Sample records for positional cloning methods

  1. Positional cloning in maize (Zea mays subsp. mays, Poaceae)1

    PubMed Central

    Gallavotti, Andrea; Whipple, Clinton J.

    2015-01-01

    • Premise of the study: Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. • Methods and Results: Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. • Conclusions: Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available. PMID:25606355

  2. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning

    PubMed Central

    Meghdadi, Hossein; Khosravi, Azar D.; Ghadiri, Ata A.; Sina, Amir H.; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39–31.27% for rpoB-PCR, 36.44–60.83% for IS6110- PCR, 75.29–92.93% for nested-rpoB PCR, and 87.98–99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100% specificity of each PCR method were calculated as 69.15–100%. Our results indicated that nested-rpoB PCR combined with TA cloning and sequencing is a preferred method for the detection of MTB DNA in EPTB samples with high sensitivity and specificity which confirm the histopathology results. PMID:26191059

  3. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning.

    PubMed

    Meghdadi, Hossein; Khosravi, Azar D; Ghadiri, Ata A; Sina, Amir H; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100% specificity of each PCR method were calculated as 69.15-100%. Our results indicated that nested-rpoB PCR combined with TA cloning and sequencing is a preferred method for the detection of MTB DNA in EPTB samples with high sensitivity and specificity which confirm the histopathology results.

  4. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  5. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    PubMed

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  6. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    PubMed

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  7. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    PubMed

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  9. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Identification of downy mildew resistance gene candidates by positional cloning in maize (Zea mays subsp. mays; Poaceae)1

    PubMed Central

    Kim, Jae Yoon; Moon, Jun-Cheol; Kim, Hyo Chul; Shin, Seungho; Song, Kitae; Kim, Kyung-Hee; Lee, Byung-Moo

    2017-01-01

    Premise of the study: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. Methods and Results: Downy mildew (DM)–resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. Conclusions: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases. PMID:28224059

  11. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The High Diversity of MRSA Clones Detected in a University Hospital in Istanbul

    PubMed Central

    Oksuz, Lutfiye; Dupieux, Celine; Tristan, Anne; Bes, Michele; Etienne, Jerome; Gurler, Nezahat

    2013-01-01

    Background: To characterize the methicillin-resistant Staphylococcus aureus (MRSA) clones present in Istanbul, 102 MRSA isolates collected during a 5-year period at the Istanbul Medical Faculty Hospital were characterized using microarray analysis and phenotypic resistance profiles. Methods: Resistance to methicillin was detected with a cefoxitin disk diffusion assay and confirmed with a MRSA-agar and MRSA detection kit. Antimicrobial susceptibility testing was performed by a disk diffusion assay and interpreted according to the 2012 guidelines of the Antibiogram Committee of the French Society for Microbiology. Decreased susceptibility to glycopeptides was confirmed using the population analysis profile-area under the curve (PAP-AUC) method. The presence of the mecA gene was detected by polymerase chain reaction. Bacterial DNA was extracted according to the manufacturer's recommended protocol using commercial extraction kits. Strains were extensively characterized using the DNA microarray. Results: Isolates were grouped into six clonal complexes. The most frequently detected clone was the Vienna/Hungarian/Brazilian clone (ST239-MRSA-III), which accounted for 53.9% of the isolates. These isolates were resistant to multiple antibiotics, particularly penicillin, tetracycline, rifampicin, kanamycin, tobramycin, gentamicin, levofloxacin, erythromycin, lincomycin and fosfomycin. Furthermore, three isolates were detected by population analysis profile as heterogeneous vancomycin-intermediate S. aureus (hVISA). The UK-EMRSA-15 clone (ST22-MRSA-IV PVL negative) was detected in 9.8% of the isolates and was mainly susceptible to all anti-staphylococcal antibiotics. Seven isolates (6.9%) were positive for PVL genes and were assigned to the CC80-MRSA-IV clone (European CA-MRSA clone, three isolates), ST8-MRSA-IV clone (USA300 clone, two isolates, one ACME-positive) or ST22-MRSA-IV clone (“Regensburg EMRSA” clone, two isolates). All other clones were detected in one to six isolates and corresponded to well-known clones (e.g., Pediatric clone, Dublin EMRSA clone, WA MRSA-54/63, WA MRSA-1/57). Conclusions: This work highlighted both the high prevalence of ST239-MRSA-III clone and the large diversity of the other MRSA clones detected in a university hospital in Istanbul. PMID:24151444

  13. Optimal Cloning of PCR Fragments by Homologous Recombination in Escherichia coli

    PubMed Central

    Jacobus, Ana Paula; Gross, Jeferson

    2015-01-01

    PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories. PMID:25774528

  14. Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.

    PubMed

    Taniguchi, Naohiro; Murakami, Hiroshi

    2017-01-01

    Constructing protein-coding genes with desired mutations is a basic step for protein engineering. Herein, we describe a multiple site-directed and saturation mutagenesis method, termed MUPAC. This method has been used to introduce multiple site-directed mutations in the green fluorescent protein gene and in the moloney murine leukemia virus reverse transcriptase gene. Moreover, this method was also successfully used to introduce randomized codons at five desired positions in the green fluorescent protein gene, and for simple DNA assembly for cloning.

  15. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  16. Development of positive control materials for DNA-based detection of cystic fibrosis: Cloning and sequencing of 31 mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iovannisci, D.; Brown, C.; Winn-Deen, E.

    1994-09-01

    The cloning and sequencing of the gene associated with cystic fibrosis (CF) now provides the opportunity for earlier detection and carrier screening through DNA-based detection schemes. To date, over 300 mutations have been reported to the CF Consortium; however, only 30 mutations have been observed frequently enough world-wide to warrant routine screening. Many of these mutations are not available as cloned material or as established tissue culture cell lines to aid in the development of DNA-based detection assays. We have therefore cloned the 30 most frequently reported mutations, plus the mutation R347H due to its association with male infertility (31more » mutations, total). Two approaches were employed: direct PCR amplification, where mutations were available from patient sources, and site-directed PCR mutagenesis of normal genomic DNA to generate the remaining mutations. After amplification, products were cloned into a sequencing vector, bacterial transformants were screened by a novel method (PCR/oligonucleotide litigation assay/sequence-coded separation), and plamid DNA sequences determined by automated fluorescent methods on the Applied Biosystems 373A. Mixing of the clones allows the construction of artificial genotypes useful as positive control material for assay validation. A second round of mutagenesis, resulting in the construction of plasmids bearing multiple mutations, will be evaluated for their utility as reagent control materials in kit development.« less

  17. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Tanomand, Asghar; Akbari, Bahman

    2016-11-01

    Phage display is a prominent screening technique for development of novel high affinity antibodies against almost any antigen. However, removing false positive clones in screening process remains a challenge. The aim of this study was to develop an efficient and rapid method for isolation of high affinity scFvs by removing NSBs without losing rare specific clones. Therefore, a novel two rounds strategy called invert biopanning was developed for isolating high affinity scFvs against EGFRvIII antigen from human scFv library. The efficiency of invert biopanning method (procedure III) was analyzed by comparing with results of conventional biopanning methods (procedures I and II). According to the results of polyclonal ELISA, the second round of procedure III displayed highest binding affinity against EGFRvIII peptide accompanied by lowest NSB comparing to other two procedures. Several positive clones were identified among output phages of procedure III by monoclonal phage ELISA which displayed high affinity to EGFRvIII antigen. In conclusion, results of our study indicate that invert biopanning is an efficient method for avoiding NSBs and conservation of rare specific clones during screening of a scFv phage library. Novel anti EGFRvIII scFv isolated could be a promising candidate for potential use in treatment of EGFRvIII expressing cancers. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  18. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method.

    PubMed

    Sharma, Nandita; Tanksale, Himgouri; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.

  19. A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning.

    PubMed

    Carbonetti, Sara; Oliver, Brian G; Vigdorovich, Vladimir; Dambrauskas, Nicholas; Sack, Brandon; Bergl, Emilee; Kappe, Stefan H I; Sather, D Noah

    2017-09-01

    Monoclonal antibody technologies have enabled dramatic advances in immunology, the study of infectious disease, and modern medicine over the past 40years. However, many monoclonal antibody discovery procedures are labor- and time-intensive, low efficiency, and expensive. Here we describe an optimized mAb discovery platform for the rapid and efficient isolation, cloning and characterization of monoclonal antibodies in murine systems. In this platform, antigen-binding splenic B cells from immunized mice are isolated by FACS and cocultured with CD40L positive cells to induce proliferation and mAb production. After 12days of coculture, cell culture supernatants are screened for antigen, and IgG positivity and RNA is isolated for reverse-transcription. Positive-well cDNA is then amplified by PCR and the resulting amplicons can be cloned into ligation-independent expression vectors, which are then used directly to transfect HEK293 cells for recombinant antibody production. After 4days of growth, conditioned medium can be screened using biolayer interferometry for antigen binding and affinity measurements. Using this method, we were able to isolate six unique, functional monoclonal antibodies against an antigen of the human malaria parasite Plasmodium falciparum. Importantly, this method incorporates several important advances that circumvent the need for single-cell PCR, restriction cloning, and large scale protein production, and can be applied to a wide array of protein antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Emotional reactions to human reproductive cloning.

    PubMed

    May, Joshua

    2016-01-01

    Extant surveys of people's attitudes towards human reproductive cloning focus on moral judgements alone, not emotional reactions or sentiments. This is especially important given that some (especially Leon Kass) have argued against such cloning on the ground that it engenders widespread negative emotions, like disgust, that provide a moral guide. To provide some data on emotional reactions to human cloning, with a focus on repugnance, given its prominence in the literature. This brief mixed-method study measures the self-reported attitudes and emotions (positive or negative) towards cloning from a sample of participants in the USA. Most participants condemned cloning as immoral and said it should be illegal. The most commonly reported positive sentiment was by far interest/curiosity. Negative emotions were much more varied, but anxiety was the most common. Only about a third of participants selected disgust or repugnance as something they felt, and an even smaller portion had this emotion come to mind prior to seeing a list of options. Participants felt primarily interested and anxious about human reproductive cloning. They did not primarily feel disgust or repugnance. This provides initial empirical evidence that such a reaction is not appropriately widespread. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. BAC Libraries from Wheat Chromosome 7D – Efficient Tool for Positional Cloning of Aphid Resistance Genes

    USDA-ARS?s Scientific Manuscript database

    Positional cloning in bread wheat is a tedious task due to its huge genome size (~17 Gbp) and polyploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which make their screening very laborious. Here we pres...

  2. Determination of the Optimal Chromosomal Location(s) for a DNA Element in Escherichia coli Using a Novel Transposon-mediated Approach.

    PubMed

    Frimodt-Møller, Jakob; Charbon, Godefroid; Krogfelt, Karen A; Løbner-Olesen, Anders

    2017-09-11

    The optimal chromosomal position(s) of a given DNA element was/were determined by transposon-mediated random insertion followed by fitness selection. In bacteria, the impact of the genetic context on the function of a genetic element can be difficult to assess. Several mechanisms, including topological effects, transcriptional interference from neighboring genes, and/or replication-associated gene dosage, may affect the function of a given genetic element. Here, we describe a method that permits the random integration of a DNA element into the chromosome of Escherichia coli and select the most favorable locations using a simple growth competition experiment. The method takes advantage of a well-described transposon-based system of random insertion, coupled with a selection of the fittest clone(s) by growth advantage, a procedure that is easily adjustable to experimental needs. The nature of the fittest clone(s) can be determined by whole-genome sequencing on a complex multi-clonal population or by easy gene walking for the rapid identification of selected clones. Here, the non-coding DNA region DARS2, which controls the initiation of chromosome replication in E. coli, was used as an example. The function of DARS2 is known to be affected by replication-associated gene dosage; the closer DARS2 gets to the origin of DNA replication, the more active it becomes. DARS2 was randomly inserted into the chromosome of a DARS2-deleted strain. The resultant clones containing individual insertions were pooled and competed against one another for hundreds of generations. Finally, the fittest clones were characterized and found to contain DARS2 inserted in close proximity to the original DARS2 location.

  3. Human cloning: category, dignity, and the role of bioethics.

    PubMed

    Shuster, Evelyne

    2003-10-01

    Human cloning has been simultaneously a running joke for massive worldwide publicity of fringe groups like the Raelians, and the core issue of an international movement at the United Nations in support of a treaty to ban the use of cloning techniques to produce a child (so called reproductive cloning). Yet, even though debates on human cloning have greatly increased since the birth of Dolly, the clone sheep, in 1997, we continue to wonder whether cloning is after all any different from other methods of medically assisted reproduction, and what exactly makes cloning an 'affront to the dignity of humans.' Categories we adopt matter mightily as they inform but can also misinform and lead to mistaken and unproductive decisions. And thus bioethicists have a responsibility to ensure that the proper categories are used in the cloning debates and denounce those who try to win the ethical debate through well-crafted labels rather than well-reasoned argumentations. But it is as important for bioethicists to take a position on broad issues such as human cloning and species altering interventions. One 'natural question' would be, for example, should there be an international treaty to ban human reproductive cloning?

  4. The high diversity of MRSA clones detected in a university hospital in istanbul.

    PubMed

    Oksuz, Lutfiye; Dupieux, Celine; Tristan, Anne; Bes, Michele; Etienne, Jerome; Gurler, Nezahat

    2013-01-01

    To characterize the methicillin-resistant Staphylococcus aureus (MRSA) clones present in Istanbul, 102 MRSA isolates collected during a 5-year period at the Istanbul Medical Faculty Hospital were characterized using microarray analysis and phenotypic resistance profiles. Resistance to methicillin was detected with a cefoxitin disk diffusion assay and confirmed with a MRSA-agar and MRSA detection kit. Antimicrobial susceptibility testing was performed by a disk diffusion assay and interpreted according to the 2012 guidelines of the Antibiogram Committee of the French Society for Microbiology. Decreased susceptibility to glycopeptides was confirmed using the population analysis profile-area under the curve (PAP-AUC) method. The presence of the mecA gene was detected by polymerase chain reaction. Bacterial DNA was extracted according to the manufacturer's recommended protocol using commercial extraction kits. Strains were extensively characterized using the DNA microarray. Isolates were grouped into six clonal complexes. The most frequently detected clone was the Vienna/Hungarian/Brazilian clone (ST239-MRSA-III), which accounted for 53.9% of the isolates. These isolates were resistant to multiple antibiotics, particularly penicillin, tetracycline, rifampicin, kanamycin, tobramycin, gentamicin, levofloxacin, erythromycin, lincomycin and fosfomycin. Furthermore, three isolates were detected by population analysis profile as heterogeneous vancomycin-intermediate S. aureus (hVISA). The UK-EMRSA-15 clone (ST22-MRSA-IV PVL negative) was detected in 9.8% of the isolates and was mainly susceptible to all anti-staphylococcal antibiotics. Seven isolates (6.9%) were positive for PVL genes and were assigned to the CC80-MRSA-IV clone (European CA-MRSA clone, three isolates), ST8-MRSA-IV clone (USA300 clone, two isolates, one ACME-positive) or ST22-MRSA-IV clone ("Regensburg EMRSA" clone, two isolates). All other clones were detected in one to six isolates and corresponded to well-known clones (e.g., Pediatric clone, Dublin EMRSA clone, WA MRSA-54/63, WA MRSA-1/57). This work highlighted both the high prevalence of ST239-MRSA-III clone and the large diversity of the other MRSA clones detected in a university hospital in Istanbul.

  5. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.

    PubMed

    Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo

    2017-04-01

    To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.

  6. A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations.

    PubMed

    Liu, Xia; Li, Tuoping; Hart, Darren J; Gao, Song; Wang, Hongling; Gao, Herui; Xu, Shumin; Zhang, Yifeng; Liu, Yifei; An, Yingfeng

    2018-03-18

    Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    PubMed

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  8. Small sizes and indolent evolutionary dynamics challenge the potential role of P2RY8-CRLF2–harboring clones as main relapse-driving force in childhood ALL

    PubMed Central

    Morak, Maria; Attarbaschi, Andishe; Fischer, Susanna; Nassimbeni, Christine; Grausenburger, Reinhard; Bastelberger, Stephan; Krentz, Stefanie; Cario, Gunnar; Kasper, David; Schmitt, Klaus; Russell, Lisa J.; Pötschger, Ulrike; Stanulla, Martin; Eckert, Conny; Mann, Georg; Haas, Oskar A.; Panzer-Grümayer, Renate

    2014-01-01

    The P2RY8-CRLF2 fusion defines a particular relapse-prone subset of childhood acute lymphoblastic leukemia (ALL) in Italian Association of Pediatric Hematology and Oncology Berlin-Frankfurt-Münster (AIEOP-BFM) 2000 protocols. To investigate whether and to what extent different clone sizes influence disease and relapse development, we quantified the genomic P2RY8-CRLF2 fusion product and correlated it with the corresponding CRLF2 expression levels in patients enrolled in the BFM-ALL 2000 protocol in Austria. Of 268 cases without recurrent chromosomal translocations and high hyperdiploidy, representing approximately 50% of all cases, 67 (25%) were P2RY8-CRLF2 positive. The respective clone sizes were ≥ 20% in 27% and < 20% in 73% of them. The cumulative incidence of relapse of the entire fusion-positive group was clone size independent and significantly higher than that of the fusion-negative group (35% ± 8% vs 13% ± 3%, P = .008) and primarily confined to the non–high-risk group. Of 22 P2RY8-CRLF2–positive diagnosis/relapse pairs, only 4/8 had the fusion-positive dominant clone conserved at relapse, whereas none of the original 14 fusion-positive small clones reappeared as the dominant relapse clone. We conclude that the majority of P2RY8-CRLF2–positive clones are small at diagnosis and virtually never generate a dominant relapse clone. Our findings therefore suggest that P2RY8-CRLF2–positive clones do not have the necessary proliferative or selective advantage to evolve into a disease-relevant relapse clone. PMID:23091296

  9. Using Microarrays to Facilitate Positional Cloning: Identification of Tomosyn as an Inhibitor of Neurosecretion

    PubMed Central

    Dybbs, Michael; Ngai, John; Kaplan, Joshua M

    2005-01-01

    Forward genetic screens have been used as a powerful strategy to dissect complex biological pathways in many model systems. A significant limitation of this approach has been the time-consuming and costly process of positional cloning and molecular characterization of the mutations isolated in these screens. Here, the authors describe a strategy using microarray hybridizations to facilitate positional cloning. This method relies on the fact that premature stop codons (i.e., nonsense mutations) constitute a frequent class of mutations isolated in screens and that nonsense mutant messenger RNAs are efficiently degraded by the conserved nonsense-mediated decay pathway. They validate this strategy by identifying two previously uncharacterized mutations: (1) tom-1, a mutation found in a forward genetic screen for enhanced acetylcholine secretion in Caenorhabditis elegans, and (2) an apparently spontaneous mutation in the hif-1 transcription factor gene. They further demonstrate the broad applicability of this strategy using other known mutants in C. elegans, Arabidopsis, and mouse. Characterization of tom-1 mutants suggests that TOM-1, the C. elegans ortholog of mammalian tomosyn, functions as an endogenous inhibitor of neurotransmitter secretion. These results also suggest that microarray hybridizations have the potential to significantly reduce the time and effort required for positional cloning. PMID:16103915

  10. Variations and voids: the regulation of human cloning around the world

    PubMed Central

    Pattinson, Shaun D; Caulfield, Timothy

    2004-01-01

    Background No two countries have adopted identical regulatory measures on cloning. Understanding the complexity of these regulatory variations is essential. It highlights the challenges associated with the regulation of a controversial and rapidly evolving area of science and sheds light on a regulatory framework that can accommodate this reality. Methods Using the most reliable information available, we have performed a survey of the regulatory position of thirty countries around the world regarding the creation and use of cloned embryos (see Table 1). We have relied on original and translated legislation, as well as published sources and personal communications. We have examined the regulation of both reproductive cloning (RC) and non-reproductive cloning (NRC). Results While most of the countries studied have enacted national legislation, the absence of legislation in seven of these countries should not be equated with the absence of regulation. Senator Morin was not correct in stating that the majority of recent legislation bans both RC and NRC. Recent regulatory moves are united only with regard to the banning of RC. While NRC is not permitted in seventeen of the countries examined, it could be permitted in up to thirteen countries. Conclusions There is little consensus on the various approaches to cloning laws and policies, and the regulatory position in many countries remains uncertain. PMID:15596013

  11. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae

    PubMed Central

    Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.

