Micro-position sensor using faraday effect
McElfresh, Michael [Livermore, CA; Lucas, Matthew [Pittsburgh, PA; Silveira, Joseph P [Tracy, CA; Groves, Scott E [Brentwood, CA
2007-02-27
A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.
HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye
NASA Astrophysics Data System (ADS)
Galetskii, S. O.; Cherezova, T. Yu
2009-02-01
An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.
Hybrid shearing and phase-shifting point diffraction interferometer
Goldberg, Kenneth Alan; Naulleau, Patrick P.
2003-06-03
A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.
Two position optical element actuator device
Holdener, Fred R.; Boyd, Robert D.
2002-01-01
The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.
A scheiner-principle vernier optometer
NASA Astrophysics Data System (ADS)
Cushman, William B.
1989-06-01
A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.
A method which can enhance the optical-centering accuracy
NASA Astrophysics Data System (ADS)
Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua
2014-09-01
Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.
Bender, Donald A.; Kuklo, Thomas
1994-01-01
An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.
Mikš, Antonín; Novák, Pavel
2018-05-10
In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.
Bender, D.A.; Kuklo, T.
1994-11-08
An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.
In-situ spectrophotometric probe
Prather, William S.
1992-01-01
A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.
NASA Astrophysics Data System (ADS)
Yunguo, Gao
1996-12-01
This scheme structure is for positioning 4000 optical fibres of LAMOST telescope. It adopts the swing rods adjusted parallel and simultaneously by many small tables. The problems, for example, positioning accuracy of the optical fibers, the time to readjust all the 4000 optical fibres and error correction, etc. have been considered in the scheme. The structure has no blind area.
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.
2000-12-01
Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.
Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo
2013-07-15
We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.
Low noise optical position sensor
Spear, J.D.
1999-03-09
A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.
Low noise optical position sensor
Spear, Jonathan David
1999-01-01
A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.
In-situ spectrophotometric probe
Prather, W.S.
1992-12-15
A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.
Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging
NASA Astrophysics Data System (ADS)
Zacharias, N.; Zacharias, M. I.
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.
Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxim, Peter G.; Loo, Billy W.; Murphy, James D.
2011-11-15
Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less
Bi-stable optical element actuator device
Holdener, Fred R.; Boyd, Robert D.
2002-01-01
The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.
Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang
2017-10-13
Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.
Fast auto-focus scheme based on optical defocus fitting model
NASA Astrophysics Data System (ADS)
Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min
2018-04-01
An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.
Apparatus for precision focussing and positioning of a beam waist on a target
NASA Technical Reports Server (NTRS)
Lynch, Dana H. (Inventor); Gunter, William D. (Inventor); Mcalister, Kenneth W. (Inventor)
1991-01-01
The invention relates to optical focussing apparatus and, more particularly, to optical apparatus for focussing a highly collimated Gaussian beam which provides independent and fine control over the focus waist diameter, the focus position both along the beam axis and transverse to the beam, and the focus angle. A beam focussing and positioning apparatus provides focussing and positioning for the waist of a waisted beam at a desired location on a target such as an optical fiber. The apparatus includes a first lens, having a focal plane f sub 1, disposed in the path of an incoming beam and a second lens, having a focal plane f sub 2 and being spaced downstream from the first lens by a distance at least equal to f sub 1 + 10 f sub 2, which cooperates with the first lens to focus the waist of the beam on the target. A rotatable optical device, disposed upstream of the first lens, adjusts the angular orientation of the beam waist. The transverse position of the first lens relative to the axis of the beam is varied to control the transverse position of the beam waist relative to the target (a fiber optic as shown) while the relative axial positions of the lenses are varied to control the diameter of the beam waist and to control the axial position of the beam waist. Mechanical controllers C sub 1, C sub 2, C sub 3, C sub 4, and C sub 5 control the elements of the optical system. How seven adjustments can be made to correctly couple a laser beam into an optical fiber is illustrated. Prior art systems employing optical techniques to couple a laser beam into an optical fiber or other target simply do not provide the seven necessary adjustments. The closest known prior art, a Newport coupler, provides only two of the seven required adjustments.
Laser optical disk position encoder with active heads
NASA Technical Reports Server (NTRS)
Osborne, Eric P.
1991-01-01
An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.
Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator
Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June
2017-01-01
Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition. PMID:29093633
Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator.
Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June; Baker, Bradley J
2017-10-01
Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.
Focal Plane Alignment Utilizing Optical CMM
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.
2012-01-01
In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation is sketched in Figure 2(b) (the figure also shows the tapping tool and where to tap). At this point the fasteners for the PCB are torqued slightly so the PCB can still move. The PCB location is adjusted again with the tapping tool. This process is repeated 3 to 4 times until the final torque is achieved. The oversized mounting holes are then filled with a liquid bonding agent to secure the board in position (not shown in the sketch). A 10- to 30-micron mounting accuracy has been achieved utilizing this method..
Garcia, Ernest J; Polosky, Marc A
2013-05-21
An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.
Matching optics for Gaussian beams
NASA Technical Reports Server (NTRS)
Gunter, William D. (Inventor)
1991-01-01
A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.
Magnetic Fields in Blazar Jets: Radio and Optical Polarization over 20-30 Years
NASA Astrophysics Data System (ADS)
Caldwell, Caroline; Wills, B.; Wills, D.; Aller, H.; Aller, M.
2011-01-01
Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: non-BL Lac blazars with strong broad emission lines (quasars), and BL Lac objects with only weak lines. We have compiled optical linear polarization measurements of 22 blazars, incorporating much archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks. These data enabled us to compare optical and radio polarization position angles. We constructed histograms of the separation of polarization position angles of the optical and radio. We found that in BL Lac objects, the histogram has a significant peak at zero separation. Since the polarization position angle indicates the direction perpendicular to the magnetic field vector, finding similar polarization position angles indicates a similar magnetic field at the origin of the optical and radio synchrotron radiation. Non-BL Lac blazars show peaks at zero and 90 degree separation of position angle. The 90 degree separation may be caused by optical depth effects within the jet. Although there are a few sources that do not strongly display the characteristics summarized by the histograms, most sources produce optical and radio polarization position angles that nearly coincide or are separated by 90 degrees. Using VLBA and VLA radio maps, we interpret the results in terms of the position angle of the jet in the sky plane.
Holdener, Fred R.; Boyd, Robert D.
2000-01-01
The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.
Jacobson, Steven D.
2014-08-19
Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.
Through-wafer interrogation of microstructure motion for MEMS feedback control
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.
1999-09-01
Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.
Evidence of Non-Coincidence between Radio and Optical Positions of ICRF Sources.
NASA Astrophysics Data System (ADS)
Andrei, A. H.; da Silva, D. N.; Assafin, M.; Vieira Martins, R.
2003-11-01
Silva Neto et al. (SNAAVM: 2002) show that comparing the ICRF Ext1 sources standard radio position (Ma et al., 1998) against their optical counterpart position(ZZHJVW: Zacharias et al., 1999; USNO A2.0: Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9 +/- 1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio structure. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.
Moiré deflectometry-based position detection for optical tweezers.
Khorshad, Ali Akbar; Reihani, S Nader S; Tavassoly, Mohammad Taghi
2017-09-01
Optical tweezers have proven to be indispensable tools for pico-Newton range force spectroscopy. A quadrant photodiode (QPD) positioned at the back focal plane of an optical tweezers' condenser is commonly used for locating the trapped object. In this Letter, for the first time, to the best of our knowledge, we introduce a moiré pattern-based detection method for optical tweezers. We show, both theoretically and experimentally, that this detection method could provide considerably better position sensitivity compared to the commonly used detection systems. For instance, position sensitivity for a trapped 2.17 μm polystyrene bead is shown to be 71% better than the commonly used QPD-based detection method. Our theoretical and experimental results are in good agreement.
Fiber optics for aircraft engine/inlet control
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1981-01-01
NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.
Integrated otpical monitoring of MEMS for closed-loop control
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.
2003-01-01
Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.
High-accuracy fiber-optic shape sensing
NASA Astrophysics Data System (ADS)
Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.
2007-04-01
We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.
Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng
2012-11-19
We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.
Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson
2017-01-01
This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936
Radio structure effects on the optical and radio representations of the ICRF
NASA Astrophysics Data System (ADS)
Andrei, A. H.; da Silva Neto, D. N.; Assafin, M.; Vieira Martins, R.
Silva Neto et al. (2002) show that comparing the ICRF Ext.1 sources standard radio position (Ma et al. 1998) against their optical counterpart position (Zacharias et al. 1999, Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9±1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio stucture. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.
An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation
He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue
2015-01-01
Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191
An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue
2015-07-08
Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.
Compact Packaging of Photonic Millimeter-Wave Receiver
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.
2007-01-01
A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.
Autostereoscopic projection viewer
Toeppen, John S [Livermore, CA
2006-12-19
An autostereoscopic viewer is employed to produce aberration corrected images to simulate a virtual presence by employing pairs of projector optical components coupled with an image corrector plate and a field lens. Images are designed with magnifications and optical qualities and positioned at predetermined eyezones having controlled directional properties. The viewer's eyes are positioned in these eyezones. The size of these zones is related to the aperture of the projection lenses, the magnification produced by the Fresnel(s), and the optical properties and position of the image corrector plate.
Heebner, John E [Livermore, CA
2009-09-08
In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.
Accuracy of parameter estimates for closely spaced optical targets using multiple detectors
NASA Astrophysics Data System (ADS)
Dunn, K. P.
1981-10-01
In order to obtain the cross-scan position of an optical target, more than one scanning detector is used. As expected, the cross-scan position estimation performance degrades when two nearby optical targets interfere with each other. Theoretical bounds on the two-dimensional parameter estimation performance for two closely spaced optical targets are found. Two particular classes of scanning detector arrays, namely, the crow's foot and the brickwall (or mosaic) patterns, are considered.
Statistics of optical vortex wander on propagation through atmospheric turbulence.
Gu, Yalong
2013-04-01
The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.
Bowers, Joel M.
1994-01-01
An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz.
Bowers, J.M.
1994-04-19
An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz. 10 figures.
Robust Mapping of Incoherent Fiber-Optic Bundles
NASA Technical Reports Server (NTRS)
Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.
2007-01-01
A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.
Servo control of an optical trap.
Wulff, Kurt D; Cole, Daniel G; Clark, Robert L
2007-08-01
A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.
Background-free balanced optical cross correlator
Nejadmalayeri, Amir Hossein; Kaertner, Franz X
2014-12-23
A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.
Virtual optical interfaces for the transportation industry
NASA Astrophysics Data System (ADS)
Hejmadi, Vic; Kress, Bernard
2010-04-01
We present a novel implementation of virtual optical interfaces for the transportation industry (automotive and avionics). This new implementation includes two functionalities in a single device; projection of a virtual interface and sensing of the position of the fingers on top of the virtual interface. Both functionalities are produced by diffraction of laser light. The device we are developing include both functionalities in a compact package which has no optical elements to align since all of them are pre-aligned on a single glass wafer through optical lithography. The package contains a CMOS sensor which diffractive objective lens is optimized for the projected interface color as well as for the IR finger position sensor based on structured illumination. Two versions are proposed: a version which senses the 2d position of the hand and a version which senses the hand position in 3d.
Integrated packaging of 2D MOEMS mirrors with optical position feedback
NASA Astrophysics Data System (ADS)
Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.
2015-02-01
Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.
Miniature rotating transmissive optical drum scanner
NASA Technical Reports Server (NTRS)
Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)
2013-01-01
A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.
Optical position measurement for a Large Gap Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.
1991-01-01
This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.
Large optics inspection, tilting, and washing stand
Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA
2010-08-24
A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.
Large optics inspection, tilting, and washing stand
Ayers, Marion Jay; Ayers, Shannon Lee
2012-10-09
A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.
Fluorescent fluid interface position sensor
Weiss, Jonathan D.
2004-02-17
A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.
Method and apparatus for holographic wavefront diagnostics
Toeppen, J.S.
1995-04-25
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.
Method and apparatus for holographic wavefront diagnostics
Toeppen, John S.
1995-01-01
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.
Stable Optical Phase Modulation With Micromirrors
2012-01-27
Stable optical phase modulation with micromirrors Caleb Knoernschild, Taehyun Kim, Peter Maunz, Stephen G. Crain, and Jungsang Kim∗ Fitzpatrick...position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the... micromirror to realize an optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the
Fiber optic sensor system for detecting movement or position of a rotating wheel bearing
Veeser, Lynn R.; Rodriguez, Patrick J.; Forman, Peter R.; Monahan, Russell E.; Adler, Jonathan M.
1997-01-01
An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.
Micro electro mechanical system optical switching
Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J
2013-12-17
The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.
High Bandwidth Optical Links for Micro-Satellite Support
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)
2016-01-01
A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.
Optical fiber stripper positioning apparatus
Fyfe, Richard W.; Sanchez, Jr., Amadeo
1990-01-01
An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.
Integrated optical interrogation of micro-structures
Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan
2003-01-01
The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.
Experimental Validation of an Ion Beam Optics Code with a Visualized Ion Thruster
NASA Astrophysics Data System (ADS)
Nakayama, Yoshinori; Nakano, Masakatsu
For validation of an ion beam optics code, the behavior of ion beam optics was experimentally observed and evaluated with a two-dimensional visualized ion thruster (VIT). Since the observed beam focus positions, sheath positions and measured ion beam currents were in good agreement with the numerical results, it was confirmed that the numerical model of this code was appropriated. In addition, it was also confirmed that the beam focus position was moved on center axis of grid hole according to the applied grid potentials, which differs from conventional understanding/assumption. The VIT operations may be useful not only for the validation of ion beam optics codes but also for the fundamental and intuitive understanding of the Child Law Sheath theory.
NASA Astrophysics Data System (ADS)
Kim, Sung-Man; Kwon, Ki-Keun
2017-07-01
The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.
Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters
NASA Astrophysics Data System (ADS)
Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.
1990-02-01
A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.
Four-mirror extreme ultraviolet (EUV) lithography projection system
Cohen, Simon J; Jeong, Hwan J; Shafer, David R
2000-01-01
The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Anderjaska, Thomas; Badger, James (Inventor); Capon, Tom; Davis, CLinton; Dicks, Brent (Inventor); Eichhorn, William; Garza, Mario; Guishard, Corina; Haghani, Shadan;
2013-01-01
The JWST Optical Telescope Element Simulator (OSIM) is a configurable, cryogenic, optical stimulus for high fidelity ground characterization and calibration of JWST's flight instruments. OSIM and its associated Beam Image Analyzer (BIA) contain several ultra-precise, cryogenic mechanisms that enable OSIM to project point sources into the instruments according to the same optical prescription as the flight telescope images stars - correct in focal surface position and chief ray angle. OSIM's and BIA's fifteen axes of mechanisms navigate according to redundant, cryogenic, absolute, optical encoders - 32 in all operating at or below 100 K. OSIM's encoder subsystem, the engineering challenges met in its development, and the encoders' sub-micron and sub-arcsecond performance are discussed.
Unsymmetrical squaraines for nonlinear optical materials
NASA Technical Reports Server (NTRS)
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Hybrid position and orientation tracking for a passive rehabilitation table-top robot.
Wojewoda, K K; Culmer, P R; Gallagher, J F; Jackson, A E; Levesley, M C
2017-07-01
This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy.
Integration of optical imaging with a small animal irradiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weersink, Robert A., E-mail: robert.weersink@rmp.uhn.on.ca; Ansell, Steve; Wang, An
Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mountedmore » on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two-dimensional targeting of a light source in the mouse phantom based on optical imaging along the anterior/posterior direction was accurate to 0.55 mm. The mean square residual error in the normalized measured projected surface intensities versus the calculated normalized intensities ranged between 0.0016 and 0.006. Optimizing the position reduced this error from 0.00016 to 0.0004 with distances ranging between 0.7 and 1 mm between the actual and calculated position source positions. Conclusions: The integration of optical imaging on an existing small animal irradiation platform has been accomplished. A targeting accuracy of 1 mm can be achieved in rigid, homogeneous phantoms. The combination of optical imaging with a CBCT image-guided small animal irradiator offers the potential to deliver functionally targeted dose distributions, as well as monitor spatial and temporal functional changes that occur with radiation therapy.« less
Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration.
Leaird, D E; Weiner, A M
2004-07-01
We demonstrate femtosecond operation of an integrated-optic direct space-to-time pulse shaper for which there is a direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. The apparatus is used to generate trains of more than 30 pulses as an ultrafast optical data packet over approximately an 80-ps temporal window.
Optically powered and interrogated rotary position sensor for aircraft engine control applications
NASA Astrophysics Data System (ADS)
Spillman, W. B.; Crowne, D. H.; Woodward, D. W.
A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.
Position and mode dependent optical detection back-action in cantilever beam resonators
NASA Astrophysics Data System (ADS)
Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.
2017-03-01
Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.
Fault location in optical networks
Stevens, Rick C [Apple Valley, MN; Kryzak, Charles J [Mendota Heights, MN; Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM; Geib, Kent M [Tijeras, NM; Kornrumpf, William P [Schenectady, NY
2008-07-01
One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.
TweezPal - Optical tweezers analysis and calibration software
NASA Astrophysics Data System (ADS)
Osterman, Natan
2010-11-01
Optical tweezers, a powerful tool for optical trapping, micromanipulation and force transduction, have in recent years become a standard technique commonly used in many research laboratories and university courses. Knowledge about the optical force acting on a trapped object can be gained only after a calibration procedure which has to be performed (by an expert) for each type of trapped objects. In this paper we present TweezPal, a user-friendly, standalone Windows software tool for optical tweezers analysis and calibration. Using TweezPal, the procedure can be performed in a matter of minutes even by non-expert users. The calibration is based on the Brownian motion of a particle trapped in a stationary optical trap, which is being monitored using video or photodiode detection. The particle trajectory is imported into the software which instantly calculates position histogram, trapping potential, stiffness and anisotropy. Program summaryProgram title: TweezPal Catalogue identifier: AEGR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 44 891 No. of bytes in distributed program, including test data, etc.: 792 653 Distribution format: tar.gz Programming language: Borland Delphi Computer: Any PC running Microsoft Windows Operating system: Windows 95, 98, 2000, XP, Vista, 7 RAM: 12 Mbytes Classification: 3, 4.14, 18, 23 Nature of problem: Quick, robust and user-friendly calibration and analysis of optical tweezers. The optical trap is calibrated from the trajectory of a trapped particle undergoing Brownian motion in a stationary optical trap (input data) using two methods. Solution method: Elimination of the experimental drift in position data. Direct calculation of the trap stiffness from the positional variance. Calculation of 1D optical trapping potential from the positional distribution of data points. Trap stiffness calculation by fitting a parabola to the trapping potential. Presentation of X-Y positional density for close inspection of the 2D trapping potential. Calculation of the trap anisotropy. Running time: Seconds
A robotic multi-channel platform for interstitial photodynamic therapy
Sharikova, Anna V.; Finlay, Jarod C.; Dimofte, Andreea; Zhu, Timothy C.
2015-01-01
A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel’s motor had an optical encoder for position feedback, with resolution of 1.5 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials. PMID:25914794
Kimmel, Daniel L.; Mammo, Dagem; Newsome, William T.
2012-01-01
From human perception to primate neurophysiology, monitoring eye position is critical to the study of vision, attention, oculomotor control, and behavior. Two principal techniques for the precise measurement of eye position—the long-standing sclera-embedded search coil and more recent optical tracking techniques—are in use in various laboratories, but no published study compares the performance of the two methods simultaneously in the same primates. Here we compare two popular systems—a sclera-embedded search coil from C-N-C Engineering and the EyeLink 1000 optical system from SR Research—by recording simultaneously from the same eye in the macaque monkey while the animal performed a simple oculomotor task. We found broad agreement between the two systems, particularly in positional accuracy during fixation, measurement of saccade amplitude, detection of fixational saccades, and sensitivity to subtle changes in eye position from trial to trial. Nonetheless, certain discrepancies persist, particularly elevated saccade peak velocities, post-saccadic ringing, influence of luminance change on reported position, and greater sample-to-sample variation in the optical system. Our study shows that optical performance now rivals that of the search coil, rendering optical systems appropriate for many if not most applications. This finding is consequential, especially for animal subjects, because the optical systems do not require invasive surgery for implantation and repair of search coils around the eye. Our data also allow laboratories using the optical system in human subjects to assess the strengths and limitations of the technique for their own applications. PMID:22912608
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.
1994-01-01
An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.
Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID
2007-07-10
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
Scott, Jill R.; Tremblay, Paul L.
2004-11-23
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
Automatic SAR/optical cross-matching for GCP monograph generation
NASA Astrophysics Data System (ADS)
Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa
2016-10-01
Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.
Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing
Drissi-Habti, Monssef; Raman, Venkadesh; Khadour, Aghiad; Timorian, Safiullah
2017-01-01
The fiber optic sensors (FOSs) are commonly used for large-scale structure monitoring systems for their small size, noise free and low electrical risk characteristics. Embedded fiber optic sensors (FOSs) lead to micro-damage in composite structures. This damage generation threshold is based on the coating material of the FOSs and their diameter. In addition, embedded FOSs are aligned parallel to reinforcement fibers to avoid micro-damage creation. This linear positioning of distributed FOS fails to provide all strain parameters. We suggest novel sinusoidal sensor positioning to overcome this issue. This method tends to provide multi-parameter strains in a large surface area. The effectiveness of sinusoidal FOS positioning over linear FOS positioning is studied under both numerical and experimental methods. This study proves the advantages of the sinusoidal positioning method for FOS in composite material’s bonding. PMID:28333117
Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer
NASA Astrophysics Data System (ADS)
Barat, David; Benazzi, Giuseppe; Mowlem, Matthew Charles; Ruano, Jesus Miguel; Morgan, Hywel
2010-05-01
Flow cytometry is widely used for analyzing micro-particles such as cells and bacteria. Microfabricated flow cytometers promise reduced instrument size and cost with increased robustness and have application in medicine, life sciences and environmental metrology. Further miniaturisation and robustness can be achieved if integrated optics are used instead of traditional free space optics. We present designs simulation and experimental characterisation of integrated optics for a microfabricated cytometer made from SU-8 resin on a glass substrate. The optics constructed from combinations of optical fibres (positioned with microgrooves), waveguides, and microlenses enable analysis of scattered light and fluorescence from particles positioned near the centre of a microchannel using one dimensional sheath flow. Four different methods for directing the incident light onto the particles are examined and the optimum design discussed.
Optical sample-position sensing for electrostatic levitation
NASA Technical Reports Server (NTRS)
Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.
1989-01-01
A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
NASA Astrophysics Data System (ADS)
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
Analysis of the effect on optical equipment caused by solar position in target flight measure
NASA Astrophysics Data System (ADS)
Zhu, Shun-hua; Hu, Hai-bin
2012-11-01
Optical equipment is widely used to measure flight parameters in target flight performance test, but the equipment is sensitive to the sun's rays. In order to avoid the disadvantage of sun's rays directly shines to the optical equipment camera lens when measuring target flight parameters, the angle between observation direction and the line which connects optical equipment camera lens and the sun should be kept at a big range, The calculation method of the solar azimuth and altitude to the optical equipment at any time and at any place on the earth, the equipment observation direction model and the calculating model of angle between observation direction and the line which connects optical equipment camera lens are introduced in this article. Also, the simulation of the effect on optical equipment caused by solar position at different time, different date, different month and different target flight direction is given in this article.
