Sample records for position estimation method

  1. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  2. Indirect rotor position sensing in real time for brushless permanent magnet motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertugrul, N.; Acarnley, P.P.

    1998-07-01

    This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PMmore » motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.« less

  3. Method and system for controlling a permanent magnet machine

    DOEpatents

    Walters, James E.

    2003-05-20

    Method and system for controlling the start of a permanent magnet machine are provided. The method allows to assign a parameter value indicative of an estimated initial rotor position of the machine. The method further allows to energize the machine with a level of current being sufficiently high to start rotor motion in a desired direction in the event the initial rotor position estimate is sufficiently close to the actual rotor position of the machine. A sensing action allows to sense whether any incremental changes in rotor position occur in response to the energizing action. In the event no changes in rotor position are sensed, the method allows to incrementally adjust the estimated rotor position by a first set of angular values until changes in rotor position are sensed. In the event changes in rotor position are sensed, the method allows to provide a rotor alignment signal as rotor motion continues. The alignment signal allows to align the estimated rotor position relative to the actual rotor position. This alignment action allows for operating the machine over a wide speed range.

  4. Integer ambiguity resolution in precise point positioning: method comparison

    NASA Astrophysics Data System (ADS)

    Geng, Jianghui; Meng, Xiaolin; Dodson, Alan H.; Teferle, Felix N.

    2010-09-01

    Integer ambiguity resolution at a single receiver can be implemented by applying improved satellite products where the fractional-cycle biases (FCBs) have been separated from the integer ambiguities in a network solution. One method to achieve these products is to estimate the FCBs by averaging the fractional parts of the float ambiguity estimates, and the other is to estimate the integer-recovery clocks by fixing the undifferenced ambiguities to integers in advance. In this paper, we theoretically prove the equivalence of the ambiguity-fixed position estimates derived from these two methods by assuming that the FCBs are hardware-dependent and only they are assimilated into the clocks and ambiguities. To verify this equivalence, we implement both methods in the Position and Navigation Data Analyst software to process 1 year of GPS data from a global network of about 350 stations. The mean biases between all daily position estimates derived from these two methods are only 0.2, 0.1 and 0.0 mm, whereas the standard deviations of all position differences are only 1.3, 0.8 and 2.0 mm for the East, North and Up components, respectively. Moreover, the differences of the position repeatabilities are below 0.2 mm on average for all three components. The RMS of the position estimates minus those from the International GNSS Service weekly solutions for the former method differs by below 0.1 mm on average for each component from that for the latter method. Therefore, considering the recognized millimeter-level precision of current GPS-derived daily positions, these statistics empirically demonstrate the theoretical equivalence of the ambiguity-fixed position estimates derived from these two methods. In practice, we note that the former method is compatible with current official clock-generation methods, whereas the latter method is not, but can potentially lead to slightly better positioning quality.

  5. Improvement of Vehicle Positioning Using Car-to-Car Communications in Consideration of Communication Delay

    NASA Astrophysics Data System (ADS)

    Hontani, Hidekata; Higuchi, Yuya

    In this article, we propose a vehicle positioning method that can estimate positions of cars even in areas where the GPS is not available. For the estimation, each car measures the relative distance to a car running in front, communicates the measurements with other cars, and uses the received measurements for estimating its position. In order to estimate the position even if the measurements are received with time-delay, we employed the time-delay tolerant Kalman filtering. For sharing the measurements, it is assumed that a car-to-car communication system is used. Then, the measurements sent from farther cars are received with larger time-delay. It follows that the accuracy of the estimates of farther cars become worse. Hence, the proposed method manages only the states of nearby cars to reduce computing effort. The authors simulated the proposed filtering method and found that the proposed method estimates the positions of nearby cars as accurate as the distributed Kalman filtering.

  6. A method and implementation for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model

    NASA Astrophysics Data System (ADS)

    Swanson, Steven Roy

    The objective of the dissertation is to improve state estimation performance, as compared to a Kalman filter, when non-constant, or changing, biases exist in the measurement data. The state estimation performance increase will come from the use of a fuzzy model to determine the position and velocity gains of a state estimator. A method is proposed for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model. This method consists of using a fuzzy model to determine the gains of the state estimator, converting the heuristic knowledge into the fuzzy model, and then optimizing the fuzzy model with a genetic algorithm. This method is applied to the problem of state estimation of a cascaded global positioning system (GPS)/inertial reference unit (IRU) navigation system. The GPS position data contains two major sources for position bias. The first bias is due to satellite errors and the second is due to the time delay or lag from when the GPS position is calculated until it is used in the state estimator. When a change in the bias of the measurement data occurs, a state estimator will converge on the new measurement data solution. This will introduce errors into a Kalman filter's estimated state velocities, which in turn will cause a position overshoot as it converges. By using a fuzzy model to determine the gains of a state estimator, the velocity errors and their associated deficiencies can be reduced.

  7. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2013-10-01

    We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.

  8. A vision-based method for planar position measurement

    NASA Astrophysics Data System (ADS)

    Chen, Zong-Hao; Huang, Peisen S.

    2016-12-01

    In this paper, a vision-based method is proposed for three-degree-of-freedom (3-DOF) planar position (XY{θZ} ) measurement. This method uses a single camera to capture the image of a 2D periodic pattern and then uses the 2D discrete Fourier transform (2D DFT) method to estimate the phase of its fundamental frequency component for position measurement. To improve position measurement accuracy, the phase estimation error of 2D DFT is analyzed and a phase estimation method is proposed. Different simulations are done to verify the feasibility of this method and study the factors that influence the accuracy and precision of phase estimation. To demonstrate the performance of the proposed method for position measurement, a prototype encoder consisting of a black-and-white industrial camera with VGA resolution (480  ×  640 pixels) and an iPhone 4s has been developed. Experimental results show the peak-to-peak resolutions to be 3.5 nm in X axis, 8 nm in Y axis and 4 μ \\text{rad} in {θZ} axis. The corresponding RMS resolutions are 0.52 nm, 1.06 nm, and 0.60 μ \\text{rad} respectively.

  9. Designing occupancy studies when false-positive detections occur

    USGS Publications Warehouse

    Clement, Matthew

    2016-01-01

    1.Recently, estimators have been developed to estimate occupancy probabilities when false-positive detections occur during presence-absence surveys. Some of these estimators combine different types of survey data to improve estimates of occupancy. With these estimators, there is a tradeoff between the number of sample units surveyed, and the number and type of surveys at each sample unit. Guidance on efficient design of studies when false positives occur is unavailable. 2.For a range of scenarios, I identified survey designs that minimized the mean square error of the estimate of occupancy. I considered an approach that uses one survey method and two observation states and an approach that uses two survey methods. For each approach, I used numerical methods to identify optimal survey designs when model assumptions were met and parameter values were correctly anticipated, when parameter values were not correctly anticipated, and when the assumption of no unmodelled detection heterogeneity was violated. 3.Under the approach with two observation states, false positive detections increased the number of recommended surveys, relative to standard occupancy models. If parameter values could not be anticipated, pessimism about detection probabilities avoided poor designs. Detection heterogeneity could require more or fewer repeat surveys, depending on parameter values. If model assumptions were met, the approach with two survey methods was inefficient. However, with poor anticipation of parameter values, with detection heterogeneity, or with removal sampling schemes, combining two survey methods could improve estimates of occupancy. 4.Ignoring false positives can yield biased parameter estimates, yet false positives greatly complicate the design of occupancy studies. Specific guidance for major types of false-positive occupancy models, and for two assumption violations common in field data, can conserve survey resources. This guidance can be used to design efficient monitoring programs and studies of species occurrence, species distribution, or habitat selection, when false positives occur during surveys.

  10. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  11. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  12. [Nurses' professional prestige: estimate of magnitudes and expanded categories].

    PubMed

    Sousa, F A; da Silva, J A

    2001-01-01

    The prestige of professionals such as social workers, biologists, dentists, nurses, engineers, pharmacists, physicists, physical therapists, speech-language pathologists, physicians, psychologists, chemists and sociologists was scaled by the psychophysical methods of estimation of magnitudes and expanded categories. Results showed that: 1) when we increase the limited amplitude of categories, this method has the same characteristics as those of the estimation of magnitudes. 2) the relationship between the estimations of magnitudes and estimations of expanded categories is a power function with an exponent that is not significantly different from 1.0. These data enabled the following conclusions: 1--The nursing profession is in the seventh or eighth position regarding the prestige of the 13 professions whereas physicians are in the first position in the scale obtained by the used methods; 2--the orders resulting from the methods produce positions of prestige that highly agree for the different professions.

  13. A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations

    NASA Astrophysics Data System (ADS)

    Whittaker, Lee; Brown, Michael L.; Battye, Richard A.

    2015-12-01

    We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.

  14. Position Estimation Method of Medical Implanted Devices Using Estimation of Propagation Velocity inside Human Body

    NASA Astrophysics Data System (ADS)

    Kawasaki, Makoto; Kohno, Ryuji

    Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.

  15. Sparse Covariance Matrix Estimation With Eigenvalue Constraints

    PubMed Central

    LIU, Han; WANG, Lie; ZHAO, Tuo

    2014-01-01

    We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866

  16. Pseudorange error analysis for precise indoor positioning system

    NASA Astrophysics Data System (ADS)

    Pola, Marek; Bezoušek, Pavel

    2017-05-01

    There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.

  17. Real-time reflectometry measurement validation in H-mode regimes for plasma position control.

    PubMed

    Santos, J; Guimarais, L; Manso, M

    2010-10-01

    It has been shown that in H-mode regimes, reflectometry electron density profiles and an estimate for the density at the separatrix can be jointly used to track the separatrix within the precision required for plasma position control on ITER. We present a method to automatically remove, from the position estimation procedure, measurements performed during collapse and recovery phases of edge localized modes (ELMs). Based on the rejection mechanism, the method also produces an estimate confidence value to be fed to the position feedback controller. Preliminary results show that the method improves the real-time experimental separatrix tracking capabilities and has the potential to eliminate the need for an external online source of ELM event signaling during control feedback operation.

  18. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    PubMed

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  19. Methods for calculating the electrode position Jacobian for impedance imaging.

    PubMed

    Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A

    2017-03-01

    Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.

  20. Talker Localization Based on Interference between Transmitted and Reflected Audible Sound

    NASA Astrophysics Data System (ADS)

    Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji

    In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.

  1. Algorithms for spacecraft formation flying navigation based on wireless positioning system measurements

    NASA Astrophysics Data System (ADS)

    Goh, Shu Ting

    Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.

  2. A semiparametric separation curve approach for comparing correlated ROC data from multiple markers

    PubMed Central

    Tang, Liansheng Larry; Zhou, Xiao-Hua

    2012-01-01

    In this article we propose a separation curve method to identify the range of false positive rates for which two ROC curves differ or one ROC curve is superior to the other. Our method is based on a general multivariate ROC curve model, including interaction terms between discrete covariates and false positive rates. It is applicable with most existing ROC curve models. Furthermore, we introduce a semiparametric least squares ROC estimator and apply the estimator to the separation curve method. We derive a sandwich estimator for the covariance matrix of the semiparametric estimator. We illustrate the application of our separation curve method through two real life examples. PMID:23074360

  3. Estimation method of finger tapping dynamics using simple magnetic detection system

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  4. Estimation method of finger tapping dynamics using simple magnetic detection system.

    PubMed

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  5. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.

    PubMed

    Mo, Jun; Deng, Zhongliang; Jia, Buyun; Bian, Xinmei

    2017-12-01

    Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.

  6. Haptic control with environment force estimation for telesurgery.

    PubMed

    Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong

    2008-01-01

    Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.

  7. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  8. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors

    PubMed Central

    Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech

    2011-01-01

    Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935

  9. Hidden marker position estimation during sit-to-stand with walker.

    PubMed

    Yoon, Sang Ho; Jun, Hong Gul; Dan, Byung Ju; Jo, Byeong Rim; Min, Byung Hoon

    2012-01-01

    Motion capture analysis of sit-to-stand task with assistive device is hard to achieve due to obstruction on reflective makers. Previously developed robotic system, Smart Mobile Walker, is used as an assistive device to perform motion capture analysis in sit-to-stand task. All lower limb markers except hip markers are invisible through whole session. The link-segment and regression method is applied to estimate the marker position during sit-to-stand. Applying a new method, the lost marker positions are restored and the biomechanical evaluation of the sit-to-stand movement with a Smart Mobile Walker could be carried out. The accuracy of the marker position estimation is verified with normal sit-to-stand data from more than 30 clinical trials. Moreover, further research on improving the link segment and regression method is addressed.

  10. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm.

    PubMed

    Fraysse, François; Thewlis, Dominic

    2014-11-07

    Numerous methods exist to estimate the pose of the axes of rotation of the forearm. These include anatomical definitions, such as the conventions proposed by the ISB, and functional methods based on instantaneous helical axes, which are commonly accepted as the modelling gold standard for non-invasive, in-vivo studies. We investigated the validity of a third method, based on regression equations, to estimate the rotation axes of the forearm. We also assessed the accuracy of both ISB methods. Axes obtained from a functional method were considered as the reference. Results indicate a large inter-subject variability in the axes positions, in accordance with previous studies. Both ISB methods gave the same level of accuracy in axes position estimations. Regression equations seem to improve estimation of the flexion-extension axis but not the pronation-supination axis. Overall, given the large inter-subject variability, the use of regression equations cannot be recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  12. Epidemiologic research using probabilistic outcome definitions.

    PubMed

    Cai, Bing; Hennessy, Sean; Lo Re, Vincent; Small, Dylan S

    2015-01-01

    Epidemiologic studies using electronic healthcare data often define the presence or absence of binary clinical outcomes by using algorithms with imperfect specificity, sensitivity, and positive predictive value. This results in misclassification and bias in study results. We describe and evaluate a new method called probabilistic outcome definition (POD) that uses logistic regression to estimate the probability of a clinical outcome using multiple potential algorithms and then uses multiple imputation to make valid inferences about the risk ratio or other epidemiologic parameters of interest. We conducted a simulation to evaluate the performance of the POD method with two variables that can predict the true outcome and compared the POD method with the conventional method. The simulation results showed that when the true risk ratio is equal to 1.0 (null), the conventional method based on a binary outcome provides unbiased estimates. However, when the risk ratio is not equal to 1.0, the traditional method, either using one predictive variable or both predictive variables to define the outcome, is biased when the positive predictive value is <100%, and the bias is very severe when the sensitivity or positive predictive value is poor (less than 0.75 in our simulation). In contrast, the POD method provides unbiased estimates of the risk ratio both when this measure of effect is equal to 1.0 and not equal to 1.0. Even when the sensitivity and positive predictive value are low, the POD method continues to provide unbiased estimates of the risk ratio. The POD method provides an improved way to define outcomes in database research. This method has a major advantage over the conventional method in that it provided unbiased estimates of risk ratios and it is easy to use. Copyright © 2014 John Wiley & Sons, Ltd.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.

    Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less

  14. A Short Tutorial on Inertial Navigation System and Global Positioning System Integration

    NASA Technical Reports Server (NTRS)

    Smalling, Kyle M.; Eure, Kenneth W.

    2015-01-01

    The purpose of this document is to describe a simple method of integrating Inertial Navigation System (INS) information with Global Positioning System (GPS) information for an improved estimate of vehicle attitude and position. A simple two dimensional (2D) case is considered. The attitude estimates are derived from sensor data and used in the estimation of vehicle position and velocity through dead reckoning within the INS. The INS estimates are updated with GPS estimates using a Kalman filter. This tutorial is intended for the novice user with a focus on bringing the reader from raw sensor measurements to an integrated position and attitude estimate. An application is given using a remotely controlled ground vehicle operating in assumed 2D environment. The theory is developed first followed by an illustrative example.

  15. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    PubMed Central

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-01-01

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289

  16. Position Estimation for Switched Reluctance Motor Based on the Single Threshold Angle

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Pang; Yu, Yue

    2017-05-01

    This paper presents a position estimate model of switched reluctance motor based on the single threshold angle. In view of the relationship of between the inductance and rotor position, the position is estimated by comparing the real-time dynamic flux linkage with the threshold angle position flux linkage (7.5° threshold angle, 12/8SRM). The sensorless model is built by Maltab/Simulink, the simulation are implemented under the steady state and transient state different condition, and verified its validity and feasibility of the method..

  17. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  18. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    NASA Astrophysics Data System (ADS)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  19. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    PubMed

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  20. Self-position estimation using terrain shadows for precise planetary landing

    NASA Astrophysics Data System (ADS)

    Kuga, Tomoki; Kojima, Hirohisa

    2018-07-01

    In recent years, the investigation of moons and planets has attracted increasing attention in several countries. Furthermore, recently developed landing systems are now expected to reach more scientifically interesting areas close to hazardous terrain, requiring precise landing capabilities within a 100 m range of the target point. To achieve this, terrain-relative navigation (capable of estimating the position of a lander relative to the target point on the ground surface is actively being studied as an effective method for achieving highly accurate landings. This paper proposes a self-position estimation method using shadows on the terrain based on edge extraction from image processing algorithms. The effectiveness of the proposed method is validated through numerical simulations using images generated from a digital elevation model of simulated terrains.

  1. Real-time localization of mobile device by filtering method for sensor fusion

    NASA Astrophysics Data System (ADS)

    Fuse, Takashi; Nagara, Keita

    2017-06-01

    Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.

  2. On the representation and estimation of spatial uncertainty. [for mobile robot

    NASA Technical Reports Server (NTRS)

    Smith, Randall C.; Cheeseman, Peter

    1987-01-01

    This paper describes a general method for estimating the nominal relationship and expected error (covariance) between coordinate frames representing the relative locations of objects. The frames may be known only indirectly through a series of spatial relationships, each with its associated error, arising from diverse causes, including positioning errors, measurement errors, or tolerances in part dimensions. This estimation method can be used to answer such questions as whether a camera attached to a robot is likely to have a particular reference object in its field of view. The calculated estimates agree well with those from an independent Monte Carlo simulation. The method makes it possible to decide in advance whether an uncertain relationship is known accurately enough for some task and, if not, how much of an improvement in locational knowledge a proposed sensor will provide. The method presented can be generalized to six degrees of freedom and provides a practical means of estimating the relationships (position and orientation) among objects, as well as estimating the uncertainty associated with the relationships.

  3. Kinematic Localization for Global Navigation Satellite Systems: A Kalman Filtering Approach

    NASA Astrophysics Data System (ADS)

    Tabatabaee, Mohammad Hadi

    Use of the Global Positioning System (GNSS) has expanded significantly in the past decade, especially with advances in embedded systems and the emergence of smartphones and the Internet of Things (IoT). The growing demand has stimulated research on development of GNSS techniques and programming tools. The focus of much of the research efforts have been on high-level algorithms and augmentations. This dissertation focuses on the low-level methods at the heart of GNSS systems and proposes a new methods for GNSS positioning problems based on concepts of distance geometry and the use of Kalman filters. The methods presented in this dissertation provide algebraic solutions to problems that have predominantly been solved using iterative methods. The proposed methods are highly efficient, provide accurate estimates, and exhibit a degree of robustness in the presence of unfavorable satellite geometry. The algorithm operates in two stages; an estimation of the receiver clock bias and removal of the bias from the pseudorange observables, followed by the localization of the GNSS receiver. The use of a Kalman filter in between the two stages allows for an improvement of the clock bias estimate with a noticeable impact on the position estimates. The receiver localization step has also been formulated in a linear manner allowing for the direct application of a Kalman filter without any need for linearization. The methodology has also been extended to double differential observables for high accuracy pseudorange and carrier phase position estimates.

  4. Maintaining a Critical Spectra within Monteburns for a Gas-Cooled Reactor Array by Way of Control Rod Manipulation

    DOE PAGES

    Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; ...

    2016-10-01

    Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less

  5. Online Wavelet Complementary velocity Estimator.

    PubMed

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Gaussian Decomposition of Laser Altimeter Waveforms

    NASA Technical Reports Server (NTRS)

    Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan

    1999-01-01

    We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.

  7. In-flight estimation of center of gravity position using all-accelerometers.

    PubMed

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-09-19

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.

  8. A retrospective evaluation method for in vitro mammalian genotoxicity tests using cytotoxicity index transformation formulae.

    PubMed

    Fujita, Yurika; Kasamatsu, Toshio; Ikeda, Naohiro; Nishiyama, Naohiro; Honda, Hiroshi

    2016-01-15

    Although in vitro chromosomal aberration tests and micronucleus tests have been widely used for genotoxicity evaluation, false-positive results have been reported under strong cytotoxic conditions. To reduce false-positive results, the new Organization for Economic Co-operation and Development (OECD) test guideline (TG) recommends the use of a new cytotoxicity index, relative increase in cell count or relative population doubling (RICC/RPD), instead of the traditionally used index, relative cell count (RCC). Although the use of the RICC/RPD may result in different outcomes and require re-evaluation of tested substances, it is impractical to re-evaluate all existing data. Therefore, we established a method to estimate test results from existing RCC data. First, we developed formulae to estimate RICC/RPD from RCC without cell counts by considering cell doubling time and experiment time. Next, the accuracy of the cytotoxicity index transformation formulae was verified by comparing estimated RICC/RPD and measured RICC/RPD for 3 major chemicals associated with false-positive genotoxicity test results: ethyl acrylate, eugenol and p-nitrophenol. Moreover, 25 compounds with false-positive in vitro chromosomal aberration (CA) test results were re-evaluated to establish a retrospective evaluation method based on derived estimated RICC/RPD values. The estimated RICC/RPD values were in good agreement with the measured RICC/RPD values for every concentration and chemical, and the estimated RICC suggested the possibility that 12 chemicals (48%) with previously judged false-positive results in fact had negative results. Our method enables transformation of RCC data into RICC/RPD values with a high degree of accuracy and will facilitate comprehensive retrospective evaluation of test results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Estimating respiratory rate from FBG optical sensors by using signal quality measurement.

    PubMed

    Yongwei Zhu; Maniyeri, Jayachandran; Fook, Victor Foo Siang; Haihong Zhang

    2015-08-01

    Non-intrusiveness is one of the advantages of in-bed optical sensor device for monitoring vital signs, including heart rate and respiratory rate. Estimating respiratory rate reliably using such sensors, however, is challenging, due to body movement, signal variation according to different subjects or body positions, etc. This paper presents a method for reliable respiratory rate estimation for FBG optical sensors by introducing signal quality estimation. The method estimates the quality of the signal waveform by detecting regularly repetitive patterns using proposed spectrum and cepstrum analysis. Multiple window sizes are used to cater for a wide range of target respiratory rates. Furthermore, the readings of multiple sensors are fused to derive a final respiratory rate. Experiments with 12 subjects and 2 body positions were conducted using polysomnography belt signal as groundtruth. The results demonstrated the effectiveness of the method.

  10. Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, F. Landis

    1997-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  11. Self-Organizing Map Neural Network-Based Nearest Neighbor Position Estimation Scheme for Continuous Crystal PET Detectors

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei

    2014-10-01

    Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.

  12. Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors.

    PubMed

    Bora, Vaibhav; Barrett, Harrison H; Jha, Abhinav K; Clarkson, Eric

    2015-02-01

    The Fano factor for an integer-valued random variable is defined as the ratio of its variance to its mean. Light from various scintillation crystals have been reported to have Fano factors from sub-Poisson (Fano factor < 1) to super-Poisson (Fano factor > 1). For a given mean, a smaller Fano factor implies a smaller variance and thus less noise. We investigated if lower noise in the scintillation light will result in better spatial and energy resolutions. The impact of Fano factor on the estimation of position of interaction and energy deposited in simple gamma-camera geometries is estimated by two methods - calculating the Cramér-Rao bound and estimating the variance of a maximum likelihood estimator. The methods are consistent with each other and indicate that when estimating the position of interaction and energy deposited by a gamma-ray photon, the Fano factor of a scintillator does not affect the spatial resolution. A smaller Fano factor results in a better energy resolution.

  13. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    PubMed

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  14. Estimating the spatial position of marine mammals based on digital camera recordings

    PubMed Central

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-01-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  15. Small area estimation for semicontinuous data.

    PubMed

    Chandra, Hukum; Chambers, Ray

    2016-03-01

    Survey data often contain measurements for variables that are semicontinuous in nature, i.e. they either take a single fixed value (we assume this is zero) or they have a continuous, often skewed, distribution on the positive real line. Standard methods for small area estimation (SAE) based on the use of linear mixed models can be inefficient for such variables. We discuss SAE techniques for semicontinuous variables under a two part random effects model that allows for the presence of excess zeros as well as the skewed nature of the nonzero values of the response variable. In particular, we first model the excess zeros via a generalized linear mixed model fitted to the probability of a nonzero, i.e. strictly positive, value being observed, and then model the response, given that it is strictly positive, using a linear mixed model fitted on the logarithmic scale. Empirical results suggest that the proposed method leads to efficient small area estimates for semicontinuous data of this type. We also propose a parametric bootstrap method to estimate the MSE of the proposed small area estimator. These bootstrap estimates of the MSE are compared to the true MSE in a simulation study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  18. Bone orientation and position estimation errors using Cosserat point elements and least squares methods: Application to gait.

    PubMed

    Solav, Dana; Camomilla, Valentina; Cereatti, Andrea; Barré, Arnaud; Aminian, Kamiar; Wolf, Alon

    2017-09-06

    The aim of this study was to analyze the accuracy of bone pose estimation based on sub-clusters of three skin-markers characterized by triangular Cosserat point elements (TCPEs) and to evaluate the capability of four instantaneous physical parameters, which can be measured non-invasively in vivo, to identify the most accurate TCPEs. Moreover, TCPE pose estimations were compared with the estimations of two least squares minimization methods applied to the cluster of all markers, using rigid body (RBLS) and homogeneous deformation (HDLS) assumptions. Analysis was performed on previously collected in vivo treadmill gait data composed of simultaneous measurements of the gold-standard bone pose by bi-plane fluoroscopy tracking the subjects' knee prosthesis and a stereophotogrammetric system tracking skin-markers affected by soft tissue artifact. Femur orientation and position errors estimated from skin-marker clusters were computed for 18 subjects using clusters of up to 35 markers. Results based on gold-standard data revealed that instantaneous subsets of TCPEs exist which estimate the femur pose with reasonable accuracy (median root mean square error during stance/swing: 1.4/2.8deg for orientation, 1.5/4.2mm for position). A non-invasive and instantaneous criteria to select accurate TCPEs for pose estimation (4.8/7.3deg, 5.8/12.3mm), was compared with RBLS (4.3/6.6deg, 6.9/16.6mm) and HDLS (4.6/7.6deg, 6.7/12.5mm). Accounting for homogeneous deformation, using HDLS or selected TCPEs, yielded more accurate position estimations than RBLS method, which, conversely, yielded more accurate orientation estimations. Further investigation is required to devise effective criteria for cluster selection that could represent a significant improvement in bone pose estimation accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Parameters Estimation For A Patellofemoral Joint Of A Human Knee Using A Vector Method

    NASA Astrophysics Data System (ADS)

    Ciszkiewicz, A.; Knapczyk, J.

    2015-08-01

    Position and displacement analysis of a spherical model of a human knee joint using the vector method was presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the prepared software. The method itself can be useful when solving problems concerning the displacement and loads analysis in the knee joint.

  20. Methods and Apparatus for Reducing Multipath Signal Error Using Deconvolution

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor); Lau, Kenneth H. (Inventor)

    1999-01-01

    A deconvolution approach to adaptive signal processing has been applied to the elimination of signal multipath errors as embodied in one preferred embodiment in a global positioning system receiver. The method and receiver of the present invention estimates then compensates for multipath effects in a comprehensive manner. Application of deconvolution, along with other adaptive identification and estimation techniques, results in completely novel GPS (Global Positioning System) receiver architecture.

  1. Remediating Non-Positive Definite State Covariances for Collision Probability Estimation

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.

    2017-01-01

    The NASA Conjunction Assessment Risk Analysis team estimates the probability of collision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software processes satellite position+velocity states and their associated covariance matri-ces. On occasion, the software encounters non-positive definite (NPD) state co-variances, which can adversely affect or prevent the Pc estimation process. Inter-polation inaccuracies appear to account for the majority of such covariances, alt-hough other mechanisms contribute also. This paper investigates the origin of NPD state covariance matrices, three different methods for remediating these co-variances when and if necessary, and the associated effects on the Pc estimation process.

  2. In-Flight Estimation of Center of Gravity Position Using All-Accelerometers

    PubMed Central

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-01-01

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585

  3. Robust gaze-steering of an active vision system against errors in the estimated parameters

    NASA Astrophysics Data System (ADS)

    Han, Youngmo

    2015-01-01

    Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.

  4. Assessment of maxillary position. Implant vs cephalometric methods.

    PubMed

    Verayannont, Panisha; Hägg, Urban; Wong, Ricky W K; McGrath, Colman; Yeung, Shadow

    2010-09-01

    To compare changes in maxillary position assessed from a maxillary implant and three cephalometric methods based on linear measurements. Series of tracings of the maxilla obtained around puberty from an implant study were analyzed. The displacement of the implant was used to determine the direction and amount of "actual" maxillary growth. Displacement of point A was measured according to three cephalometric methods. The values obtained from absolute, horizontal, and vertical displacement of point A by three cephalometric methods and by the implant method were compared. Results showed that estimation of displacement of the maxilla by three cephalometric methods (point A) was significantly larger than that of the implant method in all directions. The average difference in the horizontal plane was 0.7 mm, 1.2 mm, and 1.6 mm, respectively; the average difference in the vertical plane was 2.2 mm, 2.5 mm, and 3.6 mm, respectively. Estimations of changes in maxillary position by the implant method and by cephalometric methods were not proportional. All three cephalometric methods overestimated changes in the position of the maxilla.

  5. Estimation of slip distribution using an inverse method based on spectral decomposition of Green's function utilizing Global Positioning System (GPS) data

    NASA Astrophysics Data System (ADS)

    Jin, Honglin; Kato, Teruyuki; Hori, Muneo

    2007-07-01

    An inverse method based on the spectral decomposition of the Green's function was employed for estimating a slip distribution. We conducted numerical simulations along the Philippine Sea plate (PH) boundary in southwest Japan using this method to examine how to determine the essential parameters which are the number of deformation function modes and their coefficients. Japanese GPS Earth Observation Network (GEONET) Global Positioning System (GPS) data were used for three years covering 1997-1999 to estimate interseismic back slip distribution in this region. The estimated maximum back slip rate is about 7 cm/yr, which is consistent with the Philippine Sea plate convergence rate. Areas of strong coupling are confined between depths of 10 and 30 km and three areas of strong coupling were delineated. These results are consistent with other studies that have estimated locations of coupling distribution.

  6. Estimation of optimal pivot point for remote center of motion alignment in surgery.

    PubMed

    Rosa, Benoît; Gruijthuijsen, Caspar; Van Cleynenbreugel, Ben; Sloten, Jos Vander; Reynaerts, Dominiek; Poorten, Emmanuel Vander

    2015-02-01

    The determination of an optimal pivot point ([Formula: see text]) is important for instrument manipulation in minimally invasive surgery. Such knowledge is of particular importance for robotic-assisted surgery where robots need to rotate precisely around a specific point in space in order to minimize trauma to the body wall while maintaining position control. Remote center of motion (RCM) mechanisms are commonly used, where the RCM point is manually and visually aligned. If not positioned appropriately, this misalignment might lead to intolerably high forces on the body wall with increased risk of postoperative complications or instrument damage. An automated method to align the RCM with the [Formula: see text] was developed and tested. Computer vision and a lightweight calibration procedure are used to estimate the optimal pivot point. One or two pre-calibrated cameras viewing the surgical scene are employed. The surgeon is asked to make short pivoting movements, applying as little torque as possible, with an instrument of choice passing through the insertion point while camera images are being recorded. The physical properties of an instrument rotating around a pivot point are exploited in a random sample consensus scheme to robustly estimate the ideal position of the RCM in the image planes. Triangulation is used to estimate the RCM position in 3D. Experiments were performed on a specially designed mockup to test the method. The position of the pivot point is estimated with an average error less than 1.85 mm using two webcams placed from approximately 30 cm to 1 m away from the scene. The entire procedure was completed in a few seconds. In automated method to estimate the ideal position of the RCM was shown to be reliable. The method can be implemented within a visual servoing approach to automatically place the RCM point, or the results can be displayed on a screen to provide guidance to the surgeon. Further work includes the development of an image-guided alignment method and validation with in vivo experiments.

  7. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-04-01

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.