    2014-01-01

    The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917

  12. Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly.

    PubMed

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen; Jespersen, Jakob Berg; Sommer, Morten O A; Wernersson, Rasmus; Olsen, Lars Rønn

    2015-03-20

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at http://www.cbs.dtu.dk/services/AMUSER/.

  13. [Disappearance of a Philadelphia chromosome-positive clone and appearance of a -negative clone following treatment with imatinib mesylate in acute myelomonocytic leukemia].

    PubMed

    Takahashi, Wataru; Arai, Yukihiro; Tadokoro, Jiro; Takeuchi, Kengo; Yamagata, Tetsuya; Mitani, Kinuko

    2006-02-01

    A 63-year-old female was diagnosed as having Philadelphia chromosome-positive acute myelomonocytic leukemia in June 2002. The patient received monotherapy with imatinib mesylate or combination therapy with DCM and idarubicin/cytarabine, both of which failed in attaining disease remission. However, the second imatinib administration plus CAG therapy resulted in disappearance of the Philadelphia chromosome-positive clone and increase of Philadelphia chromosome-negative cells. During a therapy-withholding period due to fungal infection, the Philadelphia chromosome-positive clone expanded and the patient died of cerebral hemorrhage in February 2003. The transient suppression of the Philadelphia chromosome-positive clone may have brought about amplification of the Philadelphia chromosome-negative cells after the secondary imatinib treatment.

  14. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  15. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library

    PubMed

    Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T

    2018-04-25

    Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones. Both peptides, experimental and designed, may be potential candidates to be developed as useful diagnostic or therapeutic ligand molecules in gastric cancer research. Creative Commons Attribution License

  16. [Cloning of Clostridium perfringens alpha-toxin gene and extracellular expression in Escherichia coli].

    PubMed

    Inoue, Masaharu; Kikuchi, Maho; Komoriya, Tomoe; Watanabe, Kunitomo; Kouno, Hideki

    2007-01-01

    Clostridium perfringens (C. perfringens) is a Gram-positive bacterial pathogen that widely propagets in the soil and the gastrointestinal tract of human and animals. This bacteria causes food poisoning, gas gangrene and other various range of infectious diseases. But there is no standard diagnosis method of C. perfringens. In order to develop a new type of immunoassay for clinical purpose, we studied expression and extracellular secretion of recombinant alpha-toxin having enzyme activity in E. coli expression system. Cloning was carried out after PCR amplification from C. perfringens GAI 94074 which was clinical isolate. Three kinds of fragment were cloned using pET100/D-TOPO vector. These fragments coded for ribosome binding site, signal peptide, and alpha-toxin gene respectively. Recombinant pET100 plasmid transformed into TOP 10 cells and the obtained plasmids were transformed into BL21 (DE3) cells. Then, the transformants were induced expression with IPTG. In conclusion, we successfully cloned, expressed and exteracellular secreted C. perfringens alpha-toxin containing signal peptide. Biologically, the obtained recombinant protein was positive for phospholipase C activity.

  17. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone.

    PubMed

    Liu, R; Zhang, H H; Chen, Z X; Shahid, M Q; Fu, X L; Liu, X D

    2015-10-29

    Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice.

  18. Orpheus recombination : a comprehensive bacteriophage system for murine targeting vector construction by transplacement.

    PubMed

    Woltjen, Knut; Ito, Kenichi; Tsuzuki, Teruhisa; Rancourt, Derrick E

    2008-01-01

    In recent years, methods to address the simplification of targeting vector (TV) construction have been developed and validated. Based on in vivo recombination in Escherichia coli, these protocols have reduced dependence on restriction endonucleases, allowing the fabrication of complex TV constructs with relative ease. Using a methodology based on phage-plasmid recombination, we have developed a comprehensive TV construction protocol dubbed Orpheus recombination (ORE). The ORE system addresses all necessary requirements for TV construction; from the isolation of genespecific regions of homology to the deposition of selection/disruption cassettes. ORE makes use of a small recombination plasmid, which bears positive and negative selection markers and a cloned homologous "probe" region. This probe plasmid may be introduced into and excised from phage-borne murine genomic clones by two rounds of single crossover recombination. In this way, desired clones can be specifically isolated from a heterogeneous library of phage. Furthermore, if the probe region contains a designed mutation, it may be deposited seamlessly into the genomic clone. The complete removal of operational sequences allows unlimited repetition of the procedure to customize and finalize TVs within a few weeks. Successful gene-specific clone isolation, point mutations, large deletions, cassette insertions, and finally coincident clone isolation and mutagenesis have all been demonstrated with this method.

  19. Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten

    2014-09-17

    Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.

  20. Interclonal Variations in the Molecular Karyotype of Trypanosoma cruzi: Chromosome Rearrangements in a Single Cell-Derived Clone of the G Strain

    PubMed Central

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. PMID:23667668

  1. A strategy for rapid production and screening of yeast artificial chromosome libraries.

    PubMed

    Strauss, W M; Jaenisch, E; Jaenisch, R

    1992-01-01

    We describe methods for rapid production and screening of yeast artificial chromosome (YAC) libraries. Utilizing complete restriction digests of mouse genomic DNA for ligations in agarose, a 32,000-clone library was produced and screened in seven weeks. Screening was accomplished by subdividing primary transformation plates into pools of approximately 100 clones which were transferred into a master glycerol stock. These master stocks were used to inoculate liquid cultures to produce culture "pools," and ten pools of 100 clones were then combined to yield superpools of 1,000 clones. Both pool and superpool DNA was screened by polymerase chain reaction (PCR) and positive pools representing 100 clones were then plated on selective medium and screened by in situ hybridization. Screening by the two tiered PCR assay and by in situ hybridization was completed in 4-5 days. Utilizing this methodology we have isolated a 150 kb clone spanning the alpha 1(I) collagen (Col1a1) gene as well as 40 kb clones from the Hox-2 locus. To characterize the representation of the YAC library, the size distribution of genomic Sal I fragments was compared to that of clones picked at random from the library. The results demonstrate significant biasing of the cloned fragment distribution, resulting in a loss of representation for larger fragments.

  2. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  3. The topsy-turvy cloning law.

    PubMed

    Brassington, Iain; Oultram, Stuart

    2011-03-01

    In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.

  4. [Archaeal community structure and diversity in Urumqi No. 10 cold sulfur spring analyzed by culture-independent approach].

    PubMed

    Li, Ping; Zeng, Jun; Zulipiya, Yunus; Gao, Xiaoqi; Dong, Xiuhuang; Xue, Juan; Lou, Kai

    2013-03-04

    We explored the composition and diversity of archaea in a cold sulfur spring water in Xinjiang earthquake fault zone. Environmental total DNA was extracted directly with enzymatic lysis method from a cold sulfur spring water. We constructed clone library of 16S rRNA gene amplified with archaeal-specific primers. A total of 115 positive clones were selected randomly from the library and identified by restriction length polymorphism (RFLP) with enzyme Alu I and Afa I. The unique RFLP patterns corresponded clones were selected for sequencing, BLAS alignment and constructing 16S rRNA gene phylogenetic tree. In total, 44 operational taxonomic units (OTUs) were determined from the library. BLAST and phylogenetic analysis indicated that these OTUs were affiliated with Euryarchaeota (94.78%) and Thaumarchaeota (4.35%). Only one Thaumarchaeotal clone was detected and most related to the genus Nitrosopumilus with 93% similarity. Euryarchaeotal clones were abundant and diverse. Of them, 42.61% of clones belonged to RC-V cluster; 13.91% of clones, 20.87% of clones were classified into LDS cluster and Methanomicrobiales respectively; 4.35% of clones had high similarity with ANME-1a-FW, which were involved in Anaerobic oxidation of methane (AOM). In addition, we also detected some (13.05%) unknown Euryarchaotal clones. Euryarchaeota in the environment were diverse, and possibly with a large fraction of potential novel species.

  5. Factors influencing the commercialisation of cloning in the pork industry.

    PubMed

    Pratt, S L; Sherrer, E S; Reeves, D E; Stice, S L

    2006-01-01

    Production of cloned pigs using somatic cell nuclear transfer (SCNT) is a repeatable and predictable procedure and multiple labs around the world have generated cloned pigs and genetically modified cloned pigs. Due to the integrated nature of the pork production industry, pork producers are the most likely to benefit and are in the best position to introduce cloning in to production systems. Cloning can be used to amplify superior genetics or be used in conjunction with genetic modifications to produce animals with superior economic traits. Though unproven, cloning could add value by reducing pig-to-pig variability in economically significant traits such as growth rate, feed efficiency, and carcass characteristics. However, cloning efficiencies using SCNT are low, but predictable. The inefficiencies are due to the intrusive nature of the procedure, the quality of oocytes and/or the somatic cells used in the procedure, the quality of the nuclear transfer embryos transferred into recipients, pregnancy rates of the recipients, and neonatal survival of the clones. Furthermore, in commercial animal agriculture, clones produced must be able to grow and thrive under normal management conditions, which include attainment of puberty and subsequent capability to reproduce. To integrate SCNT into the pork industry, inefficiencies at each step of the procedure must be overcome. In addition, it is likely that non-surgical embryo transfer will be required to deliver cloned embryos, and/or additional methods to generate high health clones will need to be developed. This review will focus on the state-of-the-art for SCNT in pigs and the steps required for practical implementation of pig cloning in animal agriculture.

  6. Clone DB: an integrated NCBI resource for clone-associated data

    PubMed Central

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  7. Genomic validation of PB 260 clone of rubber (Hevea brasiliensis) at Cikumpay Plantation by SSR marker

    NASA Astrophysics Data System (ADS)

    Royani, J. I.; Safarrida, A.; Rachmawati, I.; Khairiyah, H.; Mustika, I. P.; Suyono, A.; Rudiyana, Y.; Kubil; Nurjaya; Arianto, A.

    2017-05-01

    Rubber from Hevea brasiliensis is the only commercial natural rubber in the world. Propagation of rubber trees usually done by grafting and seed germination. BPPT had been producing rubber tree by in vitro technique with embryo somatic methods. Validation of mother plant for in vitro propagation is important to compare between mother plant and propagated plants. The aim for this research was to validation of PB 260 clone that planted at Cikumpay Plantation by SSR marker. Sampling of 10 rubber leaves were done at Cikumpay Plantation based on GPS position from the area of PB 260 clone. Rubber leaves were isolated with CTAB modification method to obtained DNA. Four of SSR primers from rubber, i.e.: hmac 4, hmac 5, hmct 1, and hmct 5, were used as primers to amplification of rubber DNA. The result showed that no band that different from 10 rubber of PB 260 clone at Cikumpay Plantation. This research will continue to compare genomic validation between mother plant and propagated plants that had been produced from BPPT.

  8. Localization of causal locus in the genome of the brown macroalga Ectocarpus: NGS-based mapping and positional cloning approaches

    PubMed Central

    Billoud, Bernard; Jouanno, Émilie; Nehr, Zofia; Carton, Baptiste; Rolland, Élodie; Chenivesse, Sabine; Charrier, Bénédicte

    2015-01-01

    Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed. PMID:25745426

  9. Simple cloning strategy using GFPuv gene as positive/negative indicator.

    PubMed

    Miura, Hiromi; Inoko, Hidetoshi; Inoue, Ituro; Tanaka, Masafumi; Sato, Masahiro; Ohtsuka, Masato

    2011-09-15

    Because construction of expression vectors is the first requisite in the functional analysis of genes, development of simple cloning systems is a major requirement during the postgenomic era. In the current study, we developed cloning vectors for gain- or loss-of-function studies by using the GFPuv gene as a positive/negative indicator of cloning. These vectors allow us to easily detect correct clones and obtain expression vectors from a simple procedure by means of the combined use of the GFPuv gene and a type IIS restriction enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning

    PubMed Central

    Lucero, David E.; Ribera, Wilma; Pizarro, Juan Carlos; Plaza, Carlos; Gordon, Levi W.; Peña, Reynaldo; Morrissey, Leslie A.; Rizzo, Donna M.; Stevens, Lori

    2014-01-01

    Background In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia. Methodology/Principal Findings We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors). Conclusions/Significance We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors. PMID:25474154

  11. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE

    PubMed Central

    Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.

    2006-01-01

    SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499

  12. Rapid one-step recombinational cloning

    PubMed Central

    Fu, Changlin; Wehr, Daniel R.; Edwards, Janice; Hauge, Brian

    2008-01-01

    As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning. PMID:18424799

  13. Cloning of Pf3, a filamentous bacteriophage of Pseudomonas aeruginosa, into the pBD214 vector of Bacillus subtilis.

    PubMed Central

    Putterman, D G; Gryczan, T J; Dubnau, D; Day, L A

    1983-01-01

    The genome of Pf3, a filamentous single-stranded DNA bacteriophage of Pseudomonas aeruginosa (a gram-negative organism) was cloned into pBD214, a plasmid cloning vector of Bacillus subtilis (a gram-positive organism). Cloning in the gram-positive organism was done to avoid anticipated lethal effects. The entire Pf3 genome was inserted in each orientation at a unique Bc/I site within a thymidylate synthetase gene (from B. subtilis phage beta 22) on the plasmid. Additional clones were made by inserting EcoRI fragments of Pf3 DNA into a unique EcoRI site within this gene. Images PMID:6306273

  14. Comprehensive Analysis of Secondary Dental Root Canal Infections: A Combination of Culture and Culture-Independent Approaches Reveals New Insights

    PubMed Central

    Anderson, Annette Carola; Hellwig, Elmar; Vespermann, Robin; Wittmer, Annette; Schmid, Michael; Karygianni, Lamprini; Al-Ahmad, Ali

    2012-01-01

    Persistence of microorganisms or reinfections are the main reasons for failure of root canal therapy. Very few studies to date have included culture-independent methods to assess the microbiota, including non-cultivable microorganisms. The aim of this study was to combine culture methods with culture-independent cloning methods to analyze the microbial flora of root-filled teeth with periradicular lesions. Twenty-one samples from previously root-filled teeth were collected from patients with periradicular lesions. Microorganisms were cultivated, isolated and biochemically identified. In addition, ribosomal DNA of bacteria, fungi and archaea derived from the same samples was amplified and the PCR products were used to construct clone libraries. DNA of selected clones was sequenced and microbial species were identified, comparing the sequences with public databases. Microorganisms were found in 12 samples with culture-dependent and -independent methods combined. The number of bacterial species ranged from 1 to 12 in one sample. The majority of the 26 taxa belonged to the phylum Firmicutes (14 taxa), followed by Actinobacteria, Proteobacteria and Bacteroidetes. One sample was positive for fungi, and archaea could not be detected. The results obtained with both methods differed. The cloning technique detected several as-yet-uncultivated taxa. Using a combination of both methods 13 taxa were detected that had not been found in root-filled teeth so far. Enterococcus faecalis was only detected in two samples using culture methods. Combining the culture-dependent and –independent approaches revealed new candidate endodontic pathogens and a high diversity of the microbial flora in root-filled teeth with periradicular lesions. Both methods yielded differing results, emphasizing the benefit of combined methods for the detection of the actual microbial diversity in apical periodontitis. PMID:23152922

  15. High-throughput gene mapping in Caenorhabditis elegans.

    PubMed

    Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R

    2002-07-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.

  16. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  17. Influence of embryo handling and transfer method on pig cloning efficiency.

