Sample records for position sensitive radiation

  1. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  2. Radiation imaging apparatus

    DOEpatents

    Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.

    1983-01-01

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  3. Radiation imaging apparatus

    DOEpatents

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  4. New design of a passive type RADFET reader for enhanced sensitivity

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Hee

    2016-07-01

    We present a new design of a passive type RADFET reader with enhanced radiation sensitivity. Using a electostatic plate, we have applied a static electric field to the gate voltage, which impacts a positive biasing on the p-type MOSFET. The resultant effect shows that 1.8 times of radiation sensitivity increased when we measured the threshold voltage shift of the RADFET exposed to 30 krad irradiation. We discuss further about the characteristic changes of a RADFET according to the positive biasing on the gate voltage.

  5. About the feasibilities of controlling the properties of thermoelectric energy converters using optical radiation

    NASA Astrophysics Data System (ADS)

    Kshevetsky, Oleg S.

    2018-01-01

    We represent evaluating analysis of the feasibilities for controlling the properties of thermoelectric energy converters using EM radiation in the regimes of cooling, heating, electromotive force generation, or electric current generation. Thus we investigate the influence of optical radiation both on electric conductivity and thermo-electromotive force coefficient of thermoelectric materials. We also discuss promising applications for controlling the properties of thermoelectric energy converters using EM radiation. We represent the results of experimental study of positionsensitive energy converters in the regimes of electromotive force generation and the electric current generation (in part, photo-thermoelectric position-sensitive temperature detectors), position-sensitive photo-thermoelectric energy converters in the regimes of cooling, heating, parallel photoelectric and thermoelectric conversion of sun-light optical radiation into electric power.

  6. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael J.

    2006-05-01

    Ionizing Radiation (IR) Resistance in Bacteria. Until recently, there have been no clear physiologic predictors of a cell's ability to recover from ionizing radiation (IR) and other DOE-relevant oxidative stress conditions. In general, the most resistant bacteria have been Gram-positive (e.g., Deinococcus, Arthrobacter, Lactobacillus & Enterococcus spp.) and the most sensitive have been Gram-negative (e.g., Pseudomonas, Shewanella & Neisseria spp.). However, there are several reported exceptions to this paradigm, the Gram-negative cyanobacterium Chroococcidiopsis is extremely resistant to IR, whereas the Gram-positive Micrococcus luteus is sensitive. We have identified biomolecular signatures for radiation sensitivity and resistance which are independent of phylogeny,more » where very high and very low intracellular Mn/Fe concentration ratios correlated with very high and very low resistances, respectively; and restricting Mn(II) in the famously resistant Deinococcus radiodurans sensitized this eubacterium to IR.« less

  7. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Daly, Michael J.

    2006-06-01

    Until recently, there have been no clear physiologic predictors of a cell's ability to recover from ionizing radiation (IR), desiccation, and other DOE-relevant oxidative stress conditions. In general, the most resistant bacteria have been Gram-positive (e.g., Deinococcus, Arthrobacter, Lactobacillus & Enterococcus spp.) and the most sensitive have been Gram-negative (e.g., Pseudomonas, Shewanella & Neisseria spp.). However, there are several reported exceptions to this paradigm, the Gram-negative cyanobacterium Chroococcidiopsis is extremely resistant to IR, whereas the Gram-positive Micrococcus luteus is sensitive. We have identified biomolecular signatures for radiation sensitivity and resistance which are independent of phylogeny, where very high and verymore » low intracellular Mn/Fe concentration ratios correlated with very high and very low resistances, respectively; and restricting Mn(II) in the famously resistant Deinococcus radiodurans sensitized this eubacterium to IR (http://cfyn.ifas.ufl.edu/radiation.pdf).« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen E.; Moses, William W.

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method ofmore » liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.« less

  9. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  10. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  11. Evaluation of a radiation protection cabin for invasive electrophysiological procedures.

    PubMed

    Dragusin, Octavian; Weerasooriya, Rukshen; Jaïs, Pierre; Hocini, Mélèze; Ector, Joris; Takahashi, Yoshihide; Haïssaguerre, Michel; Bosmans, Hilde; Heidbüchel, Hein

    2007-01-01

    Complex invasive electrophysiological procedures may result in high cumulative operator radiation exposure. Classical protection with lead aprons results in discomfort while radioprotection is still incomplete. This study evaluated the usefulness of a radiation protection cabin (RPC) that completely surrounds the operator. The evaluation was performed independently in two electrophysiology laboratories (E1-Leuven, Belgium; E2-Bordeaux, France), comparing operator radiation exposure using the RPC vs. a 0.5 mm lead-equivalent apron (total of 135 procedures). E1 used thermoluminiscent dosimeters (TLDs) placed at 16 positions in and out of the RPC and nine positions in and out of the apron. E2 used more sensitive electronic personal dosimeters (EPD), placed at waist and neck. The sensitivity thresholds of the TLDs and EPDs were 10-20 microSv and 1-1.5 microSv, respectively. All procedures could be performed unimpeded with the RPC. Median TLD dose values outside protected areas were in the range of 57-452 microSv, whereas doses under the apron or inside the RPC were all at the background radiation level, irrespective of procedure and fluoroscopy duration and of radiation energy delivered. In addition, the RPC was protecting the entire body (except the hands), whereas lead apron protection is incomplete. Also with the more sensitive EPDs, the radiation dose within the RPC was at the sensitivity threshold/background level (1.3+/-0.6 microSv). Again, radiation to the head was significantly lower within the RPC (1.9+/-1.2 microSv) than with the apron (102+/-23 microSv, P<0.001). The use of the RPC allows performing catheter ablation procedures without compromising catheter manipulation, and with negligible radiation exposure for the operator.

  12. Radiation microscope for SEE testing using GeV ions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (>more » GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.« less

  13. Three-dimensional, position-sensitive radiation detection

    DOEpatents

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  14. Heightened sensitivity of the esophagus to radiation in a patient with AIDS.

    PubMed

    Costleigh, B J; Miyamoto, C T; Micaily, B; Brady, L W

    1995-05-01

    Esophageal stricture is an uncommon complication in HIV-negative patients treated with radiation to the chest for lung cancer. There have been a number of recent reports on the association of cancer and HIV-positive patients, as well as a greater sensitivity to radiation therapy of the mucous membranes in HIV/AIDS patients. This article reflects a review of the literature on the risk of major complications and morbidity of the esophagus in HIV+/AIDS patients whose chests are treated with radiation for lung cancer. Included is a report of a previously unpublished case of an early and severe esophageal reaction to radiation therapy in an AIDS patient.

  15. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  16. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  17. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    USGS Publications Warehouse

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  18. Methods for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian [Pleasanton, CA; Vetter, Kai M [Alameda, CA; Chivers, Daniel H [Fremont, CA

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  19. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  20. Basic design of a multi wire proportional counter using Garfield++ for ILSF

    NASA Astrophysics Data System (ADS)

    Ghahremani Gol, M.; Ashrafi, S.; Rahighi, J.

    2016-12-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV third generation synchrotron radiation facility in Middle East, which at the time being is in its design stage. An important aspect for the scientific success of this new source will be the availability of well adapted detectors. Position-sensitive X-ray detectors have played an important role in synchrotron radiation X-ray experiments for many years and are still in use. An operational one-dimensional multiwire position sensitive detector with delay line readout produced by ILSF showed a position resolution of 230 μm. In this paper, we introduce a 2-D position sensitive gas detector based on a multiwire proportional chamber which will be used in small/wide angle scattering and diffraction experiments with synchrotron radiation at the ILSF. The parameters of its components, including the gas filling, gas pressure, temperature, the geometry of anode and cathodes planes as well as the expected performance of the designed system will be described in the following. For the design and the simulation of MWPC the Elmer and Garfield++ codes have been employed. We have built and tested a MWPC as a prototype at ILSF. The results obtained so far show a good position sensing. After primary test the detector has been optimized and is now ready for test at Elettra.

  1. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs.

    PubMed

    Robinson, Tyler J W; Liu, Jeff C; Vizeacoumar, Frederick; Sun, Thomas; Maclean, Neil; Egan, Sean E; Schimmer, Aaron D; Datti, Alessandro; Zacksenhaus, Eldad

    2013-01-01

    Triple negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which only chemotherapy and radiation therapy are currently available. The retinoblastoma (RB1) tumor suppressor is frequently lost in human TNBC. Knockdown of RB1 in luminal BC cells was shown to affect response to endocrine, radiation and several antineoplastic drugs. However, the effect of RB1 status on radiation and chemo-sensitivity in TNBC cells and whether RB1 status affects response to divergent or specific treatment are unknown. Using multiple basal-like and claudin-low cell lines, we hereby demonstrate that RB-negative TNBC cell lines are highly sensitive to gamma-irradiation, and moderately more sensitive to doxorubicin and methotrexate compared to RB-positive TNBC cell lines. In contrast, RB1 status did not affect sensitivity of TNBC cells to multiple other drugs including cisplatin (CDDP), 5-fluorouracil, idarubicin, epirubicin, PRIMA-1(met), fludarabine and PD-0332991, some of which are used to treat TNBC patients. Moreover, a non-biased screen of ∼3400 compounds, including FDA-approved drugs, revealed similar sensitivity of RB-proficient and -deficient TNBC cells. Finally, ESA(+)/CD24(-/low)/CD44(+) cancer stem cells from RB-negative TNBC lines were consistently more sensitive to gamma-irradiation than RB-positive lines, whereas the effect of chemotherapy on the cancer stem cell fraction varied irrespective of RB1 expression. Our results suggest that patients carrying RB-deficient TNBCs would benefit from gamma-irradiation as well as doxorubicin and methotrexate therapy, but not necessarily from many other anti-neoplastic drugs.

  2. CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers.

    PubMed

    Miyata, H; Doki, Y; Shiozaki, H; Inoue, M; Yano, M; Fujiwara, Y; Yamamoto, H; Nishioka, K; Kishi, K; Monden, M

    2000-12-01

    Ionized radiation leads to G1 arrest and apoptosis by a p53-dependent pathway and G2-M arrest through a p53-independent pathway. In this study, we evaluated the role of cell cycle-regulating molecules in the sensitivity of cancer cells for radiation therapy. Forty-seven patients with squamous cell carcinomas of the esophagus had undergone radiation therapy, followed by surgical resection. They were classified as sensitive to radiation (SR, 14 cases) with no residual tumor in the surgical specimen or as resistant to radiation (RR, 33 cases) with viable residual tumors. Their preradiation biopsy samples were immunohistochemically investigated for the expressions of cell cycle-related molecules, including p53, CDC25A, CDC25B, cyclin D1, cyclin B1, and Ki-67. p53 expression was negative in 71% (10 of 14) of SR and positive in 91% (30 of 33) of RR. The association was strong between high radiation sensitivity and negative p53 expression (P < 0.0001). CDC25B, which is not expressed in normal epithelium but is in the cytoplasm of esophageal cancers, was strongly expressed (2+) in 46% (6 of 14) of SR and in 6% (2 of 23) of RR. Thus, the sensitivity for radiation therapy was significantly correlated with CDC25B overexpression. With respect to CDC25A, cyclin D1, cyclin B1, and Ki-67, no statistically significant differences were found in their expressions between SR and RR tumors. p53 and CDC25B expressions showed no significant associations, and multivariate analysis revealed that both p53 and CDC25B are significant independent markers for predicting radiation sensitivity. CDC25B was revealed to be a novel predictor of radiation sensitivity in esophageal cancers. Because CDC25B is an oncogene, which affects G2-M progression, these results suggest the importance of a p53-independent G2-M checkpoint in radiation therapy.

  3. Relative efficacy for radiation reducing methods in scoliotic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikenhead, J.; Triano, J.; Baker, J.

    Radiation dosages to sensitive organs in full spine radiography have in recent years been a concern of physicians as well as the general public. The spine is the prime target for exposure in scoliosis radiography, though the exposure usually necessitates irradiation of several radio-sensitive organs. In recent studies, various protection techniques have been used including various lead and aluminum filtration systems, altered patient positioning and varied tube-film distances. The purpose of this study was to evaluate the efficiency for radiation dosage reduction of three filtration systems used frequently in the chiropractic profession. The systems tested were the Nolan Multiple X-raymore » Filters, the Clear-Pb system and the Sportelli Wedge system. These systems were tested in seven configurations varying breast shielding, distance and patient positioning. All systems tested demonstrated significant radiation reductions to organs, especially breast tissue. The Clear-Pb system appeared to be the most effective for all organs except the breast, and the Sportelli Wedge system demonstrated the greatest reduction to breast tissue.« less

  4. On the backscatter of solar He II, 304 A radiation from interplanetary He/+/.

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Bowyer, S.

    1973-01-01

    Backscatter of solar He II, 304 A radiation by interplanetary positive helium ions is shown to be insufficient to account for recent observations of this airglow radiation in the night sky at rocket altitudes. In fact, for most viewing directions, the expected intensities probably fall well below the sensitivity threshold of existing extreme ultraviolet instrumentation.

  5. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  6. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  7. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  8. Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation

    NASA Technical Reports Server (NTRS)

    Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.

    1997-01-01

    Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.

  9. Effective dose reduction in spine radiographic imaging by choosing the less radiation-sensitive side of the body.

    PubMed

    Ben-Shlomo, Avi; Bartal, Gabriel; Mosseri, Morris; Avraham, Boaz; Leitner, Yosef; Shabat, Shay

    2016-04-01

    X-ray absorption is highest in the organs and tissues located closest to the radiation source. The photon flux that crosses the body decreases from the entry surface toward the image receptor. The internal organs absorb x-rays and shield each other during irradiation. Therefore, changing the x-ray projection angle relative to the patient for specific spine procedures changes the radiation dose that each organ receives. Every organ has different radiation sensitivity, so irradiation from different sides of the body changes the biological influence and radiation risk potential on the total body, that is the effective dose (ED). The study aimed to determine the less radiation-sensitive sides of the body during lateral and anterior-posterior (AP) or posterior anterior (PA) directions. The study used exposure of patient phantoms and Monte Carlo simulation of the effective doses. Calculations for adults and 10-year-old children were included because the pediatric population has a greater lifetime radiation risk than adults. Pediatric and adult tissue and organ doses and ED from cervical, thoracic, and lumbar x-ray spine examinations were performed from different projections. Standard mathematical phantoms for adults and 10-year-old children, using PCXMC 2.0 software based on Monte Carlo simulations, were used to calculate pediatric and adult tissue and organ doses and ED. The study was not funded. The authors have no conflicts of interest to declare. Spine x-ray exposure from various right (RT) LAT projection angles was associated with lower ED compared with the same left (LT) LAT projections (up to 28% and 27% less for children aged 10 and adults, respectively). The PA spine projections showed up to 64% lower ED for children aged 10 and 65% for adults than AP projections. The AP projection at the thoracic spine causes an excess breast dose of 543.3% and 597.0% for children aged 10 and adults, respectively. Radiation ED in spine procedures can be significantly reduced by performing x-ray exposures through the less radiation-sensitive sides of the body, which are PA in the frontal position and right lateral in the lateral position. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Fracto-emission from the peeling of pressure sensitive adhesives

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Shen, X. A.; Jensen, L. C.

    1985-01-01

    The electron emission, positive ion emission, photon emission, and long wavelength electromagnetic radiation accompanying the peeling of pressure sensitive adhesives in vacuum are examined. These results are interpreted in terms of a previously presented model involving fracture-induced microdischarges which excite the fracture surfaces by particle bombardment.

  11. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  12. Coronary angiography using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Rubenstein, E.; Zeman, H. D.; Hofstadter, R.; Otis, J. N.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.; Thomlinson, W.; Kernoff, R. S.

    1989-07-01

    Imaging of coronary arteries using a venous instead of an arterial injection of contrast agent could provide a much safer method to diagnose heart disease. The tunability, intensity, and collimation of synchrotron radiation x-ray beams makes possible imaging systems with greatly improved imaging sensitivity. A pair of fan x-ray beams, a movable patient chair, and a multielement x-ray detector are used to acquire a pair of x-ray images above and below the iodine K edge. The logarithmic subtraction of these two images produces an image with excellent sensitivity to contrast agent and minimal sensitivity to bone and tissue. High-quality images from a dog and preliminary images from five humans have been obtained. Improvements are being made to the system to increase the effective radiation flux and to measure the position of both x-ray beams.

  13. Segmented AC-coupled readout from continuous collection electrodes in semiconductor sensors

    DOEpatents

    Sadrozinski, Hartmut F. W.; Seiden, Abraham; Cartiglia, Nicolo

    2017-04-04

    Position sensitive radiation detection is provided using a continuous electrode in a semiconductor radiation detector, as opposed to the conventional use of a segmented electrode. Time constants relating to AC coupling between the continuous electrode and segmented contacts to the electrode are selected to provide position resolution from the resulting configurations. The resulting detectors advantageously have a more uniform electric field than conventional detectors having segmented electrodes, and are expected to have much lower cost of production and of integration with readout electronics.

  14. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detectionmore » level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.« less

  15. Simple electronic apparatus for the analysis of radioactively labeled gel electrophoretograms

    DOEpatents

    Goulianos, Konstantin; Smith, Karen K.; White, Sebastian N.

    1982-01-01

    A high resolution position sensitive radiation detector for analyzing radiation emanating from a source, constructed of a thin plate having an elongated slot with conductive edges acting as a cathode, a charged anode wire positioned within 0.5 mm adjacent the source and running parallel to the slot and centered therein, an ionizable gas ionized by radiation emanating from the source provided surrounding the anode wire in the slot, a helical wire induction coil serving as a delay line and positioned beneath the anode wire for detecting gas ionization and for producing resulting ionization signals, and processing circuits coupled to the induction coil for receiving ionization signals induced therein after determining therefrom the location along the anode wire of any radiation emanating from the source. An ionization gas of 70% Ar, 29% Isobutane, 0.6% Freon 13BI, and 0.4% Methylal is used.

  16. Predictive factors for the sensitivity of radiotherapy and prognosis of esophageal squamous cell carcinoma.

    PubMed

    Wu, Shaobin; Wang, Xianwei; Chen, Jin-Xiang; Chen, Yuxiang

    2014-05-01

    To identify predictive biomarkers for radiosensitization and prognosis of esophageal squamous cell carcinoma (ESCC). A total of 150 advanced stage ESCC patients were treated with preoperative radiotherapy. The protein levels of Dicer 1, DNA methyltransferase 1 (Dnmt1), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the mRNA levels of Dicer 1, Dnmt1, and let-7b microRNA (miRNA) were measured in ESCC tumor tissues before and after radiotherapy. Global DNA methylation was measured and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed. Negative Dicer 1, Dnmt1, and DNA-PKcs protein expression were observed in 72%, 67.3%, and 50.7% of ESCC patients, respectively. Primary Dicer 1 and Dnmt1 expression positively correlated with radiation sensitization and longer survival of ESCC patients, while increased Dicer 1 and Dnmt1 expression after radiation correlated with increased apoptosis in residual tumor tissues. Dicer 1 and Dnmt1 expression correlated with let-7b miRNA expression and global DNA methylation levels, respectively. In contrast, positive DNA-PKcs expression negatively correlated with radiation-induced pathological reactions, and increased DNA-PKcs expression correlated with increased apoptosis after radiation. Global DNA hypomethylation and low miRNA expression are involved in the sensitization of ESCC to radiotherapy and prognosis of patients with ESCC.

  17. Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yuhchyau; Hyrien, Ollivier; Williams, Jacqueline

    2005-05-01

    Purpose: To explore the application of interleukin (IL)-1{alpha} and IL-6 measurements in the predictive diagnostic testing for symptomatic radiation pneumonitis (RP). Methods and materials: In a prospective protocol investigating RP and cytokines, IL-1{alpha} and IL-6 values were analyzed by enzyme-linked immunosorbent assay from serial weekly blood samples of patients receiving chest radiation. We analyzed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) over selected threshold values for both cytokines in the application to diagnostic testing. Results: The average coefficient of variation was 51% of the weekly mean IL-1{alpha} level and 39% of the weekly mean IL-6 value.more » Interleukin 1{alpha} and IL-6 became positively correlated with time. Specificity for both cytokines was better than sensitivity. IL-6 globally outperformed IL-1{alpha} in predicting RP, with higher PPV and NPV. Conclusions: Our data demonstrate the feasibility of applying IL-1{alpha} and IL-6 measurements of blood specimens to predict RP. Interleukin-6 measurements offer stronger positive predictive value than IL-1{alpha}. This application might be further explored in a larger sample of patients.« less

  18. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines

    PubMed Central

    Kriegs, Malte; Gatzemeier, Fruzsina; Krüger, Katharina; Möckelmann, Nikolaus; Fritz, Gerhard; Petersen, Cordula; Knecht, Rainald; Rothkamm, Kai; Rieckmann, Thorsten

    2016-01-01

    Patients with HPV-positive head and neck squamous cell carcinoma (HNSCC) show better survival rates than those with HPV-negative HNSCC. While an enhanced radiosensitivity of HPV-positive tumors is clearly evident from single modality treatment, cisplatin is never administered as monotherapy and therefore its contribution to the enhanced cure rates of HPV-positive HNSCC is not known. Both cisplatin and radiotherapy can cause severe irreversible side effects and therefore various clinical studies are currently testing deintensified regimes for patients with HPV-positive HNSCC. One strategy is to omit cisplatin-based chemotherapy or replace it by less toxic treatments but the risk assessment of these approaches remains difficult. In this study we have compared the cytotoxic effects of cisplatin in a panel of HPV-positive and -negative HNSCC cell lines alone and when combined with radiation. While cisplatin-treated HPV-positive strains showed a slightly stronger inhibition of proliferation, there was no difference regarding colony formation. Cellular responses to the drug, namely cell cycle distribution, apoptosis and γH2AX-induction did not differ between the two entities but assessment of cisplatin-DNA-adducts suggests differences regarding the mechanisms that determine cisplatin sensitivity. Combining cisplatin with radiation, we generally observed an additive but only in a minority of strains from both entities a clear synergistic effect on colony formation. In summary, HPV-positive and -negative HNSCC cells were equally sensitive to cisplatin. Therefore replacing cisplatin may be feasible but the substituting agent should be of similar efficacy in order not to jeopardize the high cure rates for HPV-positive HNSCC. PMID:27127883

  19. Development of a novel gamma probe for detecting radiation direction

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  20. [Radiation-induced modification of human somatic cell chromosome sensitivity to the testing mutagenic exposure of bleomycin in vitro in lung cancer patients in delayed terms following Chernobyl accident].

    PubMed

    Pilinskaia, M A; Dybskiĭ, S S; Dybskaia, E B; Shvaĭko, L I

    2012-01-01

    By using modified "G2-bleomycin sensitivity assay" above background level of cytogenetic effect considered as a marker of hidden chromosome instability (HCI) has been investigated in 3 groups--liquidators of Chernobyl accident (occupational group 1), patients with lung cancer who denied conscious contact--with ionizing radiation (group of comparison), liquidators with lung cancer (occupational group 2). Significant interindividual variations of cytogenetic effects induced with bleomycin and the lack of positive correlation between background and above background frequencies of chromosome aberrations have been shown in all observed groups. It had been established that occupational group 2 was the most burdened group by expression of the above background cytogenetic effect and, accordingly, number of persons with HCI. The data obtained permit to suggest the existence of the association between radiation-induced increase of individual sensitivity to testing mutagenic exposure and the realization of cancer in persons exposed to ionizing radiation. The results show acceptability of "G2-bleomycin sensitivity assay" under the cytogenetic examination of irradiated contingents for determining HCI as one of informative markers of predisposition to oncopathology.

  1. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  2. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  3. Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle

    PubMed Central

    Sorokin, Dmitry V; Stixová, Lenka; Sehnalová, Petra; Legartová, Soňa; Suchánková, Jana; Šimara, Pavel; Kozubek, Stanislav; Matula, Pavel; Skalníková, Magdalena; Raška, Ivan; Bártová, Eva

    2015-01-01

    The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase. PMID:26208041

  4. Wireless passive radiation sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  5. Mean cerebral blood volume is an effective diagnostic index of recurrent and radiation injury in glioma patients: A meta-analysis of diagnostic test.

    PubMed

    Li, Zhanzhan; Zhou, Qin; Li, Yanyan; Yan, Shipeng; Fu, Jun; Huang, Xinqiong; Shen, Liangfang

    2017-02-28

    We conducted a meta-analysis to evaluate the diagnostic values of mean cerebral blood volume for recurrent and radiation injury in glioma patients. We performed systematic electronic searches for eligible study up to August 8, 2016. Bivariate mixed effects models were used to estimate the combined sensitivity, specificity, positive likelihood ratios, negative likelihood ratios, diagnostic odds ratios and their 95% confidence intervals (CIs). Fifteen studies with a total number of 576 participants were enrolled. The pooled sensitivity and specificity of diagnostic were 0.88 (95%CI: 0.82-0.92) and 0.85 (95%CI: 0.68-0.93). The pooled positive likelihood ratio is 5.73 (95%CI: 2.56-12.81), negative likelihood ratio is 0.15 (95%CI: 0.10-0.22), and the diagnostic odds ratio is 39.34 (95%CI:13.96-110.84). The summary receiver operator characteristic is 0.91 (95%CI: 0.88-0.93). However, the Deek's plot suggested publication bias may exist (t=2.30, P=0.039). Mean cerebral blood volume measurement methods seems to be very sensitive and highly specific to differentiate recurrent and radiation injury in glioma patients. The results should be interpreted with caution because of the potential bias.

  6. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    PubMed

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator thickness. If the readout pitch were ideally 0 and practically 3 mm, a full-width at half-maximum (FWHM) of 0.348 and 1.92 mm was achievable with a 10-mm-thick PbF 2 crystal, respectively. Furthermore, first-order correlation could be observed between the primary principal component and the true DOI. To obtain a coincidence timing resolution better than 100-ps FWHM with a 20-mm-thick PbF 2 crystal, a photodetector with SPTR of better than σ = 30 ps was necessary. From these results, the improvement of SPTR allows us to achieve CTR better than 100-ps FWHM, even in the case where a 20-mm-thick radiator is used. Our proposed detector has the potential to estimate the 3D interaction position of γ-rays in the radiator, using only time and space information of Cherenkov photons. © 2018 American Association of Physicists in Medicine.

  7. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR pulses. The detectors and existing electronics can therefore be used to yield imaging instruments for neutron and gamma-rays, in the case of silicon. For CZT, we would prefer to utilize current sensing to be able to clearly isolate the effects of the various charge-transport non-idealities, the full realization of which awaits the fabrication of the custom-designed TIA chip.

  8. Subpiconewton intermolecular force microscopy.

    PubMed

    Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T

    1997-02-24

    We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.

  9. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    NASA Technical Reports Server (NTRS)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  10. Response analysis of TLD-300 dosimeters in heavy-particle beams.

    PubMed

    Loncol, T; Hamal, M; Denis, J M; Vynckier, S; Wambersie, A; Scalliet, P

    1996-09-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65) + Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (150 degrees C) and peak 5 (250 degrees C) response of CaF2:Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental 12C heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to 60Co, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the 60Co reference radiation to the 12C heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.

  11. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  12. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    NASA Astrophysics Data System (ADS)

    Frey, William R.; Kay, Jennifer E.

    2018-04-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  13. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE PAGES

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; ...

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  14. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  15. Binding of radiation-induced phenylalanine radicals to DNA: influence on the biological activity of the DNA and on its sensitivity to the induction of breaks by gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderschans, G.P.; Vanrijn, C.J.S.; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded deoxyribonucleic acid (DNA) of bacteriophage PM2 containing phenylalanine and saturated with N2O is irradiated with gamma rays, radiation induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA most of the phenylalanine radicals bound are nonlethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. Theremore » are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules. (Author) (GRA)« less

  16. Prognostic value of PAX9 in patients with esophageal squamous cell carcinoma and its prediction value to radiation sensitivity.

    PubMed

    Tan, Bingxu; Wang, Jianbo; Song, Qingxu; Wang, Nana; Jia, Yibin; Wang, Cong; Yao, Bin; Liu, Zhulong; Zhang, Xiaomei; Cheng, Yufeng

    2017-07-01

    Abnormal paired box 9 (PAX9) expression is associated with tumorigenesis, cancer development, invasion and metastasis. The present study investigated the prognostic significance of PAX9 in esophageal squamous cell carcinoma (ESCC) and its role in predicting radiation sensitivity. A total of 52.8% (121/229) ESCC tissues were positive for PAX9. The 1‑, 3‑ and 5‑year disease‑free survival (DFS) rates were 72.2, 35.2 and 5.6%, respectively, and the overall survival (OS) rates were and 86.1, 44.4, and 23.1%, respectively, in PAX9‑positive tumors. In PAX9‑negative tumors, the one‑, three‑ and five‑year DFS rates were 76.9, 47.9 and 24.0%, and the OS rates were 90.9, 57.9 and 38.8%, respectively. Univariate analysis revealed that PAX9, differentiation, T stage, lymph node metastasis, and tumor‑node‑metastasis stage were associated with OS. Multivariate analysis of DFS and OS revealed that the hazard ratios for PAX9 were 0.624 (95% CI: 0.472‑0.869, P=0.004) and 0.673 (95% CI: 0.491‑0.922, P=0.014), respectively. Patients that received adjuvant therapy exhibited significant differences in the 5‑year DFS (P<0.001) and OS (P<0.001). PAX9‑positive ESCC patients who received post‑surgery radiotherapy had a significantly greater 5‑year DFS (P=0.011) and OS (P=0.009) than patients who received surgery only. Thus, PAX9 may be an independent prognostic factor for the surgical treatment of ESCC and a possible predictor of radiation sensitivity.

  17. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  18. Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens.

    PubMed

    Grant, William F; Owens, Elizabeth T

    2006-09-01

    From a literature survey, 86 chemicals are tabulated that have been evaluated in 121 assays for their clastogenic effects in Zea mays. Eighty-one of the 86 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, 36 are reported positive with a dose response. In addition, 32 assays have been recorded for 7 types of radiation, all of which reacted positively. The results of 126 assays with 63 chemicals and 12 types of radiation tested for the inductions of gene mutations are tabulated, as well as 63 chemicals and/or radiation in combined treatments. Three studies reported positive results for mutations on Zea mays seed sent on space flights. The Zea mays (2n=20) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The carcinogenicity and Salmonella assays correlate in all cases. The maize bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum, Lycopersicon esculentum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using Zea mays can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.

  19. Biomarkers of exposure and dose: state of the art.

    PubMed

    Brooks, A L

    2001-01-01

    Biomarkers provide methods to measure changes in biological systems and to relate them to environmental insults and disease processes. Biomarkers can be classified as markers of exposure and dose, markers of sensitivity, and markers of disease. It is important that the differences and applications of the various types of biomarkers be clearly understood. The military is primarily interested in early biomarkers of exposure and dose that do not require high levels of sensitivity but can be used to rapidly triage war fighters under combat or terrorist conditions and determine which, if any, require medical attention. Biomarkers of long-term radiation risk represent the second area of interest for the military. Biomarkers of risk require high sensitivity and specificity for the disease and insult but do not require rapid data turnaround. Biomarkers will help provide information for quick command decisions in the field, characterise long-term troop risks and identify early stages of radiation-induced diseases. This information provides major positive reassurances about individual exposures and risk that will minimise the physical and psychological impact of wartime radiation exposures.

  20. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  1. Performance and field tests of a handheld Compton camera using 3-D position-sensitive scintillators coupled to multi-pixel photon counter arrays

    NASA Astrophysics Data System (ADS)

    Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Okochi, H.; Ogata, H.; Kuroshima, H.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Suzuki, H.

    2014-11-01

    After the nuclear disaster in Fukushima, radiation decontamination has become particularly urgent. To help identify radiation hotspots and ensure effective decontamination operation, we have developed a novel Compton camera based on Ce-doped Gd3Al2Ga3O12 scintillators and multi-pixel photon counter (MPPC) arrays. Even though its sensitivity is several times better than that of other cameras being tested in Fukushima, we introduce a depth-of-interaction (DOI) method to further improve the angular resolution. For gamma rays, the DOI information, in addition to 2-D position, is obtained by measuring the pulse-height ratio of the MPPC arrays coupled to ends of the scintillator. We present the detailed performance and results of various field tests conducted in Fukushima with the prototype 2-D and DOI Compton cameras. Moreover, we demonstrate stereo measurement of gamma rays that enables measurement of not only direction but also approximate distance to radioactive hotspots.

  2. Response analysis of TLD-300 dosimeters in heavy-particle beams

    NASA Astrophysics Data System (ADS)

    Loncol, Th; Hamal, M.; Denis, J. M.; Vynckier, S.; Wambersie, A.; Scalliet, P.

    1996-09-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65)+Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (C) and peak 5 (C) response of :Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental C-12 heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to Co-60, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the Co-60 reference radiation to the C-12 heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.

  3. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  4. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  5. Development of Interference Lithography Capability Using a Helium Cadmium Ultraviolet Multimode Laser for the Fabrication of Sub-Micron-Structured Optical Materials

    DTIC Science & Technology

    2011-03-01

    into separate parts, transmitted into different directions , and then recombined upon a surface to produce interference. The concern with this type of...photoresist (PR), is a radiation sensitive compound that is classified as positive or negative, depending on how it responds to radiation . Each is designed...emerging waves, and are referred to as diffraction gratings. Upon reflection from these kinds of gratings, light scattered from the periodic surface

  6. Radiation damage study of thin YAG:Ce scintillator using low-energy protons

    NASA Astrophysics Data System (ADS)

    Novotný, P.; Linhart, V.

    2017-07-01

    Radiation hardness of a 50 μ m thin YAG:Ce scintillator in a form of dependence of a signal efficiency on 3.1 MeV proton fluence was measured and analysed using X-ray beam. The signal efficiency is a ratio of signals given by a CCD chip after and before radiation damage. The CCD chip was placed outside the primary beam because of its protection from damage which could be caused by radiation. Using simplified assumptions, the 3.1 MeV proton fluences were recalculated to: ṡ 150 MeV proton fluences with intention to estimate radiation damage of this sample under conditions at proton therapy centres during medical treatment, ṡ 150 MeV proton doses with intention to give a chance to compare radiation hardness of the studied sample with radiation hardness of other detectors used in medical physics, ṡ 1 MeV neutron equivalent fluences with intention to compare radiation hardness of the studied sample with properties of position sensitive silicon and diamond detectors used in nuclear and particle physics. The following results of our research were obtained. The signal efficiency of the studied sample varies slightly (± 3%) up to 3.1 MeV proton fluence of c. (4 - 8) × 1014 cm-2. This limit is equivalent to 150 MeV proton fluence of (5 - 9) × 1016 cm-2, 150 MeV proton dose of (350 - 600) kGy and 1 MeV neutron fluence of (1 - 2) × 1016 cm-2. Beyond the limit, the signal efficiency goes gradually down. Fifty percent decrease in the signal efficiency is reached around 3.1 MeV fluence of (1 - 2) × 1016 cm-2 which is equivalent to 150 MeV proton fluence of around 2 × 1018 cm-2, 150 MeV proton dose of around 15 MGy and 1 MeV neutron equivalent fluence of (4 - 8) × 1017 cm-2. In contrast with position sensitive silicon and diamond radiation detectors, the studied sample has at least two order of magnitude greater radiation resistance. Therefore, YAG:Ce scintillator is a suitable material for monitoring of primary beams of particles of ionizing radiation.

  7. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  9. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    DOEpatents

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  10. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-J.; Hsu, C.-C.; Department of Surgery, Chi-Mei Medical Center, Taipei, Taiwan

    2009-03-06

    CD133-expressing glioma cells play a critical role in tumor recovery after treatment and are resistant to radiotherapy. Herein, we demonstrated that glioblastoma-derived CD133-positive cells (GBM-CD133{sup +}) are capable of self-renewal and express high levels of embryonic stem cell genes and SirT1 compared to GBM-CD133{sup -} cells. To evaluate the role of SirT1 in GBM-CD133{sup +}, we used a lentiviral vector expressing shRNA to knock-down SirT1 expression (sh-SirT1) in GBM-CD133{sup +}. Silencing of SirT1 significantly enhanced the sensitivity of GBM-CD133{sup +} to radiation and increased the level of radiation-mediated apoptosis. Importantly, knock-down of SirT1 increased the effectiveness of radiotherapy in themore » inhibition of tumor growth in nude mice transplanted with GBM-CD133{sup +}. Kaplan-Meier survival analysis indicated that the mean survival rate of GBM-CD133{sup +} mice treated with radiotherapy was significantly improved by Sh-SirT1 as well. In sum, these results suggest that SirT1 is a potential target for increasing the sensitivity of GBM and glioblastoma-associated cancer stem cells to radiotherapy.« less

  11. Complication of radiation therapy among patients with positive S. aureus culture from genital tract

    PubMed Central

    Cybulski, Zefiryn; Urbaniak, Iwona; Roszak, Andrzej; Grabiec, Alicja; Talaga, Zofia; Klimczak, Piotr

    2012-01-01

    Aim The main goal of this investigation was to evaluate the influence of positive Staphylococcus aureus culture from the genital tract on patients receiving radiation therapy, suffering from carcinoma of the uterus. The other aim was to observe radiation therapy complications. Background Radiation therapy of patients suffering from cervical cancer can be connected with inflammation of the genitourinary tract. Materials and methods In years 2006–2010 vaginal swabs from 452 patients were examined. 39 women with positive S. aureus cultures were analysed. Results Complications and interruptions during radiation therapy were observed in 7 (18.9%) of 37 patients with positive vaginal S. aureus culture. One of them, a 46-year-old woman developed pelvic inflammatory disease. None of the six patients who received palliative radiotherapy showed interruption in this treatment. Isolated S. aureus strains were classified into 13 sensitivity patterns, of which 8 were represented by 1 strain, two by 2 strains and three by 13, 8 and 6 strains. One strain was diagnosed as methicillin resistant S. aureus (MRSA). Conclusions The results of the present study show that S. aureus may generally be isolated from the genital tract of female patients with neoplastic disease of uterus but is not often observed as inflammation factor of this tract. Comparison of species’ resistance patterns may be used in epidemiological studies in order to discover the source of infections and therefore be of profound significance in the prevention of nosocomial infections. PMID:24377025

  12. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  13. Chest wall leiomyosarcoma after breast-conservative therapy for early-stage breast cancer in a young woman with Li-Fraumeni syndrome.

    PubMed

    Henry, Eve; Villalobos, Victor; Million, Lynn; Jensen, Kristin C; West, Robert; Ganjoo, Kristen; Lebensohn, Alexandra; Ford, James M; Telli, Melinda L

    2012-08-01

    Li-Fraumeni syndrome (LFS) is one of the most penetrant forms of familial cancer susceptibility syndromes, characterized by early age at tumor onset and a wide spectrum of malignant tumors. Identifying LFS in patients with cancer is clinically imperative because they have an increased sensitivity to ionizing radiation and are more likely to develop radiation-induced secondary malignancies. This case report describes a young woman whose initial presentation of LFS was early-onset breast cancer and whose treatment of this primary malignancy with breast conservation likely resulted in a secondary malignancy arising in her radiation field. As seen in this case, most breast cancers in patients with LFS exhibit a triple-positive phenotype (estrogen receptor-positive/progesterone receptor-positive/HER2-positive). Although this patient met classic LFS criteria based on age and personal and family history of cancer, the NCCN Clinical Practice Guidelines in Oncology for Genetic/Familial High-Risk Assessment: Breast and Ovarian Cancer endorse genetic screening for TP53 mutations in a subset of patients with early-onset breast cancer, even in the absence of a suggestive family history, because of the potential for de novo TP53 mutations.

  14. A front end readout electronics ASIC chip for position sensitive solid state detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravis, S.D.; Tuemer, T.O.; Visser, G.J.

    1998-12-31

    A mixed signal Application Specific Integrated Circuit (ASIC) chip for front end readout electronics of position sensitive solid state detectors has been manufactured. It is called RENA (Readout Electronics for Nuclear Applications). This chip can be used for both medical and industrial imaging of X-rays and gamma rays. The RENA chip is a monolithic integrated circuit and has 32 channels with low noise high input impedance charge sensitive amplifiers. It works in pulse counting mode with good energy resolution. It also has a self triggering output which is essential for nuclear applications when the incident radiation arrives at random. Different,more » externally selectable, operational modes that includes a sparse readout mode is available to increase data throughput. It also has externally selectable shaping (peaking) times.« less

  15. Human papillomavirus status and the relative biological effectiveness of proton radiotherapy in head and neck cancer cells.

    PubMed

    Wang, Li; Wang, Xiaochun; Li, Yuting; Han, Shichao; Zhu, Jinming; Wang, Xiaofang; Molkentine, David P; Blanchard, Pierre; Yang, Yining; Zhang, Ruiping; Sahoo, Narayan; Gillin, Michael; Zhu, Xiaorong Ronald; Zhang, Xiaodong; Myers, Jeffrey N; Frank, Steven J

    2017-04-01

    Human papillomavirus (HPV)-positive oropharyngeal carcinomas response better to X-ray therapy (XRT) than HPV-negative disease. Whether HPV status influences the sensitivity of head and neck cancer cells to proton therapy or the relative biological effectiveness (RBE) of protons versus XRT is unknown. Clonogenic survival was used to calculate the RBE; immunocytochemical analysis and neutral comet assay were used to evaluate unrepaired DNA double-strand breaks. HPV-positive cells were more sensitive to protons and the unrepaired double-strand breaks were more numerous in HPV-positive cells than in HPV-negative cells (p < .001). Protons killed more cells than did XRT at all fraction sizes (all RBEs > 1.06). Cell line type and radiation fraction size influenced the RBE. HPV-positive cells were more sensitive to protons than HPV-negative cells maybe through the effects of HPV on DNA damage and repair. The RBE for protons depends more on cell type and fraction size than on HPV status. © 2016 Wiley Periodicals, Inc. Head Neck 39: 708-715, 2017. © 2016 Wiley Periodicals, Inc.

  16. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  17. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  18. Hydro-ball in-core instrumentation system and method of operation

    DOEpatents

    Tower, Stephen N.; Veronesi, Luciano; Braun, Howard E.

    1990-01-01

    A hydro-ball in-core instrumentation system employs detector strings each comprising a wire having radiation sensitive balls affixed diametrically at spaced positions therealong and opposite tip ends of which are transportable by fluid drag through interior passageways. In the passageways primary coolant is caused to flow selectively in first and second opposite directions for transporting the detector strings from stored positions in an exterior chamber to inserted positions within the instrumentation thimbles of the fuel rod assemblies of a pressure vessel, and for return. The coolant pressure within the detector passageways is the same as that within the vessel; face contact, disconnectable joints between sections of the interior passageways within the vessel facilitate assembly and disassembly of the vessel for refueling and routine maintenance operations. The detector strings may pass through a very short bend radius thereby minimizing space requirements for the connections of the instrumentation system to the vessel and concomitantly the vessel containment structure. Improved radiation mapping and a significant reduction in potential exposure of personnel to radiation are provided. Both top head and bottom head penetration embodiments are disclosed.

  19. Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients.

