact VIA is not a robust screening test and we caution against its use as the primary screening test in resource-limited regions. PMID:20447927
Shariati, Laleh; Validi, Majid; Hasheminia, Ali Mohammad; Ghasemikhah, Reza; Kianpour, Fariborz; Karimi, Ali; Nafisi, Mohammad Reza; Tabatabaiefar, Mohammad Amin
2016-01-01
A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness.
Treuer, H; Hoevels, M; Luyken, K; Gierich, A; Kocher, M; Müller, R P; Sturm, V
2000-08-01
We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.
Focal point determination in magnetic resonance-guided focused ultrasound using tracking coils.
Svedin, Bryant T; Beck, Michael J; Hadley, J Rock; Merrill, Robb; de Bever, Joshua T; Bolster, Bradley D; Payne, Allison; Parker, Dennis L
2017-06-01
To develop a method for rapid prediction of the geometric focus location in MR coordinates of a focused ultrasound (US) transducer with arbitrary position and orientation without sonicating. Three small tracker coil circuits were designed, constructed, attached to the transducer housing of a breast-specific MR-guided focused US (MRgFUS) system with 5 degrees of freedom, and connected to receiver channel inputs of an MRI scanner. A one-dimensional sequence applied in three orthogonal directions determined the position of each tracker, which was then corrected for gradient nonlinearity. In a calibration step, low-level heating located the US focus in one transducer position orientation where the tracker positions were also known. Subsequent US focus locations were determined from the isometric transformation of the trackers. The accuracy of this method was verified by comparing the tracking coil predictions to thermal center of mass calculated using MR thermometry data acquired at 16 different transducer positions for MRgFUS sonications in a homogeneous gelatin phantom. The tracker coil predicted focus was an average distance of 2.1 ± 1.1 mm from the thermal center of mass. The one-dimensional locator sequence and prediction calculations took less than 1 s to perform. This technique accurately predicts the geometric focus for a transducer with arbitrary position and orientation without sonicating. Magn Reson Med 77:2424-2430, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data
NASA Astrophysics Data System (ADS)
Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.
2010-03-01
We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.
Local wall heat flux/temperature meter for convective flow and method of utilizing same
Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose
2004-11-30
According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.
Local wall heat flux/temperature meter for convective flow and method of utilizing same
NASA Technical Reports Server (NTRS)
Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)
2004-01-01
According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.
Lateral position detection and control for friction stir systems
Fleming, Paul; Lammlein, David H.; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David R.; Hartman, Daniel A.
2012-06-05
An apparatus and computer program are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.
Acoustic measurement of bubble size and position in a piezo driven inkjet printhead
NASA Astrophysics Data System (ADS)
van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef
2008-11-01
A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.
Computer-generated 3D ultrasound images of the carotid artery
NASA Technical Reports Server (NTRS)
Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.
1989-01-01
A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.
Computer-generated 3D ultrasound images of the carotid artery
NASA Astrophysics Data System (ADS)
Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.
A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.
Real-Time GNSS-Based Attitude Determination in the Measurement Domain.
Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun
2017-02-05
A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance.
Kujawska, Tamara; Secomski, Wojciech; Kruglenko, Eleonora; Krawczyk, Kazimierz; Nowicki, Andrzej
2014-01-01
A tissue thermal conductivity (Ks) is an important parameter which knowledge is essential whenever thermal fields induced in selected organs are predicted. The main objective of this study was to develop an alternative ultrasonic method for determining Ks of tissues in vitro suitable for living tissues. First, the method involves measuring of temperature-time T(t) rises induced in a tested tissue sample by a pulsed focused ultrasound with measured acoustic properties using thermocouples located on the acoustic beam axis. Measurements were performed for 20-cycle tone bursts with a 2 MHz frequency, 0.2 duty-cycle and 3 different initial pressures corresponding to average acoustic powers equal to 0.7 W, 1.4 W and 2.1 W generated from a circular focused transducer with a diameter of 15 mm and f-number of 1.7 in a two-layer system of media: water/beef liver. Measurement results allowed to determine position of maximum heating located inside the beef liver. It was found that this position is at the same axial distance from the source as the maximum peak-peak pressure calculated for each nonlinear beam produced in the two-layer system of media. Then, the method involves modeling of T(t) at the point of maximum heating and fitting it to the experimental data by adjusting Ks. The averaged value of Ks determined by the proposed method was found to be 0.5±0.02 W/(m·°C) being in good agreement with values determined by other methods. The proposed method is suitable for determining Ks of some animal tissues in vivo (for example a rat liver). PMID:24743838
[Determination of sensitivity of biofilm-positive forms of microorganisms to antibiotics].
Holá, Veronika; Růzicka, Filip; Tejkalová, Renata; Votava, Miroslav
2004-10-01
Nosocomial infections caused by biofilm-positive microorganisms are a serious therapeutic problem. In the biofilm, microorganisms are protected against adverse effects of the external environment, including the action of antibiotics. It is well known that the values of minimum inhibitory concentrations (MIC) determined for planktonic forms do not correspond to the actual concentrations of antibiotics necessary for the eradication of bacteria in a biofilm. The purpose of the study was to propose a method of determining minimum biofilm inhibitory concentrations (MBIC) and minimum biofilm eradication concentrations (MBEC) and to compare these values with MIC values. Biofilm-positive strains of Staphylococcus epidermidis were cultured so as to form a biofilm layer on polystyrene pegs. The biofilm on the pegs was then exposed to the action of antibiotics and after 18 hours we determined the minimum biofilm inhibitory concentration (MBIC). The evaluation of minimum biofilm eradication concentrations was done colorimetrically from the metabolic activity of surviving cells. MBIC and MBEC values were many times higher than MIC values. We selected such a duration of the biofilms cultivation on the pegs of the plate, which ensured that the number of bacterial cells corresponded to standard MIC assessment. The MBEC values established in our study indicate that the currently used concentrations of tested antibiotics cannot be used in monotherapy for an efficacious eradication of a biofilm. The MBEC determination is a far more laborious and time-consuming method than the determination of MIC, but the use of plates with pegs facilitates the handling of biofilms. The advantage of our method is the possibility of standardization of the size of the inoculum and thus of the whole MBEC assessment.
Determining the Separation and Position Angles of Orbiting Binary Stars: Comparison of Three Methods
NASA Astrophysics Data System (ADS)
Walsh, Ryan; Boule, Cory; Andrews, Katelyn; Penfield, Andrew; Ross, Ian; Lucas, Gaylon; Braught, Trisha; Harfenist, Steven; Goodale, Keith
2015-07-01
To initiate a long term binary star research program, undergraduate students compared the accuracy and ease of measuring the separations and position angles of three long period binary pairs using three different measurement techniques. It was found that digital image capture using BackyardEOS software and subsequent analysis in Adobe Photoshop was the most accurate and easiest to use of our three methods. The systems WDS J17419+7209 (STF 2241AB), WDS 19418+5032 (STFA 46AB), and WDS 16362+5255 (STF 2087AB) were found to have separations and position angles of: 30", 16°; 39.7", 133°; and 3.1", 104°, respectively. This method produced separation values within 1.3" and position angle values within 1.3° of the most recently observed values found in the Washington Double Star Catalog.
A 3D CZT high resolution detector for x- and gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.
2014-07-01
At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 μm2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.
ERIC Educational Resources Information Center
Mueller, Kasey Lloyd
2017-01-01
Nontraditional students returning to college have many outside stressors that potentially prohibit academic success including full-time jobs, home life (children, spouses, and bills), and lack of time or understanding of college assignments. An explanatory mixed methods study was conducted for the purpose of determining if and for how long the…
Characterization and prediction of residues determining protein functional specificity.
Capra, John A; Singh, Mona
2008-07-01
Within a homologous protein family, proteins may be grouped into subtypes that share specific functions that are not common to the entire family. Often, the amino acids present in a small number of sequence positions determine each protein's particular functional specificity. Knowledge of these specificity determining positions (SDPs) aids in protein function prediction, drug design and experimental analysis. A number of sequence-based computational methods have been introduced for identifying SDPs; however, their further development and evaluation have been hindered by the limited number of known experimentally determined SDPs. We combine several bioinformatics resources to automate a process, typically undertaken manually, to build a dataset of SDPs. The resulting large dataset, which consists of SDPs in enzymes, enables us to characterize SDPs in terms of their physicochemical and evolutionary properties. It also facilitates the large-scale evaluation of sequence-based SDP prediction methods. We present a simple sequence-based SDP prediction method, GroupSim, and show that, surprisingly, it is competitive with a representative set of current methods. We also describe ConsWin, a heuristic that considers sequence conservation of neighboring amino acids, and demonstrate that it improves the performance of all methods tested on our large dataset of enzyme SDPs. Datasets and GroupSim code are available online at http://compbio.cs.princeton.edu/specificity/. Supplementary data are available at Bioinformatics online.
Multiple target laser ablation system
Mashburn, D.N.
1996-01-09
A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.
Fast auto-focus scheme based on optical defocus fitting model
NASA Astrophysics Data System (ADS)
Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min
2018-04-01
An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.
Zarem, Cori; Crapnell, Tara; Tiltges, Lisa; Madlinger, Laura; Reynolds, Lauren; Lukas, Karen; Pineda, Roberta
2014-01-01
Purpose Determine perceptions about positioning for preterm infants in the NICU. Design Twenty-item survey Sample Neonatal nurses (n=68) and speech, physical, and occupational therapists (n=8). Main Outcome Variable Perceptions about positioning were obtained, and differences in perceptions between nurses and therapists were explored. Results Ninety-nine percent of respondents agreed that positioning is important for the well-being of the infant. Sixty-two percent of nurses and 86% of therapists identified the Dandle Roo as the ideal method of neonatal positioning. Forty-four percent of nurses and 57% of therapists reported the Dandle Roo is the easiest positioning method to use in the NICU. Some perceptions differed: therapists were more likely to report the Sleep Sack does not hold the infant in good alignment. Nurses were more likely to report the infant does not sleep well in traditional positioning. PMID:23477978
System and method for calibrating a rotary absolute position sensor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)
2012-01-01
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.
Zygmunt, Arkadiusz; Adamczewski, Zbigniew; Zygmunt, Agnieszka; Karbownik-Lewinska, Malgorzata; Lewinski, Andrzej
2017-01-01
Goitre incidence in school-aged children evaluated using ultrasonography is one of the essential indicators of iodine intake in a given area. The aim of the study was to examine what the difference is between the volume of the thyroid gland measured in the supine and sitting position and to determine the intra-observer, inter-observer, and inter-position variations. The survey was conducted among 87 children (56 girls and 31 boys aged 7-13 years, mean age 10.44 ± 1.72 years). The thyroid volume measured in a sitting position was significantly lower than that measured in the supine position. The intra-observer variations for the total thyroid volume equalled 9.56-9.65%. The inter-observer variations were significantly higher and amounted to 34.5-35.7%. The way in which ultrasound evaluation is performed is important for the analysis of the results. It is crucial to aim for the smallest inter-observer variation, which can be achieved by strictly defining the methods of the thyroid measurement and comparing one's measuring techniques with the reference method. The use of standards in ultrasound evaluation performed in the supine position, as well as the use of standards without a strict determination of the study method, can lead to erro-neous conclusions. © 2017 S. Karger AG, Basel.
Direct determination of geometric alignment parameters for cone-beam scanners
Mennessier, C; Clackdoyle, R; Noo, F
2009-01-01
This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049
Resolving occlusion and segmentation errors in multiple video object tracking
NASA Astrophysics Data System (ADS)
Cheng, Hsu-Yung; Hwang, Jenq-Neng
2009-02-01
In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.
Method of steering the gain of a multiple antenna global positioning system receiver
NASA Astrophysics Data System (ADS)
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
Oh, Hyun Jun; Yang, Il-Hyung
2016-01-01
Objectives: To propose a novel method for determining the three-dimensional (3D) root apex position of maxillary teeth using a two-dimensional (2D) panoramic radiograph image and a 3D virtual maxillary cast model. Methods: The subjects were 10 adult orthodontic patients treated with non-extraction. The multiple camera matrices were used to define transformative relationships between tooth images of the 2D panoramic radiographs and the 3D virtual maxillary cast models. After construction of the root apex-specific projective (RASP) models, overdetermined equations were used to calculate the 3D root apex position with a direct linear transformation algorithm and the known 2D co-ordinates of the root apex in the panoramic radiograph. For verification of the estimated 3D root apex position, the RASP and 3D-CT models were superimposed using a best-fit method. Then, the values of estimation error (EE; mean, standard deviation, minimum error and maximum error) between the two models were calculated. Results: The intraclass correlation coefficient values exhibited good reliability for the landmark identification. The mean EE of all root apices of maxillary teeth was 1.88 mm. The EE values, in descending order, were as follows: canine, 2.30 mm; first premolar, 1.93 mm; second premolar, 1.91 mm; first molar, 1.83 mm; second molar, 1.82 mm; lateral incisor, 1.80 mm; and central incisor, 1.53 mm. Conclusions: Camera calibration technology allows reliable determination of the 3D root apex position of maxillary teeth without the need for 3D-CT scan or tooth templates. PMID:26317151
Automated Acquisition of Proximal Femur Morphological Characteristics
NASA Astrophysics Data System (ADS)
Tabakovic, Slobodan; Zeljkovic, Milan; Milojevic, Zoran
2014-10-01
The success of the hip arthroplasty surgery largely depends on the endoprosthesis adjustment to the patient's femur. This implies that the position of the femoral bone in relation to the pelvis is preserved and that the endoprosthesis position ensures its longevity. Dimensions and body shape of the hip joint endoprosthesis and its position after the surgery depend on a number of geometrical parameters of the patient's femur. One of the most suitable methods for determination of these parameters involves 3D reconstruction of femur, based on diagnostic images, and subsequent determination of the required geometric parameters. In this paper, software for automated determination of geometric parameters of the femur is presented. Detailed software development procedure for the purpose of faster and more efficient design of the hip endoprosthesis that ensures patients' specific requirements is also offered
NASA Astrophysics Data System (ADS)
Ulug, R.; Ozludemir, M. T.
2016-12-01
After 2011, through the modernization process of GLONASS, the number of satellites increased rapidly. This progress has made the GLONASS the only fully operational system alternative to GPS in point positioning. So far, many researches have been conducted to investigate the contribution of GLONASS to point positioning considering different methods such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP). The latter one, PPP, is a method that performs precise position determination using a single GNSS receiver. PPP method has become very attractive since the early 2000s and it provided great advantages for engineering and scientific applications. However, PPP method needs at least 2 hours observation time and the required observation length may be longer depending on several factors, such as the number of satellites, satellite configuration etc. The more satellites, the less observation time. Nevertheless the impact of the number of satellites included must be known very well. In this study, to determine the contribution of GLONASS on PPP, GLONASS satellite observations were added one by one from 1 to 5 satellite in 2, 4 and 6 hours of observations. For this purpose, the data collected at the IGS site ISTA was used. Data processing has been done for Day of Year (DOY) 197 in 2016. 24 hours GPS observations have been processed by Bernese 5.2 PPP module and the output was selected as the reference while 2, 4 and 6 hours GPS and GPS/GLONASS observations have been processed by magic GNSS PPP module. The results clearly showed that GPS/GLONASS observations improved positional accuracy, precision, dilution of precision and convergence to the reference coordinates. In this context, coordinate differences between 24 hours GPS observations and 6 hours GPS/GLONASS observations have been obtained as less than 2 cm.
Ryabov, Yaroslav; Fushman, David
2008-01-01
We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein’s rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning is also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of Lys48-linked di-ubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution. PMID:17550252
Calibration of imaging parameters for space-borne airglow photography using city light positions
NASA Astrophysics Data System (ADS)
Hozumi, Yuta; Saito, Akinori; Ejiri, Mitsumu K.
2016-09-01
A new method for calibrating imaging parameters of photographs taken from the International Space Station (ISS) is presented in this report. Airglow in the mesosphere and the F-region ionosphere was captured on the limb of the Earth with a digital single-lens reflex camera from the ISS by astronauts. To utilize the photographs as scientific data, imaging parameters, such as the angle of view, exact position, and orientation of the camera, should be determined because they are not measured at the time of imaging. A new calibration method using city light positions shown in the photographs was developed to determine these imaging parameters with high accuracy suitable for airglow study. Applying the pinhole camera model, the apparent city light positions on the photograph are matched with the actual city light locations on Earth, which are derived from the global nighttime stable light map data obtained by the Defense Meteorological Satellite Program satellite. The correct imaging parameters are determined in an iterative process by matching the apparent positions on the image with the actual city light locations. We applied this calibration method to photographs taken on August 26, 2014, and confirmed that the result is correct. The precision of the calibration was evaluated by comparing the results from six different photographs with the same imaging parameters. The precisions in determining the camera position and orientation are estimated to be ±2.2 km and ±0.08°, respectively. The 0.08° difference in the orientation yields a 2.9-km difference at a tangential point of 90 km in altitude. The airglow structures in the photographs were mapped to geographical points using the calibrated imaging parameters and compared with a simultaneous observation by the Visible and near-Infrared Spectral Imager of the Ionosphere, Mesosphere, Upper Atmosphere, and Plasmasphere mapping mission installed on the ISS. The comparison shows good agreements and supports the validity of the calibration. This calibration technique makes it possible to utilize photographs taken on low-Earth-orbit satellites in the nighttime as a reference for the airglow and aurora structures.[Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Jianwei; Yang Xiaoquan; Wang Kan
2011-12-15
Purpose: A combined system of fluorescence molecular tomography and microcomputed tomography (FMT and mCT) can provide molecular and anatomical information of small animals in a single study with intrinsically coregistered images. The anatomical information provided by the mCT subsystem is commonly used as a reference to locate the fluorophore distribution or as a priori structural information to improve the performance of FMT. Therefore, the transformation between the coordinate systems of the subsystem needs to be determined in advanced. Methods: A cocalibration method for the combined system of FMT and mCT is proposed. First, linear models are adopted to describe themore » galvano mirrors and the charge-coupled device (CCD) camera in the FMT subsystem. Second, the position and orientation of the galvano mirrors are determined with the input voltages of the galvano mirrors and the markers, whose positions are predetermined. The position, orientation and normalized pixel size of the CCD camera are obtained by analysing the projections of a point-like marker at different positions. Finally, the orientation and position of sources and the corresponding relationship between the detectors and their projections on the image plane are predicted. Because the positions of the markers are acquired with mCT, the registration of the FMT and mCT could be realized by direct image fusion. Results: The accuracy and consistency of this method in the presence of noise is evaluated by computer simulation. Next, a practical implementation for an experimental FMT and mCT system is carried out and validated. The maximum prediction error of the source positions on the surface of a cylindrical phantom is within 0.375 mm and that of the projections of a point-like marker is within 0.629 pixel. Finally, imaging experiments of the fluorophore distribution in a cylindrical phantom and a phantom with a complex shape demonstrate the feasibility of the proposed method. Conclusions: This method is universal in FMT and mCT, which could be performed with no restriction on the system geometry, calibration phantoms or imaging objects.« less
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-01-01
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-12-03
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.
Wafer characteristics via reflectometry
Sopori, Bhushan L.
2010-10-19
Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.
Determination of fluoride in oxides with the fluoride-ion activity electrode.
Peters, M A; Ladd, D M
1971-07-01
The application of the fluoride-ion activity electrode to the determination of fluoride in various samples has been studied. Samples are decomposed by fusion and the fluoride concentration is determined by a standard-addition or a direct method. The standard-addition method is unsuitable, owing to a positive bias. The direct method, however, is rapid, accurate and precise. The fluoride content of exploration ores, fluorspar, opal glass, phosphate rock and various production samples, has been successfully determined. The success of the direct method depends on the effectiveness of the system used to buffer pH and ionic strength and complex possible interferences (Al(3+), Ca(2+), Fe(3+)). The effect of interferences has been studied and found to be minimal. The procedures are rapid and accurate and may be substituted for the traditional Willard and Winter or pyro hydrolysis methods, with considerable saving of time.
A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.
Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying
2018-06-13
The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.
10 CFR 63.332 - Representative volume.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accessible environment; (2) Its position and dimensions in the aquifer are determined using average... determined by site characterization; and (3) It contains 3,000 acre-feet of water (about 3,714,450,000 liters... dimensions of the representative volume. The DOE must propose its chosen method, and any underlying...
10 CFR 63.332 - Representative volume.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accessible environment; (2) Its position and dimensions in the aquifer are determined using average... determined by site characterization; and (3) It contains 3,000 acre-feet of water (about 3,714,450,000 liters... dimensions of the representative volume. The DOE must propose its chosen method, and any underlying...
ERIC Educational Resources Information Center
Mohammadipour, Mohammad; Rashid, Sabariah Md; Rafik-Galea, Shameem; Thai, Yap Ngee
2018-01-01
Emotions are an indispensable part of second language learning. The aim of this study is to determine the relationship between the use of language learning strategies and positive emotions. The present study adopted a sequential mixed methods design. The participants were 300 Malaysian ESL undergraduates selected through stratified random sampling…
USDA-ARS?s Scientific Manuscript database
Grass cell wall components are acylated by the hydroxycinnamates p-coumarate and ferulate. p-Coumarates largely acylate lignin sidechains, exclusively at the gamma-position, whereas ferulates primarily acylate the arabinosyl C5-position of arabinoxylans. Such components can be quantified as the corr...
Physical Activity and Positive Youth Development: Impact of a School-Based Program
ERIC Educational Resources Information Center
Madsen, Kristine A.; Hicks, Katherine; Thompson, Hannah
2011-01-01
Background: Protective factors associated with positive youth development predict health and education outcomes. This study explored trends in these protective factors and in physical activity among low-income students, and determined the impact of a school-based youth development program on these trends. Methods: This study used a…
Computed tomography guided localization of clinically occult breast carcinoma-the ''N'' skin guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopans, D.B.; Meyer, J.E.
1982-10-01
Standard computed tomography (CT) can be used for the three-dimensional localization of clinically occult suspicious breast lesions whose exact position cannot be determined by standard mammographic views. A method is described that facilitates accurate preoperative needle localization using CT guidance, once the position of these lesions is defined.
Method of determining dispersion dependence of refractive index of nanospheres building opals
NASA Astrophysics Data System (ADS)
Kępińska, Mirosława; Starczewska, Anna; Duka, Piotr
2017-11-01
The method of determining dispersion dependence of refractive index of nanospheres building opals is presented. In this method basing on angular dependences of the spectral positions of Bragg diffraction minima on transmission spectra for opal series of known spheres diameter, the spectrum of effective refractive index for opals and then refractive index for material building opal's spheres is determined. The described procedure is used for determination of neff(λ) for opals and nsph(λ) for material which spheres building investigated opals are made of. The obtained results are compared with literature data of nSiO2(λ) considered in the analysis and interpretation of extremes related to the light diffraction at (hkl) SiO2 opal planes.
A transformation method for deriving from a photograph, position and heading of a vehicle in a plane
NASA Technical Reports Server (NTRS)
Sleeper, R. K.; Smith, E. G.
1976-01-01
Equations have been derived that transform perspectively viewed planar surface coordinates, as seen in a photograph, into coordinates of the original plane surface. These transformation equations are developed in terms of nine geometric variables that define the photographic setup and are redefined in terms of eight parameters. The parameters are then treated as independent quantities that fully characterize the transformation and are expressed directly in terms of the four corner coordinates of a reference rectangle in the object plane and their coordinates as seen in a photograph. Vehicle position is determined by transforming the perspectively viewed coordinate position of a representative vehicle target into runway coordinates. Vehicle heading is determined from the runway coordinates of two vehicle target points. When the targets are elevated above the plane of the reference grid, the computation of the heading angle is unaffected; however, the computation of the target position may require adjustment of two parameters. Methods are given for adjusting the parameters for elevation and an example is included for both nonelevated and elevated target conditions.
Relation between parvovirus B19 infection and fetal mortality and spontaneous abortion.
Shabani, Zahra; Esghaei, Maryam; Keyvani, Hossein; Shabani, Fateme; Sarmadi, Fateme; Mollaie, Hamidreza; Monavari, Seyed Hamidreza
2015-01-01
Infection with parvovirus B19 may cause fetal losses including spontaneous abortion, intrauterine fetal death and non-immune hydrops fetalis. The aim of this study is to determine the frequency of parvovirus B19 in formalin fixed placental tissues in lost fetuses using real-time PCR method. In this cross-sectional study, 100 formalin fixed placental tissues with unknown cause of fetal death were determined using real-time PCR method after DNA extraction. Six out of 100 cases (6%) were positive for parvovirus B19 using real-time PCR. Gestational age of all positive cases was less than 20 weeks with a mean of 12.3 weeks. Three cases have a history of abortion and all of positive cases were collected in spring. Mean age of positive cases were 28 years. Parvovirus B19 during pregnancy can infect red precursor cells and induces apoptosis or lyses these cells that resulting in anemia and congestive heart failure leading to fetal death. Management of parvovirus B19 infection in pregnant women is important because immediate diagnosis and transfusion in hydropsic fetuses can decrease the risk of fetal death.
Feasibility study of a single, elliptical heliocentric Earth-Mars trajectory
NASA Technical Reports Server (NTRS)
Blake, M.; Fulgham, K.; Westrup, S.
1989-01-01
The initial intent of this design project was to evaluate the existence and feasibility of a single elliptical heliocentric Earth/Mars trajectory. This trajectory was constrained to encounter Mars twice in its orbit, within a time interval of 15 to 180 Earth days between encounters. The single ellipse restriction was soon found to be prohibitive for reasons shown later. Therefore, the approach taken in the design of the round-trip mission to Mars was to construct single-leg trajectories which connected two planets on two prescribed dates. Three methods of trajectory design were developed. Method 1 is an eclectic approach and employs Gaussian Orbit Determination (Method 1A) and Lambert-Euler Preliminary Orbit Determination (Method 1B) in conjunction with each other. Method 2 is an additional version of Lambert's Solution to orbit determination, and both a coplanar and a noncoplanar solution were developed within Method 2. In each of these methods, the fundamental variables are two position vectors and the time between the position vectors. In all methods, the motion was considered Keplerian motion and the reference frame origin was located at the sun. Perturbative effects were not considered in Method 1. The feasibility study of round-trip Earth/Mars trajectories maintains generality by considering only heliocentric trajectory parameters and planetary approach conditions. The coordinates and velocity components of the planets, for the standard epoch J2000, were computed from an approximate set of osculating elements by the procedure outlined in an ephemeris of coordinates.
The use of photogrammetric and stereophotogrammetric methods in aerodynamic experiments
NASA Astrophysics Data System (ADS)
Shmyreva, V. N.; Iakovlev, V. A.
The possibilities afforded by photogrammetry and stereophotogrammetry in current aerodynamic experiments, methods of image recording, and observation data processing are briefly reviewed. Some specific experiments illustrating the application of stereophotogrammetry are described. The applications discussed include the monitoring of model position in wind tunnels, determination of model deformations and displacements, determination of the deformations of real structural elements in static strength tests, and solution of a variety of problems in hydrodynamics.
Precise GPS orbits for geodesy
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1994-01-01
The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.
Ambiguity resolution in systems using Omega for position location
NASA Technical Reports Server (NTRS)
Frenkel, G.; Gan, D. G.
1974-01-01
The lane ambiguity problem prevents the utilization of the Omega system for many applications such as locating buoys and balloons. The method of multiple lines of position introduced herein uses signals from four or more Omega stations for ambiguity resolution. The coordinates of the candidate points are determined first through the use of the Newton iterative procedure. Subsequently, a likelihood function is generated for each point, and the ambiguity is resolved by selecting the most likely point. The method was tested through simulation.