The effect of external forces on discrete motion within holographic optical tweezers.
Eriksson, E; Keen, S; Leach, J; Goksör, M; Padgett, M J
2007-12-24
Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers.
NASA Astrophysics Data System (ADS)
Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-03-01
A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.
Improved Controller for a Three-Axis Piezoelectric Stage
NASA Technical Reports Server (NTRS)
Rao, Shanti; Palmer, Dean
2009-01-01
An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.
Wavefront Sensing With Switched Lenses for Defocus Diversity
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
In an alternative hardware design for an apparatus used in image-based wavefront sensing, defocus diversity is introduced by means of fixed lenses that are mounted in a filter wheel (see figure) so that they can be alternately switched into a position in front of the focal plane of an electronic camera recording the image formed by the optical system under test. [The terms image-based, wavefront sensing, and defocus diversity are defined in the first of the three immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] Each lens in the filter wheel is designed so that the optical effect of placing it at the assigned position is equivalent to the optical effect of translating the camera a specified defocus distance along the optical axis. Heretofore, defocus diversity has been obtained by translating the imaging camera along the optical axis to various defocus positions. Because data must be taken at multiple, accurately measured defocus positions, it is necessary to mount the camera on a precise translation stage that must be calibrated for each defocus position and/or to use an optical encoder for measurement and feedback control of the defocus positions. Additional latency is introduced into the wavefront sensing process as the camera is translated to the various defocus positions. Moreover, if the optical system under test has a large focal length, the required defocus values are large, making it necessary to use a correspondingly bulky translation stage. By eliminating the need for translation of the camera, the alternative design simplifies and accelerates the wavefront-sensing process. This design is cost-effective in that the filterwheel/lens mechanism can be built from commercial catalog components. After initial calibration of the defocus value of each lens, a selected defocus value is introduced by simply rotating the filter wheel to place the corresponding lens in front of the camera. The rotation of the wheel can be automated by use of a motor drive, and further calibration is not necessary. Because a camera-translation stage is no longer needed, the size of the overall apparatus can be correspondingly reduced.
NASA Technical Reports Server (NTRS)
Wells, Mark
2017-01-01
Active positioning of the GHAPS secondary telescope mirror is desired to correct for rigid body deflections due to temperature variations and gravity sag in the telescope structure that may impact optical performance. The current design concept for the secondary mirror mount uses a Commercial-Off -the-Shelf hexapod for mirror positioning and fine adjustment. The Hexapod specification states that motions as small as 0.1 microns along the optical axis and 2 microns perpendicular to the optical axis will cause optical aberrations that will require correction by repositioning the secondary mirror. In addition, the secondary mirror mount and positioning system must survive a 15g shock of parachute opening and landing during the instrument recovery operation. The secondary mirror positioning system must operate at a minimum specified temperature of -50 C. The telescope operates in the IR and the secondary mirror mount and positioning device is in the metering path between the primary and secondary mirrors. I2R losses in positioning system actuator devices, which may cause heating of the positioning system and secondary mirror, must be minimized due to the previously mentioned alignment sensitivity and the viewing spectrum of interest. The GHAPs project was cancelled on June 30, 2017. The purpose of this study is to address some of the issues identified with the hexapod secondary mirror positioning system and identify alternative approaches. This information may be used if the project is re-started at a later date.
Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy.
Häußler, Andreas J; Heller, Pascal; McGuinness, Liam P; Naydenov, Boris; Jelezko, Fedor
2014-12-01
Precise positioning of nitrogen-vacancy (NV) centers is crucial for their application in sensing and quantum information. Here we present a new purely optical technique enabling determination of the NV position with nanometer resolution. We use a confocal microscope to determine the position of individual emitters along the optical axis. Using two separate detection channels, it is possible to simultaneously measure reflected light from the diamond surface and fluorescent light from the NV center and statistically evaluate both signals. An accuracy of 2.6 nm for shallow NV centers was achieved and is consistent with other techniques for depth determination.
Optical Counterpart to MAXI J1647-227
NASA Astrophysics Data System (ADS)
Garnavich, P.; Magno, K.; Applegate, A.
2012-06-01
We observed the field of the X-ray transient MAXI J1647-227 (Negoro et al., ATEL#4175) with the Vatican Advance Technology Telescope (VATT) and VATT4K CCD imager beginning June 16.244 UT. R-band images reveal an optical source near the position of the Swift localization (Kennea et al., ATEL#4178) that is not visible on the Digitized Sky Survey. Based on USNO-B1.0 catalog stars in the field, we find the optical transient has a position of 16:48:12.32 -23:00:53.56 (error of 0.2 arcsec) which is within 2 arcsec of the Swift X-ray position.
Using virtual environment for autonomous vehicle algorithm validation
NASA Astrophysics Data System (ADS)
Levinskis, Aleksandrs
2018-04-01
This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.
Chikkaraddy, Rohit; Turek, V A; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F; Baumberg, Jeremy J
2018-01-10
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 10 3 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
Majewski, Stanislaw; Weisenberger, Andrew G.
2004-06-15
In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.
NASA Astrophysics Data System (ADS)
Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha
2014-12-01
In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.
Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha
2014-12-01
In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.
Linander, Nellie; Dacke, Marie; Baird, Emily
2015-04-01
When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. © 2015. Published by The Company of Biologists Ltd.
Mathematical model of a DIC position sensing system within an optical trap
NASA Astrophysics Data System (ADS)
Wulff, Kurt D.; Cole, Daniel G.; Clark, Robert L.
2005-08-01
The quantitative study of displacements and forces of motor proteins and processes that occur at the microscopic level and below require a high level of sensitivity. For optical traps, two techniques for position sensing have been accepted and used quite extensively: quadrant photodiodes and an interferometric position sensing technique based on DIC imaging. While quadrant photodiodes have been studied in depth and mathematically characterized, a mathematical characterization of the interferometric position sensor has not been presented to the authors' knowledge. The interferometric position sensing method works off of the DIC imaging capabilities of a microscope. Circularly polarized light is sent into the microscope and the Wollaston prism used for DIC imaging splits the beam into its orthogonal components, displacing them by a set distance determined by the user. The distance between the axes of the beams is set so the beams overlap at the specimen plane and effectively share the trapped microsphere. A second prism then recombines the light beams and the exiting laser light's polarization is measured and related to position. In this paper we outline the mathematical characterization of a microsphere suspended in an optical trap using a DIC position sensing method. The sensitivity of this mathematical model is then compared to the QPD model. The mathematical model of a microsphere in an optical trap can serve as a calibration curve for an experimental setup.
Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing
2015-05-29
A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.
High resolution optical shaft encoder for motor speed control based on an optical disk pick-up
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.
1998-08-01
Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.
Liu, Xiang; Effenberger, Frank; Chand, Naresh
2015-03-09
We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.
Laser beam soldering of micro-optical components
NASA Astrophysics Data System (ADS)
Eberhardt, R.
2003-05-01
MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.
Performance Evaluation Of The Antares Reference Telescope System
NASA Astrophysics Data System (ADS)
Parker, J. R.; Woodfin, G. L.; Viswanathan, V. K.
1985-11-01
The Antares Reference Telescope System is a complicated electro-optical-mechanical system whose main purpose is to enable positioning of targets used in the Antares Laser System to within 10 μm of a selected nominal position. To date, it has been used successfully to position targets ranging in size from 300 μm to 2 mm. The system consists of two electro-optical systems positioned in a nearly orthogonal manner. This "cross telescope" configuration facilitates accurate positioning in three planes. The results obtained so far in resolution and positioning of targets using this system are discussed. It is shown that a resolution of 200 1p/mm and a positioning precision of 25 μm can be obtained.
Performance evaluation of the Antares reference telescope system
NASA Astrophysics Data System (ADS)
Parker, J. R.; Woodfin, G. L.; Viswanathan, V. K.
The Antares Reference Telescope System is a complicated electro-optical-mechanical system whose main purpose is to enable positioning of targets used in the Antares Laser System to within 10 microns of a selected nominal position. To date, it has been used successfully to position targets ranging in size from 300 microns to 2 mm. The system consists of two electro-optical systems positioned in a nearly orthogonal manner. This cross telescope configuration facilitates accurate positioning in three planes. The results obtained so far in resolution and positioning of targets using this system are discussed. It is shown that a resolution of 200 lp/mm and a positioning precision of 25 microns can be obtained.
Linander, Nellie; Baird, Emily; Dacke, Marie
2017-05-01
Flying insects frequently navigate through environments of different complexity. In this study, buff-tailed bumblebees (Bombus terrestris L.) were trained to fly along tunnels of different widths, from 60 to 240 cm. In tunnel widths of 60 and 120 cm, bumblebees control their lateral position by balancing the magnitude of translational optic flow experienced in the lateral visual field of each eye. In wider tunnels, bumblebees use translational optic flow cues in the ventral visual field to control their lateral position and to steer along straight tracks. Our results also suggest that bumblebees prefer to fly over surfaces that provide strong ventral optic flow cues, rather than over featureless ones. Together, these strategies allow bumblebees to minimize the risk of collision and to maintain relatively straight flight paths in a broad range of environments.
NASA Technical Reports Server (NTRS)
Schroeder, Daniel J.
1992-01-01
The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.
2017-01-01
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale. PMID:29166033
NASA Astrophysics Data System (ADS)
Chikkaraddy, Rohit; Turek, V. A.; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F.; Baumberg, Jeremy J.
2018-01-01
Fabricating nanocavities in which optically-active single quantum emitters are precisely positioned, is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore, and obtain enhancements of $\\geq4\\times10^3$ with high quantum yield ($\\geq50$%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of $\\pm1.5$ nm. Our approach introduces a straightforward non-invasive way to measure and quantify confined optical modes on the nanoscale.
Fabrication and test of digital output interface devices for gas turbine electronic controls
NASA Technical Reports Server (NTRS)
Newirth, D. M.; Koenig, E. W.
1978-01-01
A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Daisuke; Center for Optical Research and Education; Juman, Guzhaliayi
It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum andmore » a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.« less
Optical pseudomotors for soft x-ray beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedreira, P., E-mail: ppedreira@cells.es; Sics, I.; Sorrentino, A.
2016-05-15
Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others.more » We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.« less
Spatiotemporal polarization modulation microscopy with a microretarder array
NASA Astrophysics Data System (ADS)
Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.
2018-02-01
A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.
Experimental examination of frequency locking effect in acousto-optic system
NASA Astrophysics Data System (ADS)
Mantsevich, S. N.; Balakshy, V. I.
2018-04-01
The optoelectronic system containing collinear acousto-optic cell fabricated on the base of calcium molybdate crystal and positive electronic feedback circuit was examined. The feedback signal is formed due to the optical heterodyning effect that occurs on the cell output and takes place in the special regime of collinear acousto-optic diffraction. It was discovered that three operation modes that may exist in this system. The boundaries between the modes were determined. The positions of the boundaries depend on the main parameters of the system—the incident light intensity and the feedback gain value. The new for acousto-optics phenomenon of acousto-optic system self-oscillations frequency locking by the RF generator signal was discovered and examined experimentally. Such an effect has never been observed before in the acousto-optic systems. It was experimentally shown that frequency locking effect may be used to select one of the multimode semiconductor laser longitudinal modes to improve laser radiation spectral composition.
Direct laser writing of polymeric nanostructures via optically induced local thermal effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Quang Cong; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi; Nguyen, Dam Thuy Trang
We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.
Desplanques, Maxime; Tagaste, Barbara; Fontana, Giulia; Pella, Andrea; Riboldi, Marco; Fattori, Giovanni; Donno, Andrea; Baroni, Guido; Orecchia, Roberto
2013-01-01
The synergy between in-room imaging and optical tracking, in co-operation with highly accurate robotic patient handling represents a concept for patient-set-up which has been implemented at CNAO (Centro Nazionale di Adroterapia Oncologica). In-room imaging is based on a double oblique X-ray projection system; optical tracking consists of the detection of the position of spherical markers placed directly on the patient's skin or on the immobilization devices. These markers are used as external fiducials during patient positioning and dose delivery. This study reports the results of a comparative analysis between in-room imaging and optical tracking data for patient positioning within the framework of high-precision particle therapy. Differences between the optical tracking system (OTS) and the imaging system (IS) were on average within the expected localization accuracy. On the first 633 fractions for head and neck (H&N) set-up procedures, the corrections applied by the IS, after patient positioning using the OTS only, were for the mostly sub-millimetric regarding the translations (0.4±1.1 mm) and sub-gradual regarding the rotations (0.0°±0.8°). On the first 236 fractions for pelvis localizations the amplitude of the corrections applied by the IS after preliminary optical set-up correction were moderately higher and more dispersed (translations: 1.3±2.9 mm, rotations 0.1±0.9°). Although the indication of the OTS cannot replace information provided by in-room imaging devices and 2D-3D image registration, the reported data show that OTS preliminary correction might greatly support image-based patient set-up refinement and also provide a secondary, independent verification system for patient positioning. PMID:23824116
An automated two-dimensional optical force clamp for single molecule studies.
Lang, Matthew J; Asbury, Charles L; Shaevitz, Joshua W; Block, Steven M
2002-01-01
We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads. PMID:12080136
Opto-mechanical design for transmission optics in cryogenic space instrumentation
NASA Astrophysics Data System (ADS)
Kroes, Gabby; Venema, Lars; Navarro, Ramón
2017-11-01
NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.
Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Dino; Oddershede, Lene B., E-mail: oddershede@nbi.dk; Reihani, S. Nader S.
2014-05-15
In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of themore » trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.« less
Electro-Optic Diffraction Grating Tuned Laser.
The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.
Electronic Absolute Cartesian Autocollimator
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2006-01-01
An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the mirror is slightly tilted. Hence, one can determine the amount and direction of tilt from the coordinates of the target image on the viewing plane.
2016-11-02
million per year to U.S. hospitals [1,2]. Current methods of assessing ETT position include chest radiography, end- tidal carbon dioxide (EtCO2...lasers to generate sound waves to determine the position of “labeled” ETTs within millimeters of accuracy. Laser optoacoustic imaging combines the merits...of optical tomography (high optical contrast) and ultrasound imaging (minimal scattering of acoustic waves ) to yield high contrast, sensitivity, and
Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao
2016-01-01
Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379
Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao
2016-03-19
Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.
ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells
NASA Astrophysics Data System (ADS)
Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul
2017-04-01
We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.
NASA Astrophysics Data System (ADS)
Ferraro, Mike S.; Mahon, Rita; Rabinovich, William S.; Murphy, James L.; Dexter, James L.; Clark, William R.; Waters, William D.; Vaccaro, Kenneth; Krejca, Brian D.
2017-02-01
Photodetectors in free space optical communication systems perform two functions: reception of data communication signals and position sensing for pointing, tracking, and stabilization. Traditionally, the optical receive path in an FSO system is split into separate paths for data detection and position sensing. The need for separate paths is a consequence of conflicting performance criteria between position sensitive detectors (PSD) and data detectors. Combining the functionality of both detector types requires that the combinational sensor not only have the bandwidth to support high data rate communication but the active area and spatial discrimination to accommodate position sensing. In this paper we present a large area, concentric five element impact ionization engineered avalanche photodiode array rated for bandwidths beyond 1GHz with a measured carrier ionization ratio of less than 0.1 at moderate APD gains. The integration of this array as a combinational sensor in an FSO system is discussed along with the development of a pointing and stabilization algorithm.
Optical position sensor for determining the interface between a clear and an opaque fluid
Weiss, Jonathan D [Albuquerque, NM
2006-05-23
An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, A.; Akimov, V.; Tulupenko, V.; Mora-Ramos, M. E.; Kasapoglu, E.; Ungan, F.; Sökmen, I.; Morales, A. L.; Duque, C. A.
2016-03-01
Electronic structure and optical properties in equilateral triangular GaAs/Al0.3Ga0.7As quantum dots are studied extensively. The effects of donor and acceptor impurity atoms positioned in the orthocenter of the triangle, as well as of the external DC electric field are taken into account. Binding energies of the impurity, exciton energies, interband photoluminescence peak positions as well as linear and non-linear optical properties in THz range caused by transitions between excitonic states are calculated and discussed.
X-ray and optical stereo-based 3D sensor fusion system for image-guided neurosurgery.
Kim, Duk Nyeon; Chae, You Seong; Kim, Min Young
2016-04-01
In neurosurgery, an image-guided operation is performed to confirm that the surgical instruments reach the exact lesion position. Among the multiple imaging modalities, an X-ray fluoroscope mounted on C- or O-arm is widely used for monitoring the position of surgical instruments and the target position of the patient. However, frequently used fluoroscopy can result in relatively high radiation doses, particularly for complex interventional procedures. The proposed system can reduce radiation exposure and provide the accurate three-dimensional (3D) position information of surgical instruments and the target position. X-ray and optical stereo vision systems have been proposed for the C- or O-arm. Two subsystems have same optical axis and are calibrated simultaneously. This provides easy augmentation of the camera image and the X-ray image. Further, the 3D measurement of both systems can be defined in a common coordinate space. The proposed dual stereoscopic imaging system is designed and implemented for mounting on an O-arm. The calibration error of the 3D coordinates of the optical stereo and X-ray stereo is within 0.1 mm in terms of the mean and the standard deviation. Further, image augmentation with the camera image and the X-ray image using an artificial skull phantom is achieved. As the developed dual stereoscopic imaging system provides 3D coordinates of the point of interest in both optical images and fluoroscopic images, it can be used by surgeons to confirm the position of surgical instruments in a 3D space with minimum radiation exposure and to verify whether the instruments reach the surgical target observed in fluoroscopic images.
Optic-electronic system for deformation of radio-telescope counter-reflector computer modeling
NASA Astrophysics Data System (ADS)
Konyakhin, Igor A.; Petrochenko, Andrew V.; Tolochek, Nina S.
2014-05-01
In article is described the method of the «angle photometric resection» and the definition of the parameters of the external orientation (spatial coordinates of the points of shooting and the angular position of the shooting plane) and his use for the optic-electronic system that determinates the position of counter-reflector.
All-optical patterning of Au nanoparticles on surfaces using optical traps.
Guffey, Mason J; Scherer, Norbert F
2010-11-10
The fabrication of nanoscale devices would be greatly enhanced by "nanomanipulators" that can position single and few objects rapidly with nanometer precision and without mechanical damage. Here, we demonstrate the feasibility and precision of an optical laser tweezer, or optical trap, approach to place single gold (Au) nanoparticles on surfaces with high precision (approximately 100 nm standard deviation). The error in the deposition process is rather small but is determined to be larger than the thermal fluctuations of single nanoparticles within the optical trap. Furthermore, areas of tens of square micrometers could be patterned in a matter of minutes. Since the method does not rely on lithography, scanning probes or a specialized surface, it is versatile and compatible with a variety of systems. We discuss active feedback methods to improve positioning accuracy and the potential for multiplexing and automation.
Side-emitting fiber optic position sensor
Weiss, Jonathan D [Albuquerque, NM
2008-02-12
A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.
NASA Technical Reports Server (NTRS)
Venkataraman, T. S.; Eidson, W. W.; Cohen, L. D.; Farina, J. D.; Acquista, C.
1983-01-01
The position and velocity of optically levitated glass spheres (radii 10-20 microns) movng in a gas are measured accurately, rapidly, and continuously using a high-speed rotating polygon mirror. The experimental technique developed here has repeatable position accuracies better than 20 microns. Each measurement takes less than 1 microsec and can be repeated every 100 microsec. The position of the levitated glass spheres can be manipulated accurately by modulating the laser power with an acoustic optic modulator. The technique provides a fast and accurate method to study general particle dynamics in a fluid.
Zabaleta, Haritz; Valencia, David; Perry, Joel; Veneman, Jan; Keller, Thierry
2011-01-01
ArmAssist is a wireless robot for post stroke upper limb rehabilitation. Knowing the position of the arm is essential for any rehabilitation device. In this paper, we describe a method based on an artificial landmark navigation system. The navigation system uses three optical mouse sensors. This enables the building of a cheap but reliable position sensor. Two of the sensors are the data source for odometry calculations, and the third optical mouse sensor takes very low resolution pictures of a custom designed mat. These pictures are processed by an optical symbol recognition algorithm which will estimate the orientation of the robot and recognize the landmarks placed on the mat. The data fusion strategy is described to detect the misclassifications of the landmarks in order to fuse only reliable information. The orientation given by the optical symbol recognition (OSR) algorithm is used to improve significantly the odometry and the recognition of the landmarks is used to reference the odometry to a absolute coordinate system. The system was tested using a 3D motion capture system. With the actual mat configuration, in a field of motion of 710 × 450 mm, the maximum error in position estimation was 49.61 mm with an average error of 36.70 ± 22.50 mm. The average test duration was 36.5 seconds and the average path length was 4173 mm.
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
SU-D-BRA-02: Motion Assessment During Open Face Mask SRS Using CBCT and Surface Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, BB; Fox, CJ; Hartford, AC
Purpose: To assess the robustness of immobilization using open-face mask technology for linac-based stereotactic radiosurgery (SRS) with multiple non-coplanar arcs via repeated CBCT acquisition, with comparison to contemporaneous optical surface tracking data. Methods: 25 patients were treated in open faced masks with cranial SRS using 3–4 non-coplanar arcs. Repeated CBCT imaging was performed to verify the maintenance of proper patient positioning during treatment. Initial patient positioning was performed based on prescribed shifts and optical surface tracking. Positioning refinements employed rigid 3D-matching of the planning CT and CBCT images and were implemented via automated 6DOF couch control. CBCT imaging was repeatedmore » following the treatment of all non-transverse beams with associated couch kicks. Detected patient translations and rotations were recorded and automatically corrected. Optical surface tracking was applied throughout the treatments to monitor motion, and this contemporaneous patient positioning data was recorded to compare against CBCT data and 6DOF couch adjustments. Results: Initial patient positions were refined on average by translations of 3±1mm and rotations of ±0.9-degrees. Optical surface tracking corroborated couch corrections to within 1±1mm and ±0.4-degrees. Following treatment of the transverse and subsequent superior-oblique beam, average translations of 0.6±0.4mm and rotations of ±0.4-degrees were reported via CBCT, with optical surface tracking in agreement to within 1.1±0.6mm and ±0.6-degrees. Following treatment of the third beam, CBCT indicated additional translations of 0.4±0.2mm and rotations of ±0.3-degrees. Cumulative couch corrections resulted in 0.7 ± 0.4mm average magnitude translations and rotations of ±0.4-degrees. Conclusion: Based on CBCT measurements of patients during SRS, the open face mask maintained patient positioning to within 1.5mm and 1-degree with >95% confidence. Patient positioning determined by optical surface tracking agreed with CBCT assessment to within 1±1mm and ±0.6-degree rotations. These data support the use of 1–2mm PTV margins and repeated CBCT to maintain stereotactic positioning tolerances.« less
Optical Trap Loading of Dielectric Microparticles In Air.