  8. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    PubMed Central

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402

  9. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  10. A Tactical Database for the Low Cost Combat Direction System

    DTIC Science & Technology

    1990-12-01

    another object. Track is a representation of some environmental phenomena converted into accurate estimates of geographical position with respect to...by the method CALCULATE RELATIVE POSITION. In order to obtain a better similarity of mehods , the methods OWNSHIP DISTANCE TO PIM, ESTIMATED TIME OF...this mechanism entails the risk that the user will lose all of the work that was done if conflicts are detected and the transaction cannot be committed

  11. Methods for Estimating Uncertainty in Factor Analytic Solutions

    EPA Science Inventory

    The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...

  12. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  13. On the more accurate channel model and positioning based on time-of-arrival for visible light localization

    NASA Astrophysics Data System (ADS)

    Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed

    2017-01-01

    This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.

  14. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    PubMed

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  15. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  16. Walking Distance Estimation Using Walking Canes with Inertial Sensors

    PubMed Central

    Suh, Young Soo

    2018-01-01

    A walking distance estimation algorithm for cane users is proposed using an inertial sensor unit attached to various positions on the cane. A standard inertial navigation algorithm using an indirect Kalman filter was applied to update the velocity and position of the cane during movement. For quadripod canes, a standard zero-velocity measurement-updating method is proposed. For standard canes, a velocity-updating method based on an inverted pendulum model is proposed. The proposed algorithms were verified by three walking experiments with two different types of canes and different positions of the sensor module. PMID:29342971

  17. A self-sensing active magnetic bearing based on a direct current measurement approach.

    PubMed

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-09-11

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  18. Non-linear Parameter Estimates from Non-stationary MEG Data

    PubMed Central

    Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth

    2016-01-01

    We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815

  19. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  20. Maximum likelihood estimation in calibrating a stereo camera setup.

    PubMed

    Muijtjens, A M; Roos, J M; Arts, T; Hasman, A

    1999-02-01

    Motion and deformation of the cardiac wall may be measured by following the positions of implanted radiopaque markers in three dimensions, using two x-ray cameras simultaneously. Regularly, calibration of the position measurement system is obtained by registration of the images of a calibration object, containing 10-20 radiopaque markers at known positions. Unfortunately, an accidental change of the position of a camera after calibration requires complete recalibration. Alternatively, redundant information in the measured image positions of stereo pairs can be used for calibration. Thus, a separate calibration procedure can be avoided. In the current study a model is developed that describes the geometry of the camera setup by five dimensionless parameters. Maximum Likelihood (ML) estimates of these parameters were obtained in an error analysis. It is shown that the ML estimates can be found by application of a nonlinear least squares procedure. Compared to the standard unweighted least squares procedure, the ML method resulted in more accurate estimates without noticeable bias. The accuracy of the ML method was investigated in relation to the object aperture. The reconstruction problem appeared well conditioned as long as the object aperture is larger than 0.1 rad. The angle between the two viewing directions appeared to be the parameter that was most likely to cause major inaccuracies in the reconstruction of the 3-D positions of the markers. Hence, attempts to improve the robustness of the method should primarily focus on reduction of the error in this parameter.

  1. Estimation of position and velocity for a low dynamic vehicle in near space using nonresolved photometric and astrometric data.

    PubMed

    Jing, Nan; Li, Chuang; Chong, Yaqin

    2017-01-20

    An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.

  2. GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation

    PubMed Central

    Li, Hong; Lu, Mingquan

    2017-01-01

    Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks. PMID:28665318

  3. GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation.

    PubMed

    Wang, Fei; Li, Hong; Lu, Mingquan

    2017-06-30

    Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks.

  4. Constrained optimization for position calibration of an NMR field camera.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

    PubMed

    Chi, Wen-Chun; Cheng, Ming-Yang

    2014-03-01

    Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle

    PubMed Central

    Byun, Yeun Sub; Kim, Young Chol

    2016-01-01

    Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827

  7. Accuracy of height estimation and tidal volume setting using anthropometric formulas in an ICU Caucasian population.

    PubMed

    L'her, Erwan; Martin-Babau, Jérôme; Lellouche, François

    2016-12-01

    Knowledge of patients' height is essential for daily practice in the intensive care unit. However, actual height measurements are unavailable on a daily routine in the ICU and measured height in the supine position and/or visual estimates may lack consistency. Clinicians do need simple and rapid methods to estimate the patients' height, especially in short height and/or obese patients. The objectives of the study were to evaluate several anthropometric formulas for height estimation on healthy volunteers and to test whether several of these estimates will help tidal volume setting in ICU patients. This was a prospective, observational study in a medical intensive care unit of a university hospital. During the first phase of the study, eight limb measurements were performed on 60 healthy volunteers and 18 height estimation formulas were tested. During the second phase, four height estimates were performed on 60 consecutive ICU patients under mechanical ventilation. In the 60 healthy volunteers, actual height was well correlated with the gold standard, measured height in the erect position. Correlation was low between actual and calculated height, using the hand's length and width, the index, or the foot equations. The Chumlea method and its simplified version, performed in the supine position, provided adequate estimates. In the 60 ICU patients, calculated height using the simplified Chumlea method was well correlated with measured height (r = 0.78; ∂ < 1 %). Ulna and tibia estimates also provided valuable estimates. All these height estimates allowed calculating IBW or PBW that were significantly different from the patients' actual weight on admission. In most cases, tidal volume set according to these estimates was lower than what would have been set using the actual weight. When actual height is unavailable in ICU patients undergoing mechanical ventilation, alternative anthropometric methods to obtain patient's height based on lower leg and on forearm measurements could be useful to facilitate the application of protective mechanical ventilation in a Caucasian ICU population. The simplified Chumlea method is easy to achieve in a bed-ridden patient and provides accurate height estimates, with a low bias.

  8. Reliability and reproducibility of several methods of arthroscopic assessment of femoral tunnel position during anterior cruciate ligament reconstruction.

    PubMed

    Ilahi, Omer A; Mansfield, David J; Urrea, Luis H; Qadeer, Ali A

    2014-10-01

    To assess interobserver and intraobserver agreement of estimating anterior cruciate ligament (ACL) femoral tunnel positioning arthroscopically using circular and linear (noncircular) estimation methods and to determine whether overlay template visual aids improve agreement. Standardized intraoperative pictures of femoral tunnel pilot holes (taken with a 30° arthroscope through an anterolateral portal at 90° of knee flexion with horizontal being parallel to the tibial surface) in 27 patients undergoing single-bundle ACL reconstruction were presented to 3 fellowship-trained arthroscopists on 2 separate occasions. On both viewings, each surgeon estimated the femoral tunnel pilot hole location to the nearest half-hour mark using a whole clock face and half clock face, to the nearest 15° using a whole compass and half compass, in the top or bottom half of a linear quadrant, and in the top or bottom half of a linear trisector. Evaluations were performed first without and then with an overlay template of each estimation method. The average difference among reviewers was quite similar for all 4 circular methods with the use of visual aids. Without overlay template visual aids, pair-wise κ statistic values for interobserver agreement ranged from -0.14 to 0.56 for the whole clock face and from 0.16 to 0.42 for the half clock face. With overlay visual guides, interobserver agreement ranged from 0.29 to 0.63 for the whole clock face and from 0.17 to 0.66 for the half clock face. The quadrant method's interobserver agreement ranged from 0.22 to 0.60, and that of the trisection method ranged from 0.17 to 0.57. Neither linear estimation method's reliability uniformly improved with the use of overlay templates. Intraobserver agreement without overlay templates ranged from 0.17 to 0.49 for the whole clock face, 0.11 to 0.47 for the half clock face, 0.01 to 0.66 for the quadrant method, and 0.20 to 0.57 for the trisection method. Use of overlay templates did not uniformly improve intraobserver agreement for any estimation method. There does not appear to be any advantage of using a half clock face or compass for estimating femoral tunnel position compared with a whole clock-face analogy. Visual reference aids appear to improve interobserver agreement (reliability) of circular analogies. The linear quadrant appears to be the most reliable method (fair to moderate agreement) for estimating femoral tunnel position without a visual aid for reference, but even better reliability, ranging from fair to good agreement, may be obtained by using the whole clock-face analogy with a visual aid. Increasing femoral tunnel position reliability may improve outcomes of ACL reconstruction surgery. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements

    PubMed Central

    Krzysztof, Naus; Aleksander, Nowak

    2016-01-01

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884

  10. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    PubMed

    Krzysztof, Naus; Aleksander, Nowak

    2016-08-15

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  11. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  12. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  13. CT scan range estimation using multiple body parts detection: let PACS learn the CT image content.

    PubMed

    Wang, Chunliang; Lundström, Claes

    2016-02-01

    The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2% (max: 3.5%) and 1.6% (max: 5.4%) for the start and end positions, respectively. We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.

  14. High-speed autofocusing of a cell using diffraction pattern

    NASA Astrophysics Data System (ADS)

    Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi

    2006-05-01

    This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.

  15. A Method to Estimate the Size and Characteristics of HIV-positive Populations Using an Individual-based Stochastic Simulation Model.

    PubMed

    Nakagawa, Fumiyo; van Sighem, Ard; Thiebaut, Rodolphe; Smith, Colette; Ratmann, Oliver; Cambiano, Valentina; Albert, Jan; Amato-Gauci, Andrew; Bezemer, Daniela; Campbell, Colin; Commenges, Daniel; Donoghoe, Martin; Ford, Deborah; Kouyos, Roger; Lodwick, Rebecca; Lundgren, Jens; Pantazis, Nikos; Pharris, Anastasia; Quinten, Chantal; Thorne, Claire; Touloumi, Giota; Delpech, Valerie; Phillips, Andrew

    2016-03-01

    It is important not only to collect epidemiologic data on HIV but to also fully utilize such information to understand the epidemic over time and to help inform and monitor the impact of policies and interventions. We describe and apply a novel method to estimate the size and characteristics of HIV-positive populations. The method was applied to data on men who have sex with men living in the UK and to a pseudo dataset to assess performance for different data availability. The individual-based simulation model was calibrated using an approximate Bayesian computation-based approach. In 2013, 48,310 (90% plausibility range: 39,900-45,560) men who have sex with men were estimated to be living with HIV in the UK, of whom 10,400 (6,160-17,350) were undiagnosed. There were an estimated 3,210 (1,730-5,350) infections per year on average between 2010 and 2013. Sixty-two percent of the total HIV-positive population are thought to have viral load <500 copies/ml. In the pseudo-epidemic example, HIV estimates have narrower plausibility ranges and are closer to the true number, the greater the data availability to calibrate the model. We demonstrate that our method can be applied to settings with less data, however plausibility ranges for estimates will be wider to reflect greater uncertainty of the data used to fit the model.

  16. Incidence of tuberculous meningitis in France, 2000: a capture-recapture analysis.

    PubMed

    Cailhol, J; Che, D; Jarlier, V; Decludt, B; Robert, J

    2005-07-01

    To estimate the incidence of culture-positive and culture-negative tuberculous meningitis (TBM) in France in 2000. Capture-recapture method using two unrelated sources of data: the tuberculosis (TB) mandatory notification system (MNTB), recording patients treated by anti-tuberculosis drugs, and a survey by the National Reference Centre (NRC) for mycobacterial drug resistance, recording culture-positive TBM. Of 112 cases of TBM reported to the MNTB, 28 culture-positive and 34 culture-negative meningitis cases were validated (17 duplicates, 3 cases from outside France, 21 false notifications, and 9 lost records were excluded). The NRC recorded 31 culture-positive cases, including 21 known by the MNTB. When the capture-recapture method was applied to the reported culture-positive meningitis cases, the estimated number of meningitis cases was 41 and the incidence was 0.7 cases per million. Sensitivity was 75.6% for the NRC, 68.3% for the MNTB, and 92.7% for both systems together. When sensitivity of the MNTB for culture-positive cases was applied to culture-negative meningitis, the total estimated number of culture-negative meningitis cases was 50 and the incidence was 0.85 cases per million. TBM is underestimated in France. Capture-recapture analysis using different sources to better estimate its incidence is of great interest.

  17. Fast auto-focus scheme based on optical defocus fitting model

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min

    2018-04-01

    An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.

  18. Loose fusion based on SLAM and IMU for indoor environment

    NASA Astrophysics Data System (ADS)

    Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing

    2018-04-01

    The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.

  19. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  20. On the Methods for Estimating the Corneoscleral Limbus.

    PubMed

    Jesus, Danilo A; Iskander, D Robert

    2017-08-01

    The aim of this study was to develop computational methods for estimating limbus position based on the measurements of three-dimensional (3-D) corneoscleral topography and ascertain whether corneoscleral limbus routinely estimated from the frontal image corresponds to that derived from topographical information. Two new computational methods for estimating the limbus position are proposed: One based on approximating the raw anterior eye height data by series of Zernike polynomials and one that combines the 3-D corneoscleral topography with the frontal grayscale image acquired with the digital camera in-built in the profilometer. The proposed methods are contrasted against a previously described image-only-based procedure and to a technique of manual image annotation. The estimates of corneoscleral limbus radius were characterized with a high precision. The group average (mean ± standard deviation) of the maximum difference between estimates derived from all considered methods was 0.27 ± 0.14 mm and reached up to 0.55 mm. The four estimating methods lead to statistically significant differences (nonparametric ANOVA (the Analysis of Variance) test, p 0.05). Precise topographical limbus demarcation is possible either from the frontal digital images of the eye or from the 3-D topographical information of corneoscleral region. However, the results demonstrated that the corneoscleral limbus estimated from the anterior eye topography does not always correspond to that obtained through image-only based techniques. The experimental findings have shown that 3-D topography of anterior eye, in the absence of a gold standard, has the potential to become a new computational methodology for estimating the corneoscleral limbus.

  1. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  2. Using virtual environment for autonomous vehicle algorithm validation

    NASA Astrophysics Data System (ADS)

    Levinskis, Aleksandrs

    2018-04-01

    This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.

  3. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    PubMed

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  4. Compare diagnostic tests using transformation-invariant smoothed ROC curves⋆

    PubMed Central

    Tang, Liansheng; Du, Pang; Wu, Chengqing

    2012-01-01

    Receiver operating characteristic (ROC) curve, plotting true positive rates against false positive rates as threshold varies, is an important tool for evaluating biomarkers in diagnostic medicine studies. By definition, ROC curve is monotone increasing from 0 to 1 and is invariant to any monotone transformation of test results. And it is often a curve with certain level of smoothness when test results from the diseased and non-diseased subjects follow continuous distributions. Most existing ROC curve estimation methods do not guarantee all of these properties. One of the exceptions is Du and Tang (2009) which applies certain monotone spline regression procedure to empirical ROC estimates. However, their method does not consider the inherent correlations between empirical ROC estimates. This makes the derivation of the asymptotic properties very difficult. In this paper we propose a penalized weighted least square estimation method, which incorporates the covariance between empirical ROC estimates as a weight matrix. The resulting estimator satisfies all the aforementioned properties, and we show that it is also consistent. Then a resampling approach is used to extend our method for comparisons of two or more diagnostic tests. Our simulations show a significantly improved performance over the existing method, especially for steep ROC curves. We then apply the proposed method to a cancer diagnostic study that compares several newly developed diagnostic biomarkers to a traditional one. PMID:22639484

  5. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  6. 3D gaze tracking method using Purkinje images on eye optical model and pupil

    NASA Astrophysics Data System (ADS)

    Lee, Ji Woo; Cho, Chul Woo; Shin, Kwang Yong; Lee, Eui Chul; Park, Kang Ryoung

    2012-05-01

    Gaze tracking is to detect the position a user is looking at. Most research on gaze estimation has focused on calculating the X, Y gaze position on a 2D plane. However, as the importance of stereoscopic displays and 3D applications has increased greatly, research into 3D gaze estimation of not only the X, Y gaze position, but also the Z gaze position has gained attention for the development of next-generation interfaces. In this paper, we propose a new method for estimating the 3D gaze position based on the illuminative reflections (Purkinje images) on the surface of the cornea and lens by considering the 3D optical structure of the human eye model. This research is novel in the following four ways compared with previous work. First, we theoretically analyze the generated models of Purkinje images based on the 3D human eye model for 3D gaze estimation. Second, the relative positions of the first and fourth Purkinje images to the pupil center, inter-distance between these two Purkinje images, and pupil size are used as the features for calculating the Z gaze position. The pupil size is used on the basis of the fact that pupil accommodation happens according to the gaze positions in the Z direction. Third, with these features as inputs, the final Z gaze position is calculated using a multi-layered perceptron (MLP). Fourth, the X, Y gaze position on the 2D plane is calculated by the position of the pupil center based on a geometric transform considering the calculated Z gaze position. Experimental results showed that the average errors of the 3D gaze estimation were about 0.96° (0.48 cm) on the X-axis, 1.60° (0.77 cm) on the Y-axis, and 4.59 cm along the Z-axis in 3D space.

  7. Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing

    PubMed Central

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330

  8. Integrated GNSS attitude determination and positioning for direct geo-referencing.

    PubMed

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G

    2014-07-17

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.

  9. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  10. Eliminating the influence of source spectrum of white light scanning interferometry through time-delay estimation algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu

    2017-05-01

    In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.

  11. Research on the position estimation of human movement based on camera projection

    NASA Astrophysics Data System (ADS)

    Yi, Zhang; Yuan, Luo; Hu, Huosheng

    2005-06-01

    During the rehabilitation process of the post-stroke patients is conducted, their movements need to be localized and learned so that incorrect movement can be instantly modified or tuned. Therefore, tracking these movement becomes vital and necessary for the rehabilitative course. During human movement tracking, the position estimation of human movement is very important. In this paper, the character of the human movement system is first analyzed. Next, camera and inertial sensor are used to respectively measure the position of human movement, and the Kalman filter algorithm is proposed to fuse the two measurement to get a optimization estimation of the position. In the end, the performance of the method is analyzed.

  12. Improving IMES Localization Accuracy by Integrating Dead Reckoning Information

    PubMed Central

    Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki

    2016-01-01

    Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492

  13. Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario.

    PubMed

    Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao

    2016-11-22

    Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals' average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day's WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas.

  14. Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario

    PubMed Central

    Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao

    2016-01-01

    Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals’ average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day’s WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas. PMID:27879663

  15. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

    PubMed Central

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-01-01

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124

  16. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter.

    PubMed

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-12-09

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.

  17. Statistical approaches to account for false-positive errors in environmental DNA samples.

    PubMed

    Lahoz-Monfort, José J; Guillera-Arroita, Gurutzeta; Tingley, Reid

    2016-05-01

    Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies. © 2015 John Wiley & Sons Ltd.

  18. Method for estimating rice plant height without ground surface detection using laser scanner measurement

    NASA Astrophysics Data System (ADS)

    Thi Phan, Anh Thu; Takahashi, Kazuyoshi; Rikimaru, Atsushi; Higuchi, Yasuhiro

    2016-10-01

    A method for estimating the height of rice plants, using three-dimensional laser range data from point clouds, is proposed and assessed. Rice plant height (H) is estimated using a reference position at the top of the rice plant, avoiding the need to determine the ground position. Field experiments were performed with a SICK LMS 200 laser scanner in 2013 and 2014 on a test field with five different planting geometries. Percentile analysis identified the closest percentile to the top of the rice plant (pt=1), with vertical distances at the first percentile unaffected by planting geometry. The plant bottom position was identified using three different percentile ranks (pb=95, pb =80, and pb =70). Relative vertical distances (rD) were computed from the difference between the top and bottom positions of the rice plant. These correlated well with measured H, with slopes greater than 1.0. A greater number of stems in 2014 led to steeper slopes. Estimated H was more accurate when plant bottom positions were closer to the ground surface, and the best results were obtained with pb=95 (r2>0.87 RMSE≈4 cm). Overall, H was typically 16.0 cm greater than rD with pb=95.

  19. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  20. Position estimation of transceivers in communication networks

    DOEpatents

    Kent, Claudia A [Pleasanton, CA; Dowla, Farid [Castro Valley, CA

    2008-06-03

    This invention provides a system and method using wireless communication interfaces coupled with statistical processing of time-of-flight data to locate by position estimation unknown wireless receivers. Such an invention can be applied in sensor network applications, such as environmental monitoring of water in the soil or chemicals in the air where the position of the network nodes is deemed critical. Moreover, the present invention can be arranged to operate in areas where a Global Positioning System (GPS) is not available, such as inside buildings, caves, and tunnels.

  1. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.

  2. Robust position estimation of a mobile vehicle

    NASA Astrophysics Data System (ADS)

    Conan, Vania; Boulanger, Pierre; Elgazzar, Shadia

    1994-11-01

    The ability to estimate the position of a mobile vehicle is a key task for navigation over large distances in complex indoor environments such as nuclear power plants. Schematics of the plants are available, but they are incomplete, as real settings contain many objects, such as pipes, cables or furniture, that mask part of the model. The position estimation method described in this paper matches 3-D data with a simple schematic of a plant. It is basically independent of odometry information and viewpoint, robust to noisy data and spurious points and largely insensitive to occlusions. The method is based on a hypothesis/verification paradigm and its complexity is polynomial; it runs in (Omicron) (m4n4), where m represents the number of model patches and n the number of scene patches. Heuristics are presented to speed up the algorithm. Results on real 3-D data show good behavior even when the scene is very occluded.

  3. Development of Vertical Cable Seismic System (3)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.

  4. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results

    EPA Science Inventory

    The new version of EPA’s positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP)...

  5. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  6. Method to improve accuracy of positioning object by eLoran system with applying standard Kalman filter

    NASA Astrophysics Data System (ADS)

    Grunin, A. P.; Kalinov, G. A.; Bolokhovtsev, A. V.; Sai, S. V.

    2018-05-01

    This article reports on a novel method to improve the accuracy of positioning an object by a low frequency hyperbolic radio navigation system like an eLoran. This method is based on the application of the standard Kalman filter. Investigations of an affection of the filter parameters and the type of the movement on accuracy of the vehicle position estimation are carried out. Evaluation of the method accuracy was investigated by separating data from the semi-empirical movement model to different types of movements.

  7. Position and Orientation Tracking in a Ubiquitous Monitoring System for Parkinson Disease Patients With Freezing of Gait Symptom

    PubMed Central

    Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-01-01

    Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265

  8. Estimation of positive semidefinite correlation matrices by using convex quadratic semidefinite programming.

    PubMed

    Fushiki, Tadayoshi

    2009-07-01

    The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.

  9. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    NASA Astrophysics Data System (ADS)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  10. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  11. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria.

    PubMed

    Arora, Naveen Kumar; Verma, Maya

    2017-12-01

    In this study, siderophore production by various bacteria amongst the plant-growth-promoting rhizobacteria was quantified by a rapid and efficient method. In total, 23 siderophore-producing bacterial isolates/strains were taken to estimate their siderophore-producing ability by the standard method (chrome azurol sulphonate assay) as well as 96 well microplate method. Production of siderophore was estimated in percent siderophore unit by both the methods. It was observed that data obtained by both methods correlated positively with each other proving the correctness of microplate method. By the modified microplate method, siderophore production by several bacterial strains can be estimated both qualitatively and quantitatively at one go, saving time, chemicals, making it very less tedious, and also being cheaper in comparison with the method currently in use. The modified microtiter plate method as proposed here makes it far easier to screen the plant-growth-promoting character of plant-associated bacteria.

  12. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    NASA Astrophysics Data System (ADS)

    Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar

    2017-02-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.

  13. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  14. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  15. A method for automatic feature points extraction of human vertebrae three-dimensional model

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wu, Junsheng

    2017-05-01

    A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.

  16. Estimation of satellite position, clock and phase bias corrections

    NASA Astrophysics Data System (ADS)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  17. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters

    PubMed Central

    Park, Chan Gook

    2018-01-01

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539

  18. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media, Inc.

  19. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-11-13

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  20. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  1. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    PubMed Central

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions). PMID:29163196

  2. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    PubMed

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions).

  3. Alternative outcome definitions and their effect on the performance of methods for observational outcome studies.

    PubMed

    Reich, Christian G; Ryan, Patrick B; Schuemie, Martijn J

    2013-10-01

    A systematic risk identification system has the potential to test marketed drugs for important Health Outcomes of Interest or HOI. For each HOI, multiple definitions are used in the literature, and some of them are validated for certain databases. However, little is known about the effect of different definitions on the ability of methods to estimate their association with medical products. Alternative definitions of HOI were studied for their effect on the performance of analytical methods in observational outcome studies. A set of alternative definitions for three HOI were defined based on literature review and clinical diagnosis guidelines: acute kidney injury, acute liver injury and acute myocardial infarction. The definitions varied by the choice of diagnostic codes and the inclusion of procedure codes and lab values. They were then used to empirically study an array of analytical methods with various analytical choices in four observational healthcare databases. The methods were executed against predefined drug-HOI pairs to generate an effect estimate and standard error for each pair. These test cases included positive controls (active ingredients with evidence to suspect a positive association with the outcome) and negative controls (active ingredients with no evidence to expect an effect on the outcome). Three different performance metrics where used: (i) Area Under the Receiver Operator Characteristics (ROC) curve (AUC) as a measure of a method's ability to distinguish between positive and negative test cases, (ii) Measure of bias by estimation of distribution of observed effect estimates for the negative test pairs where the true effect can be assumed to be one (no relative risk), and (iii) Minimal Detectable Relative Risk (MDRR) as a measure of whether there is sufficient power to generate effect estimates. In the three outcomes studied, different definitions of outcomes show comparable ability to differentiate true from false control cases (AUC) and a similar bias estimation. However, broader definitions generating larger outcome cohorts allowed more drugs to be studied with sufficient statistical power. Broader definitions are preferred since they allow studying drugs with lower prevalence than the more precise or narrow definitions while showing comparable performance characteristics in differentiation of signal vs. no signal as well as effect size estimation.

  4. Estimates Of The Orbiter RSI Thermal Protection System Thermal Reliability

    NASA Technical Reports Server (NTRS)

    Kolodziej, P.; Rasky, D. J.

    2002-01-01

    In support of the Space Shuttle Orbiter post-flight inspection, structure temperatures are recorded at selected positions on the windward, leeward, starboard and port surfaces. Statistical analysis of this flight data and a non-dimensional load interference (NDLI) method are used to estimate the thermal reliability at positions were reusable surface insulation (RSI) is installed. In this analysis, structure temperatures that exceed the design limit define the critical failure mode. At thirty-three positions the RSI thermal reliability is greater than 0.999999 for the missions studied. This is not the overall system level reliability of the thermal protection system installed on an Orbiter. The results from two Orbiters, OV-102 and OV-105, are in good agreement. The original RSI designs on the OV-102 Orbital Maneuvering System pods, which had low reliability, were significantly improved on OV-105. The NDLI method was also used to estimate thermal reliability from an assessment of TPS uncertainties that was completed shortly before the first Orbiter flight. Results fiom the flight data analysis and the pre-flight assessment agree at several positions near each other. The NDLI method is also effective for optimizing RSI designs to provide uniform thermal reliability on the acreage surface of reusable launch vehicles.

  5. Position Accuracy Analysis of a Robust Vision-Based Navigation

    NASA Astrophysics Data System (ADS)

    Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.

    2018-05-01

    Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.

  6. A new framework for analysing automated acoustic species-detection data: occupancy estimation and optimization of recordings post-processing

    USGS Publications Warehouse

    Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.

    2018-01-01

    The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.

  7. Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.

    PubMed

    Chen, Ying-Chih; Wen, Chih-Yu

    2012-11-08

    This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.

  8. Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space

    PubMed Central

    Chen, Min; Hashimoto, Koichi

    2017-01-01

    Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189

  9. Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.

    PubMed

    The, Bertram; Kootstra, Johan W J; Hosman, Anton H; Verdonschot, Nico; Gerritsma, Carina L E; Diercks, Ron L

    2007-12-01

    The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object for correction of magnification. An existing method-which is currently being used in clinical practice in our clinics-is based on estimating the position of the hip joint by palpation of the greater trochanter. It is only moderately accurate and difficult to execute reliably in clinical practice. To develop a new method, 99 patients who already had a hip implant in situ were included; this enabled determining the true location of the hip joint deducted from the magnification of the prosthesis. Physical examination was used to obtain predictor variables possibly associated with the height of the hip joint. This included a simple dynamic hip joint examination to estimate the position of the center of rotation. Prediction equations were then constructed using regression analysis. The performance of these prediction equations was compared with the performance of the existing protocol. The mean absolute error in predicting the height of the hip joint center using the old method was 20 mm (range -79 mm to +46 mm). This was 11 mm for the new method (-32 mm to +39 mm). The prediction equation is: height (mm) = 34 + 1/2 abdominal circumference (cm). The newly developed prediction equation is a superior method for predicting the height of the hip joint center for correction of magnification of pelvic x-rays. We recommend its implementation in the departments of radiology and orthopedic surgery.

  10. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance

    USGS Publications Warehouse

    Clare, John; McKinney, Shawn T.; DePue, John E.; Loftin, Cynthia S.

    2017-01-01

    It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture–recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters.

  11. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  12. Machine-Vision Aids for Improved Flight Operations

    NASA Technical Reports Server (NTRS)

    Menon, P. K.; Chatterji, Gano B.

    1996-01-01

    The development of machine vision based pilot aids to help reduce night approach and landing accidents is explored. The techniques developed are motivated by the desire to use the available information sources for navigation such as the airport lighting layout, attitude sensors and Global Positioning System to derive more precise aircraft position and orientation information. The fact that airport lighting geometry is known and that images of airport lighting can be acquired by the camera, has lead to the synthesis of machine vision based algorithms for runway relative aircraft position and orientation estimation. The main contribution of this research is the synthesis of seven navigation algorithms based on two broad families of solutions. The first family of solution methods consists of techniques that reconstruct the airport lighting layout from the camera image and then estimate the aircraft position components by comparing the reconstructed lighting layout geometry with the known model of the airport lighting layout geometry. The second family of methods comprises techniques that synthesize the image of the airport lighting layout using a camera model and estimate the aircraft position and orientation by comparing this image with the actual image of the airport lighting acquired by the camera. Algorithms 1 through 4 belong to the first family of solutions while Algorithms 5 through 7 belong to the second family of solutions. Algorithms 1 and 2 are parameter optimization methods, Algorithms 3 and 4 are feature correspondence methods and Algorithms 5 through 7 are Kalman filter centered algorithms. Results of computer simulation are presented to demonstrate the performance of all the seven algorithms developed.

  13. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    PubMed

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  14. Consistent latent position estimation and vertex classification for random dot product graphs.

    PubMed

    Sussman, Daniel L; Tang, Minh; Priebe, Carey E

    2014-01-01

    In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.

  15. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  16. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.

    PubMed

    Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin

    2018-04-25

    Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  17. Group vector space method for estimating enthalpy of vaporization of organic compounds at the normal boiling point.

    PubMed

    Wenying, Wei; Jinyu, Han; Wen, Xu

    2004-01-01

    The specific position of a group in the molecule has been considered, and a group vector space method for estimating enthalpy of vaporization at the normal boiling point of organic compounds has been developed. Expression for enthalpy of vaporization Delta(vap)H(T(b)) has been established and numerical values of relative group parameters obtained. The average percent deviation of estimation of Delta(vap)H(T(b)) is 1.16, which show that the present method demonstrates significant improvement in applicability to predict the enthalpy of vaporization at the normal boiling point, compared the conventional group methods.

  18. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    PubMed Central

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. PMID:23112583

  19. Experimental estimating deflection of a simple beam bridge model using grating eddy current sensors.

    PubMed

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.

  20. Hierarchical modeling of population stability and species group attributes from survey data

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.

    2002-01-01

    Many ecological studies require analysis of collections of estimates. For example, population change is routinely estimated for many species from surveys such as the North American Breeding Bird Survey (BBS), and the species are grouped and used in comparative analyses. We developed a hierarchical model for estimation of group attributes from a collection of estimates of population trend. The model uses information from predefined groups of species to provide a context and to supplement data for individual species; summaries of group attributes are improved by statistical methods that simultaneously analyze collections of trend estimates. The model is Bayesian; trends are treated as random variables rather than fixed parameters. We use Markov Chain Monte Carlo (MCMC) methods to fit the model. Standard assessments of population stability cannot distinguish magnitude of trend and statistical significance of trend estimates, but the hierarchical model allows us to legitimately describe the probability that a trend is within given bounds. Thus we define population stability in terms of the probability that the magnitude of population change for a species is less than or equal to a predefined threshold. We applied the model to estimates of trend for 399 species from the BBS to estimate the proportion of species with increasing populations and to identify species with unstable populations. Analyses are presented for the collection of all species and for 12 species groups commonly used in BBS summaries. Overall, we estimated that 49% of species in the BBS have positive trends and 33 species have unstable populations. However, the proportion of species with increasing trends differs among habitat groups, with grassland birds having only 19% of species with positive trend estimates and wetland birds having 68% of species with positive trend estimates.