Kyiv UkrVO glass archives: new life
NASA Astrophysics Data System (ADS)
Pakuliak, L.; Golovnya, V.; Andruk, V.; Shatokhina, S.; Yizhakevych, O.; Kazantseva, L.; Lukianchuk, V.
In the framework of UkrVO national project the new methods of plate digital image processing are developed. The photographic material of the UkrVO Joint Digital Archive (JDA) is used for the solution of classic astrometric problem - positional and photometric determinations of objects registered on the plates. The results of tested methods show that the positional rms errors are better than ±150 mas for both coordinates and photometric ones are better than ±0.20m with the Tycho-2 catalogue as reference.
Romano, Paul E
2006-01-01
The HR (prism diopters [PD] per mm of corneal light reflection test [CLRT] asymmetry for strabometry) varies in humans from 14 to 24 PD/mm, but is totally unpredictable. Photo(grammetric) HR calibration in (of) each case facilitates acceptable strabometry precision and accuracy. Take 3 flash photos of the patient with both the preferred eye and then the deviating eye fixating straight ahead and then again with the deviation eye fixing at (+/-5-10 PD) the strabismic angle on a metric rule (stick) one meter away from the camera lens (where 1 cm = 1 PD). On these 3 photos, make four precise measurements of the position of the CLR with reference to the limbus: In the deviating eye fixing straight ahead and fixating at the angle of deviation. Divide the mm difference in location into the change in the angle of fixation to determine the HR for this patient at this angle. Then determine the CLR position in both the deviating eye and the fixing eye in the straight ahead primary position picture. Apply the calculated calibrated HR to the asymmetry of the CLRs in primary position to determine the true strabismic deviation. This imaging method insures accurate Hirschberg CLRT strabometry in each case, determining the deviation in "free space", under conditions of normal binocular viewing, uncontaminated by the artifacts or inaccuracies of other conventional strabometric methods or devices. So performed, the Hirschberg CLRT is the gold standard of strabometry.
Ni, Yang; Zhou, Ying; Xu, Mingzhen; He, Xiaomeng; Li, Huqun; Haseeb, Satter; Chen, Hui; Li, Weiyong
2015-03-25
A new method for simultaneous determination of phentermine and topiramate by liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) operated in positive and negative ionization switching modes was developed and validated. Protein precipitation with acetonitrile was selected for sample preparation. Analyses were performed on a liquid chromatography system employing a Kromasil 60-5CN column (2.1 mm × 100 mm, 5 μm) and an isocratic elution with mixed solution of acetonitrile-20mM ammonium formate containing 0.3% formic acid (40:60, v/v), at a flow rate of 0.35 mL/min. Doxazosin mesylate and pioglitazone were used as the internal standard (IS) respectively for quantification. The determination was carried out on an API 4000 triple-quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using the following transitions monitored simultaneously: positive m/z 150.0/91.0 for phentermine, m/z 452.1/344.3 for doxazosin, and negative m/z 338.3/77.9 for topiramate, m/z 355.0/41.9 for pioglitazone. The method was validated to be linear over the concentration range of 1-800 ng mL(-1) for phentermine, 1-1000 ng mL(-1) for topiramate. Within- and between-day accuracy and precision of the validated method at three different concentration levels were within the acceptable limits of <15% at all concentrations. Blood samples were collected into heparinized tubes before and after administration. The simple and robust LC/MS/MS method was successfully applied for the simultaneous determination of phentermine and topiramate in a pharmacokinetic study in healthy male Chinese volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Desmars, J.; Camargo, J. I. B.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Vachier, F.; Colas, F.; Ortiz, J. L.; Duffard, R.; Morales, N.; Sicardy, B.; Gomes-Júnior, A. R.; Benedetti-Rossi, G.
2015-12-01
Context. The prediction of stellar occultations by trans-Neptunian objects (TNOs) and Centaurs is a difficult challenge that requires accuracy both in the occulted star position and in the object ephemeris. Until now, the most used method of prediction, involving dozens of TNOs/Centaurs, has been to consider a constant offset for the right ascension and for the declination with respect to a reference ephemeris, usually the latest public version. This offset is determined as the difference between the most recent observations of the TNO/Centaur and the reference ephemeris. This method can be successfully applied when the offset remains constant with time, i.e. when the orbit is stable enough. In this case, the prediction even holds for occultations that occur several days after the last observations. Aims: This paper presents an alternative method of prediction, based on a new accurate orbit determination procedure, which uses all the available positions of the TNO from the Minor Planet Center database, as well as sets of new astrometric positions from unpublished observations. Methods: Orbits were determined through a numerical integration procedure called NIMA, in which we developed a specific weighting scheme that considers the individual precision of the observation, the number of observations performed during one night by the same observatory, and the presence of systematic errors in the positions. Results: The NIMA method was applied to 51 selected TNOs and Centaurs. For this purpose, we performed about 2900 new observations in several observatories (European South Observatory, Observatório Pico dos Dias, Pic du Midi, etc.) during the 2007-2014 period. Using NIMA, we succeed in predicting the stellar occultations of 10 TNOs and 3 Centaurs between July 2013 and February 2015. By comparing the NIMA and Jet Propulsion Laboratory (JPL) ephemerides, we highlight the variation in the offset between them with time, by showing that, generally, the constant offset hypothesis is not valid, even for short time scales of a few weeks. Giving examples, we show that the constant offset method cannot accurately predict 6 out of the 13 observed positive occultations that have been successfully predicted by NIMA. The results indicate that NIMA is capable of efficiently refining the orbits of these bodies. Finally, we show that the astrometric positions given by positive occultations can help to refine the orbit of the TNO and, consequently, the future predictions. We also provide unpublished observations of the 51 selected TNOs and their ephemeris in a usable format by the SPICE library. We provide ephemerides of TNO/Centaurs usable with SPICE library and available at http://www.imcce.fr/~desmars/research/tno/The offset observations of the selected TNOs are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A96
Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots
NASA Astrophysics Data System (ADS)
Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.
How Reliable is the Acetabular Cup Position Assessment from Routine Radiographs?
Carvajal Alba, Jaime A.; Vincent, Heather K.; Sodhi, Jagdeep S.; Latta, Loren L.; Parvataneni, Hari K.
2017-01-01
Abstract Background: Cup position is crucial for optimal outcomes in total hip arthroplasty. Radiographic assessment of component position is routinely performed in the early postoperative period. Aims: The aims of this study were to determine in a controlled environment if routine radiographic methods accurately and reliably assess the acetabular cup position and to assess if there is a statistical difference related to the rater’s level of training. Methods: A pelvic model was mounted in a spatial frame. An acetabular cup was fixed in different degrees of version and inclination. Standardized radiographs were obtained. Ten observers including five fellowship-trained orthopaedic surgeons and five orthopaedic residents performed a blind assessment of cup position. Inclination was assessed from anteroposterior radiographs of the pelvis and version from cross-table lateral radiographs of the hip. Results: The radiographic methods used showed to be imprecise specially when the cup was positioned at the extremes of version and inclination. An excellent inter-observer reliability (Intra-class coefficient > 0,9) was evidenced. There were no differences related to the level of training of the raters. Conclusions: These widely used radiographic methods should be interpreted cautiously and computed tomography should be utilized in cases when further intervention is contemplated. PMID:28852355
[The positive deviance approach to change nutrition behavior: a systematic review].
Machado, Juliana Costa; Cotta, Rosângela Minardi Mitre; Silva, Luciana Saraiva da
2014-08-01
To conduct a systematic review of the literature describing the use of the positive deviance approach to change nutrition behavior in order to identify the potentials of this method for health and nutrition education. Cochrane Library, LILACS, MEDLINE, SciELO, PubMed, and Scopus were searched. The following search terms were used: positive deviance, desvio positivo, positive deviance inquiry and positive deviants. Inclusion criteria were: reporting primary data, clearly defined methods, and availability of full text. The main results of the studies selected for inclusion were described and examined based on psychosocial (socioeconomic and health status, hygiene and nutrition habits), anthropometric (weight, height), and biochemical and clinical (presence of morbidity and biochemical tests) criteria to determine the potential and limitations of the positive deviance approach to change nutrition behavior. Of the 47 studies identified, nine met the inclusion criteria. The positive deviance method was used for prevention and rehabilitation of child and maternal malnutrition in areas of socioeconomic vulnerability and for the treatment of overweight and obesity in adults. An improvement in maternal and child nutrition and the maintenance of beneficial behaviors over time were underscored as positive impacts of the method. The positive deviance approach may help change nutrition behaviors with the aim of reversing child malnutrition and overweight and obesity in adults. This approach seems effective to promote health education in areas of socioeconomic vulnerability.
Time domain reflectometry waveform analysis with second order bounded mean oscillation
USDA-ARS?s Scientific Manuscript database
Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...
Accuracy Analysis of a Wireless Indoor Positioning System Using Geodetic Methods
NASA Astrophysics Data System (ADS)
Wagner, Przemysław; Woźniak, Marek; Odziemczyk, Waldemar; Pakuła, Dariusz
2017-12-01
Ubisense RTLS is one of the Indoor positioning systems using an Ultra Wide Band. AOA and TDOA methods are used as a principle of positioning. The accuracy of positioning depends primarily on the accuracy of determined angles and distance differences. The paper presents the results of accuracy research which includes a theoretical accuracy prediction and a practical test. Theoretical accuracy was calculated for two variants of system components geometry, assuming the parameters declared by the system manufacturer. Total station measurements were taken as a reference during the practical test. The results of the analysis are presented in a graphical form. A sample implementation (MagMaster) developed by Globema is presented in the final part of the paper.
Reconstruction method for fringe projection profilometry based on light beams.
Li, Xuexing; Zhang, Zhijiang; Yang, Chen
2016-12-01
A novel reconstruction method for fringe projection profilometry, based on light beams, is proposed and verified by experiments. Commonly used calibration techniques require the parameters of projector calibration or the reference planes placed in many known positions. Obviously, introducing the projector calibration can reduce the accuracy of the reconstruction result, and setting the reference planes to many known positions is a time-consuming process. Therefore, in this paper, a reconstruction method without projector's parameters is proposed and only two reference planes are introduced. A series of light beams determined by the subpixel point-to-point map on the two reference planes combined with their reflected light beams determined by the camera model are used to calculate the 3D coordinates of reconstruction points. Furthermore, the bundle adjustment strategy and the complementary gray-code phase-shifting method are utilized to ensure the accuracy and stability. Qualitative and quantitative comparisons as well as experimental tests demonstrate the performance of our proposed approach, and the measurement accuracy can reach about 0.0454 mm.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry.
D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M
2017-12-22
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry
NASA Astrophysics Data System (ADS)
D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.
2017-12-01
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.
2006-06-20
A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.
Siu, Gilman K. H.; Chen, Jonathan H. K.; Ng, T. K.; Lee, Rodney A.; Fung, Kitty S. C.; To, Sabrina W. C.; Wong, Barry K. C.; Cheung, Sherman; Wong, Ivan W. F.; Tam, Marble M. P.; Lee, Swing S. W.; Yam, W. C.
2015-01-01
Background A multicenter study was conducted to evaluate the diagnostic performance and the time to identifcation of the Verigene Blood Culture Test, the BC-GP and BC-GN assays, to identify both Gram-positive and Gram-negative bacteria and their drug resistance determinants directly from positive blood cultures collected in Hong Kong. Methods and Results A total of 364 blood cultures were prospectively collected from four public hospitals, in which 114 and 250 cultures yielded Gram-positive and Gram-negative bacteria, and were tested with the BC-GP and BC-GN assay respectively. The overall identification agreement for Gram-positive and Gram-negative bacteria were 89.6% and 90.5% in monomicrobial cultures and 62.5% and 53.6% in polymicrobial cultures, respectively. The sensitivities for most genus/species achieved at least 80% except Enterococcus spp. (60%), K.oxytoca (0%), K.pneumoniae (69.2%), whereas the specificities for all targets ranged from 98.9% to 100%. Of note, 50% (7/14) cultures containing K.pneumoniae that were missed by the BC-GN assay were subsequently identified as K.variicola. Approximately 5.5% (20/364) cultures contained non-target organisms, of which Aeromonas spp. accounted for 25% and are of particular concern. For drug resistance determination, the Verigene test showed 100% sensitivity for identification of MRSA, VRE and carbapenem resistant Acinetobacter, and 84.4% for ESBL-producing Enterobacteriaceae based on the positive detection of mecA, vanA, bla OXA and bla CTXM respectively. Conclusion Overall, the Verigene test provided acceptable accuracy for identification of bacteria and resistance markers with a range of turnaround time 40.5 to 99.2 h faster than conventional methods in our region. PMID:26431434
NASA Astrophysics Data System (ADS)
Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha
2014-11-01
This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile's method relative to the illumination environment, producing lower illumination error in five (5) different environments.
High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers
DOE R&D Accomplishments Database
Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.
1973-09-24
In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.
Phase Correction for GPS Antenna with Nonunique Phase Center
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Dobbins, Justin
2005-01-01
A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.
Research on Knowledge-Based Optimization Method of Indoor Location Based on Low Energy Bluetooth
NASA Astrophysics Data System (ADS)
Li, C.; Li, G.; Deng, Y.; Wang, T.; Kang, Z.
2017-09-01
With the rapid development of LBS (Location-based Service), the demand for commercialization of indoor location has been increasing, but its technology is not perfect. Currently, the accuracy of indoor location, the complexity of the algorithm, and the cost of positioning are hard to be simultaneously considered and it is still restricting the determination and application of mainstream positioning technology. Therefore, this paper proposes a method of knowledge-based optimization of indoor location based on low energy Bluetooth. The main steps include: 1) The establishment and application of a priori and posterior knowledge base. 2) Primary selection of signal source. 3) Elimination of positioning gross error. 4) Accumulation of positioning knowledge. The experimental results show that the proposed algorithm can eliminate the signal source of outliers and improve the accuracy of single point positioning in the simulation data. The proposed scheme is a dynamic knowledge accumulation rather than a single positioning process. The scheme adopts cheap equipment and provides a new idea for the theory and method of indoor positioning. Moreover, the performance of the high accuracy positioning results in the simulation data shows that the scheme has a certain application value in the commercial promotion.
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
Real-Time GNSS-Based Attitude Determination in the Measurement Domain
Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun
2017-01-01
A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance. PMID:28165434
NASA Astrophysics Data System (ADS)
Deng, Guoqing; Yao, Aiguo
2017-04-01
Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.
Method for Determination of the Wind Velocity and Direction
NASA Technical Reports Server (NTRS)
Dahlin, Goesta Johan
1988-01-01
Accurate determination of the position of an artillery piece, for example, using sound measurement systems through measurement of the muzzle noise requires access to wind data that is representative of the portion of the air from where the sound wave is propagated up the microphone base of the system. The invention provides a system for determining such representative wind data.
Influence maximization in social networks under an independent cascade-based model
NASA Astrophysics Data System (ADS)
Wang, Qiyao; Jin, Yuehui; Lin, Zhen; Cheng, Shiduan; Yang, Tan
2016-02-01
The rapid growth of online social networks is important for viral marketing. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. An independent cascade-based model for influence maximization, called IMIC-OC, was proposed to calculate positive influence. We assumed that influential users spread positive opinions. At the beginning, users held positive or negative opinions as their initial opinions. When more users became involved in the discussions, users balanced their own opinions and those of their neighbors. The number of users who did not change positive opinions was used to determine positive influence. Corresponding influential users who had maximum positive influence were then obtained. Experiments were conducted on three real networks, namely, Facebook, HEP-PH and Epinions, to calculate maximum positive influence based on the IMIC-OC model and two other baseline methods. The proposed model resulted in larger positive influence, thus indicating better performance compared with the baseline methods.
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
40 CFR 300.915 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... methods for such determinations: Salmonella, fecal coliform, Shigella, Staphylococcus Coagulase positive... fibers or cork; (C) Corn cobs; (D) Chicken, duck, or other bird feathers. (ii) Mineral compounds— (A...
Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.
2004-04-27
A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.
Spectrophotometric Investigations of Macrolide Antibiotics: A Brief Review
Keskar, Mrudul R; Jugade, Ravin M
2015-01-01
Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxy sugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics. PMID:26609215
Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication
Chen, Chien-Sheng
2015-01-01
To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems. PMID:25569755
Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan
2017-05-01
Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.
Determining Coastal Mean Dynamic Topography by Geodetic Methods
NASA Astrophysics Data System (ADS)
Huang, Jianliang
2017-11-01
In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.
Method and apparatus to monitor a beam of ionizing radiation
Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.
2015-06-02
Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.
Collaborative Learning in Higher Education: Evoking Positive Interdependence
ERIC Educational Resources Information Center
Scager, Karin; Boonstra, Johannes; Peeters, Ton; Vulperhorst, Jonne; Wiegant, Fred
2016-01-01
Collaborative learning is a widely used instructional method, but the learning potential of this instructional method is often underused in practice. Therefore, the importance of various factors underlying effective collaborative learning should be determined. In the current study, five different life sciences undergraduate courses with successful…
Zhu, Zhonglin; Li, Guoan
2013-01-01
Fluoroscopic image technique, using either a single image or dual images, has been widely applied to measure in vivo human knee joint kinematics. However, few studies have compared the advantages of using single and dual fluoroscopic images. Furthermore, due to the size limitation of the image intensifiers, it is possible that only a portion of the knee joint could be captured by the fluoroscopy during dynamic knee joint motion. In this paper, we presented a systematic evaluation of an automatic 2D–3D image matching method in reproducing spatial knee joint positions using either single or dual fluoroscopic image techniques. The data indicated that for the femur and tibia, their spatial positions could be determined with an accuracy and precision less than 0.2 mm in translation and less than 0.4° in orientation when dual fluoroscopic images were used. Using single fluoroscopic images, the method could produce satisfactory accuracy in joint positions in the imaging plane (average up to 0.5 mm in translation and 1.3° in rotation), but large variations along the out-plane direction (in average up to 4.0 mm in translation and 2.28 in rotation). The precision of using single fluoroscopic images to determine the actual knee positions was worse than its accuracy obtained. The data also indicated that when using dual fluoroscopic image technique, if the knee joint outlines in one image were incomplete by 80%, the algorithm could still reproduce the joint positions with high precisions. PMID:21806411
Comparison of methods to determine methane emissions from dairy cows in farm conditions.
Huhtanen, P; Cabezas-Garcia, E H; Utsumi, S; Zimmerman, S
2015-05-01
Nutritional and animal-selection strategies to mitigate enteric methane (CH4) depend on accurate, cost-effective methods to determine emissions from a large number of animals. The objective of the present study was to compare 2 spot-sampling methods to determine CH4 emissions from dairy cows, using gas quantification equipment installed in concentrate feeders or automatic milking stalls. In the first method (sniffer method), CH4 and carbon dioxide (CO2) concentrations were measured in close proximity to the muzzle of the animal, and average CH4 concentrations or CH4/CO2 ratio was calculated. In the second method (flux method), measurement of CH4 and CO2 concentration was combined with an active airflow inside the feed troughs for capture of emitted gas and measurements of CH4 and CO2 fluxes. A muzzle sensor was used allowing data to be filtered when the muzzle was not near the sampling inlet. In a laboratory study, a model cow head was built that emitted CO2 at a constant rate. It was found that CO2 concentrations using the sniffer method decreased up to 39% when the distance of the muzzle from the sampling inlet increased to 30cm, but no muzzle-position effects were observed for the flux method. The methods were compared in 2 on-farm studies conducted using 32 (experiment 1) or 59 (experiment 2) cows in a switch-back design of 5 (experiment 1) or 4 (experiment 2) periods for replicated comparisons between methods. Between-cow coefficient of variation (CV) in CH4 was smaller for the flux than the sniffer method (experiment 1, CV=11.0 vs. 17.5%, and experiment 2, 17.6 vs. 28.0%). Repeatability of the measurements from both methods were high (0.72-0.88), but the relationship between the sniffer and flux methods was weak (R(2)=0.09 in both experiments). With the flux method CH4 was found to be correlated to dry matter intake or body weight, but this was not the case with the sniffer method. The CH4/CO2 ratio was more highly correlated between the flux and sniffer methods (R(2)=0.30), and CV was similar (6.4-8.8%). In experiment 2, cow muzzle position was highly repeatable (0.82) and influenced sniffer and flux method results when not filtered for muzzle position. It was concluded that the flux method provides more reliable estimates of CH4 emissions than the sniffer method. The sniffer method appears to be affected by variable air-mixing conditions created by geometry of feed trough, muzzle movement, and muzzle position. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils
Andersen, Lau M.; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F.; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject’s head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject’s head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method. PMID:29746486
A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.
Liu, Wei; Zhang, Jingfeng; Fan, Jing-Song; Tria, Giancarlo; Grüber, Gerhard; Yang, Daiwen
2016-05-10
Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Experimental Investigation of the Momentum Method for Determining Profile Drag
NASA Technical Reports Server (NTRS)
Goett, Harry J
1939-01-01
Report presents the results of an experimental investigation conducted in the full-scale tunnel to determine the accuracy of the Jones and the Betz equations for computing profile drag from total and static pressure surveys in the wake of wings. Surveys were made behind 6 by 8-foot airfoils of the NACA 0009, and 0018 sections at zero lift and behind the NACA 0012 at positive lifts. The surveys were made at various spanwise positions and at distances behind the airfoil ranging from 0.05c to 3.00c.
An iterative method for the localization of a neutron source in a large box (container)
NASA Astrophysics Data System (ADS)
Dubinski, S.; Presler, O.; Alfassi, Z. B.
2007-12-01
The localization of an unknown neutron source in a bulky box was studied. This can be used for the inspection of cargo, to prevent the smuggling of neutron and α emitters. It is important to localize the source from the outside for safety reasons. Source localization is necessary in order to determine its activity. A previous study showed that, by using six detectors, three on each parallel face of the box (460×420×200 mm 3), the location of the source can be found with an average distance of 4.73 cm between the real source position and the calculated one and a maximal distance of about 9 cm. Accuracy was improved in this work by applying an iteration method based on four fixed detectors and the successive iteration of positioning of an external calibrating source. The initial positioning of the calibrating source is the plane of detectors 1 and 2. This method finds the unknown source location with an average distance of 0.78 cm between the real source position and the calculated one and a maximum distance of 3.66 cm for the same box. For larger boxes, localization without iterations requires an increase in the number of detectors, while localization with iterations requires only an increase in the number of iteration steps. In addition to source localization, two methods for determining the activity of the unknown source were also studied.
Measuring momentum for charged particle tomography
Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary
2010-11-23
Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.
Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.
Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu
2010-07-01
Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.
Fluorescent optical position sensor
Weiss, Jonathan D.
2005-11-15
A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.
An approximate Riemann solver for thermal and chemical nonequilibrium flows
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1994-01-01
Among the many methods available for the determination of inviscid fluxes across a surface of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables has been used extensively by the CFD community because of its simplicity and its ability to capture shocks exactly. This method, originally developed for perfect gas flows, has since been extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged variables for the case of a perfect gas flow is a simple task; however, for thermal and chemical nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the literature to determine these variables seem to lack sound bases. The present paper describes a simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-average state. The basis for this method is the requirement that the Roe-averaged variables form a consistent set of thermodynamic variables. The present method satisfies the requirement that the square of the speed of sound be positive.
Optic-electronic system for deformation of radio-telescope counter-reflector computer modeling
NASA Astrophysics Data System (ADS)
Konyakhin, Igor A.; Petrochenko, Andrew V.; Tolochek, Nina S.
2014-05-01
In article is described the method of the «angle photometric resection» and the definition of the parameters of the external orientation (spatial coordinates of the points of shooting and the angular position of the shooting plane) and his use for the optic-electronic system that determinates the position of counter-reflector.
Branding MBA Programs: The Use of Target Market Desired Outcomes for Effective Brand Positioning
ERIC Educational Resources Information Center
Heslop, Louise A.; Nadeau, John
2010-01-01
Branding is about delivering on desired outcomes. The importance of positioning program offerings on the basis of outcomes sought in the education market is illustrated in this study of choice of an MBA program by prospective students. MBA fair attendees were surveyed and multiple methods were employed to determine the importance of desired…
Lightweight, Miniature Inertial Measurement System
NASA Technical Reports Server (NTRS)
Tang, Liang; Crassidis, Agamemnon
2012-01-01
A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.
Stokdyk, Joel P; Firnstahl, Aaron D; Spencer, Susan K; Burch, Tucker R; Borchardt, Mark A
2016-06-01
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation. Published by Elsevier Ltd.
Stokdyk, Joel P.; Firnstahl, Aaron; Spencer, Susan K.; Burch, Tucker R; Borchardt, Mark A.
2016-01-01
The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L−1 assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.
Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set
NASA Astrophysics Data System (ADS)
Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.
2017-10-01
Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of sunspot drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing sunspot groups during the period 1964-2016, using the KSO sunspot drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO sunspot drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a relative standard error for the differential rotation parameter B that is three times smaller than the corresponding relative standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the DS method and ω(b) = (14.50 ± 0.01)-(2.87 ± 0.12)sin2b (deg/day) for the rLSQ method. A barely noticeable north - south asymmetry is observed for the whole time period 1964-2016 in the present paper. Rotation profiles, using different data sets, presented by other authors for the same time periods and the same tracer types, are in good agreement with our results. Conclusions: The KSO data set used in this paper is in good agreement with the Debrecen Photoheliographic Data and Greenwich Photoheliographic Results and is suitable for the investigation of the long-term variabilities in the solar rotation profile. Also, the quality of the KSO sunspot drawings has gradually increased during the last 50 yr.
NASA Astrophysics Data System (ADS)
Chu, Chien-Hsun; Chiang, Kai-Wei
2016-06-01
The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.
Centroiding Experiment for Determining the Positions of Stars with High Precision
NASA Astrophysics Data System (ADS)
Yano, T.; Araki, H.; Hanada, H.; Tazawa, S.; Gouda, N.; Kobayashi, Y.; Yamada, Y.; Niwa, Y.
2010-12-01
We have experimented with the determination of the positions of star images on a detector with high precision such as 10 microarcseconds, required by a space astrometry satellite, JASMINE. In order to accomplish such a precision, we take the following two procedures. (1) We determine the positions of star images on the detector with the precision of about 0.01 pixel for one measurement, using an algorithm for estimating them from photon weighted means of the star images. (2) We determine the positions of star images with the precision of about 0.0001-0.00001 pixel, which corresponds to that of 10 microarcseconds, using a large amount of data over 10000 measurements, that is, the error of the positions decreases according to the amount of data. Here, we note that the procedure 2 is not accomplished when the systematic error in our data is not excluded adequately even if we use a large amount of data. We first show the method to determine the positions of star images on the detector using photon weighted means of star images. This algorithm, used in this experiment, is very useful because it is easy to calculate the photon weighted mean from the data. This is very important in treating a large amount of data. Furthermore, we need not assume the shape of the point spread function in deriving the centroid of star images. Second, we show the results in the laboratory experiment for precision of determining the positions of star images. We obtain that the precision of estimation of positions of star images on the detector is under a variance of 0.01 pixel for one measurement (procedure 1). We also obtain that the precision of the positions of star images becomes a variance of about 0.0001 pixel using about 10000 measurements (procedure 2).