    PubMed

    Shi, Junsong; Zhou, Rong; Luo, Lvhua; Mai, Ranbiao; Zeng, Haiyu; He, Xiaoyan; Liu, Dewu; Zeng, Fang; Cai, Gengyuan; Ji, Hongmei; Tang, Fei; Wang, Qinglai; Wu, Zhenfang; Li, Zicong

    2015-03-01

    The somatic cell nuclear transfer (SCNT) technique could be used to produce genetically superior or genetically engineered cloned pigs that have wide application in agriculture and bioscience research. However, the efficiency of porcine SCNT currently is very low. Embryo transfer (ET) is a key step for the success of SCNT. In this study, the effects of several ET-related factors, including cloned embryo culture time, recipient's ovulation status, co-transferred helper embryos and ET position, on the success rate of pig cloning were investigated. The results indicated that transfer of cloned embryos cultured for a longer time (22-24h vs. 4-6h) into pre-ovulatory sows decreased recipient's pregnancy rate and farrowing rate, and use of pre-ovulatory and post-ovulatory sows as recipients for SCNT embryos cultured for 22-24h resulted in a similar porcine SCNT efficiency. Use of insemination-produced in vivo fertilized, parthenogenetically activated and in vitro fertilized embryos as helper embryos to establish and/or maintain pregnancy of SCNT embryos recipients could not improve the success rate of porcine SCNT. Transfer of cloned embryos into double oviducts of surrogates significantly increased pregnancy rate as well as farrowing rate of recipients, and the developmental rate of transferred cloned embryos, as compared to unilateral oviduct transfer. This study provided useful information for optimization of the embryo handling and transfer protocol, which will help to improve the ability to generate cloned pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Towards an understanding of British public attitudes concerning human cloning.

    PubMed

    Shepherd, Richard; Barnett, Julie; Cooper, Helen; Coyle, Adrian; Moran-Ellis, Jo; Senior, Victoria; Walton, Chris

    2007-07-01

    The ability of scientists to apply cloning technology to humans has provoked public discussion and media coverage. The present paper reports on a series of studies examining public attitudes to human cloning in the UK, bringing together a range of quantitative and qualitative methods to address this question. These included a nationally representative survey, an experimental vignette study, focus groups and analyses of media coverage. Overall the research presents a complex picture of attitude to and constructions of human cloning. In all of the analyses, therapeutic cloning was viewed more favourably than reproductive cloning. However, while participants in the focus groups were generally negative about both forms of cloning, and this was also reflected in the media analyses, quantitative results showed more positive responses. In the quantitative research, therapeutic cloning was generally accepted when the benefits of such procedures were clear, and although reproductive cloning was less accepted there was still substantial support. Participants in the focus groups only differentiated between therapeutic and reproductive cloning after the issue of therapeutic cloning was explicitly raised; initially they saw cloning as being reproductive cloning and saw no real benefits. Attitudes were shown to be associated with underlying values associated with scientific progress rather than with age, gender or education, and although there were a few differences in the quantitative data based on religious affiliation, these tended to be small effects. Likewise in the focus groups there was little direct appeal to religion, but the main themes were 'interfering with nature' and the 'status of the embryo', with the latter being used more effectively to try to close down further discussion. In general there was a close correspondence between the media analysis and focus group responses, possibly demonstrating the importance of media as a resource, or that the media reflect public discourse accurately. However, focus group responses did not simply reflect media coverage.

  19. Molecular Characterization of Multidrug Resistant Uropathogenic E. Coli Isolates from Jordanian Patients.

    PubMed

    Nairoukh, Yacoub R; Mahafzah, Azmi M; Irshaid, Amal; Shehabi, Asem A

    2018-01-01

    Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), fluoroquinolones mutated genes ( parC and gyrA ) and clone of ST131 type using PCR methods. A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15 , 76% for CTX-M-I and for 8% CTX-M-9 , respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), except of one isolate was positive for blaKPC-2 . This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.

  20. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.

    PubMed

    Maruthamuthu, Mukil; Jiménez, Diego Javier; Stevens, Patricia; van Elsas, Jan Dirk

    2016-01-28

    Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two clones, 10BT and T4-1, required the presence of multiple substrates for detectable activity, indicating a new avenue in library activity screening. Finally, clones NT2-2, T5-5 and NT18-17 were found to encode putative novel thermo-alkaline enzymes, which could represent a starting point for further biotechnological applications.

  1. Phylogenetic position of parabasalid symbionts from the termite Calotermes flavicollis based on small subunit rRNA sequences.

    PubMed

    Gerbod, D; Edgcomb, V P; Noël, C; Delgado-Viscogliosi, P; Viscogliosi, E

    2000-09-01

    Small subunit rDNA genes were amplified by polymerase chain reaction using specific primers from mixed-population DNA obtained from the whole hindgut of the termite Calotermes flavicollis. Comparative sequence analysis of the clones revealed two kinds of sequences that were both from parabasalid symbionts. In a molecular tree inferred by distance, parsimony and likelihood methods, and including 27 parabasalid sequences retrieved from the data bases, the sequences of the group II (clones Cf5 and Cf6) were closely related to the Devescovinidae/Calonymphidae species and thus were assigned to the Devescovinidae Foaina. The sequence of the group I (clone Cf1) emerged within the Trichomonadinae and strongly clustered with Tetratrichomonas gallinarum. On the basis of morphological data, the Monocercomonadidae Hexamastix termitis might be the most likely origin of this sequence.

  2. A Unique Report: Development of Super Anti-Human IgG Monoclone with Optical Density Over Than 3

    PubMed Central

    Aghebati Maleki, Leili; Baradaran, Behzad; Abdolalizadeh, Jalal; Ezzatifar, Fatemeh; Majidi, Jafar

    2013-01-01

    Purpose: Monoclonal antibodies and related conjugates are key reagents used in biomedical researches as well as, in treatment, purification and diagnosis of infectious and non- infectious diseases. Methods: Balb/c mice were immunized with purified human IgG. Spleen cells of the most immune mouse were fused with SP2/0 in the presence of Poly Ethylene Glycol (PEG). Supernatant of hybridoma cells was screened for detection of antibody by ELISA. Then, the sample was assessed for cross-reactivity with IgM & IgA by ELISA and confirmed by immunoblotting. The subclasses of the selected mAbs were determined. The best clone was injected intraperitoneally to some pristane-injected mice. Anti-IgG mAb was purified from the animals' ascitic fluid by Ion exchange chromatography and then, mAb was conjugated with HRP. Results: In the present study, over than 50 clones were obtained that 1 clone had optical density over than 3. We named this clone as supermonoclone which was selected for limiting dilution. The result of the immunoblotting, showed sharp band in IgG position and did not show any band in IgM&IgA position. Conclusion: Based on the findings of this study, the conjugated monoclonal antibody could have application in diagnosis of infectious diseases like Toxoplasmosis, Rubella and IgG class of other infectious and non- infectious diseases. PMID:24312857

  3. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system

    PubMed Central

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    OBJECTIVE To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. METHODS Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. RESULTS Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. CONCLUSION The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease. PMID:18651010

  4. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    PubMed

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  5. Recombination-assisted megaprimer (RAM) cloning

    PubMed Central

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  6. Update on the First Cloned Dog and Outlook for Canine Cloning.

    PubMed

    Jang, Goo; Lee, ByeongChun

    2015-10-01

    As man's best friend, dogs have an important position in human society. Ten years ago, we reported the first cloned dog, and his birth has raised various scientific issues, such as those related to health, reproduction, and life span. He has developed without any unique health issues. In this article, we summarize and present perspectives on canine cloning.

  7. Distinct T cell interactions with HLA class II tetramers characterize a spectrum of TCR affinities in the human antigen-specific T cell response.

    PubMed

    Reichstetter, S; Ettinger, R A; Liu, A W; Gebe, J A; Nepom, G T; Kwok, W W

    2000-12-15

    The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.

  8. Panton-valentine leukocidin-positive and toxic shock syndrome toxin 1-positive methicillin-resistant Staphylococcus aureus: a French multicenter prospective study in 2008.

    PubMed

    Robert, Jérôme; Tristan, Anne; Cavalié, Laurent; Decousser, Jean-Winoc; Bes, Michèle; Etienne, Jerome; Laurent, Frédéric

    2011-04-01

    The epidemiology of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) differs from country to country. We assess the features of the ST80 European clone, which is the most prevalent PVL-positive CA-MRSA clone in Europe, and the TSST-1 ST5 clone that was recently described in France. In 2008, all MRSA strains susceptible to fluoroquinolones and gentamicin and resistant to fusidic acid that were isolated in 104 French laboratories were characterized using agr alleles, spa typing, and the staphylococcal cassette chromosome mec element and PCR profiling of 21 toxin genes. Three phenotypes were defined: (i) kanamycin resistant, associated with the ST80 clone; (ii) kanamycin and tobramycin resistant, associated with the ST5 clone; and (iii) aminoglycoside susceptible, which was less frequently associated with the ST5 clone. Among the 7,253 MRSA strains isolated, 91 (1.3%) were ST80 CA-MRSA (89 phenotype 1) and 190 (2.6%) were ST5 CA-MRSA (146 phenotype 2, 42 phenotype 3). Compared to the latter, ST80 CA-MRSAs were more likely to be community acquired (80% versus 46%) and found in young patients (median age, 26.0 years versus 49.5 years) with deep cutaneous infections (48% versus 6%). They were less likely to be tetracycline susceptible (22% versus 85%) and to be isolated from respiratory infections (6% versus 27%). The TSST-1 ST5 clone has rapidly emerged in France and has become even more prevalent than the ST80 European clone, whose prevalence has remained stable. The epidemiological and clinical patterns of the two clones differ drastically. Given the low prevalence of both among all staphylococcal infections, no modification of antibiotic recommendations is required yet.

  9. Secretion of clostridium cellulase by E. coli

    DOEpatents

    Yu, Ida Kuo

    1998-01-01

    A gene, encoding an endocellulase from a newly isolated mesophilic Clostridium strain IY-2 which can digest bamboo fibers, cellulose, rice straw, and sawdust, was isolated by shotgun cloning in an E. coli expression plasmid pLC2833. E. coli positive clones were selected based on their ability to hydrolyze milled bamboo fibers and cellulose present in agar plates. One clone contained a 2.8 kb DNA fragment that was responsible for cellulase activity. Western blot analyses indicated that the positive clone produced a secreted cellulase with a mass of about 58,000 daltons that was identical in size to the subunit of one of the three major Clostridium cellulases. The products of cellulose digestion by this cloned cellulase were cellotetraose and soluble higher polymers. The cloned DNA contained signal sequences capable of directing the secretion of heterologous proteins from an E. coli host. The invention describes a bioprocess for the treatment of cellulosic plant materials to produce cellular growth substrates and fermentation end products suitable for production of liquid fuels, solvents, and acids.

  10. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.

    PubMed

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101-150, 151-200 or 201-250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.

  11. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning

    PubMed Central

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101–150, 151–200 or 201–250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency. PMID:26565717

  12. Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm.

    PubMed

    Wang, Shenghao; Zhang, Yuyan; Cao, Fuyi; Pei, Zhenying; Gao, Xuewei; Zhang, Xu; Zhao, Yong

    2018-02-13

    This paper presents a novel spectrum analysis tool named synergy adaptive moving window modeling based on immune clone algorithm (SA-MWM-ICA) considering the tedious and inconvenient labor involved in the selection of pre-processing methods and spectral variables by prior experience. In this work, immune clone algorithm is first introduced into the spectrum analysis field as a new optimization strategy, covering the shortage of the relative traditional methods. Based on the working principle of the human immune system, the performance of the quantitative model is regarded as antigen, and a special vector corresponding to the above mentioned antigen is regarded as antibody. The antibody contains a pre-processing method optimization region which is created by 11 decimal digits, and a spectrum variable optimization region which is formed by some moving windows with changeable width and position. A set of original antibodies are created by modeling with this algorithm. After calculating the affinity of these antibodies, those with high affinity will be selected to clone. The regulation for cloning is that the higher the affinity, the more copies will be. In the next step, another import operation named hyper-mutation is applied to the antibodies after cloning. Moreover, the regulation for hyper-mutation is that the lower the affinity, the more possibility will be. Several antibodies with high affinity will be created on the basis of these steps. Groups of simulated dataset, gasoline near-infrared spectra dataset, and soil near-infrared spectra dataset are employed to verify and illustrate the performance of SA-MWM-ICA. Analysis results show that the performance of the quantitative models adopted by SA-MWM-ICA are better especially for structures with relatively complex spectra than traditional models such as partial least squares (PLS), moving window PLS (MWPLS), genetic algorithm PLS (GAPLS), and pretreatment method classification and adjustable parameter changeable size moving window PLS (CA-CSMWPLS). The selected pre-processing methods and spectrum variables are easily explained. The proposed method will converge in few generations and can be used not only for near-infrared spectroscopy analysis but also for other similar spectral analysis, such as infrared spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  14. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  15. [Microbial community in the Anammox process of thermal denitration tail liquid].

    PubMed

    Li, Jin; Yu, Deshuang; Zhao, Dan; Wang, Xiaochen

    2014-12-01

    An anaerobic sequencing batch reactor (ASBR) was used to treat thermal denitration tail liquid and microbial community was studied. Activated sludge was taken from the reactor for scanning electron microscope analysis. The images showed that the dominant cells in the flora were oval cocci. Its diameter was about 0.7 μm. Through a series of molecular biology methods such as extracting total DNA from the sludge, PCR amplification, positive clone authentication and sequencing, we obtained the 16S rDNA sequences of the flora. Phylogenetic tree and clone library were established. The universal bacteria primers of 27F-1492R PCR amplification system obtained 85 clones and could be divided into 21 OTUS. The proportions were as follows: Proteobacteria 61.18%; Acidobacteria 17.65%; Chlorobi 8.24%; Chlorofexi 5.88%; Gemmatimonadetes 3.53%; Nitrospirae 2.35% and Planctomycetes 1.18%. The specific anammox bacterial primers of pla46rc-630r and AMX368-AMX820 PCR amplification system obtained 45 clones. They were divided into 3 OTUS. Candidatus brocadia sp. occupied 95.6% and unknown strains occupied 4.4%.

  16. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions.

    PubMed

    Zhang, Yu; Nagata, Hiroshi; Ikeuchi, Tatsuro; Mukai, Hiroyuki; Oyoshi, Michiko K; Demachi, Ayako; Morio, Tomohiro; Wakiguchi, Hiroshi; Kimura, Nobuhiro; Shimizu, Norio; Yamamoto, Kohtaro

    2003-06-01

    In this study, we describe the cytological and cytogenetic features of six Epstein-Barr virus (EBV)-infected natural killer (NK) cell clones. Three cell clones, SNK-1, -3 and -6, were derived from patients with nasal T/NK-cell lymphomas; two cell clones, SNK-5 and -10, were isolated from patients with chronic active EBV infection (CAEBV); and the other cell clone, SNK-11, was from a patient with hydroa vacciniforme (HV)-like eruptions. An analysis of the number of EBV-terminal repeats showed that the SNK cell clones had monoclonal EBV genomes identical to the original EBV-infected cells of the respective patients, and SNK cells had the type II latency of EBV infection, suggesting that not only the cell clones isolated from nasal T/NK-cell lymphomas but also those isolated from CAEBV and HV-like eruptions had been transformed by EBV to a certain degree. Cytogenetic analysis detected deletions in chromosome 6q in five out of the six SNK cell clones, while 6q was not deleted in four control cell lines of T-cell lineage. This suggested that a 6q deletion is a characteristic feature of EBV-positive NK cells, which proliferated in the diseased individuals. The results showed that EBV-positive NK cells in malignant and non-malignant lymphoproliferative diseases shared common cytological and cytogenetic features.

  17. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  18. [Growth analysis on modules of Cynodon dactylon clones in Yili River Valley Plain of Xinjiang].

    PubMed

    Zhao, Yu; Janar; Li, Hai-Yan; Liu, Ying; Yang, Yun-Fei

    2009-04-01

    By the method of randomly digging up whole ramet tuft while maintaining natural integrity, large samples of Cynodon dactylon clones were collected from a grape orchard abandoned for 2 years without any management in the Yili River Valley Plain of Xinjiang, aimed to quantitatively analyze the growth patterns of their modules. The results showed that the average ramet number of test 30 clones reached 272.6 +/- 186. 6, among which, vegetative ramets occupied 82.3%, being 4.3 times higher than reproductive ones. The total biomass of the clones was 45.4 +/- 40.0 g, in which, rhizomes accounted for 54.4%, while the vegetative ramets, stolons, and reproductive ramets occupied 21.0%, 14.8%, and 9.4% of the total, respectively. The accumulative length of rhizomes and stolons reached 5.1 + 4.7 m and 3.3 +/- 3.4 m, while the bud number on stolons and rhizomes was 291.5 +/- 246.8 and 78.8 +/- 87.4, respectively. The bud number on stolons and rhizomes was positively correlated to the quantitative characters of vegetative ramets, reproductive ramets, stolons, and rhizomes (P < 0.01), indicating that in Yili River Valley Plain, C. dactylon clone could achieve and maintain its continuous renovation via rhizome buds.

  19. CD34 expression in human hair follicles and tricholemmoma: a comprehensive study.

    PubMed

    Misago, Noriyuki; Toda, Shuji; Narisawa, Yutaka

    2011-08-01

    There has recently been controversy regarding whether clone My10 is superior to clone QBEND-10 for labeling cells of tricholemmal lineage. Moreover, there have been no previous reports on the CD34 expression in human vellus hair follicles. We performed a comprehensive study of the CD34 expression in human terminal and vellus hair follicles and in 10 tricholemmomas using both the QBEND-10 and the My10 clones. We also performed two different procedures of immunostaining, which included the using of the standard avidin-biotin-peroxidase (ABC) complex system and the Envision system. The most sensitive marker of CD34 for normal human hair follicles and tricholemmomas is QBEND-10 using the ABC system. The degree and strength of the CD34 positive staining mainly depended on the method being used (whether it was the ABC system or the Envision system) rather than the clone. CD34 staining was rarely (20-30%) seen in the anagen and catagen vellus hair follicles, and could only be seen by the QBEND-10 clone using the ABC system. CD34 expression in the tricholemmomas represented either a diffuse or peripheral pattern. CD34 may not be a tricholemmal lineage-specific antigen, but may be related to certain functions of the cells. Copyright © 2011 John Wiley & Sons A/S.