  1. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.

    2015-01-01

    Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100  μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200  μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194  μm, with 2×2 binning during the acquisition giving an effective pixel size of 388  μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095

  2. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT.

    PubMed

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J

    2015-04-01

    Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.

  3. Eyeball Position in Facial Approximation: Accuracy of Methods for Predicting Globe Positioning in Lateral View.

    PubMed

    Zednikova Mala, Pavla; Veleminska, Jana

    2018-01-01

    This study measured the accuracy of traditional and validated newly proposed methods for globe positioning in lateral view. Eighty lateral head cephalograms of adult subjects from Central Europe were taken, and the actual and predicted dimensions were compared. The anteroposterior eyeball position was estimated as the most accurate method based on the proportion of the orbital height (SEE = 1.9 mm) and was followed by the "tangent to the iris method" showing SEE = 2.4 mm. The traditional "tangent to the cornea method" underestimated the eyeball projection by SEE = 5.8 mm. Concerning the superoinferior eyeball position, the results showed a deviation from a central to a more superior position by 0.3 mm, on average, and the traditional method of central positioning of the globe could not be rejected as inaccurate (SEE = 0.3 mm). Based on regression analyzes or proportionality of the orbital height, the SEE = 2.1 mm. © 2017 American Academy of Forensic Sciences.

  4. Energy requirement assessed by doubly-labeled water method in patients with advanced amyotrophic lateral sclerosis managed by tracheotomy positive pressure ventilation.

    PubMed

    Ichihara, Noriko; Namba, Kazuyoshi; Ishikawa-Takata, Kazuko; Sekine, Kazunori; Takase, Mitsunori; Kamada, Yuko; Fujii, Seigo

    2012-10-01

    This study aimed to clarify the energy requirement in patients with amyotrophic lateral sclerosis (ALS) undergoing tracheostomy positive pressure ventilation with tracheostomy. Total energy expenditure (TEE) was measured in 10 hospitalized bedridden ALS patients using the doubly-labeled water (DLW) method. The mean TEE/day and TEE/fat- free mass estimated by DLW method were 934 ± 201 kcal/day and 34.8 ± 5.5 kcal/kg/day, respectively. The mean TEE/resting metabolic rate (RMR) was 0.85 when RMR was estimated by the Harris-Benedict equation, 0.91 by Dietary Reference Intake (DRI), and 0.97 by Ganpule's equation using fat-free mass (FFM). The ratios of TEE to measured RMR were 1.05, 1.15 and 1.23 in three patients. In conclusion, multiplying measured RMR by 1.1 to 1.2 is considered to be appropriate to estimate energy need. However, because it is difficult to measure RMR directly in a clinical setting, an appropriate equation for estimating RMR for ALS patient should be developed.

  5. Estimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint

    PubMed Central

    Guarín, Diego L.; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the movement in a manner that could not be predicted from quasi-stationary experiments. The new method provides the tool needed to explore the role of dynamic stiffness in the control of movement. PMID:28649196

  6. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.

    PubMed

    Huang, Jiyan; Zhang, Ying; Luo, Shan

    2017-12-15

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.

  7. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars

    PubMed Central

    Zhang, Ying; Luo, Shan

    2017-01-01

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727

  8. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  9. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  10. Distributed magnetic field positioning system using code division multiple access

    NASA Technical Reports Server (NTRS)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  11. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse timing model. A discrepancy provides an estimate of the spacecraft position offset, since an error in position will relate to the measured time offset of a pulse along the line of sight to the pulsar. XNAV researchers have been developing additional enhanced approaches to process the photon TOAs to arrive at an estimate of spacecraft position, including those using maximum-likelihood estimation, digital phase locked loops, and "single photon processing" schemes that utilize all available time data associated with each photon. Using pulsars from separate, non-coplanar locations provides range and range-rate measurements in each pulsar s direction. Combining these different pulsar measurements solves for offsets in position and velocity in three dimensions, and provides accurate overall navigation for deep space vehicles.

  12. Estimating tuberculosis incidence from primary survey data: a mathematical modeling approach.

    PubMed

    Pandey, S; Chadha, V K; Laxminarayan, R; Arinaminpathy, N

    2017-04-01

    There is an urgent need for improved estimations of the burden of tuberculosis (TB). To develop a new quantitative method based on mathematical modelling, and to demonstrate its application to TB in India. We developed a simple model of TB transmission dynamics to estimate the annual incidence of TB disease from the annual risk of tuberculous infection and prevalence of smear-positive TB. We first compared model estimates for annual infections per smear-positive TB case using previous empirical estimates from China, Korea and the Philippines. We then applied the model to estimate TB incidence in India, stratified by urban and rural settings. Study model estimates show agreement with previous empirical estimates. Applied to India, the model suggests an annual incidence of smear-positive TB of 89.8 per 100 000 population (95%CI 56.8-156.3). Results show differences in urban and rural TB: while an urban TB case infects more individuals per year, a rural TB case remains infectious for appreciably longer, suggesting the need for interventions tailored to these different settings. Simple models of TB transmission, in conjunction with necessary data, can offer approaches to burden estimation that complement those currently being used.

  13. Body surface detection method for photoacoustic image data using cloth-simulation technique

    NASA Astrophysics Data System (ADS)

    Sekiguchi, H.; Yoshikawa, A.; Matsumoto, Y.; Asao, Y.; Yagi, T.; Togashi, K.; Toi, M.

    2018-02-01

    Photoacoustic tomography (PAT) is a novel modality that can visualize blood vessels without contrast agents. It clearly shows blood vessels near the body surface. However, these vessels obstruct the observation of deep blood vessels. As the existence range of each vessel is determined by the distance from the body surface, they can be separated if the position of the skin is known. However, skin tissue, which does not contain hemoglobin, does not appear in PAT results, therefore, manual estimation is required. As this task is very labor-intensive, its automation is highly desirable. Therefore, we developed a method to estimate the body surface using the cloth-simulation technique, which is a commonly used method to create computer graphics (CG) animations; however, it has not yet been employed for medical image processing. In cloth simulations, the virtual cloth is represented by a two-dimensional array of mass nodes. The nodes are connected with each other by springs. Once the cloth is released from a position away from the body, each node begins to move downwards under the effect of gravity, spring, and other forces; some of the nodes hit the superficial vessels and stop. The cloth position in the stationary state represents the body surface. The body surface estimation, which required approximately 1 h with the manual method, is automated and it takes only approximately 10 s with the proposed method. The proposed method could facilitate the practical use of PAT.

  14. Correlation between oestrogen receptor protein expression in infiltrating ductal carcinoma of the breast by immunohistochemistry and cytosol measurements.

    PubMed

    Looi, L M; Yap, S F; Cheah, P L

    1997-11-01

    Fresh frozen neoplastic tissues from 70 infiltrating ductal breast carcinomas were analysed for cytosolic oestrogen receptor (ER) protein content using a solid phase enzyme immunoassay (EIA) method based on a "sandwich" principle (Abbott ER-EIA monoclonal). Formalin-fixed, paraffin-embedded sections from the same carcinomas were examined for nuclear immunoreactivity against a monoclonal antibody for ER protein (Dako) using the standard avidin-biotin complex immunoperoxidase (IP) method after microwave antigen retrieval. The degree of ER positivity by IP was also scored according to a visual estimation of the percentage of cells expressing immunopositivity and the intensity of staining. Twenty-eight (40%) of the carcinomas were ER-positive by EIA and 34 (48.6%) were positive by IP. Twenty-five (35.7%) were ER-positive and 33 (47.1%) were ER-negative by both methods. Nine (12.9%) were ER-negative by EIA but were positive by IP, this discrepancy being ascribed to sampling inadequacy for EIA. However, 3 (4.3%) tumours were ER-positive by EIA and negative by IP. This discrepancy may be variously due to inadequate antigen retrieval, faulty technique and the possibility that the two methods do not measure identical ER proteins. IP appears to have an advantage over EIA in that it has a higher pick-up rate, does not require fresh tissue and can be applied to archival material. However, to reduce false negative estimations, it may be necessary to run IP staining using more than one ER antibody. Standardisation of the IP method for ER is desirable before this method is to be widely adopted in Malaysian laboratories. Quantitation of ER positivity by IP scoring correlated poorly with actual cytosolic levels. Caution should be exercised in attaching patient management value to visual IP scoring.

  15. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyekyun

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation ofmore » the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior projections over more than 60° appear to be necessary for reliable estimations. The mean 3D RMSE during beam delivery after the simple linear model had established with a prior 90° projection data was 0.42 mm for VMAT and 0.45 mm for IMRT. Conclusions: The proposed method does not require any internal/external correlation or statistical modeling to estimate the target trajectory and can be used for both retrospective image-guided radiotherapy with CBCT projection images and real-time target position monitoring for respiratory gating or tracking.« less

  16. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  17. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  18. Methods for fitting a parametric probability distribution to most probable number data.

    PubMed

    Williams, Michael S; Ebel, Eric D

    2012-07-02

    Every year hundreds of thousands, if not millions, of samples are collected and analyzed to assess microbial contamination in food and water. The concentration of pathogenic organisms at the end of the production process is low for most commodities, so a highly sensitive screening test is used to determine whether the organism of interest is present in a sample. In some applications, samples that test positive are subjected to quantitation. The most probable number (MPN) technique is a common method to quantify the level of contamination in a sample because it is able to provide estimates at low concentrations. This technique uses a series of dilution count experiments to derive estimates of the concentration of the microorganism of interest. An application for these data is food-safety risk assessment, where the MPN concentration estimates can be fitted to a parametric distribution to summarize the range of potential exposures to the contaminant. Many different methods (e.g., substitution methods, maximum likelihood and regression on order statistics) have been proposed to fit microbial contamination data to a distribution, but the development of these methods rarely considers how the MPN technique influences the choice of distribution function and fitting method. An often overlooked aspect when applying these methods is whether the data represent actual measurements of the average concentration of microorganism per milliliter or the data are real-valued estimates of the average concentration, as is the case with MPN data. In this study, we propose two methods for fitting MPN data to a probability distribution. The first method uses a maximum likelihood estimator that takes average concentration values as the data inputs. The second is a Bayesian latent variable method that uses the counts of the number of positive tubes at each dilution to estimate the parameters of the contamination distribution. The performance of the two fitting methods is compared for two data sets that represent Salmonella and Campylobacter concentrations on chicken carcasses. The results demonstrate a bias in the maximum likelihood estimator that increases with reductions in average concentration. The Bayesian method provided unbiased estimates of the concentration distribution parameters for all data sets. We provide computer code for the Bayesian fitting method. Published by Elsevier B.V.

  19. A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup Standard Platform League

    PubMed Central

    Sánchez, Eduardo Munera; Alcobendas, Manuel Muñoz; Noguera, Juan Fco. Blanes; Gilabert, Ginés Benet; Simó Ten, José E.

    2013-01-01

    This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption. PMID:24193098

  20. GNSS Ephemeris with Graceful Degradation and Measurement Fusion

    NASA Technical Reports Server (NTRS)

    Garrison, James Levi (Inventor); Walker, Michael Allen (Inventor)

    2015-01-01

    A method for providing an extended propagation ephemeris model for a satellite in Earth orbit, the method includes obtaining a satellite's orbital position over a first period of time, applying a least square estimation filter to determine coefficients defining osculating Keplarian orbital elements and harmonic perturbation parameters associated with a coordinate system defining an extended propagation ephemeris model that can be used to estimate the satellite's position during the first period, wherein the osculating Keplarian orbital elements include semi-major axis of the satellite (a), eccentricity of the satellite (e), inclination of the satellite (i), right ascension of ascending node of the satellite (.OMEGA.), true anomaly (.theta.*), and argument of periapsis (.omega.), applying the least square estimation filter to determine a dominant frequency of the true anomaly, and applying a Fourier transform to determine dominant frequencies of the harmonic perturbation parameters.

  1. Distant Speech Recognition Using a Microphone Array Network

    NASA Astrophysics Data System (ADS)

    Nakano, Alberto Yoshihiro; Nakagawa, Seiichi; Yamamoto, Kazumasa

    In this work, spatial information consisting of the position and orientation angle of an acoustic source is estimated by an artificial neural network (ANN). The estimated position of a speaker in an enclosed space is used to refine the estimated time delays for a delay-and-sum beamformer, thus enhancing the output signal. On the other hand, the orientation angle is used to restrict the lexicon used in the recognition phase, assuming that the speaker faces a particular direction while speaking. To compensate the effect of the transmission channel inside a short frame analysis window, a new cepstral mean normalization (CMN) method based on a Gaussian mixture model (GMM) is investigated and shows better performance than the conventional CMN for short utterances. The performance of the proposed method is evaluated through Japanese digit/command recognition experiments.

  2. Method and system for non-linear motion estimation

    NASA Technical Reports Server (NTRS)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  3. Estimating parameter of influenza transmission using regularized least square

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Syukriah, Y.; Indratno, S. W.

    2014-02-01

    Transmission process of influenza can be presented in a mathematical model as a non-linear differential equations system. In this model the transmission of influenza is determined by the parameter of contact rate of the infected host and susceptible host. This parameter will be estimated using a regularized least square method where the Finite Element Method and Euler Method are used for approximating the solution of the SIR differential equation. The new infected data of influenza from CDC is used to see the effectiveness of the method. The estimated parameter represents the contact rate proportion of transmission probability in a day which can influence the number of infected people by the influenza. Relation between the estimated parameter and the number of infected people by the influenza is measured by coefficient of correlation. The numerical results show positive correlation between the estimated parameters and the infected people.

  4. Characterization of highly multiplexed monolithic PET / gamma camera detector modules.

    PubMed

    Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R

    2018-03-29

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  5. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    PubMed Central

    Qi, Jun; Liu, Guo-Ping

    2017-01-01

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal. PMID:29113126

  6. Fast and Adaptive Auto-focusing Microscope

    NASA Astrophysics Data System (ADS)

    Obara, Takeshi; Igarashi, Yasunobu; Hashimoto, Koichi

    Optical microscopes are widely used in biological and medical researches. By using the microscope, we can observe cellular movements including intracellular ions and molecules tagged with fluorescent dyes at a high magnification. However, a freely motile cell easily escapes from a 3D field of view of the typical microscope. Therefore, we propose a novel auto-focusing algorithm and develop a auto-focusing and tracking microscope. XYZ positions of a microscopic stage are feedback controlled to focus and track the cell automatically. A bright-field image is used to estimate a cellular position. XY centroids are used to estimate XY positions of the tracked cell. To estimate Z position, we use a diffraction pattern around the cell membrane. This estimation method is so-called Depth from Diffraction (DFDi). However, this method is not robust for individual differences between cells because the diffraction pattern depends on each cellular shape. Therefore, in this study, we propose a real-time correction of DFDi by using 2D Laplacian of an intracellular area as a goodness of the focus. To evaluate the performance of our developed algorithm and microscope, we auto-focus and track a freely moving paramecium. In this experimental result, the paramecium is auto-focused and kept inside the scope of the microscope during 45s. The evaluated focal error is within 5µm, while a length and a thickness of the paramecium are about 200µm and 50µm, respectively.

  7. Comparison of SOC estimates and uncertainties from aerosol chemical composition and gas phase data in Atlanta

    NASA Astrophysics Data System (ADS)

    Pachon, Jorge E.; Balachandran, Sivaraman; Hu, Yongtao; Weber, Rodney J.; Mulholland, James A.; Russell, Armistead G.

    2010-10-01

    In the Southeastern US, organic carbon (OC) comprises about 30% of the PM 2.5 mass. A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM 2.5 chemical composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the regression methods, which rely on the use of tracer species of primary and secondary OC formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary and secondary fractions based on source profiles and statistically-derived common factors, respectively. CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method having the lowest uncertainty among the four methods. We compared the estimates with the water soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is negligible, and found a similar trend with SOC estimates from the regression method. The regression method also showed the strongest correlation with daily SOC estimates from CMB using molecular markers. The regression method shows advantages over the other methods in the calculation of a long-term series of SOC estimates.

  8. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  9. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.

    PubMed

    Martinez-Enriquez, Eduardo; Sun, Mengchan; Velasco-Ocana, Miriam; Birkenfeld, Judith; Pérez-Merino, Pablo; Marcos, Susana

    2016-07-01

    Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). The method was validated ex vivo in 27 human donor (19-71 years of age) lenses, which were imaged in three-dimensions by OCT. In vivo conditions were simulated assuming that only the information within a given pupil size (PS) was available. A parametric model was used to estimate the whole lens shape from PS-limited data. The accuracy of the estimated lens VOL, DIA, and EPP was evaluated by comparing estimates from the whole lens data and PS-limited data ex vivo. The method was demonstrated in vivo using 2 young eyes during accommodation and 2 cataract eyes. Crystalline lens VOL was estimated within 96% accuracy (average estimation error across lenses ± standard deviation: 9.30 ± 7.49 mm3). Average estimation errors in EPP were below 40 ± 32 μm, and below 0.26 ± 0.22 mm in DIA. Changes in lens VOL with accommodation were not statistically significant (2-way ANOVA, P = 0.35). In young eyes, DIA decreased and EPP increased statistically significantly with accommodation (P < 0.001) by 0.14 mm and 0.13 mm, respectively, on average across subjects. In cataract eyes, VOL = 205.5 mm3, DIA = 9.57 mm, and EPP = 2.15 mm on average. Quantitative OCT with dedicated image processing algorithms allows estimation of human crystalline lens volume, diameter, and equatorial lens position, as validated from ex vivo measurements, where entire lens images are available.

  10. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  11. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  12. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  13. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  14. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  15. Using the ratio of the magnetic field to the analytic signal of the magnetic gradient tensor in determining the position of simple shaped magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Karimi, Kurosh; Shirzaditabar, Farzad

    2017-08-01

    The analytic signal of magnitude of the magnetic field’s components and its first derivatives have been employed for locating magnetic structures, which can be considered as point-dipoles or line of dipoles. Although similar methods have been used for locating such magnetic anomalies, they cannot estimate the positions of anomalies in noisy states with an acceptable accuracy. The methods are also inexact in determining the depth of deep anomalies. In noisy cases and in places other than poles, the maximum points of the magnitude of the magnetic vector components and Az are not located exactly above 3D bodies. Consequently, the horizontal location estimates of bodies are accompanied by errors. Here, the previous methods are altered and generalized to locate deeper models in the presence of noise even at lower magnetic latitudes. In addition, a statistical technique is presented for working in noisy areas and a new method, which is resistant to noise by using a ‘depths mean’ method, is made. Reduction to the pole transformation is also used to find the most possible actual horizontal body location. Deep models are also well estimated. The method is tested on real magnetic data over an urban gas pipeline in the vicinity of Kermanshah province, Iran. The estimated location of the pipeline is accurate in accordance with the result of the half-width method.

  16. Comparisons of LET distributions measured in low-earth orbit using tissue-equivalent proportional counters and the position-sensitive silicon-detector telescope (RRMD-III)

    NASA Technical Reports Server (NTRS)

    Doke, T.; Hayashi, T.; Borak, T. B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Determinations of the LET distribution, phi(L), of charged particles within a spacecraft in low-Earth orbit have been made. One method used a cylindrical tissue-equivalent proportional counter (TEPC), with the assumption that for each measured event, lineal energy, y, is equal to LET and thus phi(L) = phi(y). The other was based on the direct measurement of LETs for individual particles using a charged-particle telescope consisting of position-sensitive silicon detectors called RRMD-III. There were differences of up to a factor of 10 between estimates of phi(L) using the two methods on the same mission. This caused estimates of quality factor to vary by a factor of two between the two methods.

  17. A comparison of physiological and anthropometric characteristics among playing positions in junior rugby league players

    PubMed Central

    Gabbett, T

    2005-01-01

    Objectives: To compare the physiological and anthropometric characteristics of specific playing positions and positional playing groups in junior rugby league players. Methods: Two hundred and forty junior rugby league players underwent measurements of standard anthropometry (body mass, height, sum of four skinfolds), muscular power (vertical jump), speed (10, 20, and 40 m sprint), agility (L run), and estimated maximal aerobic power (multi-stage fitness test) during the competitive phase of the season, after players had obtained a degree of match fitness. Results: Props were significantly (p<0.05) taller, heavier, and had greater skinfold thickness than all other positions. The halfback and centre positions were faster than props over 40 m. Halfbacks had significantly (p<0.05) greater estimated maximal aerobic power than props. When data were analysed according to positional similarities, it was found that the props positional group had lower 20 and 40 m speed, agility, and estimated maximal aerobic power than the hookers and halves and outside backs positional groups. Differences in the physiological and anthropometric characteristics of other individual playing positions and positional playing groups were uncommon. Conclusions: The results of this study demonstrate that few physiological and anthropometric differences exist among individual playing positions in junior rugby league players, although props are taller, heavier, have greater skinfold thickness, lower 20 and 40 m speed, agility, and estimated maximal aerobic power than other positional playing groups. These findings provide normative data and realistic performance standards for junior rugby league players competing in specific individual positions and positional playing groups. PMID:16118309

  18. Analysis of the Bayesian Cramér-Rao lower bound in astrometry. Studying the impact of prior information in the location of an object

    NASA Astrophysics Data System (ADS)

    Echeverria, Alex; Silva, Jorge F.; Mendez, Rene A.; Orchard, Marcos

    2016-10-01

    Context. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims: We analyze bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (I.e., the position is a random variable) from observations that are statistically dependent on the position. Methods: We characterize the Bayesian Cramér-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results: We quantify and analyze the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions: The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.

  19. Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks

    NASA Astrophysics Data System (ADS)

    Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min

    2015-10-01

    Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.

  20. A pose estimation method for unmanned ground vehicles in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  1. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  2. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.

    PubMed

    Clare, John; McKinney, Shawn T; DePue, John E; Loftin, Cynthia S

    2017-10-01

    It is common to use multiple field sampling methods when implementing wildlife surveys to compare method efficacy or cost efficiency, integrate distinct pieces of information provided by separate methods, or evaluate method-specific biases and misclassification error. Existing models that combine information from multiple field methods or sampling devices permit rigorous comparison of method-specific detection parameters, enable estimation of additional parameters such as false-positive detection probability, and improve occurrence or abundance estimates, but with the assumption that the separate sampling methods produce detections independently of one another. This assumption is tenuous if methods are paired or deployed in close proximity simultaneously, a common practice that reduces the additional effort required to implement multiple methods and reduces the risk that differences between method-specific detection parameters are confounded by other environmental factors. We develop occupancy and spatial capture-recapture models that permit covariance between the detections produced by different methods, use simulation to compare estimator performance of the new models to models assuming independence, and provide an empirical application based on American marten (Martes americana) surveys using paired remote cameras, hair catches, and snow tracking. Simulation results indicate existing models that assume that methods independently detect organisms produce biased parameter estimates and substantially understate estimate uncertainty when this assumption is violated, while our reformulated models are robust to either methodological independence or covariance. Empirical results suggested that remote cameras and snow tracking had comparable probability of detecting present martens, but that snow tracking also produced false-positive marten detections that could potentially substantially bias distribution estimates if not corrected for. Remote cameras detected marten individuals more readily than passive hair catches. Inability to photographically distinguish individual sex did not appear to induce negative bias in camera density estimates; instead, hair catches appeared to produce detection competition between individuals that may have been a source of negative bias. Our model reformulations broaden the range of circumstances in which analyses incorporating multiple sources of information can be robustly used, and our empirical results demonstrate that using multiple field-methods can enhance inferences regarding ecological parameters of interest and improve understanding of how reliably survey methods sample these parameters. © 2017 by the Ecological Society of America.

  3. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  4. Analysis of methods to assess frontal sinus extent in osteoplastic flap surgery: transillumination versus 6-ft Caldwell versus image guidance.

    PubMed

    Melroy, Christopher T; Dubin, Marc G; Hardy, Stuart M; Senior, Brent A

    2006-01-01

    The aim of this study was to compare three common methods (transillumination, plain radiographs, and computerized tomography [CT] image guidance) for estimating the position and extent of pneumatization of the frontal sinus in osteoplastic flap surgery. Axial CT scans and 6-ft Caldwell radiographs were performed on 10 cadaver heads. For each head, soft tissue overlying the frontal bone was raised and the anticipated position and extent of the frontal sinus at four points was marked using three common methods. The silhouette of the frontal sinus from the Caldwell plain radiograph was excised and placed in position. Four points at the periphery also were made using information obtained from a passive optically guided image-guided surgery device, and transillumination via a frontal trephination also was used to estimate sinus extent. The true sinus size was measured at each point and compared with experimental values. The use of CT image guidance generated the least difference between measured and actual values (mean = 1.91 mm; SEM = 0.29); this method was found statistically superior to Caldwell (p = 0.040) and transillumination (p = 0.007). Image guidance did not overestimate the size of the sinus (0/36) and was quicker than the Caldwell approach (8.5 versus 11.5 minutes). There was no learning curve appreciated with image guidance. Accurate and precise estimation of the position and extent of the frontal sinus is crucial when performing osteoplastic flap surgery. Use of CT image guidance was statistically superior to Caldwell and transillumination methods and proved to be safe, reproducible, economic, and easy to learn.

  5. Estimating Foreign-Object-Debris Density from Photogrammetry Data

    NASA Technical Reports Server (NTRS)

    Long, Jason; Metzger, Philip; Lane, John

    2013-01-01

    Within the first few seconds after launch of STS-124, debris traveling vertically near the vehicle was captured on two 16-mm film cameras surrounding the launch pad. One particular piece of debris caught the attention of engineers investigating the release of the flame trench fire bricks. The question to be answered was if the debris was a fire brick, and if it represented the first bricks that were ejected from the flame trench wall, or was the object one of the pieces of debris normally ejected from the vehicle during launch. If it was typical launch debris, such as SRB throat plug foam, why was it traveling vertically and parallel to the vehicle during launch, instead of following its normal trajectory, flying horizontally toward the north perimeter fence? By utilizing the Runge-Kutta integration method for velocity and the Verlet integration method for position, a method that suppresses trajectory computational instabilities due to noisy position data was obtained. This combination of integration methods provides a means to extract the best estimate of drag force and drag coefficient under the non-ideal conditions of limited position data. This integration strategy leads immediately to the best possible estimate of object density, within the constraints of unknown particle shape. These types of calculations do not exist in readily available off-the-shelf simulation software, especially where photogrammetry data is needed as an input.

  6. Performance study of a PET scanner based on monolithic scintillators for different DoI-dependent methods

    NASA Astrophysics Data System (ADS)

    Preziosi, E.; Sánchez, S.; González, A. J.; Pani, R.; Borrazzo, C.; Bettiol, M.; Rodriguez-Alvarez, M. J.; González-Montoro, A.; Moliner, L.; Benlloch, J. M.

    2016-12-01

    One of the technical objectives of the MindView project is developing a brain-dedicated PET insert based on monolithic scintillation crystals. It will be inserted in MRI systems with the purpose to obtain simultaneous PET and MRI brain images. High sensitivity, high image quality performance and accurate detection of the Depth-of-Interaction (DoI) of the 511keV photons are required. We have developed a DoI estimation method, dedicated to monolithic scintillators, allowing continuous DoI estimation and a DoI-dependent algorithm for the estimation of the photon planar impact position, able to improve the single module imaging capabilities. In this work, through experimental measurements, the proposed methods have been used for the estimation of the impact positions within the monolithic crystal block. We have evaluated the PET system performance following the NEMA NU 4-2008 protocol by reconstructing the images using the STIR 3D platform. The results obtained with two different methods, providing discrete and continuous DoI information, are compared with those obtained from an algorithm without DoI capabilities and with the ideal response of the detector. The proposed DoI-dependent imaging methods show clear improvements in the spatial resolution (FWHM) of reconstructed images, allowing to obtain values from 2mm (at the center FoV) to 3mm (at the FoV edges).

  7. Comparison of visual survey and seining methods for estimating abundance of an endangered, benthic stream fish

    USGS Publications Warehouse

    Jordan, F.; Jelks, H.L.; Bortone, S.A.; Dorazio, R.M.

    2008-01-01

    We compared visual survey and seining methods for estimating abundance of endangered Okaloosa darters, Etheostoma okaloosae, in 12 replicate stream reaches during August 2001. For each 20-m stream reach, two divers systematically located and marked the position of darters and then a second crew of three to five people came through with a small-mesh seine and exhaustively sampled the same area. Visual surveys required little extra time to complete. Visual counts (24.2 ?? 12.0; mean ?? one SD) considerably exceeded seine captures (7.4 ?? 4.8), and counts from the two methods were uncorrelated. Visual surveys, but not seines, detected the presence of Okaloosa darters at one site with low population densities. In 2003, we performed a depletion removal study in 10 replicate stream reaches to assess the accuracy of the visual survey method. Visual surveys detected 59% of Okaloosa darters present, and visual counts and removal estimates were positively correlated. Taken together, our comparisons indicate that visual surveys more accurately and precisely estimate abundance of Okaloosa darters than seining and more reliably detect presence at low population densities. We recommend evaluation of visual survey methods when designing programs to monitor abundance of benthic fishes in clear streams, especially for threatened and endangered species that may be sensitive to handling and habitat disturbance. ?? 2007 Springer Science+Business Media, Inc.

  8. Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges.

    PubMed

    Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2014-11-25

    In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of "carrier-range" realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode.

  9. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  10. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  11. An enhanced inertial navigation system based on a low-cost IMU and laser scanner

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok

    2012-06-01

    This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.

  12. Vehicle speed affects both pre-skid braking kinematics and average tire/roadway friction.

    PubMed

    Heinrichs, Bradley E; Allin, Boyd D; Bowler, James J; Siegmund, Gunter P

    2004-09-01

    Vehicles decelerate between brake application and skid onset. To better estimate a vehicle's speed and position at brake application, we investigated how vehicle deceleration varied with initial speed during both the pre-skid and skidding intervals on dry asphalt. Skid-to-stop tests were performed from four initial speeds (20, 40, 60, and 80 km/h) using three different grades of tire (economy, touring, and performance) on a single vehicle and a single road surface. Average skidding friction was found to vary with initial speed and tire type. The post-brake/pre-skid speed loss, elapsed time, distance travelled, and effective friction were found to vary with initial speed. Based on these data, a method using skid mark length to predict vehicle speed and position at brake application rather than skid onset was shown to improve estimates of initial vehicle speed by up to 10 km/h and estimates of vehicle position at brake application by up to 8 m compared to conventional methods that ignore the post-brake/pre-skid interval. Copyright 2003 Elsevier Ltd.

  13. Fuel Burn Estimation Using Real Track Data

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.

    2011-01-01

    A procedure for estimating fuel burned based on actual flight track data, and drag and fuel-flow models is described. The procedure consists of estimating aircraft and wind states, lift, drag and thrust. Fuel-flow for jet aircraft is determined in terms of thrust, true airspeed and altitude as prescribed by the Base of Aircraft Data fuel-flow model. This paper provides a theoretical foundation for computing fuel-flow with most of the information derived from actual flight data. The procedure does not require an explicit model of thrust and calibrated airspeed/Mach profile which are typically needed for trajectory synthesis. To validate the fuel computation method, flight test data provided by the Federal Aviation Administration were processed. Results from this method show that fuel consumed can be estimated within 1% of the actual fuel consumed in the flight test. Next, fuel consumption was estimated with simplified lift and thrust models. Results show negligible difference with respect to the full model without simplifications. An iterative takeoff weight estimation procedure is described for estimating fuel consumption, when takeoff weight is unavailable, and for establishing fuel consumption uncertainty bounds. Finally, the suitability of using radar-based position information for fuel estimation is examined. It is shown that fuel usage could be estimated within 5.4% of the actual value using positions reported in the Airline Situation Display to Industry data with simplified models and iterative takeoff weight computation.

  14. Ancestry estimation and control of population stratification for sequence-based association studies.

    PubMed

    Wang, Chaolong; Zhan, Xiaowei; Bragg-Gresham, Jennifer; Kang, Hyun Min; Stambolian, Dwight; Chew, Emily Y; Branham, Kari E; Heckenlively, John; Fulton, Robert; Wilson, Richard K; Mardis, Elaine R; Lin, Xihong; Swaroop, Anand; Zöllner, Sebastian; Abecasis, Gonçalo R

    2014-04-01

    Estimating individual ancestry is important in genetic association studies where population structure leads to false positive signals, although assigning ancestry remains challenging with targeted sequence data. We propose a new method for the accurate estimation of individual genetic ancestry, based on direct analysis of off-target sequence reads, and implement our method in the publicly available LASER software. We validate the method using simulated and empirical data and show that the method can accurately infer worldwide continental ancestry when used with sequencing data sets with whole-genome shotgun coverage as low as 0.001×. For estimates of fine-scale ancestry within Europe, the method performs well with coverage of 0.1×. On an even finer scale, the method improves discrimination between exome-sequenced study participants originating from different provinces within Finland. Finally, we show that our method can be used to improve case-control matching in genetic association studies and to reduce the risk of spurious findings due to population structure.