Akaltun, İsmail; Kara, Soner Sertan; Kara, Tayfun
2018-01-01
Toxoplasma gondii may play a role in the development of psychiatric diseases by affecting the brain. The purpose of this study was to examine the relation between serum toxoplasma IgG positivity and obsessive-compulsive disorder (OCD) and generalized anxiety disorder (GAD) in children and adolescents. Sixty patients diagnosed with OCD and 60 patients with GAD presenting to the pediatric psychiatry clinic, together with 60 control group subjects with no psychiatric diagnosis, were included in the study. The patients were administered the State-Trait Anxiety Inventory for Children and the Children's Yale-Brown Obsessive Compulsive Scale. Serum toxoplasma IgG levels were determined from blood specimens collected from the study and control groups. The results were then compared using statistical methods. State and trait anxiety levels were significantly higher in the OCD and GAD patients than in the control group (p = .0001/.0001). Serum toxoplasma IgG levels were positive in 21 (35%) of the OCD patients, 19 (31.7%) of the GAD patients and 6 (10%) of the control group. A significant relation was determined between IgG positivity and GAD (p = .003). IgG-positive individuals were determined to have a 4.171-fold greater risk of GAD compared to those without positivity (4.171[1.529-11.378]) (p = .005). A significant relation was also determined between IgG positivity and OCD (p = .001). IgG-positive individuals were determined to have a 4.846-fold greater risk of OCD compared to those without positivity (4.846[1.789-13.126]) (p = .002). This study shows that serum toxoplasma IgG positivity indicating previous toxoplasma infection increased the risk of GAD 4.171-fold and the risk of OCD 4.846-fold in children and adolescents. Further studies are now needed to investigate the relation between T. gondii infection and GAD/OCD and to determine the pathophysiology involved.
Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.
Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark
2014-07-01
Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zahalka, Neriman; Sadan, Oscar; Malinger, Gustav; Liberati, Marco; Boaz, Mona; Glezerman, Marek; Rotmensch, Sigi
2005-08-01
Precise determination of fetal head position in labor is a prerequisite for safe instrumental deliveries, and essential for the assessment of labor progress. Recent studies have cast serious doubts on the accuracy of the time-honored digital vaginal examination (DVE) in comparison to transabdominal ultrasound scans (TUS). However, transabdominal imaging is technically difficult with a deeply engaged fetal head in the second stage of labor. We examined the accuracy and time requirements of transvaginal scans (TVS) in the second stage of labor for determination of fetal head position. Sixty laboring women in the second stage of labor with a deeply engaged fetal head were examined by experienced nurse midwives and senior residents. Fetal head position was recorded as "time on a 12-hour clock." Subsequently, TUS and TVS were independently performed by a skilled sonographer. Accuracy and time requirements for all 3 examinations were recorded. Fetal head position could be determined in all cases by TVS, but not in 7 cases and 9 cases by DVE and TUS, respectively (P < .03; P < .008). A discrepancy of 60 degrees or more between the DVE and TUS or TVS was found in 13/60 cases (21.7%) and 14/60 cases (23.3%), respectively. A > or = 90 degrees discrepancy was found in 9/60 cases (15%) and 12/60 cases (20%), respectively (P < .02 for comparison of TUS and TVS). In 5 cases, the digital examination erroneously perceived an occiput posterior position as occiput anterior. No significant differences in fetal head position were detected between TUS and TVS, when the examination was technically feasible. The mean time (+/-SD) required for determining fetal head position was shortest for TVS (8.7 +/- 5.8 seconds) in comparison to DVE (22.7 +/- 14.6 seconds; P < .0001) or TAS (31.7 +/- 19.1 seconds; P < .0001). Transvaginal sonography was the most successful and accurate method for determination of fetal head position in the second stage of labor, and required the least time for performance. We believe that TVS should be routinely performed in the labor room setting for the determination of fetal head position.
Zhou, Wenjie; Wei, Xuesong; Wang, Leqin
2017-01-01
Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method—twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length. PMID:28572997
Using GPS and leveling data in local precise geoid determination and case study
NASA Astrophysics Data System (ADS)
Erol, B.; Çelik, R. N.; Erol, S.
2003-04-01
As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with the fundamental mathematical equation; N=h-H. In the equation, "h" is the ellipsoidal height of a point P, "H" is the orthometric height of the same point and "N" is "geoid undulation" value. Normally, "H" orthometric height derived from leveling measurements but these measurements are tiring applications. So, while having a geoid model in the region as the essential part of geodetic infrastructure, number leveling measurements can be reduced from the procedure and by this way time and labor is saved. Geoid determination is modeling of the data in such a way that geoid height can be obtained digital or analog at a point whose horizontal position is known. Geoid models can be developed for local, regional or global regions. Using satellite techniques, especially GPS, in geodetic measurements are increased importance of geoid. Because geoid is a natural tie between high precision geodetic coordinates and coordinates which obtained from satellites. There are several geoid determination methods according to used data and models. GPS/Leveling method, which is also known as geometric method, is one of these methods. This method is appropriate for local precise geoid determination in respectively small areas. In this paper, it is going to be given information about GPS/Leveling geoid determination method and mathematical models, which are used in geoid determination with this method. And Izmir local geoid model will be presented as a case study. Izmir is one of the west metropolitan cities of Turkey and located near Aegean Sea. The topography is extremely rough in the region. There are two different geoid determination studies which were carried out in 1996 and 2001 in Izmir. Both models were accomplished according to GPS/Leveling method. Those two geoid models of Izmir Metropolitan region are investigated in here, the conflict of them were discussed. The relation between distribution of common reference points and differences of geoid undulation values, which are calculated from both models separately, were analyzed and also effects of topography on conflict of both geoid model was investigated. The results of the study and suggestions are going to be given in the paper.
Systematic Method for Establishing Officer Grade Requirements Based Upon Job Demands.
ERIC Educational Resources Information Center
Christal, Raymond E.
This report presents interim results of a study developing a methodology for management engineering teams to determine the appropriate grade requirements for officer positions based on job content and responsibilities. The technology reported represents a modification and extension of methods developed between 1963 and 1966. Results indicated that…
40 CFR 60.275a - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator shall demonstrate compliance with § 60.272(a)(3) based on emissions from only the affected... used for negative-pressure fabric filters and other types of control devices and Method 5D shall be used for positive-pressure fabric filters to determine the particulate matter concentration and...
Wavelength-modulated photocapacitance spectroscopy
NASA Technical Reports Server (NTRS)
Kamieniecki, E.; Lagowski, J.; Gatos, H. C.
1980-01-01
Derivative deep-level spectroscopy was achieved with wavelength-modulated photocapacitance employing MOS structures and Schottky barriers. The energy position and photoionization characteristics of deep levels of melt-grown GaAs and the Cr level in high-resistivity GaAs were determined. The advantages of this method over existing methods for deep-level spectroscopy are discussed.
Orpana, H.; Vachon, J.; Dykxhoorn, J.; McRae, L.; Jayaraman, G.
2016-01-01
Abstract Introduction: The Mental Health Strategy for Canada identified a need to enhance the collection of data on mental health in Canada. While surveillance systems on mental illness have been established, a data gap for monitoring positive mental health and its determinants was identified. The goal of this project was to develop a Positive Mental Health Surveillance Indicator Framework, to provide a picture of the state of positive mental health and its determinants in Canada. Data from this surveillance framework will be used to inform programs and policies to improve the mental health of Canadians. Methods: A literature review and environmental scan were conducted to provide the theoretical base for the framework, and to identify potential positive mental health outcomes and risk and protective factors. The Public Health Agency of Canada’s definition of positive mental health was adopted as the conceptual basis for the outcomes of this framework. After identifying a comprehensive list of risk and protective factors, mental health experts, other governmental partners and non-governmental stakeholders were consulted to prioritize these indicators. Subsequently, these groups were consulted to identify the most promising measurement approaches for each indicator. Results: A conceptual framework for surveillance of positive mental health and its determinants has been developed to contain 5 outcome indicators and 25 determinant indicators organized within 4 domains at the individual, family, community and societal level. This indicator framework addresses a data gap identified in Canada’s strategy for mental health and will be used to inform programs and policies to improve the mental health status of Canadians throughout the life course. PMID:26789022
Fu, Jianwei; Yang, Xiaoquan; Wang, Kan; Luo, Qingming; Gong, Hui
2011-12-01
A combined system of fluorescence molecular tomography and microcomputed tomography (FMT&mCT) can provide molecular and anatomical information of small animals in a single study with intrinsically coregistered images. The anatomical information provided by the mCT subsystem is commonly used as a reference to locate the fluorophore distribution or as a priori structural information to improve the performance of FMT. Therefore, the transformation between the coordinate systems of the subsystem needs to be determined in advanced. A cocalibration method for the combined system of FMT&mCT is proposed. First, linear models are adopted to describe the galvano mirrors and the charge-coupled device (CCD) camera in the FMT subsystem. Second, the position and orientation of the galvano mirrors are determined with the input voltages of the galvano mirrors and the markers, whose positions are predetermined. The position, orientation and normalized pixel size of the CCD camera are obtained by analysing the projections of a point-like marker at different positions. Finally, the orientation and position of sources and the corresponding relationship between the detectors and their projections on the image plane are predicted. Because the positions of the markers are acquired with mCT, the registration of the FMT and mCT could be realized by direct image fusion. The accuracy and consistency of this method in the presence of noise is evaluated by computer simulation. Next, a practical implementation for an experimental FMT&mCT system is carried out and validated. The maximum prediction error of the source positions on the surface of a cylindrical phantom is within 0.375 mm and that of the projections of a point-like marker is within 0.629 pixel. Finally, imaging experiments of the fluorophore distribution in a cylindrical phantom and a phantom with a complex shape demonstrate the feasibility of the proposed method. This method is universal in FMT&mCT, which could be performed with no restriction on the system geometry, calibration phantoms or imaging objects.
Analysis of RDSS positioning accuracy based on RNSS wide area differential technique
NASA Astrophysics Data System (ADS)
Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei
2013-10-01
The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.
Effect of Receiver Choosing on Point Positions Determination in Network RTK
NASA Astrophysics Data System (ADS)
Bulbul, Sercan; Inal, Cevat
2016-04-01
Nowadays, the developments in GNSS technique allow to determinate point positioning in real time. Initially, point positioning was determined by RTK (Real Time Kinematic) based on a reference station. But, to avoid systematic errors in this method, distance between the reference points and rover receiver must be shorter than10 km. To overcome this restriction in RTK method, the idea of setting more than one reference point had been suggested and, CORS (Continuously Operations Reference Systems) was put into practice. Today, countries like ABD, Germany, Japan etc. have set CORS network. CORS-TR network which has 146 reference points has also been established in 2009 in Turkey. In CORS-TR network, active CORS approach was adopted. In Turkey, CORS-TR reference stations covering whole country are interconnected and, the positions of these stations and atmospheric corrections are continuously calculated. In this study, in a selected point, RTK measurements based on CORS-TR, were made with different receivers (JAVAD TRIUMPH-1, TOPCON Hiper V, MAGELLAN PRoMark 500, PENTAX SMT888-3G, SATLAB SL-600) and with different correction techniques (VRS, FKP, MAC). In the measurements, epoch interval was taken as 5 seconds and measurement time as 1 hour. According to each receiver and each correction technique, means and differences between maximum and minimum values of measured coordinates, root mean squares in the directions of coordinate axis and 2D and 3D positioning precisions were calculated, the results were evaluated by statistical methods and the obtained graphics were interpreted. After evaluation of the measurements and calculations, for each receiver and each correction technique; the coordinate differences between maximum and minimum values were measured to be less than 8 cm, root mean squares in coordinate axis directions less than ±1.5 cm, 2D point positioning precisions less than ±1.5 cm and 3D point positioning precisions less than ±1.5 cm. In the measurement point, it has been concluded that VRS correction technique is generally better than other corrections techniques.
Stachelska, Milena Alicja
2017-01-01
Yersiniosis is believed to be the third most common intestinal zoonosis in the European Union, after campylobacteriosis and salmonellosis. Yersinia enterocolitica is the most common species responsible for human infections. Pigs are regarded as the biggest reservoir of pathogenic Y. enterocolitica strains, which are mainly isolated from pig tonsils. The aim of this paper is to examine the prevalence of inv-positive and ail-positive Y. enterocolitica in pigs which were slaughtered in a Polish abattoir. Real-time PCR and culture methods were used to assess the prevalence of patho- genic Y. enterocolitica strains in pig tonsils. Real-time PCR was applied to detect inv-positive and ail-positive Y. enterocolitica. Y. enterocolitica was also isolated by applying direct plating, unselective (tryptic soy broth) and selective (irgasan-ticarcillin-potassium chlorate bouillon) enrichment. A total of 180 pigs were studied, of which 85% and 32% respectively were found to be infected with inv-positive and ail-positive Y. enterocolitica. The 92 inv-positive and ail-positive isolates, from 57 culture- positive tonsils, underwent bio- and serotyping. The most common was bioserotype 4/O:3, which was found in 53 (93%) out of 57 culture-positive tonsils. Strains of bioserotypes 2/O:5, 2/O:9 and 2/O:5.27 occurred in significantly lower numbers. The prevalence of inv-positive and ail-positive Y. enterocolitica was found to be high in the ton- sils of slaughtered pigs, using real-time PCR. The real-time PCR method for the detection and identification of pathogenic Y. enterocolitica is sensitive and specific, which has been verified by specificity and sensitivity tests using the pure cultures. Serotypes were distinguished from each other using PCR serotyping. The PCR method was essential in forming our conclusions.
NASA Astrophysics Data System (ADS)
Dindar, Cigdem; Kiran, Erdogan
2002-10-01
We present a new sensor configuration and data reduction process to improve the accuracy and reliability of determining the terminal velocity of a falling sinker in falling body type viscometers. This procedure is based on the use of multiple linear variable differential transformer sensors and precise mapping of the sensor signal and position along with the time of fall which is then converted to distance versus fall time along the complete fall path. The method and its use in determination of high-pressure viscosity of n-pentane and carbon dioxide are described.
2014-01-01
Background Hospital cleanliness in hospitals with a tendency toward long-term care in Japan remains unevaluated. We therefore visualized hospital cleanliness in Japan over a 2-month period by two distinct popular methods: ATP bioluminescence (ATP method) and the standard stamp agar method (stamp method). Methods The surfaces of 752 sites within nurse and patient areas in three hospitals located in a central area of Sapporo, Japan were evaluated by the ATP and stamp methods, and each surface was sampled 8 times in 2 months. These areas were located in different ward units (Internal Medicine, Surgery, and Obstetrics and Gynecology). Detection limits for the ATP and stamp methods were determined by spike experiments with a diluted bacterial solution and a wipe test on student tables not in use during winter vacation, respectively. Values were expressed as the fold change over the detection limit, and a sample with a value higher than the detection limit by either method was defined as positive. Results The detection limits were determined to be 127 relative light units (RLU) per 100 cm2 for the ATP method and 5.3 colony-forming units (CFU) per 10 cm2 for the stamp method. The positive frequency of the ATP and stamp methods was 59.8% (450/752) and 47.7% (359/752), respectively, although no significant difference in the positive frequency among the hospitals was seen. Both methods revealed the presence of a wide range of organic contamination spread via hand touching, including microbial contamination, with a preponderance on the entrance floor and in patient rooms. Interestingly, the data of both methods indicated considerable variability regardless of daily visual assessment with usual wiping, and positive surfaces were irregularly seen. Nurse areas were relatively cleaner than patient areas. Finally, there was no significant correlation between the number of patients or medical personnel in the hospital and organic or microbiological contamination. Conclusions Ongoing daily hospital cleanliness is not sufficient in Japanese hospitals with a tendency toward long-term care. PMID:24593868
Time transfer using geostationary satellites: Implementation of a Kalman filter
NASA Technical Reports Server (NTRS)
Meyer, F.
1994-01-01
Since 1988, various experiments have shown that the TV signals transmitted by direct TV satellites may easily be used to perform time transfers at the level of a few tens of nanoseconds, the main source of error being the uncertainty on the satellite position. We first present the two methods used in our experiment to reduce the effects of the satellite residual motion: the first one consists in estimating the longitude variations of the satellite and then using this information to improve other measurements. This allows reducing the uncertainty to values between 9 and 50 nanoseconds according to the position of the involved stations. In the second method we determine the satellite position by using the data collected by three calibrated stations. Time transfer between each of these stations and a fourth one has been shown to be achievable at the precision level of ten nanoseconds. A new approach based on the use of a Kalman filter is proposed in order to take into account the dynamics of the geostationary satellite. The precisions on orbital elements and clock differences and rates determination given by the first simulated applications of the Kalman filter are presented and compared to those obtained by the other methods.
Rozenberg, P; Porcher, R; Salomon, L J; Boirot, F; Morin, C; Ville, Y
2008-03-01
To evaluate the learning curve of transabdominal sonography for the determination of fetal head position in labor and to compare it with that of digital vaginal examination. A student midwife who had never performed digital vaginal examination or ultrasound examination was recruited for this study. Instructions on how to perform digital vaginal examination and ultrasound examination were given before and after completing the first vaginal and ultrasound examinations, and repeated for each subsequent examination for as long as necessary. Digital and ultrasound diagnoses of the fetal head position were always performed first by the student midwife, and repeated by an experienced midwife or physician. The learning curve for identification of the fetal head position by either one of the two methods was analyzed using the cumulative sums (CUSUM) method for measurement errors. One hundred patients underwent digital vaginal examination and 99 had transabdominal sonography for the determination of fetal head position. An error rate of around 50% for vaginal examination was nearly constant during the first 50 examinations. It decreased subsequently, to stabilize at a low level from the 82(nd) patient. Errors of +/- 180 degrees were the most frequent. The learning curve for ultrasound imaging stabilized earlier than that of vaginal examination, after the 32(nd) patient. The most frequent errors with ultrasound examination were the inability to conclude on a diagnosis, particularly at the beginning of training, followed by errors of +/- 45 degrees. Based on our findings for the student tested, learning and accuracy of the determination of fetal head position in labor were easier and higher, respectively, with transabdominal sonography than with digital examination. This should encourage physicians to introduce clinical ultrasound examination into their practice. CUSUM charts provide a reliable representation of the learning curve, by accumulating evidence of performance. Copyright (c) 2008 ISUOG. Published by John Wiley & Sons, Ltd.
Thappali, Satheeshmanikandan R. S.; Varanasi, Kanthikiran; Veeraraghavan, Sridhar; Arla, Rambabu; Chennupati, Sandhya; Rajamanickam, Madheswaran; Vakkalanka, Swaroop; Khagga, Mukkanti
2012-01-01
A new method for the simultaneous determination of celecoxib, erlotinib, and its active metabolite desmethyl-erlotinib (OSI-420) in rat plasma, by liquid chromatography/tandem mass spectrometry with positive/negative ion-switching electrospray ionization mode, was developed and validated. Protein precipitation with methanol was selected as the method for preparing the samples. The analytes were separated on a reverse-phase C18 column (50mm×4.6mm i.d., 3μ) using methanol: 2 mM ammonium acetate buffer, and pH 4.0 as the mobile phase at a flow rate 0.8 mL/min. Sitagliptin and Efervirenz were used as the internal standards for quantification. The determination was carried out on a Theremo Finnigan Quantam ultra triple-quadrupole mass spectrometer, operated in selected reaction monitoring (SRM) mode using the following transitions monitored simultaneously: positive m/z 394.5→278.1 for erlotinib, m/z 380.3→278.1 for desmethyl erlotinib (OSI-420), and negative m/z −380.1→ −316.3 for celecoxib. The limits of quantification (LOQs) were 1.5 ng/mL for Celecoxib, erlotinib, and OSI-420. Within- and between-day accuracy and precision of the validated method were within the acceptable limits of < 15% at all concentrations. The quantitation method was successfully applied for the simultaneous estimation of celecoxib, erlotinib, and desmethyl erlotinib in a pharmacokinetic study in Wistar rats. PMID:23008811
NASA Technical Reports Server (NTRS)
Arumugam, Darmindra D. (Inventor)
2017-01-01
Methods and systems for non-line-of-sight positioning are disclosed for arbitrarily short to long ranges, where positioning is achieved using a single anchor not requiring tri-/multi-lateration or tri-/multi-angulation. Magnetoquasistatic fields can be used to determine position and orientation of a device in two or three dimensions. Two or three axis coils can be used in receivers and transmitters. The magnetoquasistatic equations are solved in different scenarios, taking into consideration the image signals originating from the interaction between the fields and ground/earth.
Study for elevator cage position during the braking period
NASA Astrophysics Data System (ADS)
Ungureanu, M.; Crăciun, I.; Bănică, M.; Dăscălescu, A.
2016-08-01
An important problem in order to study an elevator cage position for its braking period is to establish a correlation between the studies in the fields of mechanics and electric. The classical approaches to establish the elevator kinematic parameters are position, velocity and acceleration, but the last studies performed in order to determine the positioning performed by introducing supplementary another parameter - the jerk- which is derived with respect to time of acceleration. Thus we get a precise method for cage motion control for third-order trajectory planning.
NASA Astrophysics Data System (ADS)
Sequeira, Dane; Wang, Xue-She; Mann, B. P.
2018-02-01
This paper examines the bifurcation and stability behavior of inhomogeneous floating bodies, specifically a rectangular prism with asymmetric mass distribution. A nonlinear model is developed to determine the stability of the upright and tilted equilibrium positions as a function of the vertical position of the center of mass within the prism. These equilibria positions are defined by an angle of rotation and a vertical position where rotational motion is restricted to a two dimensional plane. Numerical investigations are conducted using path-following continuation methods to determine equilibria solutions and evaluate stability. Bifurcation diagrams and basins of attraction that illustrate the stability of the equilibrium positions as a function of the vertical position of the center of mass within the prism are generated. These results reveal complex stability behavior with many coexisting solutions. Static experiments are conducted to validate equilibria orientations against numerical predictions with results showing good agreement. Dynamic experiments that examine potential well hopping behavior in a waveflume for various wave conditions are also conducted.
2016-11-02
million per year to U.S. hospitals [1,2]. Current methods of assessing ETT position include chest radiography, end- tidal carbon dioxide (EtCO2...lasers to generate sound waves to determine the position of “labeled” ETTs within millimeters of accuracy. Laser optoacoustic imaging combines the merits...of optical tomography (high optical contrast) and ultrasound imaging (minimal scattering of acoustic waves ) to yield high contrast, sensitivity, and
Image processing occupancy sensor
Brackney, Larry J.
2016-09-27
A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.
Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays
Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong
2005-09-20
A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.
Screening antimicrobial activity of various extracts of Urtica dioica.
Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila
2012-12-01
Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.
Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas
2007-10-01
To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M) = 100 mm, the estimated maximum errors in 3D position and angular orientation were 1.7 mm and 0.33 degrees , respectively. For r(M) = 175 mm, the respective values were 2.9 mm and 0.44 degrees . Detection and localization of MR-visible markers by morphological image processing is feasible, simple, and very accurate. In combination with safe wireless markers, the method is found to be useful for image-guided procedures. (c) 2007 Wiley-Liss, Inc.
Apparatus and method for using radar to evaluate wind flow fields for wind energy applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John; Hirth, Brian; Guynes, Jerry
The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.
Photometry unlocks 3D information from 2D localization microscopy data.
Franke, Christian; Sauer, Markus; van de Linde, Sebastian
2017-01-01
We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.
Error compensation for thermally induced errors on a machine tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krulewich, D.A.
1996-11-08
Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.
Distributed estimation of sensors position in underwater wireless sensor network
NASA Astrophysics Data System (ADS)
Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi
2016-05-01
In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.
Precise positioning method for multi-process connecting based on binocular vision
NASA Astrophysics Data System (ADS)
Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan
2016-01-01
With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.
GPS Attitude Determination Using Deployable-Mounted Antennas
NASA Technical Reports Server (NTRS)
Osborne, Michael L.; Tolson, Robert H.
1996-01-01
The primary objective of this investigation is to develop a method to solve for spacecraft attitude in the presence of potential incomplete antenna deployment. Most research on the use of the Global Positioning System (GPS) in attitude determination has assumed that the antenna baselines are known to less than 5 centimeters, or one quarter of the GPS signal wavelength. However, if the GPS antennas are mounted on a deployable fixture such as a solar panel, the actual antenna positions will not necessarily be within 5 cm of nominal. Incomplete antenna deployment could cause the baselines to be grossly in error, perhaps by as much as a meter. Overcoming this large uncertainty in order to accurately determine attitude is the focus of this study. To this end, a two-step solution method is proposed. The first step uses a least-squares estimate of the baselines to geometrically calculate the deployment angle errors of the solar panels. For the spacecraft under investigation, the first step determines the baselines to 3-4 cm with 4-8 minutes of data. A Kalman filter is then used to complete the attitude determination process, resulting in typical attitude errors of 0.50.
Watanabe, Reina; Shimoda, Tomoko; Yano, Rika; Hayashi, Yasuhiro; Nakamura, Shinji; Matsuo, Junji; Yamaguchi, Hiroyuki
2014-03-04
Hospital cleanliness in hospitals with a tendency toward long-term care in Japan remains unevaluated. We therefore visualized hospital cleanliness in Japan over a 2-month period by two distinct popular methods: ATP bioluminescence (ATP method) and the standard stamp agar method (stamp method). The surfaces of 752 sites within nurse and patient areas in three hospitals located in a central area of Sapporo, Japan were evaluated by the ATP and stamp methods, and each surface was sampled 8 times in 2 months. These areas were located in different ward units (Internal Medicine, Surgery, and Obstetrics and Gynecology). Detection limits for the ATP and stamp methods were determined by spike experiments with a diluted bacterial solution and a wipe test on student tables not in use during winter vacation, respectively. Values were expressed as the fold change over the detection limit, and a sample with a value higher than the detection limit by either method was defined as positive. The detection limits were determined to be 127 relative light units (RLU) per 100 cm2 for the ATP method and 5.3 colony-forming units (CFU) per 10 cm2 for the stamp method. The positive frequency of the ATP and stamp methods was 59.8% (450/752) and 47.7% (359/752), respectively, although no significant difference in the positive frequency among the hospitals was seen. Both methods revealed the presence of a wide range of organic contamination spread via hand touching, including microbial contamination, with a preponderance on the entrance floor and in patient rooms. Interestingly, the data of both methods indicated considerable variability regardless of daily visual assessment with usual wiping, and positive surfaces were irregularly seen. Nurse areas were relatively cleaner than patient areas. Finally, there was no significant correlation between the number of patients or medical personnel in the hospital and organic or microbiological contamination. Ongoing daily hospital cleanliness is not sufficient in Japanese hospitals with a tendency toward long-term care.
Research on detecting spot selection and signal pretreatment of four-quadrant detector
NASA Astrophysics Data System (ADS)
Liu, Wenli; Han, Shaokun
2018-01-01
The four-quadrant detector is a photoelectric position sensor based on the photovoltaic effect. It is widely used in many fields such as target azimuth measurement, end-guided weapon and so on. The selection of the spot and the calculation of the center position are one of the main factors that affect the accuracy of the position measurement of the fourquadrant detector. In order to improve the positioning accuracy of the four-quadrant detector, the method of determining the best spot size is obtained from the theoretical research. The output signal of the four-quadrant detector is a weak narrow pulse signal, which needs to be magnified and widened at high magnitudes. The signal preprocessing method is simulated and experimentally studied. Detecting the spot and the signal processing is realized by the four-quadrant detector, which is important for the use of quadrant detectors for high-precision position measurements.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Bastin, Benjamin; Bird, Patrick; Crowley, Erin; Benzinger, M Joseph; Agin, James; Goins, David; Sohier, Daniele; Timke, Markus; Awad, Marian; Kostrzewa, Markus
2018-04-27
The Bruker MALDI Biotyper® method utilizes matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for the rapid and accurate confirmation and identification of Gram-positive bacteria from select media types. This alternative method was evaluated using nonselective and selective agar plates to identify and confirm Listeria monocytogenes, Listeria species, and select Gram-positive bacteria. Results obtained by the Bruker MALDI Biotyper were compared with the traditional biochemical methods as prescribed in the appropriate reference method standards. Sixteen collaborators from 16 different laboratories located within the European Union participated in the collaborative study. A total of 36 blind-coded isolates were evaluated by each collaborator. In each set of 36 organisms, there were 16 L. monocytogenes strains, 12 non- monocytogenes Listeria species strains, and 8 additional Gram-positive exclusivity strains. After testing was completed, the total percentage of correct identifications (to both genus and species level) and confirmation from each agar type for each strain was determined at a percentage of 99.9% to the genus level and 98.8% to the species level. The results indicated that the alternative method produced equivalent results when compared with the confirmatory procedures specified by each reference method.