  20. A cloned DNA segment from the telomeric region of human chromosome 4p is not detectably rearranged in Huntington disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, C.; Casher, D.; Myers, R.M.

    1990-09-01

    Genetic linkage studies have mapped the Huntington disease (HD) mutation to the distal region of the short arm of human chromosome 4. Analysis of recombination events in this region has produced contradictory locations for HD. One possible location is in the region distal to the D4S90 marker, which is located within 300 kilobases of the telomere. Other crossover events predict a more centromeric position for HD. Here the authors analyze the telomeric region of 4p in detail. Cloned DNA segments were derived from this region by utilizing a radiation-induced somatic cell hybrid as a source of DNA combined with preparativemore » pulsed-field gel electrophoresis to enrich for the telmoeric fraction. Additional DNA was obtained by using the cloned segments as multiple start points for cosmid walks. This strategy proved to be an effective method for cloning 250 kilobases of DNA in the region telomeric to D4S90. Hybridization analysis with the cloned DNA did not provide any evidence for the presence of rearrangements of 100 base pairs or greater in the DNA of individuals affected with HD. They also found no charge in the size or structure of the 4p telomere in these samples.« less

  1. Re-evaluating TTF-1 immunohistochemistry in diffuse gliomas: Expression is clone-dependent and associated with tumor location.

    PubMed

    Pratt, Drew; Afsar, Nina; Allgauer, Michael; Fetsch, Patricia; Palisoc, Maryknoll; Pittaluga, Stefania; Quezado, Martha

    TTF-1 is widely used as a marker in routine surgical pathology in the work-up of malignancy. Aberrant expression of TTF-1 in extrapulmonary and extrathyroidal malignancies is a frequently reported phenomenon. In addition to the recently characterized pituicyte-derived tumors of the sella, immunoreactivity has been reported in diffuse gliomas with the SPT24 clone. Here, we sought to evaluate TTF-1 expression with three commercially available clones in a large series of gliomas. Expression was compared across the newly defined diagnostic entities in the 2016 WHO Classification of CNS Tumors. Using tissue microarrays (TMA), 212 diffuse gliomas (WHO grades II - IV) were systematically evaluated with TTF-1 immunohistochemistry using three clones: SPT24, 8G7G3/1, and SP141, and results correlated with clinicopathologic features. 14 high-grade diffuse gliomas demonstrated nuclear staining with the SP141 and SPT24 clones. Two tumors showed weak positivity with the 8G7G3/1 clone. All tumors were high grade by histology (WHO grades III and IV). 86% (12/14) of TTF-1-positive gliomas involved the frontal lobes at diagnosis. No relationship with IDH R132H, ATRX, p53, H3K27M, or EGFR immunohistochemistry was identified. TTF-1 expression in gliomas was not independently prognostic of overall survival. TTF-1 expression in diffuse gliomas is a rare but potentially misleading occurrence. In our cohort, staining occurred with both the SPT24 and SP141 clones at equal intensity and frequency. Clustering of TTF-1-positive tumors in the frontal lobe(s) suggests lineage-specific expression. Due to clone-specific expression in diffuse gliomas, caution must be exercised in the work-up of intracranial tumors with TTF-1.
.

  2. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    PubMed

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  3. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression

    PubMed Central

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919

  4. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs.

    PubMed

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars; Stagsted, Jan; Boye, Mette

    2013-02-07

    Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, P<0.0001) and in non-cloned control pigs (r=0.9, P<0.0001). Shannon Weaver and principal component analysis (PCA) of the terminal restriction fragments (T-RFs) revealed no differences in the bacterial composition or variability of the fecal microbiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; P<0.02) and non cloned-control pigs (r=0.45; P<0.006), and negatively with the abundance of Bacteroidetes in cloned pigs (r=-0.33, P<0.04), but not in the non-cloned control pigs. The cloned pigs did not have reduced inter-individual variation as compared to non-cloned pigs in regard to their gut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an increase in the relative abundance of Firmicutes over time. Our results suggest that cloned pigs are not a more suitable animal model for gut microbiota-obesity related studies than non-cloned pigs. This study is the first to evaluate if cloned pigs provide a better animal model than conventional pigs in diet-intervention, obesity and gut microbiota research.

  5. A versatile and efficient high-throughput cloning tool for structural biology.

    PubMed

    Geertsma, Eric R; Dutzler, Raimund

    2011-04-19

    Methods for the cloning of large numbers of open reading frames into expression vectors are of critical importance for challenging structural biology projects. Here we describe a system termed fragment exchange (FX) cloning that facilitates the high-throughput generation of expression constructs. The method is based on a class IIS restriction enzyme and negative selection markers. FX cloning combines attractive features of established recombination- and ligation-independent cloning methods: It allows the straightforward transfer of an open reading frame into a variety of expression vectors and is highly efficient and very economic in its use. In addition, FX cloning avoids the common but undesirable feature of significantly extending target open reading frames with cloning related sequences, as it leaves a minimal seam of only a single extra amino acid to either side of the protein. The method has proven to be very robust and suitable for all common pro- and eukaryotic expression systems. It considerably speeds up the generation of expression constructs compared to traditional methods and thus facilitates a broader expression screening.

  6. High-resolution mapping and sequence analysis of 597 cDNA clones transcribed from the 1 Mb region in human chromosome 4q16.3 containing Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadano, S.; Ishida, Y.; Tomiyasu, H.

    1994-09-01

    To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less

  7. Clinical impact of methicillin-resistant staphylococcus aureus on bacterial pneumonia: cultivation and 16S ribosomal RNA gene analysis of bronchoalveolar lavage fluid.

    PubMed

    Kawanami, Toshinori; Yatera, Kazuhiro; Yamasaki, Kei; Noguchi, Shingo; Fukuda, Kazumasa; Akata, Kentarou; Naito, Keisuke; Kido, Takashi; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2016-04-16

    Determining whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen or reflective of colonization when MRSA is cultured from the respiratory tract remains important in treating patients with pneumonia. We evaluated the bacterial microbiota in bronchoalveolar lavage fluid (BALF) using the clone library method with a 16S ribosomal RNA (rRNA) gene analysis in 42 patients from a pneumonia registry who had MRSA cultured from their sputum or BALF samples. Patients were divided into two groups: those treated with (Group A) or without (Group B) anti-MRSA agents, and their clinical features were compared. Among 248 patients with pneumonia, 42 patients who had MRSA cultured from the respiratory tract were analyzed (Group A: 13 patients, Group B: 29 patients). No clones of S. aureus were detected in the BALF of 20 out of 42 patients. Twenty-eight of 29 patients in Group B showed favorable clinical outcomes, indicating that these patients had non-MRSA pneumonia. Using a microflora analysis of the BALF, the S. aureus phylotype was predominant in 5 of 28 (17.9%) patients among the detected bacterial phylotypes, but a minor population (the percentage of clones ≤ 10%) in 19 (67.9%) of 28 patients. A statistical analysis revealed no positive relationship between the percentage of clones of the S. aureus phylotype and risk factors of MRSA pneumonia. The molecular method using BALF specimens suggests that conventional cultivation method results may mislead true causative pathogens, especially in patients with MRSA pneumonia. Further studies are necessary to elucidate these clinically important issues.

  8. Identification and immunogenicity of immunodominant mimotopes of outer membrane protein U (OmpU) of Vibrio mimicus from phage display peptide library.

    PubMed

    Cen, Junyu; Liu, Xueqin; Li, Jinnian; Zhang, Ming; Wang, Wei

    2013-01-01

    Vibrio mimicus (V. mimicus) is the causative agent of ascites disease in aquatic animals. Outer membrane protein U (OmpU) is an important antigen of V. mimicus, but its protective epitopes are still unclear. A random 12-mer phage-displayed peptide library was used to screen and identify immunodominant mimotopes of the OmpU protein in V. mimicus by panning against purified OmpU-specific polyclonal antibody. Then the immunogenicity and immunoprotection in fish of these mimotopes was evaluated. Nine positive phage clones presented seven different 12- peptide sequences and more than 50% of them carried a consensus core motif of DSSK-P. These positive clones reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by OmpU protein. Intraperitoneal injection of seven positive phage clones into fish induced a specific antibody response to OmpU protein. The fish immunized respectively with the positive phage clones C17, C24, C60 and C66 obtained 100% immunoprotective effect against experimental V. mimicus challenge. Taken together, these mimotopes presented by clone C17, C24, C60 and C66 were immunodominant mimotopes of the OmpU protein and exhibited a more appropriate candidate as epitope-based vaccine against V. mimicus infection in aquatic animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III.

    PubMed

    Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi

    2004-01-01

    The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.

  10. A novel high-throughput (HTP) cloning strategy for site-directed designed chimeragenesis and mutation using the Gateway cloning system

    PubMed Central

    Suzuki, Yasuhiro; Kagawa, Naoko; Fujino, Toru; Sumiya, Tsuyoshi; Andoh, Taichi; Ishikawa, Kumiko; Kimura, Rie; Kemmochi, Kiyokazu; Ohta, Tsutomu; Tanaka, Shigeo

    2005-01-01

    There is an increasing demand for easy, high-throughput (HTP) methods for protein engineering to support advances in the development of structural biology, bioinformatics and drug design. Here, we describe an N- and C-terminal cloning method utilizing Gateway cloning technology that we have adopted for chimeric and mutant genes production as well as domain shuffling. This method involves only three steps: PCR, in vitro recombination and transformation. All three processes consist of simple handling, mixing and incubation steps. We have characterized this novel HTP method on 96 targets with >90% success. Here, we also discuss an N- and C-terminal cloning method for domain shuffling and a combination of mutation and chimeragenesis with two types of plasmid vectors. PMID:16009811

  11. Knowledge and attitudes toward human cloning in Israel.

    PubMed

    Barnoy, Sivia; Ehrenfeld, Malka; Sharon, Rina; Tabak, Nili

    2006-04-01

    The success of mammal cloning in 1997 has brought the issue of human cloning into public discussion. Human cloning has several aspects and potential applications for use in both reproductive and non-reproductive matters. The aim of this study was to evaluate the knowledge and attitudes toward human cloning in Israel. Data from 120 respondents (68 health professionals and 52 non-health professionals), all Jewish, Hebrew speaking with at least 15 years of education each, were collected using two questionnaires that dealt with knowledge and attitudes toward human cloning. Results showed that although health professionals had significantly more knowledge that non-health professionals, all respondents had poor knowledge about cloning. No difference in attitudes was found between the groups. Most respondents opposed human cloning, but more positive attitudes toward non-reproductive cloning were found. The results are discussed in the context of the deficit model. The findings indicate a need to provide information about human cloning to allow people to form their attitudes based on factual knowledge.

  12. Probabilistic quantum cloning of a subset of linearly dependent states

    NASA Astrophysics Data System (ADS)

    Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun

    2018-02-01

    It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.

  13. SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts.

    PubMed

    Ray, F A; Peabody, D S; Cooper, J L; Cram, L S; Kraemer, P M

    1990-01-01

    To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.

  14. Geranylgeranyl diphosphate synthases from Scoparia dulcis and Croton sublyratus. cDNA cloning, functional expression, and conversion to a farnesyl diphosphate synthase.

    PubMed

    Kojima, N; Sitthithaworn, W; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Sankaw, U

    2000-07-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene producing plants, Scoparia dulcis and Croton sublyratus, were isolated using the homology-based polymerase chain reaction method. Both cloned genes showed high amino acid sequence homology (60-70%) to other plant GGPPSs and contained highly conserved aspartate-rich motifs. The obtained clones were functionally expressed in Escherichia coli and showed sufficient GGPPS activity to catalyze the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate to form geranylgeranyl diphosphate. To investigate the factor determining the product chain length of plant GGPPSs, S. dulcis GGPPS mutants in which either the small amino acids at the fourth and fifth positions before the first aspartate-rich motif (FARM) were replaced with aromatic amino acids or in which two additional amino acids in FARM were deleted were constructed. Both mutants behaved like FPPS-like enzymes and almost exclusively produced FPP when dimethylallyl diphosphate was used as a primer substrate, and failed to accept FPP as a primer substrate. These results indicate that both small amino acids at the fourth and fifth positions before FARM and the amino acid insertion in FARM play essential roles in product length determination in plant GGPPSs.

  15. An improved method for undertaking limiting dilution assays for in vitro cloning of Plasmodium falciparum parasites.

    PubMed

    Butterworth, Alice S; Robertson, Alan J; Ho, Mei-Fong; Gatton, Michelle L; McCarthy, James S; Trenholme, Katharine R

    2011-04-18

    Obtaining single parasite clones is required for many techniques in malaria research. Cloning by limiting dilution using microscopy-based assessment for parasite growth is an arduous and labor-intensive process. An alternative method for the detection of parasite growth in limiting dilution assays is using a commercial ELISA histidine-rich protein II (HRP2) detection kit. Detection of parasite growth was undertaken using HRP2 ELISA and compared to thick film microscopy. An HRP2 protein standard was used to determine the detection threshold of the HRP2 ELISA assay, and a HRP2 release model was used to extrapolate the amount of parasite growth required for a positive result. The HRP2 ELISA was more sensitive than microscopy for detecting parasite growth. The minimum level of HRP2 protein detection of the ELISA was 0.11 ng/ml. Modeling of HRP2 release determined that 2,116 parasites are required to complete a full erythrocytic cycle to produce sufficient HRP2 to be detected by the ELISA. Under standard culture conditions this number of parasites is likely to be reached between 8 to 14 days of culture. This method provides an accurate and simple way for the detection of parasite growth in limiting dilution assays, reducing time and resources required in traditional methods. Furthermore the method uses spent culture media instead of the parasite-infected red blood cells, enabling culture to continue. © 2011 Butterworth et al; licensee BioMed Central Ltd.

  16. Development of RAPD-SCAR markers for different Ganoderma species authentication by improved RAPD amplification and molecular cloning.

    PubMed

    Fu, J J; Mei, Z Q; Tania, M; Yang, L Q; Cheng, J L; Khan, M A

    2015-05-25

    The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, O.; Roa, Luis; Delgado, A.

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability ismore » higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.« less

  18. High resolution melting analysis: rapid and precise characterisation of recombinant influenza A genomes

    PubMed Central

    2013-01-01

    Background High resolution melting analysis (HRM) is a rapid and cost-effective technique for the characterisation of PCR amplicons. Because the reverse genetics of segmented influenza A viruses allows the generation of numerous influenza A virus reassortants within a short time, methods for the rapid selection of the correct recombinants are very useful. Methods PCR primer pairs covering the single nucleotide polymorphism (SNP) positions of two different influenza A H5N1 strains were designed. Reassortants of the two different H5N1 isolates were used as a model to prove the suitability of HRM for the selection of the correct recombinants. Furthermore, two different cycler instruments were compared. Results Both cycler instruments generated comparable average melting peaks, which allowed the easy identification and selection of the correct cloned segments or reassorted viruses. Conclusions HRM is a highly suitable method for the rapid and precise characterisation of cloned influenza A genomes. PMID:24028349

  19. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges.

    PubMed

    Gurgui, Cristian; Piel, Jörn

    2010-01-01

    Many marine sponges harbor massive consortia of symbiotic bacteria belonging to diverse phyla. Sponges are also an unusually rich source of biologically active natural products, and evidence is accumulating that these compounds might often be synthesized by the symbionts. Since the study of sponge-associated bacteria is generally hampered by very low cultivation rates, cultivation-independent, metagenomic methods have recently been applied to sponges. These methods allow for the isolation of biosynthetic gene clusters that can ultimately be exploited to develop sustainable natural product sources by heterologous expression. However, general challenges encountered in sponge metagenomic research are the poor quality of the isolated DNA with respect to size and yield, the difficulty to identify genes of interest among numerous homologs, insufficient clone numbers in metagenomic libraries, and time-consuming screening procedures to identify and isolate rare positive clones. Here, we give an overview of methods that address these problems and can be used to streamline isolation of biosynthetic and other genes of interest.

  20. Bacterial examination of endodontic infections by clonal analysis in concert with denaturing high-performance liquid chromatography.

    PubMed

    Jacinto, R C; Gomes, B P F A; Desai, M; Rajendram, D; Shah, H N

    2007-12-01

    The aim of this study was to examine the diversity of bacterial species in the infected root canals of teeth associated with endodontic abscesses by cloning and sequencing techniques in concert with denaturing high-performance liquid chromatography. Samples collected from five infected root canals were subjected to polymerase chain reaction (PCR) with universal 16S ribosomal DNA primers. Products of these PCRs were cloned and sequenced. Denaturing high-performance liquid chromatography (DHPLC) was used as a screening method to reduce the number of clones necessary for DNA sequencing. All samples were positive for the presence of bacteria and a range of 7-13 different bacteria were found per root canal sample. In total, 48 different oral clones were detected among the five root canal samples. Olsenella profusa was the only species present in all samples. Porphyromonas gingivalis, Dialister pneumosintes, Dialister invisus, Lachnospiraceae oral clone, Staphylococcus aureus, Pseudoramibacter alactolyticus, Peptostreptococcus micros and Enterococcus faecalis were found in two of the five samples. The majority of the taxa were present in only one sample, for example Tannerella forsythia, Shuttleworthia satelles and Filifactor alocis. Some facultative anaerobes that are frequently isolated from endodontic infections such as E. faecalis, Streptococcus anginosus and Lactobacillus spp. were also found in this study. Clonal analysis of the microflora associated with endodontic infections revealed a wide diversity of oral species.

  1. A general strategy for cloning viroids and other small circular RNAs that uses minimal amounts of template and does not require prior knowledge of its sequence.

    PubMed

    Navarro, B; Daròs, J A; Flores, R

    1996-01-01

    Two PCR-based methods are described for obtaining clones of small circular RNAs of unknown sequence and for which only minute amounts are available. To avoid introducing any assumption about the RNA sequence, synthesis of the cDNAs is initiated with random primers. The cDNA population is then PCR-amplified using a primer whose sequence is present at both sides of the cDNAs, since they have been obtained with random hexamers and then a linker with the sequence of the PCR primer has been ligated to their termini, or because the cDNAs have been synthesized with an oligonucleotide that contains the sequence of the PCR primer at its 5' end and six randomized positions at its 3' end. The procedures need only approximately 50 ng of purified RNA template. The reasons for the emergence of cloning artifacts and precautions to avoid them are discussed.