  15. Evapotranspiration Measurement and Estimation: Weighing Lysimeter and Neutron Probe Based Methods Compared with Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Evett, S. R.; Gowda, P. H.; Marek, G. W.; Alfieri, J. G.; Kustas, W. P.; Brauer, D. K.

    2014-12-01

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP) and soil core sampling techniques), and can be biased with respect to ET from the surrounding area. The area represented by flux sensing methods such as eddy covariance (EC) is typically estimated with a flux footprint/source area model. The dimension, position of, and relative contribution of upwind areas within the source area are mainly influenced by sensor height, wind speed, atmospheric stability and wind direction. Footprints for EC sensors positioned several meters above the canopy are often larger than can be economically covered by mass balance methods. Moreover, footprints move with atmospheric conditions and wind direction to cover different field areas over time while mass balance methods are static in space. Thus, EC systems typically sample a much greater field area over time compared with mass balance methods. Spatial variability of surface cover can thus complicate interpretation of flux estimates from EC systems. The most commonly used flux estimation method is EC; and EC estimates of latent heat energy (representing ET) and sensible heat fluxes combined are typically smaller than the available energy from net radiation and soil heat flux (commonly referred to as lack of energy balance closure). Reasons for this are the subject of ongoing research. We compare ET from LYS, NP and EC methods applied to field crops for three years at Bushland, Texas (35° 11' N, 102° 06' W, 1170 m elevation above MSL) to illustrate the potential problems with and comparative advantages of all three methods. In particular, we examine how networks of neutron probe access tubes can be representative of field areas large enough to be equivalent in size to EC footprints, and how the ET data from these methods can address bias and accuracy issues.

  16. Estimating the instabilities of N clocks by means of comparison measurements

    NASA Technical Reports Server (NTRS)

    Premoli, Amedeo; Tavella, Patrizia

    1993-01-01

    The estimation of individual instabilities of N clocks, compared by measuring the differences of their readings, is considered without assuming a priori any hypotheses on their uncorrelation. Instabilities of the N clocks are described by a complete (non-diagonal) N x N covariance matrix R. Only differences of clock readings are available in order to estimate R. Statistical processing of these data allows one to calculate the (N-1)x(N-l) covariance matrix S of the differences relative to the N-th(reference) clock. By analyzing the relationships tying R and S, several pieces of information can be inferred and, in particular, the conditions for the validity of the uncorrelation hypothesis are established. The estimation of R from S is not unique: in any case R must be positive definite. A theorem states that R is positive definite if and only if its determinant is positive. Nevertheless infinitely many acceptable choices of R still fulfill the condition of positive definiteness. This paper shows that, by increasing the number N of compared clocks, the amount of arbitrariness in estimating R is reduced. The analysis of some experimental data illustrates the capability of the method.

  17. Discrete Indoor Three-Dimensional Localization System Based on Neural Networks Using Visible Light Communication

    PubMed Central

    Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.

    2018-01-01

    Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525

  18. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  19. Estimating tuberculosis incidence from primary survey data: a mathematical modeling approach

    PubMed Central

    Chadha, V. K.; Laxminarayan, R.; Arinaminpathy, N.

    2017-01-01

    SUMMARY BACKGROUND: There is an urgent need for improved estimations of the burden of tuberculosis (TB). OBJECTIVE: To develop a new quantitative method based on mathematical modelling, and to demonstrate its application to TB in India. DESIGN: We developed a simple model of TB transmission dynamics to estimate the annual incidence of TB disease from the annual risk of tuberculous infection and prevalence of smear-positive TB. We first compared model estimates for annual infections per smear-positive TB case using previous empirical estimates from China, Korea and the Philippines. We then applied the model to estimate TB incidence in India, stratified by urban and rural settings. RESULTS: Study model estimates show agreement with previous empirical estimates. Applied to India, the model suggests an annual incidence of smear-positive TB of 89.8 per 100 000 population (95%CI 56.8–156.3). Results show differences in urban and rural TB: while an urban TB case infects more individuals per year, a rural TB case remains infectious for appreciably longer, suggesting the need for interventions tailored to these different settings. CONCLUSIONS: Simple models of TB transmission, in conjunction with necessary data, can offer approaches to burden estimation that complement those currently being used. PMID:28284250

  20. Estimation of Salivary Glucose and Glycogen Content in Exfoliated Buccal Mucosal Cells of Patients with Type II Diabetes Mellitus

    PubMed Central

    Gopinathan, Deepa Moothedathu; Sukumaran, Sunil

    2015-01-01

    Background Diabetes mellitus is a common metabolic disorder which shows an increasing incidence worldwide. Constant monitoring of blood glucose in diabetic patient is required which involves painful invasive techniques. Saliva is gaining acceptance as diagnostic tool for various systemic diseases which can be collected noninvasively and by individuals with limited training. Aim The aim of the present study was to analyse the possibility of using salivary glucose and glycogen content of buccal mucosal cells as a diagnostic marker in Type II Diabetes mellitus patients which can be considered as adjuvant diagnostic tool to the gold standards. Materials and Methods Sample consists of 30 study and 30 control groups. Saliva was collected by passive drool method.Intravenous blood samples were collected for glucose estimation. Exfoliated buccal mucosal cells were collected from apparently normal buccal mucosa, smeared on dry glass slide and stained with PAS. Blood and salivary glucose are estimated by Glucose Oxidase endpoint method. For Glycogen estimation, number of PAS positive cells in fifty unfolded cells was analysed. Results The results of the present study revealed a significant increase in the salivary glucose level and the number of PAS positive buccal mucosal cells in the diabetics than in the controls. The correlation between the fasting serum glucose and fasting salivary glucose and also that between fasting serum glucose and PAS positive cells was statistically significant. But the correlation between the staining intensity and fasting serum glucose was statistically insignificant. Conclusion With the results of the present study it is revealed that salivary glucose and PAS positive cells are increased in diabetics which can be considered as adjuvant diagnostic tool for Diabetes mellitus. PMID:26155572

  1. Position and orientation tracking in a ubiquitous monitoring system for Parkinson disease patients with freezing of gait symptom.

    PubMed

    Takač, Boris; Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-07-15

    Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.

  2. Estimating Local Chlamydia Incidence and Prevalence Using Surveillance Data

    PubMed Central

    White, Peter J.

    2017-01-01

    Background: Understanding patterns of chlamydia prevalence is important for addressing inequalities and planning cost-effective control programs. Population-based surveys are costly; the best data for England come from the Natsal national surveys, which are only available once per decade, and are nationally representative but not powered to compare prevalence in different localities. Prevalence estimates at finer spatial and temporal scales are required. Methods: We present a method for estimating local prevalence by modeling the infection, testing, and treatment processes. Prior probability distributions for parameters describing natural history and treatment-seeking behavior are informed by the literature or calibrated using national prevalence estimates. By combining them with surveillance data on numbers of chlamydia tests and diagnoses, we obtain estimates of local screening rates, incidence, and prevalence. We illustrate the method by application to data from England. Results: Our estimates of national prevalence by age group agree with the Natsal-3 survey. They could be improved by additional information on the number of diagnosed cases that were asymptomatic. There is substantial local-level variation in prevalence, with more infection in deprived areas. Incidence in each sex is strongly correlated with prevalence in the other. Importantly, we find that positivity (the proportion of tests which were positive) does not provide a reliable proxy for prevalence. Conclusion: This approach provides local chlamydia prevalence estimates from surveillance data, which could inform analyses to identify and understand local prevalence patterns and assess local programs. Estimates could be more accurate if surveillance systems recorded additional information, including on symptoms. See video abstract at, http://links.lww.com/EDE/B211. PMID:28306613

  3. A Drive Method of Permanent Magnet Synchronous Motor Using Torque Angle Estimation without Position Sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuro; Takahashi, Hisashi

    In some motor applications, it is very difficult to attach a position sensor to the motor in housing. One of the examples of such applications is the dental handpiece-motor. In those designs, it is necessary to drive highly efficiency at low speed and variable load condition without a position sensor. We developed a method to control a motor high-efficient and smoothly at low speed without a position sensor. In this paper, the method in which permanent magnet synchronous motor is controlled smoothly and high-efficient by using torque angle control in synchronized operation is shown. The usefulness is confirmed by experimental results. In conclusion, the proposed sensor-less control method has been achieved to be very efficiently and smoothly.

  4. Mixed group validation: a method to address the limitations of criterion group validation in research on malingering detection.

    PubMed

    Frederick, R I

    2000-01-01

    Mixed group validation (MGV) is offered as an alternative to criterion group validation (CGV) to estimate the true positive and false positive rates of tests and other diagnostic signs. CGV requires perfect confidence about each research participant's status with respect to the presence or absence of pathology. MGV determines diagnostic efficiencies based on group data; knowing an individual's status with respect to pathology is not required. MGV can use relatively weak indicators to validate better diagnostic signs, whereas CGV requires perfect diagnostic signs to avoid error in computing true positive and false positive rates. The process of MGV is explained, and a computer simulation demonstrates the soundness of the procedure. MGV of the Rey 15-Item Memory Test (Rey, 1958) for 723 pre-trial criminal defendants resulted in higher estimates of true positive rates and lower estimates of false positive rates as compared with prior research conducted with CGV. The author demonstrates how MGV addresses all the criticisms Rogers (1997b) outlined for differential prevalence designs in malingering detection research. Copyright 2000 John Wiley & Sons, Ltd.

  5. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  6. Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares

    NASA Astrophysics Data System (ADS)

    Fu, Wenju; Yang, Yuanxi; Zhang, Qin; Huang, Guanwen

    2018-07-01

    The real-time precise satellite clock product is one of key prerequisites for real-time Precise Point Positioning (PPP). The accuracy of the 24-hour predicted satellite clock product with 15 min sampling interval and an update of 6 h provided by the International GNSS Service (IGS) is only 3 ns, which could not meet the needs of all real-time PPP applications. The real-time estimation of high-rate satellite clock offsets is an efficient method for improving the accuracy. In this paper, the sequential least squares method to estimate real-time satellite clock offsets with high sample rate is proposed to improve the computational speed by applying an optimized sparse matrix operation to compute the normal equation and using special measures to take full advantage of modern computer power. The method is first applied to BeiDou Navigation Satellite System (BDS) and provides real-time estimation with a 1 s sample rate. The results show that the amount of time taken to process a single epoch is about 0.12 s using 28 stations. The Standard Deviation (STD) and Root Mean Square (RMS) of the real-time estimated BDS satellite clock offsets are 0.17 ns and 0.44 ns respectively when compared to German Research Center for Geosciences (GFZ) final clock products. The positioning performance of the real-time estimated satellite clock offsets is evaluated. The RMSs of the real-time BDS kinematic PPP in east, north, and vertical components are 7.6 cm, 6.4 cm and 19.6 cm respectively. The method is also applied to Global Positioning System (GPS) with a 10 s sample rate and the computational time of most epochs is less than 1.5 s with 75 stations. The STD and RMS of the real-time estimated GPS satellite clocks are 0.11 ns and 0.27 ns, respectively. The accuracies of 5.6 cm, 2.6 cm and 7.9 cm in east, north, and vertical components are achieved for the real-time GPS kinematic PPP.

  7. Improving estimates of genetic maps: a meta-analysis-based approach.

    PubMed

    Stewart, William C L

    2007-07-01

    Inaccurate genetic (or linkage) maps can reduce the power to detect linkage, increase type I error, and distort haplotype and relationship inference. To improve the accuracy of existing maps, I propose a meta-analysis-based method that combines independent map estimates into a single estimate of the linkage map. The method uses the variance of each independent map estimate to combine them efficiently, whether the map estimates use the same set of markers or not. As compared with a joint analysis of the pooled genotype data, the proposed method is attractive for three reasons: (1) it has comparable efficiency to the maximum likelihood map estimate when the pooled data are homogeneous; (2) relative to existing map estimation methods, it can have increased efficiency when the pooled data are heterogeneous; and (3) it avoids the practical difficulties of pooling human subjects data. On the basis of simulated data modeled after two real data sets, the proposed method can reduce the sampling variation of linkage maps commonly used in whole-genome linkage scans. Furthermore, when the independent map estimates are also maximum likelihood estimates, the proposed method performs as well as or better than when they are estimated by the program CRIMAP. Since variance estimates of maps may not always be available, I demonstrate the feasibility of three different variance estimators. Overall, the method should prove useful to investigators who need map positions for markers not contained in publicly available maps, and to those who wish to minimize the negative effects of inaccurate maps. Copyright 2007 Wiley-Liss, Inc.

  8. Curvature estimation for multilayer hinged structures with initial strains

    NASA Astrophysics Data System (ADS)

    Nikishkov, G. P.

    2003-10-01

    Closed-form estimate of curvature for hinged multilayer structures with initial strains is developed. The finite element method is used for modeling of self-positioning microstructures. The geometrically nonlinear problem with large rotations and large displacements is solved using step procedure with node coordinate update. Finite element results for curvature of the hinged micromirror with variable width is compared to closed-form estimates.

  9. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    PubMed

    Tuerk, Andreas; Wiktorin, Gregor; Güler, Serhat

    2017-05-01

    Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare"), a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC) Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  10. A Robust Indoor Autonomous Positioning System Using Particle Filter Based on ISM Band Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ikeda, Takeshi; Kawamoto, Mitsuru; Sashima, Akio; Suzuki, Keiji; Kurumatani, Koichi

    In the field of the ubiquitous computing, positioning systems which can provide users' location information have paid attention as an important technical element which can be applied to various services, for example, indoor navigation services, evacuation services, market research services, guidance services, and so on. A lot of researchers have proposed various outdoor and indoor positioning systems. In this paper, we deal with indoor positioning systems. Many conventional indoor positioning systems use expensive infrastructures, because the propagated times of radio waves are used to measure users' positions with high accuracy. In this paper, we propose an indoor autonomous positioning system using radio signal strengths (RSSs) based on ISM band communications. In order to estimate users' positions, the proposed system utilizes a particle filter that is one of the Monte Carlo methods. Because the RSS information is used in the proposed system, the equipments configuring the system are not expensive compared with the conventional indoor positioning systems and it can be installed easily. Moreover, because the particle filter is used to estimate user's position, even if the RSS fluctuates due to, for example, multi-paths, the system can carry out position estimation robustly. We install the proposed system in one floor of a building and carry out some experiments in order to verify the validity of the proposed system. As a result, we confirmed that the average of the estimation errors of the proposed system was about 1.8 m, where the result is enough accuracy for achieving the services mentioned above.

  11. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing

    PubMed Central

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-01-01

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505

  12. Optimal accelerometer placement on a robot arm for pose estimation

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  13. Improvement of determinating seafloor benchmark position with large-scale horizontal heterogeneity in the ocean area

    NASA Astrophysics Data System (ADS)

    Uemura, Y.; Tadokoro, K.; Matsuhiro, K.; Ikuta, R.

    2015-12-01

    The most critical issue in reducing the accuracy of seafloor positioning system, GPS/Acoustic technique, is large-scale thermal gradient of sound-speed structure [Muto et al., 2008] due to the ocean current. For example, Kuroshio Current, near our observation station, forms this structure. To improve the accuracy of seafloor benchmark position (SBP), we need to directly measure the structure frequently, or estimate it from travel time residual. The former, we repeatedly measure the sound-speed at Kuroshio axis using Underway CTD and try to apply analysis method of seafloor positioning [Yasuda et al., 2015 AGU meeting]. The latter, however, we cannot estimate the structure using travel time residual until now. Accordingly, in this study, we focus on azimuthal dependence of Estimated Mean Sound-Speed (EMSS). EMSS is defined as distance between vessel position and estimated SBP divided by travel time. If thermal gradient exists and SBP is true, EMSS should have azimuthal dependence with the assumption of horizontal layered sound-speed structure in our previous analysis method. We use the data at KMC located on the central part of Nankai Trough, Japan on Jan. 28, 2015, because on that day KMC was on the north edge of Kuroshio, where we expect that thermal gradient exists. In our analysis method, the hyper parameter (μ value) weights travel time residual and rate of change of sound speed structure. However, EMSS derived from μ value determined by Ikuta et al. [2008] does not have azimuthal dependence, that is, we cannot estimate thermal gradient. Thus, we expect SBP has a large bias. Therefore, in this study, we use another μ value and examine whether EMSS has azimuthal dependence or not. With the μ value of this study, which is 1 order of magnitude smaller than the previous value, EMSS has azimuthal dependence that is consistent with observation day's thermal gradient. This result shows that we can estimate the thermal gradient adequately. This SBP displaces 25.6 cm to the north and 11.8 cm to the east compared to previous SBP. This displacement reduces the bias of SBP and RMS of horizontal component in time series to 1/3. Therefore, determination of SBP is suitable when the thermal gradient exists on observation day and EMSS has azimuthal dependence for redetermination of μ value.

  14. Attitude/attitude-rate estimation from GPS differential phase measurements using integrated-rate parameters

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, Landis

    1998-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  15. A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2016-12-01

    An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.

  16. On the rate of convergence of the alternating projection method in finite dimensional spaces

    NASA Astrophysics Data System (ADS)

    Galántai, A.

    2005-10-01

    Using the results of Smith, Solmon, and Wagner [K. Smith, D. Solomon, S. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977) 1227-1270] and Nelson and Neumann [S. Nelson, M. Neumann, Generalizations of the projection method with application to SOR theory for Hermitian positive semidefinite linear systems, Numer. Math. 51 (1987) 123-141] we derive new estimates for the speed of the alternating projection method and its relaxed version in . These estimates can be computed in at most O(m3) arithmetic operations unlike the estimates in papers mentioned above that require spectral information. The new and old estimates are equivalent in many practical cases. In cases when the new estimates are weaker, the numerical testing indicates that they approximate the original bounds in papers mentioned above quite well.

  17. Estimation of salient regions related to chronic gastritis using gastric X-ray images.

    PubMed

    Togo, Ren; Ishihara, Kenta; Ogawa, Takahiro; Haseyama, Miki

    2016-10-01

    Since technical knowledge and a high degree of experience are necessary for diagnosis of chronic gastritis, computer-aided diagnosis (CAD) systems that analyze gastric X-ray images are desirable in the field of medicine. Therefore, a new method that estimates salient regions related to chronic gastritis/non-gastritis for supporting diagnosis is presented in this paper. In order to estimate salient regions related to chronic gastritis/non-gastritis, the proposed method monitors the distance between a target image feature and Support Vector Machine (SVM)-based hyperplane for its classification. Furthermore, our method realizes removal of the influence of regions outside the stomach by using positional relationships between the stomach and other organs. Consequently, since the proposed method successfully estimates salient regions of gastric X-ray images for which chronic gastritis and non-gastritis are unknown, visual support for inexperienced clinicians becomes feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A novel algorithm for laser self-mixing sensors used with the Kalman filter to measure displacement

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Liu, Ji-Gou

    2018-07-01

    This paper proposes a simple and effective method for estimating the feedback level factor C in a self-mixing interferometric sensor. It is used with a Kalman filter to retrieve the displacement. Without the complicated and onerous calculation process of the general C estimation method, a final equation is obtained. Thus, the estimation of C only involves a few simple calculations. It successfully retrieves the sinusoidal and aleatory displacement by means of simulated self-mixing signals in both weak and moderate feedback regimes. To deal with the errors resulting from noise and estimate bias of C and to further improve the retrieval precision, a Kalman filter is employed following the general phase unwrapping method. The simulation and experiment results show that the retrieved displacement using the C obtained with the proposed method is comparable to the joint estimation of C and α. Besides, the Kalman filter can significantly decrease measurement errors, especially the error caused by incorrectly locating the peak and valley positions of the signal.

  19. Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles.

    PubMed

    Munguia, Rodrigo; Urzua, Sarquis; Grau, Antoni

    2016-01-01

    In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the vehicle position is a fundamental necessity for any application involving autonomy. However, the problem of position estimation could not be solved in some scenarios, even when a GPS signal is available, for instance, an application requiring performing precision manoeuvres in a complex environment. Therefore, some additional sensory information should be integrated into the system in order to improve accuracy and robustness. In this work, a novel vision-based simultaneous localization and mapping (SLAM) method with application to unmanned aerial vehicles is proposed. One of the contributions of this work is to design and develop a novel technique for estimating features depth which is based on a stochastic technique of triangulation. In the proposed method the camera is mounted over a servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to the above assumption, the overall problem is simplified and it is focused on the position estimation of the aerial vehicle. Also, the tracking process of visual features is made easier due to the stabilized video. Another contribution of this work is to demonstrate that the integration of very noisy GPS measurements into the system for an initial short period of time is enough to initialize the metric scale. The performance of this proposed method is validated by means of experiments with real data carried out in unstructured outdoor environments. A comparative study shows that, when compared with related methods, the proposed approach performs better in terms of accuracy and computational time.

  20. A bayesian analysis for identifying DNA copy number variations using a compound poisson process.

    PubMed

    Chen, Jie; Yiğiter, Ayten; Wang, Yu-Ping; Deng, Hong-Wen

    2010-01-01

    To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.

  1. Roaming behaviour and home range estimation of domestic dogs in Aboriginal and Torres Strait Islander communities in northern Australia using four different methods.

    PubMed

    Dürr, Salome; Ward, Michael P

    2014-11-15

    Disease transmission parameters are the core of epidemic models, but are difficult to estimate, especially in the absence of outbreak data. Investigation of the roaming behaviour, home range (HR) and utilization distribution (UD) can provide the foundation for such parameter estimation in free-ranging animals. The objectives of this study were to estimate HR and UD of 69 domestic dogs in six Aboriginal and Torres Strait Islander communities in northern Australia and to compare four different methods (the minimum convex polygon, MCP; the location-based kernel density estimation, LKDE; the biased random bridge, BRB; and Time Local Convex Hull, T-LoCoH) for investigation of UD and estimating HR sizes. Global positioning system (GPS) collars were attached to community dogs for a period of 1-3 days and positions (fixes) were recorded every minute. Median core HRs (50% isopleth) of the 69 dogs were estimated to range from 0.2 to 0.4 ha and the more extended HR (95% isopleth) to range from 2.5 to 5.3 ha, depending on the method used. The HR and UD shapes were found to be generally circular around the dog owner's house. However, some individuals were found to roam much more with a HR size of 40-104 ha and cover large areas of their community or occasionally beyond. These far roaming dogs are of particular interest for infectious disease transmission. Occasionally, dogs were taken between communities and out of communities for hunting, which enables the contact of dogs between communities and with wildlife (such as dingoes). The BRB and T-LoCoH are the only two methods applied here which integrate the consecutiveness of GPS locations into the analysis, a substantial advantage. The recently developed BRB method produced significantly larger HR estimates than the other two methods; however, the variability of HR sizes was lower compared to the other methods. Advantages of the BRB method include a more realistic analytical approach (kernel density estimation based on movements rather than on locations), possibilities to deal with irregular time periods between consecutive GPS fixes and parameter specification which respects the characteristics of the GPS unit used to collect the data. The BRB method was therefore the most suitable method for UD estimation in this dataset. The results of this study can further be used to contact rates between the dogs within and between communities, a foundation for estimating transmission parameters for canine infectious disease models, such as a rabies spread model in Australia. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Agreement between different methods of measuring height in elderly patients.

    PubMed

    Frid, H; Adolfsson, E Thors; Rosenblad, A; Nydahl, M

    2013-10-01

    The present study aimed to examine the agreement between measurements of standing height and self-reported height, height measured with a sliding caliper, and height estimated from either demispan or knee height in elderly patients. Fifty-five patients (mean age 79 years) at a Swedish hospital were included in this observational study. The participants' heights were evaluated as the standing height, self-reported height, height measured in a recumbent position with a sliding caliper, and height estimated from the demispan or knee height. The measurements made with a sliding caliper in the recumbent position agreed most closely with the standing height. Ninety-five percent of the individuals' differences from standing height were within an interval of +1.1 to -4.8 cm (limits of agreement). Self-reported height and height estimated from knee height differed relatively strongly from standing height. The limits of agreement were +5.2 to -9.8 cm and +9.4 to -6.2 cm, respectively. The widest distribution of differences was found in the height estimated from the demispan, with limits of agreements from +11.2 to -9.3 cm. When measuring the height of patients who find it difficult to stand upright, a sliding caliper should be the method of choice, and the second choice should be self-reported height or the height estimated from knee height. Estimating height from the demispan should be the method of last resort. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  3. A Noninvasive Body Setup Method for Radiotherapy by Using a Multimodal Image Fusion Technique

    PubMed Central

    Zhang, Jie; Chen, Yunxia; Wang, Chenchen; Chu, Kaiyue; Jin, Jianhua; Huang, Xiaolin; Guan, Yue; Li, Weifeng

    2017-01-01

    Purpose: To minimize the mismatch error between patient surface and immobilization system for tumor location by a noninvasive patient setup method. Materials and Methods: The method, based on a point set registration, proposes a shift for patient positioning by integrating information of the computed tomography scans and that of optical surface landmarks. An evaluation of the method included 3 areas: (1) a validation on a phantom by estimating 100 known mismatch errors between patient surface and immobilization system. (2) Five patients with pelvic tumors were considered. The tumor location errors of the method were measured using the difference between the proposal shift of cone-beam computed tomography and that of our method. (3) The collected setup data from the evaluation of patients were compared with the published performance data of other 2 similar systems. Results: The phantom verification results showed that the method was capable of estimating mismatch error between patient surface and immobilization system in a precision of <0.22 mm. For the pelvic tumor, the method had an average tumor location error of 1.303, 2.602, and 1.684 mm in left–right, anterior–posterior, and superior–inferior directions, respectively. The performance comparison with other 2 similar systems suggested that the method had a better positioning accuracy for pelvic tumor location. Conclusion: By effectively decreasing an interfraction uncertainty source (mismatch error between patient surface and immobilization system) in radiotherapy, the method can improve patient positioning precision for pelvic tumor. PMID:29333959

  4. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    PubMed

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  5. Bone Pose Estimation in the Presence of Soft Tissue Artifact Using Triangular Cosserat Point Elements.

    PubMed

    Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon

    2016-04-01

    Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose.

  6. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  7. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    PubMed Central

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-01-01

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision. PMID:27153068

  8. Neural network based automatic limit prediction and avoidance system and method

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)

    2001-01-01

    A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.

  9. Precision and recall estimates for two-hybrid screens

    PubMed Central

    Huang, Hailiang; Bader, Joel S.

    2009-01-01

    Motivation: Yeast two-hybrid screens are an important method to map pairwise protein interactions. This method can generate spurious interactions (false discoveries), and true interactions can be missed (false negatives). Previously, we reported a capture–recapture estimator for bait-specific precision and recall. Here, we present an improved method that better accounts for heterogeneity in bait-specific error rates. Result: For yeast, worm and fly screens, we estimate the overall false discovery rates (FDRs) to be 9.9%, 13.2% and 17.0% and the false negative rates (FNRs) to be 51%, 42% and 28%. Bait-specific FDRs and the estimated protein degrees are then used to identify protein categories that yield more (or fewer) false positive interactions and more (or fewer) interaction partners. While membrane proteins have been suggested to have elevated FDRs, the current analysis suggests that intrinsic membrane proteins may actually have reduced FDRs. Hydrophobicity is positively correlated with decreased error rates and fewer interaction partners. These methods will be useful for future two-hybrid screens, which could use ultra-high-throughput sequencing for deeper sampling of interacting bait–prey pairs. Availability: All software (C source) and datasets are available as supplemental files and at http://www.baderzone.org under the Lesser GPL v. 3 license. Contact: joel.bader@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19091773

  10. A New Method for Assessing How Sensitivity and Specificity of Linkage Studies Affects Estimation

    PubMed Central

    Moore, Cecilia L.; Amin, Janaki; Gidding, Heather F.; Law, Matthew G.

    2014-01-01

    Background While the importance of record linkage is widely recognised, few studies have attempted to quantify how linkage errors may have impacted on their own findings and outcomes. Even where authors of linkage studies have attempted to estimate sensitivity and specificity based on subjects with known status, the effects of false negatives and positives on event rates and estimates of effect are not often described. Methods We present quantification of the effect of sensitivity and specificity of the linkage process on event rates and incidence, as well as the resultant effect on relative risks. Formulae to estimate the true number of events and estimated relative risk adjusted for given linkage sensitivity and specificity are then derived and applied to data from a prisoner mortality study. The implications of false positive and false negative matches are also discussed. Discussion Comparisons of the effect of sensitivity and specificity on incidence and relative risks indicate that it is more important for linkages to be highly specific than sensitive, particularly if true incidence rates are low. We would recommend that, where possible, some quantitative estimates of the sensitivity and specificity of the linkage process be performed, allowing the effect of these quantities on observed results to be assessed. PMID:25068293

  11. Sixth Annual Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Lefferts, E. (Editor)

    1981-01-01

    Methods of orbital position estimation were reviewed. The problem of accuracy in orbital mechanics is discussed and various techniques in current use are presented along with suggested improvements. Of special interest is the compensation for bias in satelliteborne instruments due to attitude instabilities. Image processing and correctional techniques are reported for geodetic measurements and mapping.

  12. Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T.

    PubMed

    Li, Mingyan; Weber, Ewald; Jin, Jin; Hugger, Thimo; Tesiram, Yasvir; Ullmann, Peter; Stark, Simon; Fuentes, Miguel; Junge, Sven; Liu, Feng; Crozier, Stuart

    2018-02-01

    The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B 1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Correcting for deformation in skin-based marker systems.

    PubMed

    Alexander, E J; Andriacchi, T P

    2001-03-01

    A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.

  14. Accurate motion parameter estimation for colonoscopy tracking using a regression method

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2010-03-01

    Co-located optical and virtual colonoscopy images have the potential to provide important clinical information during routine colonoscopy procedures. In our earlier work, we presented an optical flow based algorithm to compute egomotion from live colonoscopy video, permitting navigation and visualization of the corresponding patient anatomy. In the original algorithm, motion parameters were estimated using the traditional Least Sum of squares(LS) procedure which can be unstable in the context of optical flow vectors with large errors. In the improved algorithm, we use the Least Median of Squares (LMS) method, a robust regression method for motion parameter estimation. Using the LMS method, we iteratively analyze and converge toward the main distribution of the flow vectors, while disregarding outliers. We show through three experiments the improvement in tracking results obtained using the LMS method, in comparison to the LS estimator. The first experiment demonstrates better spatial accuracy in positioning the virtual camera in the sigmoid colon. The second and third experiments demonstrate the robustness of this estimator, resulting in longer tracked sequences: from 300 to 1310 in the ascending colon, and 410 to 1316 in the transverse colon.

  15. Estimation of Directional Stability Derivatives at Moderate Angles and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kaattari, George E.

    1959-01-01

    A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.

  16. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  17. Reliable femoral frame construction based on MRI dedicated to muscles position follow-up.

    PubMed

    Dubois, G; Bonneau, D; Lafage, V; Rouch, P; Skalli, W

    2015-10-01

    In vivo follow-up of muscle shape variation represents a challenge when evaluating muscle development due to disease or treatment. Recent developments in muscles reconstruction techniques indicate MRI as a clinical tool for the follow-up of the thigh muscles. The comparison of 3D muscles shape from two different sequences is not easy because there is no common frame. This study proposes an innovative method for the reconstruction of a reliable femoral frame based on the femoral head and both condyles centers. In order to robustify the definition of condylar spheres, an original method was developed to combine the estimation of diameters of both condyles from the lateral antero-posterior distance and the estimation of the spheres center from an optimization process. The influence of spacing between MR slices and of origin positions was studied. For all axes, the proposed method presented an angular error lower than 1° with spacing between slice of 10 mm and the optimal position of the origin was identified at 56 % of the distance between the femoral head center and the barycenter of both condyles. The high reliability of this method provides a robust frame for clinical follow-up based on MRI .

  18. Pose estimation of industrial objects towards robot operation

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  19. Effect of Body Position on Energy Expenditure of Preterm Infants as Determined by Simultaneous Direct and Indirect Calorimetry.