SU-F-E-18: Training Monthly QA of Medical Accelerators: Illustrated Instructions for Self-Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Court, L; Wang, H; Aten, D
Purpose: To develop and test clear illustrated instructions for training of monthly mechanical QA of medical linear accelerators. Methods: Illustrated instructions were created for monthly mechanical QA with tolerance tabulated, and underwent several steps of review and refinement. Testers with zero QA experience were then recruited from our radiotherapy department (1 student, 2 computational scientists and 8 dosimetrists). The following parameters were progressively de-calibrated on a Varian C-series linac: Group A = gantry angle, ceiling laser position, X1 jaw position, couch longitudinal position, physical graticule position (5 testers); Group B = Group A + wall laser position, couch lateral andmore » vertical position, collimator angle (3 testers); Group C = Group B + couch angle, wall laser angle, and optical distance indicator (3 testers). Testers were taught how to use the linac, and then used the instructions to try to identify these errors. A physicist observed each session, giving support on machine operation, as necessary. The instructions were further tested with groups of therapists, graduate students and physics residents at multiple institutions. We have also changed the language of the instructions to simulate using the instructions with non-English speakers. Results: Testers were able to follow the instructions. They determined gantry, collimator and couch angle errors within 0.4, 0.3, and 0.9degrees of the actual changed values, respectively. Laser positions were determined within 1mm, and jaw positions within 2mm. Couch position errors were determined within 2 and 3mm for lateral/longitudinal and vertical errors, respectively. Accessory positioning errors were determined within 1mm. ODI errors were determined within 2mm when comparing with distance sticks, and 6mm when using blocks, indicating that distance sticks should be the preferred approach for inexperienced staff. Conclusion: Inexperienced users were able to follow these instructions, and catch errors within the criteria suggested by AAPM TG142 for linacs used for IMRT.« less
ERIC Educational Resources Information Center
Setzler, Hubert H., Jr.; And Others
Rolebooks and technical Iberian Spanish vocabulary for the job position of military advisory and assistance group (MAAG) officer of the Air Force are presented. The materials are part of the communication/language objectives-based system (C/LOBS), which supports the front-end analysis efforts of the Defense Language Institute Foreign Language…
Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing
Henkel, Patrick
2017-01-01
Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369
Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.
Henkel, Patrick
2017-06-08
Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.
Positive Coping: A Unique Characteristic to Pre-Hospital Emergency Personnel
Ebadi, Abbas; Froutan, Razieh
2017-01-01
Introduction It is important to gain a thorough understanding of positive coping methods adopted by medical emergency personnel to manage stressful situations associated with accidents and emergencies. Thus, the purpose of this study was to gain a better understanding of positive coping strategies used by emergency medical service providers. Methods This study was conducted using a qualitative content analysis method. The study participants included 28 pre-hospital emergency personnel selected from emergency medical service providers in bases located in different regions of the city of Mashhad, Iran, from April to November 2016. The purposive sampling method also was used in this study, which was continued until data saturation was reached. To collect the data, semistructured open interviews, observations, and field notes were used. Results Four categories and 10 subcategories were extracted from the data on the experiences of pre-hospital emergency personnel related to positive coping strategies. The four categories included work engagement, smart capability, positive feedback, and crisis pioneering. All the obtained categories had their own subcategories, which were determined based on their distinctly integrated properties. Conclusion The results of this study show that positive coping consists of several concepts used by medical emergency personnel, management of stressful situations, and ultimately quality of pre-hospital clinical services. Given the fact that efficient methods such as positive coping can prevent debilitating stress in an individual, pre-hospital emergency authorities should seek to build and strengthen “positive coping” characteristics in pre-hospital medical emergency personnel to deal with accidents, emergencies, and injuries through adopting regular and dynamic policies. PMID:28243409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, B; Hu, E; Yu, C
2015-06-15
Purpose: A Tomo-Cinegraphy (TC) is a method to generate a series of temporal tomographic images from projection images of the on-board imager (OBI) while gantry is moving. It is to test if this technique is useful to determine a lung tumor position during treatments. Methods: Tomographic image via background subtraction, TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). This idea was extended to a TC, which enables to generate tomographic images of same geometry from the projectionmore » of different gantry angles and different breathing phases. Projection images of a lung patient for CBCT acquisition are used to generate TC images. A region of interest (ROI) is selected around a tumor adding 2cm margins. Center of mass (COM) of the ROI is traced to determine tumor position for every projection images. Results: Tumor is visible in the TC images while the OBI projections are not. The coordinates of the COMs represent the temporal tumor positions. While, it is not possible to trace the tumor motion using the projection images. A source of time delay is the time to acquire projection images, which is always less than a second. Conclusion: TC allows tracking the tumor positions without fiducial markers in real time for some lung patients, if the projection images are acquired during treatments. Partially supported by NIH R01CA133539.« less
A novel isoflavone profiling method based on UPLC-PDA-ESI-MS.
Zhang, Shuang; Zheng, Zong-Ping; Zeng, Mao-Mao; He, Zhi-Yong; Tao, Guan-Jun; Qin, Fang; Chen, Jie
2017-03-15
A novel non-targeted isoflavone profiling method was developed using the diagnostic fragment-ion-based extension strategy, based on ultra-high performance liquid chromatography coupled with photo-diode array detector and electrospray ionization-mass spectrometry (UPLC-PDA-ESI-MS). 16 types of isoflavones were obtained in positive mode, but only 12 were obtained in negative mode due to the absence of precursor ions. Malonyldaidzin and malonylgenistin glycosylated at the 4'-O position or malonylated at the 4″-O position of glucose were indicated by their retention behavior and fragmentation pattern. Three possible quantification methods in one run based on UPLC-PDA and UPLC-ESI-MS were validated and compared, suggesting that methods based on UPLC-ESI-MS possess remarkable selectivity and sensitivity. Impermissible quantitative deviations induced by the linearity calibration with 400-fold dynamic range was observed for the first time and was recalibrated with a 20-fold dynamic range. These results suggest that isoflavones and their stereoisomers can be simultaneously determined by positive-ion UPLC-ESI-MS in soymilk. Copyright © 2016. Published by Elsevier Ltd.
Accuracy of meteoroid speeds determined using a Fresnel transform procedure
NASA Astrophysics Data System (ADS)
Campbell, L.; Elford, W. G.
2006-03-01
New methods of determining meteor speeds using radar are giving results with an accuracy of better that 1%. It is anticipated that this degree of precision will allow determinations of pre-atmospheric speeds of shower meteors as well as estimates of the density of the meteoroids. The next step is to determine under what conditions these new measurements are reliable. Errors in meteoroid speeds determined using a Fresnel transform procedure applied to radar meteor data are investigated. The procedure determines the reflectivity of a meteor trail as a function of position, by application of the Fresnel transform to the time series of a radar reflection from the trail observed at a single detection station. It has previously been shown that this procedure can be used to determine the speed of the meteoroid, by finding the assumed speed that gives a reflectivity image that best meets physical expectations. It has also been shown that speeds determined by this method agree with those from the well established "pre-t o phase" method when applied to reflections with a high signal to noise ratio. However, there is a discrepancy between the two methods for weaker reflections. A method to investigate the discrepancy is described and applied, with the finding that the speed determined by using the Fresnel transform procedure is more accurate for weaker reflections than that given by the "pre-t o phase" method.
NASA Astrophysics Data System (ADS)
Banishev, A. A.; Vrzheshch, E. P.; Shirshin, E. A.
2009-03-01
Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima).
What is the best method for assessing lower limb force-velocity relationship?
Giroux, C; Rabita, G; Chollet, D; Guilhem, G
2015-02-01
This study determined the concurrent validity and reliability of force, velocity and power measurements provided by accelerometry, linear position transducer and Samozino's methods, during loaded squat jumps. 17 subjects performed squat jumps on 2 separate occasions in 7 loading conditions (0-60% of the maximal concentric load). Force, velocity and power patterns were averaged over the push-off phase using accelerometry, linear position transducer and a method based on key positions measurements during squat jump, and compared to force plate measurements. Concurrent validity analyses indicated very good agreement with the reference method (CV=6.4-14.5%). Force, velocity and power patterns comparison confirmed the agreement with slight differences for high-velocity movements. The validity of measurements was equivalent for all tested methods (r=0.87-0.98). Bland-Altman plots showed a lower agreement for velocity and power compared to force. Mean force, velocity and power were reliable for all methods (ICC=0.84-0.99), especially for Samozino's method (CV=2.7-8.6%). Our findings showed that present methods are valid and reliable in different loading conditions and permit between-session comparisons and characterization of training-induced effects. While linear position transducer and accelerometer allow for examining the whole time-course of kinetic patterns, Samozino's method benefits from a better reliability and ease of processing. © Georg Thieme Verlag KG Stuttgart · New York.
Buchan, Blake W.; Ginocchio, Christine C.; Manii, Ryhana; Cavagnolo, Robert; Pancholi, Preeti; Swyers, Lettie; Thomson, Richard B.; Anderson, Christopher; Kaul, Karen; Ledeboer, Nathan A.
2013-01-01
Background A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria. Methods and Findings 1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus. Conclusions The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors' Summary PMID:23843749
Experimental investigation of false positive errors in auditory species occurrence surveys
Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.
2012-01-01
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.
Kim, Jaeyeon; Kim, Nayoung; Jo, Hyun Jin; Park, Ji Hyun; Nam, Ryoung Hee; Seok, Yeong-Jae; Kim, Yeon-Ran; Kim, Joo Sung; Kim, Jung Mogg; Kim, Jung Min; Lee, Dong Ho; Jung, Hyun Chae
2015-10-01
Sequencing of 16S ribosomal RNA (rRNA) gene has improved the characterization of microbial communities. It enabled the detection of low abundance gastric Helicobacter pylori sequences even in subjects that were found to be H. pylori negative with conventional methods. The objective of this study was to obtain a cutoff value for H. pylori colonization in gastric mucosa samples by pyrosequencing method. Gastric mucosal biopsies were taken from 63 subjects whose H. pylori status was determined by a combination of serology, rapid urease test, culture, and histology. Microbial DNA from mucosal samples was amplified by PCR using universal bacterial primers. 16S rDNA amplicons were pyrosequenced. ROC curve analysis was performed to determine the cutoff value for H. pylori colonization by pyrosequencing. In addition, temporal changes in the stomach microbiota were observed in eight initially H. pylori-positive and eight H. pylori-negative subjects at a single time point 1-8 years later. Of the 63 subjects, the presence of H. pylori sequences was detected in all (28/28) conventionally H. pylori-positive samples and in 60% (21/35) of H. pylori-negative samples. The average percent of H. pylori reads in each sample was 0.67 ± 1.09% in the H. pylori-negative group. Cutoff value for clinically positive H. pylori status was approximately 1.22% based on ROC curve analysis (AUC = 0.957; p < .001). Helicobacter pylori was successfully eradicated in five of seven treated H. pylori-positive subjects (71.4%), and the percentage of H. pylori reads in these five subjects dropped from 1.3-95.18% to 0-0.16% after eradication. These results suggest that the cutoff value of H. pylori sequence percentage for H. pylori colonization by pyrosequencing could be set at approximately 1%. It might be helpful to analyze gastric microbiota related to H. pylori sequence status. © 2015 John Wiley & Sons Ltd.
Method of Identifying a Base in a Nucleic Acid
Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua
1999-01-01
Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.
Parnami, Priyanka; Gupta, Deepak; Arora, Vishal; Bhalla, Saurabh; Kumar, Adarsh; Malik, Rashi
2015-01-01
To familiarize new criteria to access vertical position of mental foramen in panoramic radiographs. Furthermore, to determine and compare the position and symmetry of mental foramen in horizontal as well as in vertical plane in Indian population and to compare the results with those reported for other populations in the literature. Further gender differences in mental foramen position were also accessed to comment on the reliability of panoramic radiographs for sex determination. Methods and Material : Six hundred digital panoramic radiographs were selected and studied regarding the location and symmetry of mental foramen. They were also compared with the other studies in the literature. The method employed is similar to that described by Al Jasser and Nwoku for horizontal position and Fishal et al. for vertical position of mental foramen. Certain modifications were carried out in Fishal's criteria for vertical position assessment. Results : The commonest position of the mental foramen in horizontal plane was in line with the longitudinal axis of the second premolar (61.0%) while in vertical plane it was found to be located inferior to the apex of second premolar (72.2%). Conclusion : Mental foramen exists in different locations and possesses many variations. Hence, Individual, gender, age, race and assessing technique largely influence these variations. It suggests that the clinicians should carefully identify these anatomical landmarks, by analyzing all influencing factors, prior to their diagnostic or the other dental, surgical and implant operation.
NASA Astrophysics Data System (ADS)
Han, Guang; Liu, Jin; Liu, Rong; Xu, Kexin
2016-10-01
Position-based reference measurement method is taken as one of the most promising method in non-invasive measurement of blood glucose based on spectroscopic methodology. Selecting an appropriate source-detector separation as the reference position is important for deducting the influence of background change and reducing the loss of useful signals. Our group proposed a special source-detector separation named floating-reference position where the signal contains only background change, that is to say, the signal at this source-detector separation is uncorrelated with glucose concentration. The existence of floating-reference position has been verified in a three layer skin by Monte Carlo simulation and in the in vitro experiment. But it is difficult to verify the existence of floating-reference position on the human body because the interference is more complex during in vivo experiment. Aiming at this situation, this paper studies the determination of the best reference position on human body by collecting signals at several source-detector separations on the palm and measuring the true blood glucose levels during oral glucose tolerance test (OGTT) experiments of 3 volunteers. Partial least square (PLS) calibration model is established between the signals at every source-detector separation and its corresponding blood glucose levels. The results shows that the correlation coefficient (R) between 1.32 mm to 1.88 mm is lowest and they can be used as reference for background correction. The signal of this special position is important for improving the accuracy of near-infrared non-invasive blood glucose measurement.
46 CFR 160.052-6 - Construction-nonstandard vests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the following volume of plastic foam buoyant material, determined by the displacement method: (1) Five... methods used for nonstandard buoyant vests must be equivalent to those requirements in § 160.052-5 for a... wearer in an upright or backward position with head and face out of water; (2) Have no tendency to turn a...
46 CFR 160.052-6 - Construction-nonstandard vests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the following volume of plastic foam buoyant material, determined by the displacement method: (1) Five... methods used for nonstandard buoyant vests must be equivalent to those requirements in § 160.052-5 for a... wearer in an upright or backward position with head and face out of water; (2) Have no tendency to turn a...
46 CFR 160.052-6 - Construction-nonstandard vests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the following volume of plastic foam buoyant material, determined by the displacement method: (1) Five... methods used for nonstandard buoyant vests must be equivalent to those requirements in § 160.052-5 for a... wearer in an upright or backward position with head and face out of water; (2) Have no tendency to turn a...
46 CFR 160.052-6 - Construction-nonstandard vests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the following volume of plastic foam buoyant material, determined by the displacement method: (1) Five... methods used for nonstandard buoyant vests must be equivalent to those requirements in § 160.052-5 for a... wearer in an upright or backward position with head and face out of water; (2) Have no tendency to turn a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasahara, M; Arimura, H; Hirose, T
Purpose: Current image-guided radiotherapy (IGRT) procedure is bonebased patient positioning, followed by subjective manual correction using cone beam computed tomography (CBCT). This procedure might cause the misalignment of the patient positioning. Automatic target-based patient positioning systems achieve the better reproducibility of patient setup. Our aim of this study was to develop an automatic target-based patient positioning framework for IGRT with CBCT images in prostate cancer treatment. Methods: Seventy-three CBCT images of 10 patients and 24 planning CT images with digital imaging and communications in medicine for radiotherapy (DICOM-RT) structures were used for this study. Our proposed framework started from themore » generation of probabilistic atlases of bone and prostate from 24 planning CT images and prostate contours, which were made in the treatment planning. Next, the gray-scale histograms of CBCT values within CTV regions in the planning CT images were obtained as the occurrence probability of the CBCT values. Then, CBCT images were registered to the atlases using a rigid registration with mutual information. Finally, prostate regions were estimated by applying the Bayesian inference to CBCT images with the probabilistic atlases and CBCT value occurrence probability. The proposed framework was evaluated by calculating the Euclidean distance of errors between two centroids of prostate regions determined by our method and ground truths of manual delineations by a radiation oncologist and a medical physicist on CBCT images for 10 patients. Results: The average Euclidean distance between the centroids of extracted prostate regions determined by our proposed method and ground truths was 4.4 mm. The average errors for each direction were 1.8 mm in anteroposterior direction, 0.6 mm in lateral direction and 2.1 mm in craniocaudal direction. Conclusion: Our proposed framework based on probabilistic atlases and Bayesian inference might be feasible to automatically determine prostate regions on CBCT images.« less
Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures
NASA Astrophysics Data System (ADS)
Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar
2017-02-01
A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.
Almeida González, Delia; Roces Varela, Alfredo; Marcelino Rodríguez, Itahisa; González Vera, Alexander; Delgado Sánchez, Mónica; Aznar Esquivel, Antonio; Casañas Rodríguez, Carlos; Cabrera de León, Antonio
2015-12-01
Several methods have been used to measure anti-double-stranded DNA auto-antibody (anti-dsDNA). Our aim was to determine the most efficient strategy to test anti-dsDNA in systemic lupus erythematosus (SLE). In this study, anti-dsDNA and anti-nuclear antibody (ANA) tests were requested for 644 patients. Anti-dsDNA was tested by RIA, ELISA and CLIA in all patients. The results indicated that 78 patients had a positive anti-dsDNA test according to at least one of the methods. After a 3-year follow-up period only 26 patients were diagnosed with SLE. We evaluated each method and combination of methods. Specificity and positive predictive value (PPV) increased with the number of assay methods used (p=0.002 for trend), and PPV was 100% in patients whose results were positive by all three anti-dsDNA assay methods. The proportion of anti-dsDNA-positive patients who had SLE was highest (82%; p b 0.001) among those with a homogeneous pattern of ANA staining, followed by those with a speckled pattern. In ANA positive patients, when only RIA was considered, 59% of anti-dsDNA-positive patients had SLE, but when RIA and CLIA were both considered, all patients with positive results on both tests had SLE. The combination of RIA+CLIA in patients with homogeneous and speckled ANA staining showed a similar cost and higher sensitivity than RIA alone in ANA positive patients (p b 0.001). We conclude that the most efficient strategy was to combine simultaneously two quantitative and sensitive methods but only in patients with a homogeneous or speckled pattern of ANA staining. This approach maximized specificity and PPV, and reduced costs. Copyright © 2015 Elsevier B.V. All rights reserved.
New Method of Determining the Polar Curve of an Airplane in Flight
NASA Technical Reports Server (NTRS)
Yegorov, B. N.
1945-01-01
A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.
SU-F-E-19: A Novel Method for TrueBeam Jaw Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corns, R; Zhao, Y; Huang, V
2016-06-15
Purpose: A simple jaw calibration method is proposed for Varian TrueBeam using an EPID-Encoder combination that gives accurate fields sizes and a homogeneous junction dose. This benefits clinical applications such as mono-isocentric half-beam block breast cancer or head and neck cancer treatment with junction/field matching. Methods: We use EPID imager with pixel size 0.392 mm × 0.392 mm to determine the radiation jaw position as measured from radio-opaque markers aligned with the crosshair. We acquire two images with different symmetric field sizes and record each individual jaw encoder values. A linear relationship between each jaw’s position and its encoder valuemore » is established, from which we predict the encoder values that produce the jaw positions required by TrueBeam’s calibration procedure. During TrueBeam’s jaw calibration procedure, we move the jaw with the pendant to set the jaw into position using the predicted encoder value. The overall accuracy is under 0.1 mm. Results: Our in-house software analyses images and provides sub-pixel accuracy to determine field centre and radiation edges (50% dose of the profile). We verified the TrueBeam encoder provides a reliable linear relationship for each individual jaw position (R{sup 2}>0.9999) from which the encoder values necessary to set jaw calibration points (1 cm and 19 cm) are predicted. Junction matching dose inhomogeneities were improved from >±20% to <±6% using this new calibration protocol. However, one technical challenge exists for junction matching, if the collimator walkout is large. Conclusion: Our new TrueBeam jaw calibration method can systematically calibrate the jaws to crosshair within sub-pixel accuracy and provides both good junction doses and field sizes. This method does not compensate for a larger collimator walkout, but can be used as the underlying foundation for addressing the walkout issue.« less
Eddy Current System for Material Inspection and Flaw Visualization
NASA Technical Reports Server (NTRS)
Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.
2007-01-01
Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.
Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.
Positive Coping: A Unique Characteristic to Pre-Hospital Emergency Personnel.
Ebadi, Abbas; Froutan, Razieh
2017-01-01
It is important to gain a thorough understanding of positive coping methods adopted by medical emergency personnel to manage stressful situations associated with accidents and emergencies. Thus, the purpose of this study was to gain a better understanding of positive coping strategies used by emergency medical service providers. This study was conducted using a qualitative content analysis method. The study participants included 28 pre-hospital emergency personnel selected from emergency medical service providers in bases located in different regions of the city of Mashhad, Iran, from April to November 2016. The purposive sampling method also was used in this study, which was continued until data saturation was reached. To collect the data, semistructured open interviews, observations, and field notes were used. Four categories and 10 subcategories were extracted from the data on the experiences of pre-hospital emergency personnel related to positive coping strategies. The four categories included work engagement, smart capability, positive feedback, and crisis pioneering. All the obtained categories had their own subcategories, which were determined based on their distinctly integrated properties. The results of this study show that positive coping consists of several concepts used by medical emergency personnel, management of stressful situations, and ultimately quality of pre-hospital clinical services. Given the fact that efficient methods such as positive coping can prevent debilitating stress in an individual, pre-hospital emergency authorities should seek to build and strengthen "positive coping" characteristics in pre-hospital medical emergency personnel to deal with accidents, emergencies, and injuries through adopting regular and dynamic policies.
NASA Technical Reports Server (NTRS)
Ghosn, L. J.
1988-01-01
Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.
Flowmeter for gas-entrained solids flow
Porges, Karl G.
1990-01-01
An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.
NASA Technical Reports Server (NTRS)
Hoisington, C. M.
1984-01-01
A position estimation algorithm was developed to track a humpback whale tagged with an ARGOS platform after a transmitter deployment failure and the whale's diving behavior precluded standard methods. The algorithm is especially useful where a transmitter location program exists; it determines the classical keplarian elements from the ARGOS spacecraft position vectors included with the probationary file messages. A minimum of three distinct messages are required. Once the spacecraft orbit is determined, the whale is located using standard least squares regression techniques. Experience suggests that in instances where circumstances inherent in the experiment yield message data unsuitable for the standard ARGOS reduction, (message data may be too sparse, span an insufficient period, or include variable-length messages). System ARGOS can still provide much valuable location information if the user is willing to accept the increased location uncertainties.
NASA Astrophysics Data System (ADS)
Xue, J.; Sherchan, S. P.; Lamar, F. G.; Lin, S.; Lamori, J. G.
2017-12-01
Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10- month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column.
Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking
Dong, Qiang; Liu, Jinghong
2017-01-01
This paper presents a novel method of seamline determination for remote sensing image mosaicking. A two-level optimization strategy is applied to determine the seamline. Object-level optimization is executed firstly. Background regions (BRs) and obvious regions (ORs) are extracted based on the results of parametric kernel graph cuts (PKGC) segmentation. The global cost map which consists of color difference, a multi-scale morphological gradient (MSMG) constraint, and texture difference is weighted by BRs. Finally, the seamline is determined in the weighted cost from the start point to the end point. Dijkstra’s shortest path algorithm is adopted for pixel-level optimization to determine the positions of seamline. Meanwhile, a new seamline optimization strategy is proposed for image mosaicking with multi-image overlapping regions. The experimental results show the better performance than the conventional method based on mean-shift segmentation. Seamlines based on the proposed method bypass the obvious objects and take less time in execution. This new method is efficient and superior for seamline determination in remote sensing image mosaicking. PMID:28749446
de-Azevedo-Vaz, Sergio Lins; Oenning, Anne Caroline Costa; Felizardo, Marcela Graciano; Haiter-Neto, Francisco; de Freitas, Deborah Queiroz
2015-04-01
The objective of this study is to assess the accuracy of the vertical tube shift method in identifying the relationship between the mandibular canal (MC) and third molars. Two examiners assessed image sets of 173 lower third molar roots (55 patients) using forced consensus. The image sets comprised two methods: PERI, two periapical radiographs (taken at 0° and -30°), and PAN, a panoramic radiograph (vertical angulation of -8°) and a periapical radiograph taken at a vertical angulation of -30°. Cone beam computed tomography (CBCT) was the reference standard in the study. The responses were recorded for position (buccal, in-line with apex and lingual) and contact (present or absent). The McNemar-Bowker and McNemar tests were used to determine if the PERI and PAN methods would disagree with the reference standard (α = 5 %). The PERI and PAN methods disagreed with the reference standard for both position and contact (p < 0.05). The vertical tube shift method was not accurate in determining the relationship between lower third molars and the MC. The vertical tube shift is not a reliable method for predicting the relationship between lower third molars and the MC.
Activities of JAXA's Innovative Technology Center on Space Debris Observation
NASA Astrophysics Data System (ADS)
Yanagisawa, T.; Kurosaki, H.; Nakajima, A.
The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the first night must pass through the position in the second night. The rough orbit is determined from two nights' data. The test observation showed that this method was able to detect many GEO objects and determined their orbits by three nights' observations. We also joined the campaign observations of IADC(Inter-Agency Space Debris Coordination Committee). By analyzing the observed data with the method that we developed, 88 catalogued and 38 un-catalogued objects were detected. The magnitude of the faintest object detected in this campaign observation was 18.5. The object is un-detectable by human inspection.
Using One's Hands for Naming Optical Isomers and Other Stereochemical Positions.
ERIC Educational Resources Information Center
Mezl, Vasek A.
1996-01-01
Presents a method that allows students to use their hands to obtain the stereochemistry of chiral centers without redrawing the structure. Discusses the use of the model in: determining the configurations of amino acids, determining if sugars are D or L isomers, the sequence rule procedure, prochirality, naming the sides of trigonal carbons, and…
3D deformable organ model based liver motion tracking in ultrasound videos
NASA Astrophysics Data System (ADS)
Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong
2013-03-01
This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.