    PubMed

    Skiöld, Sara; Azimzadeh, Omid; Merl-Pham, Juliane; Naslund, Ingemar; Wersall, Peter; Lidbrink, Elisabet; Tapio, Soile; Harms-Ringdahl, Mats; Haghdoost, Siamak

    2015-06-01

    Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37°C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Convective aggregation in realistic convective-scale simulations

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather forecasters and climate scientists. Over the last 20 years, idealized models of the tropical atmosphere have shown that tropical rainstorms can spontaneously clump together. These studies have linked this spontaneous organization to processes related to the interaction between the rainstorms, atmospheric water vapor, clouds, radiation, surface evaporation, and circulations. The present study shows that there are some similarities in how organization of rainfall in more realistic computer model simulations interacts with these processes (particularly radiation). This provides some evidence that the work in the idealized model studies is relevant to the organization of tropical rainstorms in the real world.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1477415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1477415"><span>Broad-spectrum photoprotection: the roles of tinted auto windows, sunscreens and browning agents in the diagnosis and treatment of photosensitivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnson, J A; Fusaro, R M</p> <p>1992-01-01</p> <p>Since window glass absorbs sunlight below 320 nm, it provides a means of assessing sensitivity to longer wavelengths, i.e. UVA and visible radiation. Positive responses to the query of whether symptoms develop in the auto with the windows up must now be interpreted with regard to the possible presence of tinted plastic film on side and rear windows. These films block nearly all UVA radiation, as does the plastic interleaf of windshields. Thus, occupants of an auto equipped with plastic film receive photoprotection from UVB radiation and well into the UVA region. We define three classes of topical sunscreens: (1) conventional UVB screens, (2) broad-spectrum preparations containing a UVB screen and a UVA absorber and (3) browning agents such as dihydroxyacetone (DHA) that produce a skin coloration that absorbs in the low end of the visible region, with overlap into long-wavelength UVA. By considering responses of photosensitive persons in autos with tinted or untinted windows, coupled with efficacy of appropriate sunscreens, we produced an algorithm defining three photosensitivity subsets. Persons sensitive to long-wavelength UVA and/or visible radiation will benefit from tinted auto windows. In particular, patients with lupus erythematosus (LE) have actively promoted legislation allowing tinted windows. Support for their position is documented by recent reports of induction of lesions in LE patients by exposure to UVA and visible radiation. The brown color produced by DHA is a useful adjunct to the screening action of broad-spectrum sunscreens. Development of a durable color overnight allows application of the DHA preparation in the evening, thus eliminating possible interference with sunscreen use during the day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679080-we-fg-bra-theranostic-platinum-nanoparticle-radiation-sensitization-breast-cancer-radiotherapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679080-we-fg-bra-theranostic-platinum-nanoparticle-radiation-sensitization-breast-cancer-radiotherapy"><span>WE-FG-BRA-11: Theranostic Platinum Nanoparticle for Radiation Sensitization in Breast Cancer Radiotherapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yue, Y; Wagner, S; Medina-Kauwe, L</p> <p></p> <p>Purpose: We have developed a novel receptor-targeted theranostic platinum nanoparticle (HER-PtNP) for enhanced radiation sensitization in HER2-positive breast cancer radiation treatment. This study aims to evaluate receptor-targeting specificity, and radiation sensitization of the nanoparticle. Methods: The platinum nanoparticle (PtNP) was synthesized with the diameter of 2nm, and capped with cysteine. The nanoparticle was tagged with a fluorescent dye (cy5) for the fluoresence detection, and conjuated with HER2/3 targeted protein (HerPBK10) for HER2-targeting specificity. We evaluated the theranostic features using in vitro breast cancer cell models: HER2-positive BT-474, and HER2-negative MDA-MB-231. The HER2-targeting specificity was evaluated using immunofluorescence and confocal microscopy.more » For each cell line, three sets of samples, including non-stained control, fluorescence stained PtNP-cy5 treated, and HER-PtNP treated, were imaged by confocal microscopy. Two breast cancer cell lineages were incubated with PtNP and HER-PtNP at 10 µg/mL, and then irradiated with X-rays for 2 Gy dose at 50 kVp. A colonogenic assay was used to determine cellular survival fractions by immediately reseeding 300 cells after irradiation in growth media and allowing colonies to grow for 2 weeks. Results: The results of confocal images show that no apparent nanoparticle cellular uptake was observed in the HER2-(MDA-MB-231) cells with 1% for PtNP-cy5 and 0.5% for HER-PtNP. Similarly no apparent PtNP-cy5 uptake (<1%) for BT474 cells was observed. However, there was significant HER-PtNP uptake (73%) for the HER2+(BT474) cells. The clonogenic assay showed that BT474 cells treated with HER-PtNP had significantly lower survival compared to those treated with PtNP (32% vs 81%, p=0.01). However, no significant radiosensitivity enhancement was observed for MDA-MB-231 cell treated with PtNP and HER-PtNP (89% vs 92%, p=0.78). Conclusion: Our studies suggest that the HER2-targeted platinum nanoparticle has excellent receptor targeting specificity and enhanced radiation sensitization compared to nanoparticle alone, suggesting potential for clinical applications in breast cancer radiotherapy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JApSp..73..753N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JApSp..73..753N"><span>Method for measuring integrated sensitivity of solar cells and multielement photoconverters using an X-Y scanner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naumov, V. V.; Grebenshchikov, O. A.; Zalesskii, V. B.</p> <p>2006-09-01</p> <p>We describe a method for automated measurement of the integrated sensitivity of solar cells (SCs) and multielement photoconverters (MPCs) using an experimental apparatus including a Pentium III personal computer (PC), an HP-34401A digital multimeter (DM), a stabilized radiation source (SRS), a controllable focusing system, an X-Y positioning device based on CD-RW optical disk storage devices. The method provides high accuracy in measuring the size of photosensitive areas of the solar cells and multielement photoconverters and inhomogeneities in their active regions, which makes it possible to correct the production process in the development stage and during fabrication of test prototypes for the solar cells and multielement photoconverters. The radiation power from the stabilized radiation source was ≤1 W; the ranges of the scanning steps along the X, Y coordinates were 10 100 µm, the range of the transverse cross sectional diameters of the focused radiation beam was 10 100 µm, the measurable photocurrents were 10-9 A to 2 A; scanning rate along the X, Y coordinates, ≤100 mm/sec; relative mean-square error (RMSE) for measurement of the integrated sensitivity of the solar cells, 0.2 ≤ γS int ≤ 0.9% in the ranges of measurable photocurrents 1 mA ≤ Iph ≤ 750 mA and areas 0.1 ≤ A ≤ 25 cm2 for number of measurements equal to ≤ 2· 105; instability of the radiation power (luminosity) ≤ 0.08% for 1 h or ≤ 0.4% for 8 h continuous operation; stabilized power range for the stabilized radiation source, 10-2 102 W. The software was written in Delphi 7.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649064-su-evaluation-dose-perturbation-temperature-sensitivity-variation-accumulated-dose-mosfet-detector','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649064-su-evaluation-dose-perturbation-temperature-sensitivity-variation-accumulated-dose-mosfet-detector"><span>SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ganesan, B; Prakasarao, A; Singaravelu, G</p> <p></p> <p>Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap.more » To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1646665','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1646665"><span>The effect of prescription eyewear on ocular exposure to ultraviolet radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosenthal, F S; Bakalian, A E; Taylor, H R</p> <p>1986-01-01</p> <p>Several studies have suggested that ultraviolet radiation in sunlight may cause cataracts and other eye disease. We evaluated the effect of prescription eyewear in attenuating ocular exposure to ultraviolet radiation (UVR) in the sunlight portions of the ultraviolet spectrum (295-350 nm). Using natural sunlight as the source, the attenuation was measured with two ultraviolet detectors, one sensitive to only UVB (295-315 nm) and one sensitive to both UVA and UVB (295-350 nm). A random sample of spectacles, spectacle lenses, and contact lenses was examined. The average transmission, as measured with either detector, was highest for soft contact lenses, followed by glass spectacle lenses, untinted hard contact lenses, and plastic spectacle lenses. Measurements performed with mannikins wearing spectacles showed that an average of 6.6 per cent of incident radiation reached the eye even when the lenses were covered with black opaque tape. The amount of exposure was increased substantially when the spectacles were moved 0.6 cm away from the forehead. The results show that the protection against ultraviolet exposure provided by prescription eyewear is highly variable and depends largely on its composition, size, and wearing position. PMID:3752323</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1166754','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1166754"><span>Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter</p> <p>2014-12-30</p> <p>A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070035136','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070035136"><span>Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.</p> <p>2007-01-01</p> <p>The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003224','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003224"><span>Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodson, J. Brant; Taylor, Patrick C.</p> <p>2016-01-01</p> <p>The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5638926-characterization-escherichia-coli-mutant-radb101-sensitive-gamma-uv-radiation-methyl-methanesulfonate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5638926-characterization-escherichia-coli-mutant-radb101-sensitive-gamma-uv-radiation-methyl-methanesulfonate"><span>Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sargentini, N.J.; Smith, K.C.</p> <p>1983-03-01</p> <p>After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15162026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15162026"><span>Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wong, H-P; Mozdarani, H; Finnegan, C; McIlrath, J; Bryant, P E; Slijepcevic, P</p> <p>2004-01-01</p> <p>Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells. Copyright 2003 S. Karger AG, Basel</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4524272','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4524272"><span>Evaluation of a topical treatment for the relief of sensitive skin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Heinicke, Ingrid R; Adams, Damian H; Barnes, Tanya M; Greive, Kerryn A</p> <p>2015-01-01</p> <p>Background Approximately, 50% of the population claim to have sensitive skin, which has created an important challenge for dermatologists and the cosmetic industry. This study evaluates the properties of QV Face Rescue Gel (Rescue Gel) that contains a combination of moisturizing and anti-irritant ingredients, and which is used to relieve the symptoms of sensitive facial skin. Methods The ability of Rescue Gel to induce collagen types I and III in cultured neonatal human foreskin fibroblasts compared to transforming growth factor beta 1, a known potent inducer of collagen types I and III, was measured using immunofluorescence staining. Furthermore, healthy volunteers were recruited to measure the potential for Rescue Gel to reduce erythema induced by solar-simulated ultraviolet radiation on the skin compared to 0.5% hydrocortisone cream (positive control) as well as it’s ability to decrease transepidermal water loss compared to baseline levels. In addition, the formulation was tested for its potential to be 1) nonstinging using a facial sting/discomfort assay performed on volunteers who reacted positively to lactic acid, 2) nonirritating as determined by repeat insult patch tests, and 3) noncomedogenic. Results Rescue Gel significantly induced collagen types I and III in cultured human foreskin fibroblasts similarly to transforming growth factor beta 1. In volunteers, Rescue Gel was shown to significantly reduce erythema induced by solar-simulated ultraviolet radiation similarly to 0.5% hydrocortisone, and to significantly reduce transepidermal water loss compared to baseline levels. Further, the formulation was found to be nonstinging, nonirritating, and noncomedogenic. No adverse events were observed. Conclusion In this study, Rescue Gel has been shown to exhibit properties that make it effective for use on sensitive or irritated facial skin, without exacerbation of the symptoms associated with sensitive skin. PMID:26251625</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.4213S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.4213S"><span>Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strada, Susanna; Unger, Nadine</p> <p>2016-04-01</p> <p>A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730041153&hterms=4th&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D4th','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730041153&hterms=4th&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D4th"><span>Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1973-01-01</p> <p>Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780000541&hterms=sem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780000541&hterms=sem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsem"><span>SEM probe of IC radiation sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gauthier, M. K.; Stanley, A. G.</p> <p>1979-01-01</p> <p>Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACPD...1130009P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACPD...1130009P"><span>The direct effect of aerosols on solar radiation over the broader Mediterranean basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.</p> <p>2011-11-01</p> <p>For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, by using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are Supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 Wm-2). Though planetary cooling is found over most of the region, up to -7 Wm-2, large positive DRETOA values (up to +25 Wm-2) are found over North Africa, indicating a strong planetary warming, as well as over the Alps (+0.5 Wm-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 Wm-2) and to decrease SSR (DREsurf = -16.5 Wm-2 and DREnetsurf -13.5 Wm-2) inducing thus significant atmospheric warming and surface radiative cooling. The calculated seasonal and monthly DREs are even larger, reaching -25.4 Wm-2 (for DREsurf). Sensitivity tests show that regional DREs are most sensitive to ωaer and secondarily to AOD, showing a quasi-linear dependence to these aerosol parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A33N..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A33N..07N"><span>Effects of Convective Aggregation on Radiative Cooling and Precipitation in a CRM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naegele, A. C.; Randall, D. A.</p> <p>2017-12-01</p> <p>In the global energy budget, the atmospheric radiative cooling (ARC) is approximately balanced by latent heating, but on regional scales, the ARC and precipitation rates are inversely related. We use a cloud-resolving model to explore how the relationship between precipitation and the ARC is affected by convective aggregation, in which the convective activity is confined to a small portion of the domain that is surrounded by a much larger region of dry, subsiding air. Sensitivity tests show that the precipitation rate and ARC are highly sensitive to both SST and microphysics; a higher SST and 1-moment microphysics both act to increase the domain-averaged ARC and precipitation rates. In all simulations, both the domain-averaged ARC and precipitation rates increased due to convective aggregation, resulting in a positive temporal correlation. Furthermore, the radiative effect of clouds in these simulations is to decrease the ARC. This finding is consistent with our observational results of the cloud effect on the ARC, and has implications for convective aggregation and the geographic extent in which it can occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6607D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6607D"><span>Dual view Geostationary Earth Radiation Budget from the Meteosat Second Generation satellites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewitte, Steven; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Moreels, Johan</p> <p>2017-04-01</p> <p>The diurnal cycle of the radiation budget is a key component of the tropical climate. The geostationary Meteosat Second Generation (MSG) satellites carrying both the broadband Geostationary Earth Radiation Budget (GERB) instrument with nadir resolution of 50 km and the multispectral Spinning Enhanced VIsible and InfraRed Imager (SEVIRI) with nadir resolution of 3 km offer a unique opportunity to observe this diurnal cycle. The geostationary orbit has the advantage of good temporal sampling but the disadvantage of fixed viewing angles, which makes the measurements of the broadband Top Of Atmosphere (TOA) radiative fluxes more sensitive to angular dependent errors. The Meteosat-10 (MSG-3) satellite observes the earth from the standard position at 0° longitude. From October 2016 onwards the Meteosat-8 (MSG-1) satellite makes observations from a new position at 41.5° East over the Indian Ocean. The dual view from Meteosat-8 and Meteosat-10 allows the assessment and correction of angular dependent systematic errors of the flux estimates. We demonstrate this capability with the validation of a new method for the estimation of the clear-sky TOA albedo from the SEVIRI instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020024010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020024010"><span>Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p>Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21843534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21843534"><span>Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita</p> <p>2011-11-01</p> <p>One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.397...92N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.397...92N"><span>The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al2O3:C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nyirenda, A. N.; Chithambo, M. L.</p> <p>2017-04-01</p> <p>It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450-650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987SPIE..842..169W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987SPIE..842..169W"><span>Effect Of Fluorine Doping On Radiation Hardness Of Graded Index Optical Fibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, T.; Singh, M. P.; Miniscalco, W. J.; Onorato, P. I. K.; Wall, J. A.</p> <p>1987-01-01</p> <p>We report an experimental and theoretical investigation of the effects of doping and processing on precursor defects in graded index multimode fibers. Fabrication parameters that significantly influence radiation sensitivity have been identified. In particular, we examined the role of fluorine doping in defect formation and its relationship to radiation sensitivity. The experimental effort included fiber fabrication and radiation-induced loss measurements on graded index, Ge-doped core fibers. Fluorine was added to the core and/or the cladding of test fibers. Two critical parameters, barrier layer thickness and core dopants, have been identified and correlate with induced loss. In addition, the reproducibility of both fiber fabrication and measurement with respect to induced loss has been tested and found to be excellent. Induced loss was found to be proportional to Ge concentration in the core; however, the trend with fluorine doping was less clear. The experimental results are consistent with molecular dynamics simulations which indicate the types and numbers of structural defects in the glasses. The simulations revealed significant differences in defect types and concentrations among glass corn-positions that included pure silica, Ge-doped silica, and Ge/F-codoped silica. Fluorine codoping decreases the number of germanium-related defects but increases the number of defects associated with silicon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863635','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863635"><span>Hemispherical Laue camera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Li, James C. M.; Chu, Sungnee G.</p> <p>1980-01-01</p> <p>A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050136665','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050136665"><span>INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.</p> <p>2005-01-01</p> <p>The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4307534','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4307534"><span>METHOD AND MEANS FOR RADIATION DOSIMETRY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Shulte, J.W.; Suttle, J.F.</p> <p>1958-02-18</p> <p>This patent relates to a method and device for determining quantities of gamma radiation and x radiation by exposing to such radiation a mature of a purified halogenated hydrocarbon chosen from the class consisting of chloroform, bromoform, tetrachloroethane and 1,1,2trichloroethane, and a minor quantity of a sensitizer chosen from the class consisting of oxygen, benzoyl peroxide, sodium peroxide, and nitrobenzene, the proportion of the sensitizer being at least about 10/sup -5/ moles per cubic centimeter of halogenated hydrocarbon, the total amount of sensitizer depending upon the range of radiation to be measured, and chemically measuring the amount of decomposition generated by the irradiation of the sensitized halogenated hydrocarbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7539243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7539243"><span>Assessment of apoptosis in oesophageal carcinoma preoperatively treated by chemotherapy and radiotherapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moreira, L F; Naomoto, Y; Hamada, M; Kamikawa, Y; Orita, K</p> <p>1995-01-01</p> <p>Apoptosis, programmed cell death, was immunohistochemically determined in 55 samples of oesophageal squamous cell carcinoma using the BM1 Mab. Sections from patients not treated (group 1, n = 12) or preoperatively treated by chemotherapy (group 2, n = 11), radiation (group 3, n = 13) or both (group 4, n = 8), and 11 additional cases of high-grade dysplasia or early cancer were examined. Most of the apoptotic cells were BM1-positive and checked by TUNEL proved to be nick end positive. They accounted for 7 (11%), 19 (29%), 21 (32%) and 26 (38%) cells per field in those 4 groups respectively. Chemotherapy and/or radiation significantly increased the number of apoptotic cells as compared to controls (p = 0.029 and p = 0.029, respectively). To assess the implications of the oncogene expression in the apoptotic pathway, additional section stained with bcl2 and p53 were negative for bcl2 and were positive for p53 in 16 samples (37%). Overall, positive cases for p53 mutation showed a significantly decreased incidence of apoptotic cells (p = 0.03). These results suggest that in situ assessment of apoptotic response better correlates to the apoptosis induced by radiation than that by chemotherapy, that abnormalities of the p53 protein decrease the apoptotic response in oesophageal carcinoma, and that immunohistochemical analysis of p53 protein helps to determine the sensitivity to these anticancer agents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6373S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6373S"><span>Regional Climate Response to Volcanic Radiative Forcing in Middle East and North Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stenchikov, G.; Dogar, M.</p> <p>2012-04-01</p> <p>We have tested the regional climate sensitivity in the Middle East and North Africa (MENA) to radiation perturbations caused by the large explosive equatorial volcanic eruptions of the second part of 20th century, El Chichon and Pinatubo occurred, respectively, in 1982 and 1991. The observations and reanalysis data show that the surface volcanic cooling in the MENA region is two-three times larger than the global mean response to volcanic forcing. The Red Sea surface temperature appears to be also very sensitive to the external radiative impact. E.g., the sea surface cooling, associated with the 1991 Pinatubo eruption, caused deep water mixing and coral bleaching for a few years. To better quantify these effects we use the Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HIRAM) to conduct simulations of both the El Chichon and Pinatubo impacts with the effectively 25-km grid spacing. We find that the circulation changes associated with the positive phase of the arctic oscillation amplified the winter temperature anomalies in 1982-1984 and 1991-1993. The dynamic response to volcanic cooling also is characterized by the southward shift of the inter-tropical convergence zone in summer and associated impact on the precipitation patterns. Thus, these results suggest that the climate regime in the MENA region is highly sensitive to external forcing. This is important for better understanding of the climate variability and change in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.946a2016A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.946a2016A"><span>Sensitivity of PbSnTe:In films to the radiation of free electron laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akimov, A. N.; Epov, V. S.; Klimov, A. E.; Kubarev, V. V.; Paschin, N. S.</p> <p>2018-01-01</p> <p>The analysis of experimental data on the observation of photoresponse in narrow gap semiconductor Pb1-x Sn x Te:In films grown by the method of molecular beam epitaxy, exposing samples to the powerful radiation of the Novosibirsk free electron laser (wavelength range of about 70-240 μm) under different measurement conditions, is presented in the paper. Both the positive and negative photoconductivities were detected. In a magnetic field, the resonance-type photoconductivity was observed. The results are discussed within the framework of the model taking into account the existence of different capture levels in PbSnTe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10574E..18S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10574E..18S"><span>Sensitivity analysis of Jacobian determinant used in treatment planning for lung cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, Wei; Gerard, Sarah E.; Pan, Yue; Patton, Taylor J.; Reinhardt, Joseph M.; Durumeric, Oguz C.; Bayouth, John E.; Christensen, Gary E.</p> <p>2018-03-01</p> <p>Four-dimensional computed tomography (4DCT) is regularly used to visualize tumor motion in radiation therapy for lung cancer. These 4DCT images can be analyzed to estimate local ventilation by finding a dense correspondence map between the end inhalation and the end exhalation CT image volumes using deformable image registration. Lung regions with ventilation values above a threshold are labeled as regions of high pulmonary function and are avoided when possible in the radiation plan. This paper investigates a sensitivity analysis of the relative Jacobian error to small registration errors. We present a linear approximation of the relative Jacobian error. Next, we give a formula for the sensitivity of the relative Jacobian error with respect to the Jacobian of perturbation displacement field. Preliminary sensitivity analysis results are presented using 4DCT scans from 10 individuals. For each subject, we generated 6400 random smooth biologically plausible perturbation vector fields using a cubic B-spline model. We showed that the correlation between the Jacobian determinant and the Frobenius norm of the sensitivity matrix is close to -1, which implies that the relative Jacobian error in high-functional regions is less sensitive to noise. We also showed that small displacement errors on the average of 0.53 mm may lead to a 10% relative change in Jacobian determinant. We finally showed that the average relative Jacobian error and the sensitivity of the system for all subjects are positively correlated (close to +1), i.e. regions with high sensitivity has more error in Jacobian determinant on average.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26584226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26584226"><span>Diagnostic value of CT-localizer and axial low-dose computed tomography for the detection of drug body packing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aissa, Joel; Kohlmeier, Antonia; Rubbert, Christian; Hohn, Ulrich; Blondin, Dirk; Schleich, Christoph; Kröpil, Patric; Boos, Johannes; Antoch, Gerald; Miese, Falk</p> <p>2016-01-01</p> <p>The purpose of this study was to assess the diagnostic performance of CT-localizers in the detection of intracorporal containers. This study was approved by the research ethics committee of our clinic. From March 2012 to March 2013, 108 subjects were referred to our institute with suspected body packing. The CT-localizer and the axial CT-images were compared by two blinded observers retrospectively. Presence of body packs was assessed in consensus. Sensitivity and specificity, PPV and NPV of the CT-localizer were calculated. Packets were detected in the CT-localizer of 19 suspects. In 28 of 108 cases packs were detected in axial CT-images. Sensitivity of CT-localizer for detection of packs was 0.68, and specificity was 1.00. There were no cases rated as false positive. The PPV was 1.0 and the NPV was 0.89. The omission of the axial CT-images would have led to a mean radiation dose reduction of 1.94 ± 0.5 mSv. The value of CT-localizers lies in their high PPV. Localizers are limited by low sensitivity, compared to axial CT-images in screening of potential body packers. However, in positive cases their high PPV may possibly allow to omit the complete axial abdominal CT to achieve even lower radiation exposure. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/11097','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/11097"><span>CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shu, D.</p> <p>1999-04-19</p> <p>A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1288653','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1288653"><span>Wireless radiation sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.</p> <p></p> <p>Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13C2003K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13C2003K"><span>Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, K. T.; Kim, J. H.; Han, M. J.; Heo, Y. J.; Park, S. K.</p> <p>2018-02-01</p> <p>Imaging technology based on gamma-ray sources has been extensively used in non-destructive testing (NDT) to detect any possible internal defects in products without changing their shapes or functions. However, such technology has been subject to increasingly stricter regulations, and an international radiation-safety management system has been recently established. Consequently, radiation source location in NDT systems has become an essential process, given that it can prevent radiation accidents. In this study, we focused on developing a monitoring system that can detect, in real time, the position of a radioactive source in the source guide tube of a projector. We fabricated a lead iodide (PbI2) dosimeter based on the particle-in-binder method, which has a high production yield and facilitates thickness and shape adjustment. Using a gamma-ray source, we then tested the reproducibility, linearity of the dosimeter response, and the dosimeter's percentage interval distance (PID). It was found that the fabricated PbI2 dosimeter yields highly accurate, reproducible, and linear dose measurements. The PID analysis—conducted to investigate the possibility of developing a monitoring system based on the proposed dosimeter—indicated that the valid detection distance was approximately 11.3 cm. The results of this study are expected to contribute to the development of an easily usable radiation monitoring system capable of significantly reducing the risk of radiation accidents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11973852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11973852"><span>Radiation measurements aboard the fourth Gemini flight.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Janni, J F; Schneider, M F</p> <p>1967-01-01</p> <p>Two special tissue-equivalent ionization chambers and 5 highly sensitive passive dosimetry packages were flown aboard the recent Gemini 4 flight for the purpose of obtaining precise values of instantaneous dose rate, accumulated dose. and shielding effectiveness. This experiment marked the first time that well-defined tissue dose and radiation survey measurements have been carried out in manned spaceflight operations. Since all measurements were accomplished under normal spacecraft environmental conditions, the biological dose resulted primarily from trapped inner Van Allen Belt radiation encountered by the spacecraft in the South Atlantic Anomaly. The experiment determined the particle type, ionizing and penetrating power, and variation with time and position within the Gemini spacecraft. Measured dose rates ranged from 100 mrad/hr for passes penetrating deeply into the South Atlantic Anomaly to less than 0.1 mrad/hr from lower latitude cosmic radiation. The accumulated tissue dose measured by the active ionization chambers, shielded by 0.4 gm/cm2 for the 4-day mission, was 82 mrad. Since the 5 passive dosimetry packages were each located in different positions within the spacecraft, the total mission surface dose measured by these detectors varied from 73 to 27 mrad, depending upon location and shielding. The particles within the spacecraft were recorded in nuclear emulsion, which established that over 90% of the tissue dose was attributable to penetrating protons. This experiment indicates that the radiation environment under shielded conditions at Gemini altitudes was not hazardous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21436094-andrographolide-sensitizes-ras-transformed-cells-radiation-vitro-vivo','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21436094-andrographolide-sensitizes-ras-transformed-cells-radiation-vitro-vivo"><span>Andrographolide Sensitizes Ras-Transformed Cells to Radiation in vitro and in vivo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hung, Shih-Kai; Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan; Tzu Chi University School of Medicine, Hualian, Taiwan</p> <p>2010-07-15</p> <p>Purpose: Increasing the sensitivity of tumor cells to radiation is a major goal of radiotherapy. The present study investigated the radiosensitizing effects of andrographolide and examined the molecular mechanisms of andrographolide-mediated radiosensitization. Methods and Materials: An H-ras-transformed rat kidney epithelial (RK3E) cell line was used to measure the radiosensitizing effects of andrographolide in clonogenic assays, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide assays, and a xenograft tumor growth model. The mechanism of andrographolide-sensitized cell death was analyzed using annexin V staining, caspase 3 activity assays, and terminal transferase uridyl nick end labeling assays. The roles of nuclear factor kappa B (NF-{kappa}B) and Akt inmore » andrographolide-mediated sensitization were examined using reporter assays, electrophoretic mobility shift assays, and Western blotting. Results: Concurrent andrographolide treatment (10 {mu}M, 3 h) sensitized Ras-transformed cells to radiation in vitro (sensitizer enhancement ratio, 1.73). Andrographolide plus radiation (one dose of 300 mg/kg peritumor andrographolide and one dose of 6 Gy radiation) resulted in significant tumor growth delay (27 {+-} 2.5 days) compared with radiation alone (22 {+-} 1.5 days; p <.05). Radiation induced apoptotic markers (e.g., caspase-3, membrane reversion, DNA fragmentation), and andrographolide treatment did not promote radiation-induced apoptosis. However, the protein level of activated Akt was significantly reduced by andrographolide. NF-{kappa}B activity was elevated in irradiated Ras-transformed cells, and andrographolide treatment significantly reduced radiation-induced NF-{kappa}B activity. Conclusion: Andrographolide sensitized Ras-transformed cells to radiation both in vitro and in vivo. Andrographolide-mediated radiosensitization was associated with downregulation of Akt and NF-{kappa}B activity. These observations indicate that andrographolide is a novel radiosensitizing agent with potential application in cancer radiotherapy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29139544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29139544"><span>Automatic detection of DNA double strand breaks after irradiation using an γH2AX assay.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hohmann, Tim; Kessler, Jacqueline; Grabiec, Urszula; Bache, Matthias; Vordermark, Dyrk; Dehghani, Faramarz</p> <p>2018-05-01</p> <p>Radiation therapy belongs to the most common approaches for cancer therapy leading amongst others to DNA damage like double strand breaks (DSB). DSB can be used as a marker for the effect of radiation on cells. For visualization and assessing the extent of DNA damage the γH2AX foci assay is frequently used. The analysis of the γH2AX foci assay remains complicated as the number of γH2AX foci has to be counted. The quantification is mostly done manually, being time consuming and leading to person-dependent variations. Therefore, we present a method to automatically analyze the number of foci inside nuclei, facilitating and quickening the analysis of DSBs with high reliability in fluorescent images. First nuclei were detected in fluorescent images. Afterwards, the nuclei were analyzed independently from each other with a local thresholding algorithm. This approach allowed accounting for different levels of noise and detection of the foci inside the respective nucleus, using Hough transformation searching for circles. The presented algorithm was able to correctly classify most foci in cases of "high" and "average" image quality (sensitivity>0.8) with a low rate of false positive detections (positive predictive value (PPV)>0.98). In cases of "low" image quality the approach had a decreased sensitivity (0.7-0.9), depending on the manual control counter. The PPV remained high (PPV>0.91). Compared to other automatic approaches the presented algorithm had a higher sensitivity and PPV. The used automatic foci detection algorithm was capable of detecting foci with high sensitivity and PPV. Thus it can be used for automatic analysis of images of varying quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26371402','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26371402"><span>Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: A Meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Bo-Ji; Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Zhang, Yi-Feng; Xu, Jun-Mei; Liu, Chang; Liu, Lin-Na; Li, Xiao-Long; Xu, Xiao-Hong; Qu, Shen; Xing, Mingzhao</p> <p>2015-12-01</p> <p>The aim of this study was to evaluate the diagnostic performance of quantitative shear wave velocity (SWV) measurement on acoustic radiation force impulse (ARFI) elastography for differentiation between benign and malignant thyroid nodules using meta-analysis. The databases of PubMed and the Web of Science were searched. Studies published in English on assessment of the sensitivity and specificity of ARFI elastography for the differentiation of thyroid nodules were collected. The quantitative measurement of ARFI elastography was evaluated by SWV (m/s). Meta-Disc Version 1.4 software was used to describe and calculate the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and summary receiver operating characteristic curves. We analyzed a total of 13 studies, which included 1,854 thyroid nodules (including 1,339 benign nodules and 515 malignant nodules) from 1,641 patients. The summary sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules by SWV were 0.81 (95% confidence interval [CI]: 0.77-0.84) and 0.84 (95% CI: 0.81-0.86), respectively. The pooled positive and negative likelihood ratios were 5.21 (95% CI: 3.56-7.62) and 0.23 (95% CI: 0.17-0.32), respectively. The pooled diagnostic odds ratio was 27.53 (95% CI: 14.58-52.01), and the area under the summary receiver operating characteristic curve was 0.91 (Q* = 0.84). In conclusion, SWV measurement on ARFI elastography has high sensitivity and specificity for differential diagnosis between benign and malignant thyroid nodules and can be used in combination with conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873240','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873240"><span>Electromagnetic and nuclear radiation detector using micromechanical sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.</p> <p>2000-01-01</p> <p>Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866621','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866621"><span>Radiation dose-rate meter using an energy-sensitive counter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kopp, Manfred K.</p> <p>1988-01-01</p> <p>A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16872085','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16872085"><span>An MLC-based linac QA procedure for the characterization of radiation isocenter and room lasers' position.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosca, Florin; Lorenz, Friedlieb; Hacker, Fred L; Chin, Lee M; Ramakrishna, Naren; Zygmanski, Piotr</p> <p>2006-06-01</p> <p>We have designed and implemented a new stereotactic linac QA test with stereotactic precision. The test is used to characterize gantry sag, couch wobble, cone placement, MLC offsets, and room lasers' positions relative to the radiation isocenter. Two MLC star patterns, a cone pattern, and the laser line patterns are recorded on the same imaging medium. Phosphor plates are used as imaging medium due to their sensitivity to red light. The red light of room lasers erases some of the irradiation information stored on the phosphor plates enabling accurate and direct measurements for the position of room lasers and radiation isocenter. Using film instead of the phosphor plate as imaging medium is possible, however, it is less practical. The QA method consists of irradiating four phosphor plates that record the gantry sag between the 0 degrees and 180 degrees gantry angles, the position and stability of couch rotational axis, the sag between the 90 degrees and 270 degrees gantry angles, the accuracy of cone placement on the collimator, the MLC offsets from the collimator rotational axis, and the position of laser lines relative to the radiation isocenter. The estimated accuracy of the method is +/- 0.2 mm. The observed reproducibility of the method is about +/- 0.1 mm. The total irradiation/ illumination time is about 10 min per image. Data analysis, including the phosphor plate scanning, takes less than 5 min for each image. The method characterizes the radiation isocenter geometry with the high accuracy required for the stereotactic radiosurgery. In this respect, it is similar to the standard ball test for stereotactic machines. However, due to the usage of the MLC instead of the cross-hair/ball, it does not depend on the cross-hair/ball placement errors with respect to the lasers and it provides more information on the mechanical integrity of the linac/couch/laser system. Alternatively, it can be used as a highly accurate QA procedure for the nonstereotactic machines. Noteworthy is its ability to characterize the MLC position accuracy, which is an important factor in IMRT delivery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21815748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21815748"><span>γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu</p> <p>2011-11-01</p> <p>Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and eventually therapy for human cancers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA103558','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA103558"><span>Molecular Design and Synthesis of New Noncrystalline Solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-01</p> <p>1. Powder X-ray diffraction pattern obtained have concluded that the crystallinity of the films using CuKa radiation. Sharp lines in is a sensitive ...pattern ;is formned in tile detector plane for each position of thle incident beam onl thre specimen. Thte diameter of the region giving thie...analyzer or over an aperture placed immediately in front of a scintillator-photomultiplier detector . This recording method is so inefficient that</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645067-roadmap-clinical-use-gold-nanoparticles-radiation-sensitization','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645067-roadmap-clinical-use-gold-nanoparticles-radiation-sensitization"><span>Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schuemann, Jan, E-mail: jschuemann@mgh.harvard.edu; Berbeco, Ross; Chithrani, Devika B.</p> <p>2016-01-01</p> <p>The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translationmore » of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA032959','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA032959"><span>Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-11-01</p> <p>1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810057745&hterms=malina&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmalina','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810057745&hterms=malina&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmalina"><span>Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.</p> <p>1981-01-01</p> <p>The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1007189','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1007189"><span>Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.</p> <p>2009-09-07</p> <p>The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expressionmore » levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770041757&hterms=pulse-shape+discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpulse-shape%2Bdiscrimination','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770041757&hterms=pulse-shape+discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpulse-shape%2Bdiscrimination"><span>The HEAO-A Scanning Modulation Collimator instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.</p> <p>1977-01-01</p> <p>The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750040609&hterms=Biomedicine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DBiomedicine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750040609&hterms=Biomedicine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DBiomedicine"><span>Nuclear Science Symposium, 21st, Scintillation and Semiconductor Counter Symposium, 14th, and Nuclear Power Systems Symposium, 6th, Washington, D.C., December 11-13, 1974, Proceedings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24948149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24948149"><span>New cardiac cameras: single-photon emission CT and PET.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slomka, Piotr J; Berman, Daniel S; Germano, Guido</p> <p>2014-07-01</p> <p>Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...163...86V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...163...86V"><span>Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.</p> <p>2018-04-01</p> <p>The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5275894-acetylcholine-content-cholinesterase-activity-related-combined-effects-allergen-radiation-rats-gamma-radiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5275894-acetylcholine-content-cholinesterase-activity-related-combined-effects-allergen-radiation-rats-gamma-radiation"><span>Acetylcholine content and cholinesterase activity as related to the combined effects of allergen and radiation. [Rats, gamma radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lipshits, R.U.; Kratinova, M.A.</p> <p>1977-01-01</p> <p>Rats were given intraperitoneal injections of antigen and exposed to 200 R of gamma radiation. Acetylcholine content and cholinesterase activity of blood were analyzed every 5 days for 30 days. The interval between sensitization and irradiation determined the direction of changes in allergic reactions. The radiation appreciably attenuated active sensitization of rats. The degree of sensitization was related to changes in cholinergic processes. The data confirmed the assumption that cholinergic systems are involved in the mechanisms of change in allergic reactivity under the influence of radiation. (HLW)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23059817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23059817"><span>Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pesnya, Dmitry S; Romanovsky, Anton V</p> <p>2013-01-20</p> <p>The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1434015-determination-structural-phase-octahedral-rotation-angle-halide-perovskites','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1434015-determination-structural-phase-octahedral-rotation-angle-halide-perovskites"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>dos Reis, Roberto; Yang, Hao; Ophus, Colin</p> <p></p> <p>A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112g1901D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112g1901D"><span>Determination of the structural phase and octahedral rotation angle in halide perovskites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich</p> <p>2018-02-01</p> <p>A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4203505','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4203505"><span>CONTINUOUSLY SENSITIVE BUBBLE CHAMBER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Good, R.H.</p> <p>1959-08-18</p> <p>A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5922..213T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5922..213T"><span>A novel pulse height analysis technique for nuclear spectroscopic and imaging systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, H. H.; Wang, C. Y.; Chou, H. P.</p> <p>2005-08-01</p> <p>The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007762','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007762"><span>Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat</p> <p>2016-01-01</p> <p>The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JInst..10P0040S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JInst..10P0040S"><span>MiX: a position sensitive dual-phase liquid xenon detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.</p> <p>2015-10-01</p> <p>The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000789','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000789"><span>Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.</p> <p>2014-01-01</p> <p>We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JInst...9C7015K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JInst...9C7015K"><span>Radiation imaging with a new scintillator and a CMOS camera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurosawa, S.; Shoji, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A.</p> <p>2014-07-01</p> <p>A new imaging system consisting of a high-sensitivity complementary metal-oxide semiconductor (CMOS) sensor, a microscope and a new scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG) grown by the Czochralski process, has been developed. The noise, the dark current and the sensitivity of the CMOS camera (ORCA-Flash4.0, Hamamatsu) was revised and compared to a conventional CMOS, whose sensitivity is at the same level as that of a charge coupled device (CCD) camera. Without the scintillator, this system had a good position resolution of 2.1 ± 0.4 μm and we succeeded in obtaining the alpha-ray images using 1-mm thick Ce:GAGG crystal. This system can be applied for example to high energy X-ray beam profile monitor, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090034989&hterms=susceptibility&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsusceptibility','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090034989&hterms=susceptibility&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsusceptibility"><span>Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 1. Theoretical Analysis and Examples from MODIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Platnick, Steven; Oreopoulos, Lazaros</p> <p>2008-01-01</p> <p>Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model cloud properties used for indirect effect studies. MODIS-derived global distributions of cloud susceptibility and radiative forcing calculations are presented in a companion paper.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25097011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25097011"><span>Accuracy, image quality, and radiation dose of prospectively ECG-triggered high-pitch dual-source CT angiography in infants and children with complex coarctation of the aorta.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Jian; Zhao, Hongliang; Wang, Xiaoying; Bai, Yuxiang; Liu, Liwen; Liu, Ying; Wei, Mengqi; Li, Jian; Zheng, Minwen</p> <p>2014-10-01</p> <p>To evaluate the diagnostic accuracy, image quality, and radiation dose of prospective electrocardiogram (ECG)-triggered high-pitch dual-source computed tomography (DSCT) in infants and young children with complex coarctation of the aorta (CoA). Forty pediatric patients aged < 4 years with suspected CoA underwent prospective ECG-triggered high-pitch DSCT angiography and transthoracic echocardiography (TTE). Surgery and/or conventional cardiac angiography (CCA) were performed in all patients. The diagnostic accuracy of DSCT angiography and TTE was compared to the surgical and/or CCA findings. The causes of misdiagnosis and miss were analyzed, and the advantages and limitation of both imaging modalities were evaluated. Image quality of DSCT was evaluated, and effective radiation dose was calculated. The sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy of DSCT in evaluation of complex CoA were 92.37%, 98.51%, 97.32%, 93.57%, and 96.25%, respectively. There was a significant difference in the accuracy between DSCT and TTE (χ² = 9.9, P<.05). For a total of 80 extracardiac anomalies, the sensitivity (98.8%, 79/80) of DSCT was greater than that of TTE (62.5%; 50 of 80). On the contrary, for 38 cardiac anomalies, the sensitivity (78.9%, 30 of 38) of DSCT was lesser than that of TTE (100%; 38 of 38). The mean score of image quality was 4.27 ± 0.73. The mean effective radiation dose was 0.20 ± 0.09 mSv. Prospective ECG-triggered high-pitch DSCT may be a clinical feasible modality in the evaluation of pediatric patients with complex CoA, providing adequate image quality, high diagnostic accuracy, and low radiation dose. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23226930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23226930"><span>The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J</p> <p>2013-02-01</p> <p>The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RaPC...83..111H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RaPC...83..111H"><span>The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.