    PubMed

    Bell, Edward F; Johnson, Karen J; Dove, Edwin L

    2017-04-01

    Background  Indirect calorimetry is the standard method for estimating energy expenditure in clinical research. Few studies have evaluated indirect calorimetry in infants by comparing it with simultaneous direct calorimetry. Our purpose was (1) to compare the energy expenditure of preterm infants determined by these two methods, direct calorimetry and indirect calorimetry; and (2) to examine the effect of body position, supine or prone, on energy expenditure. Study Design  We measured energy expenditure by simultaneous direct (heat loss by gradient-layer calorimeter corrected for heat storage) and indirect calorimetry (whole-body oxygen consumption and carbon dioxide production) in 15 growing preterm infants during two consecutive interfeeding intervals, once in the supine position and once in the prone position. Results  The mean energy expenditure for all measurements in both positions did not differ significantly by the method used: 2.82 (standard deviation [SD] 0.42) kcal/kg/h by direct calorimetry and 2.78 (SD 0.48) kcal/kg/h by indirect calorimetry. The energy expenditure was significantly lower, by 10%, in the prone than in the supine position, whether examined by direct calorimetry (2.67 vs. 2.97 kcal/kg/h, p  < 0.001) or indirect calorimetry (2.64 vs. 2.92 kcal/kg/h, p  = 0.017). Conclusion  Direct calorimetry and indirect calorimetry gave similar estimates of energy expenditure. Energy expenditure was 10% lower in the prone position than in the supine position. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Hybrid Orientation Based Human Limbs Motion Tracking Method

    PubMed Central

    Glonek, Grzegorz; Wojciechowski, Adam

    2017-01-01

    One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832

  1. TLE uncertainty estimation using robust weighted differencing

    NASA Astrophysics Data System (ADS)

    Geul, Jacco; Mooij, Erwin; Noomen, Ron

    2017-05-01

    Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).

  2. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1984-01-01

    The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.

  3. Estimating global, regional and national rotavirus deaths in children aged <5 years: Current approaches, new analyses and proposed improvements

    PubMed Central

    Black, Robert; Tate, Jacqueline; Roose, Anna; Kotloff, Karen; Parashar, Umesh; Lanata, Claudio; Kang, Gagandeep; Troeger, Christopher; Platts-Mills, James; Mokdad, Ali; Sanderson, Colin; Lamberti, Laura; Santosham, Mathuram; Steele, Duncan

    2017-01-01

    Background Rotavirus is a leading cause of diarrhoeal mortality in children but there is considerable disagreement about how many deaths occur each year. Methods and findings We compared CHERG, GBD and WHO/CDC estimates of age under 5 years (U5) rotavirus deaths at the global, regional and national level using a standard year (2013) and standard list of 186 countries. The global estimates were 157,398 (CHERG), 122,322 (GBD) and 215,757 (WHO/CDC). The three groups used different methods: (i) to select data points for rotavirus-positive proportions; (ii) to extrapolate data points to individual countries; (iii) to account for rotavirus vaccine coverage; (iv) to convert rotavirus-positive proportions to rotavirus attributable fractions; and (v) to calculate uncertainty ranges. We conducted new analyses to inform future estimates. We found that acute watery diarrhoea was associated with 87% (95% CI 83–90%) of U5 diarrhoea hospitalisations based on data from 84 hospital sites in 9 countries, and 65% (95% CI 57–74%) of U5 diarrhoea deaths based on verbal autopsy reports from 9 country sites. We reanalysed data from the Global Enteric Multicenter Study (GEMS) and found 44% (55% in Asia, and 32% in Africa) rotavirus-positivity among U5 acute watery diarrhoea hospitalisations, and 28% rotavirus-positivity among U5 acute watery diarrhoea deaths. 97% (95% CI 95–98%) of the U5 diarrhoea hospitalisations that tested positive for rotavirus were entirely attributable to rotavirus. For all clinical syndromes combined the rotavirus attributable fraction was 34% (95% CI 31–36%). This increased by a factor of 1.08 (95% CI 1.02–1.14) when the GEMS results were reanalysed using a more sensitive molecular test. Conclusions We developed consensus on seven proposals for improving the quality and transparency of future rotavirus mortality estimates. PMID:28892480

  4. A high-resolution computational localization method for transcranial magnetic stimulation mapping.

    PubMed

    Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro

    2018-05-15

    Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  6. Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water

    PubMed Central

    Li, Hui; Yang, Kunde; Duan, Rui; Lei, Zhixiong

    2017-01-01

    This paper presents a joint estimation method of source range and depth using a bottom-deployed vertical line array (VLA). The method utilizes the information on the arrival angle of direct (D) path in space domain and the interference characteristic of D and surface-reflected (SR) paths in frequency domain. The former is related to a ray tracing technique to backpropagate the rays and produces an ambiguity surface of source range. The latter utilizes Lloyd’s mirror principle to obtain an ambiguity surface of source depth. The acoustic transmission duct is the well-known reliable acoustic path (RAP). The ambiguity surface of the combined estimation is a dimensionless ad hoc function. Numerical efficiency and experimental verification show that the proposed method is a good candidate for initial coarse estimation of source position. PMID:28590442

  7. Comparison of Methods for Estimating Low Flow Characteristics of Streams

    USGS Publications Warehouse

    Tasker, Gary D.

    1987-01-01

    Four methods for estimating the 7-day, 10-year and 7-day, 20-year low flows for streams are compared by the bootstrap method. The bootstrap method is a Monte Carlo technique in which random samples are drawn from an unspecified sampling distribution defined from observed data. The nonparametric nature of the bootstrap makes it suitable for comparing methods based on a flow series for which the true distribution is unknown. Results show that the two methods based on hypothetical distribution (Log-Pearson III and Weibull) had lower mean square errors than did the G. E. P. Box-D. R. Cox transformation method or the Log-W. C. Boughton method which is based on a fit of plotting positions.

  8. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    NASA Astrophysics Data System (ADS)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  9. Analysis of percent density estimates from digital breast tomosynthesis projection images

    NASA Astrophysics Data System (ADS)

    Bakic, Predrag R.; Kontos, Despina; Zhang, Cuiping; Yaffe, Martin J.; Maidment, Andrew D. A.

    2007-03-01

    Women with dense breasts have an increased risk of breast cancer. Breast density is typically measured as the percent density (PD), the percentage of non-fatty (i.e., dense) tissue in breast images. Mammographic PD estimates vary, in part, due to the projective nature of mammograms. Digital breast tomosynthesis (DBT) is a novel radiographic method in which 3D images of the breast are reconstructed from a small number of projection (source) images, acquired at different positions of the x-ray focus. DBT provides superior visualization of breast tissue and has improved sensitivity and specificity as compared to mammography. Our long-term goal is to test the hypothesis that PD obtained from DBT is superior in estimating cancer risk compared with other modalities. As a first step, we have analyzed the PD estimates from DBT source projections since the results would be independent of the reconstruction method. We estimated PD from MLO mammograms (PD M) and from individual DBT projections (PD T). We observed good agreement between PD M and PD T from the central projection images of 40 women. This suggests that variations in breast positioning, dose, and scatter between mammography and DBT do not negatively affect PD estimation. The PD T estimated from individual DBT projections of nine women varied with the angle between the projections. This variation is caused by the 3D arrangement of the breast dense tissue and the acquisition geometry.

  10. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  11. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion

    PubMed Central

    Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.

    2012-01-01

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511

  12. Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.

    PubMed

    Wood, Nathan A; Del Agua, Diego Moral; Zenati, Marco A; Riviere, Cameron N

    2011-12-05

    HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described.

  13. Estimation of fish biomass using environmental DNA.

    PubMed

    Takahara, Teruhiko; Minamoto, Toshifumi; Yamanaka, Hiroki; Doi, Hideyuki; Kawabata, Zen'ichiro

    2012-01-01

    Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems.

  14. Estimation of Fish Biomass Using Environmental DNA

    PubMed Central

    Takahara, Teruhiko; Minamoto, Toshifumi; Yamanaka, Hiroki; Doi, Hideyuki; Kawabata, Zen'ichiro

    2012-01-01

    Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems. PMID:22563411

  15. Adaptive Trajectory Tracking of Nonholonomic Mobile Robots Using Vision-Based Position and Velocity Estimation.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Jiang, Tianjiao; Wang, Kai; Fang, Mu

    2018-02-01

    Despite tremendous efforts made for years, trajectory tracking control (TC) of a nonholonomic mobile robot (NMR) without global positioning system remains an open problem. The major reason is the difficulty to localize the robot by using its onboard sensors only. In this paper, a newly designed adaptive trajectory TC method is proposed for the NMR without its position, orientation, and velocity measurements. The controller is designed on the basis of a novel algorithm to estimate position and velocity of the robot online from visual feedback of an omnidirectional camera. It is theoretically proved that the proposed algorithm yields the TC errors to asymptotically converge to zero. Real-world experiments are conducted on a wheeled NMR to validate the feasibility of the control system.

  16. Array processing for RFID tag localization exploiting multi-frequency signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Li, Xin; Amin, Moeness G.

    2009-05-01

    RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.

  17. System and method for object localization

    NASA Technical Reports Server (NTRS)

    Kelly, Alonzo J. (Inventor); Zhong, Yu (Inventor)

    2005-01-01

    A computer-assisted method for localizing a rack, including sensing an image of the rack, detecting line segments in the sensed image, recognizing a candidate arrangement of line segments in the sensed image indicative of a predetermined feature of the rack, generating a matrix of correspondence between the candidate arrangement of line segments and an expected position and orientation of the predetermined feature of the rack, and estimating a position and orientation of the rack based on the matrix of correspondence.

  18. Conceptual Design of a Communication-Based Deep Space Navigation Network

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  19. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer

    USDA-ARS?s Scientific Manuscript database

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis, and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in r...

  20. Comparing trophic position of stream fishes using stable isotope and gut contents analyses

    EPA Science Inventory

    Stable isotope analysis (SIA) and gut content analysis (GCA) are commonly used in food web studies, but few studies analyze these data in concert. We used SIA and GCA to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ord...

  1. Optimization methods for locating lightning flashes using magnetic direction finding networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1989-01-01

    Techniques for producing best point estimates of target position using direction finder bearing information are reviewed. The use of an algorithm that calculates the cloud-to-ground flash location given multiple bearings is illustrated and the position errors are described. This algorithm can be used to analyze direction finder network performance.

  2. Construction of Genetically Engineered Streptococcus gordonii Strains to Provide Control in QPCR Assays for Assessing Microbiological Quality in Recreational Water.

    EPA Science Inventory

    Quantitative PCR (QPCR) methods for beach monitoring by estimating abundance of Enterococcus spp. in recreational waters use internal, positive controls which address only the amplification of target DNA. In this study two internal, positive controls were developed to control for...

  3. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  4. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  5. Learning User Preferences for Sets of Objects

    NASA Technical Reports Server (NTRS)

    desJardins, Marie; Eaton, Eric; Wagstaff, Kiri L.

    2006-01-01

    Most work on preference learning has focused on pairwise preferences or rankings over individual items. In this paper, we present a method for learning preferences over sets of items. Our learning method takes as input a collection of positive examples--that is, one or more sets that have been identified by a user as desirable. Kernel density estimation is used to estimate the value function for individual items, and the desired set diversity is estimated from the average set diversity observed in the collection. Since this is a new learning problem, we introduce a new evaluation methodology and evaluate the learning method on two data collections: synthetic blocks-world data and a new real-world music data collection that we have gathered.

  6. Multiview face detection based on position estimation over multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh

    2012-02-01

    In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.

  7. Correlation Techniques as Applied to Pose Estimation in Space Station Docking

    NASA Technical Reports Server (NTRS)

    Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-01-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.

  8. Estimating Uncertainties of Ship Course and Speed in Early Navigations using ICOADS3.0

    NASA Astrophysics Data System (ADS)

    Chan, D.; Huybers, P. J.

    2017-12-01

    Information on ship position and its uncertainty is potentially important for mapping out climatologists and changes in SSTs. Using the 2-hourly ship reports from the International Comprehensive Ocean Atmosphere Dataset 3.0 (ICOADS 3.0), we estimate the uncertainties of ship course, ship speed, and latitude/longitude corrections during 1870-1900. After reviewing the techniques used in early navigations, we build forward navigation model that uses dead reckoning technique, celestial latitude corrections, and chronometer longitude corrections. The modeled ship tracks exhibit jumps in longitude and latitude, when a position correction is applied. These jumps are also seen in ICOADS3.0 observations. In this model, position error at the end of each day increases following a 2D random walk; the latitudinal/longitude errors are reset when a latitude/longitude correction is applied.We fit the variance of the magnitude of latitude/longitude corrections in the observation against model outputs, and estimate that the standard deviation of uncertainty is 5.5 degree for ship course, 32% for ship speed, 22km for latitude correction, and 27km for longitude correction. The estimates here are informative priors for Bayesian methods that quantify position errors of individual tracks.

  9. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    NASA Astrophysics Data System (ADS)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  10. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning

    PubMed Central

    Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin

    2016-01-01

    Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively. PMID:27222361

  11. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.

    PubMed

    Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin

    2016-05-25

    Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.

  12. Validity and reliability of the minimum basic data set in estimating nosocomial acute gastroenteritis caused by rotavirus.

    PubMed

    Redondo-González, Olga

    2015-03-01

    Rotavirus is the principal cause of nosocomial acute gastroenteritis (NAGE) under 5 years of age. The objectiveis to evaluate the validity and reliability of the minimum basic dataset (MBDS) in estimating the NAGE caused by rotavirus (NAGER) and to analyze any changes during the three years that the Rotarix® and Rotateq® vaccines were used in Spain. A descriptive, retrospectivestudy was carried out in the University Hospital of Guadalajara(UHG) (Spain) between 2003-2009 using the MBDS, positive microbiological results for rotavirus (PMRs), and medical histories.Three methods of estimation were used: 1) An ICD-9-CM code 008.61 in the secondary diagnosis fields (DIAG2) of MBDS; 2) method 1 and/or PMRs with a current or recent hospitalization; and 3) the reference method or method 2 contrasted with patient medical histories. The validity of methods 1 and 2 was determined -sensitivity, specificity, predictive values and likelihood ratios (LRs)-, along with their agreement with method 3 (Kappa coefficient). In addition, the incidence rate ratio between the NAGER rate in 2007-2009 (commercialization period of both vaccines) was calculated with respect to 2003-2005 (precommercialization period). Method 1 identified 65 records with a DIAG2 of 008.61. Method 2 found 62 probable cases, and the reference method, 49 true cases. The sensitivity of the MBDS was 67 %,the positive predictive value was 51 %, and both negative LR (LR-) and reliability were moderate (LR- 0.33, Kappa coefficient 0.58). During 2007-2009, the NARGE decreased by 5 cases per 103 hospitalizations and by 9 per 104 days of hospitalization. Method 2 overestimated both the decline in incidence by 2 per 103 hospitalizations and the decreased risk per day of stay by 10 %. The MBDS found no differences between the two three-year periods, but, like method 2, showed an excellent level of diagnostic evidence (LR+ 67). The MBDS taken together with microbiological results, is more exact, safer and more reliable than the MBDS alone in estimating NAGER; and more useful in ruling out it. Nevertheless, the MBDS alone may be used to estimate and compare such disease in contexts with different prevalences.

  13. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  14. On estimation of secret message length in LSB steganography in spatial domain

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav

    2004-06-01

    In this paper, we present a new method for estimating the secret message length of bit-streams embedded using the Least Significant Bit embedding (LSB) at random pixel positions. We introduce the concept of a weighted stego image and then formulate the problem of determining the unknown message length as a simple optimization problem. The methodology is further refined to obtain more stable and accurate results for a wide spectrum of natural images. One of the advantages of the new method is its modular structure and a clean mathematical derivation that enables elegant estimator accuracy analysis using statistical image models.

  15. Estimating the gravity induced three dimensional deformation of the breast.

    PubMed

    Mills, Chris; Sanchez, Amy; Scurr, Joanna

    2016-12-08

    As human breast tissue is continuously deformed by gravity, it is difficult to identify the non-loaded neutral breast position from which to take measurements. To estimate the neutral nipple position, this study proposed a simple novel method to counteract the three dimensional effect of gravity on the breast using the buoyant forces from water and soybean oil (ρ WATER = 994kgm -3 ; ρ OIL = 909kgm -3 ). Fourteen female participants with breast sizes ranging from 30 to 34in. under band and B to E cup size took part in this study. Each participant had their static gravity-loaded nipple position measured and their neutral nipple position estimated (as the midpoint between the nipple position during water and soybean oil immersion). Participants were asked to sit in each fluid and fully submerge their torso and breasts. The mean gravity-induced nipple displacements from the neutral nipple position were 15.3mm in the posterior direction, 7.4mm in the lateral direction, and 25.7mm in the inferior direction. Gravity had a significant (p < 0.05, r > 0.82) measurable effect on the static nipple position, particularly in the inferior and posterior directions. Furthermore the density difference between water and soybean oil produced a significant difference (p < 0.05, r = 0.72) in superior-inferior nipple position (5.6mm). These findings suggest that neglect of gravity-induced breast deformations may lead to errors when assessing breast position and its relationship to possible breast pain, and that water alone may not be sufficient to estimate the neutral nipple position. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Prone Position and Positive End-Expiratory Pressure on Noninvasive Estimators of ICP: A Pilot Study.

    PubMed

    Robba, Chiara; Bragazzi, Nicola Luigi; Bertuccio, Alessandro; Cardim, Danilo; Donnelly, Joseph; Sekhon, Mypinder; Lavinio, Andrea; Duane, Derek; Burnstein, Rowan; Matta, Basil; Bacigaluppi, Susanna; Lattuada, Marco; Czosnyka, Marek

    2017-07-01

    Prone positioning and positive end-expiratory pressure can improve pulmonary gas exchange and respiratory mechanics. However, they may be associated with the development of intracranial hypertension. Intracranial pressure (ICP) can be noninvasively estimated from the sonographic measurement of the optic nerve sheath diameter (ONSD) and from the transcranial Doppler analysis of the pulsatility (ICPPI) and the diastolic component (ICPFVd) of the velocity waveform. The effect of the prone positioning and positive end-expiratory pressure on ONSD, ICPFVd, and ICPPI was assessed in a prospective study of 30 patients undergoing spine surgery. One-way repeated measures analysis of variance, fixed-effect multivariate regression models, and receiver operating characteristic analyses were used to analyze numerical data. The mean values of ONSD, ICPFVd, and ICPPI significantly increased after change from supine to prone position. Receiver operating characteristic analyses demonstrated that, among the noninvasive methods, the mean ONSD measure had the greatest area under the curve signifying it is the most effective in distinguishing a hypothetical change in ICP between supine and prone positioning (0.86±0.034 [0.79 to 0.92]). A cutoff of 0.43 cm was found to be a best separator of ONSD value between supine and prone with a specificity of 75.0 and a sensitivity of 86.7. Noninvasive ICP estimation may be useful in patients at risk of developing intracranial hypertension who require prone positioning.

  17. Reconstruction of the in-plane mode shape of a rotating tire with a continuous scanning measurement using the Hilbert-Huang transform.

    PubMed

    Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter

    2015-02-01

    Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.

  18. A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.

    PubMed

    Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying

    2018-06-13

    The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.

  19. Depth of interaction decoding of a continuous crystal detector module.

    PubMed

    Ling, T; Lewellen, T K; Miyaoka, R S

    2007-04-21

    We present a clustering method to extract the depth of interaction (DOI) information from an 8 mm thick crystal version of our continuous miniature crystal element (cMiCE) small animal PET detector. This clustering method, based on the maximum-likelihood (ML) method, can effectively build look-up tables (LUT) for different DOI regions. Combined with our statistics-based positioning (SBP) method, which uses a LUT searching algorithm based on the ML method and two-dimensional mean-variance LUTs of light responses from each photomultiplier channel with respect to different gamma ray interaction positions, the position of interaction and DOI can be estimated simultaneously. Data simulated using DETECT2000 were used to help validate our approach. An experiment using our cMiCE detector was designed to evaluate the performance. Two and four DOI region clustering were applied to the simulated data. Two DOI regions were used for the experimental data. The misclassification rate for simulated data is about 3.5% for two DOI regions and 10.2% for four DOI regions. For the experimental data, the rate is estimated to be approximately 25%. By using multi-DOI LUTs, we also observed improvement of the detector spatial resolution, especially for the corner region of the crystal. These results show that our ML clustering method is a consistent and reliable way to characterize DOI in a continuous crystal detector without requiring any modifications to the crystal or detector front end electronics. The ability to characterize the depth-dependent light response function from measured data is a major step forward in developing practical detectors with DOI positioning capability.

  20. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Sun, Kai; Wang, Jianhui

    In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is foundmore » that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.« less

  1. State estimation with incomplete nonlinear constraint

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Wang, Xueying; An, Wei

    2017-10-01

    A problem of state estimation with a new constraints named incomplete nonlinear constraint is considered. The targets are often move in the curve road, if the width of road is neglected, the road can be considered as the constraint, and the position of sensors, e.g., radar, is known in advance, this info can be used to enhance the performance of the tracking filter. The problem of how to incorporate the priori knowledge is considered. In this paper, a second-order sate constraint is considered. A fitting algorithm of ellipse is adopted to incorporate the priori knowledge by estimating the radius of the trajectory. The fitting problem is transformed to the nonlinear estimation problem. The estimated ellipse function is used to approximate the nonlinear constraint. Then, the typical nonlinear constraint methods proposed in recent works can be used to constrain the target state. Monte-Carlo simulation results are presented to illustrate the effectiveness proposed method in state estimation with incomplete constraint.

  2. Estimating False Positive Contamination in Crater Annotations from Citizen Science Data

    NASA Astrophysics Data System (ADS)

    Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.

    2017-01-01

    Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.

  3. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  4. Estimating age-specific reproductive numbers-A comparison of methods.

    PubMed

    Moser, Carlee B; White, Laura F

    2016-01-01

    Large outbreaks, such as those caused by influenza, put a strain on resources necessary for their control. In particular, children have been shown to play a key role in influenza transmission during recent outbreaks, and targeted interventions, such as school closures, could positively impact the course of emerging epidemics. As an outbreak is unfolding, it is important to be able to estimate reproductive numbers that incorporate this heterogeneity and to use surveillance data that is routinely collected to more effectively target interventions and obtain an accurate understanding of transmission dynamics. There are a growing number of methods that estimate age-group specific reproductive numbers with limited data that build on methods assuming a homogenously mixing population. In this article, we introduce a new approach that is flexible and improves on many aspects of existing methods. We apply this method to influenza data from two outbreaks, the 2009 H1N1 outbreaks in South Africa and Japan, to estimate age-group specific reproductive numbers and compare it to three other methods that also use existing data from social mixing surveys to quantify contact rates among different age groups. In this exercise, all estimates of the reproductive numbers for children exceeded the critical threshold of one and in most cases exceeded those of adults. We introduce a flexible new method to estimate reproductive numbers that describe heterogeneity in the population.

  5. Estimating individual influences of behavioral intentions: an application of random-effects modeling to the theory of reasoned action.

    PubMed

    Hedeker, D; Flay, B R; Petraitis, J

    1996-02-01

    Methods are proposed and described for estimating the degree to which relations among variables vary at the individual level. As an example of the methods, M. Fishbein and I. Ajzen's (1975; I. Ajzen & M. Fishbein, 1980) theory of reasoned action is examined, which posits first that an individual's behavioral intentions are a function of 2 components: the individual's attitudes toward the behavior and the subjective norms as perceived by the individual. A second component of their theory is that individuals may weight these 2 components differently in assessing their behavioral intentions. This article illustrates the use of empirical Bayes methods based on a random-effects regression model to estimate these individual influences, estimating an individual's weighting of both of these components (attitudes toward the behavior and subjective norms) in relation to their behavioral intentions. This method can be used when an individual's behavioral intentions, subjective norms, and attitudes toward the behavior are all repeatedly measured. In this case, the empirical Bayes estimates are derived as a function of the data from the individual, strengthened by the overall sample data.

  6. Reference interval estimation: Methodological comparison using extensive simulations and empirical data.

    PubMed

    Daly, Caitlin H; Higgins, Victoria; Adeli, Khosrow; Grey, Vijay L; Hamid, Jemila S

    2017-12-01

    To statistically compare and evaluate commonly used methods of estimating reference intervals and to determine which method is best based on characteristics of the distribution of various data sets. Three approaches for estimating reference intervals, i.e. parametric, non-parametric, and robust, were compared with simulated Gaussian and non-Gaussian data. The hierarchy of the performances of each method was examined based on bias and measures of precision. The findings of the simulation study were illustrated through real data sets. In all Gaussian scenarios, the parametric approach provided the least biased and most precise estimates. In non-Gaussian scenarios, no single method provided the least biased and most precise estimates for both limits of a reference interval across all sample sizes, although the non-parametric approach performed the best for most scenarios. The hierarchy of the performances of the three methods was only impacted by sample size and skewness. Differences between reference interval estimates established by the three methods were inflated by variability. Whenever possible, laboratories should attempt to transform data to a Gaussian distribution and use the parametric approach to obtain the most optimal reference intervals. When this is not possible, laboratories should consider sample size and skewness as factors in their choice of reference interval estimation method. The consequences of false positives or false negatives may also serve as factors in this decision. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. The epidemiology of viral hepatitis among people who inject drugs: Results of global systematic reviews

    PubMed Central

    Nelson, Paul; Mathers, Bradley; Cowie, Benjamin; Hagan, Holly; Jarlais, Don Des; Horyniak, Danielle; Degenhardt, Louisa

    2011-01-01

    Background Injecting drug use (IDU) is an important risk for viral hepatitis transmission. Detailed, transparent estimates of the scale of the problem at regional and global levels have never been made. We report national, regional and global prevalence and population size estimates for hepatitis C (HCV) and hepatitis B (HBV) among people who inject drugs. Methods Systematic search of peer-reviewed (Medline/Embase/PsycINFO) and grey literature databases, conference abstracts and online resources, with a widely distributed call for additional data. From 4386 peer-reviewed and 1019 grey literature sources, 1125 were reviewed in full. Studies were extracted to a customised database and graded according their methods. Serological reports of HCV antibodies/anti-HCV, HBV antibodies/anti-HBc, and/or HBV surface antigen/HBsAg among IDUs samples with n>40 participants, <100% HIV-positive, and sampling frames that did not exclude participants on the basis of age or sex were included. Using endorsed decision rules, prevalence estimates were calculated with anti-HCV and anti-HBV as proxies for exposure and HBsAg for current infection. These were combined with IDU population sizes to estimate the number of HBV and HCV positive IDUs. Findings Eligible reports of anti-HCV among IDUs were located for 77 countries. Prevalence was 60–80% in 26 countries and >80% in 12. We estimate worldwide about 10.0 million (range 6.0–15.2M) IDUs might be anti-HCV positive. China, (1.6M), the USA (1.5M) and the Russian Federation (1.3M) had by far the largest such populations. HBsAg reports were found for 59 countries, ranging from 5–10% in 21 countries and over 10% in 10. Worldwide, 6.4 million IDU might be anti-HBc positive (2.3–9.7M), and 1.2 million (0.3–2.7M) HBsAg positive. Interpretation The prevalence of anti-HCV among IDUs is far greater than HIV. Viral hepatitis clearly poses a challenge to public health. Variation in the coverage and quality of existing research creates uncertainty around estimates. Better and more complete data and reporting are required to estimate the scale of the problem, to inform efforts to prevent and treat HCV and HBV among IDUs. PMID:21802134

  8. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size

    PubMed Central

    Richman, Julie D.; Livi, Kenneth J.T.; Geyh, Alison S.

    2011-01-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was −0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected. PMID:21625364

  9. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size.

    PubMed

    Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S

    2011-06-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.

  10. Comparison of BOD results obtained by dilution and manometric methods in sanitary landfill leachates.

    PubMed

    Ceçen, F; Yangin, C

    2000-12-01

    This study examined the determination of BOD in landfill leachates by dilution (D-method) and manometric methods (M-method). The differences in results were discussed based on statistical tests. The effects of sample dilution, seeding, chloride and total Kjeldahl nitrogen (TKN) level were examined. The M-method was found to be more sensitive to increases in chloride and TKN concentrations. However, in the M-method the positive interference of nitrogenous BOD (NBOD) to carbonaceous BOD (CBOD) was more successfully prevented. The BOD rate constant k and the ultimate BOD (BODu) were estimated by non-linear regression. With the M-method these parameters could be more reliably estimated than the D-method. Suggestions were made for BOD analyses in landfill leachates in future studies.

  11. Unbiased estimation of the calcaneus volume using the Cavalieri principle on computed tomography images.

    PubMed

    Acer, N; Bayar, B; Basaloglu, H; Oner, E; Bayar, K; Sankur, S

    2008-11-20

    The size and shape of tarsal bones are especially relevant when considering some orthopedic diseases such as clubfoot. For this reason, the measurements of the tarsal bones have been the subject of many studies, none of which has used stereological methods to estimate the volume. In the present stereological study, we estimated the volume of calcaneal bone of normal feet and dry bones. We used a combination of the Cavalieri principle and computer tomographic scans taken from eight males and nine dry calcanei to estimate the volumes of calcaneal bones. The mean volume of dry calcaneal bones was estimated, producing mean results using the point-counting method and Archimedes principle being 49.11+/-10.7 or 48.22+/-11.92 cm(3), respectively. A positive correlation was found between anthropometric measurements and the volume of calcaneal bones. The findings of the present study using the stereological methods could provide data for the evaluation of normal and pathological volumes of calcaneal bones.

  12. Exsanguinated blood volume estimation using fractal analysis of digital images.

    PubMed

    Sant, Sonia P; Fairgrieve, Scott I

    2012-05-01

    The estimation of bloodstain volume using fractal analysis of digital images of passive blood stains is presented. Binary digital photos of bloodstains of known volumes (ranging from 1 to 7 mL), dispersed in a defined area, were subjected to image analysis using FracLac V. 2.0 for ImageJ. The box-counting method was used to generate a fractal dimension for each trial. A positive correlation between the generated fractal number and the volume of blood was found (R(2) = 0.99). Regression equations were produced to estimate the volume of blood in blind trials. An error rate ranging from 78% for 1 mL to 7% for 6 mL demonstrated that as the volume increases so does the accuracy of the volume estimation. This method used in the preliminary study proved that bloodstain patterns may be deconstructed into mathematical parameters, thus removing the subjective element inherent in other methods of volume estimation. © 2012 American Academy of Forensic Sciences.

  13. Rules of Thumb for Depth of Investigation, Pseudo-Position and Resolution of the Electrical Resistivity Method from Analysis of the Moments of the Sensitivity Function for a Homogeneous Half-Space

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2017-12-01

    The electrical resistivity method is now highly developed with 2D and even 3D surveys routinely performed and with available fast inversion software. However, rules of thumb, based on simple mathematical formulas, for important quantities like depth of investigation, horizontal position and resolution have not previously been available and would be useful for survey planning, preliminary interpretation and general education about the method. In this contribution, I will show that the sensitivity function for the resistivity method for a homogeneous half-space can be analyzed in terms of its first and second moments which yield simple mathematical formulas. The first moment gives the sensitivity-weighted center of an apparent resistivity measurement with the vertical center being an estimate of the depth of investigation. I will show that this depth of investigation estimate works at least as well as previous estimates based on the peak and median of the depth sensitivity function which must be calculated numerically for a general four electrode array. The vertical and horizontal first moments can also be used as pseudopositions when plotting 1, 2 and 3D pseudosections. The appropriate horizontal plotting point for a pseudosection was not previously obvious for nonsymmetric arrays. The second moments of the sensitivity function give estimates of the spatial extent of the region contributing to an apparent resistivity measurement and hence are measures of the resolution. These also have simple mathematical formulas.

  14. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    PubMed

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  15. Cetacean population density estimation from single fixed sensors using passive acoustics.

    PubMed

    Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica

    2011-06-01

    Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America

  16. Measuring global monopole velocities, one by one

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana, E-mail: asier.lopez@ehu.eus, E-mail: jon.urrestilla@ehu.eus, E-mail: achucar@lorentz.leidenuniv.nl

    We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scalingmore » solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.« less

  17. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  18. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  19. A novel gamma-fitting statistical method for anti-drug antibody assays to establish assay cut points for data with non-normal distribution.