  2. A triallelic genetic male sterility locus in Brassica napus: an integrative strategy for its physical mapping and possible local chromosome evolution around it

    PubMed Central

    Lu, Wei; Liu, Jun; Xin, Qiang; Wan, Lili; Hong, Dengfeng; Yang, Guangsheng

    2013-01-01

    Background and Aims Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5. Methods A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5. Key Results BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence. Conclusions This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus. PMID:23243189

  3. Ciona Genetics

    PubMed Central

    Veeman, Michael T.; Chiba, Shota; Smith, William C.

    2010-01-01

    Ascidians, such as Ciona, are invertebrate chordates with simple embryonic body plans and small, relatively non-redundant genomes. Ciona genetics is in its infancy compared to many other model systems, but it provides a powerful method for studying this important vertebrate outgroup. Here we give basic methods for genetic analysis of Ciona, including protocols for controlled crosses both by natural spawning and by the surgical isolation of gametes; the identification and propagation of mutant lines; and strategies for positional cloning. PMID:21805273

  4. Locating Sequence on FPC Maps and Selecting a Minimal Tiling Path

    PubMed Central

    Engler, Friedrich W.; Hatfield, James; Nelson, William; Soderlund, Carol A.

    2003-01-01

    This study discusses three software tools, the first two aid in integrating sequence with an FPC physical map and the third automatically selects a minimal tiling path given genomic draft sequence and BAC end sequences. The first tool, FSD (FPC Simulated Digest), takes a sequenced clone and adds it back to the map based on a fingerprint generated by an in silico digest of the clone. This allows verification of sequenced clone positions and the integration of sequenced clones that were not originally part of the FPC map. The second tool, BSS (Blast Some Sequence), takes a query sequence and positions it on the map based on sequence associated with the clones in the map. BSS has multiple uses as follows: (1) When the query is a file of marker sequences, they can be added as electronic markers. (2) When the query is draft sequence, the results of BSS can be used to close gaps in a sequenced clone or the physical map. (3) When the query is a sequenced clone and the target is BAC end sequences, one may select the next clone for sequencing using both sequence comparison results and map location. (4) When the query is whole-genome draft sequence and the target is BAC end sequences, the results can be used to select many clones for a minimal tiling path at once. The third tool, pickMTP, automates the majority of this last usage of BSS. Results are presented using the rice FPC map, BAC end sequences, and whole-genome shotgun from Syngenta. PMID:12915486

  5. Presence of natural killer-cell clones with variable proliferative capacity in chronic active Epstein-Barr virus infection.

    PubMed

    Nagata, H; Numata, T; Konno, A; Mikata, I; Kurasawa, K; Hara, S; Nishimura, M; Yamamoto, K; Shimizu, N

    2001-10-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a syndrome that takes diverse clinical courses and is often associated with lymphoproliferative disorders of T/natural killer (NK)-cell lineage. We describe a patient with CAEBV associated with persistent pharyngeal ulcer, and with subsequent nasal T/NK-cell lymphoma in her neck lymph nodes and nasopharynx. Immunophenotyping of lymphoid cells showed that the lineage of Epstein-Barr virus (EBV)-positive cells in the patient was of NK-cell origin. By means of high-dose recombinant interleukin-2, we established an EBV-positive cell line of NK-cell lineage from her peripheral blood. Southern blot analysis for the number of terminal repeat sequences of EBV detected three NK-cell clones in the patient's lymph node. One of these clones was identical to the established cell line but was not observed in the pharyngeal ulcer, while the other two clones were present in the pharyngeal ulcer. These results suggest that the patient had expansion of the three NK-cell clones, one of which had proliferative capacity in vitro and was involved in the formation of the lymphoma. Moreover, the results suggest that the proliferative capacity of EBV-positive cells can be variable even in a single patient, and this variability may explain the clinical diversity in CAEBV.

  6. Large-scale mapping of mutations affecting zebrafish development.

    PubMed

    Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus P S; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane

    2007-01-09

    Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.

  7. Transposon-containing DNA cloning vector and uses thereof

    DOEpatents

    Berg, C.M.; Berg, D.E.; Wang, G.

    1997-07-08

    The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed. 4 figs.

  8. Transposon-containing DNA cloning vector and uses thereof

    DOEpatents

    Berg, Claire M.; Berg, Douglas E.; Wang, Gan

    1997-01-01

    The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed.

  9. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    PubMed Central

    Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn

    2009-01-01

    Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672

  10. Domain selection combined with improved cloning strategy for high throughput expression of higher eukaryotic proteins

    PubMed Central

    Chen, Yunjia; Qiu, Shihong; Luan, Chi-Hao; Luo, Ming

    2007-01-01

    Background Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics. Results With bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies. Conclusion The DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics. PMID:17663785

  11. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  12. Characteristics of escape mutations from occult hepatitis B virus infected patients with hematological malignancies in South Egypt

    PubMed Central

    Elkady, Abeer; Iijima, Sayuki; Aboulfotuh, Sahar; Mostafa Ali, Elsayed; Sayed, Douaa; Abdel-Aziz, Nashwa M; Ali, Amany M; Murakami, Shuko; Isogawa, Masanori; Tanaka, Yasuhito

    2017-01-01

    AIM To investigate the prevalence and virological characteristics of occult hepatitis B virus (HBV) infections in patients with hematological malignancies in South Egypt. METHODS Serum samples were collected from 165 patients with hematological malignancies to monitor titers of HBV DNA, hepatitis B surface antigen (HBsAg), and antibodies to HBV core (anti-HBc) and surface antigens. Serum samples negative for HBsAg and positive for anti-HBc were subjected to nucleic acid extraction and HBV DNA detection by real-time polymerase chain reaction. DNA sequences spanning the S region were analyzed in cases with occult HBV infection. In vitro comparative study of constructed 1.24-fold wild type and S protein mutant HBV genotype D clones was further performed. RESULTS HBV DNA was detected in 23 (42.6%) of 54 patients with hematological malignancies who were HBsAg negative, but anti-HBc positive, suggesting the presence of occult HBV infection. The complete HBV genome was retrieved from 6 occult HBV patients, and P120T and S143L were detected in 3 and 2 cases, respectively. Site directed mutagenesis was done to produce 1.24-fold genotype D clones with amino acid mutations T120 and L143. The in vitro analyses revealed that a lower level of extracellular HBsAg was detected by chemiluminescence enzyme immunoassay (CLEIA) with the clone containing T120 mutation, compared with the wild type or the clone with S143L mutation despite the similar levels of extracellular and intracellular HBsAg detected by Western blot. Southern blot experiments showed that the levels of intracellular HBV DNA were not different between these clones. CONCLUSION Occult HBV infection is common in patients with hematological malignancies and associated with P120T and S143L mutations. 120T mutation impairs the detection of HBsAg by CLEIA. PMID:28396718

  13. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.

    PubMed

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Luttermann, Tobias; Kalinowski, Jörn; Friehs, Karl

    2016-05-20

    The classic AOX1 replacement approach is still one of the most often used techniques for expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. Although this approach is largely successful, it frequently delivers clones with unpredicted production characteristics and a work-intense screening process is required to find the strain with desired productivity. In this project 845 P. pastoris clones, transformed with a GFP expression cassette, were analyzed for their methanol-utilization (Mut)-phenotypes, GFP gene expression levels and gene copy numbers. Several groups of strains with irregular features were identified. Such features include GFP expression that is markedly higher or lower than expected based on gene copy number as well as strains that grew under selective conditions but where the GFP gene cassette and its expression could not be detected. From these classes of strains 31 characteristic clones were selected and their genomes sequenced. By correlating the assembled genome data with the experimental phenotypes novel insights were obtained. These comprise a clear connection between productivity and cassette-to-cassette orientation in the genome, the occurrence of false-positive clones due to a secondary recombination event, and lower total productivity due to the presence of untransformed cells within the isolates were discovered. To cope with some of these problems, the original vector was optimized by replacing the AOX1 terminator, preventing the occurrence of false-positive clones due to the secondary recombination event. Standard methods for transformation of P. pastoris led to a multitude of unintended and sometimes detrimental integration events, lowering total productivity. By documenting the connections between productivity and integration event we obtained a deeper understanding of the genetics of mutation in P. pastoris. These findings and the derived improved mutagenesis and transformation procedures and tools will help other scientists working on recombinant protein production in P. pastoris and similar non-conventional yeasts.

  14. The influence of alternative plant propagation and stand establishment techniques on survival and growth of eastern cottonwood (Populus deltoids Bartr.) clones

    Treesearch

    Donald J. Kaczmarek; Randall Rousseau; Jeff A. Wright; Brian Wachelka

    2014-01-01

    Four eastern cottonwood clones, including standard operational clone ST66 and three advanced clonal selections were produced and included in a test utilizing five different plant propagation methods. Despite relatively large first-year growth differences among clones, all clones demonstrated similar responses to the treatments and clone × cutting treatment interactions...

  15. [Offspring quality and its related factors of different Brachionus calyciflorus clones].

    PubMed

    Dong, Lili; Xi, Yilong; Zhang, Lei

    2006-12-01

    This paper studied the neonate starvation-endurance duration of four Brachionus calyciflorus clones (Clone A, B, C and D) with different biochemical-genetic characteristics at 15 degrees C, 20 degrees C, 25 degrees C and 30 degrees C, and the relationships of this duration with the temperature and the body- and egg volumes of B. calyciflorus. The results showed that at 15 degrees C, the neonates of Clone B had the shortest starvation-endurance duration (45.67 h); at 20 degrees C and 25 degrees C, the neonates' starvation-endurance duration of Clone C was the longest, being 61.33 h and 72.01 h, respectively; while at 30 degrees C, this duration of Clone A was the longest (40.11 h). The neonates' starvation-endurance duration of Clone A was the longest at 15 degrees C, those of Clone B and C were the shortest at 30 degrees C, while that of Clone D decreased with raising temperature. The neonates' starvation-endurance duration of all the four clones was negatively correlated with temperature. There was a negative correlation between this duration of Clone A and its egg volume, and the reverse was true for Clone C. The neonates' starvation-endurance duration of Clone B and D was positively correlated with the body volume of rotifer mother.

  16. Optimal quantum cloning based on the maximin principle by using a priori information

    NASA Astrophysics Data System (ADS)

    Kang, Peng; Dai, Hong-Yi; Wei, Jia-Hua; Zhang, Ming

    2016-10-01

    We propose an optimal 1 →2 quantum cloning method based on the maximin principle by making full use of a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected region enclosed by a "longitude-latitude grid" on the Bloch sphere. Theoretically, the fidelity of the optimal quantum cloning machine derived from this method is the largest in terms of the maximin principle compared with that of any other machine. The problem solving is an optimization process that involves six unknown complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints. Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the "belt quantum cloning machine" for some cases.

  17. Distribution of Serogroups and Genotypes among Disease-Associated and Carried Isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway

    PubMed Central

    Yazdankhah, Siamak P.; Kriz, Paula; Tzanakaki, Georgina; Kremastinou, Jenny; Kalmusova, Jitka; Musilek, Martin; Alvestad, Torill; Jolley, Keith A.; Wilson, Daniel J.; McCarthy, Noel D.; Caugant, Dominique A.; Maiden, Martin C. J.

    2004-01-01

    The distribution of serogroups and multilocus sequence types (STs) in collections of disease-associated and carried meningococci from the period 1991 to 2000 in three European countries (the Czech Republic, Greece, and Norway) was investigated. A total of 314 patient isolates and 353 isolates from asymptomatic carriers were characterized. The frequency distributions of serogroups and clone complexes differed among countries and between disease and carrier isolate collections. Highly significant differentiation was seen at each housekeeping locus. A marked positive association of serogroup C with disease was evidenced. The ST-11 complex was strongly positively associated with disease; associations for other clone complexes were weaker. The genetic diversity of the clone complexes differed. A single ST dominated the ST-11 clone complex, while the ST-41/44 complex exhibited greater levels of diversity. These data robustly demonstrated differences in the distribution of meningococcal genotypes in disease and carrier isolates and among countries. Further, they indicated that differences in genotype diversity and pathogenicity exist between meningococcal clone complexes. PMID:15528708

  18. Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate

    PubMed Central

    Yoon, Ju-Yeon; Cho, In-Sook; Choi, Gug-Seoun; Choi, Seung-Kook

    2014-01-01

    Chrysanthemum stunt viroid (CSVd), a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1) were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants. PMID:25288987

  19. Images of cloning and stem cell research in editorial cartoons in the United States.

    PubMed

    Giarelli, Ellen

    2006-01-01

    Through semiotic analysis of manifest and latent meanings in editorial cartoons, the author uncovers how cloning and stem cell research are represented in a popular mass medium. She identified 86 editorial cartoons published in the United States between 2001 and 2004 that referred to cloning and 20 that referred to stem cell research. Cartoonists portrayed people individually 224 times and 4 times in groups of more than 10. Men were portrayed in 64% of cartoons. Stem cell research was depicted as having a potential positive value, and cloning was depicted negatively. Some major messages are that cloning will lead to the mass production of evil, cloning creates monsters, and politics will influence who or what will be cloned. Analyzing popular images can allow access to public understanding about genetic technology and evaluation of public beliefs, preconceptions, and expectations as the public is educated on the use and value of services.

  20. What justifies the United States ban on federal funding for nonreproductive cloning?

    PubMed

    Cunningham, Thomas V

    2013-11-01

    This paper explores how current United States policies for funding nonreproductive cloning are justified and argues against that justification. I show that a common conceptual framework underlies the national prohibition on the use of public funds for cloning research, which I call the simple argument. This argument rests on two premises: that research harming human embryos is unethical and that embryos produced via fertilization are identical to those produced via cloning. In response to the simple argument, I challenge the latter premise. I demonstrate there are important ontological differences between human embryos (produced via fertilization) and clone embryos (produced via cloning). After considering the implications my argument has for the morality of publicly funding cloning for potential therapeutic purposes and potential responses to my position, I conclude that such funding is not only ethically permissible, but also humane national policy.

  1. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review.

    PubMed

    Fadel, Hossam E

    2012-03-01

    Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed. © 2010 Blackwell Publishing Ltd.

  2. Development of t(8;21) and RUNX1-RUNX1T1 in the Philadelphia-positive clone of a patient with chronic myelogenous leukemia: additional evidence for multiple steps involved in disease progression.

    PubMed

    Najfeld, Vesna; Wisch, Nathaniel; Mascarenhas, John; Issa, Leonard; Tripodi, Joseph; Sidhu, Manpreet; Hoffman, Ronald

    2011-03-01

    A 65-year-old patient with a high hemoglobin and hematocrit was treated for 14 months with therapeutic phlebotomy when cytogenetics of bone marrow revealed 100% cells with the Ph chromosome and 45% of the Ph+ cells contained trisomy 8. Treatment with tyrosine kinase inhibitors did not reduce the BCR-ABL1 fusion positive clone. Instead, the Ph positive cells acquired further the t(8;21)/RUNX1-RUNX1T1, del(4q) and trisomy 15 chromosomal abnormalities which were resistant to further treatment. Literature review revealed eight other patients who either had t(9;22) and t(8;21) simultaneously or developed t(8;21) in the Ph positive clone. We conclude that there are rare patients with CML who either present in blast crisis with coexistence of t(9;22) and t(8;21) with or without +8, or progress to blast crisis with acquiring RUNX1-RUNX1T1 in the BCR-ABL1 clone which may or may not be therapy related and represent a later event in a multistep pathogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The Dao of human cloning: utopian/dystopian hype in the British press and popular films.

    PubMed

    Jensen, Eric

    2008-04-01

    The issue of human cloning has featured in the national science policy agendas in both the United States and the United Kingdom since the announcement in 1997 of Dolly the cloned sheep's birth in Scotland. Such news stories suggesting the imminent cloning of humans have inspired fictional entertainment media over the years, including numerous popular films. Study 1 examines elite British press coverage of human cloning from 1997 to 2004 (n = 857). Study 2 focuses on five human cloning films released between 1978 and 2003. Two sharply divergent discourses emerged from these data. Unqualified hope and habitually hyped claims of future cures permeated the press discourse. In contrast, the films constructed human cloning as an inherently dangerous technology often wielded by hubristic scientists in the tradition of Frankenstein. Both the predominately positive hype in the broadsheet press and the largely negative hype in the films indicate an impoverished and "thin" public debate on the issue of human cloning.

  4. Accurate Identification of ALK Positive Lung Carcinoma Patients: Novel FDA-Cleared Automated Fluorescence In Situ Hybridization Scanning System and Ultrasensitive Immunohistochemistry

    PubMed Central

    Conde, Esther; Suárez-Gauthier, Ana; Benito, Amparo; Garrido, Pilar; García-Campelo, Rosario; Biscuola, Michele; Paz-Ares, Luis; Hardisson, David; de Castro, Javier; Camacho, M. Carmen; Rodriguez-Abreu, Delvys; Abdulkader, Ihab; Ramirez, Josep; Reguart, Noemí; Salido, Marta; Pijuán, Lara; Arriola, Edurne; Sanz, Julián; Folgueras, Victoria; Villanueva, Noemí; Gómez-Román, Javier; Hidalgo, Manuel; López-Ríos, Fernando

    2014-01-01

    Background Based on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit) and an automated ALK FISH scanning system (FDA-cleared) in a series of non-small cell lung cancer tumor samples. Methods Forty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana) and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit), which was automatically captured and scored by using Bioview's automated scanning system. Results All positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively. Conclusions The specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations. PMID:25248157

  5. Variations and voids: the regulation of human cloning around the world.

    PubMed

    Pattinson, Shaun D; Caulfield, Timothy

    2004-12-13

    No two countries have adopted identical regulatory measures on cloning. Understanding the complexity of these regulatory variations is essential. It highlights the challenges associated with the regulation of a controversial and rapidly evolving area of science and sheds light on a regulatory framework that can accommodate this reality. Using the most reliable information available, we have performed a survey of the regulatory position of thirty countries around the world regarding the creation and use of cloned embryos (see Table 1). We have relied on original and translated legislation, as well as published sources and personal communications. We have examined the regulation of both reproductive cloning (RC) and non-reproductive cloning (NRC). While most of the countries studied have enacted national legislation, the absence of legislation in seven of these countries should not be equated with the absence of regulation. Senator Morin was not correct in stating that the majority of recent legislation bans both RC and NRC. Recent regulatory moves are united only with regard to the banning of RC. While NRC is not permitted in seventeen of the countries examined, it could be permitted in up to thirteen countries. There is little consensus on the various approaches to cloning laws and policies, and the regulatory position in many countries remains uncertain.