</p> <p>2013-02-01</p> <p>The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......192P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......192P"><span>Position Sensitive Proximity Charge Sensing Readout of HPGe Detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Priest, Anders Peterson</p> <p></p> <p>Electrode segmentation is a necessity to achieve position sensitivity in semicon- ductor radiation detectors. Traditional segmentation requires decreasing electrode sizes while increasing channel numbers to achieve very fine position resolution. These electrodes can be complicated to fabricate, and many electrodes with individual electronic channels are required to instrument large detector areas. To simplify the fabrication process, we have moved the readout electrodes onto a printed circuit board that is positioned above the ionization type detection material. In this scheme, charge from radiation interactions will be shared amongst several electrodes, allowing for position interpolation. Because events can be reconstructed in between electrodes, fewer electrodes are needed to instrument large detector areas. The proximity charge sensing method of readout promises to simplify detector fabrication while maintaining the position resolution that is required by fields such as homeland security, astrophysics, environmental remediation, nuclear physics, and medical imaging. We performed scanning measurements on a proof of principle detector that we fabricated at Lawrence Berkeley National Laboratory (LBNL). These measurements showed that position resolution much finer than the strip pitch was achievable using the proximity charge readout method. We performed analytic calculations and Monte Carlo modeling to optimize the readout electrode geometry for a larger detector to test the limits of this technology. We achieved an average position resolution of 288 microm with eight proximity electrodes at a 5 mm pitch and 1 mm strip width, set 100 microm away from the detector surface by a Kapton spacer. To achieve this resolution using standard technologies, 300 microm pitch strips are necessary, and would require 100 channels to instrument the same area. Through our optimization calculations, we found that there is a trade-off between position resolution and energy resolution, and this system provided comparatively poor energy resolution by HPGe standards, with 4.7 keV FWHM at 59.5 keV. With another electrode geometry, we were able to achieve 2.9 keV FWHM at 59.5 keV. This dissertation describes the work we completed to achieve these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9593E..16M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9593E..16M"><span>Networked gamma radiation detection system for tactical deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen</p> <p>2015-08-01</p> <p>A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030001552&hterms=THC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTHC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030001552&hterms=THC&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTHC"><span>Managing Radiation Degradation of CCDs on the Chandra X-ray Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>ODell, Stephen L.; Blackwell, William C.; Minow, Joseph I.; Cameron, Robert A.; Morris, David C.; Virani, Shanil N.; Six, N. Frank (Technical Monitor)</p> <p>2002-01-01</p> <p>The CCDs on the Chandra X ray Observatory are sensitive to radiation damage particularly from low-energy protons scattering off the telescope's mirrors onto the focal plane. In its highly elliptical orbit, Chandra passes through a spatially and temporally varying radiation environment, ranging from the radiation belts to the solar wind. Translating thc Advanced CCD Imaging Spectrometer (ACIS) out of the focal position during radiation-belt passages has prevented loss of scientific utility and eventually functionality. However, carefully managing the radiation damage during the remainder of the orbit, without unnecessarily sacrificing observing time, is essential to optimizing the scientific value of this exceptional observatory throughout its planned 10-year mission. In working toward this optimization, the Chandra team developed aid applied radiation-management strategies. These strategies include autonomous instrument safing triggered by the on-board radiation monitor, as well as monitoring, alerts, and intervention based upon real-time space-environment data from NOAA and NASA spacecraft. Furthermore, because Chandra often spends much of its orbit out of the solar wind (in the Earth's outer magnetosphere and magnetosheath), the team developed the Chandra Radiation Model to describe the complete low-energy-proton environment. Management of the radiation damage has thus far succeeded in limiting degradation of the charge-transfer inefficiency (CTI) to less than 4.4*10^-6 and 1.4*10^-6 per year for the front-illuminated and back-illuminated CCDs, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120006521','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120006521"><span>Optical Sensors for Monitoring Gamma and Neutron Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boyd, Clark D.</p> <p>2011-01-01</p> <p>For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53H1819M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53H1819M"><span>Irregular-Mesh Terrain Analysis and Incident Solar Radiation for Continuous Hydrologic Modeling in Mountain Watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreno, H. A.; Ogden, F. L.; Alvarez, L. V.</p> <p>2016-12-01</p> <p>This research work presents a methodology for estimating terrain slope degree, aspect (slope orientation) and total incoming solar radiation from Triangular Irregular Network (TIN) terrain models. The algorithm accounts for self shading and cast shadows, sky view fractions for diffuse radiation, remote albedo and atmospheric backscattering, by using a vectorial approach within a topocentric coordinate system and establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes slope and aspect while spherical trigonometry allows computingunit vector defining the position of the sun at each hour and day of the year. Thus, a dot product determines the radiation flux at each TIN element. Cast shadows are computed by scanning the projection of groups of TIN elements in the direction of the closest perpendicular plane to the sun vector only in the visible horizon range. Sky view fractions are computed by a simplified scanning algorithm from the highest to the lowest triangles along prescribed directions and visible distances, useful to determine diffuse radiation. Finally, remotealbedo is computed from the sky view fraction complementary functions for prescribed albedo values of the surrounding terrain only for significant angles above the horizon. The sensitivity of the different radiative components is tested a in a moutainuous watershed in Wyoming, to seasonal changes in weather and surrounding albedo (snow). This methodology represents an improvement on the current algorithms to compute terrain and radiation values on triangular-based models in an accurate and efficient manner. All terrain-related features (e.g. slope, aspect, sky view fraction) can be pre-computed and stored for easy access for a subsequent, progressive-in-time, numerical simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26430846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26430846"><span>Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A</p> <p>2016-06-01</p> <p>OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation causes remarkable cellular changes in endothelial cells. Significant PS externalization is induced by radiation at doses of 15 Gy or higher, concomitant with a block in the cell cycle. Radiation-induced markers/targets may have high discriminating power to be harnessed in vascular targeting for AVM treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26475419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26475419"><span>Subgroup Economic Evaluation of Radiotherapy for Breast Cancer After Mastectomy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wan, Xiaomin; Peng, Liubao; Ma, Jinan; Chen, Gannong; Li, Yuanjian</p> <p>2015-11-01</p> <p>A recent meta-analysis by the Early Breast Cancer Trialists' Collaborative Group found significant improvements achieved by postmastectomy radiotherapy (PMRT) for patients with breast cancer with 1 to 3 positive nodes (pN1-3). It is unclear whether PMRT is cost-effective for subgroups of patients with positive nodes. To determine the cost-effectiveness of PMRT for subgroups of patients with breast cancer with positive nodes. A semi-Markov model was constructed to estimate the expected lifetime costs, life expectancy, and quality-adjusted life-years for patients receiving or not receiving radiation therapy. Clinical and health utilities data were from meta-analyses by the Early Breast Cancer Trialists' Collaborative Group or randomized clinical trials. Costs were estimated from the perspective of the Chinese society. One-way and probabilistic sensitivity analyses were performed. The incremental cost-effective ratio was estimated as $7984, $4043, $3572, and $19,021 per quality-adjusted life-year for patients with positive nodes (pN+), patients with pN1-3, patients with pN1-3 who received systemic therapy, and patients with >4 positive nodes (pN4+), respectively. According to World Health Organization recommendations, these incremental cost-effective ratios were judged as cost-effective. However, the results of one-way sensitivity analyses suggested that the results were highly sensitive to the relative effectiveness of PMRT (rate ratio). We determined that the results were highly sensitive to the rate ratio. However, the addition of PMRT for patients with pN1-3 in China has a reasonable chance to be cost-effective and may be judged as an efficient deployment of limited health resource, and the risk and uncertainty of PMRT are relatively greater for patients with pN4+. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3987081','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3987081"><span>Targeting of tumor endothelial cells combining 2 Gy/day of X-ray with Everolimus is the effective modality for overcoming clinically relevant radioresistant tumors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kuwahara, Yoshikazu; Mori, Miyuki; Kitahara, Shuji; Fukumoto, Motoi; Ezaki, Taichi; Mori, Shiro; Echigo, Seishi; Ohkubo, Yasuhito; Fukumoto, Manabu</p> <p>2014-01-01</p> <p>Radiotherapy is widely used to treat cancer because it has the advantage of physically and functionally conserving the affected organ. To improve radiotherapy and investigate the molecular mechanisms of cellular radioresistance, we established a clinically relevant radioresistant (CRR) cell line, SAS-R, from SAS cells. SAS-R cells continue to proliferate when exposed to fractionated radiation (FR) of 2 Gy/day for more than 30 days in vitro. A xenograft tumor model of SAS-R was also resistant to 2 Gy/day of X-rays for 30 days. The density of blood vessels in SAS-R tumors was higher than in SAS tumors. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, sensitized microvascular endothelial cells to radiation, but failed to radiosensitize SAS and SAS-R cells in vitro. Everolimus with FR markedly reduced SAS and SAS-R tumor volumes. Additionally, the apoptosis of endothelial cells (ECs) increased in SAS-R tumor tissues when both Everolimus and radiation were administered. Both CD34-positive and tomato lectin-positive blood vessel densities in SAS-R tumor tissues decreased remarkably after the Everolimus and radiation treatment. Everolimus-induced apoptosis of vascular ECs in response to radiation was also followed by thrombus formation that leads to tumor necrosis. We conclude that FR combined with Everolimus may be an effective modality to overcome radioresistant tumors via targeting tumor ECs. PMID:24464839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23953409','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23953409"><span>Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sørensen, Brita Singers; Busk, Morten; Olthof, Nadine; Speel, Ernst-Jan; Horsman, Michael R; Alsner, Jan; Overgaard, Jens</p> <p>2013-09-01</p> <p>HPV associated Head and Neck Squamous Cell Carcinoma (HNSCC) represents a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. Previous data from the randomized DAHANCA 5 trial indicated that HPV positive tumors did not benefit from hypoxic modifications by Nimorazole during radiotherapy, whereas a significant benefit was observed in the HPV negative tumors. However, more studies have demonstrated equal frequencies of hypoxic tumors among HPV-positive and HPV-negative tumors. The aim of the present study was to determine radiosensitivity, the impact of hypoxia and the effect of Nimorazole in HPV positive and HPV negative cell lines. The used cell lines were: UDSCC2, UMSCC47 and UPCISCC90 (HPV positive) and FaDuDD, UTSCC33 and UTSCC5 (HPV negative). Cells were cultured under normoxic or hypoxic conditions, and gene expression levels of previously established hypoxia induced genes were assessed by qPCR. Cells were irradiated with various doses under normoxia, hypoxia or hypoxia +1mM Nimorazole, and the clonogenic survival was determined. The HPV positive and HPV negative cell lines exhibited similar patterns of upregulation of hypoxia induced genes in response to hypoxia. The HPV positive cell lines were up to 2.4 times more radiation sensitive than HPV negative cell lines. However, all HPV positive cells displayed the same response to hypoxia in radiosensitivity, with an OER in the range 2.3-2.9, and a sensitizer effect of Nimorazole of 1.13-1.29, similar to HPV negative cells. Although HPV positive cells had a markedly higher radiosensitivity compared to HPV negative cells, they displayed the same relative radioresistance under hypoxia and the same relative sensitizer effect of Nimorazole. The clinical observation that HPV positive patients do not seem to benefit from Nimorazole treatment is not due to inherent differences in hypoxia sensitivity or response to Nimorazole, but can be accounted for by the overall higher radiosensitivity of HPV positive cells. Copyright © 2013. Published by Elsevier Ireland Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPA.876..156G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPA.876..156G"><span>The TORCH detector R&D: Status and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gys, T.; Brook, N.; García, L. Castillo; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gao, R.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; García, A. Ros; van Dijk, M.</p> <p>2017-12-01</p> <p>TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single photons, and high-quality quartz radiator and focussing optics minimizing photon losses. The present paper reports on the TORCH results successfully achieved in the laboratory and in charged particle beam tests. It will also introduce the latest developments towards a final full-scale module prototype.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1339944','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1339944"><span>Development of PIMAL: Mathematical Phantom with Moving Arms and Legs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Akkurt, Hatice; Eckerman, Keith F.</p> <p>2007-05-01</p> <p>The computational model of the human anatomy (phantom) has gone through many revisions since its initial development in the 1970s. The computational phantom model currently used by the Nuclear Regulatory Commission (NRC) is based on a model published in 1974. Hence, the phantom model used by the NRC staff was missing some organs (e.g., neck, esophagus) and tissues. Further, locations of some organs were inappropriate (e.g., thyroid).Moreover, all the computational phantoms were assumed to be in the vertical-upright position. However, many occupational radiation exposures occur with the worker in other positions. In the first phase of this work, updates onmore » the computational phantom models were reviewed and a revised phantom model, which includes the updates for the relevant organs and compositions, was identified. This revised model was adopted as the starting point for this development work, and hence a series of radiation transport computations, using the Monte Carlo code MCNP5, was performed. The computational results were compared against values reported by the International Commission on Radiation Protection (ICRP) in Publication 74. For some of the organs (e.g., thyroid), there were discrepancies between the computed values and the results reported in ICRP-74. The reasons behind these discrepancies have been investigated and are discussed in this report.Additionally, sensitivity computations were performed to determine the sensitivity of the organ doses for certain parameters, including composition and cross sections used in the simulations. To assess the dose for more realistic exposure configurations, the phantom model was revised to enable flexible positioning of the arms and legs. Furthermore, to reduce the user time for analyses, a graphical user interface (GUI) was developed. The GUI can be used to visualize the positioning of the arms and legs as desired posture is achieved to generate the input file, invoke the computations, and extract the organ dose values from the MCNP5 output file. In this report, the main features of the phantom model with moving arms and legs and user interface are described.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28453388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28453388"><span>Susceptibility of ATM-deficient pancreatic cancer cells to radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ayars, Michael; Eshleman, James; Goggins, Michael</p> <p>2017-05-19</p> <p>Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17477780','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17477780"><span>Cancer screening with whole-body PET/CT for healthy asymptomatic people in Japan: re-evaluation of its test validity and radiation exposure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghotbi, Nader; Iwanaga, Masako; Ohtsuru, Akira; Ogawa, Yoji; Yamashita, Shunichi</p> <p>2007-01-01</p> <p>The use of Positron Emission Tomography (PET) or PET/CT for voluntary cancer screening of asymptomatic individuals is becoming common in Japan, though the utility of such screening is still controversial. This study estimated the general test validity and effective radiation dose for PET/CT cancer screening of healthy Japanese people by evaluating four standard indices (sensitivity, specificity, positive/negative predictive values), and predictive values with including prevalence for published literature and simulation-based Japanese data. CT and FDG-related dosage data were gathered from the literature and then extrapolated to the scan parameters at a model PET center. We estimated that the positive predictive value was only 3.3% in the use of PET/CT for voluntary cancer screening of asymptomatic Japanese individuals aged 50-59 years old, whose average cancer prevalence was 0.5%. The total effective radiation dose of a single whole-body PET/CT scan was estimated to be 6.34 to 9.48 mSv for the average Japanese individual, at 60 kg body weight. With PET/CT cancer screening in Japan, many healthy volunteers screened as false positive are exposed to at least 6.34 mSv without getting any real benefit. More evaluation concerning the justification of applying PET/CT for healthy people is necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29420321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29420321"><span>Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mannil, Manoj; von Spiczak, Jochen; Manka, Robert; Alkadhi, Hatem</p> <p>2018-06-01</p> <p>The aim of this study was to test whether texture analysis and machine learning enable the detection of myocardial infarction (MI) on non-contrast-enhanced low radiation dose cardiac computed tomography (CCT) images. In this institutional review board-approved retrospective study, we included non-contrast-enhanced electrocardiography-gated low radiation dose CCT image data (effective dose, 0.5 mSv) acquired for the purpose of calcium scoring of 27 patients with acute MI (9 female patients; mean age, 60 ± 12 years), 30 patients with chronic MI (8 female patients; mean age, 68 ± 13 years), and in 30 subjects (9 female patients; mean age, 44 ± 6 years) without cardiac abnormality, hereafter termed controls. Texture analysis of the left ventricle was performed using free-hand regions of interest, and texture features were classified twice (Model I: controls versus acute MI versus chronic MI; Model II: controls versus acute and chronic MI). For both classifications, 6 commonly used machine learning classifiers were used: decision tree C4.5 (J48), k-nearest neighbors, locally weighted learning, RandomForest, sequential minimal optimization, and an artificial neural network employing deep learning. In addition, 2 blinded, independent readers visually assessed noncontrast CCT images for the presence or absence of MI. In Model I, best classification results were obtained using the k-nearest neighbors classifier (sensitivity, 69%; specificity, 85%; false-positive rate, 0.15). In Model II, the best classification results were found with the locally weighted learning classification (sensitivity, 86%; specificity, 81%; false-positive rate, 0.19) with an area under the curve from receiver operating characteristics analysis of 0.78. In comparison, both readers were not able to identify MI in any of the noncontrast, low radiation dose CCT images. This study indicates the ability of texture analysis and machine learning in detecting MI on noncontrast low radiation dose CCT images being not visible for the radiologists' eye.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA424951','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA424951"><span>Improved Method for Simulating Total Radiation Dose Effects on Single and Composite Operational Amplifiers Using PSPICE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2004-06-01</p> <p>sensitive to the effects of radiation, but are arranged in unique circuits that make their system sensitivity to the ef- fects of radiation less apparent...earth with particle radia- tion. The earth is protected from this particle radiation by its magnetosphere. [Refs. 9, 14] The core of the Earth is...en.wikipedia.org/wiki/Radiation], last accessed 06 April 04. 8. Messenger, G. S. and Ash, M. S., The Effects of Radiation on Electronic Systems , Van</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1340539','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1340539"><span>Ultra-thin plasma radiation detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Friedman, Peter S.</p> <p>2017-01-24</p> <p>A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26349218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26349218"><span>[On Individualization of Therapeutic Doses of Optical Radiation according to Changes in Parameters of Blood Oxygenation].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zalesskaya, G A</p> <p>2015-01-01</p> <p>The effect of in vivo laser irradiation by optical radiation on blood from different patients is studied. The objects of research were three series of blood samples from patients whose treatment course included extracorporeal UV blood irradiation, intravenous laser blood irradiation and supra-venous blood laser irradiation. Before and after irradiation the results on optic oximetry and gas content of venous blood were compared. The results of positive and negative influence of blood irradiation on characteristics of an oxygen exchange in separate patients and on the maintenance of some products of metabolism are represented. It is shown that at the same power dose, their changes depend on individual, initial values of hemoglobin oxygen saturation of venous blood and its photoinduced changes which objectively reflect individual sensitivity of patients to the action of optical radiation on blood and can be used for assessment of the efficiency of phototherapy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29285242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29285242"><span>Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ziemann, Frank; Seltzsam, Steve; Dreffke, Kristin; Preising, Stefanie; Arenz, Andrea; Subtil, Florentine S B; Rieckmann, Thorsten; Engenhart-Cabillic, Rita; Dikomey, Ekkehard; Wittig, Andrea</p> <p>2017-12-01</p> <p>At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080007008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080007008"><span>Whispering gallery mode resonators based on radiation-sensitive materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Handley, Timothy A. (Inventor)</p> <p>2005-01-01</p> <p>Whispering gallery mode (WGM) optical resonators formed of radiation-sensitive materials to allow for permanent tuning of their resonance frequencies in a controlled manner. Two WGM resonators may be cascaded to form a composite filter to produce a second order filter function where at least one WGM resonator is formed a radiation-sensitive material to allow for proper control in the overlap of the two filter functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29169152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29169152"><span>Knockdown of CAVEOLIN-1 Sensitizes Human Basal-Like Triple-Negative Breast Cancer Cells to Radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zou, Man; Li, Yanhui; Xia, Shu; Chu, Qian; Xiao, Xiaoguang; Qiu, Hong; Chen, Yu; Zheng, Zu'an; Liu, Fei; Zhuang, Liang; Yu, Shiying</p> <p>2017-01-01</p> <p>Triple-negative breast cancer (TNBC) is a high-risk breast cancer phenotype without specific targeted therapy options and is significantly associated with increased local recurrence in patients treated with radiotherapy. CAVEOLIN-1 (CAV-1)-mediated epidermal growth factor receptor (EGFR) nuclear translocation following irradiation promotes DNA repair and thus induces radiation resistance. In this study, we aimed to determine whether knockdown of CAV-1 enhances the radiosensitivity of basal-like TNBC cell lines and to explore the possible mechanisms. Western blotting was used to compare protein expression in a panel of breast cancer cell lines. Nuclear accumulation of EGFR as well as DNA repair and damage at multiple time points following irradiation with or without CAV-1 siRNA pretreatment were investigated using western blotting and confocal microscopy. The radiosensitizing effect of CAV-1 siRNA was evaluated using a clonogenic assay. Flowcytometry was performed to analyse cell apoptosis and cell cycle alteration. We found that CAV-1 is over-expressed in basal-like TNBC cell lines and barely expressed in HER-2-positive cells; additionally, we observed that HER-2-positive cell lines are more sensitive to irradiation than basal-like TNBC cells. Our findings revealed that radiation-induced EGFR nuclear translocation was impaired by knockdown of CAV-1. In parallel, radiation-induced elevation of DNA repair proteins was also hampered by pretreatment with CAV-1 siRNA before irradiation. Silencing of CAV-1 also promoted DNA damage 24 h after irradiation. Colony formation assays verified that cells could be radiosensitized after knockdown of CAV-1. Furthermore, G2/M cell cycle arrest and apoptosis enhancement may also contribute to the radiosensitizing effect of CAV-1 siRNA. Our results support the hypothesis that CAV-1 knockdown by siRNA causes increased radiosensitivity in basal-like TNBC cells. The mechanisms associated with this effect are reduced DNA repair through delayed CAV-1-associated EGFR nuclear accumulation and induction of G2/M arrest and apoptosis through the combined effects of CAV-1 siRNA and radiation. © 2017 The Author(s). Published by S. Karger AG, Basel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RaPC..107..115T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RaPC..107..115T"><span>Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa</p> <p>2015-02-01</p> <p>In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5-20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10-2, 1.48×10-2, 4.14×10-2, and 6.03×10-2, 9.44×10-2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993isdr.symp....5H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993isdr.symp....5H"><span>Response of GaAs charge storage devices to transient ionizing radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.</p> <p></p> <p>Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24513288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24513288"><span>Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qiang, Weiguang; Wu, Qinqin; Zhou, Fuxiang; Xie, Conghua; Wu, Changping; Zhou, Yunfeng</p> <p>2014-03-07</p> <p>Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26215586','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26215586"><span>Automatic detection of patient identification and positioning errors in radiation therapy treatment using 3-dimensional setup images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jani, Shyam S; Low, Daniel A; Lamb, James M</p> <p>2015-01-01</p> <p>To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9033E..4KS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9033E..4KS"><span>A novel intra-operative positron imager for rapid localization of tumor margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.</p> <p>2014-03-01</p> <p>We have developed an intra-operative and compact imaging tool for surgeons to detect PET- positive lesions. Currently, most such probes on the market are non-imaging, and provide no ancillary information of surveyed areas, such as clear delineations of malignant tissues. Our probe consists of a novel hybrid scintillator coupled to a compact silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The hybrid scintillator consists of a 0.4 mm thick layer of CsI:Tl scintillator coupled to a 1 mm thick LYSO crystal. To achieve high spatial resolution, CsI:Tl is pixelated to 0.5×0.5 mm2 pixels using laser ablation technique. While CsI:Tl act as beta-sensitive scintillator, LYSO senses the gamma radiation and can be used to navigate the probe to the locations of interest. The gamma response is also subtracted from the beta image for improved SNR and contrast. To achieve accurate centroid position estimation and uniform beta sensitivity over the entire imaging area, the LYSO thickness is optimized such that it acts as scintillation light diffuser by spreading CsI:Tl light over multiple SiPM pixels. The results show that the response of the two scintillators exposed to radiation could be easily distinguished based on their pulse shapes. The probe's spatial resolution is <1.5 mm FWHM in its 10×10 mm2 effective imaging area. The probe can rapidly detect and localize nCi levels of F-18 beta radiation even in presence of strong gamma background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5769223','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5769223"><span>Aerial Radiological Measuring System (ARMS): systems, procedures and sensitivity (1976)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Boyns, P K</p> <p>1976-07-01</p> <p>This report describes the Aerial Radiological Measuring System (ARMS) designed and operated by EG and G, Inc., for the Energy Research and Development Administration's (ERDA) Division of Operational Safety with the cooperation of the Nuclear Regulatory Commission. Designed to rapidly survey large areas for low-level man-made radiation, the ARMS has also proven extremely useful in locating lost radioactive sources of relatively low activity. The system consists of sodium iodide scintillation detectors, data formatting and recording equipment, positioning equipment, meteorological instruments, direct readout hardware, and data analysis equipment. The instrumentation, operational procedures, data reduction techniques and system sensitivities are described, togethermore » with their applications and sample results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863558','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863558"><span>Position-sensitive proportional counter with low-resistance metal-wire anode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kopp, Manfred K.</p> <p>1980-01-01</p> <p>A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009RaPC...78..597J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009RaPC...78..597J"><span>Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster ( Crassostrea gigas) and culture broth under different conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, Pil-Mun; Park, Jae Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Baek, Min; Chung, Young-Jin; Lee, Ju-Woon</p> <p>2009-07-01</p> <p>Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster ( Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D10 value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8017045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8017045"><span>[The effect of potable mineral waters on the hormonal and psychological status (experimental and clinical research)].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Polushina, N D; Babina, L M; Shvedunova, L N</p> <p>1994-01-01</p> <p>Experiments on 80 Wistar rats revealed the ability of Essentuki mineral waters to stimulate the reserves and sensitivity of the intestinal serotonin-producing system. A clinical trial on two groups of children (exposed to low-dose ionizing radiation or with posttraumatic astheno-neurotic syndrome) found out pronounced positive changes in the psychological status of the children which progressed in correlation with an increase of the blood serotonin levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17731303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17731303"><span>Semiconductor Radiation Detectors: Basic principles and some uses of a recent tool that has revolutionized nuclear physics are described.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goulding, F S; Stone, Y</p> <p>1970-10-16</p> <p>The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990NIMPA.288..125P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990NIMPA.288..125P"><span>Position sensitive detection of nuclear radiation mediated by non equilibrium phonons at low temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pröbst, F.; Peterreins, Th.; Feilitzsch, F. v.; Kraus, H.</p> <p>1990-03-01</p> <p>Many experiments in nuclear and particle physics would benefit from the development of a device capable of detecting non-ionizing events with a low energy threshold. In this context, we report on experimental tests of a detector based on the registration of nonequilibrium phonons. The device is composed of a silicon single crystal (size: 20×10×3 mm 3) and of an array of superconducting tunnel junctions evaporated onto the surface of the crystal. The junctions serve as sensors for phonons created by absorption of nuclear radiation in the crystal. We show how pulse height analysis and the investigation of time differences between correlated pulses in different junctions can be used to obtain information about the point of absorption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930019576','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930019576"><span>A Microseismometer for Terrestrial and Extraterrestrial Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banerdt, W.; Kaiser, W.; Vanzandt, T.</p> <p>1993-01-01</p> <p>The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles, and tests show that these devices can exhibit performance comparable to state-of-the-art instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800045585&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800045585&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcurrent%2Bfeedback"><span>Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, W.-C.; Stone, P. H.</p> <p>1980-01-01</p> <p>The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27775371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27775371"><span>Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fujarewicz, Krzysztof; Lakomiec, Krzysztof</p> <p>2016-12-01</p> <p>We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872795','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872795"><span>Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bell, Zane W.</p> <p>2000-01-01</p> <p>A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCrGr.425..341G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCrGr.425..341G"><span>Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganbold, T.; Antonelli, M.; Cautero, G.; Menk, R. H.; Cucini, R.; Biasiol, G.</p> <p>2015-09-01</p> <p>Beam monitoring in synchrotron radiation or free electron laser facilities is extremely important for calibration and diagnostic issues. Here we propose an in-situ detector showing fast response and homogeneity for both diagnostics and calibration purposes. The devices are based on In0.75Ga0.25As/In0.75Al0.25As QWs, which offer several advantages due to their direct, low-energy band gap and high electron mobility at room temperature. A pixelation structure with 4 quadrants was developed on the back surface of the device, in order to fit commercially available readout chips. The QW devices have been tested with collimated monochromatic X-ray beams from synchrotron radiation. A rise in the current noise with positive bias was observed, which could be due to deep traps for hole carriers. Therefore, an optimized negative bias was chosen to minimize dark currents and noise. A decrease in charge collection efficiency was experienced as the beam penetrates into deeper layers, where a dislocation network is present. The prototype samples showed that individual currents obtained from each quadrant allow the position of the beam to be monitored for all the utilized energies. These detectors have a potential to estimate the position of the beam with a precision of about 10 μm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040000799','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040000799"><span>Radiation Shielding for Space Flight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.</p> <p>2003-01-01</p> <p>A safe and efficient exploration of space requires an understanding of space radiations so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation is modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method to predict the effects of the presence of these particles on the transport of radiation through materials is presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1434015-determination-structural-phase-octahedral-rotation-angle-halide-perovskites','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1434015-determination-structural-phase-octahedral-rotation-angle-halide-perovskites"><span>Determination of the structural phase and octahedral rotation angle in halide perovskites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...</p> <p>2018-02-12</p> <p>A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5355123','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5355123"><span>Telomerase antagonist imetelstat increases radiation sensitivity in esophageal squamous cell carcinoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, Xuping; Zhang, Jing; Yang, Sijun; Kuang, Zhihui; Tan, Guolei; Yang, Gang; Wei, Qichun; Guo, Zhigang</p> <p>2017-01-01</p> <p>The morbidity and mortality of esophageal cancer is one of the highest around the world and the principal therapeutic method is radiation. Thus, searching for sensitizers with lower toxicity and higher efficiency to improve the efficacy of radiation therapy is critical essential. Our research group has previously reported that imetelstat, the thio-phosphoramidate oligonucleotide inhibitor of telomerase, can decrease cell proliferation and colony formation ability as well as increase DNA breaks induced by radiation in esophageal cancer cells. Further study in this project showed that imetelstat significantly sensitized esophageal cancer cells to radiation in vitro. Later study showed that imetelstat leads to increased cell apoptosis. We also measured the expression level of several DNA repair and apoptosis signaling proteins. pS345 CHK1, γ-H2AX, p53 and caspase3 expression were up-regulated in imetelstat treated cells, identifying these factors as molecular markers. Mouse in vivo model using imetelstat at clinically achievable concentrations and fractionated irradiation scheme yielded results demonstrating radiosensitization effect. Finally, TUNEL assay, caspase 3 and Ki67 staining in tumor tissue proved that imetelstat sensitized esophageal cancer to radiation in vivo through promoting cell apoptosis and inhibiting cell proliferation. Our study supported imetelstat increase radiation sensitivity of esophageal squamous cell carcinoma through inducing cell apoptosis and the specific inhibitor of telomerase might serve as a potential novel therapeutic tool for esophageal squamous cell carcinoma therapy. PMID:28099140</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28099140','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28099140"><span>Telomerase antagonist imetelstat increases radiation sensitivity in esophageal squamous cell carcinoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Xuping; Zhang, Jing; Yang, Sijun; Kuang, Zhihui; Tan, Guolei; Yang, Gang; Wei, Qichun; Guo, Zhigang</p> <p>2017-02-21</p> <p>The morbidity and mortality of esophageal cancer is one of the highest around the world and the principal therapeutic method is radiation. Thus, searching for sensitizers with lower toxicity and higher efficiency to improve the efficacy of radiation therapy is critical essential. Our research group has previously reported that imetelstat, the thio-phosphoramidate oligonucleotide inhibitor of telomerase, can decrease cell proliferation and colony formation ability as well as increase DNA breaks induced by radiation in esophageal cancer cells. Further study in this project showed that imetelstat significantly sensitized esophageal cancer cells to radiation in vitro. Later study showed that imetelstat leads to increased cell apoptosis. We also measured the expression level of several DNA repair and apoptosis signaling proteins. pS345 CHK1, γ-H2AX, p53 and caspase3 expression were up-regulated in imetelstat treated cells, identifying these factors as molecular markers. Mouse in vivo model using imetelstat at clinically achievable concentrations and fractionated irradiation scheme yielded results demonstrating radiosensitization effect. Finally, TUNEL assay, caspase 3 and Ki67 staining in tumor tissue proved that imetelstat sensitized esophageal cancer to radiation in vivo through promoting cell apoptosis and inhibiting cell proliferation. Our study supported imetelstat increase radiation sensitivity of esophageal squamous cell carcinoma through inducing cell apoptosis and the specific inhibitor of telomerase might serve as a potential novel therapeutic tool for esophageal squamous cell carcinoma therapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016P%26SS..125..114G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016P%26SS..125..114G"><span>The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granja, Carlos; Polansky, Stepan; Vykydal, Zdenek; Pospisil, Stanislav; Owens, Alan; Kozacek, Zdenek; Mellab, Karim; Simcak, Marek</p> <p>2016-06-01</p> <p>The Space Application of Timepix based Radiation Monitor (SATRAM) is a spacecraft platform radiation monitor on board the Proba-V satellite launched in an 820 km altitude low Earth orbit in 2013. The is a technology demonstration payload is based on the Timepix chip equipped with a 300 μm silicon sensor with signal threshold of 8 keV/pixel to low-energy X-rays and all charged particles including minimum ionizing particles. For X-rays the energy working range is 10-30 keV. Event count rates can be up to 106 cnt/(cm2 s) for detailed event-by-event analysis or over 1011 cnt/(cm2 s) for particle-counting only measurements. The single quantum sensitivity (zero-dark current noise level) combined with per-pixel spectrometry and micro-scale pattern recognition analysis of single particle tracks enables the composition (particle type) and spectral characterization (energy loss) of mixed radiation fields to be determined. Timepix's pixel granularity and particle tracking capability also provides directional sensitivity for energetic charged particles. The payload detector response operates in wide dynamic range in terms of absorbed dose starting from single particle doses in the pGy level, particle count rate up to 106-10 /cm2/s and particle energy loss (threshold at 150 eV/μm). The flight model in orbit was successfully commissioned in 2013 and has been sampling the space radiation field in the satellite environment along its orbit at a rate of several frames per minute of varying exposure time. This article describes the design and operation of SATRAM together with an overview of the response and resolving power to the mixed radiation field including summary of the principal data products (dose rate, equivalent dose rate, particle-type count rate). The preliminary evaluation of response of the embedded Timepix detector to space radiation in the satellite environment is presented together with first results in the form of a detailed visualization of the mixed radiation field at the position of the payload and resulting spatial- and time-correlated radiation maps of cumulative dose rate along the satellite orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22264004-feasibility-using-methylene-blue-sensitized-polyvinylalcohol-film-linear-polarizer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22264004-feasibility-using-methylene-blue-sensitized-polyvinylalcohol-film-linear-polarizer"><span>The feasibility of using methylene blue sensitized polyvinylalcohol film as a linear polarizer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jyothilakshmi, K.; Anju, K. S.; Arathy, K.</p> <p>2014-01-28</p> <p>Linear light polarizing films selectively transmit radiations vibrating along an electromagnetic radiation vector and selectively absorb radiations vibrating along a second electromagnetic radiation vector. It happens according to the anisotropy of the film . In the present study the polarization effects of methylene blue sensitized polyvinyl alcohol is investigated. The polarization effects on the dye concentration, heating and stretching of film also are evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004RaPC...71..137B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004RaPC...71..137B"><span>Radiosensitization: enhancing the radiation inactivation of foodborne bacteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.</p> <p>2004-09-01</p> <p>Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21276884-radiation-response-two-hpv-infected-head-neck-cancer-cell-lines-comparison-non-hpv-infected-cell-line-relationship-signaling-through-akt','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21276884-radiation-response-two-hpv-infected-head-neck-cancer-cell-lines-comparison-non-hpv-infected-cell-line-relationship-signaling-through-akt"><span>Radiation Response in Two HPV-Infected Head-and-Neck Cancer Cell Lines in Comparison to a Non-HPV-Infected Cell Line and Relationship to Signaling Through AKT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gupta, Anjali K.; Lee, John H.; Wilke, Werner W.</p> <p>2009-07-01</p> <p>Purpose: Human papilloma virus (HPV)-associated cancers of the head and neck (H and N) are increasing in frequency and are often treated with radiation. There are conflicting data in the literature regarding the radiation response in the presence of HPV infection, with some data suggesting they may be more sensitive to radiation. There are few studies looking at in vitro effects of HPV and further sensitization by inhibitors of specific signaling pathways. We are in the process of starting a clinical trial in H and N cancer patients using nelfinavir (NFV) (which inhibits Akt) and it would be important tomore » know the effect of HPV on radiation response {+-} NFV. Methods and Materials: Two naturally infected HPV-16 cell lines (UPCI-SCC90 and UMSCC47) and the HPV-negative SQ20B H and N squamous carcinoma cells were used. Western blots with or without 10 uM NFV were done to evaluate signaling from the PI3K-Akt pathway. Clonogenic assays were done in the three cell lines with or without NFV. Results: Both UPCI-SCC90 and UMSCC47 cells were sensitive to radiation as compared with SQ20B and the degree corresponded to Akt activation. The SQ20B cell line has an activating mutation in EGFR resulting in phosphorylation (P) of Akt; UMSCC47 has decreased P-phosphatase and TENsin (PTEN), resulting in increased P-Akt; UPCI-SCC90 had overexpression of P-PTEN and decreased P-Akt. NFV resulted in downregulation of Akt in all three cell lines, resulting in sensitization to radiation. Conclusions: HPV-infected H and N cancers are sensitive to radiation. The degree of sensitivity correlates to Akt activation and they can be further sensitized by NFV00.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/4099907','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/4099907"><span>Method and means for radiation dosimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Shulte, J. W.; Suttle, J. F.</p> <p>1960-10-18</p> <p>A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4103057','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4103057"><span>METHOD AND MEANS FOR RADIATION DOSIMETRY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Schulte, J.W.; Suttle, J.F.</p> <p>1960-10-11</p> <p>A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PMB....44.2955K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PMB....44.2955K"><span>Stochastic optimization of intensity modulated radiotherapy to account for uncertainties in patient sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kåver, Gereon; Lind, Bengt K.; Löf, Johan; Liander, Anders; Brahme, Anders</p> <p>1999-12-01</p> <p>The aim of the present work is to better account for the known uncertainties in radiobiological response parameters when optimizing radiation therapy. The radiation sensitivity of a specific patient is usually unknown beyond the expectation value and possibly the standard deviation that may be derived from studies on groups of patients. Instead of trying to find the treatment with the highest possible probability of a desirable outcome for a patient of average sensitivity, it is more desirable to maximize the expectation value of the probability for the desirable outcome over the possible range of variation of the radiation sensitivity of the patient. Such a stochastic optimization will also have to consider the distribution function of the radiation sensitivity and the larger steepness of the response for the individual patient. The results of stochastic optimization are also compared with simpler methods such as using biological response `margins' to account for the range of sensitivity variation. By using stochastic optimization, the absolute gain will typically be of the order of a few per cent and the relative improvement compared with non-stochastic optimization is generally less than about 10 per cent. The extent of this gain varies with the level of interpatient variability as well as with the difficulty and complexity of the case studied. Although the dose changes are rather small (<5 Gy) there is a strong desire to make treatment plans more robust, and tolerant of the likely range of variation of the radiation sensitivity of each individual patient. When more accurate predictive assays of the radiation sensitivity for each patient become available, the need to consider the range of variations can be reduced considerably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24014377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24014377"><span>Equol as a potent radiosensitizer in estrogen receptor-positive and -negative human breast cancer cell lines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taghizadeh, Bita; Ghavami, Laleh; Nikoofar, Alireza; Goliaei, Bahram</p> <p>2015-07-01</p> <p>Breast cancer is the most common cause of cancer death among women worldwide, and diet plays an important role in its prevention and progression. Radiotherapy has a limited but important role in the management of nearly every stage of breast cancer. We studied whether equol, the major metabolite of the soybean isoflavone daidzein, could enhance radiosensitivity in two human breast cancer cell lines (T47D and MDA-MB-231). MTT assay was used to examine equol's effect on cell viability. Sensitivity of cells to equol, radiation and a combination of both was determined by colonogenic assays. Induction of apoptosis by equol, radiation and the combination of both was also determined by acridine orange/ethidium bromide double staining fluorescence microscopy. DNA strand breaks were assessed by Comet assay. MTT assay showed that equol (0.1-350 μM) inhibited MDA-MB-231 and T47D cell growth in a time- and dose-dependent manner. Treatment of cells with equol for 72 h (MDA-MB-231) and 24 h (T47D) was found to inhibit cell growth with IC50 values of 252 μM and 228 μM, respectively. Furthermore, pretreatment of cells with 50 μM equol for 72 h (MDA-MB-231) and 24 h (T47D) sensitized the cells to irradiation. Equol was also found to enhance radiation-induced apoptosis. Comet assay results showed that the radiosensitizing effect of equol was accompanied by increased radiation-induced DNA damages. These results suggest for the first time that equol can be considered as a radiosensitizing agent and its effects may be due to increasing cell death following irradiation, increasing the remaining radiation-induced DNA damage and thus reducing the surviving fraction of irradiated cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29513744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29513744"><span>Acute radiation impacts contractility of guinea-pig bladder strips affecting mucosal-detrusor interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDonnell, Bronagh M; Buchanan, Paul J; Prise, Kevin M; McCloskey, Karen D</p> <p>2018-01-01</p> <p>Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1μM); subsequent addition of PPADs (100μM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1μM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/426561-nonlinear-dose-response-model-repair-repair-suppression','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/426561-nonlinear-dose-response-model-repair-repair-suppression"><span>Nonlinear dose response model with repair and repair suppression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leonard, B.E.</p> <p>1996-12-31</p> <p>In March 1996, the Health Physics Society issued a position statement supporting a nonlinear threshold (NLT) concept for radiation risk at low-dose/low-dose-rate (LD/LDR) levels. This action was after receipt of an overwhelming consensus from world-renown radiobiologists and is contrary to the opinions of the United Nations Scientific Committee on Effects of Atomic Radiation, the National Research Council Committee on the Biological Effects of Ionizing Radiations, and U.S. Environmental Protection Agency. Alvarez and others have called for a new NLT model for radiation risk. Two mathematical models have historically been used to describe cell survival experimental results. Each provides the abilitymore » to account for the shoulder observed in cell survival curves, predominantly for low-linear energy transfer (LET) radiation, and the wide variation in radio sensitivity of cell species and particular phase of the mitotic cycle. Only Kellerer and Rossi, Elkind and Whitmore, and Green and Burki have proposed modified models explicitly incorporating radiobiological repair and departing from LNT. None of these were subsequently used with any extent of success in cell survival analysis. The author reports initial work on a program to reexamine radiobiology research exhibiting repair processes at LD/LDR levels.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1047988','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1047988"><span>Positioning Vascularized Composite Allotransplantation in the Spectrum of Transplantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-10-01</p> <p>have now shown that the efficacy of both protocols is dependent upon a radiation-sensitive donor bone marrow (BM) cell type that is of T or B cell... dependent VCA survival. IL-2C Therapy Increases the Number but Not Function of Foxp3 CD4+ Treg Cells To test the effects of JES6-1 mAb-based IL-2C...which Treg cell- dependent immunoregulation has considerable potential. These IL-2C studies are now “in press” (4). TASK 5: OPTIMAL COMBINATION</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT.......329M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT.......329M"><span>The radiation response of human dermal fibroblasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, Stephen Andrew</p> <p></p> <p>A clinically reliable predictive assay based on normal-tissue radiosensitivity may lead to improved tumour control through individualised dose prescriptions. In-vitro fibroblast radiosensitivity has been shown, in several studies, to correlate with late radiation morbidity. The aim of this study was to investigate some of the cellular mechanisms underlying the normal-tissue response. In this study, seventeen primary fibroblast strains were established by enzymatic disaggregation of skin biopsies obtained from patients. These comprised seven who experienced acute tissue reactions to radiotherapy, four patients with a normal response and six non-cancer volunteers. An AT cell line was included as a positive control for radiosensitivity. In-vitro radiosensitivity was measured using a clonogenic assay at both high (HDR: 1.6 Gymin-1) and low dose rate (LDR: 0.01 Gymin-1). The radiation parameter HDR SF2 was the most sensitive in discriminating the seven sensitive patients from the remaining ten normal patients (range 0.11-0.19 sensitive patients compared with 0.17-0.34 control patients: p<0.0001). Neither the use of an internal control or LDR radiation protocol increased this discrimination. Pulsed-field gel electrophoresis (PFGE) was used to measure the level of initial and residual double-strand breaks following irradiation. No correlation was found between HDR SF2 and initial DNA damage. However, a strong correlation was found between clonogenic survival and both residual DNA damage (measured over 10-70 Gy, allowing 4 h repair, correlation coefficient: 0.90, <0.0001) and the ratio of residual/initial DNA damage, with the sensitive cell lines generally showing a higher level of residual DNA damage. Cell-cycle delays were found in all 18 cell strains in response to 2 Gy irradiation, but were not found to discriminate between sensitive and normal patients. Associated studies found no mutations of the ATM gene in the five radiosensitive patients studied. However, a coding sequence alteration was found in the XRCC1 gene in one of the radiosensitive patients. These findings indicate that a DNA repair defect may be partly responsible for the extreme reactions to radiotherapy observed in a small percentage of patients and that with further modifications, an assay based on measurement of residual DNA damage may form the basis of a predictive test for radiosensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/46130-design-solution-increasing-sensitivity-pmos-dosimeters-stacked-radfet-approach','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/46130-design-solution-increasing-sensitivity-pmos-dosimeters-stacked-radfet-approach"><span>A design solution to increasing the sensitivity of pMOS dosimeters: The stacked RADFET approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kelleher, A.; Lane, W.; Adams, L.