    PubMed

    Schlain, Brian; Amaravadi, Lakshmi; Donley, Jean; Wickramasekera, Ananda; Bennett, Donald; Subramanyam, Meena

    2010-01-31

    In recent years there has been growing recognition of the impact of anti-drug or anti-therapeutic antibodies (ADAs, ATAs) on the pharmacokinetic and pharmacodynamic behavior of the drug, which ultimately affects drug exposure and activity. These anti-drug antibodies can also impact safety of the therapeutic by inducing a range of reactions from hypersensitivity to neutralization of the activity of an endogenous protein. Assessments of immunogenicity, therefore, are critically dependent on the bioanalytical method used to test samples, in which a positive versus negative reactivity is determined by a statistically derived cut point based on the distribution of drug naïve samples. For non-normally distributed data, a novel gamma-fitting method for obtaining assay cut points is presented. Non-normal immunogenicity data distributions, which tend to be unimodal and positively skewed, can often be modeled by 3-parameter gamma fits. Under a gamma regime, gamma based cut points were found to be more accurate (closer to their targeted false positive rates) compared to normal or log-normal methods and more precise (smaller standard errors of cut point estimators) compared with the nonparametric percentile method. Under a gamma regime, normal theory based methods for estimating cut points targeting a 5% false positive rate were found in computer simulation experiments to have, on average, false positive rates ranging from 6.2 to 8.3% (or positive biases between +1.2 and +3.3%) with bias decreasing with the magnitude of the gamma shape parameter. The log-normal fits tended, on average, to underestimate false positive rates with negative biases as large a -2.3% with absolute bias decreasing with the shape parameter. These results were consistent with the well known fact that gamma distributions become less skewed and closer to a normal distribution as their shape parameters increase. Inflated false positive rates, especially in a screening assay, shifts the emphasis to confirm test results in a subsequent test (confirmatory assay). On the other hand, deflated false positive rates in the case of screening immunogenicity assays will not meet the minimum 5% false positive target as proposed in the immunogenicity assay guidance white papers. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    PubMed

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.

  1. Are False-Positive Rates Leading to an Overestimation of Noise-Induced Hearing Loss?

    ERIC Educational Resources Information Center

    Schlauch, Robert S.; Carney, Edward

    2011-01-01

    Purpose: To estimate false-positive rates for rules proposed to identify early noise-induced hearing loss (NIHL) using the presence of notches in audiograms. Method: Audiograms collected from school-age children in a national survey of health and nutrition (the Third National Health and Nutrition Examination Survey [NHANES III]; National Center…

  2. Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon

    2014-05-01

    In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.

  3. A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao

    2017-02-01

    Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.

  4. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  5. [Evaluation of the adjusted amino acid score by digestibility for estimating the protein quality and protein available in food and diets].

    PubMed

    Pak, N; Vera, G; Araya, H

    1985-03-01

    The purpose of the present study was to evaluate the amino acid score adjusted by digestibility to estimate protein quality and utilizable protein in foods and diets, considering net protein utilization (NPU) as a biological reference method. Ten foods of vegetable origin and ten of animal origin, as well as eight mixtures of foods of vegetable and animal origin were studied. When all the foods were considered, a positive (r = 0.83) and highly significant correlation (p less than 0.001) between NPU and the amino acid score adjusted by digestibility was found. When the foods were separated according to their origin, this correlation was positive only for the foods of vegetable origin (r = 0.93) and statistically significant (p less than 0.001). Also, only in those foods were similar values found between NPU and amino acid score adjusted by digestibility, as well as in utilizable protein estimated considering both methods. Caution is required to interpret protein quality and utilizable protein values of foods of animal origin and mixtures of foods of vegetable and animal origin when the amino acid score method adjusted by digestibility, or NPU, are utilized.

  6. Proximity Navigation of Highly Constrained Spacecraft

    NASA Technical Reports Server (NTRS)

    Scarritt, S.; Swartwout, M.

    2007-01-01

    Bandit is a 3-kg automated spacecraft in development at Washington University in St. Louis. Bandit's primary mission is to demonstrate proximity navigation, including docking, around a 25-kg student-built host spacecraft. However, because of extreme constraints in mass, power and volume, traditional sensing and actuation methods are not available. In particular, Bandit carries only 8 fixed-magnitude cold-gas thrusters to control its 6 DOF motion. Bandit lacks true inertial sensing, and the ability to sense position relative to the host has error bounds that approach the size of the Bandit itself. Some of the navigation problems are addressed through an extremely robust, error-tolerant soft dock. In addition, we have identified a control methodology that performs well in this constrained environment: behavior-based velocity potential functions, which use a minimum-seeking method similar to Lyapunov functions. We have also adapted the discrete Kalman filter for use on Bandit for position estimation and have developed a similar measurement vs. propagation weighting algorithm for attitude estimation. This paper provides an overview of Bandit and describes the control and estimation approach. Results using our 6DOF flight simulator are provided, demonstrating that these methods show promise for flight use.

  7. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part I: humidity

    NASA Astrophysics Data System (ADS)

    Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.

    2017-07-01

    This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.

  8. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter

    NASA Astrophysics Data System (ADS)

    Li, Yi; Abdel-Monem, Mohamed; Gopalakrishnan, Rahul; Berecibar, Maitane; Nanini-Maury, Elise; Omar, Noshin; van den Bossche, Peter; Van Mierlo, Joeri

    2018-01-01

    This paper proposes an advanced state of health (SoH) estimation method for high energy NMC lithium-ion batteries based on the incremental capacity (IC) analysis. IC curves are used due to their ability of detect and quantify battery degradation mechanism. A simple and robust smoothing method is proposed based on Gaussian filter to reduce the noise on IC curves, the signatures associated with battery ageing can therefore be accurately identified. A linear regression relationship is found between the battery capacity with the positions of features of interest (FOIs) on IC curves. Results show that the developed SoH estimation function from one single battery cell is able to evaluate the SoH of other batteries cycled under different cycling depth with less than 2.5% maximum errors, which proves the robustness of the proposed method on SoH estimation. With this technique, partial charging voltage curves can be used for SoH estimation and the testing time can be therefore largely reduced. This method shows great potential to be applied in reality, as it only requires static charging curves and can be easily implemented in battery management system (BMS).

  9. A simple finite element method for linear hyperbolic problems

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-09-14

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  10. A simple finite element method for linear hyperbolic problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  11. Alternating steady state free precession for estimation of current-induced magnetic flux density: A feasibility study.

    PubMed

    Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok

    2016-05-01

    To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.

  12. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  13. Estimating trends in atmospheric water vapor and temperature time series over Germany

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Balidakis, Kyriakos; Dick, Galina; Heise, Stefan; Wickert, Jens

    2017-08-01

    Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods: the first applies least squares to deseasonalized time series and the second uses the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 to 19 years temporal coverage, vary between -1.5 and 2.3 mm decade-1 with standard deviations below 0.25 mm decade-1. These results were validated by estimating the trends from ERA-Interim data over the same time windows, which show similar values. These values of the trend depend on the length and the variations of the time series. Therefore, to give a mean value of the PWV trend over Germany, we estimated the trends using ERA-Interim spanning from 1991 to 2016 (26 years) at 227 synoptic stations over Germany. The ERA-Interim data show positive PWV trends of 0.33 ± 0.06 mm decade-1 with standard errors below 0.03 mm decade-1. The increment in PWV varies between 4.5 and 6.5 % per degree Celsius rise in temperature, which is comparable to the theoretical rate of the Clausius-Clapeyron equation.

  14. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  15. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    PubMed

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  16. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  17. Intensity-Based Registration for Lung Motion Estimation

    NASA Astrophysics Data System (ADS)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  18. On the use of INS to improve Feature Matching

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Guarnieri, A.; Vettore, A.; Pirotti, F.

    2014-11-01

    The continuous technological improvement of mobile devices opens the frontiers of Mobile Mapping systems to very compact systems, i.e. a smartphone or a tablet. This motivates the development of efficient 3D reconstruction techniques based on the sensors typically embedded in such devices, i.e. imaging sensors, GPS and Inertial Navigation System (INS). Such methods usually exploits photogrammetry techniques (structure from motion) to provide an estimation of the geometry of the scene. Actually, 3D reconstruction techniques (e.g. structure from motion) rely on use of features properly matched in different images to compute the 3D positions of objects by means of triangulation. Hence, correct feature matching is of fundamental importance to ensure good quality 3D reconstructions. Matching methods are based on the appearance of features, that can change as a consequence of variations of camera position and orientation, and environment illumination. For this reason, several methods have been developed in recent years in order to provide feature descriptors robust (ideally invariant) to such variations, e.g. Scale-Invariant Feature Transform (SIFT), Affine SIFT, Hessian affine and Harris affine detectors, Maximally Stable Extremal Regions (MSER). This work deals with the integration of information provided by the INS in the feature matching procedure: a previously developed navigation algorithm is used to constantly estimate the device position and orientation. Then, such information is exploited to estimate the transformation of feature regions between two camera views. This allows to compare regions from different images but associated to the same feature as seen by the same point of view, hence significantly easing the comparison of feature characteristics and, consequently, improving matching. SIFT-like descriptors are used in order to ensure good matching results in presence of illumination variations and to compensate the approximations related to the estimation process.

  19. Processing Satellite Data for Slant Total Electron Content Measurements

    NASA Technical Reports Server (NTRS)

    Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)

    2016-01-01

    A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.

  20. Decadal variations in atmospheric water vapor time series estimated using GNSS, ERA-Interim, and synoptic data

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens

    2017-04-01

    Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.

  1. Soil organic carbon stocks in Alaska estimated with spatial and pedon data

    USGS Publications Warehouse

    Bliss, Norman B.; Maursetter, J.

    2010-01-01

    Temperatures in high-latitude ecosystems are increasing faster than the average rate of global warming, which may lead to a positive feedback for climate change by increasing the respiration rates of soil organic C. If a positive feedback is confirmed, soil C will represent a source of greenhouse gases that is not currently considered in international protocols to regulate C emissions. We present new estimates of the stocks of soil organic C in Alaska, calculated by linking spatial and field data developed by the USDA NRCS. The spatial data are from the State Soil Geographic database (STATSGO), and the field and laboratory data are from the National Soil Characterization Database, also known as the pedon database. The new estimates range from 32 to 53 Pg of soil organic C for Alaska, formed by linking the spatial and field data using the attributes of Soil Taxonomy. For modelers, we recommend an estimation method based on taxonomic subgroups with interpolation for missing areas, which yields an estimate of 48 Pg. This is a substantial increase over a magnitude of 13 Pg estimated from only the STATSGO data as originally distributed in 1994, but the increase reflects different estimation methods and is not a measure of the change in C on the landscape. Pedon samples were collected between 1952 and 2002, so the results do not represent a single point in time. The linked databases provide an improved basis for modeling the impacts of climate change on net ecosystem exchange.

  2. Diagnosis of intrauterine growth restriction: comparison of ultrasound parameters.

    PubMed

    Ott, William J

    2002-04-01

    The objective of this study is an attempt to evaluate the best ultrasonic method of diagnosing intrauterine growth restriction (IUGR); a retrospective study of patients with singleton pregnancies who had been scanned at the author's institution within 2 weeks of their delivery was undertaken. Estimated fetal weight, abdominal circumference, head circumference/abdominal circumference ratio, abdominal circumference/femur length ratio, and umbilical artery S/D ratio were compared for accuracy in prediction IUGR in the neonate using both univariant and multivariant statistical analysis. Five hundred one (501) patients were analyzed. One hundred fourteen (114) neonates were classified as IUGR (22.8%). Doppler evaluation of the umbilical artery showed the best sensitivity while both abdominal circumference alone and estimated fetal weight showed similar specificity, positive and negative predictive value, and lowest false-positive and -negative results. Logistic regression analysis confirmed the univariant results and showed that, when used in combination, abdominal circumference and Doppler, or estimated fetal weight and Doppler resulted in the best predictive values. Either estimated fetal weight or abdominal circumference (alone) are accurate predictors of IUGR. Combined with Doppler studies of the umbilical artery either method will provide accurate evaluation of suspected IUGR.

  3. Inverse sampling regression for pooled data.

    PubMed

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Eskridge, Kent; Crossa, José

    2017-06-01

    Because pools are tested instead of individuals in group testing, this technique is helpful for estimating prevalence in a population or for classifying a large number of individuals into two groups at a low cost. For this reason, group testing is a well-known means of saving costs and producing precise estimates. In this paper, we developed a mixed-effect group testing regression that is useful when the data-collecting process is performed using inverse sampling. This model allows including covariate information at the individual level to incorporate heterogeneity among individuals and identify which covariates are associated with positive individuals. We present an approach to fit this model using maximum likelihood and we performed a simulation study to evaluate the quality of the estimates. Based on the simulation study, we found that the proposed regression method for inverse sampling with group testing produces parameter estimates with low bias when the pre-specified number of positive pools (r) to stop the sampling process is at least 10 and the number of clusters in the sample is also at least 10. We performed an application with real data and we provide an NLMIXED code that researchers can use to implement this method.

  4. Spatio-Temporal Fluctuations of the Earthquake Magnitude Distribution: Robust Estimation and Predictive Power

    NASA Astrophysics Data System (ADS)

    Olsen, S.; Zaliapin, I.

    2008-12-01

    We establish positive correlation between the local spatio-temporal fluctuations of the earthquake magnitude distribution and the occurrence of regional earthquakes. In order to accomplish this goal, we develop a sequential Bayesian statistical estimation framework for the b-value (slope of the Gutenberg-Richter's exponential approximation to the observed magnitude distribution) and for the ratio a(t) between the earthquake intensities in two non-overlapping magnitude intervals. The time-dependent dynamics of these parameters is analyzed using Markov Chain Models (MCM). The main advantage of this approach over the traditional window-based estimation is its "soft" parameterization, which allows one to obtain stable results with realistically small samples. We furthermore discuss a statistical methodology for establishing lagged correlations between continuous and point processes. The developed methods are applied to the observed seismicity of California, Nevada, and Japan on different temporal and spatial scales. We report an oscillatory dynamics of the estimated parameters, and find that the detected oscillations are positively correlated with the occurrence of large regional earthquakes, as well as with small events with magnitudes as low as 2.5. The reported results have important implications for further development of earthquake prediction and seismic hazard assessment methods.

  5. Estimating the effect of gestational age on test performance of combined first-trimester screening for Down syndrome: a preliminary study.

    PubMed

    van Heesch, Peter N; Struijk, Pieter C; Laudy, Jaqueline A M; Steegers, Eric A P; Wildschut, Hajo I J

    2010-05-01

    To establish how different methods of estimating gestational age (GA) affect reliability of first-trimester screening for Down syndrome. Retrospective single-center study of 100 women with a viable singleton pregnancy, who had first-trimester screening. We calculated multiples of the median (MoM) for maternal-serum free beta human chorionic gonadotropin (free beta-hCG) and pregnancy associated plasma protein-A (PAPP-A), derived from either last menstrual period (LMP) or ultrasound-dating scans. In women with a regular cycle, LMP-derived estimates of GA were two days longer (range -11 to 18), than crown-rump length (CRL)-derived estimates of GA whereas this discrepancy was more pronounced in women who reported to have an irregular cycle, i.e., six days (range -7 to 32). Except for PAPP-A in the regular-cycle group, all differences were significant. Consequently, risk estimates are affected by the mode of estimating GA. In fact, LMP-based estimates revealed ten "screen-positive" cases compared to five "screen-positive" cases where GA was derived from dating-scans. Provided fixed values for nuchal translucency are applied, dating-scans reduce the number of screen-positive findings on the basis of biochemical screening. We recommend implementation of guidelines for Down syndrome screening based on CRL-dependent rather than LMP-dependent parameters of GA.

  6. A wireless sensor network based personnel positioning scheme in coal mines with blind areas.

    PubMed

    Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing

    2010-01-01

    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.

  7. A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas

    PubMed Central

    Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing

    2010-01-01

    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446

  8. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    PubMed

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  9. Analysis of Sources of Large Positioning Errors in Deterministic Fingerprinting

    PubMed Central

    2017-01-01

    Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities. PMID:29186921

  10. Learning to select useful landmarks.

    PubMed

    Greiner, R; Isukapalli, R

    1996-01-01

    To navigate effectively, an autonomous agent must be able to quickly and accurately determine its current location. Given an initial estimate of its position (perhaps based on dead-reckoning) and an image taken of a known environment, our agent first attempts to locate a set of landmarks (real-world objects at known locations), then uses their angular separation to obtain an improved estimate of its current position. Unfortunately, some landmarks may not be visible, or worse, may be confused with other landmarks, resulting in both time wasted in searching for the undetected landmarks, and in further errors in the agent's estimate of its position. To address these problems, we propose a method that uses previous experiences to learn a selection function that, given the set of landmarks that might be visible, returns the subset that can be used to reliably provide an accurate registration of the agent's position. We use statistical techniques to prove that the learned selection function is, with high probability, effectively at a local optimum in the space of such functions. This paper also presents empirical evidence, using real-world data, that demonstrate the effectiveness of our approach.

  11. Accurate reconstruction of viral quasispecies spectra through improved estimation of strain richness

    PubMed Central

    2015-01-01

    Background Estimating the number of different species (richness) in a mixed microbial population has been a main focus in metagenomic research. Existing methods of species richness estimation ride on the assumption that the reads in each assembled contig correspond to only one of the microbial genomes in the population. This assumption and the underlying probabilistic formulations of existing methods are not useful for quasispecies populations where the strains are highly genetically related. The lack of knowledge on the number of different strains in a quasispecies population is observed to hinder the precision of existing Viral Quasispecies Spectrum Reconstruction (QSR) methods due to the uncontrolled reconstruction of a large number of in silico false positives. In this work, we formulated a novel probabilistic method for strain richness estimation specifically targeting viral quasispecies. By using this approach we improved our recently proposed spectrum reconstruction pipeline ViQuaS to achieve higher levels of precision in reconstructed quasispecies spectra without compromising the recall rates. We also discuss how one other existing popular QSR method named ShoRAH can be improved using this new approach. Results On benchmark data sets, our estimation method provided accurate richness estimates (< 0.2 median estimation error) and improved the precision of ViQuaS by 2%-13% and F-score by 1%-9% without compromising the recall rates. We also demonstrate that our estimation method can be used to improve the precision and F-score of ShoRAH by 0%-7% and 0%-5% respectively. Conclusions The proposed probabilistic estimation method can be used to estimate the richness of viral populations with a quasispecies behavior and to improve the accuracy of the quasispecies spectra reconstructed by the existing methods ViQuaS and ShoRAH in the presence of a moderate level of technical sequencing errors. Availability http://sourceforge.net/projects/viquas/ PMID:26678073

  12. Tracking marine mammals using passive acoustics

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie

    2007-12-01

    It is difficult to study the behavior and physiology of marine mammals or to understand and mitigate human impact on them because much of their lives are spent underwater. Since sound propagates for long distances in the ocean and since many cetaceans are vocal, passive acoustics is a valuable tool for studying and monitoring their behavior. After a brief introduction to and review of passive acoustic tracking methods, this dissertation develops and applies two new methods. Both methods use widely-spaced (tens of kilometers) bottom-mounted hydrophone arrays, as well as propagation models that account for depth-dependent sound speed profiles. The first passive acoustic tracking method relies on arrival times of direct and surface-reflected paths. It is used to track a sperm whale using 5 at the Atlantic Undersea Test and Evaluation Center (AUTEC) and gives position estimates that are accurate to within 10 meters. With such accuracy, the whale's pitch and yaw are estimated by assuming that its main axis (which points from the tail to the rostrum) is parallel to its velocity. Roll is found by fitting the details of the pulses within each sperm whale click to the so-called bent horn model of sperm whale sound production. Finally, given the position and orientation of the whale, its beam pattern is reconstructed and found to be highly directional with an intense forward directed component. Pair-wise spectrogram (PWS) processing is the second passive acoustic tracking method developed in this dissertation. Although it is computationally more intensive, PWS has several advantages over arrival-time tracking methods, especially in shallow water environments, for long duration calls, and for multiple-animal datasets, as is the case for humpback whales on Hawaiian breeding grounds. Results of simulations with realistic noise conditions and environmental mismatch are given and compared to other passive localization techniques. When applied to the AUTEC sperm whale dataset, PWS position estimates are within meters of those obtained using the time-of-arrival method.

  13. Effective classification of the prevalence of Schistosoma mansoni.

    PubMed

    Mitchell, Shira A; Pagano, Marcello

    2012-12-01

    To present an effective classification method based on the prevalence of Schistosoma mansoni in the community. We created decision rules (defined by cut-offs for number of positive slides), which account for imperfect sensitivity, both with a simple adjustment of fixed sensitivity and with a more complex adjustment of changing sensitivity with prevalence. To reduce screening costs while maintaining accuracy, we propose a pooled classification method. To estimate sensitivity, we use the De Vlas model for worm and egg distributions. We compare the proposed method with the standard method to investigate differences in efficiency, measured by number of slides read, and accuracy, measured by probability of correct classification. Modelling varying sensitivity lowers the lower cut-off more significantly than the upper cut-off, correctly classifying regions as moderate rather than lower, thus receiving life-saving treatment. The classification method goes directly to classification on the basis of positive pools, avoiding having to know sensitivity to estimate prevalence. For model parameter values describing worm and egg distributions among children, the pooled method with 25 slides achieves an expected 89.9% probability of correct classification, whereas the standard method with 50 slides achieves 88.7%. Among children, it is more efficient and more accurate to use the pooled method for classification of S. mansoni prevalence than the current standard method. © 2012 Blackwell Publishing Ltd.

  14. A Novel Gravity Compensation Method for High Precision Free-INS Based on “Extreme Learning Machine”

    PubMed Central

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing

    2016-01-01

    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method. PMID:27916856

  15. Improved spring model-based collaborative indoor visible light positioning

    NASA Astrophysics Data System (ADS)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  16. A comparison of consumptive-use estimates derived from the simplified surface energy balance approach and indirect reporting methods

    USGS Publications Warehouse

    Maupin, Molly A.; Senay, Gabriel B.; Kenny, Joan F.; Savoca, Mark E.

    2012-01-01

    Recent advances in remote-sensing technology and Simplified Surface Energy Balance (SSEB) methods can provide accurate and repeatable estimates of evapotranspiration (ET) when used with satellite observations of irrigated lands. Estimates of ET are generally considered equivalent to consumptive use (CU) because they represent the part of applied irrigation water that is evaporated, transpired, or otherwise not available for immediate reuse. The U.S. Geological Survey compared ET estimates from SSEB methods to CU data collected for 1995 using indirect methods as part of the National Water Use Information Program (NWUIP). Ten-year (2000-2009) average ET estimates from SSEB methods were derived using Moderate Resolution Imaging Spectroradiometer (MODIS) 1-kilometer satellite land surface temperature and gridded weather datasets from the Global Data Assimilation System (GDAS). County-level CU estimates for 1995 were assembled and referenced to 1-kilometer grid cells to synchronize with the SSEB ET estimates. Both datasets were seasonally and spatially weighted to represent the irrigation season (June-September) and those lands that were identified in the county as irrigated. A strong relation (R2 greater than 0.7) was determined between NWUIP CU and SSEB ET data. Regionally, the relation is stronger in arid western states than in humid eastern states, and positive and negative biases are both present at state-level comparisons. SSEB ET estimates can play a major role in monitoring and updating county-based CU estimates by providing a quick and cost-effective method to detect major year-to-year changes at county levels, as well as providing a means to disaggregate county-based ET estimates to sub-county levels. More research is needed to identify the causes for differences in state-based relations.

  17. [Systematic review of the validity of urine cultures collected by sterile perineal bags].

    PubMed

    Ochoa Sangrador, C; Pascual Terrazas, A

    2016-02-01

    The perineal adhesive bag is the most used method in our country for urine culture collection in infants, despite having a high risk of contamination and false-positive results. We aim to quantify both types of risks through a systematic review. Search updated in May 2014 in PUBMED, SCOPUS (includes EMBASE), IBECS; CINAHL, LILACS AND CUIDEN, without language or time limits. Percentages of contaminated urines, false positives, sensitivity and specificity (with respect to catheterization or bladder puncture) were recorded. A total of 21 studies of medium quality (7,659 samples) were selected. The pooled percentage of contaminated urines was 46.6% (15 studies; 6856 samples; 95% confidence interval [95% CI]: 35.6 to 57.8%; I(2): 97.3%). The pooled percentage of false positives was 61.1% (12 studies; 575 samples; 95% CI: 37.9 to 82.2%; I(2): 96.2%). Sensitivity (88%; 95% CI: 81-93%; I(2): 55.2%), and specificity (82%; 95% CI: 75-89%; I(2): 41.3%) were estimated in five studies, but without including contaminated urines. The perineal adhesive bag is not a valid enough method for urine culture collection, because almost half are contaminated and, if they are positive, two out of three are false. Although these estimates are imprecise, because of their great heterogeneity, they should be considered when choosing the method of urine collection. The estimates of sensitivity and specificity are not applicable because they do not take into account the risk of contamination. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  18. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  19. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  20. Some methods of computing platform transmitter terminal location estimates. [ARGOS system; whale tracking

    NASA Technical Reports Server (NTRS)

    Hoisington, C. M.

    1984-01-01

    A position estimation algorithm was developed to track a humpback whale tagged with an ARGOS platform after a transmitter deployment failure and the whale's diving behavior precluded standard methods. The algorithm is especially useful where a transmitter location program exists; it determines the classical keplarian elements from the ARGOS spacecraft position vectors included with the probationary file messages. A minimum of three distinct messages are required. Once the spacecraft orbit is determined, the whale is located using standard least squares regression techniques. Experience suggests that in instances where circumstances inherent in the experiment yield message data unsuitable for the standard ARGOS reduction, (message data may be too sparse, span an insufficient period, or include variable-length messages). System ARGOS can still provide much valuable location information if the user is willing to accept the increased location uncertainties.

  1. A polar-region-adaptable systematic bias collaborative measurement method for shipboard redundant rotational inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang

    2018-05-01

    The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.

  2. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  3. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  4. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less

  5. The simple procedure for the fluxgate magnetometers calibration

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2014-05-01

    The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the Coil Calibration system reveals, that the achieved accuracy (<0.04 % for scale factors and 0.03 degrees of arc for angle errors) is sufficient for many applications, particularly for satisfying the INTERMAGNET requirements to 1-second instruments.

  6. CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  7. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-01

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  8. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  9. The use of x-ray pulsar-based navigation method for interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  10. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  11. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  12. Adaptive correlation filter-based video stabilization without accumulative global motion estimation

    NASA Astrophysics Data System (ADS)

    Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil

    2014-12-01

    We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.

  13. A real-time ionospheric model based on GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Hongping; Ge, Maorong; Huang, Guanwen

    2013-09-01

    This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1-2 TECU and 0.4 ns respectively.

  14. State Estimation for Tensegrity Robots

    NASA Technical Reports Server (NTRS)

    Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas

    2016-01-01

    Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.

  15. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk; Ringgaard, Steffen; Sørensen, Thomas Sangild

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (ormore » tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal, and coronal 2D MRI series yielded 3D respiratory motion curves for all volunteers. The motion directionality and amplitude were very similar when measured directly as in-plane motion or estimated indirectly as through-plane motion. The mean peak-to-peak breathing amplitude was 1.6 mm (left-right), 11.0 mm (craniocaudal), and 2.5 mm (anterior-posterior). The position of the watermelon structure was estimated in 2D MRI images with a root-mean-square error of 0.52 mm (in-plane) and 0.87 mm (through-plane). Conclusions: A method for 3D tracking in 2D MRI series was developed and demonstrated for liver tracking in volunteers. The method would allow real-time 3D localization with integrated MR-Linac systems.« less

  16. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing

    PubMed Central

    Henkel, Patrick

    2017-01-01

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369

  17. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.

    PubMed

    Henkel, Patrick

    2017-06-08

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.

  18. The Autoregressive Method: A Method of Approximating and Estimating Positive Functions

    DTIC Science & Technology

    1976-08-01

    in drawing the curves, thanks to computer graphics. A few people ha’ very imaginatively pro- posed - td developed new ways of visualizing the data...k= -= it turns out that , , 0ki < 0 is a sufficient condition for all our k= -cc ( operations to be valid. Ii_ _ _ _ _ _ __ __ _ _ _ _ -106- We will

  19. Immunoturbidimetric quantification of serum immunoglobulin G concentration in foals.

    PubMed

    Bauer, J E; Brooks, T P

    1990-08-01

    Immunoturbidimetric determination of serum IgG concentration in foals was compared with the reference methods of single radial immunodiffusion and serum protein electrophoresis. High positive correlations were discovered when the technique was compared with either of these reference methods. The zinc sulfate turbidity test for serum IgG estimation was also evaluated. Although a positive correlation was discovered when the latter method was compared with reference methods, it was not as strong as the correlation between reference methods and the immunoturbidimetric method. The immunoturbidimetric method used in this study is specific and precise for equine serum IgG determination. It is rapid and, thus, is advantageous when timely evaluation of critically ill foals is necessary. The technique should be adaptable to various spectrophotometers and microcomputers for widespread application in veterinary medicine.

  20. Demographic estimation methods for plants with unobservable life-states

    USGS Publications Warehouse

    Kery, M.; Gregg, K.B.; Schaub, M.

    2005-01-01

    Demographic estimation of vital parameters in plants with an unobservable dormant state is complicated, because time of death is not known. Conventional methods assume that death occurs at a particular time after a plant has last been seen aboveground but the consequences of assuming a particular duration of dormancy have never been tested. Capture-recapture methods do not make assumptions about time of death; however, problems with parameter estimability have not yet been resolved. To date, a critical comparative assessment of these methods is lacking. We analysed data from a 10 year study of Cleistes bifaria, a terrestrial orchid with frequent dormancy, and compared demographic estimates obtained by five varieties of the conventional methods, and two capture-recapture methods. All conventional methods produced spurious unity survival estimates for some years or for some states, and estimates of demographic rates sensitive to the time of death assumption. In contrast, capture-recapture methods are more parsimonious in terms of assumptions, are based on well founded theory and did not produce spurious estimates. In Cleistes, dormant episodes lasted for 1-4 years (mean 1.4, SD 0.74). The capture-recapture models estimated ramet survival rate at 0.86 (SE~ 0.01), ranging from 0.77-0.94 (SEs # 0.1) in anyone year. The average fraction dormant was estimated at 30% (SE 1.5), ranging 16 -47% (SEs # 5.1) in anyone year. Multistate capture-recapture models showed that survival rates were positively related to precipitation in the current year, but transition rates were more strongly related to precipitation in the previous than in the current year, with more ramets going dormant following dry years. Not all capture-recapture models of interest have estimable parameters; for instance, without excavating plants in years when they do not appear aboveground, it is not possible to obtain independent timespecific survival estimates for dormant plants. We introduce rigorous computer algebra methods to identify the parameters that are estimable in principle. As life-states are a prominent feature in plant life cycles, multi state capture-recapture models are a natural framework for analysing population dynamics of plants with dormancy.

  1. IMU-based online kinematic calibration of robot manipulator.

    PubMed

    Du, Guanglong; Zhang, Ping

    2013-01-01

    Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.

  2. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples.

    PubMed

    Sivaganesan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A

    2011-12-01

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from different studies by this approach, either a consistent source of calibrator cells must be used or the estimates must account for any differences in target sequence recoveries from different sources of calibrator cells. In this report we describe two methods for estimating target sequence recoveries from whole cell calibrator samples based on qPCR analyses of their serially diluted DNA extracts and most probable number (MPN) calculation. The first method employed a traditional MPN calculation approach. The second method employed a Bayesian hierarchical statistical modeling approach and a Monte Carlo Markov Chain (MCMC) simulation method to account for the uncertainty in these estimates associated with different individual samples of the cell preparations, different dilutions of the DNA extracts and different qPCR analytical runs. The two methods were applied to estimate mean target sequence recoveries per cell from two different lots of a commercially available source of enumerated Enterococcus cell preparations. The mean target sequence recovery estimates (and standard errors) per cell from Lot A and B cell preparations by the Bayesian method were 22.73 (3.4) and 11.76 (2.4), respectively, when the data were adjusted for potential false positive results. Means were similar for the traditional MPN approach which cannot comparably assess uncertainty in the estimates. Cell numbers and estimates of recoverable target sequences in calibrator samples prepared from the two cell sources were also used to estimate cell equivalent and target sequence quantities recovered from surface water samples in a comparative Ct method. Our results illustrate the utility of the Bayesian method in accounting for uncertainty, the high degree of precision attainable by the MPN approach and the need to account for the differences in target sequence recoveries from different calibrator sample cell sources when they are used in the comparative Ct method. Published by Elsevier B.V.