Baryon Acoustic Oscillations reconstruction with pixels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obuljen, Andrej; Villaescusa-Navarro, Francisco; Castorina, Emanuele
2017-09-01
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixelsmore » becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.« less
Baker, Teesha C; Tymm, Fiona J M; Murch, Susan J
2018-01-01
β-N-Methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Than, Trung Duc, E-mail: dtt581@uowmail.edu.au; Alici, Gursel, E-mail: gursel@uow.edu.au; Zhou, Hao, E-mail: hz467@uowmail.edu.au
2014-07-15
Purpose: Over the last decade, wireless capsule endoscope has been the tool of choice for noninvasive inspection of the gastrointestinal tract, especially in the small intestine. However, the latest clinical products have not been equipped with a sufficiently accurate localization system which makes it difficult to determine the location of intestinal abnormalities, and to apply follow-up interventions such as biopsy or drug delivery. In this paper, the authors present a novel localization method based on tracking three positron emission markers embedded inside an endoscopic capsule. Methods: Three spherical {sup 22}Na markers with diameters of less than 1 mm are embeddedmore » in the cover of the capsule. Gamma ray detectors are arranged around a patient body to detect coincidence gamma rays emitted from the three markers. The position of each marker can then be estimated using the collected data by the authors’ tracking algorithm which consists of four consecutive steps: a method to remove corrupted data, an initialization method, a clustering method based on the Fuzzy C-means clustering algorithm, and a failure prediction method. Results: The tracking algorithm has been implemented inMATLAB utilizing simulation data generated from the Geant4 Application for Emission Tomography toolkit. The results show that this localization method can achieve real-time tracking with an average position error of less than 0.4 mm and an average orientation error of less than 2°. Conclusions: The authors conclude that this study has proven the feasibility and potential of the proposed technique in effectively determining the position and orientation of a robotic endoscopic capsule.« less
Manglos, Stephen H.
1989-06-06
A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.
Photogrammetry System and Method for Determining Relative Motion Between Two Bodies
NASA Technical Reports Server (NTRS)
Miller, Samuel A. (Inventor); Severance, Kurt (Inventor)
2014-01-01
A photogrammetry system and method provide for determining the relative position between two objects. The system utilizes one or more imaging devices, such as high speed cameras, that are mounted on a first body, and three or more photogrammetry targets of a known location on a second body. The system and method can be utilized with cameras having fish-eye, hyperbolic, omnidirectional, or other lenses. The system and method do not require overlapping fields-of-view if two or more cameras are utilized. The system and method derive relative orientation by equally weighting information from an arbitrary number of heterogeneous cameras, all with non-overlapping fields-of-view. Furthermore, the system can make the measurements with arbitrary wide-angle lenses on the cameras.
A vortex-filament and core model for wings with edge vortex separation
NASA Technical Reports Server (NTRS)
Pao, J. L.; Lan, C. E.
1981-01-01
A method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semiempirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; the two vortex core system applied to the double delta and strake wing produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and the computer time for the present method is about two thirds of that of Mehrotra's method.
A vortex-filament and core model for wings with edge vortex separation
NASA Technical Reports Server (NTRS)
Pao, J. L.; Lan, C. E.
1982-01-01
A vortex filament-vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semi-empirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: (1) the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; (2) the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; (3) the two vortex core system applied to the double delta and strake wings produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and (4) the computer time for the present method is about two thirds of that of Mehrotra's method.
Canadian Penning Trap Mass Measurements using a Position Sensitive MCP
NASA Astrophysics Data System (ADS)
Kuta, Trenton; Aprahamian, Ani; Marley, Scott; Nystrom, Andrew; Clark, Jason; Perez Galvan, Adrian; Hirsh, Tsviki; Savard, Guy; Orford, Rodney; Morgan, Graeme
2015-10-01
The primary focus of the Canadian Penning Trap (CPT) located at Argonne National Lab is to determine the masses of various isotopes produced in the spontaneous fission of Californium. Currently, the CPT is operating in conjunction with CARIBU at the ATLAS facility in an attempt to measure neutron-rich nuclei produced by a 1.5 Curie source of Californium 252. The masses of nuclei produced in fission is accomplished by measuring the cyclotron frequency of the isotopes circling within the trap. This frequency is determined by a position sensitive MCP, which records the relative position of the isotope in the trap at different times. Using these position changes over time in connection with a center spot, angles between these positions are calculated and used to determine the frequency. Most of the work currently being conducted on the CPT is focused on the precision of these frequency measurements. The use of traps has revolutionized the measurements of nuclear masses to very high precision. The optimization methods employed here include focusing the beam in order to reduce the spread on the position of the isotope as well as the tuning of the MR-ToF, a mass separator that is intended on removing contaminants in the beam. This work was supported by the nuclear Grant PHY-1419765 for the University of Notre Dame.
Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo
2017-12-01
To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P < 0.05). Carotid beta-stiffness did not increase if not corrected for hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P < 0.05) but diastolic diameter relative to diastolic pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.
Measurement and interpretation of skin prick test results.
van der Valk, J P M; Gerth van Wijk, R; Hoorn, E; Groenendijk, L; Groenendijk, I M; de Jong, N W
2015-01-01
There are several methods to read skin prick test results in type-I allergy testing. A commonly used method is to characterize the wheal size by its 'average diameter'. A more accurate method is to scan the area of the wheal to calculate the actual size. In both methods, skin prick test (SPT) results can be corrected for histamine-sensitivity of the skin by dividing the results of the allergic reaction by the histamine control. The objectives of this study are to compare different techniques of quantifying SPT results, to determine a cut-off value for a positive SPT for histamine equivalent prick -index (HEP) area, and to study the accuracy of predicting cashew nut reactions in double-blind placebo-controlled food challenge (DBPCFC) tests with the different SPT methods. Data of 172 children with cashew nut sensitisation were used for the analysis. All patients underwent a DBPCFC with cashew nut. Per patient, the average diameter and scanned area of the wheal size were recorded. In addition, the same data for the histamine-induced wheal were collected for each patient. The accuracy in predicting the outcome of the DBPCFC using four different SPT readings (i.e. average diameter, area, HEP-index diameter, HEP-index area) were compared in a Receiver-Operating Characteristic (ROC) plot. Characterizing the wheal size by the average diameter method is inaccurate compared to scanning method. A wheal average diameter of 3 mm is generally considered as a positive SPT cut-off value and an equivalent HEP-index area cut-off value of 0.4 was calculated. The four SPT methods yielded a comparable area under the curve (AUC) of 0.84, 0.85, 0.83 and 0.83, respectively. The four methods showed comparable accuracy in predicting cashew nut reactions in a DBPCFC. The 'scanned area method' is theoretically more accurate in determining the wheal area than the 'average diameter method' and is recommended in academic research. A HEP-index area of 0.4 is determined as cut-off value for a positive SPT. However, in clinical practice, the 'average diameter method' is also useful, because this method provides similar accuracy in predicting cashew nut allergic reactions in the DBPCFC. Trial number NTR3572.
EXPERIMENTAL STUDIES ON INFLAMMATION
Wolf, Elizabeth Pauline
1921-01-01
1. Wright's method for the study of chemotaxis of leucocytes in vitro, slightly modified, has been found to be most satisfactory in the estimation of the degree of chemotaxis of various substances, because it is possible to make an exact quantitative determination of the leucocytes that have migrated from the blood clot and adhere to the surfaces containing the tested substance. 2. The calcium ion is the only inorganic ion per se which is found to be positively chemotactic under the conditions of these experiments. It is markedly chemotactic in all concentrations and in all combinations, except the citrate. Here the negative chemotaxis of the citrate ion neutralizes the positive chemotaxis of the calcium ion, and neutrality of chemotactic effect results. 3. The sodium and magnesium ions themselves are neutral. Magnesium and sodium salts are dependent upon the negative ion with which the magnesium or sodium is combined for such positive or negative chemotaxis as is exhibited. All the phosphates of sodium, whether tri-, di-, or monobasic salts, are markedly positively chemotactic, and when combined with other reagents which are themselves neutral or negatively chemotactic, produce marked positive chemotaxis. The blood of a person who has taken phosphates either by mouth or intravenously shows a great increase in chemotaxis with sodium phosphate, with calcium chloride, and even with sodium chloride which is ordinarily neutral. 4. All potassium salts are negatively chemotactic. 5. Many substances act synergistically as regards chemotaxis; e.g., when strontium and magnesium salts are mixed there is a marked increase in chemotaxis. Sodium phosphate acts synergistically with calcium chloride. 6. Mercury salts fix the leucocytes in this method so that their influence on chemotaxis cannot be determined. 7. Morphine and morphine salts are positively chemotactic; this is contrary to the results obtained by others with different methods. 8. Substances which produce a very acute inflammation, such as cantharidin, histamine, or turpentine, are found to be positively chemotactic by this method, but substances, such as mustard gas, which produce a marked necrotizing effect are found to be negatively chemotactic, or neutral, though physiologically they would appear to be positively chemotactic. 9. All amino-acids and amines are positively chemotactic to a certain extent. It seems that the longer the carbon chain, the greater the degree of chemotaxis, though this is not absolute. Tyramine is one exception to this, for it causes a peculiar clumping of the cells, so that it is impossible to count the number adhering, and thus determine whether or not tyramine is positively chemotactic. 10. The time that the blood of animals is examined after eating makes a marked difference in the number of cells adhering, for shortly after eating, within 30 minutes, very many more cells will adhere to the agar than at a later time. 11. The blood of different species of animals reacts differently towards different reagents. The chemical composition of these agents seems to have nothing to do with this difference in reaction as far as we could determine. 12. With frozen serial sections it has been found that the depth of penetration of the leucocytes into the agar is proportional to the positive chemotaxis produced by the substance combined with the agar, as demonstrated by the number of leucocytes adherent to the walls of the test chambers. PMID:19868564
Wolf, E P
1921-09-30
1. Wright's method for the study of chemotaxis of leucocytes in vitro, slightly modified, has been found to be most satisfactory in the estimation of the degree of chemotaxis of various substances, because it is possible to make an exact quantitative determination of the leucocytes that have migrated from the blood clot and adhere to the surfaces containing the tested substance. 2. The calcium ion is the only inorganic ion per se which is found to be positively chemotactic under the conditions of these experiments. It is markedly chemotactic in all concentrations and in all combinations, except the citrate. Here the negative chemotaxis of the citrate ion neutralizes the positive chemotaxis of the calcium ion, and neutrality of chemotactic effect results. 3. The sodium and magnesium ions themselves are neutral. Magnesium and sodium salts are dependent upon the negative ion with which the magnesium or sodium is combined for such positive or negative chemotaxis as is exhibited. All the phosphates of sodium, whether tri-, di-, or monobasic salts, are markedly positively chemotactic, and when combined with other reagents which are themselves neutral or negatively chemotactic, produce marked positive chemotaxis. The blood of a person who has taken phosphates either by mouth or intravenously shows a great increase in chemotaxis with sodium phosphate, with calcium chloride, and even with sodium chloride which is ordinarily neutral. 4. All potassium salts are negatively chemotactic. 5. Many substances act synergistically as regards chemotaxis; e.g., when strontium and magnesium salts are mixed there is a marked increase in chemotaxis. Sodium phosphate acts synergistically with calcium chloride. 6. Mercury salts fix the leucocytes in this method so that their influence on chemotaxis cannot be determined. 7. Morphine and morphine salts are positively chemotactic; this is contrary to the results obtained by others with different methods. 8. Substances which produce a very acute inflammation, such as cantharidin, histamine, or turpentine, are found to be positively chemotactic by this method, but substances, such as mustard gas, which produce a marked necrotizing effect are found to be negatively chemotactic, or neutral, though physiologically they would appear to be positively chemotactic. 9. All amino-acids and amines are positively chemotactic to a certain extent. It seems that the longer the carbon chain, the greater the degree of chemotaxis, though this is not absolute. Tyramine is one exception to this, for it causes a peculiar clumping of the cells, so that it is impossible to count the number adhering, and thus determine whether or not tyramine is positively chemotactic. 10. The time that the blood of animals is examined after eating makes a marked difference in the number of cells adhering, for shortly after eating, within 30 minutes, very many more cells will adhere to the agar than at a later time. 11. The blood of different species of animals reacts differently towards different reagents. The chemical composition of these agents seems to have nothing to do with this difference in reaction as far as we could determine. 12. With frozen serial sections it has been found that the depth of penetration of the leucocytes into the agar is proportional to the positive chemotaxis produced by the substance combined with the agar, as demonstrated by the number of leucocytes adherent to the walls of the test chambers.
NASA Astrophysics Data System (ADS)
Sunarya, I. Made Gede; Yuniarno, Eko Mulyanto; Purnomo, Mauridhi Hery; Sardjono, Tri Arief; Sunu, Ismoyo; Purnama, I. Ketut Eddy
2017-06-01
Carotid Artery (CA) is one of the vital organs in the human body. CA features that can be used are position, size and volume. Position feature can used to determine the preliminary initialization of the tracking. Examination of the CA features can use Ultrasound. Ultrasound imaging can be operated dependently by an skilled operator, hence there could be some differences in the images result obtained by two or more different operators. This can affect the process of determining of CA. To reduce the level of subjectivity among operators, it can determine the position of the CA automatically. In this study, the proposed method is to segment CA in B-Mode Ultrasound Image based on morphology, geometry and gradient direction. This study consists of three steps, the data collection, preprocessing and artery segmentation. The data used in this study were taken directly by the researchers and taken from the Brno university's signal processing lab database. Each data set contains 100 carotid artery B-Mode ultrasound image. Artery is modeled using ellipse with center c, major axis a and minor axis b. The proposed method has a high value on each data set, 97% (data set 1), 73 % (data set 2), 87% (data set 3). This segmentation results will then be used in the process of tracking the CA.
Chien, Chia-Chang; Huang, Shu-Fen; Lung, For-Wey
2009-01-01
Objective: The purpose of this study was to apply a two-stage screening method for the large-scale intelligence screening of military conscripts. Methods: We collected 99 conscripted soldiers whose educational levels were senior high school level or lower to be the participants. Every participant was required to take the Wisconsin Card Sorting Test (WCST) and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) assessments. Results: Logistic regression analysis showed the conceptual level responses (CLR) index of the WCST was the most significant index for determining intellectual disability (ID; FIQ ≤ 84). We used the receiver operating characteristic curve to determine the optimum cut-off point of CLR. The optimum one cut-off point of CLR was 66; the two cut-off points were 49 and 66. Comparing the two-stage window screening with the two-stage positive screening, the area under the curve and the positive predictive value increased. Moreover, the cost of the two-stage window screening decreased by 59%. Conclusion: The two-stage window screening is more accurate and economical than the two-stage positive screening. Our results provide an example for the use of two-stage screening and the possibility of the WCST to replace WAIS-R in large-scale screenings for ID in the future. PMID:21197345
The Electrostatic Gavimeter: An Alternative Way of Measuring Gravitational Acceleration
NASA Astrophysics Data System (ADS)
Kashinski, David
2005-03-01
In the past, Earth’s gravitational acceleration g has been measured in many ways, including the use of a pendulum as well as other models involving the use of a mass and a spring. We have designed a new method incorporating a spring with a capacitor and a voltmeter. This capacitor model still uses a hanging mass on a spring, but alters the method of determining the change in position of the spring due to the gravitational acceleration. We relate the change in position to the potential difference across the capacitor needed to cause a discharge through parallel plates. By relating this voltage directly to the gravitaional acceleration,a new method of measuring g is obtained.
Langguth, Berthold; Zowe, Marc; Landgrebe, Michael; Sand, Philipp; Kleinjung, Tobias; Binder, Harald; Hajak, Göran; Eichhammer, Peter
2006-01-01
Auditory phantom perceptions are associated with hyperactivity of the central auditory system. Neuronavigation guided repetitive transcranial magnetic stimulation (rTMS) of the area of increased activity was demonstrated to reduce tinnitus perception. The study aimed at developing an easy applicable standard procedure for transcranial magnetic stimulation of the primary auditory cortex and to investigate this coil positioning strategy for the treatment of chronic tinnitus in clinical practice. The left gyrus of Heschl was targeted in 25 healthy subjects using a frameless stereotactical system. Based on individual scalp coordinates of the coil, a positioning strategy with reference to the 10--20-EEG system was developed. Using this coil positioning approach we started an open treatment trial. 28 patients with chronic tinnitus received 10 sessions of rTMS (intensity 110% of motor threshold, 1 Hz, 2000 Stimuli/day). Being within a range of about 20 mm diameter, the scalp coordinates for stimulating the primary auditory cortex allowed to determine a standard procedure for coil positioning. Clinical validation of this coil positioning method resulted in a significant improvement of tinnitus complaints (p<0.001). The newly developed coil positioning strategy may have the potential to offer a more easy-to-use stimulation approach for treating chronic tinnitus as compared with highly sophisticated, imaging guided treatment methods.
Diesel emission reduction using internal exhaust gas recirculation
He, Xin [Denver, CO; Durrett, Russell P [Bloomfield Hills, MI
2012-01-24
A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.
Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
NASA Astrophysics Data System (ADS)
Yang, Le-Bao; Hu, Li-Fa; Li, Da-Yu; Cao, Zhao-Liang; Mu, Quan-Quan; Ma, Ji; Xuan, Li
2016-09-01
Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μm in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects’ CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).
Wald, Lawrence L; Polimeni, Jonathan R
2017-07-01
We review the components of time-series noise in fMRI experiments and the effect of image acquisition parameters on the noise. In addition to helping determine the total amount of signal and noise (and thus temporal SNR), the acquisition parameters have been shown to be critical in determining the ratio of thermal to physiological induced noise components in the time series. Although limited attention has been given to this latter metric, we show that it determines the degree of spatial correlations seen in the time-series noise. The spatially correlations of the physiological noise component are well known, but recent studies have shown that they can lead to a higher than expected false-positive rate in cluster-wise inference based on parametric statistical methods used by many researchers. Based on understanding the effect of acquisition parameters on the noise mixture, we propose several acquisition strategies that might be helpful reducing this elevated false-positive rate, such as moving to high spatial resolution or using highly-accelerated acquisitions where thermal sources dominate. We suggest that the spatial noise correlations at the root of the inflated false-positive rate problem can be limited with these strategies, and the well-behaved spatial auto-correlation functions (ACFs) assumed by the conventional statistical methods are retained if the high resolution data is smoothed to conventional resolutions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Sieradzki, Rafal; Baryla, Radoslaw
2018-03-01
This paper provides the methodology and performance assessment of multi-GNSS signal processing for the detection of small-scale high-rate dynamic displacements. For this purpose, we used methods of relative (RTK) and absolute positioning (PPP), and a novel direct signal processing approach. The first two methods are recognized as providing accurate information on position in many navigation and surveying applications. The latter is an innovative method for dynamic displacement determination with the use of GNSS phase signal processing. This method is based on the developed functional model with parametrized epoch-wise topocentric relative coordinates derived from filtered GNSS observations. Current regular kinematic PPP positioning, as well as medium/long range RTK, may not offer coordinate estimates with subcentimeter precision. Thus, extended processing strategies of absolute and relative GNSS positioning have been developed and applied for displacement detection. The study also aimed to comparatively analyze the developed methods as well as to analyze the impact of combined GPS and BDS processing and the dependence of the results of the relative methods on the baseline length. All the methods were implemented with in-house developed software allowing for high-rate precise GNSS positioning and signal processing. The phase and pseudorange observations collected with a rate of 50 Hz during the field test served as the experiment’s data set. The displacements at the rover station were triggered in the horizontal plane using a device which was designed and constructed to ensure a periodic motion of GNSS antenna with an amplitude of ~3 cm and a frequency of ~4.5 Hz. Finally, a medium range RTK, PPP, and direct phase observation processing method demonstrated the capability of providing reliable and consistent results with the precision of the determined dynamic displacements at the millimeter level. Specifically, the research shows that the standard deviation of the displacement residuals obtained as the difference between a benchmark-ultra-short baseline RTK solution and selected scenarios ranged between 1.1 and 3.4 mm. At the same time, the differences in the mean amplitude of the oscillations derived from the established scenarios did not exceed 1.3 mm, whereas the frequency of the motion detected with the use of Fourier transformation was the same.
NASA Astrophysics Data System (ADS)
Moskal, P.; Zoń, N.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kamińska, D.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.
2015-03-01
A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multi-dimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22Na sodium isotope as a source of annihilation gamma quanta. The detector was built out from plastic scintillator strips with dimensions of 5 mm×19 mm×300 mm, optically connected at both sides to photomultipliers, from which signals were sampled by means of the Serial Data Analyzer. Using the introduced method, the spatial and TOF resolution of about 1.3 cm (σ) and 125 ps (σ) were established, respectively.
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.
2017-08-01
The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing housings. The procedure for calculating misalignments of turbo generator shaft line supports is set out.
Control apparatus and method for efficiently heating a fuel processor in a fuel cell system
Doan, Tien M.; Clingerman, Bruce J.
2003-08-05
A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
Position calibration of a 3-DOF hand-controller with hybrid structure
NASA Astrophysics Data System (ADS)
Zhu, Chengcheng; Song, Aiguo
2017-09-01
A hand-controller is a human-robot interactive device, which measures the 3-DOF (Degree of Freedom) position of the human hand and sends it as a command to control robot movement. The device also receives 3-DOF force feedback from the robot and applies it to the human hand. Thus, the precision of 3-DOF position measurements is a key performance factor for hand-controllers. However, when using a hybrid type 3-DOF hand controller, various errors occur and are considered originating from machining and assembly variations within the device. This paper presents a calibration method to improve the position tracking accuracy of hybrid type hand-controllers by determining the actual size of the hand-controller parts. By re-measuring and re-calibrating this kind of hand-controller, the actual size of the key parts that cause errors is determined. Modifying the formula parameters with the actual sizes, which are obtained in the calibrating process, improves the end position tracking accuracy of the device.
Gender determination of avian embryo
Daum, Keith A.; Atkinson, David A.
2002-01-01
Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.
A novel three-stage distance-based consensus ranking method
NASA Astrophysics Data System (ADS)
Aghayi, Nazila; Tavana, Madjid
2018-05-01
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights obtained in the first stage is not unique. Finally, in the third stage, the group rank position of alternatives is obtained based on a distance of individual rank positions. The third stage determines a consensus solution for the group so that the ranks obtained have a minimum distance from the ranks acquired by each alternative in the previous stage. A numerical example is presented to demonstrate the applicability and exhibit the efficacy of the proposed method and algorithms.
NASA Astrophysics Data System (ADS)
Nair, B. G.; Winter, N.; Daniel, B.; Ward, R. M.
2016-07-01
Direct measurement of the flow of electric current during VAR is extremely difficult due to the aggressive environment as the arc process itself controls the distribution of current. In previous studies the technique of “magnetic source tomography” was presented; this was shown to be effective but it used a computationally intensive iterative method to analyse the distribution of arc centre position. In this paper we present faster computational methods requiring less numerical optimisation to determine the centre position of a single distributed arc both numerically and experimentally. Numerical validation of the algorithms were done on models and experimental validation on measurements based on titanium and nickel alloys (Ti6Al4V and INCONEL 718). The results are used to comment on the effects of process parameters on arc behaviour during VAR.
Method and apparatus for the preparation of liquid samples for determination of boron
Siemer, Darryl D.
1986-01-01
A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.
Method and apparatus for the preparation of liquid samples for determination of boron
Siemer, Darryl D.
1986-03-04
A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.
Method and apparatus for the preparation of liquid samples for determination of boron
Siemer, D.D.
A method and apparatus are described for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.
Zhao, Yinzhi; Zhang, Peng; Guo, Jiming; Li, Xin; Wang, Jinling; Yang, Fei; Wang, Xinzhe
2018-06-20
Due to the great influence of multipath effect, noise, clock and error on pseudorange, the carrier phase double difference equation is widely used in high-precision indoor pseudolite positioning. The initial position is determined mostly by the known point initialization (KPI) method, and then the ambiguities can be fixed with the LAMBDA method. In this paper, a new method without using the KPI to achieve high-precision indoor pseudolite positioning is proposed. The initial coordinates can be quickly obtained to meet the accuracy requirement of the indoor LAMBDA method. The detailed processes of the method follows: Aiming at the low-cost single-frequency pseudolite system, the static differential pseudolite system (DPL) method is used to obtain the low-accuracy positioning coordinates of the rover station quickly. Then, the ambiguity function method (AFM) is used to search for the coordinates in the corresponding epoch. The real coordinates obtained by AFM can meet the initial accuracy requirement of the LAMBDA method, so that the double difference carrier phase ambiguities can be correctly fixed. Following the above steps, high-precision indoor pseudolite positioning can be realized. Several experiments, including static and dynamic tests, are conducted to verify the feasibility of the new method. According to the results of the experiments, the initial coordinates with the accuracy of decimeter level through the DPL can be obtained. For the AFM part, both a one-meter search scope and two-centimeter or four-centimeter search steps are used to ensure the precision at the centimeter level and high search efficiency. After dealing with the problem of multiple peaks caused by the ambiguity cosine function, the coordinate information of the maximum ambiguity function value (AFV) is taken as the initial value of the LAMBDA, and the ambiguities can be fixed quickly. The new method provides accuracies at the centimeter level for dynamic experiments and at the millimeter level for static ones.
ERIC Educational Resources Information Center
Stripling, Christopher T.; Roberts, T. Grady
2014-01-01
The purpose of this study was to determine the effects of incorporating mathematics teaching and integration strategies (MTIS) in a teaching methods course on preservice agricultural teachers' mathematics ability. The research design was quasi-experimental and utilized a nonequivalent control group. The MTIS treatment had a positive effect on the…
Monitoring of the Abrasion Processes (by the Example of Alakol Lake, Republic of Kazakhstan)
ERIC Educational Resources Information Center
Abitbayeva, Ainagul; Valeyev, Adilet; Yegemberdiyeva, Kamshat; Assylbekova, Aizhan; Ryskeldieva, Aizhan
2016-01-01
The purpose of the study is to analyze the abrasion processes in the regions of dynamically changing Alakol lake shores. Using the field method, methods of positioning by the GPS receiver and interpretation of remote sensing data, the authors determined that abrasion processes actively contributed to the formation the modern landscape, causing the…
Floor Identification with Commercial Smartphones in Wifi-Based Indoor Localization System
NASA Astrophysics Data System (ADS)
Ai, H. J.; Liu, M. Y.; Shi, Y. M.; Zhao, J. Q.
2016-06-01
In this paper, we utilize novel sensors built-in commercial smart devices to propose a schema which can identify floors with high accuracy and efficiency. This schema can be divided into two modules: floor identifying and floor change detection. Floor identifying module starts at initial phase of positioning, and responsible for determining which floor the positioning start. We have estimated two methods to identify initial floor based on K-Nearest Neighbors (KNN) and BP Neural Network, respectively. In order to improve performance of KNN algorithm, we proposed a novel method based on weighting signal strength, which can identify floors robust and quickly. Floor change detection module turns on after entering into continues positioning procedure. In this module, sensors (such as accelerometer and barometer) of smart devices are used to determine whether the user is going up and down stairs or taking an elevator. This method has fused different kinds of sensor data and can adapt various motion pattern of users. We conduct our experiment with mobile client on Android Phone (Nexus 5) at a four-floors building with an open area between the second and third floor. The results demonstrate that our scheme can achieve an accuracy of 99% to identify floor and 97% to detecting floor changes as a whole.
A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.
Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M
2014-05-22
Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.
A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow
Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.
2014-01-01
Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961
Xue, Jia; Lamar, Frederica G; Zhang, Bowen; Lin, Siyu; Lamori, Jennifer G; Sherchan, Samendra P
2018-05-01
Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and enterococci in water collected from Lake Pontchartrain. N. fowleri target sequence was detected in 35.4% (56/158) of the water samples from ten sites around the lake. Statistically significant positive correlations between N. fowleri concentration and water temperature as well as E. coli (qPCR) were observed. Multiple linear regression (MLR) model shows seasonal factor (summer or winter) has significant effect on the concentration of N. fowleri, E. coli and enterococci (qPCR) concentration. Significant positive relationships between E. coli and enterococci was observed from both qPCR (r=0.25) and culture based method (r=0.54). Meanwhile, significant positive correlation between qPCR and culture based methods for enterococci concentration was observed (r=0.33). In our study, water temperature and E. coli concentration were indicative of N. fowleri concentrations in brackish water environment. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column. Copyright © 2017 Elsevier B.V. All rights reserved.
A rapid and reliable PCR method for genotyping the ABO blood group.