</p> <p>1995-02-01</p> <p>pMOS Radiation Sensitive Field Effect Transistors (RADFET`S) have applications as integrating dosimeters in laboratories and medicine to measure the amount of radiation dose absorbed. The suitability of these dosimeters to a certain application depends on the sensitivity of the RADFET being used. To date, this sensitivity is limited to the sensitivity of the gate oxide to radiation. The aim of this paper is to introduce a new design approach which will allow greater sensitivities to be achieved than is currently possible. An additional attractive feature of this design approach is that the sensitivity of the dosimeter may be changed dependingmore » on the total dose which is to be measured; essentially a dosimeter with auto-scaling may be achieved. This study introduces this autoscaling concept along with presenting the optimum RADFET device requirements which are necessary for this new design approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2882712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2882712"><span>Sensitivity of Salivary Glands to Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grundmann, O.; Mitchell, G.C.; Limesand, K.H.</p> <p>2009-01-01</p> <p>Radiation therapy for head and neck cancer causes significant secondary side-effects in normal salivary glands, resulting in diminished quality of life for these individuals. Salivary glands are exquisitely sensitive to radiation and display acute and chronic responses to radiotherapy. This review will discuss clinical implications of radiosensitivity in normal salivary glands, compare animal models used to investigate radiation-induced salivary gland damage, address therapeutic advances, and project future directions in the field. PMID:19783796</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20850325-radiosensitization-head-neck-sqaumous-cell-carcinoma-adenovirus-mediated-expression-nbs1-protein','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20850325-radiosensitization-head-neck-sqaumous-cell-carcinoma-adenovirus-mediated-expression-nbs1-protein"><span>Radiosensitization of head/neck sqaumous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rhee, Juong G.; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Li, Daqing</p> <p>2007-01-01</p> <p>Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome, show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. Experimental Procedures: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1 into anmore » adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line JHU011. These cells were evaluated for expression of the viral based constructs and assayed for clonogenic survival following radiation exposure. Results: Exposure of cells expressing Nbs1-300 to ionizing radiation resulted in a small reduction in survival relative to cells infected with control virus. Surprisingly, expression of full-length Nbs1 protein resulted in markedly enhanced sensitivity to ionizing radiation. Furthermore, the use of a fractionated radiation scheme following virus infection demonstrates that expression of full-length Nbs1 protein results in significant reduction in cell survival. Conclusions: These results provide a proof of principle that disruption of Nbs1 function may provide a means of enhancing the radiosensitivity of head and neck tumors. Additionally, this work highlights the Mre11 complex as an attractive target for development of radiation sensitizers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=92009','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=92009"><span>Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria†</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.</p> <p>2000-01-01</p> <p>The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..95h3515B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..95h3515B"><span>Cyclic mixmaster universes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrow, John D.; Ganguly, Chandrima</p> <p>2017-04-01</p> <p>We investigate the behavior of bouncing Bianchi type IX "mixmaster" universes in general relativity. This generalizes all previous studies of the cyclic behavior of closed spatially homogeneous universes with and without an entropy increase. We determine the behavior of models containing radiation by analytic and numerical integration and show that an increase of radiation entropy leads to an increasing cycle size and duration. We introduce a null energy condition violating ghost field to create a smooth, nonsingular bounce of finite size at the end of each cycle and compute the evolution through many cycles with and without an entropy increase injected at the start of each cycle. In the presence of increasing entropy, we find that the cycles grow larger and longer and the dynamics approach flatness, as in the isotropic case. However, successive cycles become increasingly anisotropic at the expansion maxima which is dominated by the general-relativistic effects of anisotropic 3-curvature. When the dynamics are significantly anisotropic, the 3-curvature is negative. However, it becomes positive after continued expansion drives the dynamics close enough to isotropy for the curvature to become positive and for gravitational collapse to ensue. In the presence of a positive cosmological constant, radiation, and a ghost field, we show that, for a very wide range of cosmological constant values, the growing oscillations always cease and the dynamics subsequently approach those of the isotropic de Sitter universe at late times. This model is not included in the scope of earlier cosmic no-hair theorems because the 3-curvature can be positive. In the case of a negative cosmological constant, radiation, and an ultrastiff field (to create nonsingular bounces), we show that a sequence of chaotic oscillations also occurs, with sensitive dependence on initial conditions. In all cases, we follow the oscillatory evolution of the scale factors, the shear, and the 3-curvature from cycle to cycle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3888458','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3888458"><span>Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang</p> <p>2014-01-01</p> <p>Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times. PMID:24387490</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22250951-onboard-functional-molecular-imaging-design-investigation-robotic-multipinhole-spect','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22250951-onboard-functional-molecular-imaging-design-investigation-robotic-multipinhole-spect"><span>Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang</p> <p>2014-01-15</p> <p>Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinholemore » SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4750771-vitro-detection-characteristic-differences-radiation-sensitivity-female-genital-cancers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4750771-vitro-detection-characteristic-differences-radiation-sensitivity-female-genital-cancers"><span>In Vitro Detection of Characteristic Differences in Radiation Sensitivity of Female Genital Cancers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>LUDOVICI, PETER P.; MILLER, NORMAN F.</p> <p>1962-01-01</p> <p>BS>By a standardized assay technic in which cell monolayers were irradiated at different dose levels (100 to 1200 r) on the 4th culture day and cell counts carried out 4 days later, the radiation sensitivities of 37 cell strains, derived from female patients with various genital cancers and from normal individuals, were assessed. These 37 cell strains had certain patterns of radiation sensitivity which, in general, appear to be consistent with the generally accepted radiosensitivity of the tumors from which the cell strains arose. Cell strains from squamous-cell carcinomas of the cervix as a group were at least twice asmore » sensitive as those from other squamous-cell carcinomas of the female genital tract. Cell strains derived from carcinomas of the ovary, vagina, and vulva were almost equally resistant to radiation. As expected, cell strains derived from benign tissues were the most highly resistant to radiation, normal fibroblastic strains being more resistant than normal epithelial strains. (H.H.D.)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770028139&hterms=sunburn&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsunburn','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770028139&hterms=sunburn&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsunburn"><span>Average latitudinal variation in ultraviolet radiation at the earth's surface. [biological sensitivity and dosage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, F. S.; Mo, T.; Green, A. E. S.</p> <p>1976-01-01</p> <p>Tabulated values are presented for ultraviolet radiation at the earth's surface as a function of wavelength, latitude, and season, for clear sky and seasonally and latitudinally averaged ozone amounts. These tabulations can be combined with any biological sensitivity function in order to obtain the seasonal and latitudinal variation of the corresponding effective doses. The integrated dosages, based on the erythemal sensitivity curve and on the Robertson-Berger sunburn-meter sensitivity curve, have also been calculated, and these are found to vary with latitude and season in very nearly the same way as 307 and 314 nm radiation, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780018604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780018604"><span>Variation of solar cell sensitivity and solar radiation on tilted surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klucher, T. M.</p> <p>1978-01-01</p> <p>The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438791-positive-tropical-marine-low-cloud-cover-feedback-inferred-from-cloud-controlling-factors','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438791-positive-tropical-marine-low-cloud-cover-feedback-inferred-from-cloud-controlling-factors"><span>Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Qu, Xin; Hall, Alex; Klein, Stephen A.; ...</p> <p>2015-09-28</p> <p>Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020027885','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020027885"><span>Impact of Albedo Contrast Between Cirrus and Boundary-Layer Clouds on Climate Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Ming-Dah; Lindzen, R. S.; Hou, A. Y.; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p>In assessing the iris effect suggested by Lindzen et al. (2001), Fu et al. (2001) found that the response of high-level clouds to the sea surface temperature had an effect of reducing the climate sensitivity to external radiative forcing, but the effect was not as strong as LCH found. This weaker reduction in climate sensitivity was due to the smaller contrasts in albedos and effective emitting temperatures between cirrus clouds and the neighboring regions. FBH specified the albedos and the outgoing longwave radiation (OLR) in the LCH 3.5-box radiative-convective model by requiring that the model radiation budgets at the top of the atmosphere be consistent with that inferred from the Earth Radiation Budget Experiment (ERBE). In point of fact, the constraint by radiation budgets alone is not sufficient for deriving the correct contrast in radiation properties between cirrus clouds and the neighboring regions, and the approach of FBH to specifying those properties is, we feel inappropriate for assessing the iris effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27318765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27318765"><span>Performance of magnetic resonance imaging in the evaluation of first-time and reoperative primary hyperparathyroidism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kluijfhout, Wouter P; Venkatesh, Shriya; Beninato, Toni; Vriens, Menno R; Duh, Quan-Yang; Wilson, David M; Hope, Thomas A; Suh, Insoo</p> <p>2016-09-01</p> <p>Preoperative imaging in patients with primary hyperparathyroidism and a previous parathyroid operation is essential; however, performance of conventional imaging is poor in this subgroup. Magnetic resonance imaging appears to be a good alternative, though overall evidence remains scarce. We retrospectively investigated the performance of magnetic resonance imaging in patients with and without a previous parathyroid operation, with a separate comparison for dynamic gadolinium-enhanced magnetic resonance imaging. All patients undergoing magnetic resonance imaging prior to parathyroidectomy for primary hyperparathyroidism (first time or recurrent) between January 2000 and August 2015 at a high-volume, tertiary care, referral center for endocrine operations were included. We compared the sensitivity and positive predictive value of magnetic resonance imaging with conventional ultrasound and sestamibi on a per-lesion level. A total of 3,450 patients underwent parathyroidectomy, of which 84 patients with recurrent (n = 10) or persistent (n = 74) disease and 41 patients with a primary operation were included. Magnetic resonance imaging had a sensitivity and positive predictive value of 79.9% and 84.7%, respectively, and performance was good in both patients with and without a previous parathyroid operation. Adding magnetic resonance imaging to the combination of ultrasound and sestamibi resulted in a significant increase in sensitivity from 75.2% to 91.5%. Dynamic magnetic resonance imaging produced excellent results in the reoperative group, with sensitivity and a positive predictive value of 90.1%. Technologic advances have enabled faster and more accurate magnetic resonance imaging protocols, making magnetic resonance imaging an excellent alternative modality without associated ionizing radiation. Our study shows that the sensitivity of multimodality imaging for parathyroid adenomas improved significantly with the use of conventional and dynamic magnetic resonance imaging, even in the case of recurrent or persistent disease. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.6379H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.6379H"><span>Sensitivity of inorganic aerosol radiative effects to U.S. emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holt, J. I.; Solomon, S.; Selin, N. E.</p> <p>2017-06-01</p> <p>Between 2005 and 2012, U.S. emissions of nitrogen oxides (NOx) and sulfur dioxide (SO2) decreased by 42% and 62%, respectively. These species, as well as ammonia (NH3), are precursors of inorganic fine aerosols, which scatter incoming shortwave radiation and thus affect climate. Scaling aerosol concentrations to emissions, as might be done for near-term climate projections, neglects nonlinear chemical interactions. To estimate the magnitude of these nonlinearities, we conduct a suite of simulations with a chemical transport model and an off-line radiative transfer model. We find that the direct radiative effect (DRE) over the North American domain decreases by 59 and 160 mW m-2 in winter and summer, respectively, between 2005 and 2012. The sensitivities of DRE to NOx and SO2 emissions increase, by 11% and 21% in summer, while sensitivity to NH3 emissions decreases. The wintertime sensitivity of DRE to NOx emissions is small in 2005 but is 5 times as large in 2012. Scaling radiative effects from 2005 to 2012 based on 2005 sensitivities overestimates the magnitude of the DRE of 7% and 6% of the U.S. attributable DRE in January and July, respectively. The difference between the changes in DRE and the changes in sensitivity suggests that scaling to SO2 emissions alone has so far been an accurate approximation, but it may not be in the near future. These values represent the level of accuracy that can be expected in adjusting aerosol radiative effects in climate models without chemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=low+AND+emissivity&id=EJ1030465','ERIC'); return false;" href="https://eric.ed.gov/?q=low+AND+emissivity&id=EJ1030465"><span>The Visualization of Infrared Radiation Using Thermal Sensitive Foils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bochnícek, Zdenek</p> <p>2013-01-01</p> <p>This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA11D..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA11D..08W"><span>Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.</p> <p>2016-12-01</p> <p>Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a larger increase in accuracy for SW cloud radiative forcing vs temperature, and from a lower confounding noise from natural variability in the cloud radiative forcing variable compared to temperature. In particular, global average temperature is much more sensitive to the climate noise of ENSO cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21783704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21783704"><span>Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu</p> <p>2006-09-01</p> <p>Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1750912','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1750912"><span>High-sensitivity detection of TNT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pushkarsky, Michael B.; Dunayevskiy, Ilya G.; Prasanna, Manu; Tsekoun, Alexei G.; Go, Rowel; Patel, C. Kumar N.</p> <p>2006-01-01</p> <p>We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over ≈400 nm around 7.3 μm and produces a maximum continuous-wave power of ≈200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-μm region to demonstrate continuous tunability of the IR source. PMID:17164325</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180002900&hterms=ECS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DECS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180002900&hterms=ECS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DECS"><span>Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.</p> <p>2018-01-01</p> <p>An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1595M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1595M"><span>Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.</p> <p>2018-02-01</p> <p>An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760052992&hterms=1092&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231092','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760052992&hterms=1092&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231092"><span>Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentration of ozone and nitrogen dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ramanathan, V.; Callis, L. B.; Boughner, R. E.</p> <p>1976-01-01</p> <p>A radiative-convective model is proposed for estimating the sensitivity of the atmospheric radiative heating rates and atmospheric and surface temperatures to perturbations in the concentration of O3 and NO2 in the stratosphere. Contribution to radiative energy transfer within the atmosphere from H2O, CO2, O3, and NO2 is considered. It is found that the net solar radiation absorbed by the earth-atmosphere system decreases with a reduction in O3; if the reduction of O3 is accompanied by an increase in NO2, there is a compensating effect due to solar absorption by NO2. The surface temperature and atmospheric temperature decrease with decreasing stratospheric O3. Another major conclusion is the strong sensitivity of surface temperature to the vertical distribution of O3 within the atmosphere. The results should be considered as reflecting the sensitivity of the proposed model rather than the sensitivity of the actual earth-atmosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29726180','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29726180"><span>[Rainfall effects on the sap flow of Hedysarum scoparium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng</p> <p>2016-03-01</p> <p>In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26382009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26382009"><span>Enhanced EJ Cell Killing of (125)I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Ling; Zhang, Chun-li; Kang, Lei; Wang, Rong-Fu; Yan, Ping; Zhao, Qian; Yin, Lei; Guo, Feng-qin</p> <p>2015-10-01</p> <p>To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by (125)I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to (125)I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to (125)I alone served as negative control and 5-FU as positive control. The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to (125)I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with (125)I was lower compared with the (125)I control group, but higher than the positive control group. The synthetic promoter E8 can induce the expression of downstream CD gene under (125)I radiation, and the tumor killing effect of (125)I can be enhanced by combining CD gene therapy with radiosensitive promoter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.967a2006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.967a2006K"><span>Evaluation of low-dose CT implementation for lung cancer screening in a general practice hospital</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karostik, D. V.; Kamyshanskaya, I. G.; Cheremisin, V. M.; Drozdov, A. A.; Vodovatov, A. V.</p> <p>2018-02-01</p> <p>The aim of the current study was to evaluate the possibility of the implementation of LDCT for the screening for lung cancer and tuberculosis in a typical general hospital practice. Diagnostic and economic effectiveness, patient doses and the corresponding radiation risks for LDCT were compared with the existing digital chest screening radiography. The results of the study indicate that the implementation of LDCT allowed verifying false-positive cases or providing additional excessive diagnostic information, but did not significantly improve the sensitivity of screening. Per capita costs for LDCT were higher compared to digital radiography up to a factor of 12; corresponding radiation risk - by a factor of 4. Hence, it was considered unjustified to implement LDCT in a general practice hospital.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16754338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16754338"><span>Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kampinga, Harm H</p> <p>2006-05-01</p> <p>Hyperthermia results in protein unfolding that, if not properly chaperoned by Heat Shock Proteins (HSP), can lead to irreversible and toxic protein aggregates. Elevating HSP prior to heating makes cells thermotolerant. Hyperthermia also can enhance the sensitivity of cells to radiation and drugs. This sensitization to drugs or radiation is not directly related to altered HSP expression. However, altering HSP expression before heat and radiation or drug treatment will affect the extent of thermal sensitization because the HSP will attenuate the heat-induced protein damage that is responsible for radiation- or drug-sensitization. For thermal radiosensitization, nuclear protein damage is considered to be responsible for hyperthermic effects on DNA repair, in particular base excision repair. Hyperthermic drug sensitization can be seen for a number of anti-cancer drugs, especially of alkylating agents. Synergy between heat and drugs may arise from multiple events such as heat damage to ABC transporters (drug accumulation), intra-cellular drug detoxification pathways and repair of drug-induced DNA adducts. This may be why cells with acquired drug resistance (often multi-factorial) can be made responsive to drugs again by combining the drug treatment with heat.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29737213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29737213"><span>Pachymic Acid Sensitizes Gastric Cancer Cells to Radiation Therapy by Upregulating Bax through Hypoxia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Chunwei; Cai, Dingfang; Ma, Jun</p> <p>2018-05-08</p> <p>We have previously shown that pachymic acid (PA) inhibited tumorigenesis of gastric cancer (GC) cells. However, the exact mechanism underlying the radiation response of GC was still elusive. To evaluate the effects of PA treatment on radiation response of GC cell lines both in vitro and in vivo, a colony formation assay and xenograft mouse model were employed. Changes in Bax and HIF1[Formula: see text] expressions were assessed in GC cells following PA treatment. Luciferase reporter and chromatin immune-precipitation assays were carried out to investigate the regulation of Bax through HIF1[Formula: see text]. Stable HIF1[Formula: see text] knockdown was introduced into GC cells to further study the mechanism underlying PA-enhanced response to radiation both in vitro and in vivo. PA greatly enhanced the sensitivity of GC cells to radiation in vitro and in vivo, upregulated Bax expression and inhibited hypoxia. Bax expression was under hypoxia inhibition, and PA increased Bax expression through repressing HIF1[Formula: see text]. Stable HIF1[Formula: see text] overexpression in GC cells abolished the sensitizing effect of PA on GC cells to radiation both in vitro and in vivo. PA functions as a radiation sensitizing compound in GC. PA treatment induces the expression of pro-apoptotic factor Bax by inhibiting hypoxia/HIF1[Formula: see text], supporting the therapeutic potential of PA in radiation therapy against GC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8851E..0BN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8851E..0BN"><span>Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, Johanna; Yang, Yuan; Misra, Sumohan; Andrews, Joy C.; Cui, Yi; Toney, Michael F.</p> <p>2013-09-01</p> <p>Radiation damage is a topic typically sidestepped in formal discussions of characterization techniques utilizing ionizing radiation. Nevertheless, such damage is critical to consider when planning and performing experiments requiring large radiation doses or radiation sensitive samples. High resolution, in situ transmission X-ray microscopy of Li-ion batteries involves both large X-ray doses and radiation sensitive samples. To successfully identify changes over time solely due to an applied current, the effects of radiation damage must be identified and avoided. Although radiation damage is often significantly sample and instrument dependent, the general procedure to identify and minimize damage is transferable. Here we outline our method of determining and managing the radiation damage observed in lithium sulfur batteries during in situ X-ray imaging on the transmission X-ray microscope at Stanford Synchrotron Radiation Lightsource.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/15020908-accumulation-mn-ii-deinococcus-radiodurans-facilitates-gamma-radiation-resistance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/15020908-accumulation-mn-ii-deinococcus-radiodurans-facilitates-gamma-radiation-resistance"><span>Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Daly, Michael J.; Gaidamakova, E; Matrosova, V</p> <p>2004-11-05</p> <p>Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014466"><span>Graphene Field Effect Transistor for Radiation Detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Mary J. (Inventor); Chen, Zhihong (Inventor)</p> <p>2016-01-01</p> <p>The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26438280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26438280"><span>Insights into low-latitude cloud feedbacks from high-resolution models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bretherton, Christopher S</p> <p>2015-11-13</p> <p>Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ccr.cancer.gov/node/17538','NCI'); return false;" href="https://ccr.cancer.gov/node/17538"><span>Checkpoint Inhibitor Sensitizes Human Tumor Cells | Center for Cancer Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.cancer.gov">Cancer.gov</a></p> <p></p> <p></p> <p>One unfortunate and detrimental side effect of ionizing radiation as a treatment for cancer is the damage it imparts to normal tissue near the targeted tumor. Technology has improved radiation delivery, minimizing the volume of normal tissue in the radiation field, but has not eliminated it completely. Thus, the identification of drugs that increase the sensitivity of cancer</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4021631-effect-therapeutic-irradiation-immune-responses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4021631-effect-therapeutic-irradiation-immune-responses"><span>Effect of therapeutic irradiation on the immune responses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Slater, J.M.; Ngo, E.; Lau, B.H.S.</p> <p>1976-02-01</p> <p>The immune responses of 60 patients undergoing therapeutic irradiation were evaluated according to four anatomical sites irradiated. In vitro lymphocyte transformation tests with PHA, Con-A, and PWM and quantitative assays of IgG, IgA, and IgM were performed on blood obtained from each patient before and during therapy, and two weeks, two months, and six months after therapy. At these same testing intervals, skin tests with PPD, mumps antigen, Candida antigen, and SD-SK were performed. During irradiation, the mean values of all lymphocyte transformation tests were depressed, varying from 48 percent to 64 percent of pretreatment baseline. This depression persisted untilmore » about two months after completion of treatment. By six months, response rose to pretreatment values. When response was evaluated according to sites irradiated with all mitogens, the pelvic and pelvic plus abdominal groups showed consistently greater depression than the chest or head and neck groups. Radiation effected no significant changes in the mean values of IgG, IgA or IgM. A decrease in skin sensitivity was noted during radiation; 73 percent of the subjects responded positively before therapy while only 53 percent had at least one positive test during therapy. By two months postirradiation, 73 percent of the group clinically free of disease had positive skin tests. A comparison of clinical condition with test results is significant when one considers the 17 patients who developed metastatic disease or died from disease. The depression for all three mitogens during radiation therapy was greater for this group. Of the 17, only four had IgG levels in the normal range, and consistently fewer positive skin tests were demonstrated. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27134963','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27134963"><span>Digital Mammography in Young Women: Is a Single View Sufficient?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gossner, Johannes</p> <p>2016-03-01</p> <p>Single view mammography may be a less time consuming, more comfortable and radiation reduced alternative for young women, but there are no studies examining this approach after the implementation of digital mammography into clinical practice. Retrospective analysis of all mammographies performed in women younger than 40 years during a 24 month period. The sample consisted of 109 women with 212 examined breasts. All patients initially received standard two- view mammography. In the study setting the MLO- views were read by a single viewer and compared to a composite reference standard. In this sample 7 malignant findings were present and the review of the MLO-view detected 6 of them (85%). In patients with dense breasts 4 out of 5 malignant findings were found on the single-view (sensitivity 80%) and all 2 malignant findings were detected in patients with low breast density (sensitivity 100%). There were 7 false positive findings (3.3%). i.e. in total 8 out of 212 examined breasts were therefore misinterpreted (3.8%). Single view digital mammography detects the vast majority of malignant findings, especially in low density breast tissue and the rate of false-positive findings is within acceptable limits. Therefore this approach may be used in different scenarios (for example in increasing patient throughout in resource poor settings, reducing radiation burden in the young or in combination with ultrasound to use the strengths of both methods). More research on this topic is needed to establish its potential role in breast imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19710000332','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19710000332"><span>Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1971-01-01</p> <p>Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=249740','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=249740"><span>Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moseley, B. E. B.</p> <p>1969-01-01</p> <p>Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679246-th-ab-high-resolution-ray-induced-acoustic-computed-tomography','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679246-th-ab-high-resolution-ray-induced-acoustic-computed-tomography"><span>TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xiang, L; Tang, S; Ahmad, M</p> <p></p> <p>Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ccr.cancer.gov/news/inthejournals/mitchell','NCI'); return false;" href="https://ccr.cancer.gov/news/inthejournals/mitchell"><span>Checkpoint Inhibitor Sensitizes Human Tumor Cells | Center for Cancer Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.cancer.gov">Cancer.gov</a></p> <p></p> <p></p> <p>One unfortunate and detrimental side effect of ionizing radiation as a treatment for cancer is the damage it imparts to normal tissue near the targeted tumor. Technology has improved radiation delivery, minimizing the volume of normal tissue in the radiation field, but has not eliminated it completely. Thus, the identification of drugs that increase the sensitivity of cancer cells to radiation while sparing normal cells would go a long way toward improving patient quality of life and outcome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23092554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23092554"><span>Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bladen, Catherine L; Kozlowski, David J; Dynan, William S</p> <p>2012-11-01</p> <p>Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as by-products of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0-1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27125639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27125639"><span>In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barazzuol, Lara; Jeggo, Penny A</p> <p>2016-08-01</p> <p>The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6352228-radiation-exposure-reduction-use-kevlar-cassettes-neonatal-nursery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6352228-radiation-exposure-reduction-use-kevlar-cassettes-neonatal-nursery"><span>Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Herman, M.W.; Mak, H.K.; Lachman, R.S.</p> <p>1987-05-01</p> <p>A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3495126','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3495126"><span>Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herman, M W; Mak, H K; Lachman, R S</p> <p>1987-05-01</p> <p>A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.407..180F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.407..180F"><span>Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.</p> <p>2017-09-01</p> <p>The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10426E..0IJ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10426E..0IJ"><span>The effect of precipitation on measuring sea surface salinity from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang</p> <p>2017-10-01</p> <p>The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22124386','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22124386"><span>Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Hojun; Wilson, Stephanie R</p> <p>2011-12-01</p> <p>The objective of the study was to determine the performance of Acoustic Radiation Force Impulse (ARFI) imaging to differentiate benign from malignant liver masses, both of hepatocellular origin and metastases, by quantification of their stiffness. This study has institutional review board approval and informed consent. Eighty-nine patients (42 female and 47 male patients) with 105 liver masses had ARFI evaluation on ultrasound, S2000 (Siemens, Mountain View, Calif). Mean age of the patients was 53.67 years (range, 27-83 years). Mean diameter of the masses was 2.77 cm (range, 1.0-13.0 cm). Final diagnoses, confirmed by imaging on contrast-enhanced computed tomography, magnetic resonance, or ultrasound or biopsy, include hepatocellular carcinoma (n = 28), metastasis (n = 13), hemangioma (n = 35), focal nodular hyperplasia (n = 15), focal fat sparing (n = 8), focal fat deposit (n = 4), and adenoma (n = 2). Receiver operating characteristic analysis was performed to evaluate the diagnostic accuracy of the ARFI measurement and to extract the optimal cutoff values in the differentiation of benign from malignant disease. Acoustic Radiation Force Impulse values showed a statistically significant difference between benign (1.73 [SD, 0.8] m/sec) and malignant masses (2.57 [SD, 1.01] m/sec) (P < 0.001). However, the area under the receiver operating characteristic curve was 0.744, suggesting only fair accuracy. For differentiation of malignant from benign masses, the sensitivity, specificity, positive predictive value, and negative predictive value were 68% (28/41), 69% (44/64), 58% (28/48), and 77% (44/57), respectively, when 1.9 m/sec was chosen as a cutoff value, reflective of a wide variation of ARFI values in each diagnosis. For differentiation of metastasis from benign masses, sensitivity, specificity, positive predictive value, and NPV were 69% (9/13), 89% (57/64), 56% (9/16), and 93% (57/61), respectively, when 2.72 m/sec was chosen as a cutoff value. Acoustic Radiation Force Impulse measurement may be helpful to differentiate benign masses from metastases, in particular. Otherwise, ARFI measurements alone do not differentiate benign and malignant masses because of variations in stiffness of all types of masses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9662E..2WC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9662E..2WC"><span>On line separation of overlapped signals from multi-time photons for the GEM-based detection system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czarski, T.; Pozniak, K. T.; Chernyshova, M.; Malinowski, K.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.</p> <p>2015-09-01</p> <p>The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas. Multi-channel measurement system and serial data acquisition for X-ray energy and position recognition is described. Fundamental characteristics are presented for two dimensional detector structure. Typical signals of ADC - Analog to Digital Converter are considered for charge value and position estimation. Coinciding signals for high flux radiation cause the problem for cluster charge identification. The amplifier with shaper determines time characteristics and limits the pulses frequency. Separation of coincided signals was introduced and verified for simulation experiments. On line separation of overlapped signals was implemented applying the FPGA technology with relatively simple firmware procedure. Representative results for reconstruction of coinciding signals are demonstrated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17321671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17321671"><span>Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scarlatti, Francesca; Sala, Giusy; Ricci, Clara; Maioli, Claudio; Milani, Franco; Minella, Marco; Botturi, Marco; Ghidoni, Riccardo</p> <p>2007-08-08</p> <p>Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910021323','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910021323"><span>The effect of clouds on the earth's radiation budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ziskin, Daniel; Strobel, Darrell F.</p> <p>1991-01-01</p> <p>The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.798a2148K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.798a2148K"><span>Characteristics of detectors for prevention of nuclear radiation terrorism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.</p> <p>2017-01-01</p> <p>There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900038465&hterms=Inverter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DInverter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900038465&hterms=Inverter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DInverter"><span>Radiation dependence of inverter propagation delay from timing sampler measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.</p> <p>1989-01-01</p> <p>A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22545284-su-characteristics-fiber-optic-radiation-sensor-proton-therapeutic-beam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22545284-su-characteristics-fiber-optic-radiation-sensor-proton-therapeutic-beam"><span>SU-E-T-159: Characteristics of Fiber-Optic Radiation Sensor for Proton Therapeutic Beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Son, J; Kim, M; Hwang, U</p> <p></p> <p>Purpose: A fiber-optic radiation sensor using Cerenkov radiation has been widely studied for use as a dosimeter for proton therapeutic beam. Although the fiber-optic radiation sensor has already been investigated for proton therapeutic, it has been examined relatively little work for clinical therapeutic proton beams. In this study, we evaluated characteristics of a fiber-optic radiation sensor for clinical therapeutic proton beams. We experimentally evaluated dose-rate dependence, dose response and energy dependence for the proton beam. Methods: A fiber-optic radiation sensor was placed in a water phantom. Beams with energies of low, middle and high were used in the passively-scattered protonmore » therapeutic beam at the National Cancer Center in Korea. The sensor consists of two plastic optical fibers (POF). A reference POF and 2 cm longer POF were used to utilize the subtraction method for having sensitive volume. Each POF is optically coupled to the Multi-Anode Photo Multiplier Tube (MAPMT) and the MAPMT signals are processed using National Instruments Data Acquisition System (NI-DAQ). We were investigated dosimetric properties including dose-rate dependence, dose response and energy dependence. Results: We have successfully evaluated characteristics of a fiber optic radiation sensor using Cerenkov radiation. The fiber-optic radiation sensor showed the dose response linearity and low energy dependence. In addition, as the dose-rate was increased, Cerenkov radiation increased linearly. Conclusion: We evaluated the basic characteristics of the fiber optic radiation sensor, the dosimetry tool, to raise the quality of proton therapy. Based on the research, we developed a real time dosimetry system of the optic fiber to confirm the real time beam position and energy for therapeutic proton pencil beam.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28852312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28852312"><span>Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming</p> <p>2017-08-14</p> <p>To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25684498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25684498"><span>Parecoxib: an enhancer of radiation therapy for colorectal cancer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiong, Wei; Li, Wen-Hui; Jiang, Yong-Xin; Liu, Shan; Ai, Yi-Qin; Liu, Rong; Chang, Li; Zhang, Ming; Wang, Xiao-Li; Bai, Han; Wang, Hong; Zheng, Rui; Tan, Jing</p> <p>2015-01-01</p> <p>To study the effect of parecoxib, a novel cyclooxygenase-2 selective inhibitor, on the radiation response of colorectal cancer (CRC) cells and its underlying mechanisms. Both in vitro colony formation and apoptosis assays as well as in vivo mouse xenograft experiments were used to explore the radiosensitizing effects of parecoxib in human HCT116 and HT29 CRC cells. Parecoxib sensitized CRC cells to radiation in vitro with a sensitivity enhancement ratio of 1.32 for HCT116 cells and 1.15 for HT29 cells at a surviving fraction of 0.37. This effect was partially attributable to enhanced apoptosis induction by parecoxib combined with radiation, as illustrated using an in vitro apoptosis assays. Parecoxib augmented the tumor response of HCT116 xenografts to radiation, achieving growth delay more than 20 days and an enhancement factor of 1.53. In accordance with the in vitro results, parecoxib combined with radiation resulted in less proliferation and more apoptosis in tumors than radiation alone. Radiation monotherapy decreased microvessel density (MVD) and microvessel intensity (MVI), but increased the hypoxia level in xenografts. Parecoxib did not affect MVD, but it increased MVI and attenuated hypoxia. Parecoxib can effectively enhance radiation sensitivity in CRC cells through direct effects on tumor cells and indirect effects on tumor vasculature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000HMR....54...47B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000HMR....54...47B"><span>Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bischof, K.; Kräbs, G.; Hanelt, D.; Wiencke, C.</p> <p>2000-05-01</p> <p>Chondrus crispus and Mastocarpus stellatus both inhabit the intertidal and upper sublittoral zone of Helgoland, but with C. crispus generally taking a lower position. Measurements of chlorophyll fluorescence, activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and content and composition of UV absorbing mycosporine-like amino acids (MAAs) were conducted in the laboratory, to test whether susceptibility to UV radiation may play a role in the vertical distribution of these two species. Effective and maximal quantum yield of photochemistry as well as maximal electron transport rate (ETRmax) in C. crispus were more strongly affected by UV-B radiation than in M. stellatus. In both species, no negative effects of the respective radiation conditions were found on total activity of RubisCO. Total MAA content in M. stellatus was up to 6-fold higher than in C. crispus and the composition of MAAs in the two species was different. The results indicate that, among others, UV-B sensitivity may be a factor restricting C. crispus to the lower intertidal and upper sublittoral zone, whereas M. stellatus is better adapted to UV radiation and is therefore more competitive in the upper intertidal zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22489128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22489128"><span>Gamma radiation induced oxidation and tocopherols decrease in in-shell, peeled and blanched peanuts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; de Alencar, Severino Matias; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin</p> <p>2012-01-01</p> <p>In-shell, peeled and blanched peanut samples were characterized in relation to proximate composition and fatty acid profile. No difference was found in relation to its proximate composition. The three major fatty acids were palmitic acid, oleic acid, and linoleic acid. In order to investigate irradiation and storage effects, peanut samples were submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and monitored every three months. Peanuts responded differently to irradiation, particularly with regards to tocopherol contents, primary and secondary oxidation products and oil stability index. Induction periods and tocopherol contents were negatively correlated with irradiation doses and decreased moderately during storage. α-Tocopherol was the most gamma radiation sensitive and peeled samples were the most affected. A positive correlation was found among tocopherol contents and the induction period of the oils extracted from irradiated samples. Gamma radiation and storage time increased oxidation compounds production. If gamma radiation is considered an alternative for industrial scale peanut conservation, in-shell samples are the best feedstock. For the best of our knowledge this is the first article with such results; this way it may be helpful as basis for future studies on gamma radiation of in-shell crops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3317690','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3317690"><span>Gamma Radiation Induced Oxidation and Tocopherols Decrease in In-Shell, Peeled and Blanched Peanuts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; de Alencar, Severino Matias; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin</p> <p>2012-01-01</p> <p>In-shell, peeled and blanched peanut samples were characterized in relation to proximate composition and fatty acid profile. No difference was found in relation to its proximate composition. The three major fatty acids were palmitic acid, oleic acid, and linoleic acid. In order to investigate irradiation and storage effects, peanut samples were submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and monitored every three months. Peanuts responded differently to irradiation, particularly with regards to tocopherol contents, primary and secondary oxidation products and oil stability index. Induction periods and tocopherol contents were negatively correlated with irradiation doses and decreased moderately during storage. α-Tocopherol was the most gamma radiation sensitive and peeled samples were the most affected. A positive correlation was found among tocopherol contents and the induction period of the oils extracted from irradiated samples. Gamma radiation and storage time increased oxidation compounds production. If gamma radiation is considered an alternative for industrial scale peanut conservation, in-shell samples are the best feedstock. For the best of our knowledge this is the first article with such results; this way it may be helpful as basis for future studies on gamma radiation of in-shell crops. PMID:22489128</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4873219','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4873219"><span>Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng</p> <p>2016-01-01</p> <p>Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28273736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28273736"><span>A multi-reader in vitro study using porcine kidneys to determine the impact of integrated circuit detectors and iterative reconstruction on the detection accuracy, size measurement, and radiation dose for small (<4 mm) renal stones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wells, Michael L; Froemming, Adam T; Kawashima, Akira; Vrtiska, Terri J; Kim, Bohyun; Hartman, Robert P; Holmes, David R; Carter, Rickey E; Bartley, Adam C; Leng, Shuai; McCollough, Cynthia H; Fletcher, Joel G</p> <p>2017-08-01</p> <p>Background Detection of small renal calculi has benefitted from recent advances in computed tomography (CT) scanner design. Information regarding observer performance when using state-of-the-art CT scanners for this application is needed. Purpose To assess observer performance and the impact of radiation dose for detection and size measurement of <4 mm renal stones using CT with integrated circuit detectors and iterative reconstruction. Material and Methods Twenty-nine <4 mm calcium oxalate stones were randomly placed in 20 porcine kidneys in an anthropomorphic phantom. Four radiologists used a workstation to record each calculus detection and size. JAFROC Figure of Merit (FOM), sensitivity, false positive detections, and calculus size were calculated. Results Mean calculus size was 2.2 ± 0.7 mm. The CTDI vol values corresponding to the automatic exposure control settings of 160, 80, 40, 25, and 10 Quality Reference mAs (QRM) were 15.2, 7.9, 4.2, 2.7, and 1.3 mGy, respectively. JAFROC FOM was ≥ 0.97 at ≥ 80 QRM, ≥ 0.89 at ≥ 25 QRM, and was inferior to routine dose (160 QRM) at 10 QRM (0.72, P < 0.05). Per-calculus sensitivity remained ≥ 85% for every reader at ≥ 25 QRM. Mean total false positive detections per reader were ≤ 3 at ≥ 80 QRM, but increased substantially for two readers ( ≥ 12) at ≤ 40 QRM. Measured calculus size significantly decreased at ≤ 25 QRM ( P ≤ 0.01). Conclusion Using low dose renal CT with iterative reconstruction and ≥ 25 QRM results in high sensitivity, but false positive detections increase for some readers at very low dose levels (≤ 40 QRM). At very low doses with iterative reconstruction, measured calculus size will artifactually decrease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27842046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27842046"><span>Brain white matter changes associated with urological chronic pelvic pain syndrome: multisite neuroimaging from a MAPP case-control study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Lejian; Kutch, Jason J; Ellingson, Benjamin M; Martucci, Katherine T; Harris, Richard E; Clauw, Daniel J; Mackey, Sean; Mayer, Emeran A; Schaeffer, Anthony J; Apkarian, A Vania; Farmer, Melissa A</p> <p>2016-12-01</p> <p>Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPSs) in men and women have focused on end organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multisite investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared with positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data were collected from participants with UCPPS (n = 52), IBS (n = 39), and healthy sex- and age-matched controls (n = 61). White matter microstructure, measured as fractional anisotropy (FA), was examined by diffusion tensor imaging. Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished patients with IBS from those with UCPPS and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5117992','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5117992"><span>Brain white matter changes associated with urological chronic pelvic pain syndrome: Multi-site neuroimaging from a MAPP case-control study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Lejian; Kutch, Jason J.; Ellingson, Benjamin M.; Martucci, Katherine T.; Harris, Richard E.; Clauw, Daniel J.; Mackey, Sean; Mayer, Emeran A.; Schaeffer, Anthony J.; Apkarian, A. Vania; Farmer, Melissa A.</p> <p>2016-01-01</p> <p>Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPS) in men and women has focused on end-organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multi-site investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared to positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data was collected from participants with UCPPS (n=52), IBS (n=39), and healthy, sex- and age-matched controls (n=61). White matter microstructure, measured as fractional anisotropy (FA), was examined with diffusion tensor imaging (DTI). Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished IBS from UCPPS patients and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development. PMID:27842046</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7571','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7571"><span>Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.</p> <p></p> <p>Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additionalmore » microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25385628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25385628"><span>Shortwave and longwave radiative contributions to global warming under increasing CO2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S</p> <p>2014-11-25</p> <p>In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1193624','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1193624"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller, James Christopher; Rennie, John Alan; Toevs, James Waldo</p> <p></p> <p>The introduction points out that radiation backgrounds fluctuate across very short distances: factors include geology, soil composition, altitude, building structures, topography, and other manmade structures; and asphalt and concrete can vary significantly over short distances. Brief descriptions are given of the detection system, experimental setup, and background variation measurements. It is concluded that positive and negative gradients can greatly reduce the detection sensitivity of an MDS: negative gradients create opportunities for false negatives (nondetection), and positive gradients create a potentially unacceptable FAR (above 1%); the location of use for mobile detection is important to understand; spectroscopic systems provide more informationmore » for screening out false alarms and may be preferred for mobile use; and mobile monitor testing at LANL accounts for expected variations in the background.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.975a2043S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.975a2043S"><span>Construction of the TH-GEM detector components for metrology of low energy ionizing radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.