  3. Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    DTIC Science & Technology

    2015-03-26

    dB) Lx, Ly, Lz Number of Pixels or Voxels in Respective Cartesian Dimension λ Width of Weighting Ellipse (ft) λi Diagonal Entries of Λ (Square Root...Barrett, and L. R. Furenlid, “Calibration Method for ML Estimation of 3D Interaction Position in a Thick Gamma-Ray Detector ,” IEEE Transactions on

  4. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm.

    PubMed

    Cuevas, Erik; Díaz, Margarita

    2015-01-01

    In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.

  5. A new gradient shimming method based on undistorted field map of B0 inhomogeneity.

    PubMed

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Technical note: tree truthing: how accurate are substrate estimates in primate field studies?

    PubMed

    Bezanson, Michelle; Watts, Sean M; Jobin, Matthew J

    2012-04-01

    Field studies of primate positional behavior typically rely on ground-level estimates of substrate size, angle, and canopy location. These estimates potentially influence the identification of positional modes by the observer recording behaviors. In this study we aim to test ground-level estimates against direct measurements of support angles, diameters, and canopy heights in trees at La Suerte Biological Research Station in Costa Rica. After reviewing methods that have been used by past researchers, we provide data collected within trees that are compared to estimates obtained from the ground. We climbed five trees and measured 20 supports. Four observers collected measurements of each support from different locations on the ground. Diameter estimates varied from the direct tree measures by 0-28 cm (Mean: 5.44 ± 4.55). Substrate angles varied by 1-55° (Mean: 14.76 ± 14.02). Height in the tree was best estimated using a clinometer as estimates with a two-meter reference placed by the tree varied by 3-11 meters (Mean: 5.31 ± 2.44). We determined that the best support size estimates were those generated relative to the size of the focal animal and divided into broader categories. Support angles were best estimated in 5° increments and then checked using a Haglöf clinometer in combination with a laser pointer. We conclude that three major factors should be addressed when estimating support features: observer error (e.g., experience and distance from the target), support deformity, and how support size and angle influence the positional mode selected by a primate individual. individual. Copyright © 2012 Wiley Periodicals, Inc.

  7. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  8. Extrinsic Calibration of Camera Networks Based on Pedestrians

    PubMed Central

    Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2016-01-01

    In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080

  9. Estimating the Number of HIV-infected gay sauna patrons in Taipei area

    NASA Astrophysics Data System (ADS)

    Hsieh, Ying-Hen; Chen, Cathy W. S.; Lee, Shen-Ming; Chen, Yi-Ming A.; Wu, Shiow-Ing; Lai, Shu-Fen; Chang, An-Lung

    2006-04-01

    We make use of the voluntary HIV and syphilis test results conducted at five gay saunas in Taipei from August of 1999 to end of 2002 to estimate the number of HIV-positive gay saunas patrons in Taipei area by utilizing Hierarchical Bayes method in Generalized Removal Model for Open Populations (GERMO). Considering the effect of a nearby anonymous HIV quick test program on the gay sauna HIV serotesting data, we make use of the association between HIV and syphilis serotesting results from the gay sauna program to amend possible measurement error occurred at the time of data collection by utilizing the regression calibration method. The median estimates for the number of HIV-positive patrons of the five gay saunas increase from 120 (95% CI: 76.5-159.0) during the first half of 2000 to 224 (95% CI: 171.0-265.5) for the second half of 2002. The result, indicating two-fold increase within two and half years, confirms that the gay sauna patrons in Taipei area are at high risk for HIV infection.

  10. A Method for Calculating the Amount of Movements to Estimate the Self-position of Manta Robots

    NASA Astrophysics Data System (ADS)

    Imahama, Takuya; Watanabe, Keigo; Mikuriya, Kota; Nagai, Isaku

    2018-02-01

    In recent years, the demand of underwater investigation is increasing in the circumference of a dam, the environmental research of the shallow where approach by ship is difficult, etc. It is known, however, that for man, all over the sea, danger exists mostly, and prolonged diving has a bad influence to a human body. Then, the development of underwater exploration robots that investigate underwater instead of humans is expected. Among underwater exploration robots, it is known that robots imitating aquatic organisms have little influence on underwater environment. Therefore, at this laboratory, a Manta robot using propulsive mechanisms with pectoral fins was developed, imitating the pectoral fin of Manta. Although underwater environmental research needs a function for estimating the self-position, it is not mounted in this Manta robot. This paper explains the amount estimation of movements using optical flows. Especially, a gimbal mechanism is introduced to reduce the influence on the optical flow calculation by pitch motion of the Manta robot. Several experiments are conducted to demonstrate the usefulness of the proposed method.

  11. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    PubMed

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  12. Factors Affecting Prostate Volume Estimation in Computed Tomography Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Cheng-Hsiu; Wang, Shyh-Jen; Institute of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan

    2011-04-01

    The aim of this study was to investigate how apex-localizing methods and the computed tomography (CT) slice thickness affected the CT-based prostate volume estimation. Twenty-eight volunteers underwent evaluations of prostate volume by CT, where the contour segmentations were performed by three observers. The bottom of ischial tuberosities (ITs) and the bulb of the penis were used as reference positions to locate the apex, and the distances to the apex were recorded as 1.3 and 2.0 cm, respectively. Interobserver variations to locate ITs and the bulb of the penis were, on average, 0.10 cm (range 0.03-0.38 cm) and 0.30 cm (rangemore » 0.00-0.98 cm), respectively. The range of CT slice thickness varied from 0.08-0.48 cm and was adopted to examine the influence of the variation on volume estimation. The volume deviation from the reference case (0.08 cm), which increases in tandem with the slice thickness, was within {+-} 3 cm{sup 3}, regardless of the adopted apex-locating reference positions. In addition, the maximum error of apex identification was 1.5 times of slice thickness. Finally, based on the precise CT films and the methods of apex identification, there were strong positive correlation coefficients for the estimated prostate volume by CT and the transabdominal ultrasonography, as found in the present study (r > 0.87; p < 0.0001), and this was confirmed by Bland-Altman analysis. These results will help to identify factors that affect prostate volume calculation and to contribute to the improved estimation of the prostate volume based on CT images.« less

  13. Water Residence Time estimation by 1D deconvolution in the form of a l2 -regularized inverse problem with smoothness, positivity and causality constraints

    NASA Astrophysics Data System (ADS)

    Meresescu, Alina G.; Kowalski, Matthieu; Schmidt, Frédéric; Landais, François

    2018-06-01

    The Water Residence Time distribution is the equivalent of the impulse response of a linear system allowing the propagation of water through a medium, e.g. the propagation of rain water from the top of the mountain towards the aquifers. We consider the output aquifer levels as the convolution between the input rain levels and the Water Residence Time, starting with an initial aquifer base level. The estimation of Water Residence Time is important for a better understanding of hydro-bio-geochemical processes and mixing properties of wetlands used as filters in ecological applications, as well as protecting fresh water sources for wells from pollutants. Common methods of estimating the Water Residence Time focus on cross-correlation, parameter fitting and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution, regularized, non-parametric inverse problem algorithm that enforces smoothness and uses constraints of causality and positivity to estimate the Water Residence Time curve. Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime per test case; compared to the popular and fast cross-correlation method, it produces a more precise Water Residence Time curve even in the case of noisy measurements. The algorithm needs only one regularization parameter to balance between smoothness of the Water Residence Time and accuracy of the reconstruction. We propose an approach on how to automatically find a suitable value of the regularization parameter from the input data only. Tests on real data illustrate the potential of this method to analyze hydrological datasets.

  14. Semiblind channel estimation for MIMO-OFDM systems

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Sheng; Song, Jyu-Han

    2012-12-01

    This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.

  15. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulatingmore » women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made using the method developed in the current study.« less

  16. A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2003-01-01

    Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.

  17. Probabilistic Tractography of the Cranial Nerves in Vestibular Schwannoma.

    PubMed

    Zolal, Amir; Juratli, Tareq A; Podlesek, Dino; Rieger, Bernhard; Kitzler, Hagen H; Linn, Jennifer; Schackert, Gabriele; Sobottka, Stephan B

    2017-11-01

    Multiple recent studies have reported on diffusion tensor-based fiber tracking of cranial nerves in vestibular schwannoma, with conflicting results as to the accuracy of the method and the occurrence of cochlear nerve depiction. Probabilistic nontensor-based tractography might offer advantages in terms of better extraction of directional information from the underlying data in cranial nerves, which are of subvoxel size. Twenty-one patients with large vestibular schwannomas were recruited. The probabilistic tracking was run preoperatively and the position of the potential depictions of the facial and cochlear nerves was estimated postoperatively by 3 independent observers in a blinded fashion. The true position of the nerve was determined intraoperatively by the surgeon. Thereafter, the imaging-based estimated position was compared with the intraoperatively determined position. Tumor size, cystic appearance, and postoperative House-Brackmann score were analyzed with regard to the accuracy of the depiction of the nerves. The probabilistic tracking showed a connection that correlated to the position of the facial nerve in 81% of the cases and to the position of the cochlear nerve in 33% of the cases. Altogether, the resulting depiction did not correspond to the intraoperative position of any of the nerves in 3 cases. In a majority of cases, the position of the facial nerve, but not of the cochlear nerve, could be estimated by evaluation of the probabilistic tracking results. However, false depictions not corresponding to any nerve do occur and cannot be discerned as such from the image only. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Estimating carnivoran diets using a combination of carcass observations and scats from GPS clusters

    PubMed Central

    Tambling, C.J.; Laurence, S.D.; Bellan, S.E.; Cameron, E.Z.; du Toit, J.T.; Getz, W.M.

    2011-01-01

    Scat analysis is one of the most frequently used methods to assess carnivoran diets and Global Positioning System (GPS) cluster methods are increasingly being used to locate feeding sites for large carnivorans. However, both methods have inherent biases that limit their use. GPS methods to locate kill sites are biased towards large carcasses, while scat analysis over-estimates the biomass consumed from smaller prey. We combined carcass observations and scats collected along known movement routes, assessed using GPS data from four African lion (Panthera leo) prides in the Kruger National Park, South Africa, to determine how a combination of these two datasets change diet estimates. As expected, using carcasses alone under-estimated the number of feeding events on small species, primarily impala (Aepyceros melampus) and warthog (Phacochoerus africanus), in our case by more than 50% and thus significantly under-estimated the biomass consumed per pride per day in comparison to when the diet was assessed using carcass observations alone. We show that an approach that supplements carcass observations with scats that enables the identification of potentially missed feeding events increases the estimates of food intake rates for large carnivorans, with possible ramifications for predator-prey interaction studies dealing with biomass intake rate. PMID:22408290

  19. Using a motion capture system for spatial localization of EEG electrodes

    PubMed Central

    Reis, Pedro M. R.; Lochmann, Matthias

    2015-01-01

    Electroencephalography (EEG) is often used in source analysis studies, in which the locations of cortex regions responsible for a signal are determined. For this to be possible, accurate positions of the electrodes at the scalp surface must be determined, otherwise errors in the source estimation will occur. Today, several methods for acquiring these positions exist but they are often not satisfyingly accurate or take a long time to perform. Therefore, in this paper we describe a method capable of determining the positions accurately and fast. This method uses an infrared light motion capture system (IR-MOCAP) with 8 cameras arranged around a human participant. It acquires 3D coordinates of each electrode and automatically labels them. Each electrode has a small reflector on top of it thus allowing its detection by the cameras. We tested the accuracy of the presented method by acquiring the electrodes positions on a rigid sphere model and comparing these with measurements from computer tomography (CT). The average Euclidean distance between the sphere model CT measurements and the presented method was 1.23 mm with an average standard deviation of 0.51 mm. We also tested the method with a human participant. The measurement was quickly performed and all positions were captured. These results tell that, with this method, it is possible to acquire electrode positions with minimal error and little time effort for the study participants and investigators. PMID:25941468

  20. Statistical processing of large image sequences.

    PubMed

    Khellah, F; Fieguth, P; Murray, M J; Allen, M

    2005-01-01

    The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. In this paper, we present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 x 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.

  1. The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC.

    PubMed

    Inghelbrecht, Veronique; Verhaevert, Jo; van Hecke, Tanja; Rogier, Hendrik

    2014-11-11

    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case.

  2. Reliability of functional and predictive methods to estimate the hip joint centre in human motion analysis in healthy adults.

    PubMed

    Kainz, Hans; Hajek, Martin; Modenese, Luca; Saxby, David J; Lloyd, David G; Carty, Christopher P

    2017-03-01

    In human motion analysis predictive or functional methods are used to estimate the location of the hip joint centre (HJC). It has been shown that the Harrington regression equations (HRE) and geometric sphere fit (GSF) method are the most accurate predictive and functional methods, respectively. To date, the comparative reliability of both approaches has not been assessed. The aims of this study were to (1) compare the reliability of the HRE and the GSF methods, (2) analyse the impact of the number of thigh markers used in the GSF method on the reliability, (3) evaluate how alterations to the movements that comprise the functional trials impact HJC estimations using the GSF method, and (4) assess the influence of the initial guess in the GSF method on the HJC estimation. Fourteen healthy adults were tested on two occasions using a three-dimensional motion capturing system. Skin surface marker positions were acquired while participants performed quite stance, perturbed and non-perturbed functional trials, and walking trials. Results showed that the HRE were more reliable in locating the HJC than the GSF method. However, comparison of inter-session hip kinematics during gait did not show any significant difference between the approaches. Different initial guesses in the GSF method did not result in significant differences in the final HJC location. The GSF method was sensitive to the functional trial performance and therefore it is important to standardize the functional trial performance to ensure a repeatable estimate of the HJC when using the GSF method. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prevalence and trends of infection with Mycobacterium tuberculosis in Djibouti, testing an alternative method.

    PubMed

    Trébucq, A; Guérin, N; Ali Ismael, H; Bernatas, J J; Sèvre, J P; Rieder, H L

    2005-10-01

    Djibouti, 1994 and 2001. To estimate the prevalence of tuberculosis (TB) and average annual risk of TB infection (ARTI) and trends, and to test a new method for calculations. Tuberculin surveys among schoolchildren and sputum smear-positive TB patients. Prevalence of infection was calculated using cut-off points, the mirror image technique, mixture analysis, and a new method based on the operating characteristics of the tuberculin test. Test sensitivity was derived from tuberculin reactions among TB patients and test specificity from a comparison of reaction size distributions among children with and without a BCG scar. The ARTI was estimated to lie between 2.6% and 3.1%, with no significant changes between 1994 and 2001. The close match of the distributions between children tested in 1994 and patients justifies the utilisation of the latter to determine test sensitivity. This new method gave very consistent estimates of prevalence of infection for any induration for values between 15 and 20 mm. Specificity was successfully determined for 1994, but not for 2001. Mixture analysis confirmed the estimates obtained with the new method. Djibouti has a high ARTI, and no apparent change over the observation time was found. Using operating test characteristics to estimate prevalence of infection looks promising.

  4. Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes

    PubMed Central

    Li, Degui; Li, Runze

    2016-01-01

    In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894

  5. Applicability of single-camera photogrammetry to determine body dimensions of pinnipeds: Galapagos sea lions as an example.

    PubMed

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.

  6. Applicability of Single-Camera Photogrammetry to Determine Body Dimensions of Pinnipeds: Galapagos Sea Lions as an Example

    PubMed Central

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal’s body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance. PMID:24987983

  7. Verification of rapid method for estimation of added food colorant type in boiled sausages based on measurement of cross section color

    NASA Astrophysics Data System (ADS)

    Jovanović, J.; Petronijević, R. B.; Lukić, M.; Karan, D.; Parunović, N.; Branković-Lazić, I.

    2017-09-01

    During the previous development of a chemometric method for estimating the amount of added colorant in meat products, it was noticed that the natural colorant most commonly added to boiled sausages, E 120, has different CIE-LAB behavior compared to artificial colors that are used for the same purpose. This has opened the possibility of transforming the developed method into a method for identifying the addition of natural or synthetic colorants in boiled sausages based on the measurement of the color of the cross-section. After recalibration of the CIE-LAB method using linear discriminant analysis, verification was performed on 76 boiled sausages, of either frankfurters or Parisian sausage types. The accuracy and reliability of the classification was confirmed by comparison with the standard HPLC method. Results showed that the LDA + CIE-LAB method can be applied with high accuracy, 93.42 %, to estimate food color type in boiled sausages. Natural orange colors can give false positive results. Pigments from spice mixtures had no significant effect on CIE-LAB results.

  8. Evaluation of the accuracy of Demirjian method for estimation of dental age among 6-12 years of children in Navi Mumbai: A radiographic study.

    PubMed

    Hegde, Rahul J; Khare, Sumedh Suhas; Saraf, Tanvi A; Trivedi, Sonal; Naidu, Sonal

    2015-01-01

    Dental formation is superior to eruption as a method of dental age (DA) assessment. Eruption is only a brief occurrence, whereas formation may be related at different chronologic age levels, thereby providing a precise index for determining DA. The study was designed to determine the nature of inter-relationship between chronologic and DA. Age estimation depending upon tooth formation was done by Demirjian method and accuracy of Demirjian method was also evaluated. The sample for the study consisted of 197 children of Navi Mumbai. Significant positive correlation was found between chronologic age and DA that is, (r = 0.995), (P < 0.0001) for boys and (r = 0.995), (P < 0.0001) for girls. When age estimation was done by Demirjian method, mean the difference between true age (chronologic age) and assessed (DA) was 2 days for boys and 37 days for girls. Demirjian method showed high accuracy when applied to Navi Mumbai (Maharashtra - India) population. Demirjian method showed high accuracy when applied to Navi Mumbai (Maharashtra - India) population.

  9. An adaptive threshold detector and channel parameter estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Mukai, R.; Yan, T. -Y.

    2001-01-01

    This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.

  10. Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring

    NASA Astrophysics Data System (ADS)

    Watson, Mara Mae

    An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test solutions containing at least 1.5 Bq/L of 99T c. For activity concentrations less than 1.5 Bq/L, the Gaussian SR method required as much as 40.8 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. Both SR methods were able to consistently detect test solutions containing 0.1 Bq/L, unlike the Shewhart 3-sigma and CUSUM methods. Although the Poisson SR method required as much as 178 mL less solution to exceed the control limit than the Gaussian SR method, the Gaussian SR false positive of 0% was much lower than the Poisson SR false positive rate of 1.14%. A lower false positive rate made it easier to differentiate between a false positive and an increase in mean count rate caused by activity accumulating on the resin. The SR procedure is thus the ideal tool for low-level on-line radiation monitoring using extractive scintillating resin, because it needed less volume in most cases to detect an upward shift in the mean count rate than the Shewhart 3-sigma and CUSUM methods and consistently detected lower activity concentrations. The desired results for the monitoring scheme, however, need to be considered prior to choosing between the Poisson and Gaussian distribution to estimate the likelihood ratio, because each was advantageous under different circumstances. Once the control limit was exceeded, activity concentrations were estimated from the SR control chart using the slope of the control chart on a semi-logarithmic plot. Five of nine test solutions for the Poisson SR control chart produced concentration estimates within 30% of the actual value, but the worst case was 263.2% different than the actual value. The estimations for the Gaussian SR control chart were much more precise, with six of eight solutions producing estimates within 30%. Although the activity concentrations estimations were only mediocre for the Poisson SR control chart and satisfactory for the Gaussian SR control chart, these results demonstrate that a relationship exists between activity concentration and the SR control chart magnitude that can be exploited to determine the activity concentration from the SR control chart. More complex methods should be investigated to improve activity concentration estimations from the SR control charts.

  11. Accuracy and Landmark Error Calculation Using Cone-Beam Computed Tomography–Generated Cephalograms

    PubMed Central

    Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Heulfe, Inam; Harmon, Eric T.; Zhu, Hongtu; Proffit, William R.

    2010-01-01

    Objective To evaluate systematic differences in landmark position between cone-beam computed tomography (CBCT)–generated cephalograms and conventional digital cephalograms and to estimate how much variability should be taken into account when both modalities are used within the same longitudinal study. Materials and Methods Landmarks on homologous cone-beam computed tomographic–generated cephalograms and conventional digital cephalograms of 46 patients were digitized, registered, and compared via the Hotelling T2 test. Results There were no systematic differences between modalities in the position of most landmarks. Three landmarks showed statistically significant differences but did not reach clinical significance. A method for error calculation while combining both modalities in the same individual is presented. Conclusion In a longitudinal follow-up for assessment of treatment outcomes and growth of one individual, the error due to the combination of the two modalities might be larger than previously estimated. PMID:19905853

  12. Permissible Home Range Estimation (PHRE) in restricted habitats: A new algorithm and an evaluation for sea otters

    USGS Publications Warehouse

    Tarjan, Lily M; Tinker, M. Tim

    2016-01-01

    Parametric and nonparametric kernel methods dominate studies of animal home ranges and space use. Most existing methods are unable to incorporate information about the underlying physical environment, leading to poor performance in excluding areas that are not used. Using radio-telemetry data from sea otters, we developed and evaluated a new algorithm for estimating home ranges (hereafter Permissible Home Range Estimation, or “PHRE”) that reflects habitat suitability. We began by transforming sighting locations into relevant landscape features (for sea otters, coastal position and distance from shore). Then, we generated a bivariate kernel probability density function in landscape space and back-transformed this to geographic space in order to define a permissible home range. Compared to two commonly used home range estimation methods, kernel densities and local convex hulls, PHRE better excluded unused areas and required a smaller sample size. Our PHRE method is applicable to species whose ranges are restricted by complex physical boundaries or environmental gradients and will improve understanding of habitat-use requirements and, ultimately, aid in conservation efforts.

  13. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    PubMed

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  14. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    PubMed Central

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  15. Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox

    PubMed Central

    Pernet, Cyril R.; Wilcox, Rand; Rousselet, Guillaume A.

    2012-01-01

    Pearson’s correlation measures the strength of the association between two variables. The technique is, however, restricted to linear associations and is overly sensitive to outliers. Indeed, a single outlier can result in a highly inaccurate summary of the data. Yet, it remains the most commonly used measure of association in psychology research. Here we describe a free Matlab(R) based toolbox (http://sourceforge.net/projects/robustcorrtool/) that computes robust measures of association between two or more random variables: the percentage-bend correlation and skipped-correlations. After illustrating how to use the toolbox, we show that robust methods, where outliers are down weighted or removed and accounted for in significance testing, provide better estimates of the true association with accurate false positive control and without loss of power. The different correlation methods were tested with normal data and normal data contaminated with marginal or bivariate outliers. We report estimates of effect size, false positive rate and power, and advise on which technique to use depending on the data at hand. PMID:23335907

  16. Robust correlation analyses: false positive and power validation using a new open source matlab toolbox.

    PubMed

    Pernet, Cyril R; Wilcox, Rand; Rousselet, Guillaume A

    2012-01-01

    Pearson's correlation measures the strength of the association between two variables. The technique is, however, restricted to linear associations and is overly sensitive to outliers. Indeed, a single outlier can result in a highly inaccurate summary of the data. Yet, it remains the most commonly used measure of association in psychology research. Here we describe a free Matlab((R)) based toolbox (http://sourceforge.net/projects/robustcorrtool/) that computes robust measures of association between two or more random variables: the percentage-bend correlation and skipped-correlations. After illustrating how to use the toolbox, we show that robust methods, where outliers are down weighted or removed and accounted for in significance testing, provide better estimates of the true association with accurate false positive control and without loss of power. The different correlation methods were tested with normal data and normal data contaminated with marginal or bivariate outliers. We report estimates of effect size, false positive rate and power, and advise on which technique to use depending on the data at hand.

  17. Axisymmetric analysis of a tube-type acoustic levitator by a finite element method.

    PubMed

    Hatano, H

    1994-01-01

    A finite element approach was taken for the study of the sound field and positioning force in a tube-type acoustic levitator. An axisymmetric model, where a rigid sphere is suspended on the tube axis, was introduced to model a cylindrical chamber of a levitation tube furnace. Distributions of velocity potential, magnitudes of positioning force, and resonance frequency shifts of the chamber due to the presence of the sphere were numerically estimated in relation to the sphere's position and diameter. Experiments were additionally made to compare with the simulation. The finite element method proved to be a useful tool for analyzing and designing the tube-type levitator.

  18. A weak Galerkin least-squares finite element method for div-curl systems

    NASA Astrophysics Data System (ADS)

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  19. A novel Bayesian respiratory motion model to estimate and resolve uncertainty in image-guided cardiac interventions.

    PubMed

    Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P

    2013-05-01

    In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Impact of Positive and Negative Ecstasy-Related Information on Ecstasy Use among College Students: Results of a Longitudinal Study

    ERIC Educational Resources Information Center

    Vincent, Kathryn B.; Caldeira, Kimberly M.; O'Grady, Kevin E.; Wish, Eric D.; Arria, Amelia M.

    2010-01-01

    Aims: To: (1) estimate the proportion of students exposed to specific types of information regarding the positive and negative effects of ecstasy, (2) test models that quantified the relationship between exposure to these messages and subsequent ecstasy use, controlling for peer drug use and sensation-seeking. Methods: As part of the College Life…

  1. Real-time, autonomous precise satellite orbit determination using the global positioning system

    NASA Astrophysics Data System (ADS)

    Goldstein, David Ben

    2000-10-01

    The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS/MET data and 10.8% on SA free TOPEX data. Position estimates with RSS errors below I meter are now achieved using SA free TOPEX data. DRVID causes an increase in computational burden while GAAF and DMC reduce computational burden. The net effect of applying GAAF, DRVID and DMC is an improvement in GEODE's accuracy/precision without an increase in computational burden.

  2. Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT.

    PubMed

    Aschenbrenner, Katharina P; Guthier, Christian V; Lyatskaya, Yulia; Boda-Heggemann, Judit; Wenz, Frederik; Hesser, Jürgen W

    2017-09-01

    In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the patient is negligible. Copyright © 2017. Published by Elsevier GmbH.

  3. Comparing the performance of geostatistical models with additional information from covariates for sewage plume characterization.

    PubMed

    Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia

    2015-04-01

    In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

  4. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  5. Sun-Direction Estimation Using a Partially Underdetermined Set of Coarse Sun Sensors

    NASA Astrophysics Data System (ADS)

    O'Keefe, Stephen A.; Schaub, Hanspeter

    2015-09-01

    A comparison of different methods to estimate the sun-direction vector using a partially underdetermined set of cosine-type coarse sun sensors (CSS), while simultaneously controlling the attitude towards a power-positive orientation, is presented. CSS are commonly used in performing power-positive sun-pointing and are attractive due to their relative inexpensiveness, small size, and reduced power consumption. For this study only CSS and rate gyro measurements are available, and the sensor configuration does not provide global triple coverage required for a unique sun-direction calculation. The methods investigated include a vector average method, a combination of least squares and minimum norm criteria, and an extended Kalman filter approach. All cases are formulated such that precise ground calibration of the CSS is not required. Despite significant biases in the state dynamics and measurement models, Monte Carlo simulations show that an extended Kalman filter approach, despite the underdetermined sensor coverage, can provide degree-level accuracy of the sun-direction vector both with and without a control algorithm running simultaneously. If no rate gyro measurements are available, and rates are partially estimated from CSS, the EKF performance degrades as expected, but is still able to achieve better than 10∘ accuracy using only CSS measurements.

  6. Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images

    PubMed Central

    Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.

    2014-01-01

    Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods, which used inappropriate large valued parameters. Results also confirm that the proposed method and its variants achieve high detection accuracies ( 98 mean F-measure) irrespective of the large variations of filter parameters and noise levels. PMID:25020042

  7. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    PubMed Central

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850

  8. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis.

    PubMed

    Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A

    2011-08-01

    To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.

  9. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants

    PubMed Central

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants. PMID:27304876

  10. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    PubMed

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  11. Application of a Method of Estimating DIF for Polytomous Test Items.

    ERIC Educational Resources Information Center

    Camilli, Gregory; Congdon, Peter

    1999-01-01

    Demonstrates a method for studying differential item functioning (DIF) that can be used with dichotomous or polytomous items and that is valid for data that follow a partial credit Item Response Theory model. A simulation study shows that positively biased Type I error rates are in accord with results from previous studies. (SLD)

  12. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  13. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

    PubMed

    Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa

    2010-01-21

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

  14. Needle position estimation from sub-sampled k-space data for MRI-guided interventions

    NASA Astrophysics Data System (ADS)

    Schmitt, Sebastian; Choli, Morwan; Overhoff, Heinrich M.

    2015-03-01

    MRI-guided interventions have gained much interest. They profit from intervention synchronous data acquisition and image visualization. Due to long data acquisition durations, ergonomic limitations may occur. For a trueFISP MRI-data acquisition sequence, a time sparing sub-sampling strategy has been developed that is adapted to amagnetic needle detection. A symmetrical and contrast rich susceptibility needle artifact, i.e. an approximately rectangular gray scale profile is assumed. The 1-D-Fourier transformed of a rectangular function is a sinc-function. Its periodicity is exploited by sampling only along a few orthogonal trajectories in k-space. Because a needle moves during intervention, its tip region resembles a rectangle in a time-difference image that is reconstructed from such sub-sampled k-spaces acquired at different time stamps. In different phantom experiments, a needle was pushed forward along a reference trajectory, which was determined from a needle holders geometric parameters. In addition, the trajectory of the needle tip was estimated by the method described above. Only ca. 4 to 5% of the entire k-space data was used for needle tip estimation. The misalignment of needle orientation and needle tip position, i.e. the differences between reference and estimated values, is small and even in its worst case less than 2 mm. The results show that the method is applicable under nearly real conditions. Next steps are addressed to the validation of the method for clinical data.

  15. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  16. Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen

    2018-05-01

    Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.

  17. A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms.

    PubMed

    Jafari Tadi, Mojtaba; Lehtonen, Eero; Hurnanen, Tero; Koskinen, Juho; Eriksson, Jonas; Pänkäälä, Mikko; Teräs, Mika; Koivisto, Tero

    2016-11-01

    Heart rate monitoring helps in assessing the functionality and condition of the cardiovascular system. We present a new real-time applicable approach for estimating beat-to-beat time intervals and heart rate in seismocardiograms acquired from a tri-axial microelectromechanical accelerometer. Seismocardiography (SCG) is a non-invasive method for heart monitoring which measures the mechanical activity of the heart. Measuring true beat-to-beat time intervals from SCG could be used for monitoring of the heart rhythm, for heart rate variability analysis and for many other clinical applications. In this paper we present the Hilbert adaptive beat identification technique for the detection of heartbeat timings and inter-beat time intervals in SCG from healthy volunteers in three different positions, i.e. supine, left and right recumbent. Our method is electrocardiogram (ECG) independent, as it does not require any ECG fiducial points to estimate the beat-to-beat intervals. The performance of the algorithm was tested against standard ECG measurements. The average true positive rate, positive prediction value and detection error rate for the different positions were, respectively, supine (95.8%, 96.0% and ≃0.6%), left (99.3%, 98.8% and ≃0.001%) and right (99.53%, 99.3% and ≃0.01%). High correlation and agreement was observed between SCG and ECG inter-beat intervals (r  >  0.99) for all positions, which highlights the capability of the algorithm for SCG heart monitoring from different positions. Additionally, we demonstrate the applicability of the proposed method in smartphone based SCG. In conclusion, the proposed algorithm can be used for real-time continuous unobtrusive cardiac monitoring, smartphone cardiography, and in wearable devices aimed at health and well-being applications.

  18. Indoor Map Aided Wi-Fi Integrated Lbs on Smartphone Platforms

    NASA Astrophysics Data System (ADS)

    Yu, C.; El-Sheimy, N.

    2017-09-01

    In this research, an indoor map aided INS/Wi-Fi integrated location based services (LBS) applications is proposed and implemented on smartphone platforms. Indoor map information together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value from Wi-Fi are collected to obtain an accurate, continuous, and low-cost position solution. The main challenge of this research is to make effective use of various measurements that complement each other without increasing the computational burden of the system. The integrated system in this paper includes three modules: INS, Wi-Fi (if signal available) and indoor maps. A cascade structure Particle/Kalman filter framework is applied to combine the different modules. Firstly, INS position and Wi-Fi fingerprint position integrated through Kalman filter for estimating positioning information. Then, indoor map information is applied to correct the error of INS/Wi-Fi estimated position through particle filter. Indoor tests show that the proposed method can effectively reduce the accumulation positioning errors of stand-alone INS systems, and provide stable, continuous and reliable indoor location service.