O'Keefe, D S; Dobrovic, A
1993-01-01
The ABO blood group has been used extensively as a marker in population studies, epidemiology, and forensic work. However, until the cloning of the gene, it was not possible to determine the genotype of group A and B individuals without recourse to family studies. We have developed a method to determine the ABO genotype directly from human DNA using multiplex PCR and restriction enzyme analysis. Two PCR fragments spanning positions 258 and 700 of the cDNA sequence are amplified. The site at position 258 allows us to differentiate the O allele from the A and B alleles. The site at position 700 allows us to distinguish the B allele from the A and O alleles. Analysis at the two sites thus allows us to distinguish the three alleles. The multiplex PCR product is digested separately with four enzymes, two for each of the sites. The pair of enzymes for each site cut in a reciprocal fashion. Whereas one enzyme for each site is theoretically sufficient for genotyping, the use of complementary pairs of enzymes prevents the assignment of a false genotype as a result of false negative or partial digestion. This method is fast and reliable, does not rely on probing of blots, and should be widely applicable.
Satellite altitude determination uncertainties
NASA Technical Reports Server (NTRS)
Siry, J. W.
1972-01-01
Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.
Positioning for the Chang'E-3 lander and rover using Earth-based Observations
NASA Astrophysics Data System (ADS)
Li, P.; Huang, Y.; Hu, X.; Shengqi, C.
2016-12-01
The Chinese first lunar lander, Chang'E-3, performed a lunar soft-landing on 14 Dec, 2013. Precise positioning for the lander and rover was the most important precondition and guarantee for a successful lunar surface exploration. In this study, first, the tracking system, measurement models and positioning method are discussed in detail. Second, the location of the CE-3 lander was determined: 44.1206°N, -19.5124°E, -2632 m (altitude was relative to the assumed lunar surface with a height of 1737.4 km), and the analysis showed the VLBI Very Long Base Interferometry data were able to significantly improve the positioning accuracy. Furthermore, the positioning error was evaluated in various ways; the result was better than 50 m. Finally, the relative positioning of the rover and lander using earth-based observations was studied and compared with the optical positioning method using photographs taken by the lander and rover. The method applied in this study was not limited by the visible range of the lander, and the relative positioning accuracy did not decrease as the distance between the lander and rover increased. The results indicated that under the current tracking and measuring conditions, the relative positioning accuracy was about 100 m using the same beam VLBI group delay data with ns nanosecond level noise. Furthermore, using the same beam VLBI phase delay data with ps picosecond level noise it was possible to significantly improve the relative positioning accuracy to the order of 1 m.
Liang, Xiao; Tian, Jinlong; Li, Lingzhi; Gao, Jun; Zhang, Qingyi; Gao, Pinyi; Song, Shaojiang
2014-03-01
A rapid and reliable microwave extraction and the triple quadrupole-linear ion trap mass spectrometry method was developed and validated for the determination of eight alkaloids in Portulaca oleracea L. The optimal microwave extraction (MWE) condition was performed at 60 °C for 12 min with ethanol-water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 30:1. The alkaloids were first detected simultaneously by electrospray ionization tandem mass spectrometry under positive-negative conversion multiple reaction monitor ((+/-)MRM) technique. With investigating three different columns, samples were separated in only 8 min on a Waters ACQUITY UPLC HSS T3 (50 × 2.1 mm(2), 1.8 μm) column using acetonitrile and formic acid-water solution as a mobile phase with a flow rate at 0.2 mL/min. All calibration curves showed good linearity (r>0.999) within the test ranges. The method developed was validated with acceptable sensitivity, intra- and inter-day precision, reproducibility, and extraction recoveries. It was successfully applied to the determination of eight alkaloids in Portulaca oleracea L. from different sources and different harvest periods. The method also provide a reference for extraction and determination of alkaloids in other complex systems. © 2013 Elsevier B.V. All rights reserved.
Setting objective thresholds for rare event detection in flow cytometry
Richards, Adam J.; Staats, Janet; Enzor, Jennifer; McKinnon, Katherine; Frelinger, Jacob; Denny, Thomas N.; Weinhold, Kent J.; Chan, Cliburn
2014-01-01
The accurate identification of rare antigen-specific cytokine positive cells from peripheral blood mononuclear cells (PBMC) after antigenic stimulation in an intracellular staining (ICS) flow cytometry assay is challenging, as cytokine positive events may be fairly diffusely distributed and lack an obvious separation from the negative population. Traditionally, the approach by flow operators has been to manually set a positivity threshold to partition events into cytokine-positive and cytokine-negative. This approach suffers from subjectivity and inconsistency across different flow operators. The use of statistical clustering methods does not remove the need to find an objective threshold between between positive and negative events since consistent identification of rare event subsets is highly challenging for automated algorithms, especially when there is distributional overlap between the positive and negative events (“smear”). We present a new approach, based on the Fβ measure, that is similar to manual thresholding in providing a hard cutoff, but has the advantage of being determined objectively. The performance of this algorithm is compared with results obtained by expert visual gating. Several ICS data sets from the External Quality Assurance Program Oversight Laboratory (EQAPOL) proficiency program were used to make the comparisons. We first show that visually determined thresholds are difficult to reproduce and pose a problem when comparing results across operators or laboratories, as well as problems that occur with the use of commonly employed clustering algorithms. In contrast, a single parameterization for the Fβ method performs consistently across different centers, samples, and instruments because it optimizes the precision/recall tradeoff by using both negative and positive controls. PMID:24727143
Somily, Ali M; Garaween, Ghada A; Abukhalid, Norah; Absar, Muhammad M; Senok, Abiola C
2016-03-01
In recent years, there has been a rapid dissemination of carbapenem resistant Enterobacteriaceae (CRE). This study aimed to compare phenotypic and molecular methods for detection and characterization of CRE isolates at a large tertiary care hospital in Saudi Arabia. This study was carried out between January 2011 and November 2013 at the King Khalid University Hospital (KKUH) in Saudi Arabia. Determination of presence of extended-spectrum beta-lactamases (ESBL) and carbapenem resistance was in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. Phenotypic classification was done by the MASTDISCS(TM) ID inhibitor combination disk method. Genotypic characterization of ESBL and carbapenemase genes was performed by the Check-MDR CT102. Diversilab rep-PCR was used for the determination of clonal relationship. Of the 883 ESBL-positive Enterobacteriaceae detected during the study period, 14 (1.6%) isolates were carbapenem resistant. Both the molecular genotypic characterization and phenotypic testing were in agreement in the detection of all 8 metalo-beta-lactamases (MBL) producing isolates. Of these 8 MBL-producers, 5 were positive for blaNDM gene and 3 were positive for blaVIM gene. Molecular method identified additional blaOXA gene isolates while MASTDISCS(TM) ID detected one AmpC producer isolate. Both methods agreed in identifying 2 carbapenem resistant isolates which were negative for carbapenemase genes. Diversilab rep-PCR analysis of the 9 Klebsiella pneumoniae isolates revealed polyclonal distribution into eight clusters. MASTDISCS(TM) ID is a reliable simple cheap phenotypic method for detection of majority of carbapenemase genes with the exception of the blaOXA gene. We recommend to use such method in the clinical laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K
2014-06-01
Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less
Direct Position Determination of Unknown Signals in the Presence of Multipath Propagation
Yu, Hongyi
2018-01-01
A novel geolocation architecture, termed “Multiple Transponders and Multiple Receivers for Multiple Emitters Positioning System (MTRE)” is proposed in this paper. Existing Direct Position Determination (DPD) methods take advantage of a rather simple channel assumption (line of sight channels with complex path attenuations) and a simplified MUltiple SIgnal Classification (MUSIC) algorithm cost function to avoid the high dimension searching. We point out that the simplified assumption and cost function reduce the positioning accuracy because of the singularity of the array manifold in a multi-path environment. We present a DPD model for unknown signals in the presence of Multi-path Propagation (MP-DPD) in this paper. MP-DPD adds non-negative real path attenuation constraints to avoid the mistake caused by the singularity of the array manifold. The Multi-path Propagation MUSIC (MP-MUSIC) method and the Active Set Algorithm (ASA) are designed to reduce the dimension of searching. A Multi-path Propagation Maximum Likelihood (MP-ML) method is proposed in addition to overcome the limitation of MP-MUSIC in the sense of a time-sensitive application. An iterative algorithm and an approach of initial value setting are given to make the MP-ML time consumption acceptable. Numerical results validate the performances improvement of MP-MUSIC and MP-ML. A closed form of the Cramér–Rao Lower Bound (CRLB) is derived as a benchmark to evaluate the performances of MP-MUSIC and MP-ML. PMID:29562601
Direct Position Determination of Unknown Signals in the Presence of Multipath Propagation.
Du, Jianping; Wang, Ding; Yu, Wanting; Yu, Hongyi
2018-03-17
A novel geolocation architecture, termed "Multiple Transponders and Multiple Receivers for Multiple Emitters Positioning System (MTRE)" is proposed in this paper. Existing Direct Position Determination (DPD) methods take advantage of a rather simple channel assumption (line of sight channels with complex path attenuations) and a simplified MUltiple SIgnal Classification (MUSIC) algorithm cost function to avoid the high dimension searching. We point out that the simplified assumption and cost function reduce the positioning accuracy because of the singularity of the array manifold in a multi-path environment. We present a DPD model for unknown signals in the presence of Multi-path Propagation (MP-DPD) in this paper. MP-DPD adds non-negative real path attenuation constraints to avoid the mistake caused by the singularity of the array manifold. The Multi-path Propagation MUSIC (MP-MUSIC) method and the Active Set Algorithm (ASA) are designed to reduce the dimension of searching. A Multi-path Propagation Maximum Likelihood (MP-ML) method is proposed in addition to overcome the limitation of MP-MUSIC in the sense of a time-sensitive application. An iterative algorithm and an approach of initial value setting are given to make the MP-ML time consumption acceptable. Numerical results validate the performances improvement of MP-MUSIC and MP-ML. A closed form of the Cramér-Rao Lower Bound (CRLB) is derived as a benchmark to evaluate the performances of MP-MUSIC and MP-ML.
Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun
2016-01-01
AIM: To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). METHODS: The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. RESULTS: The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. CONCLUSION: The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori. PMID:27433095
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Evaluation of Laser Based Alignment Algorithms Under Additive Random and Diffraction Noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClay, W A; Awwal, A; Wilhelmsen, K
2004-09-30
The purpose of the automatic alignment algorithm at the National Ignition Facility (NIF) is to determine the position of a laser beam based on the position of beam features from video images. The position information obtained is used to command motors and attenuators to adjust the beam lines to the desired position, which facilitates the alignment of all 192 beams. One of the goals of the algorithm development effort is to ascertain the performance, reliability, and uncertainty of the position measurement. This paper describes a method of evaluating the performance of algorithms using Monte Carlo simulation. In particular we showmore » the application of this technique to the LM1{_}LM3 algorithm, which determines the position of a series of two beam light sources. The performance of the algorithm was evaluated for an ensemble of over 900 simulated images with varying image intensities and noise counts, as well as varying diffraction noise amplitude and frequency. The performance of the algorithm on the image data set had a tolerance well beneath the 0.5-pixel system requirement.« less
Mass balance assessment using GPS
NASA Technical Reports Server (NTRS)
Hulbe, Christina L.
1993-01-01
Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.
2000-03-13
of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we
Łojszczyk-Szczepaniak, Anna; Silmanowicz, Piotr; Komsta, Renata; Osiński, Zbigniew
2017-05-31
Patella alta and patella baja are important conditions underlying a predisposition to many joint diseases, including patellar luxation and patellar chondromalacia of the articular cartilage. The frequencies of patella alta and patella baja have not yet been determined. The objectives of this study were to determine the frequency of patella alta and to determine reference values to the position of the vertical patella according to two modified techniques of the Insall-Salvati method in a group of 65 German shepherd dogs (115 stifle joints). The upper limits of reference values for the normal vertical position of the patella were 1.79 and 2.13, depending on the method of measurement. A high prevalence of patella alta was observed in the group of German shepherd dogs. A correlation was demonstrated between the classification of dogs' joints in the patella alta group and the multiplied risk of canine hip dysplasia (CHD) through the estimation of odds ratios. Dogs with patella alta were healthy dogs that did not exhibit orthopaedic problems in the stifle joints. The results revealed that the risk of CHD is twice as high in dogs with higher patellar ligament length to patella length ratio.
Gürsoy, Nafia Canan; Yakupoğulları, Yusuf; Tekerekoğlu, Mehmet Sait; Otlu, Barış
2016-04-01
Rapid and accurate detection of active tuberculosis (TB) cases is one of the most important goal of tuberculosis control programme. For this purpose, new methods are being developed to isolate, serotype and determine the drug resistance of the agent. Xpert MTB/RIF test (CepheidGeneXpert® System, USA) that has been recently developed, is a real-time polymerase chain reaction-based method which detects Mycobacterium tuberculosis complex and resistance of the strain to rifampicin (RIF) from the clinical sample directly within a couple of hours. However, there are not sufficient data about the performance of that test for extrapulmonary samples and pulmonary samples other than sputum. The aims of this study were to investigate the sensitivity, specificity, positive and negative predictive values of Xpert MTB/RIF test in detection of M. tuberculosis and the performance in the determination of rifampicin resistance of the isolates from pulmonary and extrapulmonary clinical samples. A total of 2160 clinical samples, in which 1141 (52.8%) were pulmonary and 1019 (47.2%) were extrapulmonary samples, sent to our laboratory between July 2013 to December 2014, were included in the study. Sixty seven of the evaluated samples (3.1%) were positive with microscopy (acid-fast stain; AFS), 116 samples (5.1%) were positive with culture and 98 samples (4.5%) were positive with Xpert MTB/RIF test. When the culture was considered as the reference method, the sensitivity and specificity of Xpert MTB/RIF test were determined as 73.3% and 99.3%, respectively for all samples; 77.5% and 99.5%, respectively for pulmonary samples and 63.9% and 99.2%, respectively for extrapulmonary samples. Among AFS positive samples, the sensitivity was 100% and specificity was 66.7%; whereas among AFS negative samples those values were 40.4% and 99.4%, respectively. Among all the samples involved in the study, RIF resistance was determined only in three samples with Xpert MTB/ RIF test and that was also proved phenotypically (100% concordance). According to mycobacterial culture results, positive and negative predictive values of Xpert MTB/RIF test were determined as 86.7% and 98.5%, respectively for all samples. Those were determined as 92.5% and 98.3%, respectively for extrapulmonary samples and were determined as 74.2 and 98.7%, respectively for pulmonary samples. According to the results obtained in our study, sensitivity of Xpert MTB/RIF test for extrapulmonary samples was found to be at moderate level; sensitivity of the test was found to be decreased especially in AFS negative samples with less bacilli load. Nonetheless, specificity of Xpert MTB/RIF test to the agent in all samples was found to be extremely high. In our study, although RIF-resistant strains were detected in few of the samples, Xpert MTB/ RIF test could differentiate all resistant and sensitive strains. Additionally, detection of M. tuberculosis and RIF resistance in our laboratory takes approximately 20.96 days with culture, this period decreases to a couple of hours with Xpert MTB/RIF test. Because of the advantages such as being practical, rapid and requiring minimal safety measures, it was concluded that Xpert MTB/RIF test may contribute to rapid diagnosis of TB also in extrapulmonary samples, with the confirmation of culture method.
Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.
2015-01-01
Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438
Detection of antileishmanial antibodies in blood sampled from blood bank donors in Istanbul.
Ates, Sezen Canim; Bagirova, Malahat; Allahverdiyev, Adil M; Baydar, Serap Yesilkir; Koc, Rabia Cakir; Elcicek, Serhat; Abamor, Emrah Sefik; Oztel, Olga Nehir
2012-06-01
According to the WHO, only 5-20% of the total cases of leishmaniasis are symptomatic leishmaniasis; the other cases are identified as asymptomatic leishmaniasis. In recent studies, it has been demonstrated that donor blood plays an important role in the epidemiology of asymptomatic leishmaniasis. However, the number of the studies on this subject is still insufficient. Additionally, donor blood samples obtained from Istanbul, which is the biggest metropolitan area in Turkey, have not been investigated with regard to Leishmania. Moreover, there is no information about the sensitivity of noninvasive serological methods that are used in the detection of leishmaniasis donor blood samples. Accordingly, this study aimed to investigate the presence of antileishmanial antibodies in blood samples obtained from blood bank donors in Istanbul, by using different serologic methods, and to determine the most sensitive detection method. Blood samples were taken from 188 healthy blood bank donors to the Capa Turkish Red Crescent Blood Bank (Istanbul, Turkey), and the presence of antileishmanial antibodies was measured by indirect immunofluorescent antibody test (IFAT), ELISA, immunochromatographic dipstick rapid test, and western blot (WB). Antileishmanial antibodies were determined in 12 out of 188 samples by IFAT (6.4%), and six out of these 12 donors were found to be positive at diagnostic titer 1:128 (3.2%). One hundred and eighty eight samples were investigated by ELISA and one (0.5%) of them gave a positive result. None of 188 samples provided a positive result by immunochromatographic test. WB applied to the 12 seroreactive donors showed that three out of 12 donors were positive. In this study, the presence of antileishmanial antibodies in blood samples of blood bank donors from Istanbul has been demonstrated by using feasible and low-cost serological methods. Additionally, in comparison with other simple and low-cost detection methods, WB was used for confirmation. IFAT has a higher sensitivity and therefore may be preferred as a prescreening method in endemic or nonendemic areas.
Concentration solar power optimization system and method of using the same
Andraka, Charles E
2014-03-18
A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.
Parallel optimization algorithm for drone inspection in the building industry
NASA Astrophysics Data System (ADS)
Walczyński, Maciej; BoŻejko, Wojciech; Skorupka, Dariusz
2017-07-01
In this paper we present an approach for Vehicle Routing Problem with Drones (VRPD) in case of building inspection from the air. In autonomic inspection process there is a need to determine of the optimal route for inspection drone. This is especially important issue because of the very limited flight time of modern multicopters. The method of determining solutions for Traveling Salesman Problem(TSP), described in this paper bases on Parallel Evolutionary Algorithm (ParEA)with cooperative and independent approach for communication between threads. This method described first by Bożejko and Wodecki [1] bases on the observation that if exists some number of elements on certain positions in a number of permutations which are local minima, then those elements will be in the same position in the optimal solution for TSP problem. Numerical experiments were made on BEM computational cluster with using MPI library.
Godavarthi, A Sowjanya; Sajjan, M C Suresh; Raju, A V Rama; Rajeshkumar, P; Premalatha, Averneni; Chava, Narayana
2015-01-01
Background: To evaluate the feasibility of using panoramic radiographs as an alternative to an interocclusal recording method for determining the condylar guidance in dentate and edentulous conditions. Materials and Methods: 20 dentulous individuals with an age range of 20-30 years and 20 edentulous patients of 40-65 years were selected. An interocclusal bite registration was done in protrusive position for all the subjects. Orthopantomographs were made for all patients in open mouth position. Hanau articulator was modified to record the angulations to the accuracy of 1°. Tracing of glenoid fossa on radiograph was done to measure the condylar guidance angles. Readings were recorded and analyzed by Freidman’s test and t-test. Results: Condylar guidance values obtained by the interocclusal method and radiographic method in dentate individuals on the right side and left side 40.55°, and 37.1°, and 40.15°, and 34.75°, respectively. In the edentulous individuals, the values on the right side and left side was 36.7° and 36.1° and 35.95° and 33.6,° respectively. The difference was statistically significant (P = < 0.001) in dentate group and was not statistically significant (P = 0.6493) in edentulous group. Conclusion: Panoramic radiograph can be used as an alternative to interocclusal technique only in edentulous patients. Further studies comparing panoramic radiograph to jaw tracking devices would substantiate the results of this study. PMID:26464554
duPre', S A; Tracy, C R; Sandmeier, F C; Hunter, K W
2012-12-01
Pasteurella testudinis has been associated with upper respiratory tract disease (URTD) in the threatened desert tortoise (Gopherus agassizii). Our goal was to develop a sensitive and specific qPCR method for detecting DNA from P. testudinis in nasal lavage fluid collected from desert tortoises in the field. Probes for 16S ribosomal RNA and RNA polymerase β-subunit (rpoB) genes were designed. A standard curve generated with DNA extracted from known numbers of bacterial cells determined by flow cytometry revealed a lower detection limit of 50 fg/ml (10 bacteria/ml). The nasal lavage fluid contained no interfering substances, and the qPCR method did not recognize normal flora DNA. The nasal lavage samples from 20 desert tortoises captured in Clark County, Nevada, USA in 2007 and housed at the Desert Tortoise Conservation Center, were all positive for P. testudinis DNA by qPCR. Another set of 19 lavage samples collected in 2010 from wild desert tortoises in the Mojave Desert were tested and 84% were positive for P. testudinis DNA. Fully validated, this qPCR method will provide a means of determining colonization rate. When used in conjunction with serological methods and clinical evaluations, both infection rate and disease rate can be determined for this potential URTD pathogen. This new assay provides an important tool for managing the threatened populations of the Mojave Desert tortoise. Copyright © 2012 Elsevier B.V. All rights reserved.
Godavarthi, A Sowjanya; Sajjan, M C Suresh; Raju, A V Rama; Rajeshkumar, P; Premalatha, Averneni; Chava, Narayana
2015-08-01
To evaluate the feasibility of using panoramic radiographs as an alternative to an interocclusal recording method for determining the condylar guidance in dentate and edentulous conditions. 20 dentulous individuals with an age range of 20-30 years and 20 edentulous patients of 40-65 years were selected. An interocclusal bite registration was done in protrusive position for all the subjects. Orthopantomographs were made for all patients in open mouth position. Hanau articulator was modified to record the angulations to the accuracy of 1°. Tracing of glenoid fossa on radiograph was done to measure the condylar guidance angles. Readings were recorded and analyzed by Freidman's test and t-test. Condylar guidance values obtained by the interocclusal method and radiographic method in dentate individuals on the right side and left side 40.55°, and 37.1°, and 40.15°, and 34.75°, respectively. In the edentulous individuals, the values on the right side and left side was 36.7° and 36.1° and 35.95° and 33.6,° respectively. The difference was statistically significant (P = < 0.001) in dentate group and was not statistically significant (P = 0.6493) in edentulous group. Panoramic radiograph can be used as an alternative to interocclusal technique only in edentulous patients. Further studies comparing panoramic radiograph to jaw tracking devices would substantiate the results of this study.
2014-01-01
Background Various head and neck positions in sport horses are significant as they can interfere with upper airway flow mechanics during exercise. Until now, research has focused on subjectively described head and neck positions. The objective of this study was to develop an objective, reproducible method for quantifying head and neck positions accurately. Results Determining the angle between the ridge of the nose and the horizontal plane (ground angle) together with the angle between the ridge of nose and the line connecting the neck and the withers (withers angle) has provided values that allow precise identification of three preselected head and neck positions for performing sport horses. The pharyngeal diameter, determined on lateral radiographs of 35 horses, differed significantly between the established flexed position and the remaining two head and neck positions (extended and neutral). There was a significant correlation between the pharyngeal diameter and the ground angle (Spearman’s rank correlation coefficient −0.769, p < 0.01) as well as between the pharyngeal diameter and the withers angle (Spearman’s rank correlation coefficient 0.774, p < 0.01). Conclusion The combination of the ground angle and the withers angle is a suitable tool for evaluating and distinguishing frequently used head and neck positions in sport horses. The ground angle and the withers angle show significant correlation with the measured pharyngeal diameter in resting horses. Hence, these angles provide an appropriate method for assessing the degree of head and neck flexion. Further research is required to examine the influence of increasing head and neck flexion and the related pharyngeal diameter on upper airway function in exercising horses. PMID:24886564
Systems, Methods and Apparatus for Position Sensor Digital Conditioning Electronics
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor)
2012-01-01
Systems, methods and apparatus are provided through which in some implementations determine the amplitude of an amplitude modulated signal, modulated by the position of an object being sensed. In some aspects, the apparatus accepts an excitation signal and the amplitude modulated signal and divides the amplitude modulated by the excitation signal to produce an output signal that is proportional to the position of the object being sensed. In other aspects, the division is performed only when the excitation signal is non-zero, such as close to the peaks in the excitation signal. In other aspects, the excitation signal and amplitude modulated signal are degraded due to an air gap and the degraded signals are used to correct for amplitude fluctuations due to the air gap, and produce an output signal, tolerant of the air gaps, that is proportional to the position of the object being sensed.
Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav
2007-03-01
The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.
ERIC Educational Resources Information Center
Milner, Joel S.; Rabenhorst, Mandy M.; McCanne, Thomas R.; Crouch, Julie L.; Skowronski, John J.; Fleming, Matthew T.; Hiraoka, Regina; Risser, Heather J.
2011-01-01
Objective: The present investigation used event-related potentials (ERPs, N400 and N300) to determine the extent to which individuals at low and high risk for child physical abuse (CPA) have pre-existing positive and negative child-related schemata that can be automatically activated by ambiguous child stimuli. Methods: ERP data were obtained from…
Self-calibrating solar position sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxey, Lonnie Curt
A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated bymore » the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.« less
NASA Technical Reports Server (NTRS)
Lyell, Margaret J.
1992-01-01
The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.
Sign changes in sums of the Liouville function
NASA Astrophysics Data System (ADS)
Borwein, Peter; Ferguson, Ron; Mossinghoff, Michael J.
2008-09-01
The Liouville function λ(n) is the completely multiplicative function whose value is -1 at each prime. We develop some algorithms for computing the sum T(n)Dsum_{kD1}^n λ(k)/k , and use these methods to determine the smallest positive integer n where T(n)<0 . This answers a question originating in some work of Turan, who linked the behavior of T(n) to questions about the Riemann zeta function. We also study the problem of evaluating Polya's sum L(n)Dsum_{kD1}^nλ(k) , and we determine some new local extrema for this function, including some new positive values.
Salter, Robert; Holmes, Steven; Legg, David; Coble, Joel; George, Bruce
2012-02-01
Pork tissue samples that tested positive and negative by the Charm II tetracycline test screening method in the slaughter plant laboratory were tested with the modified AOAC International liquid chromatography tandem mass spectrometry (LC-MS-MS) method 995.09 to determine the predictive value of the screening method at detecting total tetracyclines at 10 μg/kg of tissue, in compliance with Russian import regulations. There were 218 presumptive-positive tetracycline samples of 4,195 randomly tested hogs. Of these screening test positive samples, 83% (182) were positive, >10 μg/kg by LC-MS-MS; 12.8% (28) were false violative, greater than limit of detection (LOD) but <10 μg/kg; and 4.2% (8) were not detected at the LC-MS-MS LOD. The 36 false-violative and not-detected samples represent 1% of the total samples screened. Twenty-seven of 30 randomly selected tetracycline screening negative samples tested below the LC-MS-MS LOD, and 3 samples tested <3 μg/kg chlortetracycline. Results indicate that the Charm II tetracycline test is effective at predicting hogs containing >10 μg/kg total tetracyclines in compliance with Russian import regulations.
AORN ergonomic tool 2: positioning and repositioning the supine patient on the OR bed.
Waters, Thomas; Short, Manon; Lloyd, John; Baptiste, Andrea; Butler, Lorraine; Petersen, Carol; Nelson, Audrey
2011-04-01
Positioning or repositioning a patient on the OR bed in preparation for a surgical procedure presents a high risk for musculoskeletal disorders, such as low-back and shoulder injuries, for perioperative personnel. Safe patient handling requires knowledge of current ergonomic safety concepts, scientific evidence, and equipment and devices to ensure that neither the patient nor the caregiver is at risk for injury. AORN Ergonomic Tool 2: Positioning and Repositioning the Supine Patient on the OR Bed provides guidelines that enable perioperative personnel to determine safe methods for positioning and repositioning a patient in the semi-Fowler, lateral, or lithotomy position in preparation for surgery. Published by Elsevier Inc.