</p> <p>2018-03-01</p> <p>The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QuEle..46..521K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QuEle..46..521K"><span>Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korchenova, M. V.; Tuchina, E. S.; Shvayko, V. Y.; Gulkhandanyan, A. G.; Zakoyan, A. A.; Kazaryan, R. K.; Gulkhandanyan, G. V.; Dzhagarov, B. M.; Tuchin, V. V.</p> <p>2016-06-01</p> <p>We have studied the photodynamic activity of photosensitisers based on metalloporphyrins. New metalloporphyrin compounds are synthesised and characterised, the quantum yields of the singlet oxygen formation are analysed. It is shown that when the photodynamic effect is implemented using the metalloporphyrins with Zn ions and butyl radical in the 3rd and 4th positions of the pyridine ring, the number of opportunistic bacteria, such as Staphylococcus aureus (antibiotic-sensitives and antibiotic-resistant strains), Staphylococcus simulans and Escherichia coli is efficiently reduced by 90% - 99%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JInst...7C6008B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JInst...7C6008B"><span>A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.</p> <p>2012-06-01</p> <p>A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648766-pitfalls-prediction-modeling-normal-tissue-toxicity-radiation-therapy-illustration-individual-radiation-sensitivity-mammary-carcinoma-risk-factor-investigation-cohorts','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648766-pitfalls-prediction-modeling-normal-tissue-toxicity-radiation-therapy-illustration-individual-radiation-sensitivity-mammary-carcinoma-risk-factor-investigation-cohorts"><span>Pitfalls in Prediction Modeling for Normal Tissue Toxicity in Radiation Therapy: An Illustration With the Individual Radiation Sensitivity and Mammary Carcinoma Risk Factor Investigation Cohorts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mbah, Chamberlain, E-mail: chamberlain.mbah@ugent.be; Department of Mathematical Modeling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent; Thierens, Hubert</p> <p></p> <p>Purpose: To identify the main causes underlying the failure of prediction models for radiation therapy toxicity to replicate. Methods and Materials: Data were used from two German cohorts, Individual Radiation Sensitivity (ISE) (n=418) and Mammary Carcinoma Risk Factor Investigation (MARIE) (n=409), of breast cancer patients with similar characteristics and radiation therapy treatments. The toxicity endpoint chosen was telangiectasia. The LASSO (least absolute shrinkage and selection operator) logistic regression method was used to build a predictive model for a dichotomized endpoint (Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer score 0, 1, or ≥2). Internal areas undermore » the receiver operating characteristic curve (inAUCs) were calculated by a naïve approach whereby the training data (ISE) were also used for calculating the AUC. Cross-validation was also applied to calculate the AUC within the same cohort, a second type of inAUC. Internal AUCs from cross-validation were calculated within ISE and MARIE separately. Models trained on one dataset (ISE) were applied to a test dataset (MARIE) and AUCs calculated (exAUCs). Results: Internal AUCs from the naïve approach were generally larger than inAUCs from cross-validation owing to overfitting the training data. Internal AUCs from cross-validation were also generally larger than the exAUCs, reflecting heterogeneity in the predictors between cohorts. The best models with largest inAUCs from cross-validation within both cohorts had a number of common predictors: hypertension, normalized total boost, and presence of estrogen receptors. Surprisingly, the effect (coefficient in the prediction model) of hypertension on telangiectasia incidence was positive in ISE and negative in MARIE. Other predictors were also not common between the 2 cohorts, illustrating that overcoming overfitting does not solve the problem of replication failure of prediction models completely. Conclusions: Overfitting and cohort heterogeneity are the 2 main causes of replication failure of prediction models across cohorts. Cross-validation and similar techniques (eg, bootstrapping) cope with overfitting, but the development of validated predictive models for radiation therapy toxicity requires strategies that deal with cohort heterogeneity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6896R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6896R"><span>(In)sensitivity of GNSS techniques to geocenter motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rebischung, Paul; Altamimi, Zuheir; Springer, Tim</p> <p>2013-04-01</p> <p>As a satellite-based technique, GNSS should be sensitive to motions of the Earth's center of mass (CM) with respect to the Earth's crust. In theory, the weekly solutions of the IGS Analysis Centers (ACs) should indeed have the "instantaneous" CM as their origin, and the net translations between the weekly AC frames and a secular frame such as ITRF2008 should thus approximate the non-linear motion of CM with respect to the Earth's center of figure. However, the comparison of the AC translation time series with each other, with SLR geocenter estimates or with geophysical models reveals that this way of observing geocenter motion with GNSS currently gives unreliable results. The fact that the origin of the weekly AC solutions shoud be CM stems from the satellite equations of motion, in which no degree-1 Stokes coefficients are included. It is therefore reasonable to think that any mis-modeling or uncertainty about the forces acting on GNSS satellites can potentially offset the network origin from CM. That is why defects in radiation pressure modeling have long been assumed to be the main origin of the GNSS geocenter errors. In particular, Meindl et al. (2012) incriminate the correlation between the Z component of the origin and the direct radiation pressure parameters D0. We review here the sensitivity of GNSS techniques to geocenter motion from a different perspective. Our approach consists in determining the signature of a geocenter error on GNSS observations, and seeing how and how well such an error can be compensated by all other usual GNSS parameters. (In other words, we look for the linear combinations of parameters which have the maximal partial correlations with each of the 3 components of the origin, and evaluate these maximal partial correlations.) Without setting up any empirical radiation pressure parameter, we obtain maximal partial correlations of 99.98 % for all 3 components of the origin: a geocenter error can almost perfectly be absorbed by the other GNSS parameters. Satellite clock offsets, if estimated epoch-wise, especially devastate the sensitivity of GNSS to geocenter motion. The numerous station-related parameters (station positions, station clock offsets, ZWDs and horizontal tropospheric gradients) do the rest of the job. The maximal partial correlations increase a bit more when the classic "ECOM" set of 5 radiation pressure parameters is set up for each satellite. But this increase is almost fully attributable to the once-per-revolution parameters BC & BS. In particular, we do not find the direct radiation pressure parameters D0 to play a predominant role in the GNSS geocenter determination problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175789','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175789"><span>Lithium-drifted silicon detector with segmented contacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tindall, Craig S.; Luke, Paul N.</p> <p>2006-06-13</p> <p>A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6578408-behavioral-effects-microwaves-relationship-total-dose-dose-rate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6578408-behavioral-effects-microwaves-relationship-total-dose-dose-rate"><span>Behavioral effects of microwaves: relationship of total dose and dose rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>O'Connor, M.E.; Strattan, R.</p> <p>1988-10-01</p> <p>The goal of the research was to compare the relationship of whole-body averaged specific absorption rate (SAR) and specific absorption (SA) to determine whether dose rate or dose was the better predictor of biological effects. Sperm-positive Long-Evans female rats were exposed to 2450-MHz CW microwave radiation for 1-3 hours at approximately 10 W/kg. The maternal subjects were then observed for natural delivery of their litters. Sensitivity to thermally induced seizures and huddling were studied in the offspring. Analyses revealed that there were no statistically significant differences between exposed and control offspring on the behavioral indices. The behavior did not appearmore » to be affected by prenatal exposure to microwave radiation at this level. The huddle sizes became smaller as the pups aged both in exposed and control offspring.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...105.2607S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...105.2607S"><span>On the source location of radiation belt relativistic electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selesnick, R. S.; Blake, J. B.</p> <p>2000-02-01</p> <p>Observations from the High Sensitivity Telescope (HIST) on Polar made around Janurary and May 1998 are used to constrain the source location of outer radiation belt relativistic electrons. Phase space densities calculated as a function of the three adiabatic invariants show positive radial gradients for L<4, suggestive of no source in that region. In particular, the peak intensity near L=3 of a large enhancement beginning on May 4, 1998, appears to have been formed by inward transport over a period of several days. For L>4, peaks in the radial dependence of the phase space density are suggestive of a local electron source that may be nonadiabatic acceleration or pitch angle scattering. However, discrepancies in the results obtained with different magnetic field models and at different local times make this a tentative conclusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23786033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23786033"><span>[Ecological and biological characteristics of Drosophila melanogaster features depending on the dose of electromagnetic radiation of various types].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Babkina, V V; Chernova, G V; Allenova, E A; Endebera, O P; Naumkina, E N</p> <p>2013-01-01</p> <p>Biological effects of exposure to red light (lambda = 660 +/- 10 nm) on the viability and morphophysiological characteristics of Drosophila melanogaster have been studied. The ability of this physical agent to modify these features is shown. The degree of expression and impact of biological effects depend on the dose, functional and genetic status of the organism. The study of the life expectancy of the exposed to EHF and white light D. melanogaster has revealed that expression of the features depends on the radiation doses, genotype, sex, the nature of the position of wings and lighting conditions. It has been found that the dark mode (24 h-night) is more favorable than the artificial lighting. Individuals with the left wing at the top are more sensitive to the external factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960007133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960007133"><span>The effects of space radiation on flight film</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holly, Mark H.</p> <p>1995-01-01</p> <p>The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999SPIE.4059..179P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999SPIE.4059..179P"><span>Histochemical stains as promising means for the laser histochemical surgery of a number of pathologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piruzyan, L. A.; Mikhailovskiy, Ye. M.; Piruzyan, A. L.</p> <p>1999-12-01</p> <p>The directions of laboratory and clinical studies oriented to experimental confirmation of the priority concept of `laser histochemical surgery' are presented. The goal of the studies is reproduction on experimental model of a number of pathologies (in vivo and in vitro) of the `sensitization to laser radiation by staining' effect. Testing of the histochemical stains as sensitizers to laser irradiation of their `address substrates', i.e. vitally stained intracellular structures which participate in the pathologic processes evolution is under planning. The processes include: (a) metabolic disorders in the brain cells, i.e. disseminated sclerosis; (b) generalized metabolic disorders- -mucopolysaccharidosis and collagenosises (periarteritis nodosa, rheumatism, rheumatoid arthritis, sclerodermia); (3) metabolic disorders in individual organs--vessel atherosclerosis, hypercholesterolemia, myocardial infarction, cardiosclerosis, caries and parodontosis. The conditions of the studies are detailed in the recommendations along the positions: (1) disease name; (2) disease characteristics: (a) pathomorphologic, (b) biochemical; (3) stains revealing the disease signs and recommended for testing; (4) `address substrates' of the stains that are targets for laser radiation; (5) lasers recommended for the testing after the cells staining in vivo in the corresponding pathology; (6) experimental models of the pathologies suggested for the testing; (7) criteria of the stain efficiency as target sensitizer to the laser light (criteria of the `laser sensitization by staining' efficiency). Possible perspectives for the experimental clinical medicine are indicated of common histochemical stains and lasers use and of practice introduction of the `laser histochemical surgery' in the case the described concept is confirmed in experiments and clinically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867998','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867998"><span>Photodetector having high speed and sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Morse, Jeffrey D.; Mariella, Jr., Raymond P.</p> <p>1991-01-01</p> <p>The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24815473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24815473"><span>Radio-sensitization by Piper longumine of human breast adenoma MDA-MB-231 cells in vitro.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yao, Jian-Xin; Yao, Zhi-Feng; Li, Zhan-Feng; Liu, Yong-Biao</p> <p>2014-01-01</p> <p>The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose (D0), quasi-threshold dose (Dq) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM).Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA- MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4911963','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4911963"><span>COST–RISK–BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moores, B. Michael</p> <p>2016-01-01</p> <p>In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost–benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: B=V−(P+X+Y). This article presents a theoretical cost–risk–benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. PMID:26705358</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5543150-efficient-natural-defense-mechanisms-against-listeria-monocytogenes-cell-deficient-allogeneic-bone-marrow-radiation-chimeras-preactivated-macrophages-main-effector-cells-early-phase-after-bone-marrow-transfer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5543150-efficient-natural-defense-mechanisms-against-listeria-monocytogenes-cell-deficient-allogeneic-bone-marrow-radiation-chimeras-preactivated-macrophages-main-effector-cells-early-phase-after-bone-marrow-transfer"><span>Efficient natural defense mechanisms against Listeria monocytogenes in T and B cell-deficient allogeneic bone marrow radiation chimeras. Preactivated macrophages are the main effector cells in an early phase after bone marrow transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roesler, J.; Groettrup, E.B.; Baccarini, M.</p> <p>1989-09-01</p> <p>Radiation chimeras in the early phase after bone marrow transplantation are a good model to study the efficiency of the body's nonspecific defense system represented by macrophages (M phi), polymorphonuclear cells (PMN), and NK cells. These cell types are present in large numbers in spleen and liver at that time, whereas the specific immune system represented by T and B cells is functionally deficient. We previously reported enhanced activities in vitro of M phi (and PMN) from recipient animals in an early phase after allogeneic bone marrow transfer. We here demonstrate that these activities result in enhanced spontaneous resistance againstmore » Listeria monocytogenes in vivo: CFU of L. monocytogenes in spleen and liver 48 h after infection were about 1 or 2 to 4 log steps less than in untreated control mice of donor or host haplotype. This enhanced resistance decreased over the 4-mo period after marrow transfer. Preactivated M phi were identified as the most important effector cells. Isolated from spleen and peritoneal cavity, they performed enhanced killing of phagocytosed Listeria. Such preactivated M phi occurred in recipient animals after transfer of allogeneic but not of syngeneic bone marrow. The precise mechanism of M phi activation in the allogeneic radiation chimera in the complete absence of any detectable T cell function is not clear at present. However, these preactivated M phi display an important protective effect against L. monocytogenes: chimeras could eliminate Listeria without acquisition of positive delayed-type sensitivity when infected with 10(3) bacteria. An inoculum of 5 . 10(3) L. monocytogenes resulted either in prolonged survival compared with normal mice of the recipient haplotype or in definitive survival accompanied by a positive delayed-type sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023009','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023009"><span>A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.</p> <p>2010-01-01</p> <p>Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ACP....10.7439B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ACP....10.7439B"><span>A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.</p> <p>2010-08-01</p> <p>Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27221562','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27221562"><span>C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guggenberger, Roman; Ulbrich, Erika J; Dietrich, Tobias J; Scholz, Rosemarie; Kaelin, Pascal; Köhler, Christoph; Elsässer, Thilo; Le Corroller, Thomas; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav</p> <p>2017-02-01</p> <p>To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between к = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. • FPCT shoulder arthrography is feasible with fluoroscopy and CT in one workflow. • A 5-s FPCT protocol applies a lower radiation dose than MDCT. • A 20-s FPCT protocol is moderately sensitive for cartilage and tendon pathology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720010050','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720010050"><span>Radiation noise in a high sensitivity star sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, J. B.; Gordon, E.</p> <p>1972-01-01</p> <p>An extremely accurate attitude determination was developed for space applications. This system uses a high sensitivity star sensor in which the photomultiplier tube is subject to noise generated by space radiations. The space radiation induced noise arises from trapped electrons, solar protons and other ionizing radiations, as well as from dim star background. The solar activity and hence the electron and proton environments are predicted through the end of the twentieth century. The available data for the response of the phototube to proton, electron, gamma ray, and bremsstrahlung radiations are reviewed and new experimental data is presented. A simulation was developed which represents the characteristics of the effect of radiations on the star sensor, including the non-stationarity of the backgrounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2149371','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2149371"><span>Hypoxic cell sensitizers and heavy charged-particle radiations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chapman, J. D.; Urtasun, R. C.; Blakely, E. A.; Smith, K. C.; Tobias, C. A.</p> <p>1978-01-01</p> <p>Stationary-phase populations of Chinese hamster V-79 cells were irradiated with 250 kV X-rays and the Bragg peaks (spread to a width of 4 cm) of energetic He-, C-, Ne-, and A-ion beams produced at the 184-inch cyclotron and BEVALAC at Lawrence Berkeley Laboratory. Survival curves were generated with each radiation for cells suspended in air-saturated and nitrogen-saturated medium with and without sensitizer present. The oxygen enhancement ratios (OERs) measured for X-rays with 1mM metronidazole and 0.5 mM misonidazole were 2.0 and 1.6 respectively. The OERs without sensitizer for He-, C-, Ne-, and A-ion Bragg peaks were 2.4, 1.7, 1.6 and 1.4 respectively. For each type of radiation tested the presence of hypoxic-cell sensitizers resulted in an additional reduction in the measured OERs, indicating that these drugs should be of benefit in the radiotherapy planned with these and other high LET radiations. PMID:277223</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790057010&hterms=solar+cell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Bcell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790057010&hterms=solar+cell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D30%26Ntt%3Dsolar%2Bcell"><span>Variation of solar cell sensitivity and solar radiation on tilted surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klucher, T. M.</p> <p>1978-01-01</p> <p>An empirical study was performed (1) to evaluate the validity of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces and (2) to determine the variation of solar cell sensitivity to solar radiation over a wide range of atmospheric condition. Evaluation of the insolation data indicates that the isotropic sky model of Liu and Jordan underestimates the amount of solar radiation falling on tilted surfaces by as much as 10%. An anisotropic-clear-sky model proposed by Temps and Coulson was also evaluated and found to be deficient under cloudy conditions. A new model, formulated herein, reduced the deviations between measured and predicted insolation to less than 3%. Evaluation of solar cell sensitivity data indicates small change (2-3%) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells as done by Treble is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A21B0018F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A21B0018F"><span>Paleogeographic Controls on Climate Sensitivity and Feedback Strength and their Impacts on Snowball Earth Initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiorella, R.; Poulsen, C. J.</p> <p>2013-12-01</p> <p>The enigmatic Neoproterozoic geological record suggests the potential for a fully glaciated 'Snowball Earth.' Low-latitude continental position has been invoked as a potential Snowball Earth trigger by increasing surface albedo and decreasing atmospheric CO2 concentrations through increased silicate weathering. Herein, climate response to reduction of total solar irradiance (TSI) and CO2 concentration is tested using four different land configurations (aquaplanet, modern, Neoproterozoic, and low-latitude supercontinent) with uniform topography in the NCAR Community Atmosphere Model (CAM, version 3.1) GCM with a mixed-layer ocean. Despite a lower global mean surface albedo at 100% TSI for the aquaplanet scenario, the threshold for global glaciation decreases from 92% TSI in the aquaplanet configuration to 85% TSI with a low-latitude supercontinent. Climate sensitivity, as measured by the equilibrium temperature response to TSI and CO2 changes, varied across all four geographies at each forcing pair. The range of sensitivities observed suggests that climate feedback strengths are strongly dependent on both paleogeography and forcing. To identify the mechanisms responsible for the observed breadth in climate sensitivities, we calculate radiative kernels for four different TSI and CO2 forcing pairs in order to assess the strengths of the water vapor, albedo, lapse rate, Planck, and cloud feedbacks and how they vary with both forcing and paleogeography. Radiative kernels are calculated using an uncoupled version of the CAM3.1 radiation code and then perturbing climate fields of interest (surface albedo, specific humidity, and temperature) by a standard amount. No cloud kernels are calculated; instead, the cloud feedback is calculated by correcting the change in cloud radiative forcing to account for cloud masking. We find that paleogeography strongly controls how the water vapor and lapse rate feedbacks respond to different forcings. In particular, low latitude continents diminish the change in water vapor feedback strengths resulting from changes in forcing. Continental heating intensifies the Walker circulation, enhancing surface evaporation and moistening the marine troposphere. Additionally, dehumidification of the troposphere over large tropical continents in CAM3.1 increases direct heating by decreasing cloud cover. As a result, in the absence of potential silicate weathering feedbacks, large tropical landmasses raise the barrier to initiation of Snowball events. More generally, these simulations demonstrate the substantial influence of geography on climate sensitivity and climate feedback mechanisms, and challenge the notion that reduced continental area early in Earth history might provide a solution to the Faint Young Sun Paradox.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28250390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28250390"><span>ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia</p> <p>2014-09-11</p> <p>We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914253J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914253J"><span>Radiation efficiency during slow crack propagation: an experimental study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jestin, Camille; Lengliné, Olivier; Schmittbuhl, Jean</p> <p>2017-04-01</p> <p>Creeping faults are known to host a significant aseismic deformation. However, the observations of micro-earthquake activity related to creeping faults (e.g. San Andreas Faults, North Anatolian Fault) suggest the presence of strong lateral variabilities of the energy partitioning between radiated and fracture energies. The seismic over aseismic slip ratio is rather difficult to image over time and at depth because of observational limitations (spatial resolution, sufficiently broad band instruments, etc.). In this study, we aim to capture in great details the energy partitioning during the slow propagation of mode I fracture along a heterogeneous interface, where the toughness is strongly varying in space.We lead experiments at laboratory scale on a rock analog model (PMMA) enabling a precise monitoring of fracture pinning and depinning on local asperities in the brittle-creep regime. Indeed, optical imaging through the transparent material allows the high resolution description of the fracture front position and velocity during its propagation. At the same time, acoustic emissions are also measured by accelerometers positioned around the rupture. Combining acoustic records, measurements of the crack front position and the loading curve, we compute the total radiated energy and the fracture energy. We deduce from them the radiation efficiency, ηR, characterizing the proportion of the available energy that is radiated in form of seismic wave. We show an increase of ηR with the crack rupture speed computed for each of our experiments in the sub-critical crack propagation domain. Our experimental estimates of ηR are larger than the theoretical model proposed by Freund, stating that the radiation efficiency of crack propagation in homogeneous media is proportional to the crack velocity. Our results are demonstrated to be in agreement with existing studies which showed that the distribution of crack front velocity in a heterogeneous medium can be well described by a power-law decay function above the average fracture front speed, ⟨v⟩, and then establishing a relation of the type ηR ∝⟨v ⟩0.55. These observations suggest that the radiation efficiency in heterogeneous media is defined by a power law involving a lower exponent value than the one predicted for a homogeneous media, but is sensitive to the shape of the velocity distribution of the heterogeneous interface. Finally, when studying the case of similar events observed in natural conditions, such as seismic swarms associated to slow slip along a fault, we notice a good agreement between our results and the radiation efficiency computed for these field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29736994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29736994"><span>High-Z Sensitized Plastic Scintillators: A Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hajagos, Tibor Jacob; Liu, Chao; Cherepy, Nerine J; Pei, Qibing</p> <p>2018-05-07</p> <p>The need for affordable and reliable radiation detectors has prompted significant investment in new radiation detector materials, due to concerns about national security and nuclear nonproliferation. Plastic scintillators provide an affordable approach to large volume detectors, yet their performance for high-energy gamma radiation is severely limited by the small radiation stopping power inherent to their low atomic number. Although some sensitization attempts with organometallics were made in the 1950s to 1960s, the concomitant decrease in light yield has limited the usefulness of these sensitized detectors. Recently, with new knowledge gained during the rapid development of organic optoelectronics and nanotechnology, there has been a revived interest in the field of heavy element sensitized plastic scintillators. Here, the recent efforts on sensitized plastic scintillators are summarized. Basic scintillator physics is first reviewed. The discussion then focuses on two major thrusts in the field: sensitization with: (1) organometallics and (2) oxide and fluoride nanoparticles. The design rationales and major results are examined in detail, with existing limitations and possible future pathways discussed. Special attention is paid to the underlying energy deposition and transfer processes, as these determine the key performance metrics such as light yield and radioluminescence decay lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/88939-gamma-radiation-sensitivity-foodborne-pathogens-meat-poultry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/88939-gamma-radiation-sensitivity-foodborne-pathogens-meat-poultry"><span>Gamma radiation sensitivity of foodborne pathogens on meat and poultry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thayer, D.W.; Boyd, G.</p> <p>1994-12-31</p> <p>Several factors have been identified that may affect the responses of foodborne pathogens to ionizing radiation. Among these are the temperature and atmosphere during the process of irradiation; the medium in which the pathogen is suspended; and the genus, species, serovar, and physiological state of the organism. In addition to these factors, variations in {open_quotes}apparent{close_quotes} radiation sensitivity of bacteria may occur because of the incubation conditions and media used to estimate the number of surviving colony-forming units. Both incubation temperature and culture media frequently affect the ability of injured bacteria to recover. Because there are so many possible variables, itmore » is often difficult to compare data on the radiation sensitivity of foodborne pathogens from different studies. The objectives of the studies reported here were to compare the radiation sensitivities of Bacillus cereus on beef, beef gravy, chicken, pork, and turkey; and of Escherichia coli 0157:H7, Listeria monocytogenes, Salmonella, and Staphylococcus aureus on beef, pork, lamb, turkey breast, and turkey leg meats. Examples of the effects of serovar, irradiation temperature, growth phase, and atmosphere during irradiation were also examined.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22416303-suppression-telomere-binding-protein-tpp1-resulted-telomere-dysfunction-enhanced-radiation-sensitivity-telomerase-negative-osteosarcoma-cell-line','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22416303-suppression-telomere-binding-protein-tpp1-resulted-telomere-dysfunction-enhanced-radiation-sensitivity-telomerase-negative-osteosarcoma-cell-line"><span>Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qiang, Weiguang; Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou; Wu, Qinqin</p> <p></p> <p>Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and thatmore » overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP32A..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP32A..01D"><span>Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dyck, K. A.; Ravelo, A. C.</p> <p>2011-12-01</p> <p>How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060034079&hterms=ratio+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dratio%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060034079&hterms=ratio+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dratio%2Banalysis"><span>Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ustinov, E.</p> <p>1999-01-01</p> <p>Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPhCS.164a2064B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPhCS.164a2064B"><span>Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bero, M. A.; Abukassem, I.</p> <p>2009-05-01</p> <p>Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4286334','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4286334"><span>Effects of Low-Dose Ionizing Radiation and Menadione, an Inducer of Oxidative Stress, Alone and in Combination in a Vertebrate Embryo Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bladen, Catherine L.; Kozlowski, David J.; Dynan, William S.</p> <p>2014-01-01</p> <p>Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as byproducts of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0–1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms. PMID:23092554</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC13B0788D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC13B0788D"><span>Evaluation of additional biogeochemical impacts on mitigation pathways in an energy sytem integrated assessment model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dessens, O.</p> <p>2017-12-01</p> <p>Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this level of decarbonisation. In extreme condition (positive correlation between the 3 issues discussed) the integrated assessment model TIAM-UCL creates pathways requiring additional negative emission technologies at the end of this century to keep temperature change well below 2°C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B21G2038C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B21G2038C"><span>Assessing change in sensitivity of tropical vegetation to climate based on wavelet analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claessen, J.; Martens, B.; Verhoest, N.; Molini, A.; Miralles, D. G.</p> <p>2017-12-01</p> <p>Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. Future responses can be better understood by analysing the past using time series of different vegetation diagnostics observed from space, both in the optical and microwave domain. In this contribution, the climatic drivers (air temperature, precipitation, and incoming radiation) of these different vegetation diagnostics are analysed using a monthly global data-cube of 32 years at a 0.25° resolution. To do so, we analyse the wavelet coherence between each vegetation index and the climatic drivers of vegetation. The use of wavelet coherence allows unveiling the different response and sensitivity of the diverse vegetation indices to their climatic drivers, simultaneously in the time and frequency domains. Our results show that the wavelet-based statistics are suitable for extracting information from the different vegetation indices. Areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. At higher latitudes, the positive trends in all vegetation diagnostics agree with the hypothesis of a greening pattern, which is coherent with the increase in temperature. At the same time, substantial differences can be observed between the responses of the different vegetation indices as well. As an example, the VOD - thought to be a close proxy for vegetation water content - shows a larger sensitivity to precipitation than traditional optical indices such as the NDVI. Further, important temporal changes in the wavelet coherence between vegetation and climate are identified. For instance, the Amazonian rainforest shows an increased correspondence with precipitation dynamics, indicating positive shifts in ecosystem sensitivity to water availability, which can arguably be related to an increase in the amplitude of the seasonal cycle in rainfall. These results are in line with the expected intensification of the water cycle due to climate change and point to the complex response of the biosphere to climatic changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13C2053Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13C2053Z"><span>The radiation gas detectors with novel nanoporous converter for medical imaging applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zarei, H.; Saramad, S.</p> <p>2018-02-01</p> <p>For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1017a2008B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1017a2008B"><span>Simulation of the spatial frequency-dependent sensitivities of Acoustic Emission sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boulay, N.; Lhémery, A.; Zhang, F.</p> <p>2018-05-01</p> <p>Typical configurations of nondestructive testing by Acoustic Emission (NDT/AE) make use of multiple sensors positioned on the tested structure for detecting evolving flaws and possibly locating them by triangulation. Sensors positions must be optimized for ensuring global coverage sensitivity to AE events and minimizing their number. A simulator of NDT/AE is under development to provide help with designing testing configurations and with interpreting measurements. A global model performs sub-models simulating the various phenomena taking place at different spatial and temporal scales (crack growth, AE source and radiation, wave propagation in the structure, reception by sensors). In this context, accurate modelling of sensors behaviour must be developed. These sensors generally consist of a cylindrical piezoelectric element of radius approximately equal to its thickness, without damping and bonded to its case. Sensors themselves are bonded to the structure being tested. Here, a multiphysics finite element simulation tool is used to study the complex behaviour of AE sensor. The simulated behaviour is shown to accurately reproduce the high-amplitude measured contributions used in the AE practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JInst...8C2020F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JInst...8C2020F"><span>Development of a scintillating G-GEM detector for a 6-MeV X-band Linac for medical applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujiwara, T.; Tanaka, S.; Mitsuya, Y.; Takahashi, H.; Tagi, K.; Kusano, J.; Tanabe, E.; Yamamoto, M.; Nakamura, N.; Dobashi, K.; Tomita, H.; Uesaka, M.</p> <p>2013-12-01</p> <p>We recently developed glass gas electron multipliers (G-GEMs) with an entirely new process using photo-etchable glass. The photo-etchable glass used for the substrate is called PEG3 (Hoya Corporation). Taking advantage of low outgassing material, we have envisioned a medical application of G-GEMs. A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for real-time dose distribution monitoring in X-ray radiation therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside of which G-GEM structures are mounted. Photons produced by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD-camera system. We found that the intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the first results from a scintillating G-GEM detector for a position-sensitive X-ray beam dosimeter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4716097-radiation-effects-immune-mechanisms','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4716097-radiation-effects-immune-mechanisms"><span>RADIATION EFFECTS ON IMMUNE MECHANISMS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stoner, R.D.; Hale, W.M.</p> <p>1963-03-01</p> <p>Experiments were performed on pathogen-free Swiss albino mice to determine the repressive effect of ionizing radiation on immune mechanisms. In animals given sublethal doses of Co/sup 60/ gamma radiation by acute short-term exposure or by chronic long-term exposure at a low dose rate, ability to produce antibody was inhibited or abolished, and natural resistance and active and passive immunity to pneumococcal and Trichinella infections were severely depressed. It appears that the repression resulted from damage to the cellular defensive mechanisms of the host. Active immunity and natural resistance to influenza virus infections were not altered significantly by radiation. Exposure tomore » radiation enhanced the severity of anaphylactic shock markedly in mice previously sensitized to tetanus toxoid and challenged with tetanus toxoid after radiation. Chronic exposure to radiation caused immediate increased sensitivity to fatal anaphylaxis. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19734089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19734089"><span>Appetite and adverse effects associated with radiation therapy in patients with head and neck cancer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ogama, Norimasa; Suzuki, Sumie; Umeshita, Koji; Kobayashi, Tamami; Kaneko, Shoko; Kato, Sakiko; Shimizu, Yasuko</p> <p>2010-02-01</p> <p>The relationship between radiation treatment and adverse effects resulting in changes in appetite was studied in patients with head and neck (H&N) cancer. Path analysis was used to evaluate the following factors in 117 patients receiving radiation therapy for H&N cancer: daily fluctuations in saliva production, analgesic use, frequency of oral care, subject characteristics, and appetite. At 20 Gy of radiation, appetite was affected by Brinkman index value, age, and sensitivity to taste (R2=0.48, p<0.001); at 30 Gy of radiation, appetite was affected by frequency of oral care, xerostomia symptoms, age, sensitivity to taste, and oral mucositis (R2=0.52, p<0.001); and at 50 Gy of radiation, appetite was affected by low saliva production in the morning, frequency of oral care, xerostomia symptoms, sensitivity to taste, analgesic use, and oral mucositis (R2=0.62, p<0.001). The results of this study suggest that care taken to avoid a decrease in appetite due to adverse effects of radiation therapy should differ according to the dosage and schedule of radiation therapy. These findings represent important data for health care professionals to understand and support appropriate dietary intake and improved quality of life for H&N cancer patients receiving radiation therapy. Copyright 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8373E..0JR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8373E..0JR"><span>Investigation of graphene-based nanoscale radiation sensitive materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael</p> <p>2012-06-01</p> <p>Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29090703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29090703"><span>20(s)-Protopanaxadiol (PPD) increases the radiotherapy sensitivity of laryngeal carcinoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teng, Bo; Zhao, Lijing; Gao, Jing; He, Peng; Li, Hejie; Chen, Junyu; Feng, Qingjie; Yi, Chunhui</p> <p>2017-12-13</p> <p>Laryngeal carcinoma (LC) is one of the most prevalent malignant tumors in the head and neck area. Due to its high morbidity and mortality, LC poses a serious threat to human life and health. Even with surgical removal, some patients were not sensitive to radiotherapy or experienced transfer or recurrence. 20(s)-Protopanaxadiol (PPD), a natural product from Panax ginseng, has been reported to have cytotoxic effects against several cancer cell lines. However, whether it can improve the radiation sensitivity and the underlying mechanism of PPD's sensitization effect is still unknown. Herein, from in vitro and in vivo experiments, we found that the combination of PPD and radiation not only significantly inhibited proliferation and induced apoptosis, but also suppressed the tumor growth in mouse models. These findings confirmed the role of PPD in enhancing the sensitivity of radiotherapy. Moreover, our work showed that the expression levels of mTOR and its downstream effectors decreased remarkably after PPD addition when compared to radiation only. This result suggested that PPD's excellent synergistic effects with radiation might be associated with the down-regulation of the mTOR signaling pathway in Hep-2 cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820034751&hterms=sem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820034751&hterms=sem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsem"><span>SEM analysis of ionizing radiation effects in an analog to digital converter /AD571/</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gauthier, M. K.; Perret, J.; Evans, K. C.</p> <p>1981-01-01</p> <p>The considered investigation is concerned with the study of the total-dose degradation mechanisms in an IIL analog to digital (A/D) converter. The A/D converter is a 10 digit device having nine separate functional units on the chip which encompass several hundred transistors and circuit elements. It was the objective of the described research to find the radiation sensitive elements by a systematic search of the devices on the LSI chip. The employed technique using a scanning electron microscope to determine the functional blocks of an integrated circuit which are sensitive to ionizing radiation and then progressively zeroing in on the soft components within those blocks, proved extremely successful on the AD571. Four functional blocks were found to be sensitive to radiation, including the Voltage Reference, DAC, IIL Clock, and IIL SAR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19400548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19400548"><span>Energy dependence corrections to MOSFET dosimetric sensitivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheung, T; Butson, M J; Yu, P K N</p> <p>2009-03-01</p> <p>Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29194879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29194879"><span>Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uriarte, María; Muscarella, Robert; Zimmerman, Jess K</p> <p>2018-02-01</p> <p>Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors-soil moisture, understory light, and conspecific neighborhood density-modulate these responses. Community-wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community-wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long-term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long-term stand dynamics. © 2017 John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53L..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53L..07H"><span>How do the radiative effects of springtime clouds and water vapor modulate the melt onset of Arctic sea ice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Y.; Dong, X.; Xi, B.; Deng, Y.</p> <p>2017-12-01</p> <p>Earlier studies show that there is a strong positive correlation between the mean onset date of snow melt north of 70°N and the minimum Arctic sea ice extent (SIE) in September. Based on satellite records from 1980 to 2016, the September Arctic SIE minimum is most sensitive to the early melt onset over the Siberian Sea (73°-84°N, 90°-155°), which is defined as the area of focus (AOF) in this analysis. The day with melt onset exceeding 10% area of the AOF is marked as the initial melt date for a given year. With this definition, a strong positive correlation (r=0.59 at 99% confidence level) is found between the initial melt date over the AOF and the September SIE minimum over the Arctic. Daily anomalies of cloud and radiation properties are compared between six years with earliest initial melt dates (1990, 2012, 2007, 2003, 1991, 2016) and six years with latest initial melt dates (1996, 1984, 1983, 1982, 1987, 1992) using the NASA MERRA-2 reanalysis. Our results suggest that higher cloud water path (CWP) and precipitable water vapor (PWV) are clearly associated with early melt onset years through the period of mid-March to August. Major contrasts in CWP are found between the early and late onset years in a period of approximately 30 days prior to the onset to 30 days after the onset. As a result, the early melt onset years exhibit positive anomalies for downward longwave flux at the surface and negative anomalies for downward shortwave flux, shortwave cloud radiative effect (CRE) as well as net CRE. The negative net CRE is over-compensated by the positive longwave flux anomaly associated with elevated PWV, contributing to early melt onsets. The temporal evolution of CRE and PWV radiative effect during the entire melting season will be documented together with an analysis tracing the dynamical, mid-latitude origins of increased CWP and PWV prior to initial melt onsets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1392890','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1392890"><span>High-Order Thermal Radiative Transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Woods, Douglas Nelson; Cleveland, Mathew Allen; Wollaeger, Ryan Thomas</p> <p>2017-09-18</p> <p>The objective of this research is to asses the sensitivity of the linearized thermal radiation transport equations to finite element order on unstructured meshes and to investigate the sensitivity of the nonlinear TRT equations due to evaluating the opacities and heat capacity at nodal temperatures in 2-D using high-order finite elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15259666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15259666"><span>Monte Carlo calculation of the sensitivity of a commercial dose calibrator to gamma and beta radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O</p> <p>2004-06-01</p> <p>The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960052310&hterms=uv+laser&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Duv%2Blaser','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960052310&hterms=uv+laser&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Duv%2Blaser"><span>Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar</p> <p>1996-01-01</p> <p>Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25999966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25999966"><span>Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renninger, Heidi J; Carlo, Nicholas J; Clark, Kenneth L; Schäfer, Karina V R</p> <p>2015-01-01</p> <p>Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4423344','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4423344"><span>Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Renninger, Heidi J.; Carlo, Nicholas J.; Clark, Kenneth L.; Schäfer, Karina V. R.</p> <p>2015-01-01</p> <p>Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem. PMID:25999966</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18974143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18974143"><span>Enhanced sensitivity of the RET proto-oncogene to ionizing radiation in vitro.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Volpato, Claudia Béu; Martínez-Alfaro, Minerva; Corvi, Raffaella; Gabus, Coralie; Sauvaigo, Sylvie; Ferrari, Pietro; Bonora, Elena; De Grandi, Alessandro; Romeo, Giovanni</p> <p>2008-11-01</p> <p>Exposure to ionizing radiation is a well-known risk factor for a number of human cancers, including leukemia and thyroid cancer. It has been known for a long time that exposure of cells to radiation results in extensive DNA damage; however, a small number of studies have tried to explain the mechanisms of radiation-induced carcinogenesis. The high prevalence of RET/PTC rearrangements in patients who have received external radiation, and the evidence of in vitro induction of RET rearrangements in human cells, suggest an enhanced sensitivity of the RET genomic region to damage by ionizing radiation. To assess whether RET is indeed more sensitive to radiations than other genomic regions, we used a COMET assay coupled with fluorescence in situ hybridization, which allows the measurement of DNA fragmentation in defined genomic regions of single cells. We compared the initial DNA damage of the genomic regions of RET, CXCL12/SDF1, ABL, MYC, PLA2G2A, p53, and JAK2 induced by ionizing radiation in both a lymphoblastoid and a fetal thyroid cell line. In both cell lines, RET fragmentation was significantly higher than in other genomic regions. Moreover, a differential distribution of signals within the COMET was associated with a higher percentage of RET fragments in the tail. RET was more susceptible to fragmentation in the thyroid-derived cells than in lymphoblasts. This enhanced susceptibility of RET to ionizing radiation suggests the possibility of using it as a radiation exposure marker.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869742','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869742"><span>Photon beam position monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kuzay, Tuncer M.; Shu, Deming</p> <p>1995-01-01</p> <p>A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28772165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28772165"><span>Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M</p> <p>2017-11-01</p> <p>Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p < 0.001) and organic matrix-bound water (3220/2949: 0.109 ± 0.012 vs 0.131 ± 0.008, p < 0.001). Organic matrix-bound water increased secondary to 25kGy irradiation (3220/2949: 0.105 ± 0.010 vs 0.1161 ± 0.009, p = 0.003). Organic matrix-bound water was correlated positively with collagen denaturation (r = 0.514, p < 0.001). Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MsT.........14N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MsT.........14N"><span>Observations and simulations of the interactions between clouds, radiation, and precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naegele, Alexandra Claire</p> <p></p> <p>The first part of this study focuses on the radiative constraint on the hydrologic cycle as seen in observations. In the global energy budget, the atmospheric radiative cooling (ARC) is approximately balanced by latent heating, but on regional scales, the ARC and precipitation are inversely related. We use precipitation data from the Global Precipitation Climatology Project and radiative flux data from the Clouds and the Earth's Radiant Energy System (CERES) project to investigate the radiative constraint on the hydrologic cycle and how it changes in both space and time. We find that the effect of clouds is to decrease the ARC in the tropics, and to increase the ARC in middle and higher latitudes. We find that, spatially, precipitation and the ARC are negatively correlated in the tropics, and positively correlated in middle and higher latitudes. In terms of the global mean, the precipitation rate and the ARC are temporally out-of-phase during the Northern Hemisphere winter. In the second part of this study, we use a cloud-resolving model to gain a deeper understanding of the relationship between precipitation and the ARC. In particular, we explore how the relationship between precipitation and the ARC is affected by convective aggregation, in which the convective activity is confined to a small portion of the domain that is surrounded by a much larger region of dry, subsiding air. We investigate the responses of the ARC and precipitation rate to changes in the sea surface temperature (SST), domain size, and microphysics parameterization. Both fields increase with increasing SST and the use of 2-moment microphysics. The precipitation and ARC show evidence of convective aggregation, and in the domain average, both fields increase as a result. While running these sensitivity tests, we observed a pulsation in the convective precipitation rate, once aggregation had occurred. The period of the pulsation is on the order of ten simulated hours for a domain size of 768 km. The sensitivity tests mentioned above were used to investigate the mechanism of the pulsation. We also performed an additional test with no evaporation of falling rain, which leads to no cold pools in the boundary layer. Our results show that the period of the pulsation is noticeably sensitive to microphysics and domain size. The pulsation disappears completely when cold pools are prevented from forming, which suggests a "discharge-recharge" mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0473898','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0473898"><span>OPERATION CROSSROADS. A COMPARISON OF THE EFFECTS OF TEST ABLE ATOMIC BOMB IONIZING RADIATION AND X-RAYS ON SEEDS OF BARLEY, WHEAT AND OATS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>SEEDS ), (*RADIATION EFFECTS, (*NUCLEAR EXPLOSIONS, RADIATION HAZARDS), X RAYS, WHEAT, RADIATION DOSAGE, MUTATIONS, RADIOBIOLOGY, GROWTH(PHYSIOLOGY), CEREALS, SENSITIVITY, AGING(PHYSIOLOGY), EXPERIMENTAL DATA, NUCLEAR BOMBS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20888220-detection-cherenkov-photons-multi-anode-photomultipliers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20888220-detection-cherenkov-photons-multi-anode-photomultipliers"><span>Detection of Cherenkov Photons with Multi-Anode Photomultipliers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Salazar, H.; Moreno, E.; Murrieta, T.