Park, Haesung; LeBrun, Thomas W
2017-02-05
We demonstrate a method to trap a selected dielectric microparticle in air using radiation pressure from a single-beam gradient optical trap. Randomly scattered dielectric microparticles adhered to a glass substrate are momentarily detached using ultrasonic vibrations generated by a piezoelectric transducer (PZT). Then, the optical beam focused on a selected particle lifts it up to the optical trap while the vibrationally excited microparticles fall back to the substrate. A particle may be trapped at the nominal focus of the trapping beam or at a position above the focus (referred to here as the levitation position) where gravity provides the restoring force. After the measurement, the trapped particle can be placed at a desired position on the substrate in a controlled manner. In this protocol, an experimental procedure for selective optical trap loading in air is outlined. First, the experimental setup is briefly introduced. Second, the design and fabrication of a PZT holder and a sample enclosure are illustrated in detail. The optical trap loading of a selected microparticle is then demonstrated with step-by-step instructions including sample preparation, launching into the trap, and use of electrostatic force to excite particle motion in the trap and measure charge. Finally, we present recorded particle trajectories of Brownian and ballistic motions of a trapped microparticle in air. These trajectories can be used to measure stiffness or to verify optical alignment through time domain and frequency domain analysis. Selective trap loading enables optical tweezers to track a particle and its changes over repeated trap loadings in a reversible manner, thereby enabling studies of particle-surface interaction.
Piezo-based, high dynamic range, wide bandwidth steering system for optical applications
NASA Astrophysics Data System (ADS)
Karasikov, Nir; Peled, Gal; Yasinov, Roman; Feinstein, Alan
2017-05-01
Piezoelectric motors and actuators are characterized by direct drive, fast response, high positioning resolution and high mechanical power density. These properties are beneficial for optical devices such as gimbals, optical image stabilizers and mirror angular positioners. The range of applications includes sensor pointing systems, image stabilization, laser steering and more. This paper reports on the construction, properties and operation of three types of piezo based building blocks for optical steering applications: a small gimbal and a two-axis OIS (Optical Image Stabilization) mechanism, both based on piezoelectric motors, and a flexure-assisted piezoelectric actuator for mirror angular positioning. The gimbal weighs less than 190 grams, has a wide angular span (solid angle of > 2π) and allows for a 80 micro-radian stabilization with a stabilization frequency up to 25 Hz. The OIS is an X-Y, closed loop, platform having a lateral positioning resolution better than 1 μm, a stabilization frequency up to 25 Hz and a travel of +/-2 mm. It is used for laser steering or positioning of the image sensor, based on signals from a MEMS Gyro sensor. The actuator mirror positioner is based on three piezoelectric actuation axes for tip tilt (each providing a 50 μm motion range), has a positioning resolution of 10 nm and is capable of a 1000 Hz response. A combination of the gimbal with the mirror positioner or the OIS stage is explored by simulations, indicating a <10 micro-radian stabilization capability under substantial perturbation. Simulations and experimental results are presented for a combined device facilitating both wide steering angle range and bandwidth.
NASA Astrophysics Data System (ADS)
Date, Kumi; Ishigure, Takaaki
2017-02-01
Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.
Accurate beacon positioning method for satellite-to-ground optical communication.
Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing
2017-12-11
In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.
Heebner, John E [Livermore, CA
2010-08-03
In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.
Ignition system monitoring assembly
Brushwood, John Samuel
2003-11-04
An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.
Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun
2017-11-10
In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.
Ion beam machining error control and correction for small scale optics.
Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi
2011-09-20
Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.
NASA Technical Reports Server (NTRS)
Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)
1997-01-01
A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.
Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives
NASA Astrophysics Data System (ADS)
Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan
2015-09-01
The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.
Relative optical navigation around small bodies via Extreme Learning Machine
NASA Astrophysics Data System (ADS)
Law, Andrew M.
To perform close proximity operations under a low-gravity environment, relative and absolute positions are vital information to the maneuver. Hence navigation is inseparably integrated in space travel. Extreme Learning Machine (ELM) is presented as an optical navigation method around small celestial bodies. Optical Navigation uses visual observation instruments such as a camera to acquire useful data and determine spacecraft position. The required input data for operation is merely a single image strip and a nadir image. ELM is a machine learning Single Layer feed-Forward Network (SLFN), a type of neural network (NN). The algorithm is developed on the predicate that input weights and biases can be randomly assigned and does not require back-propagation. The learned model is the output layer weights which are used to calculate a prediction. Together, Extreme Learning Machine Optical Navigation (ELM OpNav) utilizes optical images and ELM algorithm to train the machine to navigate around a target body. In this thesis the asteroid, Vesta, is the designated celestial body. The trained ELMs estimate the position of the spacecraft during operation with a single data set. The results show the approach is promising and potentially suitable for on-board navigation.
A gravitational lens candidate with an unusually red optical counterpart
NASA Technical Reports Server (NTRS)
Hewitt, J. N.; Turner, E. L.; Lawrence, C. R.; Schneider, D. P.; Brody, J. P.
1992-01-01
The properties of the strong radio source MG0414 + 0534 are described. It is found to display many of the properties expected in a gravitational lens system. At radio wavelengths and 0.5-arcsec resolution, MG0414 + 0534 is made up of four compact components whose unusual configuration and relative flux densities are similar to those found in confirmed four-image gravitational lens systems. At optical wavelengths three objects are detected, consistent with there being optical objects at the positions of the radio components, given the lower optical resolution. The radio and optical centroid positions agree within the astrometric errors, and the relative ordering of the fluxes is the same. The colors and radiooptical spectral indices are similar, but there are differences larger than the photometric errors and the measured variability (about 30 percent). Extinction by dust might simultaneously explain the unusually red color and the absence of light from a lens.
Optical panel system including stackable waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, Leonard; Veligdan, James T.
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less
AVIRIS foreoptics, fiber optics and on-board calibrator
NASA Technical Reports Server (NTRS)
Chrisp, Michael P.; Chrien, Thomas G.; Steimle, L.
1987-01-01
The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.
Optical panel system including stackable waveguides
DeSanto, Leonard; Veligdan, James T.
2007-03-06
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
NASA Astrophysics Data System (ADS)
Nirmalkar, J.; Raman, R. S.
2016-12-01
Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.
Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J
2018-01-22
The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.
VizieR Online Data Catalog: RASS-6dFGS catalogue (Mahony+, 2010)
NASA Astrophysics Data System (ADS)
Mahony, E. K.; Croom, S. M.; Boyle, B. J.; Edge, A. C.; Mauch, T.; Sadler, E. M.
2014-09-01
Objects were selected such that the dominant source of X-ray emission originates from an AGN. The target list was selected from the southern sources (δ<=0°) of the RBSC, a total of 9578 sources. Sources were then checked for optical identifications via a visual inspection process using Digitized Sky Survey (DSS) images. The majority of the optical positions were taken from the United States Naval Observatory (USNO) data base, with the remainder taken from either the Automated Plate Measuring (APM) or DSS catalogues. Positions from these latter catalogues were used when the USNO appeared to give an incorrect position according to the DSS images. Optical magnitudes were taken from the USNO-A2.0 catalogue (Monet 1998, Cat. I/252). (2 data files).
Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E
2010-11-08
Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.
A compact optical fiber positioner
NASA Astrophysics Data System (ADS)
Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru
2016-07-01
In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.
The cervical cancer detection system based on an endoscopic rotary probe
NASA Astrophysics Data System (ADS)
Yang, Yanshuang; Hou, Qiang; Zhao, Huijuan; Qin, Zhuanping; Gao, Feng
2012-03-01
To acquire the optical diffuse tomographic image of the cervix, a novel endoscopic rotary probe is designed and the frequency domain measurement system is developed. The finite element method and Gauss-Newton method are proposed to reconstruct the image of the phantom. In the optical diffuse tomographic imaging of the cervix, an endoscopic probe is needed and the detection of light at different separation to the irradiation spot is necessary. To simplify the system, only two optical fibers are adopted for light irradiation and collection, respectively. Two small stepper motors are employed to control the rotation of the incident fiber and the detection fiber, respectively. For one position of source fiber, the position of the detection fiber is changed from -61.875° to -50.625° and 50.625° to 61.875° to the source fiber, respectively. Then, the position of the source fiber is changed to another preconcerted position, which deviates the precious source position in an angle of 11.25°, and the detection fiber rotates within the above angles. To acquire the efficient irradiation and collection of the light, a gradient-index (GRIN) lens is connected at the head of the optical fiber. The other end of the GRIN lens is cut to 45°. With this design, light from optical fiber is reflected to the cervix wall, which is perpendicular to the optical fiber or vice versa. Considering the cervical size, the external diameter of the endoscopic probe is made to 20mm. A frequency domain (FD) near-infrared diffuse system is developed aiming at the detection of early cervical cancer, which modulates the light intensity in radio frequency and measures the amplitude attenuation and the phase delay of the diffused light using heterodyne detection. Phantom experiment results demonstrate that the endoscopic rotary scan probe and the system perform well in the endoscopic measurement.
Measurements of the force fields within an acoustic standing wave using holographic optical tweezers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.
2014-04-21
Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces aremore » separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.« less
NASA Technical Reports Server (NTRS)
Harper, L. L. (Inventor)
1983-01-01
An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.
Optical force stamping lithography
Nedev, Spas; Urban, Alexander S.; Lutich, Andrey A.; Feldmann, Jochen
2013-01-01
Here we introduce a new paradigm of far-field optical lithography, optical force stamping lithography. The approach employs optical forces exerted by a spatially modulated light field on colloidal nanoparticles to rapidly stamp large arbitrary patterns comprised of single nanoparticles onto a substrate with a single-nanoparticle positioning accuracy well beyond the diffraction limit. Because the process is all-optical, the stamping pattern can be changed almost instantly and there is no constraint on the type of nanoparticle or substrates used. PMID:21992538
Femtosecond optical packet generation by a direct space-to-time pulse shaper.
Leaird, D E; Weiner, A M
1999-06-15
We demonstrate femtosecond operation of a direct space-to-time pulse shaper in which there is direct mapping (no Fourier transform) between the spatial position of the masking function and the temporal position in the output waveform. We use this apparatus to generate trains of 20 pulses as an ultrafast optical data packet over an approximately 40-ps temporal window.
MISPS: Module integrated solar position sensor for concentration photovoltaics
NASA Astrophysics Data System (ADS)
Pardell, Ricard
2012-10-01
This paper describes a new device, the MISPS (Module Integrated. Solar Position Sensor) for CPV systems. Its main innovation lies in it being module integrated, so that the sensor is a constituent part of the module and uses its optics. The MISPS has been designed within the scope of the CPVRS project, but it can be used in any refractive optics CPV system.
Optimized achromatic phase-matching system and method
Trebino, R.; DeLong, K.; Hayden, C.
1997-07-15
An optical system for efficiently directing a large bandwidth light (e.g., a femtosecond laser pulse) onto a nonlinear optical medium includes a plurality of optical elements for directing an input light pulse onto a nonlinear optical medium arranged such that the angle {theta}{sub in} which the light pulse directed onto the nonlinear optical medium is substantially independent of a position x of the light beam entering the optical system. The optical system is also constructed such that the group velocity dispersion of light pulses passing through the system can be tuned to a desired value including negative group velocity dispersion. 15 figs.
Optimized achromatic phase-matching system and method
Trebino, Rick; DeLong, Ken; Hayden, Carl
1997-01-01
An optical system for efficiently directing a large bandwidth light (e.g., a femtosecond laser pulse) onto a nonlinear optical medium includes a plurality of optical elements for directing an input light pulse onto a nonlinear optical medium arranged such that the angle .theta..sub.in which the light pulse directed onto the nonlinear optical medium is substantially independent of a position x of the light beam entering the optical system. The optical system is also constructed such that the group velocity dispersion of light pulses passing through the system can be tuned to a desired value including negative group velocity dispersion.
On-chip beam positioning sensor via frequency locked cascaded ring resonators
NASA Astrophysics Data System (ADS)
Naiman, Alex; Stern, Liron; Levy, Uriel
2018-05-01
We demonstrate an approach for on-chip beam positioning with a position accuracy of up to 100 nm. This approach is based on tracking the resonance of two adjacent microring resonators that are implemented on a silicon on insulator chip. We demonstrate the functionality of our approach by illuminating the chip through a Near Field Scanning Optical Microscope tip and monitoring the shift of the microring resonances due to the thermo-optic effect. We also discuss the contribution of different effects such as free carrier absorption and dispersion to the resonance shift.
Method for producing damage resistant optics
Hackel, Lloyd A.; Burnham, Alan K.; Penetrante, Bernardino M.; Brusasco, Raymond M.; Wegner, Paul J.; Hrubesh, Lawrence W.; Kozlowski, Mark R.; Feit, Michael D.
2003-01-01
The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.
Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan
2018-03-20
The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.
Kramer, D.P.
1994-08-09
Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.
Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.
Initial alignment method for free space optics laser beam
NASA Astrophysics Data System (ADS)
Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi
2016-08-01
The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.
Synchronization using pulsed edge tracking in optical PPM communication system
NASA Technical Reports Server (NTRS)
Gagliardi, R.
1972-01-01
A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.
Diffractive optics for quasi-direct space-to-time pulse shaping.
Mínguez-Vega, Gladys; Mendoza-Yero, Omel; Lancis, Jesús; Gisbert, Rafael; Andrés, Pedro
2008-10-13
The strong chromatic behavior associated with a conventional diffractive lens is fully exploited to propose a novel optical device for pulse shaping in the femtosecond regime. This device consists of two optical elements: a spatially patterned circularly symmetric mask and a kinoform diffractive lens, which are facing each other. The system performs a mapping between the spatial position of the masking function expressed in the squared radial coordinate and the temporal position in the output waveform. This space-to-time conversion occurs at the chromatic focus of the diffractive lens, and makes it possible to tailor the output central wavelength along the axial location of the output point. Inspection of the validity of our device is performed by means of computer simulations involving the generation of femtosecond optical packets.
Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038
NASA Astrophysics Data System (ADS)
Shahbaz, T.; Dallilar, Y.; Garner, A.; Eikenberry, S.; Veledina, A.; Gandhi, P.
2018-06-01
We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r΄- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.
Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove
2004-06-15
An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.
NASA Astrophysics Data System (ADS)
Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove
2003-06-01
Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.
Research of subdivision driving technology for brushless DC motors in optical fiber positioning
NASA Astrophysics Data System (ADS)
Kan, Yi; Gu, Yonggang; Zhu, Ye; Zhai, Chao
2016-07-01
In fiber spectroscopic telescopes, optical fiber positioning units are used to position thousands of fibers on the focal plane quickly and precisely. Stepper motors are used in existing units, however, it has some inherent deficiencies, such as serious heating and low efficiency. In this work, the universally adopted subdivision driving technology for stepper motors is transplanted to brushless DC motors. It keeps the advantages of stepper motors such as high positioning accuracy and resolution, while overcomes the disadvantages mentioned above. Thus, this research mainly focuses on develop a novel subdivision driving technology for brushless DC motor. By the proving of experiments of online debug and subdivision speed and position, the proposed brushless DC motor subdivision technology can achieve the expected functions.
Methods and apparatus for optical switching using electrically movable optical fibers
Peterson, Kenneth A [Albuquerque, NM
2007-03-13
Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.
Optic variables used to judge future ball arrival position in expert and novice soccer players.
Craig, Cathy M; Goulon, Cédric; Berton, Eric; Rao, Guillaume; Fernandez, Laure; Bootsma, Reinoud J
2009-04-01
Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.
Spinning angle optical calibration apparatus
Beer, Stephen K.; Pratt, II, Harold R.
1991-01-01
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.
New measuring system for the distribution of a magnetic force by using an optical fiber
NASA Astrophysics Data System (ADS)
Ishigaki, H.; Oya, T.; Itoh, M.; Hida, A.; Iwata, K.
1993-01-01
A new measuring system using an optical fiber and a position sensing photodetector was developed to measure a three-dimensional distribution of a magnetic force. A steel ball attached to a cantilever made of an optical fiber generated force in a magnetic field. The displacement of the ball due to the force was detected by a position-sensing photodetector with the capability of detecting two-directional coordinates of the position. By scanning the sensing system in a magnetic field, we obtained distributions of two-directional component of the magnetic force vector. The component represents the gradient of a squared magnetic field. The usefulness of the system for measuring the magnetic field distribution in a narrow clearance and for evaluating superconducting machine components such as magnetic bearings was verified experimentally.
Neuman, Keir C.; Block, Steven M.
2006-01-01
Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180
Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991
NASA Technical Reports Server (NTRS)
Depaula, Ramon P. (Editor); Udd, Eric (Editor)
1991-01-01
The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.
Optically tracked, single-coil, scanning magnetic induction tomography
NASA Astrophysics Data System (ADS)
Feldkamp, Joe R.; Quirk, Stephen
2017-03-01
Recent work has shown the feasibility of single-coil, magnetic induction tomography, for visualizing a 3D distribution of electrical conductivity in portions of the human body. Loss is measured in a single, planar coil consisting of concentric circular loops while the coil is relocated to various non-redundant positions and orientations in the vicinity of the target. These loss values, together with measured coil position and orientation, are processed by a quantitative mapping equation that enables reconstruction of an electrical conductivity image. Up until now, the position of the coil had to be established by a template, which required assignment of locations for the coil to visit without necessarily giving any prior consideration to target geometry. We have now added optical tracking to our existing single-coil device so that position and orientation are tracked automatically, allowing collection of coil loss data at arbitrary positions or orientations as needed. Optical tracking is accomplished via a set of IR reflective spheres mounted on the same enclosure that supports the coil. Position for a select sphere within the set, together with the four quaternions specifying optical body orientation, is fed to a laptop at the same time coil loss data is streamed to the same laptop via Bluetooth. The coil center can be tracked with sub-millimeter accuracy while orientation angle is known to a fraction of a degree. This work illustrates the use of single-coil MIT in full, position-orientation-tracked scan mode while imaging laboratory phantoms. Phantoms are based upon simple materials having biologic conductivity (< 5 S/m), including a cut of bone-in steak. The goal is not just to reconstruct an image that contains the features of the actual target, but also return correct conductivity values for the various features within the image.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.; Collins, Stuart A., Jr.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Habiby, S F; Collins, S A
1987-11-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Interactive display system having a matrix optical detector
Veligdan, James T.; DeSanto, Leonard
2007-01-23
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.
NASA Astrophysics Data System (ADS)
Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick
As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.
Optical binding of two microparticles levitated in vacuum
NASA Astrophysics Data System (ADS)
Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan
2017-04-01
Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.
Kumar, Dhivya Ashok; Agarwal, Amar; Agarwal, Athiya; Chandrasekar, Radika; Priyanka, Vijetha
2015-01-01
Long-term assessment of the optic position of glued transscleral fixated intraocular lens (IOL) with optical coherence tomography (OCT). Prospective observational case series. Patients with a minimum 5 years' follow-up after glued IOL surgery were included. Postoperatively, IOL position was examined by anterior segment OCT (Carl Zeiss Meditec) and the scans were analyzed in 2 axes (180°-0° and 270°-90°) using MatLab (Mathworks). Best-corrected visual acuity (BCVA; Snellen's charts), Orbscan, retinoscopy, refraction, and slit-lamp biomicroscopy were performed. The distance between the iris margin and the anterior IOL optic (D1, D2), slope of the line across the iris and IOL, the slope ratio between the IOL and iris, IOL tilt, and optic surface changes were determined and correlated with the astigmatism and vision. A total of 60 eyes (mean follow-up of 5.9±0.2 years; range, 5-6 years) were evaluated. There was a significant correlation (P = 0.000) between the slope of iris and the IOL in horizontal and vertical axes. The mean D1 and D2 were 0.94 ± 0.36 and 0.95 ± 0.36 mm, respectively. Nine of 60 eyes (15%) had pigment dispersed on the IOL surface. Twenty-one eyes (35%) had optic tilt detected on OCT and 65% of eyes had no optic tilt. The mean angle between the IOL and the iris was noted to be 3.2 ± 2.7° and 2.9 ± 2.6° in horizontal and vertical axes, respectively. The mean ocular residual astigmatism (ORA) was 0.53 ± 0.5 diopters. There was no difference in the ORA between the eyes with and without tilt (P = 0.762). There was no correlation (P = 0.348) between the ORA and BCVA. Position of the IOL was not dependent on the type of lens, age of the patient, or the preoperative surgical indication. Long-term analysis with OCT demonstrated good IOL positioning without any significant optic tilt in patients with glued IOL fixation. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Kraus, Hans-Jürgen; Weise, Dennis; Braxmaier, Claus; Peters, Achim; Johann, Ulrich
2017-11-01
The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) requires a high performance position sensor in order to measure the translation and tilt of the free flying test mass with respect to the LISA optical bench. Here, we present a mechanically highly stable and compact setup of a heterodyne interferometer combined with differential wavefront sensing for the tilt measurement which serves as a demonstrator for an optical readout of the LISA test mass position. First results show noise levels below 1 nm/√Hz and 1 μrad/√Hz, respectively, for frequencies < 10-3 Hz.
Sarnadskiĭ, V N
2007-01-01
The problem of repeatability of the results of examination of a plastic human body model is considered. The model was examined in 7 positions using an optical topograph for kyphosis diagnosis. The examination was performed under television camera monitoring. It was shown that variation of the model position in the camera view affected the repeatability of the results of topographic examination, especially if the model-to-camera distance was changed. A study of the repeatability of the results of optical topographic examination can help to increase the reliability of the topographic method, which is widely used for medical screening of children and adolescents.
Optical Field-Strength Polarization of Two-Mode Single-Photon States
ERIC Educational Resources Information Center
Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.
2010-01-01
We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…
Optical flow versus retinal flow as sources of information for flight guidance
NASA Technical Reports Server (NTRS)
Cutting, James E.
1991-01-01
The appropriate description is considered of visual information for flight guidance, optical flow vs. retinal flow. Most descriptions in the psychological literature are based on the optical flow. However, human eyes move and this movement complicates the issues at stake, particularly when movement of the observer is involved. The question addressed is whether an observer, whose eyes register only retinal flow, use information in optical flow. It is suggested that the observer cannot and does not reconstruct the image in optical flow; instead they use retinal flow. Retinal array is defined as the projections of a three space onto a point and beyond to a movable, nearly hemispheric sensing device, like the retina. Optical array is defined as the projection of a three space environment to a point within that space. And flow is defined as global motion as a field of vectors, best placed on a spherical projection surface. Specifically, flow is the mapping of the field of changes in position of corresponding points on objects in three space onto a point, where that point has moved in position.
Design of 2*6 optical hybrid in inter-satellite coherent laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu
2008-08-01
Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.
Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR.
Pan, Chao; Liu, Xiaorui; Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-08-21
A real-time distributed optical fiber vibration sensing prototype based on the Sagnac interference in conjunction with the optical time domain reflectometry (OTDR) was developed. The sensing mechanism for single- and multi-points vibrations along the sensing fiber was analyzed theoretically and demonstrated experimentally. The experimental results show excellent agreement with the theoretical models. It is verified that single-point vibration induces a significantly abrupt and monotonous power change in the corresponding position of OTDR trace. As to multi-points vibrations, the detection of the following vibration is influenced by all previous ones. However, if the distance between the adjacent two vibrations is larger than half of the input optical pulse width, abrupt power changes induced by them are separate and still monotonous. A time-shifting differential module was developed and carried out to convert vibration-induced power changes to pulses. Consequently, vibrations can be located accurately by measuring peak or valley positions of the vibration-induced pulses. It is demonstrated that when the width and peak power of input optical pulse are set to 1 μs and 35 mW, respectively, the position error is less than ± 0.5 m in a sensing range of more than 16 km, with the spatial resolution of ~110 m.
Optical trapping and optical force positioning of two-dimensional materials.
Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M
2018-01-18
In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.
Novel artificial optical annular structures in the high latitude ionosphere over EISCAT
NASA Astrophysics Data System (ADS)
Kosch, M. J.; Rietveld, M. T.; Senior, A.; McCrea, I. W.; Kavanagh, A. J.; Isham, B.; Honary, F.
2004-06-01
The EISCAT low-gain HF facility has been used repeatedly to produce artificially stimulated optical emissions in the F-layer ionosphere over northern Scandinavia. On 12 November 2001, the high-gain HF facility was used for the first time. The pump beam zenith angle was moved in 3° steps along the north-south meridian from 3°N to 15°S, with one pump cycle per position. Only when pumping in the 9°S position were annular optical structures produced quite unexpectedly. The annuli were approximately centred on the pump beam but outside the -3 dB locus. The optical signature appears to form a cylinder, which was magnetic field-aligned, rising above the pump wave reflection altitude. The annulus always collapsed into the well-known optical blobs after ~60 s, whilst descending many km in altitude. All other pump beam directions produced optical blobs only. The EISCAT UHF radar, which was scanning from 3° to 15°S zenith angle, shows that enhanced ion-line backscatter persisted throughout the pump on period and followed the morphology of the optical signature. These observations provide the first experimental evidence that Langmuir turbulence can accelerate electrons sufficiently to produce the optical emissions at high latitudes. Why the optical annulus forms, and for only one zenith angle, remains unexplained.
Optical cavity furnace for semiconductor wafer processing
Sopori, Bhushan L.
2014-08-05
An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.
Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea
2012-10-02
Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.
Prism Window for Optical Alignment
NASA Technical Reports Server (NTRS)
Tang, Hong
2008-01-01
A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.
Fiber Optic Temperature Sensor Insert for High Temperature Environments
NASA Technical Reports Server (NTRS)
Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)
2017-01-01
A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.
3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras
Aguilera, Teodoro
2017-01-01
This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211
Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.
2017-08-01
We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
Scintillator fiber optic long counter
McCollum, Tom; Spector, Garry B.
1994-01-01
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.
A method for optical ground station reduce alignment error in satellite-ground quantum experiments
NASA Astrophysics Data System (ADS)
He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei
2018-03-01
A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.
A silicon-nanowire memory driven by optical gradient force induced bistability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, B.; Institute of Microelectronics, A*STAR; Cai, H., E-mail: caih@ime.a-star.edu.sg
2015-12-28
In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.
Analysis of nonreciprocal noise based on mode splitting in a high-Q optical microresonator
NASA Astrophysics Data System (ADS)
Yang, Zhaohua; Xiao, Yarong; Huo, Jiayan; Shao, Hui
2018-01-01
The whispering gallery mode optical microresonator offers a high quality factor, which enables it to act as the core component of a high sensitivity resonator optic gyro; however, nonreciprocal noise limits its precision. Considering the Sagnac effect, i.e. mode splitting in high-quality optical micro-resonators, we derive the explicit expression for the angular velocity versus the splitting amount, and verify the sensing mechanism by simulation using finite element method. Remarkably, the accuracy of the angular velocity measurement in the whispering gallery mode optical microresonator with a quality factor of 108 is 106 °/s. We obtain the optimal coupling position of the novel angular velocity sensing system by detecting the output transmittance spectra of different vertical coupling distances and axial coupling positions. In addition, the reason for the nonreciprocal phenomenon is determined by theoretical analysis of the evanescent distribution of a tapered fiber. These results will provide an effective method and a theoretical basis for suppression of the nonreciprocal noise.
Completion of the Design of the Top End Optical Assembly for ATST
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.
2013-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.
Multifunction Imaging and Spectroscopic Instrument
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis
2004-01-01
A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.
Woodruff, Steven D.; Mcintyre, Dustin L.
2016-03-29
A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.
Fiber optic to integrated optical chip coupler
NASA Technical Reports Server (NTRS)
Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)
1987-01-01
Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.
Multi-channel infrared thermometer
Ulrickson, M.A.
A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.
Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices
NASA Astrophysics Data System (ADS)
Opatrný, T.; Kolář, M.; Kurizki, G.
We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.
Patton, Gail Y.; Torgerson, Darrel D.
1987-01-01
An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.
Spatial filter system as an optical relay line
Hunt, John T.; Renard, Paul A.
1979-01-01
A system consisting of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.
A FORTRAN version implementation of block adjustment of CCD frames and its preliminary application
NASA Astrophysics Data System (ADS)
Yu, Y.; Tang, Z.-H.; Li, J.-L.; Zhao, M.
2005-09-01
A FORTRAN version implementation of the block adjustment (BA) of overlapping CCD frames is developed and its flowchart is shown. The program is preliminarily applied to obtain the optical positions of four extragalactic radio sources. The results show that because of the increase in the number and sky coverage of reference stars the precision of optical positions with BA is improved compared with the single CCD frame adjustment.
Optical Docking Aid Containing Fresnel Lenses
NASA Technical Reports Server (NTRS)
Pierce, Cole J.
1995-01-01
Proposed device provides self-contained visual cues to aid in docking. Similar to devices used to guide pilots in landing on aircraft carriers. Positions and directions of beams of light give observer visual cues of position relative to docking target point. Optical assemblies generate directed, diverging beams of light that, together, mark approach path to docking point. Conceived for use in docking spacecraft at Space Station Freedom, device adapted to numerous industrial docking and alignment applications.
Spinning angle optical calibration apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, S.K.; Pratt, H.R. II.
1989-09-12
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less
Rapid Optical Shutter, Chopper, Modulator and Deflector
NASA Technical Reports Server (NTRS)
Danehy, Paul M. (Inventor)
2017-01-01
An optical device with a light source and a detector is provided. A digital micromirror device positioned between the detector and the light source may deflect light beams projected from the light source. An aperture in front of the detector may block an incoming light beam from the detector when the incoming light beam is incident on the detector outside of a passable incident range and including an aperture opening configured to pass the incoming light beam to the detector when the incoming light beam is incident on the detector within a passable incident range. The digital micromirror device may rotate between a first position causing the light beam to pass through the aperture opening and a second position causing the light beam to be blocked by the aperture. The optical device may be configured to operate as a shutter, chopper, modulator and/or deflector.
Method and apparatus for shape and end position determination using an optical fiber
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2010-01-01
A method of determining the shape of an unbound optical fiber includes collecting strain data along a length of the fiber, calculating curvature and bending direction data of the fiber using the strain data, curve-fitting the curvature and bending direction data to derive curvature and bending direction functions, calculating a torsion function using the bending direction function, and determining the 3D shape from the curvature, bending direction, and torsion functions. An apparatus for determining the 3D shape of the fiber includes a fiber optic cable unbound with respect to a protective sleeve, strain sensors positioned along the cable, and a controller in communication with the sensors. The controller has an algorithm for determining a 3D shape and end position of the fiber by calculating a set of curvature and bending direction data, deriving curvature, bending, and torsion functions, and solving Frenet-Serret equations using these functions.
Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J
2007-08-22
Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.
Design of an optical PPM communication link in the presence of component tolerances
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1988-01-01
A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.
Fiberoptics technology and its application to propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1983-01-01
Current work on optical sensors and optically controlled actuators for use in air-breathing engine control systems is reviewed with particular reference to the design and operation of several new fiber-optic devices. These include a tachometer, a rotary position encoder, a Fabry-Perot interferometer and a rare-earth sensor for measuring engine gas temperatures, a high-temperature photoswitch designed for the range -55 to 260 C, and optical cables and connectors. The advantages of optics over conventional wire systems used for sensing and actuator control are briefly discussed.
Fabrication of Fiber Optic Grating Apparatus and Method
NASA Technical Reports Server (NTRS)
Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)
2005-01-01
An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.
Landi, Andrea; Pirillo, David; Cilia, Roberto; Antonini, Angelo; Sganzerla, Erik P
2011-02-01
Neurophysiologic monitoring during deep brain stimulation (DBS) interventions in the globus pallidus internum (Gpi) for the treatment of Parkinson's disease or primary dystonia is generally based upon microelectrode recordings (MER); moreover, MER request sophisticated technology and high level trained personnel for a reliable monitoring. Recordings of cortical visual evoked potentials (CVEPs) obtained after stimulation of the optic tract may be a potential option to MER; since optic tract lies just beneath the best target for Gpi DBS, changes in CVEPs during intraoperative exploration may drive a correct electrode positioning. Cortical VEPs from optic tract stimulation (OT C-CEPs) have been recorded in seven patients during GPi-DBS for the treatment of Parkinson's disease and primary dystonia under general sedation. OT C-VEPs were obtained after near-field monopolar stimulation of the optic tract; recording electrodes were at the scalp. Cortical responses after optic tract versus standard visual stimulation were compared. After intraoperative near-field OT stimulation a biphasic wave, named N40-P70, was detected in all cases. N40-P70 neither change in morphology nor in latency at different depths, but increased in amplitude approaching the optic tract. The electrode tip was positioned just 1mm above the point where OT-CVEPs showed the larger amplitude. No MERs were obtained in these patients; OT CVEPs were the only method to detect the Gpi before positioning the electrodes. OT CVEPs seem to be as reliable as MER to detail the optimal target in Gpi surgery: in addition they are less expensive, faster to perform and easier to decode. Copyright © 2010. Published by Elsevier B.V.
Spinning angle optical calibration apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, S.K.; Pratt, H.R.
1991-02-26
This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to amore » graduation or graduations on a reticle in the magnifying scope is noted.« less
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker
NASA Technical Reports Server (NTRS)
Hagopian, John; Connelly, Joseph
2011-01-01
The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.
Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system
NASA Astrophysics Data System (ADS)
Kampmann, R.; Sinzinger, S.
2014-12-01
In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.
Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.
2013-01-01
Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762
Aircraft Position Measurement Using Laser Beacon Optics.
1981-01-01
8217Comparison of Solar Concentrators .’ Solar Energy, Vol. 10, p. 93, 1976. 7. Winston , R., ’Light Collection Within the Framework of Goemetrical Optics ...8217 J. Optical Society of Am., Vol. 60, p. 245, 1970. 8. Welford, W. T., tics of Nonimaging Concentrators . New York, Academic Press, T978. 9. Bracewell...helicopter pilot and the flight engineer on board the YO-3A. This thesis will concentrate on the development of the laser beacon, the detector optics
Leigh-like encephalopathy complicating Leber's hereditary optic neuropathy.
Funalot, Benoît; Reynier, Pascal; Vighetto, Alain; Ranoux, Danièle; Bonnefont, Jean-Paul; Godinot, Catherine; Malthièry, Yves; Mas, Jean-Louis
2002-09-01
Leber's hereditary optic neuropathy is a mitochondrial disease caused by point mutations in mitochondrial DNA. It usually presents as severe bilateral visual loss in young adults. We report on a neurological disorder resembling Leigh syndrome, which complicated Leber's hereditary optic neuropathy in three unrelated male patients harboring mitochondrial DNA mutations at nucleotide positions 3460, 14459, and 14484, respectively. This Leigh-like encephalopathy appears to be associated with a much more severe outcome than isolated Leber's hereditary optic neuropathy.
NASA Astrophysics Data System (ADS)
Krüger, Alexander; Hansen, Anja; Matthias, Ben; Ripken, Tammo
2014-02-01
Although fs-laser surgery is clinically established in the field of corneal flap cutting for laser in situ keratomileusis, surgery with fs-laser in the posterior part of the eye is impaired by focus degradation due to aberrations. Precise targeting and keeping of safety distance to the retina also relies on an intraoperative depth resolved imaging. We demonstrate a concept for image guided fs-laser surgery in the vitreous body combining adaptive optics (AO) for focus reshaping and optical coherence tomography (OCT) for focus position guidance. The setup of the laboratory system consist of an 800 nm fs-laser which is focused into a simple eye model via a closed loop adaptive optics system with Hartmann-Shack sensor and a deformable mirror to correct for wavefront aberrations. A spectral domain optical coherence tomography system is used to target phantom structures in the eye model. Both systems are set up to share the same scanner and focusing optics. The use of adaptive optics results in a lowered threshold energy for laser induced breakdown and an increased cutting precision. 3D OCT imaging of porcine retinal tissue prior and immediately after fs-laser cutting is also demonstrated. In the near future OCT and AO will be two essential assistive components in possible clinical systems for fs-laser based eye surgery beyond the cornea.
Coherent detection of position errors in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu
2007-09-01
Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.
2011-10-01
lighter line) the multiple backscatter peak is stronger and the target return is weaker. Finally, the reflection from the target in the object plane... beam attenuation lengths). Optical properties were monitored by a Wetlabs ac-9 meter with attenuation and absorption being adjusted for scattering...UNCLASSIFIED UNCLASSIFIED 923 center of the imager optical axis between two positions, such that in one position the laser beam clearly passed through the hole
Experiment D009: Simple navigation
NASA Technical Reports Server (NTRS)
Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III
1971-01-01
Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.
Liquid Crystal Based Optical Phased Array for Steering Lasers
2009-10-01
profile into the liquid crystal cell, the first step is to characterize the LC cell’s OPD curve with respect to the ramped voltage by a simple one...corresponding voltage value on the OPD vs. 22 Voltage curve , the first entry voltage profile of a positive or negative micro-lens can be thereby...Fig. 2.6 Optical path delay (OPD) profile of ideal objective positive (blue curve ) and negative (green curve ) lens with 552 μm radius, no
Scintillator fiber optic long counter
McCollum, T.; Spector, G.B.
1994-03-29
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.
An adaptive threshold detector and channel parameter estimator for deep space optical communications
NASA Technical Reports Server (NTRS)
Arabshahi, P.; Mukai, R.; Yan, T. -Y.
2001-01-01
This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.
Micro-Ball-Lens Optical Switch Driven by SMA Actuator
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok
2003-01-01
The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above its transition temperature, thereby causing it to deform to a different "remembered" shape. The two SMA actuators would be stiff enough that once switching had taken place and the electrical current was turned off, the lens would remain latched in the most recently selected position. In a test, the partially developed switch exhibited an insertion loss of only -1.9 dB and a switching contrast of 70 dB. One the basis of prior research on SMA actuators and assuming a lens displacement of 125 m between extreme positions, it has been estimated that the fully developed switch would be capable of operating at a frequency as high as 10 Hz.
Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections
NASA Technical Reports Server (NTRS)
Kurkov, Anatole P.; Dhadwal, Harbans S.
1999-01-01
Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.
Planar location of the simulative acoustic source based on fiber optic sensor array
NASA Astrophysics Data System (ADS)
Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin
2010-06-01
A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.
Airflow and optic flow mediate antennal positioning in flying honeybees
Roy Khurana, Taruni; Sane, Sanjay P
2016-01-01
To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104
Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy
2015-04-14
A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
MEMS tracking mirror system for a bidirectional free-space optical link.
Jeon, Sungho; Toshiyoshi, Hiroshi
2017-08-20
We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.
Sighting optics including an optical element having a first focal length and a second focal length
Crandall, David Lynn [Idaho Falls, ID
2011-08-01
One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.
Crandall, David Lynn
2011-08-16
Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.
On a Road to "Soft" Optical MEMS
NASA Astrophysics Data System (ADS)
Yang, Shu; Mach, Peter; Krupenkin, Tom
2003-03-01
A phenomenon of electrowetting has been applied to the actuation of micro-optical devices. The devices use small droplets of transparent conductive liquids to manipulate light in a useful way. The form and position of these droplets is controlled by the applied voltage. Both fiber based and open space optical devices are demonstrated. As an example of an open space optical device, a tunable liquid microlens capable of adjusting its focal length and lateral position is discussed. The microlens consists of a droplet of a transparent conductive liquid placed on a dielectric substrate with underlying electrodes. By varying the voltage applied to the structure, both the position and curvature of microlens can be reversibly changed. Similarly, electrowetting actuation of fluids in micro channels is employed to provide dynamic and reversible tuning of the optical fiber structures. When combined with in-fiber gratings or etched fibers this approach yields tunable broadband and narrowband filters with a large dynamic range. Both the surface and bulk properties of the materials are found important to control the device performance. Fundamental problems, such as stick-slip behavior and contact angle hysteresis associated with the surface roughness and surface contamination, are studied to optimize the choice of dielectric materials and their coatings. Some of the possible ways to control these phenomena are outlined. Several potential applications of the proposed approach are also discussed.
Self-Assembly of Reconfigurable By-Design Optical Materials with Molecular-Level Control
2014-09-21
International Conference on Metamaterials, Photonic Crystals and Plasmonics, Singapore, May 20 - 23, 2014. Zhang, W. “Design, Synthesis, and Applications of...metal nanoparticles positioned in 3D crystal lattices...materials such as photonic crystal and metamaterial hold high promise of providing a path to by-design optical materials with engineered optical
NASA Technical Reports Server (NTRS)
Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)
2006-01-01
An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.
Buchanan, B.R.; Prather, W.S.
1991-01-01
Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.
Buchanan, B.R.; Prather, W.S.
1992-10-06
An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.
Buchanan, Bruce R.; Prather, William S.
1992-01-01
An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.
Design of ocular for optical sight with long exit pupil distance
NASA Astrophysics Data System (ADS)
Zhu, Zhongyao; Li, Yuyao; Tian, Ailing
2017-02-01
In order to solve the injury of optical sight to shooters, which is produced by recoil for using artillery or firearms, and the usage problems of shooters' eye mask, headband and gas mask, the ocular with long exit pupil distance has been designed based on optical sighting system. The optical properties and aberration characteristics of ocular with long exit pupil distance has been analyzed, the structural style with positive-positive-negative three lens groups has been put forward. According to the aberration theory and the isoplanatic image formation principle, the focal power assignment expression has been deduced by adopting analytical method. By using of optical design software ZEMAX, the ocular with long exit pupil distance has been designed, the focal length of system is 20mm, the exit pupil diameter is 4mm, the field angle is 40°, the distance of exit pupil is 41mm, and the relative eye relief is greater than 2. The design results show if this method has been adopted, the transfer functions of each field are all greater than 0.15 when the ocular with long exit pupil distance locates on 45lp/mm, which can meet the use requirements of visual optical instruments.
Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot
NASA Astrophysics Data System (ADS)
Sujanah, P.; John Peter, A.; Woo Lee, Chang
2015-08-01
Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Puli, Anil; Anuradha, B.
2016-07-01
In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth
NASA Astrophysics Data System (ADS)
van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet
2018-04-01
In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.
Evaluation of a completely robotized neurosurgical operating microscope.
Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf
2013-01-01
Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.
Method for measuring the three-dimensional distribution of a fluorescent dye in a cell membrane
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuya; Ishimaru, Ichirou; Fujii, Yoshiki; Yasokawa, Toshiki; Kuriyama, Shigeki; Masaki, Tsutomu; Takegawa, Kaoru; Tanaka, Naotaka
2007-01-01
This letter reports on a method for accurately determining the component distribution in a cell membrane over the entire cell surface. This method involves exciting a fluorescent-dyed cell membrane using evanescent light and scanning the entire cell surface by rotating the cell using a noncontact technique, namely, proximal two-beam optical tweezers. To position the cell membrane in the thin evanescent field, the authors designed an optical system capable of precisely positioning the focal position. Using this method, they were able to measure the surface distribution of glycoprotein labeled by lectin in a breast cancer cell membrane.
NASA Technical Reports Server (NTRS)
Shields, Joel F.; Metz, Brandon C.
2010-01-01
The optical pointing sensor provides a means of directly measuring the relative positions of JPL s Formation Control Testbed (FCT) vehicles without communication. This innovation is a steerable infrared (IR) rangefinder that gives measurements in terms of range and bearing to a passive retroreflector.
Creation of an anti-imaging system using binary optics.
Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H P; Gan, Fuxi; Zhuang, Songlin
2016-09-13
We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element.
Creation of an anti-imaging system using binary optics
Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin
2016-01-01
We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068
Micro-LiDAR velocity, temperature, density, concentration sensor
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A. (Inventor); Danehy, Paul M. (Inventor)
2010-01-01
A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.
Back-focal-plane position detection with extended linear range for photonic force microscopy.
Martínez, Ignacio A; Petrov, Dmitri
2012-09-01
In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.
NASA Technical Reports Server (NTRS)
Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)
1996-01-01
A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third mirror, all curvilinear, in a White Cell configuration, and a gain medium is positioned adjacent to one of the mirrors.
Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis.
Nakajima, Hideki; Motomura, Masakatsu; Tanaka, Keiko; Fujikawa, Azusa; Nakata, Ruka; Maeda, Yasuhiro; Shima, Tomoaki; Mukaino, Akihiro; Yoshimura, Shunsuke; Miyazaki, Teiichiro; Shiraishi, Hirokazu; Kawakami, Atsushi; Tsujino, Akira
2015-04-02
To investigate the differences of clinical features, cerebrospinal fluid (CSF), MRI findings and response to steroid therapies between patients with optic neuritis (ON) who have myelin oligodendrocyte glycoprotein (MOG) antibodies and those who have seronegative ON. We recruited participants in the department of neurology and ophthalmology in our hospital in Japan. We retrospectively evaluated the clinical features and response to steroid therapies of patients with ON. Sera from patients were tested for antibodies to MOG and aquaporin-4 (AQP4) with a cell-based assay. Between April 2009 and March 2014, we enrolled serial 57 patients with ON (27 males, 30 females; age range 16-84 years) who ophthalmologists had diagnosed as having or suspected to have ON with acute visual impairment and declined critical flicker frequency, abnormal findings of brain MRI, optical coherence tomography and fluorescein fundus angiography at their onset or recurrence. We excluded those patients who fulfilled the diagnostic criteria of neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD), MS McDonald's criteria, and so on. Finally we defined 29 patients with idiopathic ON (14 males, 15 females, age range 16-84 years). 27.6% (8/29) were positive for MOG antibodies and 3.4% (1/29) were positive for AQP4. Among the eight patients with MOG antibodies, five had optic pain (p=0.001) and three had prodromal infection (p=0.179). Three of the eight MOG-positive patients showed significantly high CSF levels of myelin basic protein (p=0.021) and none were positive for oligoclonal band in CSF. On MRIs, seven MOG-positive patients showed high signal intensity on optic nerve, three had a cerebral lesion and one had a spinal cord lesion. Seven of the eight MOG-positive patients had a good response to steroid therapy. Although not proving primary pathogenicity of anti-MOG antibodies, the present results indicate that the measurement of MOG antibodies is useful in diagnosing and treating ON. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Trapping of a microsphere pendulum resonator in an optical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. M.; Photonics Centre, Tyndall National Institute, Prospect Row, Cork; Wu, Y.
We propose a method to spatially confine or corral the movements of a micropendulum via the optical forces produced by two simultaneously excited optical modes of a photonic molecule comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 10 eV deep and 30 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems.
Fiber optic diffraction grating maker
Deason, V.A.; Ward, M.B.
1991-05-21
A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.
Fiber optic diffraction grating maker
Deason, Vance A.; Ward, Michael B.
1991-01-01
A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.
Method and device for remotely monitoring an area using a low peak power optical pump
Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.
2014-07-22
A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
Tarvin, Jeffrey A.
1987-01-01
An optical dielectric humidity sensor which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors.
Tarvin, J.A.
1987-02-10
An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.
Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
González-Tudela, Alejandro; Porras, Diego
2013-02-22
Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
Wavelength-multiplexed fiber optic position encoder for aircraft control systems
NASA Astrophysics Data System (ADS)
Beheim, Glenn; Krasowski, Michael J.; Sotomayor, Jorge L.; Fritsch, Klaus; Flatico, Joseph M.; Bathurst, Richard L.; Eustace, John G.; Anthan, Donald J.
1991-02-01
NASA Lewis together with John Carroll University has worked for the last several years to develop wavelength-multiplexed digital position transducers for use in aircraft control systems. A prototype rotary encoder is being built for a demonstration program involving the control of a commercial transport''s turbofan engine. This encoder has eight bits of resolution a 90 degree range and is powered by a single LED. A compact electro-optics module is being developed to withstand the extremely hostile gas turbine environment.
Optical interconnection for a polymeric PLC device using simple positional alignment.
Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung
2011-04-25
This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.
2016-01-01
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Kon, Tomoya; Hikichi, Hiroki; Ueno, Tatsuya; Suzuki, Chieko; Nunomura, Jinichi; Kaneko, Kimihiko; Takahashi, Toshiyuki; Nakashima, Ichiro; Tomiyama, Masahiko
2018-05-18
Autoantibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) have been detected in inflammatory demyelinating central nervous system diseases. A 30-year-old woman had blurred vision, marked optic nerve disc swelling, serous retinal detachment at the macular on optic coherence tomography, and MOG-IgG seropositivity. The patient was thought to have optic papillitis associated with MOG-IgG. Her symptoms rapidly improved after high-dose methylprednisolone therapy. We hypothesize that serous retinal detachment was secondary, arising from optic papillitis. This is the first report of the concurrence of optic papillitis with MOG-IgG and serous retinal detachment. MOG-IgG should be tested in patients with marked optic disc swelling.
Narrowband resonant transmitter
Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.
2004-06-29
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Transverse-longitudinal integrated resonator
Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN
2003-03-11
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
NASA Technical Reports Server (NTRS)
Mann, C. W. (Inventor)
1984-01-01
A device used in the optical alignment of machinery to maintain a measuring scale in the proper position for optical readings to be taken is described. The device consists of a block containing a notch in the shape of an inverted ""v'' and a rotatable plug positioned over the centerline of notch. The block is placed on the object to be aligned, the notch allows the block to be securely placed upon flat or curved surfaces. A weighted measuring scale is inserted through plug so that it contacts the object to be aligned. The scale and plug combination can be rotated so that the scale faces an optical aligning instrument. The instrument is then used in conjunction with the scale to measure the distance of the machinery from a reference plane.
Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting
Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.
2009-01-01
A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034
Microemulsion characterization by the use of a noninvasive backscatter fiber optic probe
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Dhadwal, Harbans S.; Cheung, H. M.; Meyer, William V.
1993-01-01
This paper demonstrates the utility of a noninvasive backscatter fiber optic probe for dynamic light-scattering characterization of a microemulsion comprising sodium dodecyl sulfate/1-butanol/ brine/heptane. The fiber probe, comprising two optical fibers precisely positioned in a stainless steel body, is a miniaturized and efficient self-beating dynamic light-scattering system. Accuracy of particle size estimation is better than +/- 2 percent.
Optical sensors and multiplexing for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.
Writing and applications of fiber Bragg grating arrays
NASA Astrophysics Data System (ADS)
LaRochelle, Sophie; Cortes, Pierre-Yves; Fathallah, H.; Rusch, Leslie A.; Jaafar, H. B.
2000-12-01
Multiple Bragg gratings are written in a single fibre strand with accurate positioning to achieve predetermined time delays between optical channels. Applications of fibre Bragg grating arrays include encoders/decoders with series of identical gratings for optical code-division multiple access.
Scale factor gage for fiber optics inspection device
NASA Technical Reports Server (NTRS)
Mcmahon, W.; Sugg, F. E.
1971-01-01
Flexible wire device, fastened along outside of fiber bundle from viewing portion to tip, positions calibrated adjustable gage in field of view. Scale factor is determined from known magnification characteristics of fiber optics system or from graduations on gage tip.
Classification of Salmonella serotypes with hyperspectral microscope imagery
USDA-ARS?s Scientific Manuscript database
Previous research has demonstrated an optical method with acousto-optic tunable filter (AOTF) based hyperspectral microscope imaging (HMI) had potential for classifying gram-negative from gram-positive foodborne pathogenic bacteria rapidly and nondestructively with a minimum sample preparation. In t...
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas.
Geiger, Zachary A; Fujiwara, Kurt M; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V; Meier, Torsten; Weld, David M
2018-05-25
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Observation and Uses of Position-Space Bloch Oscillations in an Ultracold Gas
NASA Astrophysics Data System (ADS)
Geiger, Zachary A.; Fujiwara, Kurt M.; Singh, Kevin; Senaratne, Ruwan; Rajagopal, Shankari V.; Lipatov, Mikhail; Shimasaki, Toshihiko; Driben, Rodislav; Konotop, Vladimir V.; Meier, Torsten; Weld, David M.
2018-05-01
We report the observation and characterization of position-space Bloch oscillations using cold atoms in a tilted optical lattice. While momentum-space Bloch oscillations are a common feature of optical lattice experiments, the real-space center-of-mass dynamics are typically unresolvable. In a regime of rapid tunneling and low force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Fiber optic controls for aircraft engines - Issues and implications
NASA Technical Reports Server (NTRS)
Dasgupta, Samhita; Poppel, Gary L.; Anderson, William P.
1991-01-01
Some of the issues involved with the application of fiber-optic controls for aircraft engines in the harsh operating environment are addressed, with emphasis on fiber-optic temperature, pressure, position, and speed sensors. Criteria are established to evaluate the optical modulation technique, the sensor/control unit interconnection, and the electrooptic architecture. Single mode and polarization dependent sensor types, sensors which depend on the reflection and/or transmission of light through the engine environment, and intensity-based analog sensors are eliminated as a possible candidate for engine implementation. Fiber-optic harnesses tested for their optical integrity, temperature stability, and mechanical strength, exhibit a capacity to meet mechanical strength requirements and still gain a significant reduction in cable weight.
NASA Astrophysics Data System (ADS)
Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo
2015-03-01
Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
Lindballe, Thue B; Kristensen, Martin V G; Berg-Sørensen, Kirstine; Keiding, Søren R; Stapelfeldt, Henrik
2013-01-28
An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 μm polystyrene bead, the laser pulse-bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our experimental method may have implications for microrheology.
Staunton, Jack R.; Blehm, Ben; Devine, Alexus; Tanner, Kandice
2017-01-01
In optical trapping, accurate determination of forces requires calibration of the position sensitivity relating displacements to the detector readout via the V-nm conversion factor (β). Inaccuracies in measured trap stiffness (k) and dependent calculations of forces and material properties occur if β is assumed to be constant in optically heterogeneous materials such as tissue, necessitating calibration at each probe. For solid-like samples in which probes are securely positioned, calibration can be achieved by moving the sample with a nanopositioning stage and stepping the probe through the detection beam. However, this method may be applied to samples only under select circumstances. Here, we introduce a simple method to find β in any material by steering the detection laser beam while the probe is trapped. We demonstrate the approach in the yolk of living Danio rerio (zebrafish) embryos and measure the viscoelastic properties over an order of magnitude of stress-strain amplitude. PMID:29519028
Fluorescent optical position sensor
Weiss, Jonathan D.
2005-11-15
A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.
Automated high-throughput flow-through real-time diagnostic system
Regan, John Frederick
2012-10-30
An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.
Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Choi, Eun-Jung; Cho, Sungki; Park, Jang-Hyun
2018-06-07
An Optical Wide-field patroL-Network (OWL-Net) has been developed for maintaining Korean low Earth orbit (LEO) satellites' orbital ephemeris. The OWL-Net consists of five optical tracking stations. Brightness signals of reflected sunlight of the targets were detected by a charged coupled device (CCD). A chopper system was adopted for fast astrometric data sampling, maximum 50 Hz, within a short observation time. The astrometric accuracy of the optical observation data was validated with precise orbital ephemeris such as Consolidated Prediction File (CPF) data and precise orbit determination result with onboard Global Positioning System (GPS) data from the target satellite. In the optical observation simulation of the OWL-Net for 2017, an average observation span for a single arc of 11 LEO observation targets was about 5 min, while an average optical observation separation time was 5 h. We estimated the position and velocity with an atmospheric drag coefficient of LEO observation targets using a sequential-batch orbit estimation technique after multi-arc batch orbit estimation. Post-fit residuals for the multi-arc batch orbit estimation and sequential-batch orbit estimation were analyzed for the optical measurements and reference orbit (CPF and GPS data). The post-fit residuals with reference show few tens-of-meters errors for in-track direction for multi-arc batch and sequential-batch orbit estimation results.
Sarshar, Mohammad; Wong, Winson T.; Anvari, Bahman
2014-01-01
Abstract. Optical tweezers have become an important instrument in force measurements associated with various physical, biological, and biophysical phenomena. Quantitative use of optical tweezers relies on accurate calibration of the stiffness of the optical trap. Using the same optical tweezers platform operating at 1064 nm and beads with two different diameters, we present a comparative study of viscous drag force, equipartition theorem, Boltzmann statistics, and power spectral density (PSD) as methods in calibrating the stiffness of a single beam gradient force optical trap at trapping laser powers in the range of 0.05 to 1.38 W at the focal plane. The equipartition theorem and Boltzmann statistic methods demonstrate a linear stiffness with trapping laser powers up to 355 mW, when used in conjunction with video position sensing means. The PSD of a trapped particle’s Brownian motion or measurements of the particle displacement against known viscous drag forces can be reliably used for stiffness calibration of an optical trap over a greater range of trapping laser powers. Viscous drag stiffness calibration method produces results relevant to applications where trapped particle undergoes large displacements, and at a given position sensing resolution, can be used for stiffness calibration at higher trapping laser powers than the PSD method. PMID:25375348
Femtosecond laser inscription of optical circuits in the cladding of optical fibers
NASA Astrophysics Data System (ADS)
Grenier, Jason R.
The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters and couplers were fabricated with coupling ratios from 2% to 50% over a broad 350 nm bandwidth across the telecommunication band. Laser-induced birefringence was harnessed to generate polarization dependent MMI devices for strong polarization filtering (24 dB isolation), or polarization selective taps with up to 50% tapping efficiency over a 25 nm bandwidth. This dissertation is therefore the first demonstration of femtosecond laser direct writing as a flexible and monolithic means of embedding and integrating highly functional optical circuit devices within the cladding of optical fibers that can interconnect efficiently with the pre-existing fiber core waveguide. These developments represent a significant technological advancement for creating new 3D photonic integrated microsystems within the cladding of optical fibers and underpins a new technological platform of fiber cladding photonics.
Optical Measurement of Mass Flow of a Two-Phase Fluid
NASA Technical Reports Server (NTRS)
Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don
2008-01-01
An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical coupler along the same slant. Light collected by each receiving optical coupler is sent, via a multimode fiber-optic cable, to a detector module similar to the reference detector module. The outputs of the photodiodes in each detector module are digitized and processed, similarly to those of the reference detector module, to obtain indications of the amounts of light of each wavelength scattered to the corresponding receiving position. The value for each wavelength at each position is also normalized to the reference laser-power level for that wavelength. From these normalized values, the density and the mass flow rate of the fluid are estimated.
NASA Technical Reports Server (NTRS)
Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.
2011-01-01
An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.
Relativistic Effects and Polarization in Three High-Energy Pulsar Models
NASA Technical Reports Server (NTRS)
Dyks, J.; Harding, Alice K.; Rudak, B.
2004-01-01
We present the influence of the special relativistic effects of aberration and light travel time delay on pulsar high-energy lightcurves and polarization characteristics predicted by three models: the two-pole caustic model, the outer gap model, and the polar cap model. Position angle curves and degree of polarization are calculated for the models and compared with the optical data on the Crab pulsar. The relative positions of peaks in gamma-ray and radio lightcurves are discussed in detail for the models. We find that the two-pole caustic model can reproduce qualitatively the optical polarization characteristics of the Crab pulsar - fast swings of the position angle and minima in polarization degree associated with both peaks. The anticorrelation between the observed flux and the polarization degree (observed in the optical band also for B0656+14) naturally results from the caustic nature of the peaks which are produced in the model due to the superposition of radiation from many different altitudes, ie. polarized at different angles. The two-pole caustic model also provides an acceptable interpretation of the main features in the Crab's radio profile. Neither the outer gap model nor the polar cap model are able to reproduce the optical polarization data on the Crab. Although the outer gap model is very successful in reproducing the relative positions of gamma-ray and radio peaks in pulse profiles, it can reproduce the high-energy lightcurves only when photon emission from regions very close to the light cylinder is included.
On the optical search for Centaurus X-3.
NASA Technical Reports Server (NTRS)
Brucato, R. J.; Kristian, J.; Westphal, J. A.
1972-01-01
Elimination of the optical eclipsing binary LR Cen as a candidate for Cen X-3 on the basis of a real discrepancy of orbital periods. It is believed that the position coincidence of Wray 795 with Cen X-3 is not statistically significant.
Ray-tracing as a tool for efficient specification of beamline optical components
NASA Astrophysics Data System (ADS)
Pedreira, P.; Sics, I.; Llonch, M.; Ladrera, J.; Ribó, Ll.; Colldelram, C.; Nicolas, J.
2016-09-01
We propose a method to determine the required performances of the positioning mechanics of the optical elements of a beamline. Generally, when designing and specifying a beamline, one assumes that the position and orientations of the optical elements should be aligned to its ideal position. For this, one would generally require six degrees of freedom per optical element. However, this number is reduced due to symmetries (e.g. a flat mirror does not care about yaw). Generally, one ends up by motorizing many axes, with high resolution and a large motion range. On the other hand, the diagnostics available at a beamline provide much less variables than the available motions. Moreover, the actual parameters that one wants to optimize are reduced to a very few. These are basically, spot size and size at the sample, flux, and spectral resolution. The result is that many configurations of the beamline are actually equivalent, and therefore indistinguishable from the ideal alignment in terms of performance.We propose a method in which the effect of misalignment of each one of the degrees of freedom of the beamline is scanned by ray tracing. This allows building a linear system in which one can identify and select the best set of motions to control the relevant parameters of the beam. Once the model is built it provides the required optical pseudomotors as well as the requirements in alignment and manufacturing, for all the motions, as well as the range, resolution and repeatability of the motorized axes.
Experimental demonstration of a retro-reflective laser communication link on a mobile platform
NASA Astrophysics Data System (ADS)
Nikulin, Vladimir V.; Malowicki, John E.; Khandekar, Rahul M.; Skormin, Victor A.; Legare, David J.
2010-02-01
Successful pointing, acquisition, and tracking (PAT) are crucial for the implementation of laser communication links between ground and aerial vehicles. This technology has advantages over the traditional radio frequency communication, thus justifying the research efforts presented in this paper. The authors have been successful in the development of a high precision, agile, digitally controlled two-degree-of-freedom electromechanical system for positioning of optical instruments, cameras, telescopes, and communication lasers. The centerpiece of this system is a robotic manipulator capable of singularity-free operation throughout the full hemisphere range of yaw/pitch motion. The availability of efficient two-degree-of-freedom positioning facilitated the development of an optical platform stabilization system capable of rejecting resident vibrations with the angular and frequency range consistent with those caused by a ground vehicle moving on a rough terrain. This technology is being utilized for the development of a duplex mobile PAT system demonstrator that would provide valuable feedback for the development of practical laser communication systems intended for fleets of moving ground, and possibly aerial, vehicles. In this paper, a tracking system providing optical connectivity between stationary and mobile ground platforms is described. It utilizes mechanical manipulator to perform optical platform stabilization and initial beam positioning, and optical tracking for maintaining the line-of-sight communication. Particular system components and the challenges of their integration are described. The results of field testing of the resultant system under practical conditions are presented.
Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan
2016-11-03
In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.
NASA Astrophysics Data System (ADS)
Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.
2006-07-01
This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.
NASA Astrophysics Data System (ADS)
Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.
2018-05-01
We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.
Sommargren, Gary E.; Campbell, Eugene W.
2004-03-09
To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.
Sommargren, Gary E.; Campbell, Eugene W.
2005-06-21
To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.
Histone deacetylase expression patterns in developing murine optic nerve
2014-01-01
Background Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1–6 and 8–11 in the developing murine optic nerve head. Results Using RT-qPCR, western blot and immunofluorescence, three stages were analyzed: embryonic day 16 (E16), when astrocyte precursors are found in the optic stalk, postnatal day 5 (P5), when immature astrocytes and oligodendrocytes are found throughout the optic nerve, and P30, when optic nerve astrocytes and oligodendrocytes are mature. Acetylated and methylated histone H3 immunoreactivity was co-localized in the nuclei of most SOX2 positive glia within the optic nerve head and adjacent optic nerve at all developmental stages. HDACs 1–11 were expressed in the optic nerve glial cells at all three stages of optic nerve development in the mouse, but showed temporal differences in overall levels and subcellular localization. HDACs 1 and 2 were predominantly nuclear throughout optic nerve development and glial cell maturation. HDACs 3, 5, 6, 8, and 11 were predominantly cytoplasmic, but showed nuclear localization in at least one stage of optic nerve development. HDACs 4, 9 and10 were predominantly cytoplasmic, with little to no nuclear expression at any time during the developmental stages examined. Conclusions Our results showing that HDACs 1, 2, 3, 5, 6, 8, and 11 were each localized to the nuclei of SOX2 positive glia at some stages of optic nerve development and maturation and extend previous reports of HDAC expression in the aging optic nerve. These HDACs are candidates for further research to understand how chromatin remodeling through acetylation, deacetylation and methylation contributes to glial development as well as their injury response. PMID:25011550
Electro-Optic Identification (EOID) Research Program
2002-09-30
The goal of this research is to provide computer-assisted identification of underwater mines in electro - optic imagery. Identification algorithms will...greatly reduce the time and risk to reacquire mine-like-objects for positive classification and identification. The objectives are to collect electro ... optic data under a wide range of operating and environmental conditions and develop precise algorithms that can provide accurate target recognition on this data for all possible conditions.
Photovoltaic concentrator assembly with optically active cover
Plesniak, Adam P
2014-01-21
A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.
Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.
Itoh, Yuta; Klinker, Gudrun
2015-04-01
A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.
Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam
NASA Astrophysics Data System (ADS)
Chen, Musheng; Huang, Sujuan; Shao, Wei; Liu, Xianpeng
2018-03-01
Optical force and torque exerted on the Rayleigh particles by tightly focused circularly polarized circular Airy vortex beams (CAVB) in the far field are studied in this paper. The relation between parameters of circularly polarized CAVB and the trapping properties is numerically analyzed based on Rayleigh models and the Debye diffraction theory. The results show that both the high refractive index and low refractive index particles can be fully stably trapped in three dimensions by circularly polarized CAVB. The parameters of circularly polarized CAVB greatly affect the optical force. The longitudinal and transverse gradient force increase with the increase of decay factor and scaling factor, and decrease with the increase of the radius of the first primary ring and topological charges. The positions of the longitudinal stable equilibrium move toward the high numerical aperture lens when the scaling factor and the radius of the primary ring increase. The trapping range is broadened with the decrease of scaling factor. The optical orbital torque (OOT) of circularly polarized CAVB has circular symmetry and remains positive or negative. With the increase of topological charges, the peak value of OOT first increases and then decreases after reaches a maximum. These results are useful for optical trapping, optical levitation and particle acceleration.
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
Acoustic measurement of bubble size and position in a piezo driven inkjet printhead
NASA Astrophysics Data System (ADS)
van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef
2008-11-01
A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.
Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays.
Nishihara, Ryo; Abe, Masahiro; Nishiyama, Shigeru; Citterio, Daniel; Suzuki, Koji; Kim, Sung Bae
2017-04-19
Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.
Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José
2011-08-29
A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.
Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.
2011-01-01
We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372
Single and dual fiber nano-tip optical tweezers: trapping and analysis.
Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen
2013-12-16
An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.
Modulation properties of optically injection-locked quantum cascade lasers.
Wang, Cheng; Grillot, Fédéric; Kovanis, Vassilios I; Bodyfelt, Joshua D; Even, Jacky
2013-06-01
A rate equation analysis on the modulation response of an optical injection-locked quantum cascade laser is outlined. It is found that the bifurcation diagram exhibits both bistable and unstable locked regions. In addition, the stable locked regime widens as the linewidth enhancement factor increases. It is also shown that both positive and negative optical detunings as well as strong injection strength enhance the 3 dB modulation bandwidth by as much as 30 GHz. Finally, the peak in the modulation response is significantly influenced by the optical frequency detuning.
A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography
NASA Astrophysics Data System (ADS)
Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.
2008-06-01
We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.
Use of optical coherence topography for objective assessment of fundus torsion.
Sophocleous, Sophocles
2017-02-23
Objective assessment of fundus torsion is currently performed with indirect ophthalmoscopy or fundus photography. Using the infrared image of the macular scan of the optical coherence tomography one can assess the presence and amount of fundus torsion. In addition, the line scan through the fovea can be used as a reference to confirm the position of the foveal pit in relation to the optic nerve head. Two cases are used to demonstrate how to assess fundus torsion with the use of the optical coherence tomography. 2017 BMJ Publishing Group Ltd.
A glial palisade delineates the ipsilateral optic projection in Monodelphis.
MacLaren, R E
1998-01-01
In developing marsupials, the path taken through the optic chiasm by ipsilaterally projecting retinal ganglion cells is complicated. Just prior to entry into the chiasm, ganglion cells destined for the ipsilateral optic tract separate from the remainder of axons by turning abruptly downwards to take a position in the ventral part of the optic nerve. In this report, it is shown that a discrete population of about 10-15 large glial cells transiently form a linear array across the prechiasmatic part of the optic nerve, precisely at this axon turning point. The distinct morphology of these cells and their novel location may reflect a specialized role in axon guidance.
NASA Astrophysics Data System (ADS)
Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui
2018-05-01
We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.
Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network
Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon
2014-01-01
This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681
Design of a base station for MEMS CCR localization in an optical sensor network.
Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon
2014-05-08
This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Javed; Singhal, Akshat; Gadre, Bhooshan
2017-04-01
The discovery and subsequent study of optical counterparts to transient sources is crucial for their complete astrophysical understanding. Various gamma-ray burst (GRB) detectors, and more notably the ground-based gravitational wave detectors, typically have large uncertainties in the sky positions of detected sources. Searching these large sky regions spanning hundreds of square degrees is a formidable challenge for most ground-based optical telescopes, which can usually image less than tens of square degrees of the sky in a single night. We present algorithms for better scheduling of such follow-up observations in order to maximize the probability of imaging the optical counterpart, basedmore » on the all-sky probability distribution of the source position. We incorporate realistic observing constraints such as the diurnal cycle, telescope pointing limitations, available observing time, and the rising/setting of the target at the observatory’s location. We use simulations to demonstrate that our proposed algorithms outperform the default greedy observing schedule used by many observatories. Our algorithms are applicable for follow-up of other transient sources with large positional uncertainties, such as Fermi -detected GRBs, and can easily be adapted for scheduling radio or space-based X-ray follow-up.« less
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Hull, T.
2012-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy
Analytical N beam position monitor method
NASA Astrophysics Data System (ADS)
Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.
2017-11-01
Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.
Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping
1999-01-01
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
Laser confocal measurement system for curvature radius of lenses based on grating ruler
NASA Astrophysics Data System (ADS)
Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian
2015-02-01
In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, H.; Liu, D.; Miu, Y.
2018-05-01
Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, F.; Diddams, S. A.; Ycas, G.
2010-06-15
A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is {approx}350 kHz at 1550 nm. Themore » comb frequency uncertainty is bounded by {+-}30 kHz (corresponding to a radial velocity of {+-}5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.« less
NASA Astrophysics Data System (ADS)
Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo
2017-04-01
The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.
NASA Astrophysics Data System (ADS)
Kshevetsky, Oleg S.
2018-01-01
We represent evaluating analysis of the feasibilities for controlling the properties of thermoelectric energy converters using EM radiation in the regimes of cooling, heating, electromotive force generation, or electric current generation. Thus we investigate the influence of optical radiation both on electric conductivity and thermo-electromotive force coefficient of thermoelectric materials. We also discuss promising applications for controlling the properties of thermoelectric energy converters using EM radiation. We represent the results of experimental study of positionsensitive energy converters in the regimes of electromotive force generation and the electric current generation (in part, photo-thermoelectric position-sensitive temperature detectors), position-sensitive photo-thermoelectric energy converters in the regimes of cooling, heating, parallel photoelectric and thermoelectric conversion of sun-light optical radiation into electric power.
[Spectrum studies on titania photocatalysts].
Su, W; Fu, X; Wei, K; Zhang, H; Lin, H; Wang, X; Li, D
2001-02-01
The nano-sized TiO2 photocatalysts were prepared by sol-gel method and characterized by FTIR spectroscopy, FT-Raman spectroscopy and diffuse reflectance spectroscopy(DRS). Photocatalytic degradation of oleic acid over the TiO2 catalysts was investigated. The result showed that calcination temperature has strong effect on crystal structure, energy band structure, optical adsorption and photocatalytic activity of the TiO2 catalysts. It was found that the TiO2 photocatalyst calcined at 400 degrees C has the best apparent optical adsorption, the biggest band edge position and the highest photoactivity. The effect of calcination temperature on photocatalytic activity of TiO2 catalysts has been ascribed to the changes in structure and optical property of catalyst such as crystal size, content of rutile, residual NO3-, and band-edge position of light adsorption.
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.
Time efficient Gabor fused master slave optical coherence tomography
NASA Astrophysics Data System (ADS)
Cernat, Ramona; Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian
2018-02-01
In this paper the benefits in terms of operation time that Master/Slave (MS) implementation of optical coherence tomography can bring in comparison to Gabor fused (GF) employing conventional fast Fourier transform based OCT are presented. The Gabor Fusion/Master Slave Optical Coherence Tomography architecture proposed here does not need any data stitching. Instead, a subset of en-face images is produced for each focus position inside the sample to be imaged, using a reduced number of theoretically inferred Master masks. These en-face images are then assembled into a final volume. When the channelled spectra are digitized into 1024 sampling points, and more than 4 focus positions are required to produce the final volume, the Master Slave implementation of the instrument is faster than the conventional fast Fourier transform based procedure.
Utilizing the N beam position monitor method for turn-by-turn optics measurements
NASA Astrophysics Data System (ADS)
Langner, A.; Benedetti, G.; Carlà, M.; Iriso, U.; Martí, Z.; de Portugal, J. Coello; Tomás, R.
2016-09-01
The N beam position monitor method (N -BPM) which was recently developed for the LHC has significantly improved the precision of optics measurements that are based on BPM turn-by-turn data. The main improvement is due to the consideration of correlations for statistical and systematic error sources, as well as increasing the amount of BPM combinations which are used to derive the β -function at one location. We present how this technique can be applied at light sources like ALBA, and compare the results with other methods.
Optical switching system and method
Ranganathan, Radha; Gal, Michael; Taylor, P. Craig
1992-01-01
An optically bistable device is disclosed. The device includes a uniformly thick layer of amorphous silicon to constitute a Fabry-Perot chamber positioned to provide a target area for a probe beam. The probe beam has a maximum energy less than the energy band gap of the amorphous semiconductor. In a preferred embodiment, a multilayer dielectric mirror is positioned on the Fabry-Perot chamber to increase the finesse of switching of the device. The index of refraction of the amorphous material is thermally altered to alter the transmission of the probe beam.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Cao, Minghua
2017-02-01
The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.
Lei, Ting; Poon, Andrew W
2013-01-28
We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.
NASA Astrophysics Data System (ADS)
Jiménez, A.; Morante, E.; Viera, T.; Núñez, M.; Reyes, M.
2010-07-01
European Extremely Large Telescope (E-ELT) based in 984 primary mirror segments achieving required optical performance; they must position relatively to adjacent segments with relative nanometer accuracy. CESA designed M1 Position Actuators (PACT) to comply with demanding performance requirements of EELT. Three PACT are located under each segment controlling three out of the plane degrees of freedom (tip, tilt, piston). To achieve a high linear accuracy in long operational displacements, PACT uses two stages in series. First stage based on Voice Coil Actuator (VCA) to achieve high accuracies in very short travel ranges, while second stage based on Brushless DC Motor (BLDC) provides large stroke ranges and allows positioning the first stage closer to the demanded position. A BLDC motor is used achieving a continuous smoothly movement compared to sudden jumps of a stepper. A gear box attached to the motor allows a high reduction of power consumption and provides a great challenge for sizing. PACT space envelope was reduced by means of two flat springs fixed to VCA. Its main characteristic is a low linear axial stiffness. To achieve best performance for PACT, sensors have been included in both stages. A rotary encoder is included in BLDC stage to close position/velocity control loop. An incremental optical encoder measures PACT travel range with relative nanometer accuracy and used to close the position loop of the whole actuator movement. For this purpose, four different optical sensors with different gratings will be evaluated. Control strategy show different internal closed loops that work together to achieve required performance.
March of the Starbugs: Configuring Fiber-bearing Robots on the UK-Schmidt Optical Plane
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.; Vuong, M.; Satorre, C.; Hong, S. E.; Shortridge, K.; Goodwin, M.; Kuehn, K.
2015-09-01
The TAIPAN instrument, currently being developed for the Australian Astronomical Observatory's UK Schmidt telescope at Siding Spring Observatory, makes use of the AAO's Starbug technology to deploy 150 science fibers to target positions on the optical plane. This paper describes the software system for controlling and deploying the fiber-bearing Starbug robots. The TAIPAN software is responsible for allocating each Starbug to its next target position based on its current position and the distribution of targets, finding a collision-free path for each Starbug, and then simultaneously controlling the Starbug hardware in a closed loop, with a metrology camera used to determine the position of each Starbug in the field during reconfiguration. The software is written in C++ and Java and employs a DRAMA middleware layer (Farrell et al. 1995).
Advanced optical position sensors for magnetically suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Lafleur, S.
1985-01-01
A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.
Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams
NASA Technical Reports Server (NTRS)
Jennings, Donald
2013-01-01
Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.
Demography of SDSS Early-type Galaxies from the Perspective of Radial Color Gradients
NASA Astrophysics Data System (ADS)
Suh, Hyewon; Jeong, H.; Oh, K.; Yi, S. K.; Ferreras, I.; Schawinski, K.
2010-01-01
We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00 < z < 0.06. The majority of massive early-type galaxies show a negative color gradient (centers being redder). On the other hand, roughly 30 percent of the galaxies in this sample show positive color gradients (centers being bluer). These positive-gradient galaxies often show strong Hβ absorption line strengths and/or emission line ratios that are consistent with containing young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all positive-gradient galaxies show blue UV-optical colors. This implies that the residual star formation in early-type galaxies is centrally concentrated. These positive-gradient galaxies tend to live in lower density regions. They are also a bit more likely to have a late-type companion galaxy, hinting at a possible role of interactions with a gas-rich companion. A simplistic population analysis shows that these positive color gradients are visible only for half a billion years after a star burst. Moreover, the positive-gradient galaxies occupy different regions in the fundamental planes from the outnumbering negative-gradient galaxies. However, the positions of the positive-gradient galaxies on the fundamental planes cannot be attributed to any reasonable amount of recent star formation alone but require substantially lower velocity dispersions to begin with. Our results based on the optical data are consistent with the residual star formation interpretation which was based on the GALEX UV data. A low-level residual star formation seems continuing in most of the less-massive early-type galaxies in their centers.
Anderson, David M. G.; Mills, Daniel; Spraggins, Jeffrey; Lambert, Wendi S.; Calkins, David J.
2013-01-01
Purpose To develop a method for generating high spatial resolution (10 µm) matrix-assisted laser desorption ionization (MALDI) images of lipids in rodent optic nerve tissue. Methods Ice-embedded optic nerve tissue from rats and mice were cryosectioned across the coronal and sagittal axes of the nerve fiber. Sections were thaw mounted on gold-coated MALDI plates and were washed with ammonium acetate to remove biologic salts before being coated in 2,5-dihydroxybenzoic acid by sublimation. MALDI images were generated in positive and negative ion modes at 10 µm spatial resolution. Lipid identification was performed with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer. Results Several lipid species were observed with high signal intensity in MALDI images of optic nerve tissue. Several lipids were localized to specific structures including in the meninges surrounding the optic nerve and in the central neuronal tissue. Specifically, phosphatidylcholine species were observed throughout the nerve tissue in positive ion mode while sulfatide species were observed in high abundance in the meninges surrounding the optic nerve in negative ion mode. Accurate mass measurements and fragmentation using sustained off-resonance irradiation with a high mass resolution Fourier transform ion cyclotron resonance mass spectrometer instrument allowed for identification of lipid species present in the small structure of the optic nerve directly from tissue sections. Conclusions An optimized sample preparation method provides excellent sensitivity for lipid species present within optic nerve tissue. This allowed the laser spot size and fluence to be reduced to obtain a high spatial resolution of 10 µm. This new imaging modality can now be applied to determine spatial and molecular changes in optic nerve tissue with disease. PMID:23559852
Optical and Biometric Characteristics of Anisomyopia in Human Adults
Tian, Yibin; Tarrant, Janice; Wildsoet, Christine F.
2011-01-01
Purpose To investigate the role of higher order optical aberrations and thus retinal image degradation in the development of myopia, through the characterization of anisomyopia in human adults in terms of their optical and biometric characteristics. Methods The following data were collected from both eyes of fifteen young adult anisometropic myopes and sixteen isometropic myopes: subjective and objective refractive errors, corneal power and shape, monochromatic optical aberrations, anterior chamber depth, lens thickness, vitreous chamber depth, and best corrected visual acuity. Monochromatic aberrations were analyzed in terms of their higher order components, and further analyzed in terms of 31 optical quality metrics. Interocular differences for the two groups (anisomyopes vs. isomyopes) were compared and the relationship between measured ocular parameters and refractive errors also analyzed across all eyes. Results As expected, anisomyopes and isomyopes differed significantly in terms of interocular differences in vitreous chamber depth, axial length and refractive error. However, interocular differences in other optical properties showed no significant intergroup differences. Overall, higher myopia was associated with deeper anterior and vitreous chambers, higher astigmatism, more prolate corneas, and more positive spherical aberration. Other measured optical and biometric parameters were not significantly correlated with spherical refractive error, although some optical quality metrics and corneal astigmatism were significantly correlated with refractive astigmatism. Conclusions An optical cause for anisomyopia related to increased higher order aberrations is not supported by our data. Corneal shape changes and increased astigmatism in more myopic eyes may be a by-product of the increased anterior chamber growth in these eyes; likewise, the increased positive spherical aberration in more myopic eyes may be a product of myopic eye growth. PMID:21797915
Micromanipulation of statoliths in gravity-sensing Chara rhizoids by optical tweezers.
Leitz, G; Schnepf, E; Greulich, K O
1995-09-01
Infrared laser traps (optical tweezers) were used to micromanipulate statoliths in gravity-sensing rhizoids of the green alga Chara vulgaris Vail. We were able to hold and move statoliths with high accuracy and to observe directly the effects of statolith position on cell growth in horizontally positioned rhizoids. The first step in gravitropism, namely the physical action of gravity on statoliths, can be simulated by optical tweezers. The direct laser microirradiation of the rhizoid apex did not cause any visible damage to the cells. Through lateral positioning of statoliths a differential growth of the opposite flank of the cell wall could be induced, corresponding to bending growth in gravitropism. The acropetal displacement of the statolith complex into the extreme apex of the rhizoid caused a temporary decrease in cell growth rate. The rhizoids regained normal growth after remigration of the statoliths to their initial position 10-30 micrometers basal to the rhizoid apex. During basipetal displacement of statoliths, cell growth continued and the statoliths remigrated towards the rhizoid tip after release from the optical trap. The resistance to statolith displacement increased towards the nucleus. The basipetal displacement of the whole complex of statoliths for a long distance (>100 micrometers) caused an increase in cell diameter and a subsequent regaining of normal growth after the statoliths reappeared in the rhizoid apex. We conclude that the statolith displacement interferes with the mechanism of tip growth, i.e. with the transport of Golgi vesicles, either directly by mechanically blocking their flow and/or, indirectly, by disturbing the actomyosin system. In the presence of the actin inhibitor cytochalasin B the optical forces required for acropetal and basipetal displacement of statoliths were significantly reduced to a similar level. The lateral displacement of statoliths was not changed by cytochalasin B. The results indicate: (i) the viscous resistance to optical displacement of statoliths depend mainly on actin, (ii) the lateral displacement of statoliths is not impeded by actin filaments, (iii) the axially directed actin-mediated forces against optical displacement of statoliths (for a distance of 10 micrometers) are stronger in the basipetal than in the acropetal direction, (iv) the forces acting on single statoliths by axially oriented actin filaments are estimated to be in the range of 11-110 pN for acropetal and of 18-180 pN for basipetal statolith displacements.
Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.
He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan
2015-03-07
An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged electrodes), which induces the enhancement and suppression of NIR optical absorption (contributed by C-H and N-H groups) in the vicinity of the negative electrode and positive electrode, respectively.
Monitoring of vapor phase polycyclic aromatic hydrocarbons
Vo-Dinh, Tuan; Hajaligol, Mohammad R.
2004-06-01
An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.
Maximum entropy deconvolution of the optical jet of 3C 273
NASA Technical Reports Server (NTRS)
Evans, I. N.; Ford, H. C.; Hui, X.
1989-01-01
The technique of maximum entropy image restoration is applied to the problem of deconvolving the point spread function from a deep, high-quality V band image of the optical jet of 3C 273. The resulting maximum entropy image has an approximate spatial resolution of 0.6 arcsec and has been used to study the morphology of the optical jet. Four regularly-spaced optical knots are clearly evident in the data, together with an optical 'extension' at each end of the optical jet. The jet oscillates around its center of gravity, and the spatial scale of the oscillations is very similar to the spacing between the optical knots. The jet is marginally resolved in the transverse direction and has an asymmetric profile perpendicular to the jet axis. The distribution of V band flux along the length of the jet, and accurate astrometry of the optical knot positions are presented.
Indexing Mount For Rotation Of Optical Component
NASA Technical Reports Server (NTRS)
Reichle, Donald J., Jr.; Barnes, Norman P.
1993-01-01
Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.
Optical levitation particle delivery system for a dual beam fiber optic trap.
Gauthier, R C; Frangioudakis, A
2000-01-01
We combine a radiation-pressure-based levitation system with a dual fiber, laser trapping system to demonstrate the potential of delivering single particles into the fiber trap. The forces versus position and the trajectory of the particle subjected to the laser beams are examined with an enhanced ray optics model. A sequence of video images taken from the experimental apparatus demonstrates the principle of particle delivery, trapping, and further manipulation.
Rapid Field-Usable Cyanide Sensor Development for Blood and Saliva
2013-12-01
fluorescent readings were measured using an Ocean Optics USB2000+ Spectrometer. The spiked plasma gave a signal of approximately 18% of an aqueous...fluorescent readings were measured using an Ocean Optics USB2000+ Spectrometer. The optimization data can be seen in Figure 1.1.1-3. For aqueous...measured using an Ocean Optics USB2000+ Spectrometer. The identification of interferents is important to assess the possibility of false positives for
Theoretical model for optical properties of porphyrin
NASA Astrophysics Data System (ADS)
Phan, Anh D.; Nga, Do T.; Phan, The-Long; Thanh, Le T. M.; Anh, Chu T.; Bernad, Sophie; Viet, N. A.
2014-12-01
We propose a simple model to interpret the optical absorption spectra of porphyrin in different solvents. Our model successfully explains the decrease in the intensity of optical absorption at maxima of increased wavelengths. We also prove the dependence of the intensity and peak positions in the absorption spectra on the environment. The nature of the Soret band is supposed to derive from π plasmon. Our theoretical calculations are consistent with previous experimental studies.
Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices.
Mehmood, M Q; Mei, Shengtao; Hussain, Sajid; Huang, Kun; Siew, S Y; Zhang, Lei; Zhang, Tianhang; Ling, Xiaohui; Liu, Hong; Teng, Jinghua; Danner, Aaron; Zhang, Shuang; Qiu, Cheng-Wei
2016-04-06
A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hwa; Lee, Young Hen; Suh, Sang-Il; Jeong, Eun-Kee; Baek, Sehyun; Seo, Hyung Suk
The aim of this study was to determine whether the optic nerve is affected by thyroid eye disease (TED) before the development of dysthyroid optic neuropathy with diffusion-tensor imaging (DTI). Twenty TED patients and 20 controls were included. The mean, axial, and radial diffusivities and fractional anisotropy (FA) value were measured at the optic nerves in DTI. Extraocular muscle diameters were measured on computed tomography. The diffusivities and FA of the optic nerves were compared between TED and controls and between active and inactive stages of TED. The correlations between these DTI parameters and the clinical features were determined. The mean, axial, and radial diffusivities were lower in TED compared with the controls (P < 0.05). In contrast, FA was higher in TED (P = 0.001). Radial diffusivity was lower in the active stage of TED than the inactive stage (P = 0.035). The FA was higher in the TED group than in the control group (P = 0.021) and was positively correlated with clinical activity score (r = 0.364, P = 0.021), modified NOSPECS score (r = 0.469, P = 0.002), and extraocular muscle thickness (r = 0.325, P = 0.041) in the TED group. Radial diffusivity was negatively correlated with modified NOSPECS score (r = -0.384, P = 0.014), and axial diffusivity was positively correlated with exophthalmos degree (r = 0.363, P = 0.025). The diffusivities and FA reflected changes in the optic nerve before dysthyroid optic neuropathy in TED. The FA, in particular, reflected TED activity and severity.
The Precision Formation Flying Integrated Analysis Tool (PFFIAT)
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor
2004-01-01
Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.
The Precision Formation Flying Integrated Analysis Tool (PFFIAT)
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor
2004-01-01
Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.
Relationship between position of brain activity and change in optical density for NIR imaging
NASA Astrophysics Data System (ADS)
Kashio, Yoshihiko; Ono, Muneo; Firbank, Michael; Schweiger, Martin; Arridge, Simon R.; Okada, Eiji
2000-11-01
Multi-channel NIR system can obtain the topographic image of brain activity. Since the image is reconstructed from the change in optical density measured with the source-detector pairs, it is important to reveal the volume of tissue sampled by each source-detector pair. In this study, the light propagation in three-dimensional adult head model is calculated by hybrid radiosity-diffusion method. The model is a layered slab which mimics the extra cerebral tissue (skin, skull), CSF and brain. The change in optical density caused by the absorption change in a small cylindrical region of 10 mm in diameter at various positions in the brain is calculated. The greatest change in optical density can be observed when the absorber is located in the middle of the source and detector. When the absorber is located just below the source or detector, the change in optical density is almost half of that caused by the same absorber in the midpoint. The light propagation in the brain is strongly affected by the presence of non-scattering layer and consequently sensitive region is broadly distributed on the brain surface.
Relative-Motion Sensors and Actuators for Two Optical Tables
NASA Technical Reports Server (NTRS)
Gursel, Yekta; McKenney, Elizabeth
2004-01-01
Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.
Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector
NASA Astrophysics Data System (ADS)
Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha
2018-02-01
A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.
LMC stellar X-ray sources observed with ROSAT. 1: X-ray data and search for optical counterparts
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Cowley, A. P.; Frattare, L. M.; Mcgrath, T. K.
1994-01-01
Observations of Einstein Large Magellanic Cloud (LMC) X-ray point sources have been made with ROSAT's High-Resolution Imager to obtain accurate positions from which to search for optical counterparts. This paper is the first in a series reporting results of the ROSAT observations and subsequent optical observations. It includes the X-ray positions and fluxes, information about variability, optical finding charts for each source, a list of identified counterparts, and information about candidates which have been observed spectroscopically in each of the fields. Sixteen point sources were measured at a greater than 3 sigma level, while 15 other sources were either extended or less significant detections. About 50% of the sources are serendipitous detections (not found in previous surveys). More than half of the X-ray sources are variable. Sixteen of the sources have been optically identified or confirmed: six with foreground cool stars, four with Seyfert galaxies, two with signal-to-noise ratio (SNR) in the LMC, and four with peculiar hot LMC stars. Presumably the latter are all binaries, although only one (CAL 83) has been previously studied in detail.
High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.
Maclachlan, Robert A; Riviere, Cameron N
2009-06-01
Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling.
Magnetic Fields in Blazar Jets: Jet-Alignment of Radio and Optical Polarization over 20-30 Years
NASA Astrophysics Data System (ADS)
Wills, Beverley J.; Aller, M. F.; Caldwell, C.; Aller, H. D.
2012-01-01
Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: some quasars with strong broad emission lines, and BL Lac objects with weak or undetected broad lines. We have compiled optical linear polarization measurements of more than 100 blazars, including archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks, enabling quasi-simultaneous comparison of optical and radio polarization position angles (EVPAs). We also collected data on jet direction -- position angles of the jet component nearest the radio core. The project is unique in examining the polarization and jet behavior over many years. BL Lac objects tend to have stable optically thin EVPA in the jet direction, meaning magnetic field is perpendicular to jet flow, often interpreted as the magnetic field compressed by shocks. In quasar-blazars optical and radio EVPA often changes between parallel or perpendicular to the jet direction, even in the same object. The underlying B field of the jet is is parallel to the flow, with approximately 90 degree changes resulting from shocks. For both BL Lac objects & quasars, the scatter in EVPA usually increases from low frequencies (4.8 GHz) through 14.5 GHz through optical. The wide optical-radio frequency range allows us to investigate optical depth effects and the spatial origin of radio and optical emission.
The research of conformal optical design
NASA Astrophysics Data System (ADS)
Li, Lin; Li, Yan; Huang, Yi-fan; Du, Bao-lin
2009-07-01
Conformal optical domes are characterized as having external more elongated optical surfaces that are optimized to minimize drag, increased missile velocity and extended operational range. The outer surface of the conformal domes typically deviate greatly from spherical surface descriptions, so the inherent asymmetry of conformal surfaces leads to variations in the aberration content presented to the optical sensor as it is gimbaled across the field of regard, which degrades the sensor's ability to properly image targets of interest and then undermine the overall system performance. Consequently, the aerodynamic advantages of conformal domes cannot be realized in practical systems unless the dynamic aberration correction techniques are developed to restore adequate optical imaging capabilities. Up to now, many optical correction solutions have been researched in conformal optical design, including static aberrations corrections and dynamic aberrations corrections. There are three parts in this paper. Firstly, the combination of static and dynamic aberration correction is introduced. A system for correcting optical aberration created by a conformal dome has an outer surface and an inner surface. The optimization of the inner surface is regard as the static aberration correction; moreover, a deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. Secondly, the using of appropriate surface types is very important in conformal dome design. Better performing optical systems can result from surface types with adequate degrees of freedom to describe the proper corrector shape. Two surface types and the methods of using them are described, including Zernike polynomial surfaces used in correct elements and user-defined surfaces used in deformable mirror (DM). Finally, the Adaptive optics (AO) correction is presented. In order to correct the dynamical residual aberration in conformal optical design, the SPGD optimization algorithm is operated at each zoom position to calculate the optimized surface shape of the MEMS DM. The communication between MATLAB and Code V established via ActiveX technique is applied in simulation analysis.