Monitoring and analyzing waste glass compositions
Schumacher, R.F.
1994-03-01
A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.
Monitoring and analyzing waste glass compositions
Schumacher, Ray F.
1994-01-01
A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.
Phytochemical screening and antibacterial activity of Cyclamen persicum Mill tuber extracts.
Alkowni, Raed; Jodeh, Shehdeh; Hussein, Fatima; Jaradat, Nidal
2018-01-01
The emerging drug resistance bacteria increased the demand on the discovery of antibiotics from natural sources. This research was aimed to study the antibacterial reactivity; as well as the phytochemicals, of the wild type of Cyclamen persicum, using nine different extraction methods where four solvents (Methanol, Ethanol, Hexane; and Water) were involved with varied extraction periods ranged from 2 up to 10 hours. The antibacterial activity of crude methanol extract (CME) was found as the best method of extraction, with particular emphasis on the method with prolonged extraction time of (10 hrs). The antibacterial activities of produced CME were determined by using agar diffusion method against two of gram-positive bacteria and two gram-negative ones. The CME treated Mueller-Hinton-Agar plates, were exhibited antibacterial effects against the gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) by showing of inhibition zone after overnight incubation, while nothing was noticed on those of gram negative ones (Pseudomonas aeruginosa and Escherichia coli). These results that proved the antibacterial activity of the Cyclamen persicum tubers were positively tested the Saponin glycosides from plant. In addition to that, methanol solvent could be the useful method for extractions of Cyclamen and can be used in any developing drugs against pathogenic gram positive bacteria.
Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)
NASA Technical Reports Server (NTRS)
Williams, B. G.
1988-01-01
An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.
Roy, Anuradha; Fuller, Clifton D; Rosenthal, David I; Thomas, Charles R
2015-08-28
Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy's linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison. An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA). COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p - value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p - value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment. The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.
The utilization of tachymetry in forensic medicine.
Hagara, M; Sidlo, J; Stuparin, J; Siget, V; Soral, A; Valent, D
2009-01-01
Tachymetry is a geodetic method enabling to measure angles and distances. The aim of the work was to demonstrate alternatives of its utilization in daily forensic medicine practice. The work is dealing with confusing cases of gunshot injuries. It is impossible to determine the trajectory of the projectile, the sequence of gunshots, to identify shooting person etc. in these cases only on the base of autopsy findings and investigated circumstances. In these cases the investigation experiments on the crime scene in collaboration with the land surveyors were realized. The work presents two case reports. For our measurements the electronic tachymeter TOPCON 211D was used. These were performed by the means of polar method in local coordinate system with relative heights. In the first case the position of victim was simulated by a figurant according to testimonies of witnesses and the accused. The second case dealed with suicide. In the first case there were two gunshots. The trajectory of the first gunshot was determined and the projectile was found. Hereby the most authentic testimony could be estimated. Also high grade probability of the relative position of the victim and the accused was figured out. In the case of suicide also the projectile was found and the position of the victim in the time of gunshot was determined. In the both case reports demonstrated the projectiles were not found by ballistics expert investigations. All questions of expert opinions could be answered only with the help of tachymetry. The advantage of this method is its good regional availability even at places far from specialized criminal investigation workplaces.
Gurari, Netta; Drogos, Justin M.; Dewald, Julius P.A.
2017-01-01
Objective Previous studies determined, using between arms position matching assessments, that at least one-half of individuals with stroke have an impaired position sense. We investigated whether individuals with chronic stroke who have impairments mirroring arm positions also have impairments identifying the location of each arm in space. Methods Participants with chronic hemiparetic stroke and age-matched participants without neurological impairments (controls) performed a between forearms position matching task based on a clinical assessment and a single forearm position matching task, using passive and active movements, based on a robotic assessment. Results 12 out of our 14 participants with stroke who had clinically determined between forearms position matching impairments had greater errors than the controls in both their paretic and non-paretic arm when matching positions during passive movements; yet stroke participants performed comparable to the controls during active movements. Conclusions Many individuals with chronic stroke may have impairments matching positions in both their paretic and non-paretic arm if their arm is moved for them, yet not within either arm if these individuals control their own movements. Significance The neural mechanisms governing arm location perception in the stroke population may differ depending on whether arm movements are made passively versus actively. PMID:27866116
Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle
Byun, Yeun Sub; Kim, Young Chol
2016-01-01
Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827
Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks
NASA Astrophysics Data System (ADS)
Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min
2015-10-01
Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.
Properties of Fr-like Th^3+ from microwave spectroscopy of high-L Rydberg states of Th^2+
NASA Astrophysics Data System (ADS)
Keele, Julie; Smith, Chris; Woods, Shannon; Lundeen, Stephen; Fehrenbach, Charles
2012-06-01
Spectroscopy of high-L n= 28 Rydberg levels of Th^2+ was recently reported using the optical RESIS method [1]. Because the ground state of Fr-like Th^3+ is a ^2F5/2 level, each (n,L) Rydberg level of Th^2+ is split into six eigenstates whose relative positions are determined by long-range e-Th^3+ interactions. Measurements of those positions can be used to determine the Th^3+ properties that control those interactions, such as polarizabilities and permanent moments. We report a much improved study of n=28 levels with 9 <= L <= 12, obtained with the microwave/RESIS method. The higher precision measurements allow improved determinations of a wider range of Th^3+ properties and a better test of theoretical calculations [2].[4pt] [1] Julie A. Keele, M.E. Hanni, Shannon L. Woods, S.R. Lundeen, and C.W. Fehrenbach, Phys. Rev. A 83, 062501 (2011)[0pt] [2] U.I. Safronova, W.R. Johnson, and M.S. Safronova, Phys. Rev. A 74, 042511 (2006)
NASA Technical Reports Server (NTRS)
Liu, Shih-Ching
1994-01-01
The goal of this research was to determine kinematic parameters of the lower limbs of a subject pedaling a bicycle. An existing measurement system was used as the basis to develop the model to determine position and acceleration of the limbs. The system consists of an ergometer instrumented to provide position of the pedal (foot), accelerometers to be attached to the lower limbs to measure accelerations, a recorder used for filtering, and a computer instrumented with an A/D board and a decoder board. The system is designed to read and record data from accelerometers and encoders. Software has been developed for data collection, analysis and presentation. Based on the measurement system, a two dimensional analytical model has been developed to determine configuration (position, orientation) and kinematics (velocities, accelerations). The model has been implemented in software and verified by simulation. An error analysis to determine the system's accuracy shows that the expected error is well within the specifications of practical applications. When the physical hardware is completed, NASA researchers hope to use the system developed to determine forces exerted by muscles and forces at articulations. This data will be useful in the development of countermeasures to minimize bone loss experienced by astronauts in microgravity conditions.
Side-emitting fiber optic position sensor
Weiss, Jonathan D [Albuquerque, NM
2008-02-12
A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B; Miften, M
2014-06-15
Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory ofmore » the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better strategies to mitigate or compensate for motion during SBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomo, Dimas, E-mail: dimas.salomo@gmail.com; Daryono,; Subakti, Hendri
The accuracy of earthquake hypocenter position is necessary to analyze the tectonic conditions. This study aims to: (1) relocate the mainshock and aftershocks of the large earthquakes in Papua region i.e. June 16, 2010, April 21, 2012 and April 06, 2013 earthquake (2) determine the true fault plane, (3) estimate the area of the fracture, and (4) analyze the advantages and disadvantages of relocation with MJHD method in benefits for tectonic studies. This study used Modified Joint Hypocenter Determination (MJHD) method. Using P arrival phase data reported by the BMKG and openly available from website repogempa.bmkg.go.id, we relocated the mainshockmore » of this large significant earthquake and its aftershocks. Then we identified the prefered fault planes from the candidate fault planes provided by the global CMT catalogue. The position of earthquakes was successfully relocated. The earthquakes mostly were clustered around the mainshock. Earthquakes that not clustered around mainshock are considered to be different mechanism from the mainshock. Relocation results indicate that the mainshock fault plane of June 16, 2010 earthquake is a field with strike 332o, dip 80o and −172o slip, the mainshock fault plane of April 21, 2012 earthquake is a field with strike 82o, dip 84o and 2o slip, the mainshock fault plane of April 06, 2013 earthquake is a field with strike 339o, dip 56o and −137o slip. Fault plane area estimated by cross section graphical method is an area of 2816.0 km2 (June 16, 2010), 906.2 km2 (April 21, 2012) and 1984.3 km2 (April 06, 2013). MJHD method has the advantage that it can calculate a lot of earthquakes simultaneously and has a station correction to account for lateral heterogeneity of the earth. This method successfully provides significant changes to improve the position of the depth of earthquakes that most of the hypocenter depth manually specified as a fixed depth (± 10 km). But this method cannot be sure that the hypocenters derived from the same earthquake mechanism.« less
Gao, Xiang; Yan, Shenggang; Li, Bin
2017-01-01
Magnetic detection techniques have been widely used in many fields, such as virtual reality, surgical robotics systems, and so on. A large number of methods have been developed to obtain the position of a ferromagnetic target. However, the angular rotation of the target relative to the sensor is rarely studied. In this paper, a new method for localization of moving object to determine both the position and rotation angle with three magnetic sensors is proposed. Trajectory localization estimation of three magnetic sensors, which are collinear and noncollinear, were obtained by the simulations, and experimental results demonstrated that the position and rotation angle of ferromagnetic target having roll, pitch or yaw in its movement could be calculated accurately and effectively with three noncollinear vector sensors. PMID:28892006
Phospholipid component volumes: determination and application to bilayer structure calculations.
Armen, R S; Uitto, O D; Feller, S E
1998-08-01
We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments.
Phospholipid component volumes: determination and application to bilayer structure calculations.
Armen, R S; Uitto, O D; Feller, S E
1998-01-01
We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments. PMID:9675175
Statistical Attitude Determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2010-01-01
All spacecraft require attitude determination at some level of accuracy. This can be a very coarse requirement of tens of degrees, in order to point solar arrays at the sun, or a very fine requirement in the milliarcsecond range, as required by Hubble Space Telescope. A toolbox of attitude determination methods, applicable across this wide range, has been developed over the years. There have been many advances in the thirty years since the publication of Reference, but the fundamentals remain the same. One significant change is that onboard attitude determination has largely superseded ground-based attitude determination, due to the greatly increased power of onboard computers. The availability of relatively inexpensive radiation-hardened microprocessors has led to the development of "smart" sensors, with autonomous star trackers being the first spacecraft application. Another new development is attitude determination using interferometry of radio signals from the Global Positioning System (GPS) constellation. This article reviews both the classic material and these newer developments at approximately the level of, with emphasis on. methods suitable for use onboard a spacecraft. We discuss both "single frame" methods that are based on measurements taken at a single point in time, and sequential methods that use information about spacecraft dynamics to combine the information from a time series of measurements.
An Assessment Tool of Performance Based Logistics Appropriateness
2012-03-01
weighted tool score. The reason might be the willing to use PBL as an acquisition method . There is an 8.51% positive difference is present. Figure 20 shows...performance-based acquisition methods to the maximum extent practicable when acquiring services with little exclusion’ is mandated. Although PBL...determines the factors affecting the success in selecting PBL as an acquisition method . Each factor is examined in detail and built into a spreadsheet tool
High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.
Luo, Jia; Huang, Hongxin; Matsui, Yoshinori; Toyoda, Haruyoshi; Inoue, Takashi; Bai, Jian
2015-04-06
Optical vortex (OV) beams have null-intensity singular points, and the intensities in the region surrounding the singular point are quite low. This low intensity region influences the position detection accuracy of phase singular point, especially for high-order OV beam. In this paper, we propose a new method for solving this problem, called the phase-slope-combining correlation matching method. A Shack-Hartmann wavefront sensor (SH-WFS) is used to measure phase slope vectors at lenslet positions of the SH-WFS. Several phase slope vectors are combined into one to reduce the influence of low-intensity regions around the singular point, and the combined phase slope vectors are used to determine the OV position with the aid of correlation matching with a pre-calculated database. Experimental results showed that the proposed method works with high accuracy, even when detecting an OV beam with a topological charge larger than six. The estimated precision was about 0.15 in units of lenslet size when detecting an OV beam with a topological charge of up to 20.
Pallen, M J; Hay, A J; Puckey, L H; Efstratiou, A
1994-01-01
AIMS--To assess the performance of the polymerase chain reaction (PCR) when used to screen rapidly large numbers of corynebacteria for toxin production; and to determine the incidence of false positive PCR results with non-toxigenic Corynebacterium diphtheriae isolates. METHODS--Eighty seven recent British isolates of corynebacteria were assayed by PCR. All isolates were assayed from both blood and tellurite agar within a five day period. Thirty three non-toxigenic isolates of C diphtheriae from six countries were also tested by PCR and by the Elek immunodiffusion assay. RESULTS--There was complete concordance between the results of PCR and traditional methods on the recent British isolates, with one exception: an Elek positive "C ulcerans" isolate, which was PCR positive from tellurite but not from blood agar. One of the thirty three (3%) non-toxigenic isolates of C diphtheriae was PCR positive. CONCLUSIONS--These results suggest that PCR compares favourably with traditional methods for the detection of toxigenic corynebacteria and that it represents a powerful new tool in the diagnosis of an old disease. Images PMID:8027375
System and method for determining an ammonia generation rate in a three-way catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Min; Perry, Kevin L; Kim, Chang H
A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
NASA Astrophysics Data System (ADS)
Ciofu, C.; Stan, G.
2016-08-01
The paper emphasise positioning precision of an elephant's trunk robotic arm which has joints driven by wires with variable length while operating The considered 5 degrees of freedom robotic arm has a particular structure of joint that makes possible inner actuation with wire-driven mechanism. We analyse solely the length change of wires as a consequence due inner winding and unwinding on joints for certain values of rotational angles. Variations in wires length entail joint angular displacements. We analyse positioning precision by taking into consideration equations from inverse kinematics of the elephant's trunk robotic arm. The angular displacements of joints are considered into computational method after partial derivation of positioning equations. We obtain variations of wires length at about tenths of micrometers. These variations employ angular displacements which are about minutes of sexagesimal degree and, thus, define positioning precision of elephant's trunk robotic arms. The analytical method is used for determining aftermath design structure of an elephant's trunk robotic arm with inner actuation through wires on positioning precision. Thus, designers could take suitable decisions on accuracy specifications limits of the robotic arm.
Method of control position of laser focus during surfacing teeth of cutters
NASA Astrophysics Data System (ADS)
Zvezdin, V. V.; Hisamutdinov, R. M.; Rakhimov, R. R.; Israfilov, I. H.; Akhtiamov, R. F.
2017-09-01
Providing the quality laser of surfacing the edges of teeth requires control not only the energy of the radiation parameters, but also the position of the focal spot. The control channel of position of laser focus during surfacing, which determines the parameters of quality of the deposited layer, was calculated in the work. The parameters of the active opto-electronic system for the subsystem adjust the focus position relative to the deposited layer with a laser illumination of the cutting edges the teeth cutters were calculated, the model of a control channel based on thermal phenomena occurring in the zone of surfacing was proposed.
Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A
2011-08-01
To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.
A high-resolution computational localization method for transcranial magnetic stimulation mapping.
Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro
2018-05-15
Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.
Prasad, Krishna D.; Shah, Namrata; Hegde, Chethan
2012-01-01
Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt's horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000) and similarly by the radiographic method (P 0.013). The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003) and left side (P 0.000), respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000) and left side (P 0.015), respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt's horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators. PMID:23633793
Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band.
Dultsev, F N; Kolosovsky, E A
2011-02-14
A new method based on the use of quartz crystal microbalance (QCM) as an active sensing element is developed, optimized and tested in a model system to measure the rupture force and deduce size distribution of nanoparticles. As suggested by model predictions, the QCM is shaped as a strip. The ratio of rupture signals at the second and the third harmonics versus the geometric position of a body on QCM surface is investigated theoretically. Recommendations concerning the use of the method for measuring the nanoparticle size distribution are presented. It is shown experimentally for an ensemble of test particles with a characteristic size within 20-30 nm that the proposed method allows one to determine particle size distribution. On the basis of the position and value of the measured rupture signal, a histogram of particle size distribution and percentage of each size fraction were determined. The main merits of the bond-rupture method are its rapid response, simplicity and the ability to discriminate between specific and non-specific interactions. The method is highly sensitive with respect to mass (the sensitivity is generally dependent on the chemical nature of receptor and analyte and may reach 8×10(-14) g mm(-2)) and applicable to measuring rupture forces either for weak bonds, for example hydrogen bonds, or for strong covalent bonds (10(-11)-10(-9) N). This procedure may become a good alternative for the existing methods, such as AFM or optical methods of determining biological objects, and win a broad range of applications both in laboratory research and in biosensing for various purposes. Possible applications include medicine, diagnostics, environmental or agricultural monitoring. Copyright © 2010 Elsevier B.V. All rights reserved.
Nonparametric Determination of Redshift Evolution Index of Dark Energy
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
We propose a nonparametric method to determine the sign of γ — the redshift evolution index of dark energy. This is important for distinguishing between positive energy models, a cosmological constant, and what is generally called ghost models. Our method is based on geometrical properties and is more tolerant to uncertainties of other cosmological parameters than fitting methods in what concerns the sign of γ. The same parametrization can also be used for determining γ and its redshift dependence by fitting. We apply this method to SNLS supernovae and to gold sample of re-analyzed supernovae data from Riess et al. Both datasets show strong indication of a negative γ. If this result is confirmed by more extended and precise data, many of the dark energy models, including simple cosmological constant, standard quintessence models without interaction between quintessence scalar field(s) and matter, and scaling models are ruled out. We have also applied this method to Gurzadyan-Xue models with varying fundamental constants to demonstrate the possibility of using it to test other cosmologies.
NASA Astrophysics Data System (ADS)
Wagner, Jenny; Liesenborgs, Jori; Tessore, Nicolas
2018-04-01
Context. Local gravitational lensing properties, such as convergence and shear, determined at the positions of multiply imaged background objects, yield valuable information on the smaller-scale lensing matter distribution in the central part of galaxy clusters. Highly distorted multiple images with resolved brightness features like the ones observed in CL0024 allow us to study these local lensing properties and to tighten the constraints on the properties of dark matter on sub-cluster scale. Aim. We investigate to what precision local magnification ratios, J, ratios of convergences, f, and reduced shears, g = (g1, g2), can be determined independently of a lens model for the five resolved multiple images of the source at zs = 1.675 in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling tool Lenstool and by the non-parametric modelling tool Grale can detect biases in the models. For these lens models, we analyse the influence of the number and location of the constraints from multiple images on the lens properties at the positions of the five multiple images of the source at zs = 1.675. Methods: Our model-independent approach uses a linear mapping between the five resolved multiple images to determine the magnification ratios, ratios of convergences, and reduced shears at their positions. With constraints from up to six multiple image systems, we generate Lenstool and Grale models using the same image positions, cosmological parameters, and number of generated convergence and shear maps to determine the local values of J, f, and g at the same positions across all methods. Results: All approaches show strong agreement on the local values of J, f, and g. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple-image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Conclusions: Our results agree with previous findings, support the light-traces-mass assumption, and the merger hypothesis for CL0024. Comparing the different approaches can detect model biases. The model-independent approach determines the local lens properties to a comparable precision in less than one second.
Pasko, Chris; Dunn, John; Jaeckel, Heidi; Nieuwlandt, Dan; Weed, Diane; Woodruff, Evelyn; Zheng, Xiaotian
2012-01-01
Rapid diagnosis of staphylococcal bacteremia directs appropriate antimicrobial therapy, leading to improved patient outcome. We describe herein a rapid test (<75 min) that can identify the major pathogenic strains of Staphylococcus to the species level as well as the presence or absence of the methicillin resistance determinant gene, mecA. The test, Staph ID/R, combines a rapid isothermal nucleic acid amplification method, helicase-dependent amplification (HDA), with a chip-based array that produces unambiguous visible results. The analytic sensitivity was 1 CFU per reaction for the mecA gene and was 1 to 250 CFU per reaction depending on the staphylococcal species present in the positive blood culture. Staph ID/R has excellent specificity as well, with no cross-reactivity observed. We validated the performance of Staph ID/R by testing 104 frozen clinical positive blood cultures and comparing the results with rpoB gene or 16S rRNA gene sequencing for species identity determinations and mecA gene PCR to confirm mecA gene results. Staph ID/R agreed with mecA gene PCR for all samples and agreed with rpoB/16S rRNA gene sequencing in all cases except for one sample that contained a mixture of two staphylococcal species, one of which Staph ID/R correctly identified, for an overall agreement of 99.0% (P < 0.01). Staph ID/R could potentially be used to positively affect patient management for Staphylococcus-mediated bacteremia. PMID:22170912
NASA Astrophysics Data System (ADS)
Pauwels, Steven; Boucart, Nick; Dierckx, Benoit; Van Vlierberghe, Pieter
2000-05-01
The use of a scanning laser Doppler vibrometer for vibration testing is becoming a popular instrument. The scanning laser Doppler vibrometer is a non-contacting transducer that can measure many points at a high spatial resolution in a short time. Manually aiming the laser beam at the points that need to be measured is very time consuming. In order to use it effectively, the position of the laser Doppler vibrometer needs to be determined relative to the structure. If the position of the laser Doppler vibrometer is known, any visible point on the structure can be hit and measured automatically. A new algorithm for this position determination is developed, based on a geometry model of the structure. After manually aiming the laser beam at 4 or more known points, the laser position and orientation relative to the structure is determined. Using this calculated position and orientation a list with the mirror angles for every measurement point is generated, which is used during the measurement. The algorithm is validated using 3 practical cases. In the first case a plate is used of which the points are measured very accurately, so the geometry model is assumed to be perfect. The second case is a brake disc. Here the geometry points are measured with a ruler, thus not so accurate. The final validation is done on a body in white of a car. A reduced finite element model is used as geometry model. This calibration shows that the new algorithm is very effective and practically usable.
Breiteneicher, Adam H; Norby, Bo; Schulz, Kurt S; Kerwin, Sharon C; Hulse, Don A; Fox, Derek B; Saunders, W Brian
2016-11-01
To determine the effect of sliding humeral osteotomy (SHO) on frontal plane thoracic limb alignment in standing and recumbent limb positions. Canine cadaveric study. Canine thoracic limbs (n=15 limb pairs). Limbs acquired from healthy Labrador Retrievers euthanatized for reasons unrelated to this study were mounted in a limb press and aligned in a standing position followed by axial loading at 30% body weight. Frontal plane radiography was performed in standing and recumbent positions pre- and post-SHO. In the standing position, lateralization of the foot was measured pre- and post-SHO using a textured grid secured to the limb press base plate. Twelve thoracic limb alignment values (mean ± SD and 95% CI) were determined using the center of rotation of angulation (CORA) method were compared using linear mixed models to determine if significant differences existed between limb alignment values pre- or post-SHO, controlling for dog, limb, and limb position. Six of 12 standing or recumbent alignment values were significantly different pre- and post-SHO. SHO resulted in decreased mechanical lateral distal humeral angle and movement of the mechanical humeral radio-ulnar angle, radio-ulnar metacarpal angle, thoracic humeral angle, and elbow mechanical axis deviation toward coaxial limb alignment. In the standing position, the foot underwent significant lateralization post-SHO. SHO resulted in significant alteration in frontal plane thoracic limb alignment. Additional studies are necessary to determine if the changes reported using our ex vivo model occur following SHO in vivo. © Copyright 2016 by The American College of Veterinary Surgeons.
Chihara, Takanori; Seo, Akihiko
2014-03-01
Proposed here is an evaluation of multiple muscle loads and a procedure for determining optimum solutions to ergonomic design problems. The simultaneous muscle load evaluation is formulated as a multi-objective optimization problem, and optimum solutions are obtained for each participant. In addition, one optimum solution for all participants, which is defined as the compromise solution, is also obtained. Moreover, the proposed method provides both objective and subjective information to support the decision making of designers. The proposed method was applied to the problem of designing the handrail position for the sit-to-stand movement. The height and distance of the handrails were the design variables, and surface electromyograms of four muscles were measured. The optimization results suggest that the proposed evaluation represents the impressions of participants more completely than an independent use of muscle loads. In addition, the compromise solution is determined, and the benefits of the proposed method are examined. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Free Swimming in Ground Effect
NASA Astrophysics Data System (ADS)
Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith
2017-11-01
A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.
NASA Astrophysics Data System (ADS)
Ahmadov, G. S.; Kopatch, Yu. N.; Telezhnikov, S. A.; Ahmadov, F. I.; Granja, C.; Garibov, A. A.; Pospisil, S.
2015-07-01
The silicon based pixel detector Timepix is a multi-parameter detector which gives simultaneously information about position, energy and arrival time of a particle hitting the detector. Applying the ΔE-E method with these detectors makes it possible to determine types of detected particles, separating them by charge. Using a thin silicon detector with thickness of 12 μm combined with a Timepix (300 μm), a ΔE-E telescope has been constructed. The telescope provides information about position, energy, time and type of registered particles. The emission probabilities and the energy distributions of ternary particles (He, Li, Be) from 252Cf spontaneous fission source were determined using this telescope. Besides the ternary particles, a few events were collected, which were attributed to the "pseudo" quaternary fission.
Modeling of transmission line exposure to direct lightning strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizk, F.A.M.
1990-10-01
The paper introduces a new model for assessing the exposure of free-standing structures and horizontal conductors above flat ground to direct lightning strokes. The starting point of this work is a recently developed criterion for positive leader inception, modified to account for positive leaders initiated under the influence of a negative descending lightning stroke. Subsequent propagation of the positive leader is analyzed to define the point of encounter of the two leaders which determines the attractive radius of a structure or the attractive lateral distance of a conductor. These parameters are investigated for a wide range of heights and return-strokemore » currents. A method for analyzing shielding failure and determining the critical shielding angle is also described. The predictions of the model are compared with field observations and previously developed models.« less
Multi-crack imaging using nonclassical nonlinear acoustic method
NASA Astrophysics Data System (ADS)
Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen
2014-10-01
Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.
Application of Geodetic Techniques for Antenna Positioning in a Ground Penetrating Radar Method
NASA Astrophysics Data System (ADS)
Mazurkiewicz, Ewelina; Ortyl, Łukasz; Karczewski, Jerzy
2018-03-01
The accuracy of determining the location of detectable subsurface objects is related to the accuracy of the position of georadar traces in a given profile, which in turn depends on the precise assessment of the distance covered by an antenna. During georadar measurements the distance covered by an antenna can be determined with a variety of methods. Recording traces at fixed time intervals is the simplest of them. A method which allows for more precise location of georadar traces is recording them at fixed distance intervals, which can be performed with the use of distance triggers (such as a measuring wheel or a hip chain). The search for methods eliminating these discrepancies can be based on the measurement of spatial coordinates of georadar traces conducted with the use of modern geodetic techniques for 3-D location. These techniques include above all a GNSS satellite system and electronic tachymeters. Application of the above mentioned methods increases the accuracy of space location of georadar traces. The article presents the results of georadar measurements performed with the use of geodetic techniques in the test area of Mydlniki in Krakow. A satellite receiver Leica system 1200 and a electronic tachymeter Leica 1102 TCRA were integrated with the georadar equipment. The accuracy of locating chosen subsurface structures was compared.
NASA Technical Reports Server (NTRS)
James, W. P.
1971-01-01
A simplified procedure is presented for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The simplified data processing procedure requires only that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems. This information is useful in assessing the environmental impact of waste water discharges and for industrial plant siting.