  6. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  7. Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes.

    PubMed

    Quambusch, Mona; Pirttilä, Anna Maria; Tejesvi, Mysore V; Winkelmann, Traud; Bartsch, Melanie

    2014-05-01

    The endophytic bacterial communities of six Prunus avium L. genotypes differing in their growth patterns during in vitro propagation were identified by culture-dependent and culture-independent methods. Five morphologically distinct isolates from tissue culture material were identified by 16S rDNA sequence analysis. To detect and analyze the uncultivable fraction of endophytic bacteria, a clone library was established from the amplified 16S rDNA of total plant extract. Bacterial diversity within the clone libraries was analyzed by amplified ribosomal rDNA restriction analysis and by sequencing a clone for each identified operational taxonomic unit. The most abundant bacterial group was Mycobacterium sp., which was identified in the clone libraries of all analyzed Prunus genotypes. Other dominant bacterial genera identified in the easy-to-propagate genotypes were Rhodopseudomonas sp. and Microbacterium sp. Thus, the community structures in the easy- and difficult-to-propagate cherry genotypes differed significantly. The bacterial genera, which were previously reported to have plant growth-promoting effects, were detected only in genotypes with high propagation success, indicating a possible positive impact of these bacteria on in vitro propagation of P. avium, which was proven in an inoculation experiment. © The Author 2014. Published by Oxford University Press. All rights reserved.

  8. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease.

  9. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase.

    PubMed

    Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.

  10. Hot Fusion: An Efficient Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase

    PubMed Central

    Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825

  11. Development of a Novel Human Single Chain Antibody Against EGFRVIII Antigen by Phage Display Technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva

    2016-12-01

    Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei, 230022; Song Qingming

    We present a scheme to realize a special quantum cloning machine in separate cavities. The quantum cloning machine can copy the quantum information from a photon pulse to two distant atoms. Choosing the different parameters, the method can perform optimal symmetric (asymmetric) universal quantum cloning and optimal symmetric (asymmetric) phase-covariant cloning.

  13. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    PubMed

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli in Riyadh: emergence of CTX-M-15-producing E. coli ST131.

    PubMed

    Al-Agamy, Mohamed H; Shibl, Atef M; Hafez, Mohamed M; Al-Ahdal, Mohammad N; Memish, Ziad A; Khubnani, Harish

    2014-01-07

    The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) has increased recently. The aim of this study was to further characterise and to assess the occurrence of ESBL-EC in Riyadh, to use pulsed field gel electrophoresis (PFGE) typing to investigate the epidemiology of ESBL-EC and to determine the prevalence of ST131 in ESBL-EC. A total of 152 E. coli isolates were collected at a tertiary hospital in Riyadh from September 2010 to June 2011. Genotypic and phenotypic methods were used to characterise ESBLs. PFGE was used to determine genetic relatedness. Detection of ST131 and CTX-M-like ESBLs was performed using real-time PCR. Of 152 strains, 31 were positive for ESBLs by phenotypic methods. The blaCTX-M-15 gene was highly prevalent (30/31 strains, 96.77%) among the 31 ESBL-positive E. coli strains. The blaCTX-M-27 gene was detected in one strain. Twenty (64.5%) out of 31 of ESBL-EC were ST131. PFGE revealed 29 different pulsotypes. Our study documented the high prevalence of ESBLs in E. coli isolates, with CTX-M-15 as the predominant ESBL gene. ST131 clone producing CTX-M-15 has a major presence in our hospital. The high prevalence of CTX-M producers was not due to the spread of a single clone. To the best of our knowledge, this study represents the first report of CTX-M-15 and CTX-M-27 β-lactamases and the detection of the ST131 clone in Saudi E. coli isolates.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, Peter A.

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparingmore » immunocompatible pluripotent stem cells are indicated.« less

  16. Exponential megapriming PCR (EMP) cloning--seamless DNA insertion into any target plasmid without sequence constraints.

    PubMed

    Ulrich, Alexander; Andersen, Kasper R; Schwartz, Thomas U

    2012-01-01

    We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts.

  17. Cloning and Partial Characterization of an Aniline Metabolic Pathway (Preprint)

    DTIC Science & Technology

    1995-08-03

    of aniline to organic acids. The pathway resides on a 20.66 kb BamH1 fragment, and is induced by a broad range of substituted anilines, with para ...methyl substitutions, with preference to additions in the meta and para positions. Metabolism of aniline in CIT1 is initiated by aniline, 1,2...metabolism in E.coli, expressing the cloned pathway was confirmed using HPLC . Cloning, Partial Characterization, Aniline Metabolic Pathway U U

  18. Emergence of Serratia marcescens isolates possessing carbapenem-hydrolysing β-lactamase KPC-2 from China.

    PubMed

    Lin, X; Hu, Q; Zhang, R; Hu, Y; Xu, X; Lv, H

    2016-09-01

    Eighty-three carbapenem-resistant Serratia marcescens isolates were recovered from Zhejiang Provincial People's Hospital, China. The minimum inhibitory concentrations of imipenem, meropenem, and ertapenem for all isolates were 2 to >128 μg/mL. Polymerase chain reaction indicated that 63 S. marcescens isolates produced Klebsiella pneumoniae carbapenemase (KPC)-2. Clone A (15 isolates) and clone B (41 isolates) were the two dominant clones and clone A strains were gradually replaced by clone B strains between 2011 and 2014. The results indicate that blaKPC-2-positive S. marcescens emerged in our hospital as the major mechanism of carbapenem resistance. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.

  20. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Al-Agamy, Mohamed Hamed; El-Mahallawy, Hadir Ahmed; Amin, Magdy Aly; El Din Ashour, Seif

    2015-03-12

    Pseudomonas aeruginosa is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. The aim of this study was to examine the genetic relatedness of metallo-beta-lactamase (MBL) producing carbapenem resistant Pseudomonas aeruginosa clinical isolates collected from 2 tertiary hospitals in Cairo, Egypt using Multi Locus sequence typing (MLST). Phenotypic and genotypic detection of metallo-beta-lactamase for forty eight non-duplicate carbapenem resistant P. aeruginosa isolates were carried out. DNA sequencing and MLST were done. The bla VIM-2 gene was highly prevalent (28/33 strains, 85%) among 33 MBL-positive P.aeruginosa isolates. MLST revealed eleven distinct Sequence Types (STs). A unique ST233 clone producing VIM-2 was documented by MLST in P.aeruginosa strains isolated from Cairo university hospitals. The high prevalence of VIM-2 producers was not due to the spread of a single clone. The findings of the present study clearly demonstrate that clones of VIM-2 positive in our hospitals are different from those reported from European studies. Prevalence of VIM-2 producers of the same clone was detected from surgical specimens whereas oncology related specimens were showing diverse clones.

  1. Class 2 Integrons Dissemination Among Multidrug Resistance (MDR) Clones of Acinetobacter baumannii

    PubMed Central

    Ramírez, María Soledad; Morales, Amanda; Vilacoba, Elisabet; Márquez, Carolina

    2014-01-01

    Acinetobacter baumannii has emerged as a serious problem in the hospital environment at a global scale. Previous results from our laboratory showed a high frequency of class 2 integrons in A. baumannii strains from Argentina regarding the low rate of this element in A. baumannii isolates from the rest of the world. To reveal the current epidemiology of class 2 integrons, a molecular surveillance analyzing 78 multidrug resistant (MDR) A. baumannii isolates from Argentina and Uruguay was performed, exposing the presence of class 2 integron in the 36.61% of the isolates. Class 2 integron characterization showed that the typical Tn7::In2-7 array was present in 26 out of 27 intI2 positive isolates. All intI2 positive isolates contained at least one of the Tn7 transposition genes. In addition, we identified that 18 intI2 positive isolates possessed the Tn7::In2-7 within the attTn7 site. The molecular typing evidenced that clones I and IV that do not belong to widespread European clones I and II were found among the intI2 positive isolates. Our results exposed the widely dissemination of class 2 integron among MDR A. baumannii isolates from Argentina and Uruguay, also showing the persistence of two novel clones in our region, which could explain in part the high frequency of class 2 integron found in our region. PMID:22198473

  2. To Clone or Not To Clone: Method Analysis for Retrieving Consensus Sequences In Ancient DNA Samples

    PubMed Central

    Winters, Misa; Barta, Jodi Lynn; Monroe, Cara; Kemp, Brian M.

    2011-01-01

    The challenges associated with the retrieval and authentication of ancient DNA (aDNA) evidence are principally due to post-mortem damage which makes ancient samples particularly prone to contamination from “modern” DNA sources. The necessity for authentication of results has led many aDNA researchers to adopt methods considered to be “gold standards” in the field, including cloning aDNA amplicons as opposed to directly sequencing them. However, no standardized protocol has emerged regarding the necessary number of clones to sequence, how a consensus sequence is most appropriately derived, or how results should be reported in the literature. In addition, there has been no systematic demonstration of the degree to which direct sequences are affected by damage or whether direct sequencing would provide disparate results from a consensus of clones. To address this issue, a comparative study was designed to examine both cloned and direct sequences amplified from ∼3,500 year-old ancient northern fur seal DNA extracts. Majority rules and the Consensus Confidence Program were used to generate consensus sequences for each individual from the cloned sequences, which exhibited damage at 31 of 139 base pairs across all clones. In no instance did the consensus of clones differ from the direct sequence. This study demonstrates that, when appropriate, cloning need not be the default method, but instead, should be used as a measure of authentication on a case-by-case basis, especially when this practice adds time and cost to studies where it may be superfluous. PMID:21738625

  3. The Cloning of America.

    ERIC Educational Resources Information Center

    Dobson, Judith E.; Dobson, Russell L.

    1981-01-01

    Proposes that the U.S. school system purports to prize human variability, but many educators are engaged in activities that seek to homogenize students. Describes these activities, including diagnosis, labeling, ability grouping, and positive reinforcement. Presents suggestions for counselors to combat sources of cloning and self-validation. (RC)

  4. Genetic Determinism of Sensitivity to Corynespora cassiicola Exudates in Rubber Tree (Hevea brasiliensis).

    PubMed

    Tran, Dinh Minh; Clément-Demange, André; Déon, Marine; Garcia, Dominique; Le Guen, Vincent; Clément-Vidal, Anne; Soumahoro, Mouman; Masson, Aurélien; Label, Philippe; Le, Mau Tuy; Pujade-Renaud, Valérie

    2016-01-01

    An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have to be further investigated.

  5. Genetic Determinism of Sensitivity to Corynespora cassiicola Exudates in Rubber Tree (Hevea brasiliensis)

    PubMed Central

    Tran, Dinh Minh; Clément-Demange, André; Déon, Marine; Garcia, Dominique; Le Guen, Vincent; Clément-Vidal, Anne; Soumahoro, Mouman; Masson, Aurélien; Label, Philippe; Le, Mau Tuy; Pujade-Renaud, Valérie

    2016-01-01

    An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have to be further investigated. PMID:27736862

  6. Genomic clones for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kott, M.; Venta, P.J.; Larsen, J.

    1987-05-01

    A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less

  7. Comparative study of biological and technological characters in three generations of silkworm Bombyx mori L. ameiotic, parthenogenetically cloned lines.

    PubMed

    Greiss, H; Vassilieva, J; Petkov, N; Petkov, Z

    2004-11-01

    Detect any deviation in biologic and technologic characters of eight ameiotic-parthenogenetically cloned lines of Bombyx mori L. from different origins from a normal sexually reproduced control line in three generations. Comparative study of the three generations was conducted in SES, Vratza, unit of the National Center for Agrarian Sciences of Bulgaria after fixing all environmental rearing conditions. The ameiotic-parthen-clones displayed good parthenogenetic development, although total hatchability was significantly less than the sexually reproducing control populations. Survival rates between clones and control were not significantly different. All clones displayed significantly longer larval periods. Slight decline in second generation, and a steeper one in the third generation were observed for all eight cloned lines in cocoon weight, shell weight, and shell ratio and these differences were statistically significant. Cocoon yield was significantly lower than the control throughout the three generations. Our parthen-cloning method has a high rate of success in comparison to other cloning methods, the cloned progeny populations although were weaker technologically (cocoon weight, shell weight, and shell ratio), the biological characters (parthenogenetic development and survival rate) were not compromised. Further study is needed to determine the thermal needs of the cloned embryos and metabolic rate of all stages.

  8. Production of cloned calves using roscovitine-treated adult somatic cells as donors.

    PubMed

    Miyoshi, Kazuchika; Arat, Sezen; Stice, Steven L

    2006-01-01

    The stage of the donor cell cycle is a major factor in the success of cloning. Quiescent cells arrested in the G0/G1 phases of the cell cycle by either serum starvation or growth arrest when cultured cells reach confluence have been used as donors to produce cloned animals. Recently, we have developed a novel and effective method using roscovitine to synchronize adult bovine granulosa cells in the G0/G1 cell cycle stage. The resulting fetal and calf survival after transfer of cloned embryos was enhanced in the roscovitine-treated group compared with serum-starved controls. The methods described in this chapter outline (1) the preparation of donor cells, (2) the preparation of recipient oocytes, and (3) the production of cloned embryos. The first section involves methods for the preparation of donor cell stocks from isolated granulosa cells and the roscovitine treatment of the cells before nuclear transfer. The second section explains procedures of in vitro maturation of recipient oocytes. The last section involves methods for the production of cell-oocyte complexes, the fusion of the complexes, and the activation, in vitro culture, and transfer into recipient females of cloned embryos.

  9. [Clonal variability in expression of geo- and photoorientation in cercariae of Himasthla elongata (Trematoda: Echinostomatidae)].

    PubMed

    Prokof'ev, V V; Levakin, I A; Losev, E A; Zavirinskiĭ, Ia V; Galaktionov, K V

    2011-01-01

    The study was carried out on Himasthla elongata, a digenean common in the coastal ecosystems of the northern European seas. This species utilises intertidal prosobranchs Littorina spp. as the first intermediate host, bivalves (in the White Sea, Mytilus edulis) as the second intermediate host and gulls as the final host. The periwinkles Littorina littorea infected with H. elongata rediae (parthenogenetic generations) were sampled in the intertidal of the White Sea (66 degrees 20' N, 33 degrees 38' E) and used as the source of cercariae. Periwinkles were collected from the settlement with the low prevalence of H. elongata. As shown earlier with the use of AFLP (Amplified Fragment Length Polymorphisms) method, rediae groups in all the infected periwinkles of this settlement arise from the infection of a mollusc with a single miracidium. Therefore, the cercariae shed by an infected mollusc have the same genotype or, in other words, represent a clone. Photo- and geoorientation of cercariae originating from different clones and aged 1 h and 6 h were analysed separately. It was shown that in general the larvae of each clone followed the behavioural pattern characteristics of the species (positive geoorientation and negative photoorientation). However, the degree of expression of this typical behaviour was different in different clones. An especially high variability was observed in the manifestation of geoorientation (in several clones, most larvae demonstrated negative geoorientation). Differences in the distribution of cercariae in the illumination gradient were almost equally associated with the interclonal variability and the age of the larvae. On the whole, as the age of cercariae increased, the positive geoorientation became more prominent, whereas the ratio of cercariae with the typical (negative) photoorientation decreased. Statistical analysis revealed significant differences between the cercarial clones both in the initial manifestation of geo- and photoorientation and in the changes in the character of these reactions with the larval age. Taking into account that each cercarial clone investigated had the same genotype, it seems very likely that the interclonal differences noted in this study are hereditary. Maintenance of a rather high level of genetic polymorphism by the character "expression of orientation reaction" in trematode cercariae may enhance the chances for successful transmission of these larvae. Such variability increases the scale of cercarial dispersion in space and promotes the successful infection of the hosts, whose behaviour is also subject to intra- and inter-population variability. Besides, cercariae whose behaviour deviates from the basic behaviour of the species may play the role of the population's potential for colonisation of new species of animal hosts.

  10. A rapid and cost-effective method for sequencing pooled cDNA clones by using a combination of transposon insertion and Gateway technology.

    PubMed

    Morozumi, Takeya; Toki, Daisuke; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide

    2011-09-01

    Large-scale cDNA-sequencing projects require an efficient strategy for mass sequencing. Here we describe a method for sequencing pooled cDNA clones using a combination of transposon insertion and Gateway technology. Our method reduces the number of shotgun clones that are unsuitable for reconstruction of cDNA sequences, and has the advantage of reducing the total costs of the sequencing project.