  19. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    PubMed

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator thickness. If the readout pitch were ideally 0 and practically 3 mm, a full-width at half-maximum (FWHM) of 0.348 and 1.92 mm was achievable with a 10-mm-thick PbF 2 crystal, respectively. Furthermore, first-order correlation could be observed between the primary principal component and the true DOI. To obtain a coincidence timing resolution better than 100-ps FWHM with a 20-mm-thick PbF 2 crystal, a photodetector with SPTR of better than σ = 30 ps was necessary. From these results, the improvement of SPTR allows us to achieve CTR better than 100-ps FWHM, even in the case where a 20-mm-thick radiator is used. Our proposed detector has the potential to estimate the 3D interaction position of γ-rays in the radiator, using only time and space information of Cherenkov photons. © 2018 American Association of Physicists in Medicine.

  20. Rapid assessment of rice seed availability for wildlife in harvested fields

    USGS Publications Warehouse

    Halstead, B.J.; Miller, M.R.; Casazza, Michael L.; Coates, P.S.; Farinha, M.A.; Benjamin, Gustafson K.; Yee, J.L.; Fleskes, J.P.

    2011-01-01

    Rice seed remaining in commercial fields after harvest (waste rice) is a critical food resource for wintering waterfowl in rice-growing regions of North America. Accurate and precise estimates of the seed mass density of waste rice are essential for planning waterfowl wintering habitat extents and management. In the Sacramento Valley of California, USA, the existing method for obtaining estimates of availability of waste rice in harvested fields produces relatively precise estimates, but the labor-, time-, and machineryintensive process is not practical for routine assessments needed to examine long-term trends in waste rice availability. We tested several experimental methods designed to rapidly derive estimates that would not be burdened with disadvantages of the existing method. We first conducted a simulation study of the efficiency of each method and then conducted field tests. For each approach, methods did not vary in root mean squared error, although some methods did exhibit bias for both simulations and field tests. Methods also varied substantially in the time to conduct each sample and in the number of samples required to detect a standard trend. Overall, modified line-intercept methods performed well for estimating the density of rice seeds. Waste rice in the straw, although not measured directly, can be accounted for by a positive relationship with density of rice on the ground. Rapid assessment of food availability is a useful tool to help waterfowl managers establish and implement wetland restoration and agricultural habitat-enhancement goals for wintering waterfowl. ?? 2011 The Wildlife Society.

  1. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort.

    PubMed

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai

    2017-01-13

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

  2. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort †

    PubMed Central

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai

    2017-01-01

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773

  3. Particle Pollution Estimation Based on Image Analysis

    PubMed Central

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction. PMID:26828757

  4. Particle Pollution Estimation Based on Image Analysis.

    PubMed

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

  5. Comparing interval estimates for small sample ordinal CFA models

    PubMed Central

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002

  6. Comparing interval estimates for small sample ordinal CFA models.

    PubMed

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.

  7. Dependence of paracentric inversion rate on tract length.

    PubMed

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-04-03

    We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted.

  8. Dependence of paracentric inversion rate on tract length

    PubMed Central

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-01-01

    Background We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. Results We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. Conclusion The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted. PMID:17407601

  9. A resampling strategy based on bootstrap to reduce the effect of large blunders in GPS absolute positioning

    NASA Astrophysics Data System (ADS)

    Angrisano, Antonio; Maratea, Antonio; Gaglione, Salvatore

    2018-01-01

    In the absence of obstacles, a GPS device is generally able to provide continuous and accurate estimates of position, while in urban scenarios buildings can generate multipath and echo-only phenomena that severely affect the continuity and the accuracy of the provided estimates. Receiver autonomous integrity monitoring (RAIM) techniques are able to reduce the negative consequences of large blunders in urban scenarios, but require both a good redundancy and a low contamination to be effective. In this paper a resampling strategy based on bootstrap is proposed as an alternative to RAIM, in order to estimate accurately position in case of low redundancy and multiple blunders: starting with the pseudorange measurement model, at each epoch the available measurements are bootstrapped—that is random sampled with replacement—and the generated a posteriori empirical distribution is exploited to derive the final position. Compared to standard bootstrap, in this paper the sampling probabilities are not uniform, but vary according to an indicator of the measurement quality. The proposed method has been compared with two different RAIM techniques on a data set collected in critical conditions, resulting in a clear improvement on all considered figures of merit.

  10. Global and System-Specific Resting-State fMRI Fluctuations Are Uncorrelated: Principal Component Analysis Reveals Anti-Correlated Networks

    PubMed Central

    Carbonell, Felix; Bellec, Pierre

    2011-01-01

    Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074

  11. Grouping methods for estimating the prevalences of rare traits from complex survey data that preserve confidentiality of respondents.

    PubMed

    Hyun, Noorie; Gastwirth, Joseph L; Graubard, Barry I

    2018-03-26

    Originally, 2-stage group testing was developed for efficiently screening individuals for a disease. In response to the HIV/AIDS epidemic, 1-stage group testing was adopted for estimating prevalences of a single or multiple traits from testing groups of size q, so individuals were not tested. This paper extends the methodology of 1-stage group testing to surveys with sample weighted complex multistage-cluster designs. Sample weighted-generalized estimating equations are used to estimate the prevalences of categorical traits while accounting for the error rates inherent in the tests. Two difficulties arise when using group testing in complex samples: (1) How does one weight the results of the test on each group as the sample weights will differ among observations in the same group. Furthermore, if the sample weights are related to positivity of the diagnostic test, then group-level weighting is needed to reduce bias in the prevalence estimation; (2) How does one form groups that will allow accurate estimation of the standard errors of prevalence estimates under multistage-cluster sampling allowing for intracluster correlation of the test results. We study 5 different grouping methods to address the weighting and cluster sampling aspects of complex designed samples. Finite sample properties of the estimators of prevalences, variances, and confidence interval coverage for these grouping methods are studied using simulations. National Health and Nutrition Examination Survey data are used to illustrate the methods. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Estimation of Premature Deaths From Lack of Access to Anti-HER2 Therapy for Advanced Breast Cancer in the Brazilian Public Health System

    PubMed Central

    Debiasi, Márcio; Reinert, Tomás; Kaliks, Rafael; Amorim, Gilberto; Caleffi, Maira; Sampaio, Carlos; Fernandes, Gustavo dos Santos

    2017-01-01

    Purpose Patients with human epidermal growth factor receptor 2 (HER2) -positive metastatic tumors treated in the public health system in Brazil do not have access to trastuzumab. This study aimed to estimate the impact of the lack of access to anti-HER2 therapies on the mortality of these patients. Methods On the basis of published data, the number of patients with HER2-positive advanced breast cancer in 2016 who should receive anti-HER2 targeted therapy was estimated. Three different treatment groups were considered for this hypothetical cohort: chemotherapy alone, chemotherapy plus trastuzumab, and chemotherapy plus trastuzumab and pertuzumab. The number of patients alive after 2 years of follow-up was estimated on the basis of the efficacy results of the pivotal trials considering these interventions. Results It was calculated that 2,008 women will be diagnosed with advanced HER2-positive breast cancer in Brazil in 2016. It was estimated that only 808 women would be alive in 2018 if they receive only chemotherapy (which is the treatment offered by the public health system). On the other hand, the bar rises to 1,408 women alive in 2018 if they receive chemotherapy plus trastuzumab and 1,576 women alive in 2018 if they receive the gold standard of chemotherapy plus trastuzumab and pertuzumab. Conclusion Trastuzumab is included in the WHO’s list of essential medications, but the Brazilian public health system does not yet provide this treatment to its population with advanced disease. The introduction of trastuzumab and pertuzumab would have a positive effect, preventing premature deaths in women with metastatic HER2-positive breast cancer in Brazil. PMID:28717761

  13. Estimation of the peak entrance surface air kerma for patients undergoing computed tomography-guided procedures.

    PubMed

    Avilés Lucas, P; Dance, D R; Castellano, I A; Vañó, E

    2005-01-01

    The purpose of this work was to develop a method for estimating the patient peak entrance surface air kerma from measurements using a pencil ionisation chamber on dosimetry phantoms exposed in a computed tomography (CT) scanner. The method described is especially relevant for CT fluoroscopy and CT perfusion procedures where the peak entrance surface air kerma is the risk-related quantity of primary concern. Pencil ionisation chamber measurements include scattered radiation, which is outside the primary radiation field, and that must be subtracted in order to derive the peak entrance surface air kerma. A Monte Carlo computer model has therefore been used to calculate correction factors, which may be applied to measurements of the CT dose index obtained using a pencil ionisation chamber in order to estimate the peak entrance surface air kerma. The calculations were made for beam widths of 5, 7, 10 and 20 mm, for seven positions of the phantom, and for the geometry of a GE HiSpeed CT/i scanner. The program was validated by comparing measurements and calculations of CTDI for various vertical positions of the phantom and by directly estimating the peak ESAK using the program. Both validations showed agreement within statistical uncertainties (standard deviation of 2.3% or less). For the GE machine, the correction factors vary by approximately 10% with slice width for a fixed phantom position, being largest for the 20 mm beam width, and at that beam width range from 0.87 when the phantom surface is at the isocentre to 1.23 when it is displaced vertically by 24 cm.

  14. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    PubMed

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  15. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    PubMed Central

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  16. Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication

    PubMed Central

    Chen, Chien-Sheng

    2015-01-01

    To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems. PMID:25569755

  17. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    PubMed Central

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-01-01

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758

  18. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Saunier, Olivier; Mathieu, Anne

    2012-03-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%-20%, and 1.9 - 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%-10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.

  19. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples

    USGS Publications Warehouse

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results from traditional field methods with eDNA methods for two amphibians in 13 streams in central Idaho, USA. We also evaluated three water collection protocols and the influence of sampling location, time of day, and distance from animals on eDNA concentration in the water. We found no difference in detection or amount of eDNA among water collection protocols. eDNA methods had slightly higher detection rates than traditional field methods, particularly when species occurred at low densities. eDNA concentration was positively related to field-measured density, biomass, and proportion of transects occupied. Precision of eDNA-based abundance estimates increased with the amount of eDNA in the water and the number of replicate subsamples collected. eDNA concentration did not vary significantly with sample location in the stream, time of day, or distance downstream from animals. Our results further advance the implementation of eDNA methods for monitoring aquatic vertebrates in stream habitats.

  20. A path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales.

    PubMed

    Wensveen, Paul J; Thomas, Len; Miller, Patrick J O

    2015-01-01

    Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed information, but without additional positional data this method results in uncertainty that grows with time. Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time under water. We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error measurements made during calibrations. High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied most by distance to the whale. By systematically accounting for the observation errors in the position fixes, our model provides a quantitative estimate of location uncertainty that can be appropriately incorporated into analyses of animal movement. This generic method has potential application for a wide range of marine animal species and data recording systems.

  1. Gaussian process inference for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.

    PubMed

    Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M

    2012-01-01

    In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.

  2. A Simple Visual Estimation of Food Consumption in Carnivores

    PubMed Central

    Potgieter, Katherine R.; Davies-Mostert, Harriet T.

    2012-01-01

    Belly-size ratings or belly scores are frequently used in carnivore research as a method of rating whether and how much an animal has eaten. This method provides only a rough ordinal measure of fullness and does not quantify the amount of food an animal has consumed. Here we present a method for estimating the amount of meat consumed by individual African wild dogs Lycaon pictus. We fed 0.5 kg pieces of meat to wild dogs being temporarily held in enclosures and measured the corresponding change in belly size using lateral side photographs taken perpendicular to the animal. The ratio of belly depth to body length was positively related to the mass of meat consumed and provided a useful estimate of the consumption. Similar relationships could be calculated to determine amounts consumed by other carnivores, thus providing a useful tool in the study of feeding behaviour. PMID:22567086

  3. Accuracy of least-squares methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bochev, Pavel B.; Gunzburger, Max D.

    1993-01-01

    Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations.

  4. Multiple-hit parameter estimation in monolithic detectors.

    PubMed

    Hunter, William C J; Barrett, Harrison H; Lewellen, Tom K; Miyaoka, Robert S

    2013-02-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%-12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied.

  5. Addressing Loss of Efficiency Due to Misclassification Error in Enriched Clinical Trials for the Evaluation of Targeted Therapies Based on the Cox Proportional Hazards Model.

    PubMed

    Tsai, Chen-An; Lee, Kuan-Ting; Liu, Jen-Pei

    2016-01-01

    A key feature of precision medicine is that it takes individual variability at the genetic or molecular level into account in determining the best treatment for patients diagnosed with diseases detected by recently developed novel biotechnologies. The enrichment design is an efficient design that enrolls only the patients testing positive for specific molecular targets and randomly assigns them for the targeted treatment or the concurrent control. However there is no diagnostic device with perfect accuracy and precision for detecting molecular targets. In particular, the positive predictive value (PPV) can be quite low for rare diseases with low prevalence. Under the enrichment design, some patients testing positive for specific molecular targets may not have the molecular targets. The efficacy of the targeted therapy may be underestimated in the patients that actually do have the molecular targets. To address the loss of efficiency due to misclassification error, we apply the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential procedure, based on the Cox proportional hazard model, for treatment effects of the targeted treatment effect for the true-positive patients with the molecular targets. Our proposed procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated accuracy measures. We employed the expectation-maximization algorithm in conjunction with the bootstrap technique for estimation of the hazard ratio and its estimated variance. We report the results of simulation studies which empirically investigated the performance of the proposed method. Our proposed method is illustrated by a numerical example.

  6. A 3D Kinematic Measurement of Knee Prosthesis Using X-ray Projection Images

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Ariyoshi, Shogo; Hossain, Mohammad Abrar

    We have developed a technique for estimating 3D motion of knee prosthesis from its 2D perspective projections. As Fourier descriptors were used for compact representation of library templates and contours extracted from the prosthetic X-ray images, the entire silhouette contour of each prosthetic component was required. This caused such a problem as our algorithm did not function when the silhouettes of tibio and femoral components overlapped with each other. Here we planned a novel method to overcome it; which was processed in two steps. First, the missing part of silhouette contour due to overlap was interpolated using a free-formed curvature such as Bezier. Then the first step position/orientation estimation was performed. In the next step, a clipping window was set in the projective coordinate so as to separate the overlapped silhouette drawn using the first step estimates. After that the localized library whose templates were clipped in shape was prepared and the second step estimation was performed. Computer model simulation demonstrated sufficient accuracies of position/orientation estimation even for overlapped silhouettes; equivalent to those without overlap.

  7. Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots

    PubMed Central

    Cabanes, Itziar; Mancisidor, Aitziber; Pinto, Charles

    2017-01-01

    The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software. PMID:28832510

  8. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    NASA Astrophysics Data System (ADS)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  9. A Context-Aware Model to Provide Positioning in Disaster Relief Scenarios

    PubMed Central

    Moreno, Daniel; Ochoa, Sergio F.; Meseguer, Roc

    2015-01-01

    The effectiveness of the work performed during disaster relief efforts is highly dependent on the coordination of activities conducted by the first responders deployed in the affected area. Such coordination, in turn, depends on an appropriate management of geo-referenced information. Therefore, enabling first responders to count on positioning capabilities during these activities is vital to increase the effectiveness of the response process. The positioning methods used in this scenario must assume a lack of infrastructure-based communication and electrical energy, which usually characterizes affected areas. Although positioning systems such as the Global Positioning System (GPS) have been shown to be useful, we cannot assume that all devices deployed in the area (or most of them) will have positioning capabilities by themselves. Typically, many first responders carry devices that are not capable of performing positioning on their own, but that require such a service. In order to help increase the positioning capability of first responders in disaster-affected areas, this paper presents a context-aware positioning model that allows mobile devices to estimate their position based on information gathered from their surroundings. The performance of the proposed model was evaluated using simulations, and the obtained results show that mobile devices without positioning capabilities were able to use the model to estimate their position. Moreover, the accuracy of the positioning model has been shown to be suitable for conducting most first response activities. PMID:26437406

  10. Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.

    PubMed

    Pourhomayoun, Mohammad; Jin, Zhanpeng; Fowler, Mark

    2014-07-01

    Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sensorless Control of Permanent Magnet Machine for NASA Flywheel Technology Development

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.

    2002-01-01

    This paper describes the position sensorless algorithms presently used in the motor control for the NASA "in-house" development work of the flywheel energy storage system. At zero and low speeds a signal injection technique, the self-sensing method, is used to determine rotor position. At higher speeds, an open loop estimate of the back EMF of the machine is made to determine the rotor position. At start up, the rotor is set to a known position by commanding dc into one of the phase windings. Experimental results up to 52,000 rpm are presented.

  12. Relative Accuracy of Nucleic Acid Amplification Tests and Culture in Detecting Chlamydia in Asymptomatic Men

    PubMed Central

    Cheng, Hong; Macaluso, Maurizio; Vermund, Sten H.; Hook, Edward W.

    2001-01-01

    Published estimates of the sensitivity and specificity of PCR and ligase chain reaction (LCR) for detecting Chlamydia trachomatis are potentially biased because of study design limitations (confirmation of test results was limited to subjects who were PCR or LCR positive but culture negative). Relative measures of test accuracy are less prone to bias in incomplete study designs. We estimated the relative sensitivity (RSN) and relative false-positive rate (RFP) for PCR and LCR versus cell culture among 1,138 asymptomatic men and evaluated the potential bias of RSN and RFP estimates. PCR and LCR testing in urine were compared to culture of urethral specimens. Discordant results (PCR or LCR positive, but culture negative) were confirmed by using a sequence including the other DNA amplification test, direct fluorescent antibody testing, and a DNA amplification test to detect chlamydial major outer membrane protein. The RSN estimates for PCR and LCR were 1.45 (95% confidence interval [CI] = 1.3 to 1.7) and 1.49 (95% CI = 1.3 to 1.7), respectively, indicating that both methods are more sensitive than culture. Very few false-positive results were found, indicating that the specificity levels of PCR, LCR, and culture are high. The potential bias in RSN and RFP estimates were <5 and <20%, respectively. The estimation of bias is based on the most likely and probably conservative parameter settings. If the sensitivity of culture is between 60 and 65%, then the true sensitivity of PCR and LCR is between 90 and 97%. Our findings indicate that PCR and LCR are significantly more sensitive than culture, while the three tests have similar specificities. PMID:11682509

  13. Sign realized jump risk and the cross-section of stock returns: Evidence from China's stock market.

    PubMed

    Chao, Youcong; Liu, Xiaoqun; Guo, Shijun

    2017-01-01

    Using 5-minute high frequency data from the Chinese stock market, we employ a non-parametric method to estimate Fama-French portfolio realized jumps and investigate whether the estimated positive, negative and sign realized jumps could forecast or explain the cross-sectional stock returns. The Fama-MacBeth regression results show that not only have the realized jump components and the continuous volatility been compensated with risk premium, but also that the negative jump risk, the positive jump risk and the sign jump risk, to some extent, could explain the return of the stock portfolios. Therefore, we should pay high attention to the downside tail risk and the upside tail risk.

  14. A Modified Magnetic Gradient Contraction Based Method for Ferromagnetic Target Localization

    PubMed Central

    Wang, Chen; Zhang, Xiaojuan; Qu, Xiaodong; Pan, Xiao; Fang, Guangyou; Chen, Luzhao

    2016-01-01

    The Scalar Triangulation and Ranging (STAR) method, which is based upon the unique properties of magnetic gradient contraction, is a high real-time ferromagnetic target localization method. Only one measurement point is required in the STAR method and it is not sensitive to changes in sensing platform orientation. However, the localization accuracy of the method is limited by the asphericity errors and the inaccurate value of position leads to larger errors in the estimation of magnetic moment. To improve the localization accuracy, a modified STAR method is proposed. In the proposed method, the asphericity errors of the traditional STAR method are compensated with an iterative algorithm. The proposed method has a fast convergence rate which meets the requirement of high real-time localization. Simulations and field experiments have been done to evaluate the performance of the proposed method. The results indicate that target parameters estimated by the modified STAR method are more accurate than the traditional STAR method. PMID:27999322

  15. New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner

    PubMed Central

    Kong, Jianlei; Ding, Xiaokang; Liu, Jinhao; Yan, Lei; Wang, Jianli

    2015-01-01

    In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents. PMID:26147726

  16. Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.

    PubMed

    Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona

    2016-05-31

    Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.

  17. Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR)

    NASA Astrophysics Data System (ADS)

    Saputro, Dewi Retno Sari; Widyaningsih, Purnami

    2017-08-01

    In general, the parameter estimation of GWOLR model uses maximum likelihood method, but it constructs a system of nonlinear equations, making it difficult to find the solution. Therefore, an approximate solution is needed. There are two popular numerical methods: the methods of Newton and Quasi-Newton (QN). Newton's method requires large-scale time in executing the computation program since it contains Jacobian matrix (derivative). QN method overcomes the drawback of Newton's method by substituting derivative computation into a function of direct computation. The QN method uses Hessian matrix approach which contains Davidon-Fletcher-Powell (DFP) formula. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is categorized as the QN method which has the DFP formula attribute of having positive definite Hessian matrix. The BFGS method requires large memory in executing the program so another algorithm to decrease memory usage is needed, namely Low Memory BFGS (LBFGS). The purpose of this research is to compute the efficiency of the LBFGS method in the iterative and recursive computation of Hessian matrix and its inverse for the GWOLR parameter estimation. In reference to the research findings, we found out that the BFGS and LBFGS methods have arithmetic operation schemes, including O(n2) and O(nm).

  18. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  19. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.

    PubMed

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-09-25

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians' different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians' moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the "go and back" phenomenon caused by the instability of the Bluetooth-based positioning system and the "cross-wall" phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision.

  20. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-01-01

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians’ different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians’ moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the “go and back” phenomenon caused by the instability of the Bluetooth-based positioning system and the “cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. PMID:26404277

  1. Study on individual stochastic model of GNSS observations for precise kinematic applications

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  2. Method of Enhancing On-Board State Estimation Using Communication Signals

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)

    2015-01-01

    A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.

  3. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm

    PubMed Central

    Cuevas, Erik; Díaz, Margarita

    2015-01-01

    In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness. PMID:26339228

  4. A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions

    NASA Astrophysics Data System (ADS)

    Mendes, Eduardo M. A. M.; Nepomuceno, Erivelton G.

    2016-12-01

    In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey-Glass system.

  5. IMU-Based Online Kinematic Calibration of Robot Manipulator

    PubMed Central

    2013-01-01

    Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods. PMID:24302854

  6. Tracking of Ball and Players in Beach Volleyball Videos

    PubMed Central

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  7. Toward a Smartphone Application for Estimation of Pulse Transit Time

    PubMed Central

    Liu, He; Ivanov, Kamen; Wang, Yadong; Wang, Lei

    2015-01-01

    Pulse transit time (PTT) is an important physiological parameter that directly correlates with the elasticity and compliance of vascular walls and variations in blood pressure. This paper presents a PTT estimation method based on photoplethysmographic imaging (PPGi). The method utilizes two opposing cameras for simultaneous acquisition of PPGi waveform signals from the index fingertip and the forehead temple. An algorithm for the detection of maxima and minima in PPGi signals was developed, which includes technology for interpolation of the real positions of these points. We compared our PTT measurements with those obtained from the current methodological standards. Statistical results indicate that the PTT measured by our proposed method exhibits a good correlation with the established method. The proposed method is especially suitable for implementation in dual-camera-smartphones, which could facilitate PTT measurement among populations affected by cardiac complications. PMID:26516861

  8. P-Code-Enhanced Encryption-Mode Processing of GPS Signals

    NASA Technical Reports Server (NTRS)

    Young, Lawrence; Meehan, Thomas; Thomas, Jess B.

    2003-01-01

    A method of processing signals in a Global Positioning System (GPS) receiver has been invented to enable the receiver to recover some of the information that is otherwise lost when GPS signals are encrypted at the transmitters. The need for this method arises because, at the option of the military, precision GPS code (P-code) is sometimes encrypted by a secret binary code, denoted the A code. Authorized users can recover the full signal with knowledge of the A-code. However, even in the absence of knowledge of the A-code, one can track the encrypted signal by use of an estimate of the A-code. The present invention is a method of making and using such an estimate. In comparison with prior such methods, this method makes it possible to recover more of the lost information and obtain greater accuracy.

  9. Toward a Smartphone Application for Estimation of Pulse Transit Time.

    PubMed

    Liu, He; Ivanov, Kamen; Wang, Yadong; Wang, Lei

    2015-10-27

    Pulse transit time (PTT) is an important physiological parameter that directly correlates with the elasticity and compliance of vascular walls and variations in blood pressure. This paper presents a PTT estimation method based on photoplethysmographic imaging (PPGi). The method utilizes two opposing cameras for simultaneous acquisition of PPGi waveform signals from the index fingertip and the forehead temple. An algorithm for the detection of maxima and minima in PPGi signals was developed, which includes technology for interpolation of the real positions of these points. We compared our PTT measurements with those obtained from the current methodological standards. Statistical results indicate that the PTT measured by our proposed method exhibits a good correlation with the established method. The proposed method is especially suitable for implementation in dual-camera-smartphones, which could facilitate PTT measurement among populations affected by cardiac complications.

  10. TU-F-17A-05: Calculating Tumor Trajectory and Dose-Of-The-Day for Highly Mobile Tumors Using Cone-Beam CT Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B; Miften, M

    2014-06-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory ofmore » the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better strategies to mitigate or compensate for motion during SBRT.« less

  11. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  12. Demand for Colonoscopy in Colorectal Cancer Screening Using a Quantitative Fecal Immunochemical Test and Age/Sex-Specific Thresholds for Test Positivity.

    PubMed

    Chen, Sam Li-Sheng; Hsu, Chen-Yang; Yen, Amy Ming-Fang; Young, Graeme P; Chiu, Sherry Yueh-Hsia; Fann, Jean Ching-Yuan; Lee, Yi-Chia; Chiu, Han-Mo; Chiou, Shu-Ti; Chen, Hsiu-Hsi

    2018-06-01

    Background: Despite age and sex differences in fecal hemoglobin (f-Hb) concentrations, most fecal immunochemical test (FIT) screening programs use population-average cut-points for test positivity. The impact of age/sex-specific threshold on FIT accuracy and colonoscopy demand for colorectal cancer screening are unknown. Methods: Using data from 723,113 participants enrolled in a Taiwanese population-based colorectal cancer screening with single FIT between 2004 and 2009, sensitivity and specificity were estimated for various f-Hb thresholds for test positivity. This included estimates based on a "universal" threshold, receiver-operating-characteristic curve-derived threshold, targeted sensitivity, targeted false-positive rate, and a colonoscopy-capacity-adjusted method integrating colonoscopy workload with and without age/sex adjustments. Results: Optimal age/sex-specific thresholds were found to be equal to or lower than the universal 20 μg Hb/g threshold. For older males, a higher threshold (24 μg Hb/g) was identified using a 5% false-positive rate. Importantly, a nonlinear relationship was observed between sensitivity and colonoscopy workload with workload rising disproportionately to sensitivity at 16 μg Hb/g. At this "colonoscopy-capacity-adjusted" threshold, the test positivity (colonoscopy workload) was 4.67% and sensitivity was 79.5%, compared with a lower 4.0% workload and a lower 78.7% sensitivity using 20 μg Hb/g. When constrained on capacity, age/sex-adjusted estimates were generally lower. However, optimizing age/-sex-adjusted thresholds increased colonoscopy demand across models by 17% or greater compared with a universal threshold. Conclusions: Age/sex-specific thresholds improve FIT accuracy with modest increases in colonoscopy demand. Impact: Colonoscopy-capacity-adjusted and age/sex-specific f-Hb thresholds may be useful in optimizing individual screening programs based on detection accuracy, population characteristics, and clinical capacity. Cancer Epidemiol Biomarkers Prev; 27(6); 704-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  14. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    NASA Astrophysics Data System (ADS)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  15. Estimating the number of injecting drug users in Scotland's HCV-diagnosed population using capture-recapture methods.

    PubMed

    McDonald, S A; Hutchinson, S J; Schnier, C; McLeod, A; Goldberg, D J

    2014-01-01

    In countries maintaining national hepatitis C virus (HCV) surveillance systems, a substantial proportion of individuals report no risk factors for infection. Our goal was to estimate the proportion of diagnosed HCV antibody-positive persons in Scotland (1991-2010) who probably acquired infection through injecting drug use (IDU), by combining data on IDU risk from four linked data sources using log-linear capture-recapture methods. Of 25,521 HCV-diagnosed individuals, 14,836 (58%) reported IDU risk with their HCV diagnosis. Log-linear modelling estimated a further 2484 HCV-diagnosed individuals with IDU risk, giving an estimated prevalence of 83. Stratified analyses indicated variation across birth cohort, with estimated prevalence as low as 49% in persons born before 1960 and greater than 90% for those born since 1960. These findings provide public-health professionals with a more complete profile of Scotland's HCV-infected population in terms of transmission route, which is essential for targeting educational, prevention and treatment interventions.

  16. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Vision-based localization of the center of mass of large space debris via statistical shape analysis

    NASA Astrophysics Data System (ADS)

    Biondi, G.; Mauro, S.; Pastorelli, S.

    2017-08-01

    The current overpopulation of artificial objects orbiting the Earth has increased the interest of the space agencies on planning missions for de-orbiting the largest inoperative satellites. Since this kind of operations involves the capture of the debris, the accurate knowledge of the position of their center of mass is a fundamental safety requirement. As ground observations are not sufficient to reach the required accuracy level, this information should be acquired in situ just before any contact between the chaser and the target. Some estimation methods in the literature rely on the usage of stereo cameras for tracking several features of the target surface. The actual positions of these features are estimated together with the location of the center of mass by state observers. The principal drawback of these methods is related to possible sudden disappearances of one or more features from the field of view of the cameras. An alternative method based on 3D Kinematic registration is presented in this paper. The method, which does not suffer of the mentioned drawback, considers a preliminary reduction of the inaccuracies in detecting features by the usage of statistical shape analysis.

  18. Parameter estimation in Cox models with missing failure indicators and the OPPERA study.

    PubMed

    Brownstein, Naomi C; Cai, Jianwen; Slade, Gary D; Bair, Eric

    2015-12-30

    In a prospective cohort study, examining all participants for incidence of the condition of interest may be prohibitively expensive. For example, the "gold standard" for diagnosing temporomandibular disorder (TMD) is a physical examination by a trained clinician. In large studies, examining all participants in this manner is infeasible. Instead, it is common to use questionnaires to screen for incidence of TMD and perform the "gold standard" examination only on participants who screen positively. Unfortunately, some participants may leave the study before receiving the "gold standard" examination. Within the framework of survival analysis, this results in missing failure indicators. Motivated by the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, a large cohort study of TMD, we propose a method for parameter estimation in survival models with missing failure indicators. We estimate the probability of being an incident case for those lacking a "gold standard" examination using logistic regression. These estimated probabilities are used to generate multiple imputations of case status for each missing examination that are combined with observed data in appropriate regression models. The variance introduced by the procedure is estimated using multiple imputation. The method can be used to estimate both regression coefficients in Cox proportional hazard models as well as incidence rates using Poisson regression. We simulate data with missing failure indicators and show that our method performs as well as or better than competing methods. Finally, we apply the proposed method to data from the OPPERA study. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Estimation of rank correlation for clustered data.

    PubMed

    Rosner, Bernard; Glynn, Robert J

    2017-06-30

    It is well known that the sample correlation coefficient (R xy ) is the maximum likelihood estimator of the Pearson correlation (ρ xy ) for independent and identically distributed (i.i.d.) bivariate normal data. However, this is not true for ophthalmologic data where X (e.g., visual acuity) and Y (e.g., visual field) are available for each eye and there is positive intraclass correlation for both X and Y in fellow eyes. In this paper, we provide a regression-based approach for obtaining the maximum likelihood estimator of ρ xy for clustered data, which can be implemented using standard mixed effects model software. This method is also extended to allow for estimation of partial correlation by controlling both X and Y for a vector U_ of other covariates. In addition, these methods can be extended to allow for estimation of rank correlation for clustered data by (i) converting ranks of both X and Y to the probit scale, (ii) estimating the Pearson correlation between probit scores for X and Y, and (iii) using the relationship between Pearson and rank correlation for bivariate normally distributed data. The validity of the methods in finite-sized samples is supported by simulation studies. Finally, two examples from ophthalmology and analgesic abuse are used to illustrate the methods. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2005-01-01

    The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. An improvement in the accuracy of radial global velocities would have a very positive impact on a large number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. A set of GPS error sources relevant to this project are those related to the combination of the positions and velocities of a set of globally distributed stations as determined &om the analysis of GPS data, including possible methods of combining and defining terrestrial reference frames. This is were our research activities during this reporting period have concentrated. During this reporting period, we have researched two topics: (1) The effect of errors on the GPS satellite antenna models (or lack thereof) on global GPS vertical position and velocity estimates; (2) The effect of reference W e definition and practice on estimates of the geocenter variations.

Top