Kim, Hyunjin; Sampath, Umesh; Song, Minho
2015-01-01
Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700
Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.
Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon
2014-05-01
In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.
Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits
NASA Astrophysics Data System (ADS)
Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.
2018-05-01
We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be <2.2 × 10^{-4} for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is <0.1 μm for a 45 {μ }m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below 10^{-6} per gate.
Nonlinear negative refraction in reorientational soft matter
NASA Astrophysics Data System (ADS)
Alberucci, Alessandro; Jisha, Chandroth P.; Assanto, Gaetano
2015-09-01
We analyze the propagation of self-trapped optical beams close to the Fréedericksz threshold in nematic liquid crystals. Accounting for power-dependent changes in walk-off due to the all-optical response, we demonstrate that light beams can switch from positive to negative refraction according to the excitation.
NASA Technical Reports Server (NTRS)
Olczak, Eugene G. (Inventor)
2011-01-01
An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.
Scuotto, M; Persico, M; Bucci, M; Vellecco, V; Borbone, N; Morelli, E; Oliviero, G; Novellino, E; Piccialli, G; Cirino, G; Varra, M; Fattorusso, C; Mayol, L
2014-07-28
Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure.
Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity
ERIC Educational Resources Information Center
Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-01-01
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…
Violation of Bell's inequalities in quantum optics
NASA Technical Reports Server (NTRS)
Reid, M. D.; Walls, D. F.
1984-01-01
An optical field produced by intracavity four-wave mixing is shown to exhibit the following nonclassical features: photon antibunching, squeezing, and violation of Cauchy-Schwarz and Bell's inequalities. These intrinsic quantum mechanical effects are shown to be associated with the nonexistence of a positive normalizable Glauber-Sudarshan P function.
Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score.
Coops, Annemiek; Henson, David Barry; Kwartz, Anna J; Artes, Paul Habib
2006-12-01
To compare the diagnostic performance of the Heidelberg Retinal Tomograph's (HRT; Heidelberg Engineering GmbH, Dossenheim, Germany) glaucoma probability score (GPS), an automated, contour line-independent method of optic disc analysis with that of the Moorfields regression analysis (MRA). HRT images were obtained from one eye of 121 patients with glaucoma (median age, 70.2 years; median mean deviation [MD], -3.6 dB, range, +2.0 to -9.9 dB) and 95 healthy control subjects (median age, 59.7 years; median MD -0.1 dB, range +2.5 to -3.7). The diagnostic performances of GPS and MRA were evaluated by including borderline classifications, either as test negatives (most specific criteria) or as test positives (least specific criteria). Agreement between global and sectoral data of both analyses was established. Logistic regression analyses were performed to evaluate the effect of covariates such as optic disc size and age on the classification outcomes of both the GPS and the MRA. In 8 (7%) patients with glaucoma and 10 (11%) control subjects, the GPS failed to provide a complete global and sectoral optic disc classification. Although we could not identify a single distinct cause of this failure in the glaucoma group, failures in the control subjects occurred most often (7/10) with small and crowded optic discs. In subjects who were successfully classified at least globally by the GPS (117 patients with glaucoma, 88 control subjects), the diagnostic performances of GPS and MRA were similar (areas under the receiver operating characteristic [ROC] curve of 0.78 and 0.77, respectively; P > 0.1). With the GPS, sensitivity and specificity were 59% and 91% (most specific criteria) and 78% and 63% (least specific criteria), respectively. Combining GPS and MRA did not increase diagnostic performance significantly (ROC area of combined classifiers, 0.81). Both GPS and MRA were affected by disc size. In patients with glaucoma as well as healthy control subjects, the odds of a positive GPS classification (borderline or outside normal limits) increased by 21% (95% confidence interval [CI], 12%-30%) for each 0.1 mm2 increase in optic disc area. With the MRA, the corresponding increase was 15% (95% CI, 7%-23%). Optic disc area alone accounted for approximately 30% and 22% of the explained variance with the GPS and MRA, respectively (P < 0.001). The proportional-odds logistic regression confirmed that optic disc size affected mainly the tradeoff between true- and false-positive classifications (criterion) rather than the absolute performance of the analyses (area under the ROC curve). There was some evidence of an age effect with the MRA, which showed a 53% (95% CI, 16%-102%) increase in the odds of a positive test (borderline or outside normal limits) associated with each decade of age (P = 0.002), but no age effects were observed with the GPS (P > 0.1). The diagnostic performance of the contour line-independent GPS analysis is similar to that of the MRA. However, clinicians should be aware of the strong size dependence of both GPS and MRA. In large optic discs, both GPS and MRA are likely to produce many false-positive classifications. Correspondingly, the sensitivity to early damage is likely to be low in small optic discs. There is a need for automated classification systems that explicitly address the size dependence of current analyses.
Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution
NASA Astrophysics Data System (ADS)
Tian, Y.; Rao, C. H.; Wei, K.
2008-10-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.
Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Han; Zhang, Xingwang; Chau, Fook Siong
2016-04-25
We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less
Heidelberg Retina Tomography Analysis in Optic Disks with Anatomic Particularities
Alexandrescu, C; Pascu, R; Ilinca, R; Popescu, V; Ciuluvica, R; Voinea, L; Celea, C
2010-01-01
Due to its objectivity, reproducibility and predictive value confirmed by many large scale statistical clinical studies, Heidelberg Retina Tomography has become one of the most used computerized image analysis of the optic disc in glaucoma. It has been signaled, though, that the diagnostic value of Moorfieds Regression Analyses and Glaucoma Probability Score decreases when analyzing optic discs with extreme sizes. The number of false positive results increases in cases of megalopapilllae and the number of false negative results increases in cases of small size optic discs. The present paper is a review of the aspects one should take into account when analyzing a HRT result of an optic disc with anatomic particularities. PMID:21254731
Perceiving environmental structure from optical motion
NASA Technical Reports Server (NTRS)
Lappin, Joseph S.
1991-01-01
Generally speaking, one of the most important sources of optical information about environmental structure is known to be the deforming optical patterns produced by the movements of the observer (pilot) or environmental objects. As an observer moves through a rigid environment, the projected optical patterns of environmental objects are systematically transformed according to their orientations and positions in 3D space relative to those of the observer. The detailed characteristics of these deforming optical patterns carry information about the 3D structure of the objects and about their locations and orientations relative to those of the observer. The specific geometrical properties of moving images that may constitute visually detected information about the shapes and locations of environmental objects is examined.
NASA Astrophysics Data System (ADS)
Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian
2018-01-01
In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.
NASA Astrophysics Data System (ADS)
1993-01-01
This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.
Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle
2015-01-01
Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382
Resonance-enhanced optical forces between coupled photonic crystal slabs.
Liu, Victor; Povinelli, Michelle; Fan, Shanhui
2009-11-23
The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.
Low temperature monitoring system for subsurface barriers
Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX
2009-08-18
A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical design of MOEMS-based micro-mechatronic modules for applications in spectroscopy
NASA Astrophysics Data System (ADS)
Tortschanoff, A.; Kremer, M.; Sandner, T.; Kenda, A.
2014-05-01
One of the important challenges for widespread application of MOEMS devices is to provide a modular interface for easy handling and accurate driving of the MOEMS elements, in order to enable seamless integration in larger spectroscopic system solutions. In this contribution we present in much detail the optical design of MOEMS driver modules comprising optical position sensing together with driver electronics, which can actively control different electrostatically driven MOEMS. Furthermore we will present concepts for compact spectroscopic devices, based on different MOEMS scanner modules with lD and 2D optical elements.
Fiber-optical switch using cam-micromotor driven by scratch drive actuators
NASA Astrophysics Data System (ADS)
Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.
2005-01-01
We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.
NASA Technical Reports Server (NTRS)
1988-01-01
The in-situ optical surface measurement system is a facility designed to study the deleterious effects of particulate materials on the surface reflectivities of optical materials in the vacuum ultraviolet (VUV). This arrangement is designed to simulate the on-orbit effects of contamination and degradation of optical surfaces. This simulation is accomplished through the use of non-coherent VUV sources illuminating optical surfaces located in a high vacuum chamber. Several sources of contamination are employed. The reflectivity is measured both at the specular reflection as well as at two scattered positions, forward and reverse. The system components are described and an operating procedure is given.
Characterization of Si3N4/SiO2 optical channel waveguides by photon scanning tunneling microscopy
NASA Technical Reports Server (NTRS)
Wang, Yan; Chudgar, Mona H.; Jackson, Howard E.; Miller, Jeffrey S.; De Brabander, Gregory N.; Boyd, Joseph T.
1993-01-01
Photon scanning tunneling microscopy (PSTM) is used to characterize Si3N4/Si02 optical channel waveguides being used for integrated optical-micromechanical sensors. PSTM utilizes an optical fiber tapered to a fine point which is piezoelectrically positioned to measure the decay of the evanescent field intensity associated with the waveguide propagating mode. Evanescent field decays are recorded for both ridge channel waveguides and planar waveguide regions. Values for the local effective refractive index are calculated from the data for both polarizations and compared to model calculations.
Local x-ray structure analysis of optically manipulated biological micro-objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.
2010-12-13
X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.
Nano-stepper-driven optical shutter for applications in free-space micro-optics
NASA Astrophysics Data System (ADS)
Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.
2002-09-01
In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.
NASA Astrophysics Data System (ADS)
Lawrence, G.; Barnard, C.; Viswanathan, V.
1986-11-01
Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by "unfolding" the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidence optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly.
Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik
2015-08-01
This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)
2005-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
2003-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
1999-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andrew James
2016-05-03
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andy J
2013-10-01
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Positional Accuracy in Optical Trap-Assisted Nanolithography
NASA Astrophysics Data System (ADS)
Arnold, Craig B.; McLeod, Euan
2009-03-01
The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at
2015-11-28
Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridgedmore » oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.« less
Optical drift effects in general relativity
NASA Astrophysics Data System (ADS)
Korzyński, Mikołaj; Kopiński, Jarosław
2018-03-01
We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.
Optimization of pencil beam f-theta lens for high-accuracy metrology
NASA Astrophysics Data System (ADS)
Peng, Chuanqian; He, Yumei; Wang, Jie
2018-01-01
Pencil beam deflectometric profilers are common instruments for high-accuracy surface slope metrology of x-ray mirrors in synchrotron facilities. An f-theta optical system is a key optical component of the deflectometric profilers and is used to perform the linear angle-to-position conversion. Traditional optimization procedures of the f-theta systems are not directly related to the angle-to-position conversion relation and are performed with stops of large size and a fixed working distance, which means they may not be suitable for the design of f-theta systems working with a small-sized pencil beam within a working distance range for ultra-high-accuracy metrology. If an f-theta system is not well-designed, aberrations of the f-theta system will introduce many systematic errors into the measurement. A least-squares' fitting procedure was used to optimize the configuration parameters of an f-theta system. Simulations using ZEMAX software showed that the optimized f-theta system significantly suppressed the angle-to-position conversion errors caused by aberrations. Any pencil-beam f-theta optical system can be optimized with the help of this optimization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, D.D.; Oost, B.A. van; Went, L.N.
1996-04-01
A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A{yields}G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T{yields}A transitionmore » at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy. 80 refs., 2 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
van den Berg, M.; Verbunt, F.
2001-03-01
Optical spectra show that two proposed counterparts for X-ray sources detected near 1E 2259+58.6 are late G stars, and a proposed counterpart for a source near 4U 0142+61 is a dMe star. The X-ray luminosities are as expected for such stars. We thus confirm the optical identification of the three X-ray objects, and thereby the correctness of the accurate positions for 1E 2259+58.6 and 4U 0142+61 based on them. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Calibration methods and tools for KM3NeT
NASA Astrophysics Data System (ADS)
Kulikovskiy, Vladimir
2016-04-01
The KM3NeT detectors, ARCA and ORCA, composed of several thousands digital optical modules, are in the process of their realization in the Mediterranean Sea. Each optical module contains 31 3-inch photomultipliers. Readout of the optical modules and other detector components is synchronized at the level of sub-nanoseconds. The position of the module is measured by acoustic piezo detectors inside the module and external acoustic emitters installed on the bottom of the sea. The orientation of the module is obtained with an internal attitude and heading reference system chip. Detector calibration, i.e. timing, positioning and sea-water properties, is overviewed in this talk and discussed in detail in this conference. Results of the procedure applied to the first detector unit ready for installation in the deep sea will be shown.
Estimating respiratory rate from FBG optical sensors by using signal quality measurement.
Yongwei Zhu; Maniyeri, Jayachandran; Fook, Victor Foo Siang; Haihong Zhang
2015-08-01
Non-intrusiveness is one of the advantages of in-bed optical sensor device for monitoring vital signs, including heart rate and respiratory rate. Estimating respiratory rate reliably using such sensors, however, is challenging, due to body movement, signal variation according to different subjects or body positions, etc. This paper presents a method for reliable respiratory rate estimation for FBG optical sensors by introducing signal quality estimation. The method estimates the quality of the signal waveform by detecting regularly repetitive patterns using proposed spectrum and cepstrum analysis. Multiple window sizes are used to cater for a wide range of target respiratory rates. Furthermore, the readings of multiple sensors are fused to derive a final respiratory rate. Experiments with 12 subjects and 2 body positions were conducted using polysomnography belt signal as groundtruth. The results demonstrated the effectiveness of the method.
Spectral and Radiometric Calibration Using Tunable Lasers
NASA Technical Reports Server (NTRS)
McCorkel, Joel (Inventor)
2017-01-01
A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.
Method for tracking the location of mobile agents using stand-off detection technique
Schmitt, Randal L [Tijeras, NM; Bender, Susan Fae Ann [Tijeras, NM; Rodacy, Philip J [Albuquerque, NM; Hargis, Jr., Philip J.; Johnson, Mark S [Albuquerque, NM
2006-12-26
A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.
2016-02-05
diode laser, Raman spectroscopy REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...this project supported the acquisition of a closed-cycle optical cryostat from Montana Instruments, as well as a new 785 nm diode laser and ultrahigh...planned experiments on inelastic electron tunneling spectroscopy that require TɝK for optimal resolution. Additionally, the spatial position of
Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K
2012-12-03
We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.
Preform For Producing An Optical Fiber And Method Therefor
Kliner, Dahv A. V.; Koplow, Jeffery P.
2004-08-10
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Preform For Producing An Optical Fiber And Method Therefor
Kliner, Dahv A. V.; Koplow, Jeffery P.
2005-04-19
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Adaptive optics and interferometry
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Ridgway, Stephen
1991-01-01
Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.
Prompt Optical Observations of Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim
2000-03-01
The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.
Flexible particle manipulation techniques with conical refraction-based optical tweezers
NASA Astrophysics Data System (ADS)
McDougall, C.; Henderson, Robert; Carnegie, David J.; Sokolovskii, Grigorii S.; Rafailov, Edik U.; McGloin, David
2012-10-01
We present an optimized optical tweezers system based upon the conical refraction of circularly polarized light in a biaxial crystal. The described optical arrangement avoids distortions to the Lloyd plane rings that become apparent when working with circularly polarized light in conventional optical tweezers. We demonstrate that the intensity distribution of the conically diffracted light permits optical manipulation of high and low refractive index particles simultaneously. Such trapping is in three dimensions and not limited to the Lloyd plane rings. By removal of a quarter waveplate the system also permits the study of linearly polarized conical refraction. We show that particle position in the Raman plane is determined by beam power, and indicates that true optical tweezing is not taking place in this part of the beam.
Optical processing for landmark identification
NASA Technical Reports Server (NTRS)
Casasent, D.; Luu, T. K.
1981-01-01
A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced.
[Effects of visual optical stimuli for accommodation-convergence system on asthenopia].
Iwasaki, Tsuneto; Tawara, Akihiko; Miyake, Nobuyuki
2006-01-01
We investigated the effect on eyestrain of optical stimuli that we designed for accommodation and convergence systems. Eight female students were given optical stimuli for accommodation and convergence systems for 1.5 min immediately after 20 min of a sustained task on a 3-D display. Before and after the trial, their ocular functions were measured and their symptoms were assessed. The optical stimuli were applied by moving targets of scenery images far and near around the far point position of both eyes on a horizonal place, which induced divergence in the direction of the eye position of rest. In a control group, subjects rested with closed eyes for 1.5 min instead of applying the optical stimuli. There were significant changes in the accommodative contraction time (from far to near) and the accommodative relaxation time (from near to far) and the lag of accommodation at near target, from 1.26 s to 1.62 s and from 1.49 s to 1.63 s and from 0.5 D to 0.65 D, respectively, and in the symptoms in the control group after the duration of closed-eye rest. In the stimulus group, however, the changes of those functions were smaller than in the control group. From these results, we suggest that our designed optical stimuli for accommodation and convergence systems are effective on asthenopia following accommodative dysfunction.
Design and characterization of a plastic optical fiber pH sensor
NASA Astrophysics Data System (ADS)
Ferreira, Licínio; Simões, Pedro; Carvalho, Rui S.; Lopes, Paulo; Ferreira, Mário
2013-11-01
In this paper are present the design and characterization of a pH sensor using plastic optical fiber (POF) technology and a material produced by the sol-gel process with TEOS (tetraethyl orthosilicate) to immobilize universal indicator of pH (comprised of Thymol Blue, Methyl Red, Bromothymol Blue and Phenolphthalein) inside the silica matrix. This matrix is positioned between two extensions of plastic optical fiber tightly positioned at each side with both fibers aligned and sharing a common optical axis. This set will work as a pH sensor since the matrix embedded with indicator and in the presence of a solution (basic or acid solution) will change the optical transmittance properties. The optical source is a superluminescent white LED and the receiver is a photodiode having a good and linear responsivity in the visible spectrum. This pH sensitive matrix has large pores which allow the diffusion of the surrounding fluid molecules into the matrix and thus the close contact of these to the indicator molecules. This contact causes the change of color of the whole matrix allowing proper colorimetric detection by the photodiode. This variation of color associated with the detector wavelength linear response is the base of operation of the proposed device. This pH sensor presents many advantages over the standard and commercial pH meters namely, lightweight, portability and a low cost.
A flexible tactile sensitive sheet using a hetero-core fiber optic sensor
NASA Astrophysics Data System (ADS)
Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.
2014-05-01
In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.
Optical absorption enhancement by inserting ZnO optical spacer in plasmonic organic solar cells
NASA Astrophysics Data System (ADS)
N'Konou, Kekeli; Torchio, Philippe
2018-01-01
Optical absorption enhancement (AE) using coupled optical spacer and plasmonic effects in standard and inverted organic solar cells (OSCs) are demonstrated using the finite-difference time-domain numerical method. The influence of an added zinc oxide (ZnO) optical spacer layer inserted below the active layer in standard architecture is first theoretically investigated while the influence of varying the ZnO cathodic buffer layer thickness in inverted design is studied on AE. Then, the embedding of a square periodic array of core-shell silver-silica nanospheres (Ag@SiO2 NSs) at different positions in standard and inverted OSCs is performed while AE and short-circuit current density (Jsc) are calculated. As a result of previous combined effects, the optimized standard plasmonic OSCs present 15% and 79.45% enhancement in J over the reference with and without ZnO optical spacer layer, respectively, and a 16% increase of AE when Ag@SiO2 NSs are placed on top of the PEDOT:PSS layer. Compared to the inverted OSC reference, the plasmonic OSCs present 26% and 27% enhancement in J and AE, respectively, when the Ag@SiO2 NSs are located on top of the ZnO layer. Furthermore, the spatial position of these NSs in such OSCs is a key parameter for increasing light absorption via enhanced electromagnetic field distribution.
Control Program for an Optical-Calibration Robot
NASA Technical Reports Server (NTRS)
Johnston, Albert
2005-01-01
A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.
NASA Astrophysics Data System (ADS)
Hwang, David; Larson, Thomas M.
2017-08-01
Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.
NASA Astrophysics Data System (ADS)
Faller, Lisa-Marie; Zangl, Hubert
2017-05-01
To guarantee high performance of Micro Optical Electro Mechanical Systems (MOEMS), precise position feedback is crucial. To overcome drawbacks of widely used optical feedback, we propose an inkjet-printed capacitive position sensor as smart packaging solution. Printing processes suffer from tolerances in excess of those from standard processes. Thus, FEM simulations covering assumed tolerances of the system are adopted. These simulations are structured following a Design Of Computer Experiments (DOCE) and are then employed to determine a optimal sensor design. Based on the simulation results, statistical models are adopted for the dynamic system. These models are to be used together with specifically designed hardware, considered to cope with challenging requirements of ≍50nm position accuracy at 10MS/s with 1000μm measurement range. Noise analysis is performed considering the influence of uncertainties to assess resolution and bandwidth capabilities.
The positioning system of the ANTARES Neutrino Telescope
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.
2012-08-01
The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10 cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
The spacecraft control laboratory experiment optical attitude measurement system
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.
1991-01-01
A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.
Dynamic propagation of symmetric Airy pulses with initial chirps in an optical fiber
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Huang, Xianwei; Deng, Yangbao; Tan, Chao; Bai, Yanfeng; Fu, Xiquan
2017-09-01
We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression, and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the chirped symmetric Airy pulses propagation is also disclosed separately.
Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation
NASA Astrophysics Data System (ADS)
Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter
1996-01-01
The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.
Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.
Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei
2018-03-05
We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.
Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.
Brauers, Johannes; Aach, Til
2011-02-01
High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. D.
1993-01-01
Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.
Control and design heat flux bending in thermal devices with transformation optics.
Xu, Guoqiang; Zhang, Haochun; Jin, Yan; Li, Sen; Li, Yao
2017-04-17
We propose a fundamental latent function of control heat transfer and heat flux density vectors at random positions on thermal materials by applying transformation optics. The expressions for heat flux bending are obtained, and the factors influencing them are investigated in both 2D and 3D cloaking schemes. Under certain conditions, more than one degree of freedom of heat flux bending exists corresponding to the temperature gradients of the 3D domain. The heat flux path can be controlled in random space based on the geometrical azimuths, radial positions, and thermal conductivity ratios of the selected materials.
The Tidbinbilla-U.K. Schmidt radio quasar identification program
NASA Technical Reports Server (NTRS)
Jauncey, D. L.; Batty, M. J.; Savage, A.; Gulkis, S.
1983-01-01
A program is under way at Tidbinbilla to measure accurate (up to 2 arcsec r.m.s) radio positions for compact sources in the Parkes 2.7 GHz survey south of declination -30 deg. Optical identifications are being made on the basis of radio-optical position coincidence alone, without regard to colour or morphology, using the U.K. Schmidt IIIa-J sky survey to a limiting magnitude of 22.5. This program is aimed at producing an evaluation of the radio quasar redshift distribution with particular emphasis on those objects with redshifts greater than 3.0.