  11. Effectiveness of Vascular Markers (Immunohistochemical Stains) in Soft Tissue Sarcomas.

    PubMed

    Naeem, Namra; Mushtaq, Sajid; Akhter, Noreen; Hussain, Mudassar; Hassan, Usman

    2018-05-01

    To ascertain the effectiveness of IHC markers of vascular origin like CD31, CD34, FLI1 and ERG in vascular soft tissue sarcomas including angiosarcomas, Kaposi sarcomas, epithelioid hemangioendothelioma and a non-vascular soft tissue sarcoma (Epithelioid sarcoma). Descriptive study. Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, from 2011 to 2017. Diagnosed cases of angiosarcomas (n=48), epithelioid hemangioendothelioma (n=9), Kaposi sarcoma (n=9) and epithelioid sarcoma (n=20) were selected. Immunohistochemical staining as performed on formalin fixed paraffin embedded sections. The sections were stained for the following markers: CD34 (VENTANA clone Q Bend 10), CD31 (Leica clone 1 A 10), FLI1 (CELL MARQUE clone MRQ-1) and ERG (CELL MARQUE clone EP111). A complete panel of CD34, CD31 and ERG was applied on 8/48 cases of angiosarcomas with triple positivity in 6 cases. Eight cases showed positivity for only CD31 and ERG and 2 cases showed positivity for only ERG. A complete panel of CD34, CD31 and ERG was applied on 3/9 cases of epithelioid hemangioendothelioma with positivity for all markers in 2 cases. Combined positivity for ERG and CD34 was seen in 2 cases and on 4 cases only CD31 immunohistochemical was solely applied with 100% positivity. FLI1 was not applied on any case. Among 9 cases of Kaposi sarcoma, ERG, CD34 and CD31 in combination were applied on only 1 case with triple positivity. Remaining cases show positivity for either CD34, CD31 or FLI1. Majority of cases of epithelioid sarcomas were diagnosed on the basis of cytokeratin and CD34 positivity with loss of INI1. The other vascular markers showed negativity in all cases. Among these four markers, ERG immunohistochemical stain is highly effective for endothelial differentiation due to its specific nuclear staining pattern in normal blood vessel endothelial cells (internal control) as well as neoplastic cells of vascular tumors and lack of background staining.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitivemore » amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.« less

  13. CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection.

    PubMed

    Akazawa, Daisuke; Date, Tomoko; Morikawa, Kenichi; Murayama, Asako; Miyamoto, Michiko; Kaga, Minako; Barth, Heidi; Baumert, Thomas F; Dubuisson, Jean; Wakita, Takaji

    2007-05-01

    Huh7 cells constitute a permissive cell line for cell culture of hepatitis C virus (HCV) particles. However, our Huh7 line shows limited permissiveness for HCV. Thus, in this study we set out to determine which host factors are important for conferring permissiveness. To analyze the limited permissiveness of our Huh7 cells, 70 clones were obtained after single-cell cloning of parental Huh7 cells. The cloned Huh7 cells exhibited various levels of HCV pseudoparticles and JFH-1 virus infection efficiency, and some clones were not permissive. A subgenomic replicon was then transfected into the cloned Huh7 cells. While the replication efficiencies differed among the cloned Huh7 cells, these efficiencies did not correlate with infectious permissibility. Flow cytometry showed that CD81, scavenger receptor class B type I, and low-density-lipoprotein receptor expression on the cell surfaces of the Huh7 clones differed among the clones. Interestingly, we found that all of the permissive cell clones expressed CD81 while the nonpermissive cell clones did not. To confirm the importance of CD81 expression for HCV permissiveness, CD81 was then transiently and stably expressed on a nonpermissive Huh7 cell clone, which was consequently restored to HCV infection permissiveness. Furthermore, permissiveness was down-regulated upon transfection of CD81 silencing RNA into a CD81-positive cell clone. In conclusion, CD81 expression is an important determinant of HCV permissiveness of Huh7 cell clones harboring different characteristics.

  14. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture

    PubMed Central

    Dempsey, Kate E; Riggio, Marcello P; Lennon, Alan; Hannah, Victoria E; Ramage, Gordon; Allan, David; Bagg, Jeremy

    2007-01-01

    It has been postulated that bacteria attached to the surface of prosthetic hip joints can cause localised inflammation, resulting in failure of the replacement joint. However, diagnosis of infection is difficult with traditional microbiological culture methods, and evidence exists that highly fastidious or non-cultivable organisms have a role in implant infections. The purpose of this study was to use culture and culture-independent methods to detect the bacteria present on the surface of prosthetic hip joints removed during revision arthroplasties. Ten consecutive revisions were performed by two surgeons, which were all clinically and radiologically loose. Five of the hip replacement revision surgeries were performed because of clinical infections and five because of aseptic loosening. Preoperative and perioperative specimens were obtained from each patient and subjected to routine microbiological culture. The prostheses removed from each patient were subjected to mild ultrasonication to dislodge adherent bacteria, followed by aerobic and anaerobic microbiological culture. Bacterial DNA was extracted from each sonicate and the 16S rRNA gene was amplified with the universal primer pair 27f/1387r. All 10 specimens were positive for the presence of bacteria by both culture and PCR. PCR products were then cloned, organised into groups by RFLP analysis and one clone from each group was sequenced. Bacteria were identified by comparison of the 16S rRNA gene sequences obtained with those deposited in public access sequence databases. A total of 512 clones were analysed by RFLP analysis, of which 118 were sequenced. Culture methods identified species from the genera Leifsonia (54.3%), Staphylococcus (21.7%), Proteus (8.7%), Brevundimonas (6.5%), Salibacillus (4.3%), Methylobacterium (2.2%) and Zimmermannella (2.2%). Molecular detection methods identified a more diverse microflora. The predominant genus detected was Lysobacter, representing 312 (60.9%) of 512 clones analysed. In all, 28 phylotypes were identified: Lysobacter enzymogenes was the most abundant phylotype (31.4%), followed by Lysobacter sp. C3 (28.3%), gamma proteobacterium N4-7 (6.6%), Methylobacterium SM4 (4.7%) and Staphylococcus epidermidis (4.7%); 36 clones (7.0%) represented uncultivable phylotypes. We conclude that a diverse range of bacterial species are found within biofilms on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties. PMID:17501992

  15. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states

    PubMed Central

    Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy

    2016-01-01

    The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications. PMID:27782135

  16. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymier, Martin J., E-mail: mdeymie@emory.edu; Claiborne, Daniel T., E-mail: dclaibo@emory.edu; Ende, Zachary, E-mail: zende@emory.edu

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmittedmore » genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.« less

  17. Assessment of mitochondrial functions in Daphnia pulex clones using high-resolution respirometry.

    PubMed

    Kake-Guena, Sandrine A; Touisse, Kamal; Vergilino, Roland; Dufresne, France; Blier, Pierre U; Lemieux, Hélène

    2015-06-01

    The objectives of our study were to adapt a method to measure mitochondrial function in intact mitochondria from the small crustacean Daphnia pulex and to validate if this method was sensitive enough to characterize mitochondrial metabolism in clones of the pulex complex differing in ploidy levels, mitochondrial DNA haplotypes, and geographic origins. Daphnia clones belonging to the Daphnia pulex complex represent a powerful model to delineate the link between mitochondrial DNA evolution and mitochondrial phenotypes, as single genotypes with divergent mtDNA can be grown under various experimental conditions. Our study included two diploid clones from temperate environments and two triploid clones from subarctic environments. The whole animal permeabilization and measurement of respiration with high-resolution respirometry enabled the measurement of the functional capacity of specific mitochondrial complexes in four clones. When expressing the activity as ratios, our method detected significant interclonal variations. In the triploid subarctic clone from Kuujjurapik, a higher proportion of the maximal physiological oxidative phosphorylation (OXPHOS) capacity of mitochondria was supported by complex II, and a lower proportion by complex I. The triploid subarctic clone from Churchill (Manitoba) showed the lowest proportion of the maximal OXPHOS supported by complex II. Additional studies are required to determine if these differences in mitochondrial functions are related to differences in mitochondrial haplotypes or ploidy level and if they might be associated with fitness divergences and therefore selective value. © 2015 Wiley Periodicals, Inc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Go

    We consider the situation where s replicas of a qubit with an unknown state and its orthogonal k replicas are given as an input, and we try to make c clones of the qubit with the unknown state. As a function of s, k, and c, we obtain the optimal fidelity between the qubit with an unknown state and the clone by explicitly giving a completely positive trace-preserving (CPTP) map that represents a cloning machine. We discuss dependency of the fidelity on the values of the parameters s, k, and c.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz-Dobrzanski, Rafal; Lewenstein, Maciej; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover

    We solve the problem of the optimal cloning of pure entangled two-qubit states with a fixed degree of entanglement using local operations and classical communication. We show that, amazingly, classical communication between the parties can improve the fidelity of local cloning if and only if the initial entanglement is higher than a certain critical value. It is completely useless for weakly entangled states. We also show that bound entangled states with positive partial transpose are not useful as a resource to improve the best local cloning fidelity.

  20. Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus.

    PubMed

    Hoshida, Hisashi; Murakami, Nobutada; Suzuki, Ayako; Tamura, Ryoko; Asakawa, Jun; Abdel-Banat, Babiker M A; Nonklang, Sanom; Nakamura, Mikiko; Akada, Rinji

    2014-01-01

    The cloning of DNA fragments into vectors or host genomes has traditionally been performed using Escherichia coli with restriction enzymes and DNA ligase or homologous recombination-based reactions. We report here a novel DNA cloning method that does not require DNA end processing or homologous recombination, but that ensures highly accurate cloning. The method exploits the efficient non-homologous end-joining (NHEJ) activity of the yeast Kluyveromyces marxianus and consists of a novel functional marker selection system. First, to demonstrate the applicability of NHEJ to DNA cloning, a C-terminal-truncated non-functional ura3 selection marker and the truncated region were PCR-amplified separately, mixed and directly used for the transformation. URA3(+) transformants appeared on the selection plates, indicating that the two DNA fragments were correctly joined by NHEJ to generate a functional URA3 gene that had inserted into the yeast chromosome. To develop the cloning system, the shortest URA3 C-terminal encoding sequence that could restore the function of a truncated non-functional ura3 was determined by deletion analysis, and was included in the primers to amplify target DNAs for cloning. Transformation with PCR-amplified target DNAs and C-terminal truncated ura3 produced numerous transformant colonies, in which a functional URA3 gene was generated and was integrated into the chromosome with the target DNAs. Several K. marxianus circular plasmids with different selection markers were also developed for NHEJ-based cloning and recombinant DNA construction. The one-step DNA cloning method developed here is a relatively simple and reliable procedure among the DNA cloning systems developed to date. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    PubMed Central

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2014-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. PMID:20085739

  2. Immunohistochemical application of a highly sensitive and specific murine monoclonal antibody recognising the extracellular domain of the human hepatocyte growth factor receptor (MET).

    PubMed

    Gruver, Aaron M; Liu, Ling; Vaillancourt, Peter; Yan, Sau-Chi B; Cook, Joel D; Roseberry Baker, Jessica A; Felke, Erin M; Lacy, Megan E; Marchal, Christophe C; Szpurka, Hadrian; Holzer, Timothy R; Rhoads, Emily K; Zeng, Wei; Wortinger, Mark A; Lu, Jirong; Chow, Chi-kin; Denning, Irene J; Beuerlein, Gregory; Davies, Julian; Hanson, Jeff C; Credille, Kelly M; Wijayawardana, Sameera R; Schade, Andrew E

    2014-12-01

    Development of novel targeted therapies directed against hepatocyte growth factor (HGF) or its receptor (MET) necessitates the availability of quality diagnostics to facilitate their safe and effective use. Limitations of some commercially available anti-MET antibodies have prompted development of the highly sensitive and specific clone A2H2-3. Here we report its analytical properties when applied by an automated immunohistochemistry method. Excellent antibody specificity was demonstrated by immunoblot, ELISA, and IHC evaluation of characterised cell lines including NIH3T3 overexpressing the related kinase MST1R (RON). Sensitivity was confirmed by measurements of MET in cell lines or characterised tissues. IHC correlated well with FISH and quantitative RT-PCR assessments of MET (P < 0.001). Good total agreement (89%) was observed with the anti-MET antibody clone SP44 using whole-tissue sections, but poor positive agreement (21-47%) was seen in tissue microarray cores. Multiple lots displayed appropriate reproducibility (R(2)  > 0.9). Prevalence of MET positivity by IHC was higher in non-squamous cell NSCLC, MET or EGFR amplified cases, and in tumours harbouring abnormalities in EGFR exon 19 or 21. The anti-MET antibody clone A2H2-3 displays excellent specificity and sensitivity. These properties make it suitable for clinical trial investigations and development as a potential companion diagnostic. © 2014 The Authors. Histopathology Published by John Wiley & Sons Ltd.

  3. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, R D; Chang, E; Petrescu, A

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence betweenmore » the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.« less

  4. Dihydroneopterin triphosphate epimerase of Escherichia coli: purification, genetic cloning, and expression.

    PubMed Central

    Haussmann, C; Rohdich, F; Lottspeich, F; Eberhardt, S; Scheuring, J; Mackamul, S; Bacher, A

    1997-01-01

    The enzyme catalyzing the epimerization at position 2' of dihydroneopterin triphosphate was purified by a factor of about 10,000 from cell extract of Escherichia coli. The cognate gene was cloned, sequenced, expressed, and mapped to kb 2427 on the E. coli chromosome. PMID:9006053

  5. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    PubMed Central

    Erickson, J. R.; Johnston, M.

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning. PMID:8514124

  6. Randomly picked cosmid clones overlap the pyrB and oriC gap in the physical map of the E. coli chromosome.

    PubMed Central

    Knott, V; Rees, D J; Cheng, Z; Brownlee, G G

    1988-01-01

    Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694

  7. Exponential Megapriming PCR (EMP) Cloning—Seamless DNA Insertion into Any Target Plasmid without Sequence Constraints

    PubMed Central

    Ulrich, Alexander; Andersen, Kasper R.; Schwartz, Thomas U.

    2012-01-01

    We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts. PMID:23300917

  8. Importance sampling with imperfect cloning for the computation of generalized Lyapunov exponents

    NASA Astrophysics Data System (ADS)

    Anteneodo, Celia; Camargo, Sabrina; Vallejos, Raúl O.

    2017-12-01

    We revisit the numerical calculation of generalized Lyapunov exponents, L (q ) , in deterministic dynamical systems. The standard method consists of adding noise to the dynamics in order to use importance sampling algorithms. Then L (q ) is obtained by taking the limit noise-amplitude → 0 after the calculation. We focus on a particular method that involves periodic cloning and pruning of a set of trajectories. However, instead of considering a noisy dynamics, we implement an imperfect (noisy) cloning. This alternative method is compared with the standard one and, when possible, with analytical results. As a workbench we use the asymmetric tent map, the standard map, and a system of coupled symplectic maps. The general conclusion of this study is that the imperfect-cloning method performs as well as the standard one, with the advantage of preserving the deterministic dynamics.

  9. Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia.

    PubMed

    Pakarinen, Jaakko; Hyvärinen, Anne; Salkinoja-Salonen, Mirja; Laitinen, Sirpa; Nevalainen, Aino; Mäkelä, Mika J; Haahtela, Tari; von Hertzen, Leena

    2008-12-01

    Simple living conditions and farming environment have been associated with reduced risk for allergic diseases such as atopy and asthma but the factors responsible for this effect remain unresolved. We examined the bacterial composition of house dusts obtained from Finnish and Russian Karelia, two adjacent areas with high and low occurrence of atopic diseases respectively. Two dust mixes, both composed of 10 randomly selected dust samples from 349 Finnish and 417 Russian Karelian households were studied for bacterial biomarkers (DNA, Limulus-active endotoxin, 3-OH fatty acids, muramic acid) and for 16S rRNA gene sequences. Overall, the DNA cloning revealed more taxons (94 different genera) of dustborne bacteria than seen in any previous study on residential environments. Majority (67%) of the bacterial DNA clones in house dust from the low-allergy Russian Kareliarepresented Gram-positive bacteria (Firmicutes and Actinobacteria), predominantly Staphylococcaceae and Corynebacteriaceae. Russian Karelian dust showed up to 20-fold higher contents of muramic acid (marker of Gram-positive bacteria) and a sevenfold higher number of clones of animal-associated species, whereas in Finnish Karelian dust Gram-negatives (mainly Proteobacteria) predominated. Clones of plant-associated bacterial species and of chloroplast, indicating plant biomass, were more numerous in Finnish than in Russian Karelian dust. In conclusion, this study revealed major disparities between Finnish and Russian house dusts. The higher bacterial content and the predominance of Gram-positive bacteria in Russian dust may have implications for occurrence of atopy.

  10. Human cloning laws, human dignity and the poverty of the policy making dialogue

    PubMed Central

    Caulfield, Timothy

    2003-01-01

    Background The regulation of human cloning continues to be a significant national and international policy issue. Despite years of intense academic and public debate, there is little clarity as to the philosophical foundations for many of the emerging policy choices. The notion of "human dignity" is commonly used to justify cloning laws. The basis for this justification is that reproductive human cloning necessarily infringes notions of human dignity. Discussion The author critiques one of the most commonly used ethical justifications for cloning laws – the idea that reproductive cloning necessarily infringes notions of human dignity. He points out that there is, in fact, little consensus on point and that the counter arguments are rarely reflected in formal policy. Rarely do domestic or international instruments provide an operational definition of human dignity and there is rarely an explanation of how, exactly, dignity is infringed in the context reproductive cloning. Summary It is the author's position that the lack of thoughtful analysis of the role of human dignity hurts the broader public debate about reproductive cloning, trivializes the value of human dignity as a normative principle and makes it nearly impossible to critique the actual justifications behind many of the proposed policies. PMID:12887735

  11. Human cloning laws, human dignity and the poverty of the policy making dialogue.

    PubMed

    Caulfield, Timothy

    2003-07-29

    The regulation of human cloning continues to be a significant national and international policy issue. Despite years of intense academic and public debate, there is little clarity as to the philosophical foundations for many of the emerging policy choices. The notion of "human dignity" is commonly used to justify cloning laws. The basis for this justification is that reproductive human cloning necessarily infringes notions of human dignity. The author critiques one of the most commonly used ethical justifications for cloning laws - the idea that reproductive cloning necessarily infringes notions of human dignity. He points out that there is, in fact, little consensus on point and that the counter arguments are rarely reflected in formal policy. Rarely do domestic or international instruments provide an operational definition of human dignity and there is rarely an explanation of how, exactly, dignity is infringed in the context reproductive cloning. It is the author's position that the lack of thoughtful analysis of the role of human dignity hurts the broader public debate about reproductive cloning, trivializes the value of human dignity as a normative principle and makes it nearly impossible to critique the actual justifications behind many of the proposed policies.

  12. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    PubMed

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Productivity of Populus in monoclonal and polyclonal blocks at three spacings.