</p> <p>2006-09-25</p> <p>The present paper describes the laboratory course given at the X Mexican Workshop on Particles and Fields. We describe the setup and procedure used to measure the Cherenkov circles produced by cosmic muons upon traversal of a simple glass radiator system. The main purpose of this exercise is to introduce the students to work with multi-anode photomultipliers such as the one used for this experiment (Hamamatsu R5900-M64), with which measurements requiring position sensitive detection of single photons can be successfully performed. We present a short introduction to multi-anode photomultipliers (MAPMT) and describe the setup and the procedure used to measuremore » the response of a MAPMT to a uniform source of light. Finally, we describe the setup and procedure used to measure the Cherenkov circles produced by cosmic muons upon traversal of a simple glass radiator system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-03pd0531.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-03pd0531.html"><span>KSC-03pd0531</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-02-24</p> <p>KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-B, Cape Canaveral Air Force Station, a Boeing Delta II rocket is raised to a vertical position on the launch tower. The rocket is the launch vehicle for the Space Infrared Telescope Facility. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter). Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26228648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26228648"><span>X-ray Radiation-Controlled NO-Release for On-Demand Depth-Independent Hypoxic Radiosensitization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Wenpei; Bu, Wenbo; Zhang, Zhen; Shen, Bo; Zhang, Hui; He, Qianjun; Ni, Dalong; Cui, Zhaowen; Zhao, Kuaile; Bu, Jiwen; Du, Jiulin; Liu, Jianan; Shi, Jianlin</p> <p>2015-11-16</p> <p>Multifunctional stimuli-responsive nanotheranostic systems are highly desirable for realizing simultaneous biomedical imaging and on-demand therapy with minimized adverse effects. Herein, we present the construction of an intelligent X-ray-controlled NO-releasing upconversion nanotheranostic system (termed as PEG-USMSs-SNO) by engineering UCNPs with S-nitrosothiol (R-SNO)-grafted mesoporous silica. The PEG-USMSs-SNO is designed to respond sensitively to X-ray radiation for breaking down the S-N bond of SNO to release NO, which leads to X-ray dose-controlled NO release for on-demand hypoxic radiosensitization besides upconversion luminescent imaging through UCNPs in vitro and in vivo. Thanks to the high live-body permeability of X-ray, our developed PEG-USMSs-SNO may provide a new technique for achieving depth-independent controlled NO release and positioned radiotherapy enhancement against deep-seated solid tumors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13P5019A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13P5019A"><span>A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.</p> <p>2018-05-01</p> <p>Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25882777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25882777"><span>Radiation necrosis presenting as pseudoprogression (PsP) during alectinib treatment of previously radiated brain metastases in ALK-positive NSCLC: Implications for disease assessment and management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ou, Sai-Hong Ignatius; Klempner, Samuel J; Azada, Michele C; Rausei-Mills, Veronica; Duma, Christopher</p> <p>2015-06-01</p> <p>Radiation necrosis presenting as pseudoprogression (PsP) is relatively common after radiation and temozolomide (TMZ) treatment in glioblastoma multiforme (GBM), especially among patients with GBM that harbors intrinsic increased responsiveness to TMZ (methylated O6-methylguanine-DNA methyltransferase [MGMT] promoter). Alectinib is a second generation ALK inhibitor that has significant CNS activity against brain metastases in anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC) patients. We report 2 ALK+ NSCLC patients who met RECIST criteria for progressive disease by central radiologic review due to increased in size from increased contrast enhancement in previously stereotactically radiated brain metastases with ongoing extra-cranial response to alectinib. In both patients alectinib was started within 4 months of completing stereotactic radiosurgery (SRS). The enlarging lesions in both patients were resected and found to have undergone extensive necrosis with no residual tumor pathologically. PsP was incorrectly classified as progressive disease even by central independent imaging review. Treatment-related necrosis of previously SRS-treated brain metastasis during alectinib treatment can present as PsP. It may be impossible to distinguish PsP from true disease progression without a pathologic examination from resected sample. High degree of clinical suspicion, close monitoring and more sensitive imaging modalities may be needed to distinguish PsP versus progression in radiated brain lesions during alectinib treatment especially if there is no progression extra-cranially. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950004278','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950004278"><span>Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng</p> <p>1994-01-01</p> <p>The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4250165','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4250165"><span>Shortwave and longwave radiative contributions to global warming under increasing CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.</p> <p>2014-01-01</p> <p>In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24122231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24122231"><span>Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo</p> <p>2014-02-01</p> <p>Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040110777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040110777"><span>MESTRN: A Deterministic Meson-Muon Transport Code for Space Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.; Wilson, John W.; Singleterry, Robert C., Jr.; Tripathi, Ram K.</p> <p>2004-01-01</p> <p>A safe and efficient exploration of space requires an understanding of space radiations, so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation fields are modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method used to predict the effects of the presence of these particles on the transport of radiation through materials is developed. This method was then used to develop software, which was used to calculate the fluxes of pions and muons after the transport of a cosmic ray spectrum through aluminum and water. Software descriptions are given in the appendices.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23515916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23515916"><span>Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Abe, Takayuki; Kuribayashi, Sachio; Ogawa, Kenji</p> <p>2013-08-01</p> <p>To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA-950) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P < 0.0001) of tomosynthesis than radiography for the detection of pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA-950. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA-950. • Tomosynthesis showed significantly better diagnostic performance for pulmonary emphysema than radiography. • Interobserver agreement for tomosynthesis was significantly higher than that for radiography. • Sensitivity increased with increasing LAA -950 in both tomosynthesis and radiography. • Tomosynthesis imparts a similar radiation dose to two projection chest radiography. • Radiation dose and cost of tomosynthesis are lower than those of MDCT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29777301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29777301"><span>Role of the NRP-1-mediated VEGFR2-independent pathway on radiation sensitivity of non-small cell lung cancer cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Chenxi; Zhu, Panrong; Xia, Youyou; Hui, Kaiyuan; Wang, Mei; Jiang, Xiaodong</p> <p>2018-07-01</p> <p>To determine if inhibiting neuropilin-1 (NRP-1) affects the radiosensitivity of NSCLC cells through a vascular endothelial growth factor receptor 2 (VEGFR2)-independent pathway, and to assess the underlying mechanisms. The expression of VEGFR2, NRP-1, related signaling molecules, abelson murine leukemia viral oncogene homolog 1 (ABL-1), and RAD51 were determined by RT-PCR and Western blotting, respectively. Radiosensitivity was assessed using the colony-forming assay, and the cell apoptosis were analyzed by flow cytometry. We selected two cell lines with high expression levels of VEGFR2, including Calu-1 cells that have high NRP-1 expression, and H358 cells that have low NRP-1 expression. Upon inhibition of p-VEGFR2 by apatinib in Calu-1 cells, the expression of NRP-1 protein and other related proteins in the pathway was still high. Upon NRP-1 siRNA treatment, the expression of both NRP-1 and RAD51 decreased (p < 0.01; p < 0.05). Upon ABL-1 siRNA treatment, the expression of NRP-1 was increased and the expression of RAD51 was unchanged. Calu-1 cells treated with NRP-1 siRNA exhibited significantly higher apoptosis and radiation sensitivity in radiation therapy compared to Calu-1 cells treated with apatinib alone (p < 0.01; p < 0.01). The apoptosis and radiation sensitivity in H358 cells with NRP-1 overexpression was similar to the control group regardless of VEGFR2 inhibition. We demonstrated that when VEGFR2 was inhibited, NRP-1 appeared to regulate RAD51 expression through the VEGFR2-independent ABL-1 pathway, consequently regulating radiation sensitivity. In addition, the combined inhibition of VEGFR2 and NRP-1 appears to sensitize cancer cells to radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPA.777...15R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPA.777...15R"><span>Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.</p> <p>2015-03-01</p> <p>Direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable non-destructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9029432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9029432"><span>Blood lead levels in radiator repair workers in Colorado.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dalton, C B; McCammon, J B; Hoffman, R E; Baron, R C</p> <p>1997-01-01</p> <p>A laboratory-based blood lead surveillance system in Colorado identified radiator repair workers as having the highest blood lead levels of all worker groups reported. A survey of 42 radiator repair shops in ten locales throughout Colorado was undertaken to estimate the prevalence of workers with elevated blood lead levels > 25 micrograms/dL. The survey was designed to test the sensitivity of the surveillance system and to assess working conditions and practices in the radiator repair industry in Colorado. Of 63 workers, 39 (62%) had blood lead levels > 25 micrograms/dL. The sensitivity of the surveillance system for detecting radiator repair workers with elevated blood lead levels was estimated at 11%. None of the radiator repair shops had adequate local exhaust ventilation. Work practice and engineering modifications are needed to reduce lead exposure in this industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B43J..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B43J..06M"><span>Diffuse radiation increases global ecosystem-level water-use efficiency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.</p> <p>2012-12-01</p> <p>Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5102626','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5102626"><span>Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.</p> <p>2015-01-01</p> <p>The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16824923','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16824923"><span>Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Haaften, Gijs; Romeijn, Ron; Pothof, Joris; Koole, Wouter; Mullenders, Leon H F; Pastink, Albert; Plasterk, Ronald H A; Tijsterman, Marcel</p> <p>2006-07-11</p> <p>Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136979','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136979"><span>Prostate-Specific Antigen and Prostate-Specific Antigen Velocity as Threshold Indicators in 11C-Acetate PET/CTAC Scanning for Prostate Cancer Recurrence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dusing, Reginald W.; Peng, Warner; Lai, Sue-Min; Grado, Gordon L.; Holzbeierlein, Jeffrey M.; Thrasher, J. Brantley; Hill, Jacqueline; Van Veldhuizen, Peter J.</p> <p>2014-01-01</p> <p>Purpose The aim of this study was to identify which patient characteristics are associated with the highest likelihood of positive findings on 11C-acetate PET/computed tomography attenuation correction (CTAC) (PET/CTAC) scan when imaging for recurrent prostate cancer. Methods From 2007 to 2011, 250 11C-acetate PET/CTAC scans were performed at a single institution on patients with prostate cancer recurrence after surgery, brachytherapy, or external beam radiation. Of these patients, 120 met our inclusion criteria. Logistic regression analysis was used to examine the relationship between predictability of positive findings and patients’ characteristics, such as prostate-specific antigen (PSA) level at the time of scan, PSA kinetics, Gleason score, staging, and type of treatment before scan. Results In total, 68.3% of the 120 11C-acetate PET/CTAC scans were positive. The percentage of positive scans and PSA at the time of scanning and PSA velocity (PSAV) had positive correlations. The putative sensitivity and specificity were 86.6% and 65.8%, respectively, when a PSA level greater than 1.24 ng/mL was used as the threshold for scanning. The putative sensitivity and specificity were 74% and 75%, respectively, when a PSAV level greater than 1.32 ng/mL/y was used as the threshold. No significant associations were found between scan positivity and age, PSA doubling time, Gleason score, staging, or type of treatment before scanning. Conclusions This retrospective study suggests that threshold models of PSA greater than 1.24 ng/mL or PSAV greater than 1.32 ng/mL per year are independent predictors of positive findings in 11C-acetate PET/CTAC imaging of recurrent prostate cancer. PMID:25036021</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9710E..1FH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9710E..1FH"><span>Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew</p> <p>2016-03-01</p> <p>Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15070261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15070261"><span>Characteristics and performance of a micro-MOSFET: an "imageable" dosimeter for image-guided radiotherapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rowbottoma, Carl G; Jaffray, David A</p> <p>2004-03-01</p> <p>The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 degrees of rotation in the axial plane to the micro-MOSFET was +/-2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24788860','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24788860"><span>Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia</p> <p>2014-09-01</p> <p>A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645023-attracting-future-radiation-oncologists-analysis-national-resident-matching-program-data-trends-from','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645023-attracting-future-radiation-oncologists-analysis-national-resident-matching-program-data-trends-from"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ahmed, Awad A., E-mail: Awad.ahmed@jhsmiami.org; Holliday, Emma B.; Deville, Curtiland</p> <p></p> <p>Purpose: A significant physician shortage has been projected to occur by 2025, and demand for oncologists is expected to outpace supply to an even greater degree. In response to this, many have called to increase the number of radiation oncology residency positions. The purpose of this study is to evaluate National Resident Matching Program (NRMP) data for the number of residency positions between 2004 and 2015 as well as the number and caliber of applicants for those positions and to compare radiation oncology to all residency specialties. Methods: NRMP data for all specialties participating in the match, including radiation oncology,more » were assessed over time examining the number of programs participating in the match, the number of positions offered, and the ratio of applicants to positions in the match from 2004 to 2015. Results: From 2004 to 2015, the number of total programs participating in the match has increased by 26.7%, compared to the increase of 28.6% in the number of radiation oncology programs from during the same time period. The total number of positions offered in the match increased by 53.4%, whereas radiation oncology positions increased by 56.3%, during the same time period. The ratio of applicants (defined as those selecting a specialty as their first or only choice) to positions for all specialties has fluctuated over this time period and has gone from 1.21 to 1.15, whereas radiation oncology experienced a decrease from 1.45 to 1.14. Conclusions: NRMP data suggest that senior medical student applications to radiation oncology are decreasing compared to those of other specialties. If we hope to continue to attract the best and brightest to enter our field, we must continue to support early exposure to radiation oncology, positive educational experiences, and dedicated mentorship to interested medical students.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3252736','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3252736"><span>Serine/threonine protein phosphatase 6 modulates the radiation sensitivity of glioblastoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shen, Y; Wang, Y; Sheng, K; Fei, X; Guo, Q; Larner, J; Kong, X; Qiu, Y; Mi, J</p> <p>2011-01-01</p> <p>Increasing the sensitivity of glioblastoma cells to radiation is a promising approach to improve survival in patients with glioblastoma multiforme (GBM). This study aims to determine if serine/threonine phosphatase (protein phosphatase 6 (PP6)) is a molecular target for GBM radiosensitization treatment. The GBM orthotopic xenograft mice model was used in this study. Our data demonstrated that the protein level of PP6 catalytic subunit (PP6c) was upregulated in the GBM tissue from about 50% patients compared with the surrounding tissue or control tissue. Both the in vitro survival fraction of GBM cells and the patient survival time were highly correlated or inversely correlated with PP6c expression (R2=0.755 and −0.707, respectively). We also found that siRNA knockdown of PP6c reduced DNA-dependent protein kinase (DNA-PK) activity in three different GBM cell lines, increasing their sensitivity to radiation. In the orthotopic mice model, the overexpression of PP6c in GBM U87 cells attenuated the effect of radiation treatment, and reduced the survival time of mice compared with the control mice, while the PP6c knocking-down improved the effect of radiation treatment, and increased the survival time of mice. These findings demonstrate that PP6 regulates the sensitivity of GBM cells to radiation, and suggest small molecules disrupting or inhibiting PP6 association with DNA-PK is a potential radiosensitizer for GBM. PMID:22158480</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28622554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28622554"><span>Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra</p> <p>2017-10-01</p> <p>The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ResPh...6..139M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ResPh...6..139M"><span>Effect of radiator position and mass flux on the dryer room heat transfer rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.</p> <p></p> <p>A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28122122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28122122"><span>The effect of radiation dose reduction on computer-aided detection (CAD) performance in a low-dose lung cancer screening population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Young, Stefano; Lo, Pechin; Kim, Grace; Brown, Matthew; Hoffman, John; Hsu, William; Wahi-Anwar, Wasil; Flores, Carlos; Lee, Grace; Noo, Frederic; Goldin, Jonathan; McNitt-Gray, Michael</p> <p>2017-04-01</p> <p>Lung cancer screening with low-dose CT has recently been approved for reimbursement, heralding the arrival of such screening services worldwide. Computer-aided detection (CAD) tools offer the potential to assist radiologists in detecting nodules in these screening exams. In lung screening, as in all CT exams, there is interest in further reducing radiation dose. However, the effects of continued dose reduction on CAD performance are not fully understood. In this work, we investigated the effect of reducing radiation dose on CAD lung nodule detection performance in a screening population. The raw projection data files were collected from 481 patients who underwent low-dose screening CT exams at our institution as part of the National Lung Screening Trial (NLST). All scans were performed on a multidetector scanner (Sensation 64, Siemens Healthcare, Forchheim Germany) according to the NLST protocol, which called for a fixed tube current scan of 25 effective mAs for standard-sized patients and 40 effective mAs for larger patients. The raw projection data were input to a reduced-dose simulation software to create simulated reduced-dose scans corresponding to 50% and 25% of the original protocols. All raw data files were reconstructed at the scanner with 1 mm slice thickness and B50 kernel. The lungs were segmented semi-automatically, and all images and segmentations were input to an in-house CAD algorithm trained on higher dose scans (75-300 mAs). CAD findings were compared to a reference standard generated by an experienced reader. Nodule- and patient-level sensitivities were calculated along with false positives per scan, all of which were evaluated in terms of the relative change with respect to dose. Nodules were subdivided based on size and solidity into categories analogous to the LungRADS assessment categories, and sub-analyses were performed. From the 481 patients in this study, 82 had at least one nodule (prevalence of 17%) and 399 did not (83%). A total of 118 nodules were identified. Twenty-seven nodules (23%) corresponded to LungRADS category 4 based on size and composition, while 18 (15%) corresponded to LungRADS category 3 and 73 (61%) corresponded to LungRADS category 2. For solid nodules ≥8 mm, patient-level median sensitivities were 100% at all three dose levels, and mean sensitivities were 72%, 63%, and 63% at original, 50%, and 25% dose, respectively. Overall mean patient-level sensitivities for nodules ranging from 3 to 45 mm were 38%, 37%, and 38% at original, 50%, and 25% dose due to the prevalence of smaller nodules and nonsolid nodules in our reference standard. The mean false-positive rates were 3, 5, and 13 per case. CAD sensitivity decreased very slightly for larger nodules as dose was reduced, indicating that reducing the dose to 50% of original levels may be investigated further for use in CT screening. However, the effect of dose was small relative to the effect of the nodule size and solidity characteristics. The number of false positives per scan increased substantially at 25% dose, illustrating the importance of tuning CAD algorithms to very challenging, high-noise screening exams. © 2017 American Association of Physicists in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2324M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2324M"><span>Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsui, Toshi; Zhang, Sara Q.; Lang, Stephen E.; Tao, Wei-Kuo; Ichoku, Charles; Peters-Lidard, Christa D.</p> <p>2018-03-01</p> <p>In this study, the impact of different configurations of the Goddard radiation scheme on convection-permitting simulations (CPSs) of the West African monsoon (WAM) is investigated using the NASA-Unified WRF (NU-WRF). These CPSs had 3 km grid spacing to explicitly simulate the evolution of mesoscale convective systems (MCSs) and their interaction with radiative processes across the WAM domain and were able to reproduce realistic precipitation and energy budget fields when compared with satellite data, although low clouds were overestimated. Sensitivity experiments reveal that (1) lowering the radiation update frequency (i.e., longer radiation update time) increases precipitation and cloudiness over the WAM region by enhancing the monsoon circulation, (2) deactivation of precipitation radiative forcing suppresses cloudiness over the WAM region, and (3) aggregating radiation columns reduces low clouds over ocean and tropical West Africa. The changes in radiation configuration immediately modulate the radiative heating and low clouds over ocean. On the 2nd day of the simulations, patterns of latitudinal air temperature profiles were already similar to the patterns of monthly composites for all radiation sensitivity experiments. Low cloud maintenance within the WAM system is tightly connected with radiation processes; thus, proper coupling between microphysics and radiation processes must be established for each modeling framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29217742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29217742"><span>Diagnostic Accuracy of Centrally Restricted Diffusion in the Differentiation of Treatment-Related Necrosis from Tumor Recurrence in High-Grade Gliomas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zakhari, N; Taccone, M S; Torres, C; Chakraborty, S; Sinclair, J; Woulfe, J; Jansen, G H; Nguyen, T B</p> <p>2018-02-01</p> <p>Centrally restricted diffusion has been demonstrated in recurrent high-grade gliomas treated with bevacizumab. Our purpose was to assess the accuracy of centrally restricted diffusion in the diagnosis of radiation necrosis in high-grade gliomas not treated with bevacizumab. In this prospective study, we enrolled patients with high-grade gliomas who developed a new ring-enhancing necrotic lesion and who underwent re-resection. The presence of a centrally restricted diffusion within the ring-enhancing lesion was assessed visually on diffusion trace images and by ADC measurements on 3T preoperative diffusion tensor examination. The percentage of tumor recurrence and radiation necrosis in each surgical specimen was defined histopathologically. The association between centrally restricted diffusion and radiation necrosis was assessed using the Fisher exact test. Differences in ADC and the ADC ratio between the groups were assessed via the Mann-Whitney U test, and receiver operating characteristic curve analysis was performed. Seventeen patients had re-resected ring-enhancing lesions: 8 cases of radiation necrosis and 9 cases of tumor recurrence. There was significant association between centrally restricted diffusion by visual assessment and radiation necrosis ( P = .015) with a sensitivity of 75% and a specificity of 88.9%, a positive predictive value 85.7%, and a negative predictive value of 80% for the diagnosis of radiation necrosis. There was a statistically significant difference in the ADC and ADC ratio between radiation necrosis and tumor recurrence ( P = .027). The presence of centrally restricted diffusion in a new ring-enhancing lesion might indicate radiation necrosis rather than tumor recurrence in high-grade gliomas previously treated with standard chemoradiation without bevacizumab. © 2018 by American Journal of Neuroradiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B53C0207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B53C0207J"><span>Sensitivity of Crop Gross Primary Production Simulations to In-situ and Reanalysis Meteorological Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, C.; Xiao, X.; Wagle, P.</p> <p>2014-12-01</p> <p>Accurate estimation of crop Gross Primary Production (GPP) is important for food securityand terrestrial carbon cycle. Numerous publications have reported the potential of the satellite-based Production Efficiency Models (PEMs) to estimate GPP driven by in-situ climate data. Simulations of the PEMs often require surface reanalysis climate data as inputs, for example, the North America Regional Reanalysis datasets (NARR). These reanalysis datasets showed certain biases from the in-situ climate datasets. Thus, sensitivity analysis of the PEMs to the climate inputs is needed before their application at the regional scale. This study used the satellite-based Vegetation Photosynthesis Model (VPM), which is driven by solar radiation (R), air temperature (T), and the satellite-based vegetation indices, to quantify the causes and degree of uncertainties in crop GPP estimates due to different meteorological inputs at the 8-day interval (in-situ AmeriFlux data and NARR surface reanalysis data). The NARR radiation (RNARR) explained over 95% of the variability in in-situ RAF and TAF measured from AmeriFlux. The bais of TNARR was relatively small. However, RNARR had a systematical positive bias of ~3.5 MJ m-2day-1 from RAF. A simple adjustment based on the spatial statistic between RNARR and RAF produced relatively accurate radiation data for all crop site-years by reducing RMSE from 4 to 1.7 MJ m-2day-1. The VPM-based GPP estimates with three climate datasets (i.e., in-situ, and NARR before and after adjustment, GPPVPM,AF, GPPVPM,NARR, and GPPVPM,adjNARR) showed good agreements with the seasonal dynamics of crop GPP derived from the flux towers (GPPAF). The GPPVPM,AF differed from GPPAF by 2% for maize, and -8% to -12% for soybean on the 8-day interval. The positive bias of RNARR resulted in an overestimation of GPPVPM,NARR at both maize and soybean systems. However, GPPVPM,adjNARR significantly reduced the uncertainties of the maize GPP from 25% to 2%. The results from this study revealed that the errors of the NARR surface reanalysis data introduced significant uncertainties of the PEMs-based GPP estimates. Therefore, it is important to develop more accurate radiation datasets at the regional and global scales to estimate gross and net primary production of terrestrial ecosystems at the regional and global scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005333','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005333"><span>Shock Layer Radiation Modeling and Uncertainty for Mars Entry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnston, Christopher O.; Brandis, Aaron M.; Sutton, Kenneth</p> <p>2012-01-01</p> <p>A model for simulating nonequilibrium radiation from Mars entry shock layers is presented. A new chemical kinetic rate model is developed that provides good agreement with recent EAST and X2 shock tube radiation measurements. This model includes a CO dissociation rate that is a factor of 13 larger than the rate used widely in previous models. Uncertainties in the proposed rates are assessed along with uncertainties in translational-vibrational relaxation modeling parameters. The stagnation point radiative flux uncertainty due to these flowfield modeling parameter uncertainties is computed to vary from 50 to 200% for a range of free-stream conditions, with densities ranging from 5e-5 to 5e-4 kg/m3 and velocities ranging from of 6.3 to 7.7 km/s. These conditions cover the range of anticipated peak radiative heating conditions for proposed hypersonic inflatable aerodynamic decelerators (HIADs). Modeling parameters for the radiative spectrum are compiled along with a non-Boltzmann rate model for the dominant radiating molecules, CO, CN, and C2. A method for treating non-local absorption in the non-Boltzmann model is developed, which is shown to result in up to a 50% increase in the radiative flux through absorption by the CO 4th Positive band. The sensitivity of the radiative flux to the radiation modeling parameters is presented and the uncertainty for each parameter is assessed. The stagnation point radiative flux uncertainty due to these radiation modeling parameter uncertainties is computed to vary from 18 to 167% for the considered range of free-stream conditions. The total radiative flux uncertainty is computed as the root sum square of the flowfield and radiation parametric uncertainties, which results in total uncertainties ranging from 50 to 260%. The main contributors to these significant uncertainties are the CO dissociation rate and the CO heavy-particle excitation rates. Applying the baseline flowfield and radiation models developed in this work, the radiative heating for the Mars Pathfinder probe is predicted to be nearly 20 W/cm2. In contrast to previous studies, this value is shown to be significant relative to the convective heating.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004864','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004864"><span>Optical detector calibrator system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)</p> <p>1996-01-01</p> <p>An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9695248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9695248"><span>[The use of the FISH method for the cytogenetic examination of persons with a history of acute radiation sickness in connection with the accident at the Chernobyl Atomic Electric Power Station].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pilinskaia, M A; Dybskiĭ, S S; Khaliavka, I G</p> <p>1998-01-01</p> <p>We have performed conventional cytogenetics with group karyotyping and FISH analysis on metaphase-arrested lymphocyte cultured from 13 adults of 23 to 50 years. Twelve Chernobyl accident liquidators of 1986 year recovered from acute radiation sickness of the first (3 persons), second (7 persons) and third (2 persons) degree of severity; and one unexposed (control) person. A cocktail containing a balanced mix of directly-labeled by Spectrum orange whole-chromosome probes for human chromosomes 1,2 and 4 were used. Under the conventional staining the positive correlation between the frequency of chromosome type aberration (acentrics, dicentrics, centric rings, abnormal monocentrics) and the severity of irradiation was established even 10 years after radiation exposure. Under the FISH analysis the frequency of reciprocal translocation was in the range from 0.061 to 0.729 per cell which corresponded to doses of acute uniform irradiation from 0.8 till 3.48 Gy. The data obtained confirmed the validity of FISH as for quantifying stable chromosome aberrations in peripheral lymphocytes of irradiated persons as the high sensitivity of FISH for the retrospective dose evaluation in delayed terms after radiation exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021581','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021581"><span>Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb</p> <p>1962-01-01</p> <p>The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26705358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26705358"><span>COST-RISK-BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moores, B Michael</p> <p>2016-06-01</p> <p>In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost-benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: [Formula: see text] This article presents a theoretical cost-risk-benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. © The Author 2015. Published by Oxford University Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SeScT..17.1218Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SeScT..17.1218Z"><span>Role of the conducting layer substrate on TiO2 nucleation when using microwave activated chemical bath deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zumeta, I.; Espinosa, R.; Ayllón, J. A.; Vigil, E.</p> <p>2002-12-01</p> <p>Nanostructured TiO2 is used in novel dye sensitized solar cells. Because of their interaction with light, thin TiO2 films are also used as coatings for self-cleaning glasses and tiles. Microwave activated chemical bath deposition represents a simple and cost-effective way to obtain nanostructured TiO2 films. It is important to study, in this technique, the role of the conducting layer used as the substrate. The influence of microwave-substrate interactions on TiO2 deposition is analysed using different substrate positions, employing substrates with different conductivities, and also using different microwave radiation powers for film deposition. We prove that a common domestic microwave oven with a large cavity and inhomogeneous radiation field can be used with equally satisfactory results. The transmittance spectra of the obtained films were studied and used to analyse film thickness and to obtain gap energy values. The results, regarding different indium-tin oxide resistivities and different substrate positions in the oven cavity, show that the interaction of the microwave field with the conducting layer is determinant in layer deposition. It has also been found that film thickness increases with the power of the applied radiation while the gap energies of the TiO2 films decrease approaching the 3.2 eV value reported for bulk anatase. This indicates that these films are not crystalline and it agrees with x-ray spectra that do not reveal any peak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22494052-su-end-end-e2e-testing-tomohda-system-using-real-pig-head-intracranial-radiosurgery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22494052-su-end-end-e2e-testing-tomohda-system-using-real-pig-head-intracranial-radiosurgery"><span>SU-E-J-25: End-To-End (E2E) Testing On TomoHDA System Using a Real Pig Head for Intracranial Radiosurgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Corradini, N; Leick, M; Bonetti, M</p> <p></p> <p>Purpose: To determine the MVCT imaging uncertainty on the TomoHDA system for intracranial radiosurgery treatments. To determine the end-to-end (E2E) overall accuracy of the TomoHDA system for intracranial radiosurgery. Methods: A pig head was obtained from the butcher, cut coronally through the brain, and preserved in formaldehyde. The base of the head was fixed to a positioning plate allowing precise movement, i.e. translation and rotation, in all 6 axes. A repeatability test was performed on the pig head to determine uncertainty in the image bone registration algorithm. Furthermore, the test studied images with MVCT slice thicknesses of 1 and 3more » mm in unison with differing scan lengths. A sensitivity test was performed to determine the registration algorithm’s ability to find the absolute position of known translations/rotations of the pig head. The algorithm’s ability to determine absolute position was compared against that of manual operators, i.e. a radiation therapist and radiation oncologist. Finally, E2E tests for intracranial radiosurgery were performed by measuring the delivered dose distributions within the pig head using Gafchromic films. Results: The repeatability test uncertainty was lowest for the MVCTs of 1-mm slice thickness, which measured less than 0.10 mm and 0.12 deg for all axes. For the sensitivity tests, the bone registration algorithm performed better than human eyes and a maximum difference of 0.3 mm and 0.4 deg was observed for the axes. E2E test results in absolute position difference measured 0.03 ± 0.21 mm in x-axis and 0.28 ± 0.18 mm in y-axis. A maximum difference of 0.32 and 0.66 mm was observed in x and y, respectively. The average peak dose difference between measured and calculated dose was 2.7 cGy or 0.4%. Conclusion: Our tests using a pig head phantom estimate the TomoHDA system to have a submillimeter overall accuracy for intracranial radiosurgery.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000031608','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000031608"><span>Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Valdez, A.</p> <p>2000-01-01</p> <p>This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800005501','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800005501"><span>Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1979-01-01</p> <p>The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26452568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26452568"><span>Attracting Future Radiation Oncologists: An Analysis of the National Resident Matching Program Data Trends From 2004 to 2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmed, Awad A; Holliday, Emma B; Deville, Curtiland; Jagsi, Reshma; Haffty, Bruce G; Wilson, Lynn D</p> <p>2015-12-01</p> <p>A significant physician shortage has been projected to occur by 2025, and demand for oncologists is expected to outpace supply to an even greater degree. In response to this, many have called to increase the number of radiation oncology residency positions. The purpose of this study is to evaluate National Resident Matching Program (NRMP) data for the number of residency positions between 2004 and 2015 as well as the number and caliber of applicants for those positions and to compare radiation oncology to all residency specialties. NRMP data for all specialties participating in the match, including radiation oncology, were assessed over time examining the number of programs participating in the match, the number of positions offered, and the ratio of applicants to positions in the match from 2004 to 2015. From 2004 to 2015, the number of total programs participating in the match has increased by 26.7%, compared to the increase of 28.6% in the number of radiation oncology programs from during the same time period. The total number of positions offered in the match increased by 53.4%, whereas radiation oncology positions increased by 56.3%, during the same time period. The ratio of applicants (defined as those selecting a specialty as their first or only choice) to positions for all specialties has fluctuated over this time period and has gone from 1.21 to 1.15, whereas radiation oncology experienced a decrease from 1.45 to 1.14. NRMP data suggest that senior medical student applications to radiation oncology are decreasing compared to those of other specialties. If we hope to continue to attract the best and brightest to enter our field, we must continue to support early exposure to radiation oncology, positive educational experiences, and dedicated mentorship to interested medical students. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240409','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1240409"><span>Precision disablement aiming system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott</p> <p>2016-02-16</p> <p>A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040000555&hterms=insulin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dinsulin','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040000555&hterms=insulin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dinsulin"><span>Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.</p> <p>2003-01-01</p> <p>Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4107073-effect-incorporation-bromodesoxyuridine-mitosis-sensitivity-rays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4107073-effect-incorporation-bromodesoxyuridine-mitosis-sensitivity-rays"><span>EFFECT OF THE INCORPORATION OF 5-BROMODESOXYURIDINE ON MITOSIS AND THE SENSITIVITY TO X RAYS (in French)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gontcharoff, M.; Rao, B.</p> <p>1963-12-16</p> <p>The effect of 5-bromodesoxyuridine (Budr) on cellular division and on sensitivity to x radiation was studied on fertilized eggs of the roundworm Strongylocentrus pur puratus. Four groups of samples were studied: a control group not treated with Budr and unexposed to x radiation; a group not treated with Budr but exposed to x radiation; a group treated with Budr but not exposed to x radiation; and a group treated with Budr and exposed to x radiation. The results are shown graphically. When the nontreated eggs are irradiated, the delay in cellular division is 55 min; the delay is 63 minmore » for treated samples irradiated with the same dose. The significance of these results is discussed. (J.S.R.)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRD..113.2306U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRD..113.2306U"><span>Air pollution radiative forcing from specific emissions sectors at 2030</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.</p> <p>2008-01-01</p> <p>Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171873','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171873"><span>Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.</p> <p>2004-01-01</p> <p>The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..155....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..155....1R"><span>A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock</p> <p>2017-01-01</p> <p>The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1365509','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1365509"><span>Models for Total-Dose Radiation Effects in Non-Volatile Memory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Campbell, Philip Montgomery; Wix, Steven D.</p> <p></p> <p>The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8728121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8728121"><span>Effect of radiation on red cell membrane and intracellular oxidative defense systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katz, D; Mazor, D; Dvilansky, A; Meyerstein, N</p> <p>1996-03-01</p> <p>Ionizing radiation is currently used for prevention of transfusion associated graft versus host disease (TAGVHD). As radiation damage is associated with the production of activated oxygen species, the aim of this study was to observe the immediate effect of ionizing radiation on red cell membrane and intracellular oxidative defense systems. Neonatal and iron deficiency (IDA) cells, known for their increased sensitivity to oxidative stress, were chosen and compared with normal cells. Irradiation was performed in doses of 1500 cGy, 3000 cGy and 5000 cGy. GSH and methemoglobin levels and the activity of different antioxidant enzymes, measured under optimal in vitro conditions, were preserved in all cells after irradiation. Only radiation at the highest does of 5000 cGy, caused significant potassium leakage in neonatal cells and insignificant increase in IDA cells. Thus, cells with increased sensitivity to oxidative stress are more susceptible to damage by ionizing radiation than normal cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20065710','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20065710"><span>Radiation accident dosimetry on plastics by EPR spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trompier, F; Bassinet, C; Clairand, I</p> <p>2010-02-01</p> <p>In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA466149','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA466149"><span>Radio-sensitizing Effects of Novel Histone De-Acetylase Inhibitors in Prostate Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-03-01</p> <p>were investigated in PC-3, LN -3 and DU-145 cells. (S)-HDAC-42 and SAHA could sensitize PC-3 and DU-145 cells to radiation. Aim 2: Effects of VAD- 18 ...combined effects of HDAC inhibitors and ionizing radiation on prostate cancer cell lines (PC-3, LN -3, LnCAP, DU-145 and 22Rv1). Aim 2. To understand the...cancer cell lines. Aim 3. To determine the combined effects of HDAC inhibitors plus ionizing radiation on the regression of (i) prostate cancer xenografts</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1660H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1660H"><span>Parametrization study of the land multiparameter VTI elastic waveform inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, W.; Plessix, R.-É.; Singh, S.</p> <p>2018-06-01</p> <p>Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27026319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27026319"><span>Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vlashi, Erina; Chen, Allen M; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A; Hess, Clayton B; Pajonk, Frank</p> <p>2016-04-01</p> <p>To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription-polymerase chain reaction for re-expression of reprogramming factors. Patients with HPV-positive tumors have superior overall survival and local-regional control. Human papillomavirus-positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus-negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006HyPr...20.3697S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006HyPr...20.3697S"><span>Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sicart, J. E.; Pomeroy, J. W.; Essery, R. L. H.; Bewley, D.</p> <p>2006-11-01</p> <p>At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36N, 134° 57W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear-sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RaPC..116..142H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RaPC..116..142H"><span>The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung</p> <p>2015-11-01</p> <p>NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.214..200P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.214..200P"><span>Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Podgornova, O.; Leaney, S.; Liang, L.</p> <p>2018-07-01</p> <p>Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4559988','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4559988"><span>Bedside ultrasonography for diagnosis of pneumothorax</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Lin</p> <p>2015-01-01</p> <p>Ultrasonography (US) has found its way into the critical care and emergency settings for the evaluation of acute respiratory failure conditions in recent years. It is useful for the diagnosis of varieties of abnormalities involving pleura and lung such as pleural effusion, alveolar interstitial syndrome, and pneumothorax (PTX). In addition to its reproducibility and timeliness, US has high sensitivity and specificity for the diagnosis of these conditions. The most widely used method for bedside evaluation of PTX is chest X-ray (CXR). However, the diagnostic sensitivity of CXR in detecting PTX is limited especially in occult PTX and when the patient is assumed supine position. Computed tomography (CT) is the gold standard in the evaluation of PTX, but is limited by its high radiation exposure and safety concerns in transporting critically ill patients. In this paper we review current advances in PTX diagnosis using US. PMID:26435925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/920690','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/920690"><span>Methods and systems for remote detection of gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Johnson, Timothy J.</p> <p>2007-11-27</p> <p>Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1078272','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1078272"><span>Methods and systems for remote detection of gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Johnson, Timothy J</p> <p>2012-09-18</p> <p>Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780007219','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780007219"><span>Voyager electronic parts radiation program, volume 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stanley, A. G.; Martin, K. E.; Price, W. E.</p> <p>1977-01-01</p> <p>The Voyager spacecraft is subject to radiation from external natural space, from radioisotope thermoelectric generators and heater units, and from the internal environment where penetrating electrons generate surface ionization effects in semiconductor devices. Methods for radiation hardening and tests for radiation sensitivity are described. Results of characterization testing and sample screening of over 200 semiconductor devices in a radiation environment are summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000031609','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000031609"><span>Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Valdez, A.</p> <p>2000-01-01</p> <p>This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4113165-changes-sensitivity-mice-typhoid-endotoxin-during-radiation-sickness','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4113165-changes-sensitivity-mice-typhoid-endotoxin-during-radiation-sickness"><span>CHANGES IN THE SENSITIVITY OF MICE TO TYPHOID ENDOTOXIN DURING RADIATION SICKNESS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Varenko, Yu.S.</p> <p>1962-01-01</p> <p>Sensitivity to typhoid endotoxin introduced intraperitoneally to mice at different periods before and after wholebody irradiation in a dose of 500 r increased during the entire period of radiation sickness. The peak of death of the animais was observed during the period of climax, on the 12th day. (Referativnyy Zhurnal, Biologiya, No. 15, Aug. 1963)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26781139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26781139"><span>Effect of radiation dose reduction and iterative reconstruction on computer-aided detection of pulmonary nodules: Intra-individual comparison.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evert-Jan P A; Milles, Julien; Schilham, Arnold M R; Lammers, Jan-Willem; de Jong, Pim A; Leiner, Tim; Budde, Ricardo P J</p> <p>2016-02-01</p> <p>To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22514910','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22514910"><span>[Effects of radiation exposure on human body].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kamiya, Kenji; Sasatani, Megumi</p> <p>2012-03-01</p> <p>There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of cells results in acute disorder, and then DNA mis-repair and mutation is speculated to cause cancer. The extent to which this kind of cellular response could reduce the low-dose radiation risk is a major challenge for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5831826','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5831826"><span>Accuracy and Precision of a Veterinary Neuronavigation System for Radiation Oncology Positioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ballegeer, Elizabeth A.; Frey, Stephen; Sieffert, Rob</p> <p>2018-01-01</p> <p>Conformal radiation treatment plans such as IMRT and other radiosurgery techniques require very precise patient positioning, typically within a millimeter of error for best results. CT cone beam, real-time navigation, and infrared position sensors are potential options for success but rarely present in veterinary radiation centers. A neuronavigation system (Brainsight Vet, Rogue Research) was tested 22 times on a skull for positioning accuracy and precision analysis. The first 6 manipulations allowed the authors to become familiar with the system but were still included in the analyses. Overall, the targeting mean error in 3D was 1.437 mm with SD 1.242 mm. This system could be used for positioning for radiation therapy or radiosurgery. PMID:29666822</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645138-exposure-risks-among-children-undergoing-radiation-therapy-considerations-era-image-guided-radiation-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645138-exposure-risks-among-children-undergoing-radiation-therapy-considerations-era-image-guided-radiation-therapy"><span>Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.</p> <p></p> <p>Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JInst..10P4002W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JInst..10P4002W"><span>Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.</p> <p>2015-04-01</p> <p>A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992SPIE.1734..187G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992SPIE.1734..187G"><span>New uses of position-sensitive photomultiplier tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, Jeffrey S.; Redus, Robert H.; Nagarkar, Vivek V.; Squillante, Michael R.</p> <p>1992-12-01</p> <p>Recent advances in photomultiplier tube technology have led to the availability of position sensitive photomultiplier tubes (PSPMTs). These tubes make it possible to build a new generation of imaging instruments for gamma rays and other types of ionizing radiation. We have investigated the use of these tubes for the construction of several prototype instruments. The first application investigated measures the quantity and distribution of radioactive compounds on filter papers used in microbiology research. The intent of this instrument is to replace film autoradiography with an electronic imaging system which can analyze samples 75 to 110 times faster than film. The second application involved the development of an intraoperative imaging probe to help surgeons identify cancerous tissue and ensure its complete removal. This instrument will replace a non-imaging probe now in use at many hospitals. A third prototype instrument under evaluation is an imaging nuclear survey system which obtains both a video and gamma ray image for the purpose of locating and quantifying radioactive materials. This system would be used at nuclear power plants and radioactive materials preparation facilities. A modification of this system could be built into robots used for inspecting and repairing power plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JKPS...65.2013K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JKPS...65.2013K"><span>Development of an all-in-one gamma camera/CCD system for safeguard verification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo</p> <p>2014-12-01</p> <p>For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2193093','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2193093"><span>Short Telomeres Result in Organismal Hypersensitivity to Ionizing Radiation in Mammals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goytisolo, Fermín A.; Samper, Enrique; Martín-Caballero, Juan; Finnon, Paul; Herrera, Eloísa; Flores, Juana M.; Bouffler, Simon D.; Blasco, María A.