Roberson, J R; Fox, L K; Hancock, D D; Gay, J M; Besser, T E
1996-01-01
To determine prevalence and relevance of coagulase-positive Staphylococcus hyicus and S intermedius intramammary infections (IMI) in dairy cows and determine the ability of the 4-hour tube coagulase (TC) test to differentiate the coagulase-positive staphylococci (CPS). Prevalence of CPS was determined for primiparous cows (point prevalence and prevalence at first parturition) and multiparous cows (point prevalence) of 2 herd groups: < 6% CPS IMI prevalence = low prevalence (LP); > 10% CPS IMI prevalence = high prevalence (HP). For prevalence, cows of 22 dairy herds. For TC, 1,038 CPS strains isolated from cow milk. Speciation of CPS from aseptically collected composite milk samples was performed. Coagulase-positive isolates from 4 cow groups were tested for their ability to coagulate rabbit plasma by 4 hours: LP and HP primiparous cows at parturition, and LP and HP cows any time after first parturition. Of 487 CPS in the prevalence study, 82.1% were S aureus, 17.7% were coagulase-positive S hyicus, and 0.2% were S intermedius. Of all CPS IMI in LP herds, 34% were coagulase-positive S hyicus; of all CPS IMI in HP herds, 9% were coagulase-positive S hyicus. Coagulase-positive S hyicus appeared to persist to the end of lactation in 4 cows (mean linear somatic cell count = 3.7). The TC test was > or = 97% sensitive, < or = 33% specific, and had a predictive value positive range of 60 to 97% for S aureus isolates. Coagulase-positive S hyicus appears capable of inducing chronic, low-grade IMI. Staphylococcus intermedius does not appear to be an important mastitis pathogen. The TC test is not valid to use as the sole method to differentiate CPS species.
NASA Astrophysics Data System (ADS)
Mat Jafri, Mohd. Zubir; Abdulbaqi, Hayder Saad; Mutter, Kussay N.; Mustapha, Iskandar Shahrim; Omar, Ahmad Fairuz
2017-06-01
A brain tumour is an abnormal growth of tissue in the brain. Most tumour volume measurement processes are carried out manually by the radiographer and radiologist without relying on any auto program. This manual method is a timeconsuming task and may give inaccurate results. Treatment, diagnosis, signs and symptoms of the brain tumours mainly depend on the tumour volume and its location. In this paper, an approach is proposed to improve volume measurement of brain tumors as well as using a new method to determine the brain tumour location. The current study presents a hybrid method that includes two methods. One method is hidden Markov random field - expectation maximization (HMRFEM), which employs a positive initial classification of the image. The other method employs the threshold, which enables the final segmentation. In this method, the tumour volume is calculated using voxel dimension measurements. The brain tumour location was determined accurately in T2- weighted MRI image using a new algorithm. According to the results, this process was proven to be more useful compared to the manual method. Thus, it provides the possibility of calculating the volume and determining location of a brain tumour.
Method and apparatus for determining fat content of tissue
Weber, Thomas M.; Spletzer, Barry L.; Bryan, Jon R.; Dickey, Fred M.; Shagam, Richard N.; Gooris, Luc
2001-01-01
A method and apparatus for determining characteristics of tissue is disclosed. The method comprises supplying optical energy to a tissue and detecting at a plurality of locations consequent energy scattered by the tissue. Analysis of the scattered energy as taught herein provides information concerning the properties of the tissue, specifically information related to the fat and lean content and thickness of the tissue. The apparatus comprises a light source adapted to deliver optical energy to a tissue. A plurality of detectors can be mounted at different positions relative to the source to detect energy scattered by the tissue. A signal processor as taught herein can determine characteristics of the tissue from the signals from the detectors and locations of the detectors, specifically information related to the fat and lean content and thickness of the tissue.
Heinig, Katja; Herzog, Denis; Ferrari, Luca; Fraier, Daniela; Miya, Kazuhiro; Morcos, Peter N
2017-03-01
Alectinib (Alecensa ® ) is an anaplastic lymphoma kinase inhibitor for the treatment of anaplastic lymphoma kinase positive non-small-cell lung cancer, and M4 is its major pharmacologically active metabolite. To characterize the pharmacokinetics and excretion of alectinib and M4 in human urine, a bioanalytical method was required. An LC-MS/MS method using supported liquid extraction was developed for the determination of alectinib and M4 in human urine over the concentration range 0.5-500 ng/ml. Accuracy ranged from 92.0 to 112.2% and precision (CV) was below 9.6%. The method was successfully employed to determine alectinib and M4 concentrations in urine samples from a clinical mass balance study. Addition of the surfactant Tween-20 to urine prevented nonspecific binding of the analytes.
Accurate aircraft wind measurements using the global positioning system (GPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.
1996-11-01
High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.
Golden proportion for maxillofacial surgery in Orientals.
Kawakami, S; Tsukada, S; Hayashi, H; Takada, Y; Koubayashi, S
1989-11-01
The facial position and balance of eyes, nose, and mouth in typical Japanese individuals were investigated, based on the golden proportion for each of these relationships. We found that Japanese tend to have a longer upper lip and shorter chin length compared with Caucasians. We believe that this tendency represents a general facial characteristic of the Oriental population. Each ratio obtained from determinations by our method was used for preoperative and postoperative aesthetic analysis in maxillofacial surgery. This method is considered useful because it permitted us to understand quantitatively the positional relationship and the balance of eyes, nose, and mouth in the face and to make comparisons with typical subjects.
A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins
Knudsen, Bjarne; Miyamoto, Michael M.
2001-01-01
Changes in protein function can lead to changes in the selection acting on specific residues. This can often be detected as evolutionary rate changes at the sites in question. A maximum-likelihood method for detecting evolutionary rate shifts at specific protein positions is presented. The method determines significance values of the rate differences to give a sound statistical foundation for the conclusions drawn from the analyses. A statistical test for detecting slowly evolving sites is also described. The methods are applied to a set of Myc proteins for the identification of both conserved sites and those with changing evolutionary rates. Those positions with conserved and changing rates are related to the structures and functions of their proteins. The results are compared with an earlier Bayesian method, thereby highlighting the advantages of the new likelihood ratio tests. PMID:11734650
Variation of wave speed determined by the PU-loop with proximity to a reflection site.
Li, Ye; Borlotti, Alessandra; Parker, Kim H; Khir, Ashraf W
2011-01-01
Wave speed is directly related to arterial distensibility and is widely used by clinicians to assess arterial stiffness. The PU-loop method for determining wave speed is based on the water hammer equation for flow in flexible tubes and artery using the method of characteristics. This technique determines wave speed using simultaneous measurements of pressure and velocity at a single point. The method shows that during the early part of systole, the relationship between pressure and velocity is generally linear, and the initial slope of the PU-loop is proportional to wave speed. In this work, we designed an in-vitro experiment to investigate the effect of proximity to a reflection site on the wave speed determined by the PU-loop through varying the distance between the measurement and reflection sites. Measurements were made in a flexible tube with a reflection site at the distal end formed by joining the tube to another tube with a different diameter and material properties. Six different flexible tubes were used to generate both positive and negative reflection coefficients of different magnitudes. We found that the wave speed determined by the PU-loop did not change when the measurement site was far from the reflection site but did change as the distance to the reflection site decreased. The calculated wave speed increased with positive reflections and decreased with negative reflections. The magnitude of the change in wave speed at a fixed distance from the reflection site increased with increasing the value of the reflection coefficient.
Naganobu, Kiyokazu; Hagio, Mitsuyoshi
2007-01-01
To assess the accuracy of the 'hanging drop method' for identifying the extradural space in anaesthetized dogs positioned in sternal or lateral recumbency. Prospective randomized-experimental study. Seventeen clinically healthy adult dogs, 10 females and seven males weighing 8.4-26.2 kg. Dogs were positioned in either sternal (n = 8) or lateral (n = 9) recumbency under general anaesthesia. A 20 SWG spinal needle pre-filled with 0.9% saline was advanced through the skin into the lumbosacral extradural space and the response of the saline drop recorded, i.e. whether it: 1) was aspirated from the hub into the needle; 2) remained within the hub, or 3) moved synchronously with i) spontaneous respiration, ii) heart beat or iii) manual lung inflation. The position of the needle tip was ultimately determined by positive contrast radiography. One dog positioned in lateral recumbency was excluded from the study because bleeding occurred from the needle hub. Saline was aspirated into the needle in seven of eight dogs held in sternal recumbency but in none of the dogs positioned in lateral recumbency. Accurate needle tip placement in the extradural space was confirmed by positive contrast radiography in all dogs. The 'hanging drop' method, when performed with a spinal needle, appears to be a useful technique for identifying the location of the extradural space in anaesthetized medium-sized dogs positioned in sternal, but not in lateral recumbency. The technique may yield 'false negative' results when performed in dogs positioned in sternal recumbency.
On-Line Point Positioning with Single Frame Camera Data
1992-03-15
tion algorithms and methods will be found in robotics and industrial quality control. 1. Project data The project has been defined as "On-line point...development and use of the OLT algorithms and meth- ods for applications in robotics , industrial quality control and autonomous vehicle naviga- tion...Of particular interest in robotics and autonomous vehicle navigation is, for example, the task of determining the position and orientation of a mobile
Matsuda, Mari; Iguchi, Shigekazu; Mizutani, Tomonori; Hiramatsu, Keiichi; Tega-Ishii, Michiru; Sansaka, Kaori; Negishi, Kenta; Shimada, Kimie; Umemura, Jun; Notake, Shigeyuki; Yanagisawa, Hideji; Yabusaki, Reiko; Araoka, Hideki; Yoneyama, Akiko
2017-01-01
Background. Early detection of Gram-positive bacteremia and timely appropriate antimicrobial therapy are required for decreasing patient mortality. The purpose of our study was to evaluate the performance of the Verigene Gram-positive blood culture assay (BC-GP) in two special healthcare settings and determine the potential impact of rapid blood culture testing for Gram-positive bacteremia within the Japanese healthcare delivery system. Furthermore, the study included simulated blood cultures, which included a library of well-characterized methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) isolates reflecting different geographical regions in Japan. Methods. A total 347 BC-GP assays were performed on clinical and simulated blood cultures. BC-GP results were compared to results obtained by reference methods for genus/species identification and detection of resistance genes using molecular and MALDI-TOF MS methodologies. Results. For identification and detection of resistance genes at two clinical sites and simulated blood cultures, overall concordance of BC-GP with reference methods was 327/347 (94%). The time for identification and antimicrobial resistance detection by BC-GP was significantly shorter compared to routine testing especially at the cardiology hospital, which does not offer clinical microbiology services on weekends and holidays. Conclusion. BC-GP generated accurate identification and detection of resistance markers compared with routine laboratory methods for Gram-positive organisms in specialized clinical settings providing more rapid results than current routine testing. PMID:28316631
A novel method for isolating podocytes using magnetic activated cell sorting.
Murakami, Ayumi; Oshiro, Hisashi; Kanzaki, Seiichi; Yamaguchi, Akira; Yamanaka, Shoji; Furuya, Mitsuko; Miura, Satoshi; Kanno, Hiroshi; Nagashima, Yoji; Aoki, Ichiro; Nagahama, Kiyotaka
2010-12-01
A large body of accumulated data has now revealed that podocytes play a major role in the development of proteinuria. However, the mechanisms of podocyte injury, leading to foot process effacement and proteinuria, are still unclear partly due to the current lack of an appropriate strategy for preparing podocytes. In this study, we have developed a novel method of rapid isolation of podocytes from mice using magnetic activated cell sorting with an anti-nephrin antibody. After endothelial cell depletion using anti-CD31 antibody, nephrin-positive cells were prepared from mouse kidneys using magnetic activated cell sorting with polyclonal rabbit anti-nephrin antibody. Purity of the positively sorted cells was determined by confocal microscopy and fluorescence-activated cell sorting (FACS) analysis. Expression profiles of podocyte-specific molecules in the sorted fractions were characterized by qualitative PCR and immunoblot analysis. Nephrin-positive cells, isolated from mouse kidneys within 6 h, showed dual positivity for synaptopodin and rabbit IgG on confocal microscopy. FACS analysis revealed that the purity of the positively sorted fractions was ∼75%. The nephrin-positive cells sorted by this approach showed a significantly higher expression of podocyte-specific molecules compared with nephrin-negative fractions. These data strongly suggest that our novel method for isolating podocytes has great utility for various downstream applications such as genomic analysis, proteomics and transcriptomics to elucidate molecular profiling of podocyte biology in vivo compared with conventional methods as our approach requires only several hours to complete and no tissue culture.
Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi
2011-01-01
Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.
75 FR 81243 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... following methods: Federal eRulemaking Portal: http://www.regulations.gov . Follow the instructions for... student teaching experience. Affected Public: Individuals or households. Annual Burden Hours: 50 hours... necessary to collect information from applicants for student teaching positions from which to determine...
Sun, Huan; Wang, Yanjing; Zhang, Zhenming; Liu, Lin; Yang, Ping
2015-04-01
Determining the location of the interatrial septum (IAS) is crucial for cardiac electrophysiology procedures. Empirical methods of predicting IAS orientation depend on anatomical landmarks, including determining it from the direction of the coronary sinus (CS) and the position of the heart (e.g., vertical or transverse). However, the reliability of these methods for predicting IAS rotation warrants further study. The purpose of this study was to assess the clinical utility of the relationship between IAS orientation, CS direction, and heart position. Data from 115 patients undergoing coronary computed tomography (CT) angiography with no evidence of cardiac structural disease were collected and analyzed. Angulations describing IAS orientation, CS direction, and heart position were measured. The relationships between IAS orientation and each of the other two parameters were subsequently analyzed. The mean angulations for IAS orientation, CS direction, and heart position were 36.8 ± 7.3° (range 19.1-53.6), 37.7 ± 6.6° (range 21.3-50.1), and 37.1 ± 8.3° (range 19.2-61.0), respectively. We found a significant correlation between IAS orientation and CS direction (r = 0.928; P < 0.01), and the linear regression equation was drawn: IAS orientation = 2.01 + 1.03 × CS direction (r(2) = 0.86). No correlation was observed between IAS orientation and heart position (P = 0.86). In patients without structural heart disease, CS direction may be a reliable predictor of IAS orientation, and may serve as a helpful reference for clinicians during invasive electrophysiological procedures. Further study is warranted to clarify the relationship between IAS orientation and heart position. © 2015 Wiley Periodicals, Inc.
A hybrid method for accurate star tracking using star sensor and gyros.
Lu, Jiazhen; Yang, Lie; Zhang, Hao
2017-10-01
Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.
Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel
2017-01-01
Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607
Frosth, Sara; König, Ulrika; Nyman, Ann-Kristin; Aspán, Anna
2017-09-01
Dichelobacter nodosus is the principal cause of ovine footrot and strain virulence is an important factor in disease severity. Therefore, detection and virulence determination of D. nodosus is important for proper diagnosis of the disease. Today this is possible by real-time PCR analysis. Analysis of large numbers of samples is costly and laborious; therefore, pooling of individual samples is common in surveillance programs. However, pooling can reduce the sensitivity of the method. The aim of this study was to develop a pooling method for real-time PCR analysis that would allow sensitive detection and simultaneous virulence determination of D. nodosus. A total of 225 sheep from 17 flocks were sampled using ESwabs within the Swedish Footrot Control Program in 2014. Samples were first analysed individually and then in pools of five by real-time PCR assays targeting the 16S rRNA and aprV2/B2 genes of D. nodosus. Each pool consisted of four negative and one positive D. nodosus samples with varying amounts of the bacterium. In the individual analysis, 61 (27.1%) samples were positive in the 16S rRNA and the aprV2/B2 PCR assays and 164 (72.9%) samples were negative. All samples positive in the aprV2/B2 PCR-assay were of aprB2 variant. The pooled analysis showed that all 41 pools were also positive for D. nodosus 16S rRNA and the aprB2 variant. The diagnostic sensitivity for pooled and individual samples was therefore similar. Our method includes concentration of the bacteria before DNA-extraction. This may account for the maintenance of diagnostic sensitivity. Diagnostic sensitivity in the real-time PCR assays of the pooled samples were comparable to the sensitivity obtained for individually analysed samples. Even sub-clinical infections were able to be detected in the pooled PCR samples which is important for control of the disease. This method may therefore be implemented in footrot control programs where it can replace analysis of individual samples.
Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun
2016-07-07
To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori.
Method of combustion for dual fuel engine
Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.
1993-12-21
Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.
Precise Point Positioning technique for short and long baselines time transfer
NASA Astrophysics Data System (ADS)
Lejba, Pawel; Nawrocki, Jerzy; Lemanski, Dariusz; Foks-Ryznar, Anna; Nogas, Pawel; Dunst, Piotr
2013-04-01
In this work the clock parameters determination of several timing receivers TTS-4 (AOS), ASHTECH Z-XII3T (OP, ORB, PTB, USNO) and SEPTENTRIO POLARX4TR (ORB, since February 11, 2012) by use of the Precise Point Positioning (PPP) technique were presented. The clock parameters were determined for several time links based on the data delivered by time and frequency laboratories mentioned above. The computations cover the period from January 1 to December 31, 2012 and were performed in two modes with 7-day and one-month solution for all links. All RINEX data files which include phase and code GPS data were recorded in 30-second intervals. All calculations were performed by means of Natural Resource Canada's GPS Precise Point Positioning (GPS-PPP) software based on high-quality precise satellite coordinates and satellite clock delivered by IGS as the final products. The used independent PPP technique is a very powerful and simple method which allows for better control of antenna positions in AOS and a verification of other time transfer techniques like GPS CV, GLONASS CV and TWSTFT. The PPP technique is also a very good alternative for calibration of a glass fiber link PL-AOS realized at present by AOS. Currently PPP technique is one of the main time transfer methods used at AOS what considerably improve and strengthen the quality of the Polish time scales UTC(AOS), UTC(PL), and TA(PL). KEY-WORDS: Precise Point Positioning, time transfer, IGS products, GNSS, time scales.
Holloway, Edith E; Sturrock, Bonnie A; Lamoureux, Ecosse L; Keeffe, Jill E; Rees, Gwyneth
2015-12-01
To investigate characteristics associated with screening positive for depressive symptoms among older adults accessing low-vision rehabilitation and eye-care services and to determine client acceptability of depression screening using the Patient Health Questionnaire-2 (PHQ-2) in these settings. One-hundred and twenty-four older adults (mean = 77.02 years, SD = 9.12) attending low-vision rehabilitation and eye-care services across Australia were screened for depression and invited to complete a telephone-administered questionnaire to determine characteristics associated with depressive symptoms and client acceptability of screening in these settings. Thirty-seven per cent (n = 46/124) of participants screened positive for depressive symptoms, and the majority considered the new depression screening method to be a 'good idea' in vision services (85%). Severe vision loss (<6/60 in the better eye) was associated with an increased odds of screening positive for depressive symptoms (odds ratio 2.37; 95% confidence interval 1.08-6.70) even after adjusting for potential confounders. Participants who screened positive had a preference for 'talking' therapy or a combination of medication and 'talking therapy' delivered within their own home (73%) or via telephone (67%). The PHQ-2 appears to be an acceptable method for depression screening in eye-care settings among older adults. Targeted interventions that incorporate home-based or telephone delivered therapy sessions may improve outcomes for depression in this group. © 2014 ACOTA.
Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah
2015-01-01
Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.
Fluorescence intensity positivity classification of Hep-2 cells images using fuzzy logic
NASA Astrophysics Data System (ADS)
Sazali, Dayang Farzana Abang; Janier, Josefina Barnachea; May, Zazilah Bt.
2014-10-01
Indirect Immunofluorescence (IIF) is a good standard used for antinuclear autoantibody (ANA) test using Hep-2 cells to determine specific diseases. Different classifier algorithm methods have been proposed in previous works however, there still no valid set as a standard to classify the fluorescence intensity. This paper presents the use of fuzzy logic to classify the fluorescence intensity and to determine the positivity of the Hep-2 cell serum samples. The fuzzy algorithm involves the image pre-processing by filtering the noises and smoothen the image, converting the red, green and blue (RGB) color space of images to luminosity layer, chromaticity layer "a" and "b" (LAB) color space where the mean value of the lightness and chromaticity layer "a" was extracted and classified by using fuzzy logic algorithm based on the standard score ranges of antinuclear autoantibody (ANA) fluorescence intensity. Using 100 data sets of positive and intermediate fluorescence intensity for testing the performance measurements, the fuzzy logic obtained an accuracy of intermediate and positive class as 85% and 87% respectively.
[Convertibility of the data determined by ICP-AES and FAAS for soil available K and Na].
Zhang, Jian-min; Wang, Meng; Ge, Xiao-ping; Wu, Jian-zhi; Ge, Ying; Li, Shi-peng; Chang, Jie
2009-05-01
In recent years, inductively coupled plasma atomic emission spectrometry (ICP-AES) have been commonly used to determine the soil available K and Na with the extraction solution of HCl-H2SO4, while previous data of soil available K and Na were measured by flame atomic absorption spectrometry (FAAS) with the extraction solution of NH4OAc. In order to utilize previous data, quest for the convertibility of the data determined by ICP-AES and FAAS, and compare the data determined by both methods, the authors chose four types of soil to determine soil available K and Na by ICP-AES and FAAS, respectively. Four types of soil represent grit soil, clay, silt from river and silt from sea, respectively. Soil samples included four types of soil and these samples represent different soil nutrition. The authors analyzed the correlations of two kinds of measured data. The paired samples t-test proves that there was significantly positively correlation between these two methods. The correlation coefficient of the data between these two methods for measuring soil available K is 0.98. The results of soil available K determined by the two methods can be conversed through the formula, y = l.14x + 6.53 (R2 = 0.91, n=24, p < 0.001). As for Na, although there is a significantly positively correlation between these two methods, the slopes of single model of clay and grit soil were different from that of general model. And so the results determined by the two methods can be conversed through different formula according to the types of soil, that is, for clay: y = l.23x + 10.03; for grit soil: y = 3.12x - 23.03; for silt: y = 0.60x. In conclusion, the authors' results showed that previous data of available K and Na measured by FAAS with the extraction solution of NH4OAc were available. And these data were comparable to the data measured by ICP-AES through definite formula The authors' results also suggested that ICP-AES was preferable when many elements were measured at the same time. Under this condition, ICP-AES was economical, efficient and reliable.
A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.
Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong
2015-12-04
Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method.
Multi-camera digital image correlation method with distributed fields of view
NASA Astrophysics Data System (ADS)
Malowany, Krzysztof; Malesa, Marcin; Kowaluk, Tomasz; Kujawinska, Malgorzata
2017-11-01
A multi-camera digital image correlation (DIC) method and system for measurements of large engineering objects with distributed, non-overlapping areas of interest are described. The data obtained with individual 3D DIC systems are stitched by an algorithm which utilizes the positions of fiducial markers determined simultaneously by Stereo-DIC units and laser tracker. The proposed calibration method enables reliable determination of transformations between local (3D DIC) and global coordinate systems. The applicability of the method was proven during in-situ measurements of a hall made of arch-shaped (18 m span) self-supporting metal-plates. The proposed method is highly recommended for 3D measurements of shape and displacements of large and complex engineering objects made from multiple directions and it provides the suitable accuracy of data for further advanced structural integrity analysis of such objects.
de Jager, Lowri S; Perfetti, Gracia A; Diachenko, Gregory W
2007-03-23
A LC-MS method was developed for the determination of coumarin, vanillin, and ethyl vanillin in vanilla products. Samples were analyzed using LC-electrospray ionization (ESI)-MS in the positive ionization mode. Limits of detection for the method ranged from 0.051 to 0.073 microg mL(-1). Using the optimized method, 24 vanilla products were analyzed. All samples tested negative for coumarin. Concentrations ranged from 0.38 to 8.59 mg mL(-1) (x =3.73) for vanillin and 0.33 to 2.27 mg mL(-1) (x =1.03) for ethyl vanillin. The measured concentrations are compared to values calculated using UV monitoring and to results reported in a similar survey in 1988. Analytical results, method precision, and accuracy data are presented.
NASA Astrophysics Data System (ADS)
Wu, Huan; Zhao, Yanmei; Tan, Xuanping; Zeng, Xiaoqing; Guo, Yuan; Yang, Jidong
2017-03-01
A convenient fluorescence quenching method for determination of Quizalofop-p-ethyl(Qpe) was proposed in this paper. Eosin Y(EY) is a red dye with strong green fluorescence (λex/λem = 519/540 nm). The interaction between EY, Pd(II) and Qpe was investigated by fluorescence spectroscopy, resonance Rayleigh scattering(RRS) and UV-Vis absorption. Based on changes in spectrum, Pd(II) associated with Qpe giving a positively charged chelate firstly, then reacted with EY through electrostatic and hydrophobic interaction formed ternary chelate could be demonstrated. Under optimum conditions, the fluorescence intensity of EY could be quenched by Qpe in the presence of Pd(II) and the RRS intensity had a remarkable enhancement, which was directly proportional to the Qpe concentration within a certain concentration range, respectively. Based on the fluorescence quenching of EY-Pd(II) system by Qpe, a novel, convenient and specific method for Qpe determination was developed. To our knowledge, this is the first fluorescence method for determination of Qpe was reported. The detection limit for Qpe was 20.3 ng/mL and the quantitative determination range was 0.04-1.0 μg/mL. The method was highly sensitive and had larger detection range compared to other methods. The influence of coexisting substances was investigated with good anti-interference ability. The new analytical method has been applied to determine of Qpe in real samples with satisfactory results.
A new method for solving reachable domain of spacecraft with a single impulse
NASA Astrophysics Data System (ADS)
Chen, Qi; Qiao, Dong; Shang, Haibin; Liu, Xinfu
2018-04-01
This paper develops a new approach to solve the reachable domain of a spacecraft with a single maximum available impulse. First, the distance in a chosen direction, started from a given position on the initial orbit, is formulated. Then, its extreme value is solved to obtain the maximum reachable distance in this direction. The envelop of the reachable domain in three-dimensional space is determined by solving the maximum reachable distance in all directions. Four scenarios are analyzed, including three typical scenarios (either the maneuver position or impulse direction is fixed, or both are arbitrary) and a new extended scenario (the maneuver position is restricted to an interval and the impulse direction is arbitrary). Moreover, the symmetry and the boundedness of the reachable domain are discussed in detail. The former is helpful to reduce the numerical computation, while the latter decides the maximum eccentricity of the initial orbit for a maximum available impulse. The numerical simulations verify the effectiveness of the proposed method for solving the reachable domain in all four scenarios. Especially, the reachable domain with a highly elliptical initial orbit can be determined successfully, which remains unsolved in the existing papers.
Dynamic Ground Effect for a Cranked Arrow Wing Airplane
NASA Technical Reports Server (NTRS)
Curry, Robert E.
1997-01-01
Flight-determined ground effect characteristics for an F-16XL airplane are presented and correlated with wind tunnel predictions and similar flight results from other aircraft. Maneuvers were conducted at a variety of flightpath angles. Conventional ground effect flight test methods were used, with the exception that space positioning data were obtained using the differential global positioning system (DGPS). Accuracy of the DGPS was similar to that of optical tracking methods, but it was operationally more attractive. The dynamic flight determined lift and drag coefficient increments were measurably lower than steady-state wind-tunnel predictions. This relationship is consistent with the results of other aircraft for which similar data are available. Trends in the flight measured lift increments caused by ground effect as a function of flightpath angle were evident but weakly correlated. An engineering model of dynamic ground effect was developed based on linear aerodynamic theory and super-positioning of flows. This model was applied to the F-16XL data set and to previously published data for an F-15 airplane. In both cases, the model provided an engineering estimate of the ratio between the steady-state and dynamic data sets.
ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.