Wong, R Lm; Tsang, C W; Wong, D Sh; McGhee, S; Lam, C H; Lian, J; Lee, J Wy; Lai, J Sm; Chong, V; Wong, I Yh
2017-08-01
A large proportion of patients diagnosed with diabetic maculopathy using fundus photography and hence referred to specialist clinics following the current screening guidelines adopted in Hong Kong and United Kingdom are found to be false-positive, implying that they did not have macular oedema. This study aimed to evaluate the false-positive rate of diabetic maculopathy screening using the objective optical coherence tomography scan. This was a cross-sectional observational study. Consecutive diabetic patients from the Hong Kong West Cluster Diabetic Retinopathy Screening Programme with fundus photographs graded R1M1 were recruited between October 2011 and June 2013. Spectral-domain optical coherence tomography imaging was performed. Central macular thickness of ≥300 μm and/or the presence of optical coherence tomography signs of diabetic macular oedema were used to define the presence of diabetic macular oedema. Patients with conditions other than diabetes that might affect macular thickness were excluded. The mean central macular thickness in various subgroups of R1M1 patients was calculated and the proportion of subjects with central macular thickness of ≥300 μm was used to assess the false-positive rate of this screening strategy. A total of 491 patients were recruited during the study period. Of the 352 who were eligible for analysis, 44.0%, 17.0%, and 38.9% were graded as M1 due to the presence of foveal 'haemorrhages', 'exudates', or 'haemorrhages and exudates', respectively. The mean (±standard deviation) central macular thickness was 265.1±55.4 μm. Only 13.4% (95% confidence interval, 9.8%-17.0%) of eyes had a central macular thickness of ≥300 μm, and 42.9% (95% confidence interval, 37.7%-48.1%) of eyes had at least one optical coherence tomography sign of diabetic macular oedema. For patients with retinal haemorrhages only, 9.0% (95% confidence interval, 4.5%-13.5%) had a central macular thickness of ≥300 μm; 23.2% (95% confidence interval, 16.6%-29.9%) had at least one optical coherence tomography sign of diabetic macular oedema. The false-positive rate of the current screening strategy for diabetic macular oedema was 86.6%. The high false-positive rate of the current diabetic macular oedema screening adopted by the United Kingdom and Hong Kong may lead to unnecessary psychological stress for patients and place a financial burden on the health care system. A better way of screening is urgently needed. Performing additional spectral-domain optical coherence tomography scans on selected patients fulfils this need.
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Saegusa-Beecroft, Emi; Mamou, Jonathan; Chitnis, Parag V.; Machi, Junji; Feleppa, Ernest J.
2014-03-01
Quantitative photoacoustics is emerging as a new hybrid modality to investigate diseases and cells in human pathology and cytology studies. Optical absorption of light is the predominant mechanism behind the photoacoustic effect. Therefore, a need exits to characterize the optical properties of specimens and to identify the relevant operating wavelengths for photoacoustic imaging. We have developed a custom low-cost spectrophotometer to measure the optical properties of human axillary lymph nodes dissected for breast-cancer staging. Optical extinction curves of positive and negative nodes were determined in the spectral range of 400 to 1000 nm. We have developed a model to estimate tissue optical properties, taking into account the role of fat and saline. Our results enabled us to select the optimal optical wavelengths for maximizing the imaging contrast between metastatic and noncancerous tissue in axillary lymph nodes.
Transpiration purged optical probe
VanOsdol, John; Woodruff, Steven
2004-01-06
An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.
Long range laser traversing system
NASA Technical Reports Server (NTRS)
Caudill, L. O. (Inventor)
1974-01-01
The relative azimuth bearing between first and second spaced terrestrial points which may be obscured from each other by intervening terrain is measured by placing at one of the points a laser source for projecting a collimated beam upwardly in the vertical plane. The collimated laser beam is detected at the second point by positioning the optical axis of a receiving instrument for the laser beam in such a manner that the beam intercepts the optical axis. In response to the optical axis intercepting the beam, the beam is deflected into two different ray paths by a beam splitter having an apex located on the optical axis. The energy in the ray paths is detected by separate photoresponsive elements that drive logic networks for proving indications of: (1) the optical axis intercepting the beam; (2) the beam being on the left of the optical axis and (3) the beam being on the right side of the optical axis.
A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics
NASA Technical Reports Server (NTRS)
Broadway, David; Ramsey, Brian; Gubarev, Mikhail
2014-01-01
The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.
A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics
NASA Technical Reports Server (NTRS)
Broadway, David
2015-01-01
The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.
NASA Astrophysics Data System (ADS)
Nief, G.; Olivier, N.; Olivier, S.; Hue, A.
2017-12-01
Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one. CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design a new optical microbarometer: We aim at thinking that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors. First, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and drawbacks. Secondly, we will present the optical microbarometer in which the interferometer is positioned inside the aneroid capsule under vacuum. The adjustment of the interferometer position is a challenge we solved. The optical measurement is naturally protected from environmental disturbances. Four prototypes were manufactured in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer. Finally, we will present the results we obtained with this sensor (sensitivity, self-noise, effect of environmental disturbance, etc) compared to those of a MB3 microbarometer, and discuss about the advantages of this new sensor.
Optical fiducial timing system for X-ray streak cameras with aluminum coated optical fiber ends
Nilson, David G.; Campbell, E. Michael; MacGowan, Brian J.; Medecki, Hector
1988-01-01
An optical fiducial timing system is provided for use with interdependent groups of X-ray streak cameras (18). The aluminum coated (80) ends of optical fibers (78) are positioned with the photocathodes (20, 60, 70) of the X-ray streak cameras (18). The other ends of the optical fibers (78) are placed together in a bundled array (90). A fiducial optical signal (96), that is comprised of 2.omega. or 1.omega. laser light, after introduction to the bundled array (90), travels to the aluminum coated (82) optical fiber ends and ejects quantities of electrons (84) that are recorded on the data recording media (52) of the X-ray streak cameras (18). Since both 2.omega. and 1.omega. laser light can travel long distances in optical fiber with only a slight attenuation, the initial arial power density of the fiducial optical signal (96) is well below the damage threshold of the fused silica or other material that comprises the optical fibers (78, 90). Thus the fiducial timing system can be repeatably used over long durations of time.
2010-05-01
Karsten Rottwitt DTU Fotonik Department of Photonics Engineering, Technical University of Denmark - 2 - TABLE OF...at DTU Fotonik, has intensified through two new ph.d positions within parametric amplifiers, one partly funded through a research program on phase...Activities: As indicated in the above DTU Fotonik now has significant activities on using parametric processes in optical fibers. This includes
Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven; Parker, Graham B.
2008-10-25
Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest
Goethe's Phenomenological Optics: The Point Where Language Ends and Experience Begins in Science.
ERIC Educational Resources Information Center
Junker, Kirk
This paper explores whether phenomenology, in general, and the case of Johann Wolfgang von Goethe's phenomenological optics in particular, provides a case and a location for "minimal realism," located between the extreme positions of absolute scientific realists and "radical rhetoricians." The paper begins with a description of…
Intrinsic optical confinement for ultrathin InAsN quantum well superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakri, A.; Robert, C.; Pedesseau, L.
We study energy-band engineering with InAsN monolayer in GaAs/GaP quantum well structure. A tight-binding calculation indicates that both type I alignment along with direct band-gap behavior can be obtained. We show that the optical transitions are less sensitive to the position of the probe.
Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems
2014-08-31
a Gel Logic System using UV transillumination and a 535 nm optical filter ( Kodak ). The positive control PCR was performed by taking an aliquot of the...described in the section above. Samples were excited by a UV transilluminator ( Kodak ). For imaging, a 520 ± 10 nm bandpass filter (Edmund Optics) was
Discrete-Time Demodulator Architectures for Free-Space Broadband Optical Pulse-Position Modulation
NASA Technical Reports Server (NTRS)
Gray, A. A.; Lee, C.
2004-01-01
The objective of this work is to develop discrete-time demodulator architectures for broadband optical pulse-position modulation (PPM) that are capable of processing Nyquist or near-Nyquist data rates. These architectures are motivated by the numerous advantages of realizing communications demodulators in digital very large scale integrated (VLSI) circuits. The architectures are developed within a framework that encompasses a large body of work in optical communications, synchronization, and multirate discrete-time signal processing and are constrained by the limitations of the state of the art in digital hardware. This work attempts to create a bridge between theoretical communication algorithms and analysis for deep-space optical PPM and modern digital VLSI. The primary focus of this work is on the synthesis of discrete-time processing architectures for accomplishing the most fundamental functions required in PPM demodulators, post-detection filtering, synchronization, and decision processing. The architectures derived are capable of closely approximating the theoretical performance of the continuous-time algorithms from which they are derived. The work concludes with an outline of the development path that leads to hardware.
NASA Astrophysics Data System (ADS)
Miller, Glen E.
1993-02-01
About fifteen years ago, it became pretty clear that a combination of fiber optic and photonic technologies offered an opportunity to use light to perform almost any of the functions traditionally performed with wire and electronics--as well as to gain a number of unique advantages in the process. Sensors were quickly recognized as prime candidates for conversion to optics because the new technologies promised to eliminate noise susceptibility, a problem that has always plagued instrumentation engineers. As a bonus, the new technology also appeared to make the long-sought true digital sensors a practical reality. The benefits appeared so attractive that nearly all major suppliers and users of sensors began some kind of program to get on the bandwagon. The ensuing worldwide explosion of activity resulted in literally thousands of technical papers and patents, but a discouragingly small number of practical off- the-shelf devices. This paper will review the field of fiber optic position sensors, will categorize the various types, will discuss their relative advantages and disadvantages, and will outline the problem areas which still remain to be solved before the technology is likely to find the predicted widespread use.
System for Measuring Flexing of a Large Spaceborne Structure
NASA Technical Reports Server (NTRS)
Scharf, Daniel; Kuhnert, Andreas; Kovalik, Joseph; Hadaegh, Fred; Shaddock, Daniel
2008-01-01
An optoelectronic metrology system is used for determining the attitude and flexing of a large spaceborne radar antenna or similar structure. The measurements are needed for accurate pointing of the antenna and correction and control of the phase of the radar signal wavefront. The system includes a dual-field-of-view star tracker; a laser ranging unit (LRU) and a position-sensitive-detector (PSD)-based camera mounted on an optical bench; and fiducial targets at various locations on the structure. The fiducial targets are illuminated in sequence by laser light coupled via optical fibers. The LRU and the PSD provide measurements of the position of each fiducial target in a reference frame attached to the optical bench. During routine operation, the star tracker utilizes one field of view and functions conventionally to determine the orientation of the optical bench. During operation in a calibration mode, the star tracker also utilizes its second field of view, which includes stars that are imaged alongside some of the fiducial targets in the PSD; in this mode, the PSD measurements are traceable to star measurements.
Measuring the retina optical properties using a structured illumination imaging system
NASA Astrophysics Data System (ADS)
Basiri, A.; Nguyen, T. A.; Ibrahim, M.; Nguyen, Q. D.; Ramella-Roman, Jessica C.
2011-03-01
Patients with diabetic retinopathy (DR) may experience a reduction in retinal oxygen saturation (SO2). Close monitoring with a fundus ophthalmoscope can help in the prediction of the progression of disease. In this paper we present a noninvasive instrument based on structured illumination aimed at measuring the retina optical properties including oxygen saturation. The instrument uses two wavelngths one in the NIR and one visible, a fast acquisition camera, and a splitter system that allows for contemporaneous collection of images at two different wavelengths. This scheme greatly reduces eye movement artifacts. Structured illumination was achieved in two different ways, firstly several binary illumination masks fabricated using laser micro-machining were used, a near-sinusoidal projection pattern is ultimately achieved at the image plane by appropriate positioning of the binary masks. Secondarily a sinusoidal pattern printed on a thin plastic sheet was positioned at image plane of a fundus ophthalmoscope. The system was calibrated using optical phantoms of known optical properties as well as an eye phantom that included a 150μm capillary vessel containing different concentrations of oxygenated and deoxygenated hemoglobin.
Optical waveguide loop for planar trapping of blood cells and microspheres
NASA Astrophysics Data System (ADS)
Ahluwalia, Balpreet S.; Hellesø, Olav G.
2013-09-01
The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taira, Yoshitaka; Zhang, Shukui
Here, diffraction patterns of an optical vortex through several shaped apertures reveal its topological charge. In this letter, we theoretically and experimentally show that diffraction of a Laguerre Gaussian beam through a circular aperture at an off-axis position can be used to determine the magnitude and sign of the topological charge. To our knowledge, this is the first time that a simple circular aperture has been used to detect orbital angular momentum of an incident optical vortex.
Taira, Yoshitaka; Zhang, Shukui
2017-04-01
Diffraction patterns of an optical vortex through several shaped apertures reveal its topological charge. In this Letter, we theoretically and experimentally show that diffraction of a Laguerre Gaussian beam through a circular aperture at an off-axis position can be used to determine the magnitude and sign of the topological charge. To our knowledge, this is the first time that a simple circular aperture has been used to detect orbital angular momentum of an incident optical vortex.
Real-time Kalman filter: Cooling of an optically levitated nanoparticle
NASA Astrophysics Data System (ADS)
Setter, Ashley; Toroš, Marko; Ralph, Jason F.; Ulbricht, Hendrik
2018-03-01
We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a field programmable gate array, is sufficient to perform closed-loop parametric feedback cooling of the center-of-mass motion to sub-Kelvin temperatures. The translational center-of-mass motion along the optical axis of the trapped nanoparticle has been cooled by 3 orders of magnitude, from a temperature of 300 K to a temperature of 162 ±15 mK.
Taira, Yoshitaka; Zhang, Shukui
2017-03-29
Here, diffraction patterns of an optical vortex through several shaped apertures reveal its topological charge. In this letter, we theoretically and experimentally show that diffraction of a Laguerre Gaussian beam through a circular aperture at an off-axis position can be used to determine the magnitude and sign of the topological charge. To our knowledge, this is the first time that a simple circular aperture has been used to detect orbital angular momentum of an incident optical vortex.
Method of bundling rods so as to form an optical fiber preform
Kliner, Dahv A. V. [San Ramon, CA; Koplow, Jeffery P [Washington, DC
2004-03-30
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Multiple-beam propagation in an Anderson localized optical fiber.
Karbasi, Salman; Koch, Karl W; Mafi, Arash
2013-01-14
We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers that can be used for practical beam-multiplexing applications.
NASA Astrophysics Data System (ADS)
Hertel, R. J.; Hoilman, K. A.
1982-01-01
The effects of model vibration, camera and window nonlinearities, and aerodynamic disturbances in the optical path on the measurement of target position is examined. Window distortion, temperature and pressure changes, laminar and turbulent boundary layers, shock waves, target intensity and, target vibration are also studied. A general computer program was developed to trace optical rays through these disturbances. The use of a charge injection device camera as an alternative to the image dissector camera was examined.
Development of a precision, wide-dynamic-range actuator for use in active optical systems
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.
1989-01-01
The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.
Poppinga, D; Schoenfeld, A A; Doerner, K J; Blanck, O; Harder, D; Poppe, B
2014-02-01
The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along the x axis, the axis parallel to the elongated light source. At constant dose, the measured optical density profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x is transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along the x axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at position x into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.
Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery
NASA Astrophysics Data System (ADS)
Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong
2015-07-01
Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.
NASA Technical Reports Server (NTRS)
Bahethi, O. P.; Fraser, R. S.
1975-01-01
Computations of the intensity, flux, degree of polarization, and the positions of neutral points are presented for models of the terrestrial gaseous and hazy atmospheres by incorporating the molecular anisotropy due to air in the Rayleigh scattering optical thickness and phase matrix. Molecular anisotropy causes significant changes in the intensity, flux and the degree of polarization of the scattered light. The positions of neutral points do not change significantly. When the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change and the intensity and positions of neutron points change by a small amount. The changes in the degree of polarization are still significant.
Optical joint correlator for real-time image tracking and retinal surgery
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1991-01-01
A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1991-01-01
A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.
Three dimensional imaging detector employing wavelength-shifting optical fibers
Worstell, William A.
1997-01-01
A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.
Three dimensional imaging detector employing wavelength-shifting optical fibers
Worstell, W.A.
1997-02-04
A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato
2016-12-27
A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the secondmore » photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.« less
Eli, Ilyas M; Kim, Robert B; Kilburg, Craig; Pecha, Travis J; Couldwell, William T; Menacho, Sarah T
2018-06-01
Postoperative posterior ischemic optic neuropathy (PION) is a rare cause of postoperative vision loss, most often seen when surgical patients are placed in the prone position for a prolonged period of time. We report a case of bilateral PION after far-lateral craniectomy in the lateral position. A 36-year-old man presented with a history of right extremity numbness, weakness, and muscle atrophy, and a craniocervical meningioma was diagnosed. Surgery in the lateral position lasted 9 hours, 52 minutes; the patient had 2 L of blood loss. On postoperative day 1, the patient had bilateral vision loss, which prompted further work-up. Diffusion-weighted imaging of the orbits demonstrated restricted diffusion within the bilateral optic nerves. The clinical presentation of painless vision loss after surgery with these imaging findings led to a diagnosis of PION. At the time of discharge, he had not recovered any visual function. This case suggests that PION can occur in the lateral position where there is no direct pressure on the orbits. PION is often not discussed as a potential complication during the preoperative consent process. This case suggests it may be prudent to discuss PION in similar neurosurgical cases. Intraoperative blood transfusion should be considered in prolonged surgeries in the lateral position, where slow blood loss over a long period could be a contributing factor to development of PION. Copyright © 2018 Elsevier Inc. All rights reserved.
Solar concentrator panel and gore testing in the JPL 25-foot space simulator
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Argoud, M. J.
1981-01-01
The optical imaging characteristics of parabolic solar concentrator panels (or gores) have been measured using the optical beam of the JPL 25-foot space simulator. The simulator optical beam has been characterized, and the virtual source position and size have been determined. These data were used to define the optical test geometry. The point source image size and focal length have been determined for several panels. A flux distribution of a typical solar concentrator has been estimated from these data. Aperture photographs of the panels were used to determine the magnitude and characteristics of the reflecting surface errors. This measurement technique has proven to be highly successful at determining the optical characteristics of solar concentrator panels.
Experimental scrambling and noise reduction applied to the optical encryption of QR codes.
Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto
2014-08-25
In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.
Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.
Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu
2016-05-16
Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.
NASA Technical Reports Server (NTRS)
Bartman, R. K.; Youmans, B. R.; Nerheim, N. M.
1987-01-01
The Jet Propulsion Laboratory is developing a fiber optic rotation sensor (FORS) for use on the Mariner Mark II series of planetary explorer craft and in other space applications. FORS is a closed-loop phase-nulling device and embodies a number of interesting innovations. Chief among these are the incorporation of the device's couplers, phase modulators, and polarizer on a single lithium niobate (LinbO3) integrate optics chip and a novel means of reading out angular position and rotation rate based on optical beat detection. Various aspects of the FORS design and operation are described and discussed. Particular attention is paid to analyzing errors attributable to polarizer imperfection and the so-called residual Michelson effect.
NASA Astrophysics Data System (ADS)
Park, Haesung; LeBrun, Thomas W.
2015-08-01
We demonstrate the simultaneous measurement of optical trap stiffness and quadrant-cell photodetector (QPD) calibration of optically trapped polystyrene particle in air. The analysis is based on the transient response of particles, confined to an optical trap, subject to a pulsed electrostatic field generated by parallel indium tin oxide (ITO) coated substrates. The resonant natural frequency and damping were directly estimated by fitting the analytical solution of the transient response of an underdamped harmonic oscillator to the measured particle displacement from its equilibrium position. Because, the particle size was estimated independently with video microscopy, this approach allowed us to measure the optical force without ignoring the effects of inertia and temperature changes from absorption.
NASA Astrophysics Data System (ADS)
Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu
2018-04-01
Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).
Line of sight pointing technology for laser communication system between aircrafts
NASA Astrophysics Data System (ADS)
Zhao, Xin; Liu, Yunqing; Song, Yansong
2017-12-01
In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.
Concepts for fast acquisition in optical communications systems
NASA Astrophysics Data System (ADS)
Wilkerson, Brandon L.; Giggenbach, Dirk; Epple, Bernhard
2006-09-01
As free-space laser communications systems proliferate due to improved technology and transmission techniques, optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal. An important consideration for optical networks is the ability of optical communication terminals (OCT) to quickly locate one another and align their laser beams to initiate the acquisition sequence. This paper investigates promising low-cost technologies and novel approaches that will facilitate the targeting and acquisition tasks between counter terminals. Specifically, two critical technology areas are investigated: position determination (which includes location and attitude determination) and inter-terminal communications. A feasibility study identified multiple-antenna global navigation satellite system (GNSS) systems and GNSS-aided inertial systems as possible position determination solutions. Personal satellite communication systems (e.g. Iridium or Inmarsat), third generation cellular technology (IMT-2000/UMTS), and a relatively new air traffic surveillance technology called Autonomous Dependent Surveillance-Broadcast (ADS-B) were identified as possible inter-terminal communication solutions. A GNSS-aided inertial system and an ADS-B system were integrated into an OCT to demonstrate their utility in a typical optical communication scenario. Testing showed that these technologies have high potential in future OCTs, although improvements can be made to both to increase tracking accuracy.
Rhee, Seung Joon; Park, Shi Hwan; Cho, He Myung
2014-01-01
Purpose The purpose of this study is to compare and analyze the precision of optical and electromagnetic navigation systems in total knee arthroplasty (TKA). Materials and Methods We retrospectively reviewed 60 patients who underwent TKA using an optical navigation system and 60 patients who underwent TKA using an electromagnetic navigation system from June 2010 to March 2012. The mechanical axis that was measured on preoperative radiographs and by the intraoperative navigation systems were compared between the groups. The postoperative positions of the femoral and tibial components in the sagittal and coronal plane were assessed. Results The difference of the mechanical axis measured on the preoperative radiograph and by the intraoperative navigation systems was 0.6 degrees more varus in the electromagnetic navigation system group than in the optical navigation system group, but showed no statistically significant difference between the two groups (p>0.05). The positions of the femoral and tibial components in the sagittal and coronal planes on the postoperative radiographs also showed no statistically significant difference between the two groups (p>0.05). Conclusions In TKA, both optical and electromagnetic navigation systems showed high accuracy and reproducibility, and the measurements from the postoperative radiographs showed no significant difference between the two groups. PMID:25505703
NASA Astrophysics Data System (ADS)
Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng
2016-06-01
The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.
Optical flip-flops and sequential logic circuits using a liquid crystal light valve
NASA Technical Reports Server (NTRS)
Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.
1984-01-01
This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.
Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.
2000-01-01
A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.
Kattawar, G W; Plass, G N; Hitzfelder, S J
1976-03-01
The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.
Small diameter, deep bore optical inspection system
Lord, David E.; Petrini, Richard R.; Carter, Gary W.
1981-01-01
An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.
Intracavity optical trapping with Ytterbium doped fiber ring laser
NASA Astrophysics Data System (ADS)
Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.
2013-09-01
We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.
Ukrainian network of Optical Stations for man-made space objects observation
NASA Astrophysics Data System (ADS)
Sybiryakova, Yevgeniya
2016-07-01
The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.