</p> <p>2000-01-01</p> <p>Here we show a correlation between telomere length and organismal sensitivity to ionizing radiation (IR) in mammals. In particular, fifth generation (G5) mouse telomerase RNA (mTR)−/− mice, with telomeres 40% shorter than in wild-type mice, are hypersensitive to cumulative doses of gamma rays. 60% of the irradiated G5 mTR−/− mice die of acute radiation toxicity in the gastrointestinal tract, lymphoid organs, and kidney. The affected G5 mTR−/− mice show higher chromosomal damage and greater apoptosis than similarly irradiated wild-type controls. Furthermore, we show that G5 mTR−/− mice show normal frequencies of sister chromatid exchange and normal V(D)J recombination, suggesting that short telomeres do not significantly affect the efficiency of DNA double strand break repair in mammals. The IR-sensitive phenotype of G5 mTR−/− mice suggests that telomere function is one of the determinants of radiation sensitivity of whole animals. PMID:11104804</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.147u4201T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.147u4201T"><span>L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis</p> <p>2017-12-01</p> <p>We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20826087','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20826087"><span>Radiosensitization of cancer cells by hydroxychalcones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pruitt, Rory; Sasi, Nidhish; Freeman, Michael L; Sekhar, Konjeti R</p> <p>2010-10-15</p> <p>Radiation sensitization is significantly increased by proteotoxic stress, such as a heat shock. We undertook an investigation, seeking to identify natural products that induced proteotoxic stress and then determined if a compound exhibited radiosensitizing properties. The hydroxychalcones, 2',5'-dihydroxychalcone (D-601) and 2,2'-dihydroxychalcone (D-501), were found to activate heat shock factor 1 (Hsf1) and exhibited radiation sensitization properties in colon and pancreatic cancer cells. The radiosensitization ability of D-601 was blocked by pretreatment with α-napthoflavone (ANF), a specific inhibitor of cytochrome P450 1A2 (CYP1A2), suggesting that the metabolite of D-601 is essential for radiosensitization. The study demonstrated the ability of hydroxychalcones to radiosensitize cancer cells and provides new leads for developing novel radiation sensitizers. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2946792','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2946792"><span>Radiosensitization of Cancer Cells by Hydroxychalcones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pruitt, Rory; Sasi, Nidhish; Freeman, Michael L.; Sekhar, Konjeti R.</p> <p>2010-01-01</p> <p>Radiation sensitization is significantly increased by proteotoxic stress, such as a heat shock. We undertook an investigation, seeking to identify natural products that induced proteotoxic stress and then determined if a compound exhibited radiosensitizing properties. The hydroxychalcones, 2′,5′-dihydroxychalcone (D-601) and 2,2′-dihydroxychalcone (D-501), were found to activate heat shock factor 1 (Hsf1) and exhibited radiation sensitization properties in colon and pancreatic cancer cells. The radiosensitization ability of D-601 was blocked by pretreatment with α-napthoflavone (ANF), a specific inhibitor of cytochrome P450 1A2 (CYP1A2), suggesting that the metabolite of D-601 is essential for radiosensitization. The study demonstrated the ability of hydroxychalcones to radiosensitize cancer cells and provides new leads for developing novel radiation sensitizers. PMID:20826087</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645091-microrna-modulates-radiation-sensitivity-human-malignant-glioma-cells','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645091-microrna-modulates-radiation-sensitivity-human-malignant-glioma-cells"><span>MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, Ji Hyun; Hwang, Yeo Hyun; Lee, David J.</p> <p></p> <p>Purpose: We investigated whether miR-203 could modulate the radiation sensitivity of glioblastoma (GBM) cells and which target gene(s) could be involved. Methods and Materials: Three human malignant glioma (MG) cell lines and normal human astrocytes were transfected with control microRNA, pre-miR-203, or antisense miR-203. Real-time PCR (RT-PCR), clonogenic assays, immunofluorescence, and invasion/migration assays were performed. To predict the target(s), bioinformatics analyses using microRNA target databases were performed. Results: Overexpression of miR-203 increased the radiation sensitivity of all 3 human MG cell lines and prolonged radiation-induced γ-H2AX foci formation. Bioinformatics analyses suggested that miR-203 could be involved in post-transcriptional control of DNAmore » repair, PI3K/AKT, SRC, and JAK/STAT3 and the vascular signaling pathway. Western blot analysis validated the fact that miR-203 downregulated ATM, RAD51, SRC, PLD2, PI3K-AKT, JAK-STAT3, VEGF, HIF-1α, and MMP2. Overexpression of miR-203 inhibited invasion and migration potentials, downregulated SLUG and Vimentin, and upregulated Claudin-1 and ZO1. Conclusions: These data demonstrate that miR-203 potentially controls DNA damage repair via the PI3K/AKT and JAK/STAT3 pathways and may collectively contribute to the modulation of radiation sensitivity in MG cells by inhibiting DNA damage repair, prosurvival signaling, and epithelium-mesenchyme transition. Taken together, these findings demonstrate that miR-203 could be a target for overcoming the radiation resistance of GBM.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=bacteria+AND+experiments&pg=4&id=EJ939378','ERIC'); return false;" href="https://eric.ed.gov/?q=bacteria+AND+experiments&pg=4&id=EJ939378"><span>UV Radiation Damage and Bacterial DNA Repair Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela</p> <p>2006-01-01</p> <p>This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25539912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25539912"><span>WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri</p> <p>2014-12-24</p> <p>TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22261798-observation-linear-polarization-sensitivity-microwave-radiation-induced-magnetoresistance-oscillations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22261798-observation-linear-polarization-sensitivity-microwave-radiation-induced-magnetoresistance-oscillations"><span>Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mani, R. G.; Ramanayaka, A. N.; Wegscheider, W.</p> <p>2013-12-04</p> <p>We examine the linear polarization sensitivity of the radiation- induced magneto-resistance oscillations by investigating the effect of rotating in-situ the electric field of linearly polarized microwaves relative to the current, in the GaAs/AlGaAs system. We find that the frequency and the phase of the photo-excited magneto-resistance oscillations are insensitive to the polarization. On the other hand, the amplitude of the resistance oscillations are strongly sensitive to the relative orientation between the microwave antenna and the current-axis in the specimen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720010033','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720010033"><span>Factors modifying the response of large animals to low-intensity radiation exposure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Page, N. P.; Still, E. T.</p> <p>1972-01-01</p> <p>In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26022413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26022413"><span>Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M</p> <p>2015-12-01</p> <p>Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ACPD...10.4543B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ACPD...10.4543B"><span>A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.</p> <p>2010-02-01</p> <p>Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22562868-mo-de-session-quantitative-imaging-assessment-tumor-response-radiation-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22562868-mo-de-session-quantitative-imaging-assessment-tumor-response-radiation-therapy"><span>MO-DE-303-03: Session on quantitative imaging for assessment of tumor response to radiation therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bowen, S.</p> <p></p> <p>This session will focus on quantitative imaging for assessment of tumor response to radiation therapy. This is a technically challenging method to translate to practice in radiation therapy. In the new era of precision medicine, however, delivering the right treatment, to the right patient, and at the right time, can positively impact treatment choices and patient outcomes. Quantitative imaging provides the spatial sensitivity required by radiation therapy for precision medicine that is not available by other means. In this Joint ESTRO -AAPM Symposium, three leading-edge investigators will present specific motivations for quantitative imaging biomarkers in radiation therapy of esophageal, headmore » and neck, locally advanced non-small cell lung cancer, and hepatocellular carcinoma. Experiences with the use of dynamic contrast enhanced (DCE) MRI, diffusion- weighted (DW) MRI, PET/CT, and SPECT/CT will be presented. Issues covered will include: response prediction, dose-painting, timing between therapy and imaging, within-therapy biomarkers, confounding effects, normal tissue sparing, dose-response modeling, and association with clinical biomarkers and outcomes. Current information will be presented from investigational studies and clinical practice. Learning Objectives: Learn motivations for the use of quantitative imaging biomarkers for assessment of response to radiation therapy Review the potential areas of application in cancer therapy Examine the challenges for translation, including imaging confounds and paucity of evidence to date Compare exemplary examples of the current state of the art in DCE-MRI, DW-MRI, PET/CT and SPECT/CT imaging for assessment of response to radiation therapy Van der Heide: Research grants from the Dutch Cancer Society and the European Union (FP7) Bowen: RSNA Scholar grant.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22098506-analysis-dose-patient-spouse-caretaker-staff-from-implanted-trackable-radioactive-fiducial-use-radiation-treatment-prostate-cancer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22098506-analysis-dose-patient-spouse-caretaker-staff-from-implanted-trackable-radioactive-fiducial-use-radiation-treatment-prostate-cancer"><span>Analysis of dose to patient, spouse/caretaker, and staff, from an implanted trackable radioactive fiducial for use in the radiation treatment of prostate cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Neustadter, David; Barnea, Gideon; Stokar, Saul</p> <p></p> <p>Purpose: A fiducial tracking system based on a novel radioactive tracking technology is being developed for real-time target tracking in radiation therapy. In this study, the authors calculate the radiation dose to the patient, the spouse/caretaker, and the medical staff that would result from a 100 {mu}Ci Ir192 radioactive fiducial marker permanently implanted in the prostate of a radiation therapy patient. Methods: Local tissue dose was calculated by Monte Carlo simulation. The patient's whole body effective dose equivalent was calculated by summing the doses to the sensitive organs. Exposure of the spouse/caretaker was calculated from the NRC guidelines. Exposure ofmore » the medical staff was based on estimates of proximity to and time spent with the patient. Results: The local dose is below 40 Gy at 5 mm from the marker and below 10 Gy at 10 mm from the marker. The whole body effective dose equivalent to the patient is 64 mSv. The dose to the spouse/caretaker is 0.25 mSv. The annual exposures of the medical staff are 0.2 mSv for a doctor performing implantations and 0.34 mSv for a radiation therapist positioning patients for therapy. Conclusions: The local dose is not expected to have any clinically significant effect on the surrounding tissue which is irradiated during therapy. The dose to the patient is small in comparison to the whole body dose received from the therapy itself. The exposure of all other people is well below the recommended limits. The authors conclude that there is no radiation exposure related contraindication for use of this technology in the radiation treatment of prostate cancer.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18406946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18406946"><span>Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R</p> <p>2008-01-01</p> <p>Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhyE...26...55W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhyE...26...55W"><span>Polarization spectroscopy of positive and negative trions in an InAs quantum dot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ware, Morgan E.; Bracker, Allan S.; Stinaff, Eric; Gammon, Daniel; Gershoni, David; Korenev, Vladimir L.</p> <p>2005-02-01</p> <p>Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..284C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..284C"><span>Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.</p> <p>2018-02-01</p> <p>Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6580022','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6580022"><span>Photon beam position monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kuzay, T.M.; Shu, D.</p> <p>1995-02-07</p> <p>A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29617935','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29617935"><span>Pre-Bombing Population Density in Hiroshima and Nagasaki: Its Measurement and Impact on Radiation Risk Estimates in the Life Span Study of Atomic Bomb Survivors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>French, Benjamin; Funamoto, Sachiyo; Sugiyama, Hiromi; Sakata, Ritsu; Cologne, John; Cullings, Harry M; Mabuchi, Kiyohiko; Preston, Dale L</p> <p>2018-03-29</p> <p>In the Life Span Study of atomic bomb survivors, differences in urbanicity between high-dose and low-dose survivors could confound the association between radiation dose and adverse outcomes. We obtained data on the pre-bombing population distribution in Hiroshima and Nagasaki, and quantified the impact of adjustment for population density on radiation risk estimates for mortality (1950-2003) and incident solid cancer (1958-2009). Population density ranged from 4,671-14,378 and 5,748-19,149 people/km2 in urban regions of Hiroshima and Nagasaki, respectively. Radiation risk estimates for solid cancer mortality were attenuated by 5.1%, but those for all-cause mortality and incident solid cancer were unchanged. There was no overall association between population density and adverse outcomes, but there was evidence that the association between density and mortality differed by age at exposure. Among survivors 10-14 years old in 1945, there was a positive association between population density and risk of all-cause mortality (relative risk, 1.053 per 5,000 people/km2 increase, 95% confidence interval: 1.027, 1.079) and solid cancer mortality (relative risk, 1.069 per 5,000 people/km2 increase, 95% confidence interval: 1.025, 1.115). Our results suggest that radiation risk estimates from the Life Span Study are not sensitive to unmeasured confounding by urban-rural differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1221503-iqid-camera-ionizing-radiation-quantum-imaging-detector','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1221503-iqid-camera-ionizing-radiation-quantum-imaging-detector"><span>The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...</p> <p>2014-06-11</p> <p>We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648697-wee1-kinase-inhibitor-azd1775-radiosensitizes-hepatocellular-carcinoma-regardless-tp53-mutational-status-through-induction-replication-stress','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648697-wee1-kinase-inhibitor-azd1775-radiosensitizes-hepatocellular-carcinoma-regardless-tp53-mutational-status-through-induction-replication-stress"><span>Wee1 Kinase Inhibitor AZD1775 Radiosensitizes Hepatocellular Carcinoma Regardless of TP53 Mutational Status Through Induction of Replication Stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cuneo, Kyle C., E-mail: kcuneo@umich.edu; Morgan, Meredith A.; Davis, Mary A.</p> <p>2016-06-01</p> <p>Purpose: Wee1 kinase inhibitors are effective radiosensitizers in cells lacking a G{sub 1} checkpoint. In this study we examined the potential effect of Wee1 kinase inhibition on inducing replication stress in hepatocellular carcinoma (HCC). Methods and Materials: Five independent datasets from the Oncomine database comparing gene expression in HCC compared to normal tissue were combined and specific markers associated with Wee1 sensitivity were analyzed. We then performed a series of in vitro experiments to study the effect of Wee1 inhibition on irradiated HCC cell lines with varying p53 mutational status. Clonogenic survival assays and flow cytometry using anti-γH2AX and phospho-histone H3more » antibodies with propidium iodide were performed to study the effect of AZD1775 on survival, cell cycle, and DNA repair. Additionally, nucleoside enriched medium was used to examine the effect of altering nucleotide pools on Wee1 targeted radiation sensitization. Results: Our analysis of the Oncomine database found high levels of CDK1 and other cell cycle regulators indicative of Wee1 sensitivity in HCC. In our in vitro experiments, treatment with AZD1775 radiosensitized and chemosensitized Hep3B, Huh7, and HepG2 cell lines and was associated with delayed resolution of γH2AX foci and the induction of pan-nuclear γH2AX staining. Wee1 inhibition attenuated radiation-induced G{sub 2} arrest in the Hep3B (TP53 null) and Huh7 (TP53 mutant) cell lines but not in the TP53 wild-type cell line HepG2. Supplementation with nucleosides reversed the radiation-sensitizing effect of AZD1775 and reduced the amount of cells with pan-nuclear γH2AX staining after radiation. Conclusions: Radiation sensitization with Wee1 inhibition occurs in cells regardless of their p53 mutational status. In this study we show for the first time that replication stress via the overconsumption of nucleotides plays an important role in AZD1775-induced radiation sensitization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4407716-lethal-effects-artificial-ultraviolet-radiation-cereal-rust-uredospores','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4407716-lethal-effects-artificial-ultraviolet-radiation-cereal-rust-uredospores"><span>Lethal effects of artificial ultraviolet radiation on cereal rust uredospores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maddison, A.C.; Manners, J.G.</p> <p>1973-06-01</p> <p>Monochromatic far and near ultraviolet and polychromatic radiation reduced uredospore (urediniospore) germinability in Puccinia striiformis West., P. recondita Rob. & Desm. f. sp. tritici Eriks. & Henn., and P. graminis Pers. f. sp. tritici Eriks. &. Henn. survival decreasing approximately logarithmically beyond an initial shoulder on the dose-survival curve. Infectivity was three to six times more sensitive than germinability to germicidal lamp radiation. Sensitivity to germicidal lamp radiation in P. striiformis was independent of temperature, but was greater at high relative humidities than at low. Reciprocity of time and dose rate was demonstrated when this species was subjected to suchmore » radiation. Action spectra for loss of germiability suggested nucleic acids and proteins respectively as chromophores in P. striiformis and P. graminis: data from photoreactivation experiments implied nucleic acid involvement in both species. Sunlamp and simulated sunlight exposures showed uredospores to be sensitive to naturally occurring wavelengths at dose levels received at the earth's surface. The ratio of the doses necessary to reduce germinability to 10% of the contro1 value for P. striiformis, P. recondita, and P. graminis uredospores was 1.0: 1.5 to 2.2:3 to 3.5 after irradiation by the various sources. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22420546','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22420546"><span>Mechanism of pain relief by low-power infrared irradiation: ATP is an IR-target molecule in nociceptive neurons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yachnev, Igor L; Plakhova, Vera B; Podzorova, Svetlana A; Shelykh, Tatiana N; Rogachevsky, Ilya V; Krylov, Boris V</p> <p>2012-01-01</p> <p>Effects of infrared (IR) radiation generated by a low-power CO2-laser on the membrane of cultured dissociated nociceptive neurons of newborn rat spinal ganglia were investigated using the whole-cell patch-clamp method. Low-power IR radiation diminished the voltage sensitivity of activation gating machinery of slow sodium channels (Na(v)1.8). Ouabain known to block both transducer and pumping functions of Na+,K+-ATPase eliminated IR irradiation effects. The molecular mechanism of interaction of CO2-laser radiation with sensory membrane was proposed. The primary event of this interaction is the process of energy absorption by ATP molecules. The transfer of vibrational energy from Na+,K+- ATPase-bound and vibrationally excited ATP molecules to Na+,K+-ATPase activates this enzyme and converts it into a signal transducer. This effect leads to a decrease in the voltage sensitivity of Na(v)1.8 channels. The effect of IR-radiation was elucidated by the combined application of a very sensitive patch-clamp method and an optical facility with a controlled CO2-laser. As a result, the mechanism of interaction of non-thermal low-power IR radiation with the nociceptive neuron membrane is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750020489','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750020489"><span>Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cimorelli, A. J.; House, F. B.</p> <p>1974-01-01</p> <p>The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..95d3831M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..95d3831M"><span>Quantum correlation measurements in interferometric gravitational-wave detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors</p> <p>2017-04-01</p> <p>Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21617740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21617740"><span>RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J</p> <p>2010-01-01</p> <p>The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3100557','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3100557"><span>RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.</p> <p>2010-01-01</p> <p>The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24679974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24679974"><span>Behavioural thermoregulation and the relative roles of convection and radiation in a basking butterfly.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barton, Madeleine; Porter, Warren; Kearney, Michael</p> <p>2014-04-01</p> <p>Poikilothermic animals are often reliant on behavioural thermoregulation to elevate core-body temperature above the temperature of their surroundings. Butterflies are able to do this by altering body posture and location while basking, however the specific mechanisms that achieve such regulation vary among species. The role of the wings has been particularly difficult to describe, with uncertainty surrounding whether they are positioned to reduce convective heat loss or to maximise heat gained through radiation. Characterisation of the extent to which these processes affect core-body temperature will provide insights into the way in which a species׳ thermal sensitivity and morphological traits have evolved. We conducted field and laboratory measurements to assess how basking posture affects the core-body temperature of an Australian butterfly, the common brown (Heteronympha merope). We show that, with wings held open, heat lost through convection is reduced while heat gained through radiation is simultaneously maximised. These responses have been incorporated into a biophysical model that accurately predicts the core-body temperature of basking specimens in the field, providing a powerful tool to explore how climate constrains the distribution and abundance of basking butterflies. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999NIMPA.426..173M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999NIMPA.426..173M"><span>Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, D.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Foulon, F.; Friedl, M.; Jany, C.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Manfredi, P. F.; Marshall, R. D.; Mishina, M.; Le Normand, F.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration</p> <p>1999-04-01</p> <p>CVD diamond shows promising properties for use as a position-sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardness of diamond we exposed CVD diamond detector samples to 24 Gev/ c and 500 Mev protons up to a fluence of 5×10 15 p/cm 2. We measured the charge collection distance, the average distance electron-hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1×10 15 p/cm 2 and decreases by ≈40% at 5×10 15 p/cm 2. Leakage currents of diamond samples were below 1 pA before and after irradiation. The particle-induced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage current. We conclude that CVD diamond detectors are radiation hard to 24 GeV/ c and 500 MeV protons up to at least 1×10 15p/cm 2 without signal loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24921381','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24921381"><span>Refractive index sensor based on the leaky radiation of a microfiber.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, F; Liu, H; Sheng, C; Zhu, C; Zhu, S N</p> <p>2014-05-19</p> <p>In this work we present a refractive index sensor based on the leaky radiation of a microfiber. The 5.3um diameter microfiber is fabricated by drawing a commercial optical fiber. When the microfiber is immersed into a liquid with larger refractive index than the effective index of fiber mode, the light will leak out through the leaky radiation process. The variation of refractive index of liquid can be monitored by measuring radiation angle of light. The refractive index sensitivity can be over 400 degree/RIU in theory. In the experiment, the variation value 0.001 of refractive index of liquid around this microfiber can be detected through this technique. This work provides a simple and sensitive method for refractive index sensing application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648611-radiation-induced-dedifferentiation-head-neck-cancer-cells-cancer-stem-cells-depends-human-papillomavirus-status','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648611-radiation-induced-dedifferentiation-head-neck-cancer-cells-cancer-stem-cells-depends-human-papillomavirus-status"><span>Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu; Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California; Chen, Allen M.</p> <p></p> <p>Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positivemore » and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...17a2026L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...17a2026L"><span>Simulation of the influence of aerosol particles on Stokes parameters of polarized skylight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L.; Li, Z. Q.; Wendisch, M.</p> <p>2014-03-01</p> <p>Microphysical properties and chemical compositions of aerosol particles determine polarized radiance distribution in the atmosphere. In this paper, the influences of different aerosol properties (particle size, shape, real and imaginary parts of refractive index) on Stokes parameters of polarized skylight in the solar principal and almucantar planes are studied by using vector radiative transfer simulations. The results show high sensitivity of the normalized Stokes parameters due to fine particle size, shape and real part of refractive index of aerosols. It is possible to utilize the strength variations at the peak positions of the normalized Stokes parameters in the principal and almucantar planes to identify aerosol types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080007075','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080007075"><span>Deployable radiator with flexible line loop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)</p> <p>2003-01-01</p> <p>Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3823674','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3823674"><span>Combining poly(ADP-ribose) polymerase 1 (PARP-1) inhibition and radiation in Ewing sarcoma results in lethal DNA damage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Hae-June; Yoon, Changhwan; Schmidt, Benjamin; Park, Do Joong; Zhang, Alexia Y.; Erkizan, Hayriye V.; Toretsky, Jeffrey A.; Kirsch, David G.; Yoon, Sam S.</p> <p>2013-01-01</p> <p>Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly FLI1. The EWS-FLI1 fusion acts in a positive feedback loop to maintain expression of poly(ADP-ribose) polymerase 1 (PARP-1), which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy (RT) on ES. In proliferation assays, the ES cell lines RD-ES and SK-N-MC were much more sensitive than non-ES cell lines to the PARP-1 inhibitor olaparib (Ola) (IC50 0.5–1 uM vs >5 uM) and to radiation (IC50 2–4 Gy vs >6 Gy). PARP-1 inhibition with shRNA or Ola sensitized ES cells but not non-ES cells to RT in both proliferation and colony formation assays. Using the Comet assay, radiation of ES cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hr (mean tail moment 36–54 vs. 26–28) and sustained DNA damage at 24 hr (24–29 vs. 6–8). This DNA damage led to a 2.9–4.0 fold increase in apoptosis and a 1.6–2.4 fold increase in cell death. The effect of PARP-1 inhibition and RT on ES cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of RT (4 Gy), when combined with PARP-1 inhibition, stopped growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in ES amplifies the level and duration of DNA damage caused by RT leading to synergistic increases in apoptosis and cell death in a EWS-FLI1 dependent manner. PMID:23966622</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23511130','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23511130"><span>CT for all or selective approach? Who really needs a cervical spine CT after blunt trauma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duane, Therèse M; Young, Andrew; Mayglothling, Julie; Wilson, Sean P; Weber, William F; Wolfe, Luke G; Ivatury, Rao R</p> <p>2013-04-01</p> <p>Computed tomography (CT) is the standard to screen blunt trauma patients for cervical spine (c-spine) fractures, yet there remains a reluctance to scan all trauma team activations because of radiation exposure and cost. The purpose of this study was to identify predictors of positive CT in an effort to decrease future CT use without compromising patient care. We performed a prospective study in which we documented 18 combined NEXUS and Canadian c-spine criteria on 5,182 patients before CT comparing those with and without fractures to identify predictors of injury. Clinical examination was considered positive if any of the 18 criteria were positive. There were 324 patients with a fracture, for an incidence rate of 6.25%. Fracture patients were older (43.89 ± 18.83 years vs. 38.42 ± 17.45 years, p <; 0.0001), with a lower GCS (Glasgow Coma Scale) score (13.49 ± 3.49 vs. 14.32 ± 2.34, p < 0.0001), than nonfracture patients. Clinical examination had a 100% (324 of 324) sensitivity, 0.62% (30 of 4,858) specificity, 6.29% (324 of 5,152) positive predictive value, and 100% (30 of 30) negative predictive value. A total of 77.8% (14 of 18) criteria were significantly associated with fracture by univariate analysis, seven of which were independent predictors of fracture by logistic regression (midline tenderness, GCS score < 15, age ≥65 years, paresthesias, rollover motor vehicle collision, ejected, never in sitting position in emergency department). Evaluation of these seven factors demonstrated a sensitivity of 99.07% (321 of 324), positive predictive value of 6.95% (321 of 4,617), specificity of 11.57% (562 of 4,858), and negative predictive value of 99.47% (562 of 565). Although sensitive, the standard clinical criteria used to determine patients who need radiographs lack specificity. Based on these results, more narrow criteria should be validated in an effort to limit the number of c-spine CTs while not compromising patient care. Prognostic study, level II; diagnostic study, level II.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/539413-radiation-sensitivity-merkel-cell-carcinoma-cell-lines','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/539413-radiation-sensitivity-merkel-cell-carcinoma-cell-lines"><span>Radiation sensitivity of Merkel cell carcinoma cell lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.</p> <p>1995-07-30</p> <p>Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT)more » assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SCPMA..53.1780Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SCPMA..53.1780Q"><span>Radiation force on absorbing targets and power measurements of a high intensity focused ultrasound (HIFU) source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Zuwen; Zhu, Zhemin; Ye, Shigong; Jiang, Wenhua; Zhu, Houqing; Yu, Jinshen</p> <p>2010-10-01</p> <p>Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al., an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived. A general relation between acoustic power P and normal radiation force F n is obtained under the condition of kr ≫ 1. Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets. The results show that, for a given source, there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected. The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W). It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source, the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA607209','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA607209"><span>Bi-Level Demand-Sensitive LED Street Lighting Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-01</p> <p>Hazards of Electromagnetic Radiation to Fuel HERO : Hazards of Electromagnetic Radiation to Ordnance ...we followed the following guidelines very strictly: 68 • For Hazards of Electromagnetic Radiation to Ordnance (HERO), RF device to be brought in...should be used at least 5 feet from ordnance /explosives. • For, Hazards of Electromagnetic Radiation to Personnel (HERP), HERP Controlled and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4821451','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4821451"><span>Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq; Povirk, Lawrence F.; Hendrickson, Eric A.; Gewirtz, David A.</p> <p>2016-01-01</p> <p>Radiotherapy continues to be a primary modality in the treatment of cancer. DNA damage induced by radiation can promote apoptosis as well as both autophagy and senescence, where autophagy and senescence can theoretically function to prolong tumor survival. A primary aim of this work was to investigate the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiation sensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair proficient HCT116 colon carcinoma cells and a repair deficient Ligase IV (−/−) isogenic cell line. Irradiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines; however inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Irradiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the Ligase IV (−/−) cells; however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors (Olaparib) and (Niraparib) increased the extent of persistent DNA damage induced by radiation as well as the extent of both autophagy and senescence; neither cell line underwent significant apoptosis by radiation alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiation sensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative recovery was evident within a period of 10–20 days. While inhibition of DNA repair via PARP inhibition may initially sensitize tumor cells to radiation via the promotion of senescence, this strategy does not appear to interfere with proliferative recovery, which could ultimately contribute to disease recurrence. PMID:26934368</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.radiologyinfo.org/en/info.cfm?pg=CTenterography','NIH-MEDLINEPLUS'); return false;" href="https://www.radiologyinfo.org/en/info.cfm?pg=CTenterography"><span>CT Enterography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... equipped to deal with them. Advancements in CT technology now allow CT enterography to be performed with even lower radiation doses. Because children are more sensitive to radiation, they should have ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5444072','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5444072"><span>Apparatus for accurately measuring high temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, D.D.</p> <p></p> <p>The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865490','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865490"><span>Apparatus for accurately measuring high temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, Douglas D.</p> <p>1985-01-01</p> <p>The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24283551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24283551"><span>Bronchial and non-bronchial systemic arteries: value of multidetector CT angiography in diagnosis and angiographic embolisation feasibility analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Yuning; Chen, Ziqian; Yang, Xizhang; Zhong, Qun; Zhang, Hongwen; Yang, Li; Xu, Shangwen; Li, Hui</p> <p>2013-12-01</p> <p>The aim of this study is to evaluate the diagnostic performance of multidetector CT angiography (CTA) in depicting bronchial and non-bronchial systemic arteries in patients with haemoptysis and to assess whether this modality helps determine the feasibility of angiographic embolisation. Fifty-two patients with haemoptysis between January 2010 and July 2011 underwent both preoperative multidetector CTA and digital subtraction angiography (DSA) imaging. Diagnostic performance of CTA in depicting arteries causing haemoptysis was assessed on a per-patient and a per-artery basis. The feasibility of the endovascular treatment evaluated by CTA was analysed. Sensitivity, specificity, and positive and negative predictive values for those analyses were determined. Fifty patients were included in the artery-presence-number analysis. In the per-patient analysis, neither CTA (P = 0.25) nor DSA (P = 1.00) showed statistical difference in the detection of arteries causing haemoptysis. The sensitivity, specificity, and positive and negative predictive values were 94%, 100%, 100%, and 40%, respectively, for the presence of pathologic arteries evaluated by CTA, and 98%, 100%, 100%, and 67%, respectively, for DSA. On the per-artery basis, CTA correctly identified 97% (107/110). Fifty-two patients were included in the feasibility analysis. The performance of CTA in predicting the feasibility of angiographic embolisation was not statistically different from the treatment performed (P = 1.00). The sensitivity, specificity, and positive and negative predictive values were 96%, 80%, 98% and 67%, respectively, for CTA. Multidetector CTA is an accurate imaging method in depicting the presence and number of arteries causing haemoptysis. This modality is also useful for determining the feasibility of angiographic embolisation for haemoptysis. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..62..174J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..62..174J"><span>Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jalabert, Eva; Mercier, Flavien</p> <p>2018-07-01</p> <p>DORIS measurements rely on the precise knowledge of the embedded oscillator which is called the Ultra Stable Oscillator (DORIS USO). The important radiations in the South Atlantic Anomaly (SAA) perturb the USO behavior by causing rapid frequency variations when the satellite is flying through the SAA. These variations are not taken into account in standard DORIS processing, since the USO is modelled as a third degree polynomial over 7-10 days. Therefore, there are systematic measurements errors when the satellite passes through SAA. In standard GNSS processing, the clock is directly estimated at each epoch. On Sentinel-3A, the GPS receiver and the DORIS receiver use the same USO. It is thus possible to estimate the behavior of the USO using GPS measurements. This estimated USO behavior can be used in the DORIS processing, instead of the third degree polynomial, hence allowing an estimation of the orbit sensitivity to these USO anomalies. This study shows two main results. First, the SAA effect on the DORIS USO is observed well using GPS measurements. Second, the USO behavior observed with GPS can be used to mitigate the SAA effect. Indeed, when used in Sentinel-3A processing, the resulting DORIS orbit shows improved phase measurements and station positioning for stations inside the SAA (Arequipa and Cachoeira). The phase measurements residuals are improved by up to 10 cm, and station vertical positioning (i.e. on the estimated Up component in the North-East-Up station frame) is improved by up to a few centimeters. However, the orbit itself is not sensitive to the correction because only two stations (out of almost 60) are SAA-sensitive on Sentinel-3A.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4291090','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4291090"><span>Diagnosis of Pediatric Hyperthyroidism: Technetium 99 Uptake Versus Thyroid Stimulating Immunoglobulins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Misra, Madhusmita; Levitsky, Lynne L.</p> <p>2015-01-01</p> <p>Background: Treatment with antithyroid drugs is effective in conditions of increased thyroid hormone production (mostly Graves' Disease; GD), but not in subacute thyroiditis (SAT) or autoimmune thyroiditis (AIT). Positive thyroid stimulating immunoglobulins (TSI) make GD likely. However, not all children with GD have increased TSI. Uptake studies with 123I or 99Tc (99mTc) provide accurate and rapid diagnosis but are expensive and involve radiation exposure. Our objective was to compare TSI with 99mTc uptake for diagnosis of pediatric hyperthyroidism. Methods: We performed a retrospective chart review of hyperthyroid children who had both TSI estimation and 99mTc uptake assessment at presentation. Based on subsequent laboratory studies and follow-up, 37 had GD and 10 had non-GD thyroiditis. The TSI index was considered positive (TSI+) when it was above the upper limit of normal. 99mTc uptake was considered positive (Tc+) for any uptake >0.4% and negative (and low) (Tc-) for uptake ≤0.4%. Results: Forty-seven youth (83% females), aged 12.3±4.6 years, presented with a suppressed thyrotropin (TSH) and elevated free thyroxine and total triiodothyronine. All 37 patients with GD were Tc+ (100% sensitivity and specificity). The sensitivity of TSI for diagnosing GD was 84%, and the specificity was 100%. Six patients with GD were discordant with Tc+ but TSI–. Elevated TSI correlated with Tc+ (p=0.01) with a degree of agreement (kappa) of 0.69. Conclusion: 99mTc has excellent specificity and sensitivity in diagnosing GD. Given additional costs of 99mTc (two and a half times as much as TSI), it is reasonable to reserve 99mTc uptake assessment for hyperthyroidism of unclear etiology and negative TSI. PMID:25257665</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25257665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25257665"><span>Diagnosis of pediatric hyperthyroidism: technetium 99 uptake versus thyroid stimulating immunoglobulins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baskaran, Charumathi; Misra, Madhusmita; Levitsky, Lynne L</p> <p>2015-01-01</p> <p>Treatment with antithyroid drugs is effective in conditions of increased thyroid hormone production (mostly Graves' Disease; GD), but not in subacute thyroiditis (SAT) or autoimmune thyroiditis (AIT). Positive thyroid stimulating immunoglobulins (TSI) make GD likely. However, not all children with GD have increased TSI. Uptake studies with (123)I or (99)Tc ((99m)Tc) provide accurate and rapid diagnosis but are expensive and involve radiation exposure. Our objective was to compare TSI with (99m)Tc uptake for diagnosis of pediatric hyperthyroidism. We performed a retrospective chart review of hyperthyroid children who had both TSI estimation and (99m)Tc uptake assessment at presentation. Based on subsequent laboratory studies and follow-up, 37 had GD and 10 had non-GD thyroiditis. The TSI index was considered positive (TSI+) when it was above the upper limit of normal. (99m)Tc uptake was considered positive (Tc+) for any uptake >0.4% and negative (and low) (Tc-) for uptake ≤0.4%. Forty-seven youth (83% females), aged 12.3±4.6 years, presented with a suppressed thyrotropin (TSH) and elevated free thyroxine and total triiodothyronine. All 37 patients with GD were Tc+ (100% sensitivity and specificity). The sensitivity of TSI for diagnosing GD was 84%, and the specificity was 100%. Six patients with GD were discordant with Tc+ but TSI-. Elevated TSI correlated with Tc+ (p=0.01) with a degree of agreement (kappa) of 0.69. (99m)Tc has excellent specificity and sensitivity in diagnosing GD. Given additional costs of (99m)Tc (two and a half times as much as TSI), it is reasonable to reserve (99m)Tc uptake assessment for hyperthyroidism of unclear etiology and negative TSI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910004783','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910004783"><span>Variable magnification glancing incidence x ray telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoover, Richard (Inventor)</p> <p>1990-01-01</p> <p>A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT..........9A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT..........9A"><span>Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abourabia, Assya</p> <p></p> <p>Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing literature, we hypothesize that oxaliplatin-resistant pancreatic cancer cells, PANC-1/OR, are much more resistant to radiation exposure than their drug-sensitive analogues, PANC-1 cells. We think that the acquisition of chemoresistance entails mechanisms that also impart some loss of radiation sensitivity in PANC-1/OR cells. Responsiveness of pancreatic cancer cells to the radiation was measured by clonogenic survival. The results presented in this thesis show that drug-resistant PANC- 1/OR cells survive high doses of radiation exposure better than PANC-1 cells. Moreover, the presence of gold nanoparticles decreases cell survival when combined with the X-ray radiation. In conclusion, the combination of GNP and X-rays radiation produces a slight radiosensitizing effect for pancreatic cancer cells, PANC-1, and their chemoresistance variant, and we can speculate that this is a good mean of achieving additive cytotoxic effects on pancreatic cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23675629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23675629"><span>Replication of heart rate variability provocation study with 2.4-GHz cordless phone confirms original findings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Havas, Magda; Marrongelle, Jeffrey</p> <p>2013-06-01</p> <p>This is a replication of a study that we previously conducted in Colorado with 25 subjects designed to test the effect of electromagnetic radiation generated by the base station of a cordless phone on heart rate variability (HRV). In this study, we analyzed the response of 69 subjects between the ages of 26 and 80 in both Canada and the USA. Subjects were exposed to radiation for 3-min intervals generated by a 2.4-GHz cordless phone base station (3-8 μW/cm²). A few participants had a severe reaction to the radiation with an increase in heart rate and altered HRV indicative of an alarm response to stress. Based on the HRV analyses of the 69 subjects, 7% were classified as being "moderately to very" sensitive, 29% were "little to moderately" sensitive, 30% were "not to little" sensitive and 6% were "unknown". These results are not psychosomatic and are not due to electromagnetic interference. Twenty-five percent of the subjects' self-proclaimed sensitivity corresponded to that based on the HRV analysis, while 32% overestimated their sensitivity and 42% did not know whether or not they were electrically sensitive. Of the 39 participants who claimed to experience some electrical hypersensitivity, 36% claimed they also reacted to a cordless phone and experienced heart symptoms and, of these, 64% were classified as having some degree of electrohypersensitivity (EHS) based on their HRV response. Novel findings include documentation of a delayed response to radiation. Orthostatic HRV testing combined with provocation testing may provide a diagnostic tool for some sufferers of EHS when they are exposed to electromagnetic emitting devices. The protocol used underestimates reaction to electromagnetic radiation for those who have a delayed autonomic nervous system reaction and it may under diagnose those who have adrenal exhaustion as their ability to mount a response to a stressor is diminished.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930048361&hterms=Hydrology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DHydrology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930048361&hterms=Hydrology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DHydrology"><span>The earth's radiation budget and its relation to atmospheric hydrology. III - Comparison of observations over the oceans with a GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stephens, Graeme L.; Randall, David A.; Wittmeyer, Ian L.; Dazlich, Donald A.; Tjemkes, Stephen</p> <p>1993-01-01</p> <p>The ability of the Colorado State University general circulation model (GCM) to simulate interactions between the hydrological cycle and the radiative processes on earth was examined by comparing various sensitivity relationships established by the model with those observed on earth, and the observed and calculated seasonal cycles of the greenhouse effect and cloud radiative forcing. Results showed that, although the GCM model used was able to simulate well some aspects of the observed sensitivities, there were many serious quantitative differences, including problems in the simulation of the column vapor in the tropics and an excessively strong clear-sky greenhouse effect in the mid-latitudes. These differences led to an underestimation by the model of the sensitivity of the clear-sky greenhouse to changes in sea surface temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1417291-edge-spectroscopy-dilute-radiation-sensitive-systems-using-transition-edge-sensor-array','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1417291-edge-spectroscopy-dilute-radiation-sensitive-systems-using-transition-edge-sensor-array"><span>L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun</p> <p></p> <p>Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1417291-edge-spectroscopy-dilute-radiation-sensitive-systems-using-transition-edge-sensor-array','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1417291-edge-spectroscopy-dilute-radiation-sensitive-systems-using-transition-edge-sensor-array"><span>L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...</p> <p>2017-12-07</p> <p>Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040070939','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040070939"><span>Radiation Assurance for the Space Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian</p> <p>2004-01-01</p> <p>The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29166785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29166785"><span>Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L</p> <p>2017-11-01</p> <p>This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RaPC..124..208C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RaPC..124..208C"><span>Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cosentino, Helio M.; Takinami, Patricia Y. I.; del Mastro, Nelida L.</p> <p>2016-07-01</p> <p>As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10569E..1RF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10569E..1RF"><span>Radiation impact on the characteristics of optical glasses test results on a selected set of materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fruit, Michel; Gussarov, Andrei; Berghmans, Francis; Doyle, Dominic; Ulbrich, Gerd</p> <p>2017-11-01</p> <p>It is well known within the Space optics community that radiation may significantly affect transmittance of glasses. To overcome this drawback, glass manufacturers have developed Cerium doped counterparts of classical glasses. This doped glasses display much less transmittance sensitivity to radiation. Still, the impact of radiation on refractive index is less known and may affect indifferently classical or Cerium doped glasses. ESTEC has initialised an R&D program with the aim of establishing a comprehensive data base gathering radiation sensitivity data, called Dose coefficients, for all the glass optical parameters (transmittance / refractive index / compaction……). The first part of this study, to define the methodology for such a data base, is run by ASTRIUM SAS in co-operation with SCK CEN. This covers theoretical studies associated to testing of a selected set of classical and "radiation hardened" glasses. It is proposed here to present first the theoretical backgrounds of this study and then to give results which have been obtained so far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869439','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869439"><span>Composition and apparatus for detecting gamma radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hofstetter, Kenneth J.</p> <p>1994-01-01</p> <p>A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6978877','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6978877"><span>Composition and apparatus for detecting gamma radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hofstetter, K.J.</p> <p>1994-08-09</p> <p>A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4755780-results-study-effect-ionizing-radiation-retina-eye-certain-light-sensitive-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4755780-results-study-effect-ionizing-radiation-retina-eye-certain-light-sensitive-systems"><span>RESULTS OF A STUDY ON THE EFFECT OF IONIZING RADIATION ON THE RETINA OF THE EYE AND ON CERTAIN LIGHT-SENSITIVE SYSTEMS (in Russian)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Demirchoglyan, G.G.; Allakhverdyan, M.A.; Melik-Mus'yan, A.B.</p> <p>1962-01-01</p> <p>The reactions of the nervous system which are very important for the understanding of the mechanism of radiation injury of the organism were studied by examining the effect of ionizing radiation on the retina, considered as a special, peripheral part of the central nervous system. The methods used included electroretinography or the recording of electrical potentials of the retina by means of contact-lens electrodes, microelectrode techniques, amperometric determination of the hydrosulfide groups in the retina, and the determination of the absorption spectrum of the visual purple rhodapsin together with histochemical analysis. radiations of 1.5, 10, and 15 kr and usingmore » butterflies from unirradiated cocoons as controls. Results of this radiobiological study of the retina agree well with the previously established high radiation sensitivity of this organ, and indicate the importance of protecting it against exposure to ionizing radiation. (TTT)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21605940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21605940"><span>A polymorphism within the promoter of the TGFβ1 gene is associated with radiation sensitivity using an objective radiologic endpoint.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kelsey, Chris R; Jackson, Lauren; Langdon, Scott; Owzar, Kouros; Hubbs, Jessica; Vujaskovic, Zeljko; Das, Shiva; Marks, Lawrence B</p> <p>2012-02-01</p> <p>To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-β1 (TGFβ1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGFβ1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGFβ1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolution melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGFβ1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. 39 white patients with preradiation therapy and ≥ 6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGFβ1 ratios. This study suggests that a polymorphism within the promoter of the TGFβ1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion). Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22056069-polymorphism-within-promoter-tgf-beta-gene-associated-radiation-sensitivity-using-objective-radiologic-endpoint','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22056069-polymorphism-within-promoter-tgf-beta-gene-associated-radiation-sensitivity-using-objective-radiologic-endpoint"><span>A Polymorphism Within the Promoter of the TGF{beta}1 Gene Is Associated With Radiation Sensitivity Using an Objective Radiologic Endpoint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kelsey, Chris R., E-mail: kelse003@mc.duke.edu; Jackson, Lauren; Langdon, Scott</p> <p>2012-02-01</p> <p>Purpose: To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-{beta}1 (TGF{beta}1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Methods and Materials: Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGF{beta}1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGF{beta}1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolutionmore » melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGF{beta}1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. Results: 39 white patients with preradiation therapy and {>=}6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGF{beta}1 ratios. Conclusions: This study suggests that a polymorphism within the promoter of the TGF{beta}1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648622-tumor-cells-surviving-exposure-proton-photon-radiation-share-common-immunogenic-modulation-signature-rendering-them-more-sensitive-cellmediated-killing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648622-tumor-cells-surviving-exposure-proton-photon-radiation-share-common-immunogenic-modulation-signature-rendering-them-more-sensitive-cellmediated-killing"><span>Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell–Mediated Killing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gameiro, Sofia R.; Malamas, Anthony S.; Bernstein, Michael B.</p> <p></p> <p>Purpose: To provide the foundation for combining immunotherapy to induce tumor antigen–specific T cells with proton radiation therapy to exploit the activity of those T cells. Methods and Materials: Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. Results: These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibilitymore » leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. Conclusions: These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10155E..2CL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10155E..2CL"><span>The system of high accuracy UV spectral radiation system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang</p> <p>2016-10-01</p> <p>UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AdSpR..26.2021R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AdSpR..26.2021R"><span>Monitoring of environmental UV radiation by biological dosimeters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rontó, Gy.; Bérces, A.; Gróf, P.; Fekete, A.; Kerékgyártó, T.; Gáspár, S.; Stick, C.</p> <p></p> <p>As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29748889','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29748889"><span>Adjuvant Radiation is Associated with Improved Survival for Select Patients with Non-metastatic Adrenocortical Carcinoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, Daniel W; Chang, Shu-Ching; Bandera, Brad C; Fischer, Trevan D; Wollman, Robert; Goldfarb, Melanie</p> <p>2018-07-01</p> <p>Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy for which surgery is the mainstay of treatment and for which adjuvant radiation is infrequently employed; however, small, single-institution series suggest adjuvant radiation may improve outcomes. All patients with non-metastatic ACC treated with either surgery alone or surgery followed by adjuvant radiation were identified in the 2004-2013 National Cancer Database. Factors associated with receipt of radiation and the impact of adjuvant radiation on survival were determined by multivariable analysis. Of 1184 patients, 171 (14.4%) received adjuvant radiation. Patient demographics were similar between the two groups, but those receiving radiation were more likely to have had positive margins following surgery (37.4 vs. 14.6%; p < 0.001), evidence of vascular invasion (14.0 vs. 5.1%; p = 0.05), and receive concurrent chemotherapy (57.3 vs. 28.8%; p < 0.001). After adjustment for tumor and other treatment factors, only positive margins following surgery was associated with an increased likelihood of receiving adjuvant radiation (odds ratio 3.84, 95% confidence interval [CI] 1.95-7.56). Radiation therapy did not confer a difference in median overall survival in the general cohort. However, for patients with positive margins, adjuvant radiation was associated with a 40% decreased yearly risk of death after adjustment for concurrent chemotherapy (hazard ratio 0.60, 95% CI 0.40-0.92; p = 0.02). This survival advantage was not evident for other traditional high-risk features. Adjuvant radiation appears to decrease the risk of death in ACC patients with positive margins following surgical resection, but only a small percentage are currently receiving radiation. Multidisciplinary treatment with surgery and radiation should be considered for these patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27412508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27412508"><span>Emergency EPR and OSL dosimetry with table vitamins and minerals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sholom, S; McKeever, S W S</p> <p>2016-12-01</p> <p>Several table vitamins, minerals and L-lysine amino acid have been preliminarily tested as potential emergency dosemeters using electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) techniques. Radiation-induced EPR signals were detected in samples of vitamin B2 and L-lysine while samples of multivitamins of different brands as well as mineral Mg demonstrated prominent OSL signals after exposure to ionizing radiation doses. Basic dosimetric properties of the radiation-sensitive substances were studied, namely dose response, fading of the EPR or OSL signals and values of minimum measurable doses (MMDs). For EPR-sensitive samples, the EPR signal is converted into units of dose using a linear dose response and correcting for fading using the measured fading dependence. For OSL-sensitive materials, a multi-aliquot, enhanced-temperature protocol was developed to avoid the problem of sample sensitization and to minimize the influence of signal fading. The sample dose in this case is also evaluated using the dose response and fading curves. MMDs of the EPR-sensitive samples were below 2 Gy while those of the OSL-sensitive materials were below 500 mGy as long as the samples are analyzed within 1 week after exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Natur.518...49M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Natur.518...49M"><span>Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martínez-Botí, M. A.; Foster, G. L.; Chalk, T. B.; Rohling, E. J.; Sexton, P. F.; Lunt, D. J.; Pancost, R. D.; Badger, M. P. S.; Schmidt, D. N.</p> <p>2015-02-01</p> <p>Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ChPhC..34.1768J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ChPhC..34.1768J"><span>Comparison of linac-based fractionated stereotactic radiotherapy and tomotherapy treatment plans for intra-cranial tumors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jang, Bo Shim; Suk, Lee; Sam, Ju Cho; Sang, Hoon Lee; Juree, Kim; Kwang, Hwan Cho; Chul, Kee Min; Hyun Do, Huh; Rena, Lee; Dae, Sik Yang; Young, Je Park; Won, Seob Yoon; Chul, Yong Kim; Soo, Il Kwon</p> <p>2010-11-01</p> <p>This study compares and analyzes stereotactic radiotherapy using tomotherapy and linac-based fractionated stereotactic radiotherapy in the treatment of intra-cranial tumors, according to some cases. In this study, linac-based fractionated stereotactic radiotherapy and tomotherapy treatment were administered to five patients diagnosed with intra-cranial cancer in which the dose of 18-20 Gy was applied on 3-5 separate occasions. The tumor dosing was decided by evaluating the inhomogeneous index (II) and conformity index (CI). Also, the radiation-sensitive tissue was evaluated using low dose factors V1, V2, V3, V4, V5, and V10, as well as the non-irradiation ratio volume (NIV). The values of the II for each prescription dose in the linac-based non-coplanar radiotherapy plan and tomotherapy treatment plan were (0.125±0.113) and (0.090±0.180), respectively, and the values of the CI were (0.899±0.149) and (0.917±0.114), respectively. The low dose areas, V1, V2, V3, V4, V5, and V10, in radiation-sensitive tissues in the linac-based non-coplanar radiotherapy plan fell into the ranges 0.3%-95.6%, 0.1%-87.6%, 0.1%-78.8%, 38.8%-69.9%, 26.6%-65.2%, and 4.2%-39.7%, respectively, and the tomotherapy treatment plan had ranges of 13.6%-100%, 3.5%-100%, 0.4%-94.9%, 0.2%-82.2%, 0.1%-78.5%, and 0.3%-46.3%, respectively. Regarding the NIV for each organ, it is possible to obtain similar values except for the irradiation area of the brain stem. The percentages of NIV 10%, NIV20%, and NIV30%for the brain stem in each patient were 15%-99.8%, 33.4%-100%, and 39.8%-100%, respectively, in the fractionated stereotactic treatment plan and 44.2%-96.5%, 77.7%-99.8%, and 87.8%-100%, respectively, in the tomotherapy treatment plan. In order to achieve higher-quality treatment of intra-cranial tumors, treatment plans should be tailored according to the isodose target volume, inhomogeneous index, conformity index, position of the tumor upon fractionated stereotactic radiosurgery, and radiation dosage for radiation-sensitive tissues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15958537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15958537"><span>DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shinohara, Eric T; Geng, Ling; Tan, Jiahui; Chen, Heidi; Shir, Yu; Edwards, Eric; Halbrook, James; Kesicki, Edward A; Kashishian, Adam; Hallahan, Dennis E</p> <p>2005-06-15</p> <p>DNA-dependent protein kinase (DNA-PK)-defective severe combined immunodeficient (SCID) mice have a greater sensitivity to ionizing radiation compared with wild-type mice due to deficient repair of DNA double-strand break. SCID cells were therefore studied to determine whether radiosensitization by the specific inhibitor of DNA-PK, IC87361, is eliminated in the absence of functional DNA-PK. IC87361 enhanced radiation sensitivity in wild-type C57BL6 endothelial cells but not in SCID cells. The tumor vascular window model was used to assess IC87361-induced radiosensitization of SCID and wild-type tumor microvasculature. Vascular density was 5% in irradiated SCID host compared with 50% in C57BL6 mice (P < 0.05). IC87361 induced radiosensitization of tumor microvasculature in wild-type mice that resembled the radiosensitive phenotype of tumor vessels in SCID mice. Radiosensitization by IC87361 was eliminated in SCID tumor vasculature, which lack functional DNA-PK. Irradiated LLC and B16F0 tumors implanted into SCID mice showed greater tumor growth delay compared with tumors implanted into either wild-type C57BL6 or nude mice. Furthermore, LLC tumors treated with radiation and IC87361 showed tumor growth delay that was significantly greater than tumors treated with radiation alone (P < 0.01 for 3 Gy alone versus 3 Gy + IC87361). DNA-PK inhibitors induced no cytotoxicity and no toxicity in mouse normal tissues. Mouse models deficient in enzyme activity are useful to assess the specificity of novel kinase inhibitors. DNA-PK is an important target for the development of novel radiation-sensitizing drugs that have little intrinsic cytotoxicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990054146&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMagnetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990054146&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMagnetic%2Benergy"><span>Chromospheric and Coronal Structure of Polar Plumes. 1; Magnetic Structure and Radiative Energy Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Maxwell J.; Oluseyi, Hakeem M.; Walker, Arthur B. C.; Hoover, Richard B.; Barbee, Troy W., Jr.</p> <p>1997-01-01</p> <p>The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully launched from White Sands Missile Range, New Mexico, on May 13, 1991 at 19:05 UT. The telescope systems onboard the MSSTA obtained several full disk solar images in narrow bandpasses centered around strong soft X-ray, EUV, and FUV emission lines. Each telescope was designed to be sensitive to the coronal plasmas at a particular temperature, for seven temperatures ranging from 20,000 K to 4,000,000 K. We report here on the images obtained during the initial flight of the MSSTA, and on the chromospheric and coronal structure of polar plumes observed over both poles of the Sun. We have also co-aligned the MSSTA images with Kitt Peak magnetograms taken on the same day. We are able to positively identify the magnetic structures underlying the polar plumes we analyze as unipolar. We discuss the plume observations and present a radiative energy balance model derived from them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PMB....44.2063B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PMB....44.2063B"><span>Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breen, S. L.; Battista, J. J.</p> <p>1999-08-01</p> <p>Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10473214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10473214"><span>Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breen, S L; Battista, J J</p> <p>1999-08-01</p> <p>Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-03pd0603.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-03pd0603.html"><span>Delta II - SIRTF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-06</p> <p>The Space Infrared Telescope Facility (SIRTF) is rotated to a vertical position in the clean room of Building AE today following its arrival from the Lockheed Martin plant in Sunnyvale, Calif. Final preparations for its launch aboard a Delta II rocket will now commence. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter). Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. SIRTF is scheduled for launch April 15 at 4:34:07 a.m. EDT from Launch Complex 17-B, Cape Canaveral Air Force Station.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-03pd0602.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-03pd0602.html"><span>KSC-03pd0602</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-06</p> <p>KENNEDY SPACE CENTER, FLA. -- The Space Infrared Telescope Facility (SIRTF) rests in a horizontal position in the clean room of Building AE today following its arrival from the Lockheed Martin plant in Sunnyvale, Calif. Final preparations for its launch aboard a Delta II rocket will now commence. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter). Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. SIRTF is scheduled for launch from Launch Complex 17-B, Cape Canaveral Air Force Station.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23431778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23431778"><span>[Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing</p> <p>2012-11-01</p> <p>By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394969-using-visar-assess-band-isotropy-hohlraums','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394969-using-visar-assess-band-isotropy-hohlraums"><span>Using VISAR to assess the M-band isotropy in hohlraums</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lanier, Nicholas Edward; Kline, John L.; Morton, John</p> <p>2016-09-27</p> <p>In laser based radiation flow experiments, drive variability can often overwhelm the physics sensitivity that one seeks to quantify. Hohlraums can help by providing a more symmetrized, Planckian-like source. However, at higher temperatures, the hohlraum’s actual emission can deviate significantly from a truly blackbody, Lambertian source. At the National Ignition Facility (NIF), Dante provides the best quantification of hohlraum output. Unfortunately, limited diagnostic access coupled with NIF’s natural symmetry does not allow for Dante measurements at more than two angles. As part of the CEPHEUS campaign on NIF, proof-of-principle experiments to better quantify the gold M-band isotropy were conducted. Thesemore » experiments positioned beryllium/aluminum mirrors at differing angles, offset from the hohlraum. Filtering removes the thermal emission of the hohlraum and the remaining M-band radiation is preferentially absorbed in the aluminum layer. The subsequent hydrodynamic motion is measured via VISAR. Although indirect, this M-band measurement can be made at any angle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22226338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22226338"><span>Giving radioiodine? Think about airport security alarms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaniuka-Jakubowska, S; Lewczuk, A; Mizan-Gross, K; Obołończyk, L; Lass, P; Sworczak, K</p> <p>2012-01-01</p> <p>An increased sensitivity of airport detectors, a growing number of isotopic tests, and globalization of the society have raised a number of false positive radioactive alarms at airports and public places. This paper presents two new cases of patients who triggered airport security alarms after receiving 740MBq of (131)I for non-toxic goitre and attempts to compare surprisingly limited literature concerning this problem. A 57-year-old man triggered a security alarm at three different airports on the 17th, 28th, and 31st day after radioiodine exposure. Interestingly enough, in the meantime, on the 18th and 22nd day, no radiation was detected in him at the airport where he was twice detained as a source of radiation later on. The second case presents a 45-year-old woman who activated security alarm detectors while crossing a border on her coach trip 28 days after radioiodine administration. Copyright © 2011 Elsevier España, S.L. and SEMNIM. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DPPCP8011P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DPPCP8011P"><span>X-ray GEM Detectors for Burning Plasma Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.</p> <p>2009-11-01</p> <p>The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.931a2019K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.931a2019K"><span>Performance characteristics of a personal gamma spectrometer based on a SiPM array for radiation monitoring applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kefalidis, E.; Kandarakis, I.; David, S.</p> <p>2017-11-01</p> <p>Due to the increased radiation pollution in the environment as a result of the often nuclear accidents taking place around the world, the need for efficient, reliable, smart and handheld radiation measurement systems has been born especially in daily routine. In this study it is evaluated the angular response of two crystal non-pixelated Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillators with dimensions at 10x10x10mm3 & 10x10x20mm3 under 137Cs isotope emitting at 662 keV coupled to a 4x4 discrete silicon photomultiplier array (SiPM). A symmetric resistive voltage division matrix was applied reducing the array 16 outputs to 4 analog position signals which digitized by a 4 Channel 12 bit 250 MS/s desktop waveform digitizer. The number of the evaluated angles set at 5 (0°, 45°, 90°, 135°, 180°) and a variety of measured values are presented (energy resolution, sensitivity, figure of merit etc). The encouraging results such as energy resolution about 9% and figure of merit equal to 4.11 for 10x10x10mm3 and 4.43 for 10x10x20mm3 crystal, prove that this system could build up to a compact radiation sensor for integration into mobile applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........80T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........80T"><span>Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tornga, Shawn R.</p> <p></p> <p>The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AAS...22240205C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AAS...22240205C"><span>Optimization of Micro-Spec, an Ultra-Compact High-Performance Spectrometer for Far-Infrared Astronomy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cataldo, Giuseppe; Moseley, S. H.; Wollack, E.; Hsieh, W.; Huang, W.; Stevenson, T.</p> <p>2013-06-01</p> <p>Micro-Spec (µ-Spec) is a high-sensitivity direct-detection spectrometer operating in the far-infrared and submillimeter regime. When combined with a cryogenic telescope, it provides an enabling technology for studying the epoch of reionization and initial galaxy formation. As a direct-detection spectrometer, µ-Spec can provide high sensitivity under the low background conditions provided by cryogenic telescopes such as the space infrared telescope for cosmology and astrophysics SPICA. The µ-Spec modules use low-loss superconducting microstrip transmission lines implemented on a single 4-inch-diameter wafer. Such a dramatic size reduction is enabled by the use of silicon, a material with an index of refraction about three times that of vacuum, which thus allows the microstrip lines to be one third their vacuum length. Using a large number of modules as well as reducing the negative effects of stray light also contributes positively to the enhanced sensitivity of such an instrument. µ-Spec can be compared to a grating spectrometer, in which the phase retardation generated by the reflection from the grating grooves is instead produced by propagation through transmission lines of different length. The µ-Spec optical design is based on the stigmatization and minimization of the light path function in a two-dimensional diffractive region. The power collected through a broadband antenna is progressively divided by binary microstrip power dividers. The position of the radiators is selected to provide zero phase errors at two stigmatic points, and a third stigmatic point is generated by introducing a differential phase shift in each radiator. To optimize the overall efficiency of the instrument, the emitters are directed to the center of the focal surface. A point design was developed for initial demonstration. Because of losses to other diffraction orders, the efficiency of the design presented is about 30%. Design variations on this implementation are illustrated which can lead to near-unit efficiency and will be the basis of future instruments. Measurements are being conducted to validate the designs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec173-60.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec173-60.pdf"><span>49 CFR 173.60 - General packaging requirements for explosives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec173-60.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec173-60.pdf"><span>49 CFR 173.60 - General packaging requirements for explosives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol2/pdf/CFR-2012-title49-vol2-sec173-60.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol2/pdf/CFR-2012-title49-vol2-sec173-60.pdf"><span>49 CFR 173.60 - General packaging requirements for explosives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol2/pdf/CFR-2014-title49-vol2-sec173-60.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol2/pdf/CFR-2014-title49-vol2-sec173-60.pdf"><span>49 CFR 173.60 - General packaging requirements for explosives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol2/pdf/CFR-2013-title49-vol2-sec173-60.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol2/pdf/CFR-2013-title49-vol2-sec173-60.pdf"><span>49 CFR 173.60 - General packaging requirements for explosives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... initiation that is sensitive to external electromagnetic radiation, must have its means of initiation effectively protected from electromagnetic radiation sources (for example, radar or radio transmitters...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1225112-evaluation-high-level-clouds-cloud-resolving-model-simulations-arm-kwajex-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1225112-evaluation-high-level-clouds-cloud-resolving-model-simulations-arm-kwajex-observations"><span>Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas</p> <p>2015-11-05</p> <p>In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014LSSR....1...67K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014LSSR....1...67K"><span>Inhibition of microRNA-31-5p protects human colonic epithelial cells against ionizing radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sang Bum; Zhang, Lu; Barron, Summer; Shay, Jerry W.</p> <p>2014-04-01</p> <p>MicroRNAs (miRNAs), endogenous non-coding small RNAs, are sensitive to environmental changes, and their differential expression is important for adaptation to the environment. However, application of miRNAs as a clinical prognostic or diagnostic tool remains unproven. In this study we demonstrate a chronic/persistent change of miRNAs from the plasma of a colorectal cancer susceptible mouse model (CPC;Apc) about 250 days after exposure to a simulated solar particle event (SPE). Differentially expressed miRNAs were identified compared to unirradiated control mice, including miR-31-5p, which we investigated further. To address the cellular function of miR-31-5p, we transfected a miR-31-5p mimic (sense) or inhibitor (antisense) into immortalized human colonic epithelial cells followed by gamma-irradiation. A miR-31-5p mimic sensitized but a miR-31-5p inhibitor protected colonic epithelial cells against radiation induced killing. We found that the miR-31-5p mimic inhibited the induction of hMLH1 expression after irradiation, whereas the miR-31-5p inhibitor increased the basal level of hMLH1 expression. The miR-31-5p inhibitor failed to modulate radiosensitivity in an hMLH1-deficient HCT116 colon cancer cell line but protected HCT116 3-6 and DLD-1 (both hMLH1-positive) colon cancer cell lines. Our findings demonstrate that miR-31-5p has an important role in radiation responses through regulation of hMLH1 expression. Targeting this pathway could be a promising therapeutic strategy for future personalized anti-cancer radiotherapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22526182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22526182"><span>[Organ-limited prostate cancer with positive resection margins. Importance of adjuvant radiation therapy].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Porres, D; Pfister, D; Brehmer, B; Heidenreich, A</p> <p>2012-09-01</p> <p>For pT3 prostate cancer with positive resection margins, the importance of postoperative radiation therapy is confirmed by a high level of evidence. However, for the pT2,R1 situation prospective, randomized studies concerning this question are lacking. Despite better local tumor control in the pT2 stage the PSA recurrence rate lies between 25% and 40% and positive margins are an independent factor for recurrence. Retrospective studies suggest a positive effect of adjuvant or salvage radiation for the oncological outcome in the pT2,R1 situation. On the other hand the side effects profile, with a potentially negative influence of postoperative continence and various delayed toxicities, is not insignificant despite modern radiation techniques and in the era of ultrasensitive PSA analysis should be considered in the risk-benefit assessment. As long as the optimal initiation of postoperative radiation therapy is unclear, the assessment of indications for adjuvant or salvage radiation for organ-limited prostate cancer with positive resection margins should be made after an individual patient consultation and under consideration of the recurrence risk factors, such as the Gleason grade and the localization and extent of the resection margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60477&keyword=radiation+AND+ionizing&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60477&keyword=radiation+AND+ionizing&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000057311','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000057311"><span>Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Perlwitz, Jan; Tegen, Ina; Miller, Ron L.</p> <p>2000-01-01</p> <p>The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2831R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2831R"><span>Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael</p> <p>2017-10-01</p> <p>Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28012507','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28012507"><span>The utility of a handheld metal detector in detection and localization of pediatric metallic foreign body ingestion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nation, Javan; Jiang, Wen</p> <p>2017-01-01</p> <p>To test the ability of a handheld metal detector (HHMD) to identify the presence and location of ingested metallic foreign bodies (MFBs) in children. Prospective case series enrolling children suspected of metallic foreign body ingestion presenting to the Emergency Department. Thirty-eight children were enrolled and the HHMD was used to detect the presence and location of a MFB. Results were compared to standard radiographic studies. Thirty-seven of the 38 ingested foreign bodies were MFBs. Of the 37 MFBs, the HHMD positively identified 33, and 4 were missed by HHMD but identified on radiography. When positive, the location indicated by HHMD correlated 100% with radiograph. There were 33 true positives, 0 false positives, 4 false negatives, and 1 true negative. This resulted in a sensitivity of 89% (95% CI of 75%-96%) and specificity of 100% (95% CI of 2.5%-100%). Our study demonstrates the accuracy of HHMD in the identification and localization of metallic foreign bodies. We propose an emergency room foreign body protocol that uses HHMD as an early screening tool in triage in order to expedite the process of obtaining Otolaryngology consultation and potentially shorten the wait time to the operating room or discharge. In instances were outside films are previously performed, HHMD use may be able to minimize the overall radiation exposure to children by obviating the need for repeat radiographs. As the sensitivity is not 100%, a negative HHMD screening does not negate the need for a standard radiograph in order to avoid missed MFBs. HHMD is best suited for detection of coins, which accounts for the majority of the MFB ingestions, and may not be suitable for all metallic objects since the amount of metal may decrease its sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9677E..1VG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9677E..1VG"><span>Research on the method of establishing the total radiation meter calibration device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Jianqiang; Xia, Ming; Xia, Junwen; Zhang, Dong</p> <p>2015-10-01</p> <p>Pyranometer is an instrument used to measure the solar radiation, according to pyranometer differs as installation state, can be respectively measured total solar radiation, reflected radiation, or with the help of shading device for measuring scattering radiation. Pyranometer uses the principle of thermoelectric effect, inductive element adopts winding plating type multi junction thermopile, its surface is coated with black coating with high absorption rate. Hot junction in the induction surface, while the cold junction is located in the body, the cold and hot junction produce thermoelectric potential. In the linear range, the output signal is proportional to the solar irradiance. Traceability to national meteorological station, as the unit of the national legal metrology organizations, the responsibility is to transfer value of the sun and the earth radiation value about the national meteorological industry. Using the method of comparison, with indoor calibration of solar simulator, at the same location, standard pyranometer and measured pyranometer were alternately measured radiation irradiance, depending on the irradiation sensitivity standard pyranometer were calculated the radiation sensitivity of measured pyranometer. This paper is mainly about the design and calibration method of the pyranometer indoor device. The uncertainty of the calibration result is also evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10488E..13W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10488E..13W"><span>Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woulfe, P.; O'Keeffe, S.; Sullivan, F. J.</p> <p>2018-02-01</p> <p>An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is developed, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700μm of a 1mm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for low dose rate (LDR) brachytherapy, in prostate cancer treatment, providing radiation oncologists with real-time information of the radiation dose to the target area and/or nearby organs at risk (OARs). The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to 0.397mCi of Iodine125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28622936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28622936"><span>Acoustic radiation force control: Pulsating spherical carriers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rajabi, Majid; Mojahed, Alireza</p> <p>2018-02-01</p> <p>The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21979858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21979858"><span>How do I deal with the axilla in patients with a positive sentinel lymph node?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Falkson, Conrad B</p> <p>2011-12-01</p> <p>Optimal management of the axilla in a patient with a positive sentinel node biopsy is not yet defined.These patients usually have Breast Conserving Surgery and receive adjuvant systemic therapy and whole breast radiation.Treatment options for the axilla include: no further surgery with or without radiation completion axillary nodal dissection with or without radiation Radiation options in addition to whole breast radiation include axillary and supraclavicular nodal irradiation regional nodal irradiationincludes supraclavicular and internal mammary nodes Completion axillary dissection has been standard practice in patients with positive sentinel nodes. the number of involved nodes provides prognostic information. theoretically improves local control, but may be obviated by systemic chemotherapy. but avoidance of dissection may not adversely affect locoregional control or survival. dissection has significant morbidity so safe avoidance is desirable. There is little worldwide concordance on the use of radiation: whole breast radiation (commonly used after breast conserving surgery) may radiate the lower axilla supraclavicular radiation is most commonly recommended for patients with four or more nodes but may confer a survival benefit on patients with lower risk disease. adding nodal irradiation reduces local recurrence with only modest toxicity. Adjuvant systemic therapy provides a survival benefit for patients with nodal disease. Most will receive cytostatic chemotherapy containing an anthracycline and a taxane. Hormone therapy is appropriate for estrogen receptor positive disease. The extent to which systemic therapy controls microscopic nodal disease is unknown. Node positive patients should generally receive adjuvant chemotherapy.A small group of patients benefit from specific nodal therapy. Further studies are needed to better identify these patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28692389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28692389"><span>Evaluation of the Components of the North Carolina Syndromic Surveillance System Heat Syndrome Case Definition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harduar Morano, Laurel; Waller, Anna E</p> <p></p> <p>To improve heat-related illness surveillance, we evaluated and refined North Carolina's heat syndrome case definition. We analyzed North Carolina emergency department (ED) visits during 2012-2014. We evaluated the current heat syndrome case definition (ie, keywords in chief complaint/triage notes or International Classification of Diseases, Ninth Revision, Clinical Modification [ ICD-9-CM] codes) and additional heat-related inclusion and exclusion keywords. We calculated the positive predictive value and sensitivity of keyword-identified ED visits and manually reviewed ED visits to identify true positives and false positives. The current heat syndrome case definition identified 8928 ED visits; additional inclusion keywords identified another 598 ED visits. Of 4006 keyword-identified ED visits, 3216 (80.3%) were captured by 4 phrases: "heat ex" (n = 1674, 41.8%), "overheat" (n = 646, 16.1%), "too hot" (n = 594, 14.8%), and "heatstroke" (n = 302, 7.5%). Among the 267 ED visits identified by keyword only, a burn diagnosis or the following keywords resulted in a false-positive rate >95%: "burn," "grease," "liquid," "oil," "radiator," "antifreeze," "hot tub," "hot spring," and "sauna." After applying the revised inclusion and exclusion criteria, we identified 9132 heat-related ED visits: 2157 by keyword only, 5493 by ICD-9-CM code only, and 1482 by both (sensitivity = 27.0%, positive predictive value = 40.7%). Cases identified by keywords were strongly correlated with cases identified by ICD-9-CM codes (rho = .94, P < .001). Revising the heat syndrome case definition through the use of additional inclusion and exclusion criteria substantially improved the accuracy of the surveillance system. Other jurisdictions may benefit from refining their heat syndrome case definition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870390','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870390"><span>Smart, passive sun facing surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hively, Lee M.</p> <p>1996-01-01</p> <p>An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/224976','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/224976"><span>Smart, passive sun facing surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hively, L.M.</p> <p>1996-04-30</p> <p>An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position. 17 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4768580-radiation-damage-satellite-electronic-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4768580-radiation-damage-satellite-electronic-systems"><span>RADIATION DAMAGE TO SATELLITE ELECTRONIC SYSTEMS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rogers, S.C.</p> <p></p> <p>The radiation sensitivity of satellite electronic systems was examined in order to determine the limitations they place on satellite life. The effects of radiation on components are briefly reviewed. Methods are presented and illustrated for determining the minimum radiation level at which circuit failure could occur. The effects of shielding on the radiation belt levels are discussed. It is shown that the effects of space radiation on satellite circuits, in general, can be made negligible by using good design practices. (M.C.G.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/877884','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/877884"><span>Ultrafast Radiation Detection by Modulation of an Optical Probe Beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vernon, S P; Lowry, M E</p> <p>2006-02-22</p> <p>We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors aremore » proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S/N {approx} 30 at x-ray energies {approx} 10 keV.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4209005','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4209005"><span>Imaging for Appendicitis: Should Radiation-induced Cancer Risks Affect Modality Selection?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kiatpongsan, Sorapop; Meng, Lesley; Eisenberg, Jonathan D.; Herring, Maurice; Avery, Laura L.; Kong, Chung Yin</p> <p>2014-01-01</p> <p>Purpose To compare life expectancy (LE) losses attributable to three imaging strategies for appendicitis in adults—computed tomography (CT), ultrasonography (US) followed by CT for negative or indeterminate US results, and magnetic resonance (MR) imaging—by using a decision-analytic model. Materials and Methods In this model, for each imaging strategy, LE losses for 20-, 40-, and 65-year-old men and women were computed as a function of five key variables: baseline cohort LE, test performance, surgical mortality, risk of death from delayed diagnosis (missed appendicitis), and LE loss attributable to radiation-induced cancer death. Appendicitis prevalence, test performance, mortality rates from surgery and missed appendicitis, and radiation doses from CT were elicited from the published literature and institutional data. LE loss attributable to radiation exposure was projected by using a separate organ-specific model that accounted for anatomic coverage during a typical abdominopelvic CT examination. One- and two-way sensitivity analyses were performed to evaluate effects of model input variability on results. Results Outcomes across imaging strategies differed minimally—for example, for 20-year-old men, corresponding LE losses were 5.8 days (MR imaging), 6.8 days (combined US and CT), and 8.2 days (CT). This order was sensitive to differences in test performance but was insensitive to variation in radiation-induced cancer deaths. For example, in the same cohort, MR imaging sensitivity had to be 91% at minimum (if specificity were 100%), and MR imaging specificity had to be 62% at minimum (if sensitivity were 100%) to incur the least LE loss. Conversely, LE loss attributable to radiation exposure would need to decrease by 74-fold for combined US and CT, instead of MR imaging, to incur the least LE loss. Conclusion The specific imaging strategy used to diagnose appendicitis minimally affects outcomes. Paradigm shifts to MR imaging owing to concerns over radiation should be considered only if MR imaging test performance is very high. © RSNA, 2014 PMID:24988435</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24511645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24511645"><span>Molecular imaging in the framework of personalized cancer medicine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belkić, Dzevad; Belkić, Karen</p> <p>2013-11-01</p> <p>With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21360978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21360978"><span>[Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Jun; Xiao, Dongping; Jian, Xin</p> <p>2010-11-01</p> <p>The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/4366184','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/4366184"><span>Final comprehensive report of overall activities of AEC contract AT(30-1)- 3269 from its initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p>1973-01-01</p> <p>Research accomplishments are reported for the following projects: determination of the minimum level of x radiation in rats to alter the taste threshold; determination of the permanency of such alteration; determination of the dose and time dependency of the alteration; changes in hypothalamic function following low doses of ionizing radiation; development of new behavioral technique for determination of taste thresholds; correlation of taste sensitivity changes with alteration in taste bud morphology; effects of olfaction on taste thresholds; properties of taste material that influence x radiation effects on taste; determination of effects of in utero x-irradiation on taste function in themore » adult rat; and effects of ingestion of heavy metals on taste acuity and response of taste sensitivity to x radiation. (HLW)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001042','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001042"><span>Changes in Extratropical Storm Track Cloudiness 1983-2008: Observational Support for a Poleward Shift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bender, Frida A-M.; Rananathan, V.; Tselioudis, G.</p> <p>2012-01-01</p> <p>Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined using the observed cloud structures as proxies for cyclone activity. Different data analysis methods are employed, with the objective to address difficulties and uncertainties in using ISCCP data for regional trend analysis. In particular, three data filtering techniques are explored; excluding specific problematic regions from the analysis, regressing out a spurious viewing geometry effect, and excluding specific cloud types from the analysis. These adjustments all, to varying degree, moderate the cloud trends in the original data but leave the qualitative aspects of those trends largely unaffected. Therefore, our analysis suggests that ISCCP data can be used to interpret regional trends in cloudiness, provided that data and instrumental artefacts are recognized and accounted for. The variation in magnitude between trends emerging from application of different data correction methods, allows us to estimate possible ranges for the observational changes. It is found that the storm tracks, here represented by the extent of the midlatitude-centered band of maximum cloud cover over the studied ocean basins, experience a poleward shift as well as a narrowing over the 25 year period covered by ISCCP. The observed magnitudes of these effects are larger than in current generation climate models (CMIP3). The magnitude of the shift is particularly large in the northern hemisphere Atlantic. This is also the one of the four regions in which imperfect data primarily prevents us from drawing firm conclusions. The shifted path and reduced extent of the storm track cloudiness is accompanied by a regional reduction in total cloud cover. This decrease in cloudiness can primarily be ascribed to low level clouds, whereas the upper level cloud fraction actually increases, according to ISCCP. Independent satellite observations of radiative fluxes at the top of the atmosphere are consistent with the changes in total cloud cover. The shift in cloudiness is also supported by a shift in central position of the mid-troposphere meridional temperature gradient. We do not find support for aerosols playing a significant role in the satellite observed changes in cloudiness. The observed changes in storm track cloudiness can be related to local cloud-induced changes in radiative forcing, using ERBE and CERES radiative fluxes. The shortwave and the longwave components are found to act together, leading to a positive (warming) net radiative effect in response to the cloud changes in the storm track regions, indicative of positive cloud feedback. Among the CMIP3 models that simulate poleward shifts in all four storm track areas, all but one show decreasing cloud amount on a global mean scale in response to increased CO2 forcing, further consistent with positive cloud feedback. Models with low equilibrium climate sensitivity to a lesser extent than higher-sensitivity models simulate a poleward shift of the storm tracks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22490410-azimuthal-anisotropy-scattered-radiation-grazing-incidence-ray-fluorescence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22490410-azimuthal-anisotropy-scattered-radiation-grazing-incidence-ray-fluorescence"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Das, Gangadhar, E-mail: gdas@rrcat.gov.in; Tiwari, M. K.; Singh, A. K.</p> <p></p> <p>The Compton and elastic scattering radiations are the major contributor to the spectral background of an x-ray fluorescence spectrum, which eventually limits the element detection sensitivities of the technique to µg/g (ppm) range. In the present work, we provide a detail mathematical descriptions and show that how polarization properties of the synchrotron radiation influence the spectral background in the x-ray fluorescence technique. We demonstrate our theoretical understandings through experimental observations using total x-ray fluorescence measurements on standard reference materials. Interestingly, the azimuthal anisotropy of the scattered radiation is shown to have a vital role on the significance of the x-raymore » fluorescence detection sensitivities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780011797','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780011797"><span>Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vandyke, H.</p> <p>1977-01-01</p> <p>Specifically, the study has addressed the following: (1) potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation or ecosystems highly stable or amenable to adaptive change, and (2) the sensitivity of key community components (the primary producers, consumers, and decomposers) to increased UV-B radiation. Three areas of study were examined during the past year: (1) a continuation of the study utilizing the two seminatural ecosystem chambers, (2) a pilot study utilizing three flow-through ecosystem tanks enclosed in a small, outdoor greenhouse, and (3) sensitivity studies of representative primary producers and consumers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042327','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042327"><span>Fine alignment of a large segmented mirror</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dey, Thomas William (Inventor)</p> <p>2010-01-01</p> <p>A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64960&keyword=Spencer%2C+D&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64960&keyword=Spencer%2C+D&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=85564&keyword=Spencer%2C+D&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=85564&keyword=Spencer%2C+D&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996RaPC...47..515D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996RaPC...47..515D"><span>Radiation treatment of pharmaceuticals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dám, A. M.; Gazsó, L. G.; Kaewpila, S.; Maschek, I.</p> <p>1996-03-01</p> <p>Product specific doses were calculated for pharmaceuticals to be radiation treated. Radio-pasteurization dose were determined for some heat sensitive pharmaceutical basic materials (pancreaton, neopancreatin, neopancreatin USP, duodenum extract). Using the new recommendation (ISO standards, Method 1) dose calculations were performed and radiation sterilization doses were determined for aprotinine and heparine Na.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol2/pdf/CFR-2012-title49-vol2-sec176-150.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title49-vol2/pdf/CFR-2012-title49-vol2-sec176-150.pdf"><span>49 CFR 176.150 - Radio and radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol2/pdf/CFR-2014-title49-vol2-sec176-150.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title49-vol2/pdf/CFR-2014-title49-vol2-sec176-150.pdf"><span>49 CFR 176.150 - Radio and radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec176-150.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-sec176-150.pdf"><span>49 CFR 176.150 - Radio and radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol2/pdf/CFR-2013-title49-vol2-sec176-150.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol2/pdf/CFR-2013-title49-vol2-sec176-150.pdf"><span>49 CFR 176.150 - Radio and radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec176-150.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title49-vol2/pdf/CFR-2011-title49-vol2-sec176-150.pdf"><span>49 CFR 176.150 - Radio and radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>..., unloaded, or handled, the responsible person must ensure that all sources of electromagnetic radiation such... are sensitive to electromagnetic radiation from external sources must be stowed at a safe distance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11587078','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11587078"><span>Cyclooxygenase inhibitors are potent sensitizers of prostate tumours to hyperthermia and radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Asea, A; Mallick, R; Lechpammer, S; Ara, G; Teicher, B A; Fiorentino, S; Stevenson, M A; Calderwood, S K</p> <p>2001-01-01</p> <p>It has previously been demonstrated that hyperthermia can activate prostaglandin synthesis and that prostaglandins are protective against hyperthermia. This study examined the use of inhibitors of prostaglandin synthesis on the response of prostate tumours to hyperthermia. The non-steroidal anti-inflammatory drugs (NSAID) ibuprofen and sulindac, known cyclooxygenase inhibitors that inhibit prostaglandin production, were effective hyperthermia sensitizers and augmented growth delay of DU-145 and PC-3 prostate tumours to combined radiation and hyperthermia treatment protocols. Pre-treatment of mice with ibuprofen and sulindac at hyperthermia sensitizing doses resulted in significant (p < 0.01) inhibition of hyperthemia-induced serum prostaglandin E2. These findings indicate that NSAID may have both sensitizing effects on prostate tumour growth and may function by inhibiting prostaglandin synthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160014483&hterms=WEATHER&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWEATHER','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160014483&hterms=WEATHER&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DWEATHER"><span>Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.</p> <p>2016-01-01</p> <p>Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29294092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29294092"><span>Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hao, Shuyu; Song, Hua; Zhang, Wei; Seldomridge, Ashlee; Jung, Jinkyu; Giles, Amber J; Hutchinson, Marsha-Kay; Cao, Xiaoyu; Colwell, Nicole; Lita, Adrian; Larion, Mioara; Maric, Dragan; Abu-Asab, Mones; Quezado, Martha; Kramp, Tamalee; Camphausen, Kevin; Zhuang, Zhengping; Gilbert, Mark R; Park, Deric M</p> <p>2018-05-18</p> <p>Standard therapy for chordoma consists of surgical resection followed by high-dose irradiation. Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase involved in signal transduction, cell cycle progression, cell differentiation, and DNA repair. LB100 is a small-molecule inhibitor of PP2A designed to sensitize cancer cells to DNA damage from irradiation and chemotherapy. A recently completed phase I trial of LB100 in solid tumors demonstrated its safety. Here, we show the therapeutic potential of LB100 in chordoma. Three patient-derived chordoma cell lines were used: U-CH1, JHC7, and UM-Chor1. Cell proliferation was determined with LB100 alone and in combination with irradiation. Cell cycle progression was assessed by flow cytometry. Quantitative γ-H2AX immunofluorescence and immunoblot evaluated the effect of LB100 on radiation-induced DNA damage. Ultrastructural evidence for nuclear damage was investigated using Raman imaging and transmission electron microscopy. A xenograft model was established to determine potential clinical utility of adding LB100 to irradiation. PP2A inhibition in concert with irradiation demonstrated in vitro growth inhibition. The combination of LB100 and radiation also induced accumulation at the G2/M phase of the cell cycle, the stage most sensitive to radiation-induced damage. LB100 enhanced radiation-induced DNA double-strand breaks. Animals implanted with chordoma cells and treated with the combination of LB100 and radiation demonstrated tumor growth delay. Combining LB100 and radiation enhanced DNA damage-induced cell death and delayed tumor growth in an animal model of chordoma. PP2A inhibition by LB100 treatment may improve the effectiveness of radiation therapy for chordoma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012522"><span>Incorporation of surface albedo-temperature feedback in a one-dimensional radiative-connective climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, W. C.; Stone, P. H.</p> <p>1979-01-01</p> <p>The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009045','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009045"><span>Ionizing Organic Compound Based Nanocomposites for Efficient Gamma-Ray Sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Singh, N. B.; Dayal, Vishall; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen; Kabandana, Monia G. K.; House, David</p> <p>2017-01-01</p> <p>Thin film and nanocrystalline materials of oxides have been very attractive choice as low cost option for gamma-ray detection and have shown great promise. Our studies on pure oxide films indicated that thickness and microstructure have pronounced effect on sensitivity. Since the interaction of gamma-ray with composites involves all three interaction processes; photoelectric effect, Compton scattering, and pair production, composites containing ionic organics have better chance for enhancing sensitivity. In the composites of ionizing organics oxidation effect of unusual oxides changes much faster and hence increases the sensitivity of radiation. In this study, we have used nickel oxide and titanium oxide in ionic organics to develop composite materials for low energy gamma-ray sensing. We prepared composites containing ethylene carbonate and evaluated the effect of commercial Cs-137 radiation source by studying current-voltage relationship at several frequencies. Radiated samples showed higher resistivity compared to as prepared composites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT.......104M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT.......104M"><span>Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marsden, Craig Michael</p> <p>2000-12-01</p> <p>This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>