    Treesearch

    Dean S. DeBell; Constance A. Harrington

    1997-01-01

    Four Populus clones were grown at three spacings (0.5, 1.0, and 1.5 m) in monoclonal plots and in polyclonal plots with all clones in intimate mixture. After the third year, many individual tree and stand traits differed significantly by clone, spacing, deployment method, and their interactions. Differences among clones in growth and stem form were...

  14. Reverse transcription polymerase chain reaction protocols for cloning small circular RNAs.

    PubMed

    Navarro, B; Daròs, J A; Flores, R

    1998-07-01

    A protocol is described for general application for cloning small circular RNAs which requires only minimal amounts of template (approximately 50 ng) of unknown sequence. Both cDNA strands are synthesized with a 26-mer primer whose six 3'-terminal positions are totally degenerate in two consecutive reactions catalyzed by reverse transcriptase and DNA polymerase, respectively. The cDNAs are then PCR-amplified, using a 20-mer primer with the non-degenerate sequence of the previous primer, cloned and sequenced. This information permits the synthesis of one or more pairs of specific and adjacent primers for obtaining full-length cDNA clones by a protocol which is also described.

  15. [The status of human cloning in the international setting].

    PubMed

    Rey del Castillo, Javier

    2006-01-01

    The General Assembly of the United Nations submitted a Declaration on Human Cloning in March 2005. The text of such Declaration was the result of a difficult and long process, taking more than three years. Being a Declaration instead of a Resolution, it has not legal capability in inforcing United Nations members to act according to its recommendations. This article begins with an explanation of several terms referred to cloning. Different countries' legislation on cloning is analyzed. Positions of the same countries at the Convention of the United Nations are as well analyzed. Comparing both countries' views shows that national legislation on cloning is independent and orientated by some countries' particular interests and biological and ethical views on these issues. Future developments on human cloning and its applications will be shared among all countries, both the ones currently allowing and supporting "therapeutic" cloning and the ones now banning it. In such case, it would be important to reach agreements on these issues at an international level. The article discusses possible legislative developments and offers some proposals to reach such agreements.

  16. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    PubMed

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  17. Analysing malaria drug trials on a per-individual or per-clone basis: a comparison of methods.

    PubMed

    Jaki, Thomas; Parry, Alice; Winter, Katherine; Hastings, Ian

    2013-07-30

    There are a variety of methods used to estimate the effectiveness of antimalarial drugs in clinical trials, invariably on a per-person basis. A person, however, may have more than one malaria infection present at the time of treatment. We evaluate currently used methods for analysing malaria trials on a per-individual basis and introduce a novel method to estimate the cure rate on a per-infection (clone) basis. We used simulated and real data to highlight the differences of the various methods. We give special attention to classifying outcomes as cured, recrudescent (infections that never fully cleared) or ambiguous on the basis of genetic markers at three loci. To estimate cure rates on a per-clone basis, we used the genetic information within an individual before treatment to determine the number of clones present. We used the genetic information obtained at the time of treatment failure to classify clones as recrudescence or new infections. On the per-individual level, we find that the most accurate methods of classification label an individual as newly infected if all alleles are different at the beginning and at the time of failure and as a recrudescence if all or some alleles were the same. The most appropriate analysis method is survival analysis or alternatively for complete data/per-protocol analysis a proportion estimate that treats new infections as successes. We show that the analysis of drug effectiveness on a per-clone basis estimates the cure rate accurately and allows more detailed evaluation of the performance of the treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology

    PubMed Central

    Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology. PMID:27116033

  19. Cloning of pigs from somatic cells and its prospects.

    PubMed

    Onishi, Akira

    2002-01-01

    The technology of somatic cell cloning in pigs is valuable for agricultural and therapeutic purposes. This paper will focus on the current methods of cloning pigs, including our successful microinjection#10; of somatic cell nuclei and its application. #10;

  20. Regulating (for the benefit of) future persons: a different perspective on the FDA's jurisdiction to regulate human reproductive cloning.

    PubMed

    Javitt, Gail H; Hudson, Kathy

    2003-01-01

    The Food and Drug Administration (FDA) has taken the position that human reproductive cloning falls within its regulatory jurisdiction. This position has been subject to criticism on both procedural and substantive grounds. Some have contended that the FDA has failed to follow administrative law principles in asserting its jurisdiction, while others claim the FDA is ill suited to the task of addressing the ethical and social implications of human cloning. This Article argues, that, notwithstanding these criticisms, the FDA could plausibly assert jurisdiction over human cloning as a form of human gene therapy, an area in which the FDA is already regarded as having primary regulatory authority. Such an assertion would require that the FDA's jurisdiction extend to products affecting future persons, i.e., those not yet born. This Article demonstrates, for the first time, that such jurisdiction was implicit in the enactment of the 1962 Kefauver-Harris Amendments to the Federal Food, Drug, and Cosmetic Act and that the FDA has historically relied on such authority in promulgating regulations for drugs and devices.

  1. [Evolution of paroxysmal nocturnal hemoglobinuria clone during an hemolytic crisis in a patient with aplastic anemia. Flow cytometry study].

    PubMed

    Canalejo, K; Galassi, N; Riera, N; Bengió, R; Aixalá, M

    2001-01-01

    The expansion of paroxysmal nocturnal hemoglobinuria (PHN) clone was evaluated in a patient with aplastic anemia (AA) of 18 years of evolution during an hemolytic crisis. On day 0, Ham and Sucrosa tests were positive and hematological parameters were altered. Low hemoglobin (Hb) levels and erythrocyte and leukocyte counts were found and continued decreasing on days 7 and 24 (last day of study). High LDH levels, indirect bilirubin and reticulocyte counts were detected throughout. We evaluated CD55 and CD59 on erythrocytes by flow cytometry. Our results showed low CD55 expression with respect to the normal pattern. Since day 0, CD59 staining detected two red cell populations: PNH I (48%), cells with positive fluorescence similar to normal and PNH III (52%), negative cells (PNH clone). These negative cells increased, reaching 70% on day 24. Other membrane anchored leukocyte proteins were also absent (CD14) or decreased (CD16). We found a good correlation between clinical observations, evolution of the laboratory values and expansion of the PNH clone.

  2. Codon Optimizing for Increased Membrane Protein Production: A Minimalist Approach.

    PubMed

    Mirzadeh, Kiavash; Toddo, Stephen; Nørholm, Morten H H; Daley, Daniel O

    2016-01-01

    Reengineering a gene with synonymous codons is a popular approach for increasing production levels of recombinant proteins. Here we present a minimalist alternative to this method, which samples synonymous codons only at the second and third positions rather than the entire coding sequence. As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification of a mini-library by PCR; and (3) screening for high-expressing clones.

  3. A resource-based version of the argument that cloning is an affront to human dignity.

    PubMed

    McDougall, R

    2008-04-01

    The claim that human reproductive cloning constitutes an affront to human dignity became a familiar one in 1997 as policymakers and bioethicists responded to the announcement of the birth of Dolly the sheep. Various versions of the argument that reproductive cloning is an affront to human dignity have been made, most focusing on the dignity of the child produced by cloning. However, these arguments tend to be unpersuasive and strongly criticised in the bioethical literature. In this paper I put forward a different argument that reproductive cloning is an affront to human dignity, one that looks beyond the dignity of the child produced. I suggest that allocating funds to such a pursuit can affront human dignity by diverting resources away from those existing people who lack sufficient health to enable them to exercise basic rights and liberties. This version of the argument posits cloning as an affront to human dignity in particular circumstances, rather than claiming the technology as intrinsically inconsistent with human dignity.

  4. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  5. Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy.

    PubMed

    Zhao, Xueyan; Yang, Qiang; Zhao, Kewei; Jiang, Chao; Ren, Dongren; Xu, Pan; He, Xiaofang; Liao, Rongrong; Jiang, Kai; Ma, Junwu; Xiao, Shijun; Ren, Jun; Xing, Yuyun

    2016-07-01

    In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive F1 piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive F1 boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive F1 sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.

  6. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans.

    PubMed

    Zhang, Tao; Victor, Tanya R; Rajkumar, Sunanda S; Li, Xiaojiang; Okoniewski, Joseph C; Hicks, Alan C; Davis, April D; Broussard, Kelly; LaDeau, Shannon L; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi ('mycobiome'). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS.

  7. To clone or not to clone--a Jewish perspective.

    PubMed Central

    Lipschutz, J H

    1999-01-01

    Many new reproductive methods such as artificial insemination, in vitro fertilisation, freezing of human embryos, and surrogate motherhood were at first widely condemned but are now seen in Western society as not just ethically and morally acceptable, but beneficial in that they allow otherwise infertile couples to have children. The idea of human cloning was also quickly condemned but debate is now emerging. This article examines cloning from a Jewish perspective and finds evidence to support the view that there is nothing inherently wrong with the idea of human cloning. A hypothesis is also advanced suggesting that even if a body was cloned, the brain, which is the essence of humanity, would remain unique. This author suggests that the debate should be changed from "Is cloning wrong?" to "When is cloning wrong?". PMID:10226913

  8. PyClone: statistical inference of clonal population structure in cancer.

    PubMed

    Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2014-04-01

    We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.

  9. Genotype-environment interaction and stability in ten-year height growth of Norway spruce Clones (Picea abies Karst.).

    Treesearch

    J.B. St. Clair; J. Kleinschmit

    1986-01-01

    Norway spruce cuttings of 40 clones were tested on seven contrasting sites in northern Germany. Analysis of variance for ten-year height growth indicate a highly significant clone x site interaction. This interaction may be reduced by selection of stable clones. Several measures of stability were calculated and discussed. Characterization of sites by the method of...

  10. Identification and Characterization of Strychnine-Binding Peptides Using Phage-Display Screening.

    PubMed

    Zhang, Fang; Wang, Min; Qiu, Zheng; Wang, Xiao-Meng; Xu, Chun-Lei; Zhang, Xia

    2017-01-01

    In drug development, phage display is a high-throughput method for identifying the specific cellular targets of drugs. However, insoluble small chemicals remain intractable to this technique because of the difficulty of presenting molecules to phages without occupying or destroying the limited functional groups. In the present study, we selected Strychnine (Stry) as a model compounda and sought to develope an alternative in vitro biopanning strategy against insoluble suspension. A phage library displaying random sequences of fifteen peptides was employed to screen for interactions between Stry and its cellular selective binding peptides, which are of great value to have a complete understanding of the mechanism of Stry for its antitumor activity. After four rounds of biopanning, a selection of 100 binding clones was randomly picked and subjected to modified proliferation and diffusion assays to evaluate the binding affinity of the clones. Finally, eleven clones were identified as positive binders. The corresponding peptides were synthesized and detected for their binding activities using surface plasmon resonance imaging (SPRi). Our study provides a feasible scheme for confirming the interaction of chemical compounds and cellular binding peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Disappearance of Ph1 chromosome with intensive chemotherapy and detection of minimal residual disease by polymerase chain reaction in a patient with blast crisis of chronic myelogenous leukemia.

    PubMed

    Honda, H; Miyagawa, K; Endo, M; Takaku, F; Yazaki, Y; Hirai, H

    1993-06-01

    We diagnosed a patient with chronic myelogenous leukemia (CML) in chronic phase (CP) on the basis of clinical findings, Ph1 chromosome detected by cytogenetic analysis, and bcr-abl fusion mRNA detected by reverse transcriptase-dependent polymerase chain reaction (RT-PCR). One month after diagnosis, the patient developed extramedullary blast crisis in the lymph nodes, and then medullary blast crisis in the bone marrow, in which different surface markers were shown. Combination chemotherapy with BH-AC, VP16, and mitoxantrone was administered; this resulted in rapid disappearance of the lymphadenopathy, restoration of normal hematopoiesis, and no Ph1 chromosome being detected by cytogenetic analysis. RT-PCR performed to detect the residual Ph1 clone revealed that although the Ph1 clone was preferentially suppressed, it was still residual. The intensive chemotherapy regimen preferentially suppressed the Ph1-positive clone and led to both clinical and cytogenetic remission in this patient with BC of CML; we suggest that RT-PCR is a sensitive and useful method for detecting minimal residual disease during the clinical course of this disease.

  12. Cloning and characterization of WRKY gene homologs in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) and their expression in response to fusaric acid treatment.

    PubMed

    Mao, Yizhou; Jiang, Biao; Peng, Qingwu; Liu, Wenrui; Lin, Yue; Xie, Dasen; He, Xiaoming; Li, Shaoshan

    2017-05-01

    The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.

  13. A physical map of a BAC clone contig covering the entire autosome insertion between ovine MHC Class IIa and IIb

    PubMed Central

    2012-01-01

    Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909

  14. Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything.

    PubMed

    Korzh, Vladimir; Strähle, Uwe

    2002-08-01

    A hundred years ago, Dr. Marshall A. Barber proposed a new technique - the microinjection technique. He developed this method initially to clone bacteria and to confirm the germ theory of Koch and Pasteur. Later on, he refined his approach and was able to manipulate nuclei in protozoa and to implant bacteria into plant cells. Continuous improvement and adaptation of this method to new applications dramatically changed experimental embryology and cytology and led to the formation of several new scientific disciplines including animal cloning as one of its latest applications. Interestingly, microinjection originated as a method at the crossroad of bacteriology and plant biology, demonstrating once again the unforeseen impact that basic research in an unrelated field can have on the development of entirely different disciplines.

  15. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP).

    PubMed

    Bog, Manuela; Schneider, Philipp; Hellwig, Frank; Sachse, Svea; Kochieva, Elena Z; Martyrosian, Elena; Landolt, Elias; Appenroth, Klaus-J

    2013-01-01

    The genus Wolffia of the duckweed family (Lemnaceae) contains the smallest flowering plants. Presently, 11 species are recognized and categorized mainly on the basis of morphology. Because of extreme reduction of structure of all species, molecular methods are especially required for barcoding and identification of species and clones of this genus. We applied AFLP combined with Bayesian analysis of population structure to 66 clones covering all 11 species. Nine clusters were identified: (1) W. angusta and W. microscopica (only one clone), (2) W. arrhiza, (3) W. cylindracea (except one clone that might be a transition form), (4) W. australiana, (5) W. globosa, (6) W. globosa, W. neglecta, and W. borealis, (7) W. brasiliensis, and W. columbiana, (8) W. columbiana, (9) W. elongata. Furthermore, we investigated the sequences of plastidic regions rps16 (54 clones) and rpl16 (55 clones), and identified the following species: W. angusta, W. australiana, W. brasiliensis, W. cylindracea, W. elongata, W. microscopica, and W. neglecta. Wolffia globosa has been separated into two groups by both methods. One group which consists only of clones from North America and East Asia was labelled here "typical W. globosa". The other group of W. globosa, termed operationally "W. neglecta", contains also clones of W. neglecta and shows high similarity to W. borealis. None of the methods recognized W. borealis as a distinct species. Although each clone could be characterized individually by AFLP and plastidic sequences, and most species could be bar-coded, the presently available data are not sufficient to identify all taxa of Wolffia.

  16. Two Distinct Clones of Methicillin-Resistant Staphylococcus aureus (MRSA) with the Same USA300 Pulsed-Field Gel Electrophoresis Profile: a Potential Pitfall for Identification of USA300 Community-Associated MRSA▿

    PubMed Central

    Larsen, Anders Rhod; Goering, Richard; Stegger, Marc; Lindsay, Jodi A.; Gould, Katherine A.; Hinds, Jason; Sørum, Marit; Westh, Henrik; Boye, Kit; Skov, Robert

    2009-01-01

    Analysis of methicillin-resistant Staphylococcus aureus (MRSA) characterized as USA300 by pulsed-field gel electrophoresis identified two distinct clones. One was similar to community-associated USA300 MRSA (ST8-IVa, t008, and Panton-Valentine leukocidin positive). The second (ST8-IVa, t024, and PVL negative) had different molecular characteristics and epidemiology, suggesting independent evolution. We recommend spa typing and/or PCR to discriminate between the two clones. PMID:19759225

  17. Multistep Resistance Development Studies of Ceftaroline in Gram-Positive and -Negative Bacteria▿

    PubMed Central

    Clark, Catherine; McGhee, Pamela; Appelbaum, Peter C.; Kosowska-Shick, Klaudia

    2011-01-01

    Ceftaroline, the active component of the prodrug ceftaroline fosamil, is a novel broad-spectrum cephalosporin with bactericidal activity against Gram-positive and -negative isolates. This study evaluated the potential for ceftaroline and comparator antibiotics to select for clones of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis with elevated MICs. S. pneumoniae and S. pyogenes isolates in the present study were highly susceptible to ceftaroline (MIC range, 0.004 to 0.25 μg/ml). No streptococcal strains yielded ceftaroline clones with increased MICs (defined as an increase in MIC of >4-fold) after 50 daily passages. Ceftaroline MICs for H. influenzae and M. catarrhalis were 0.06 to 2 μg/ml for four strains and 8 μg/ml for a β-lactamase-positive, efflux-positive H. influenzae with a mutation in L22. One H. influenzae clone with an increased ceftaroline MIC (quinolone-resistant, β-lactamase-positive) was recovered after 20 days. The ceftaroline MIC for this isolate increased 16-fold, from 0.06 to 1 μg/ml. MICs for S. aureus ranged from 0.25 to 1 μg/ml. No S. aureus isolates tested with ceftaroline had clones with increased MIC (>4-fold) after 50 passages. Two E. faecalis isolates tested had ceftaroline MICs increased from 1 to 8 μg/ml after 38 days and from 4 to 32 μg/ml after 41 days, respectively. The parental ceftaroline MIC for the one K. pneumoniae extended-spectrum β-lactamase-negative isolate tested was 0.5 μg/ml and did not change after 50 daily passages. PMID:21343467

  18. High developmental potential in vitro and in vivo of cattle embryos cloned without micromanipulators

    PubMed Central

    Rodríguez, Lleretny; Navarrete, Felipe I.; Tovar, Heribelt; Cox, José F.

    2008-01-01

    Purpose In order to simplify cloning, a new method that does not require micromanipulators was used. We aimed to evaluate the developmental potential of two bovine cell lines upon cloning. Materials and methods In vitro matured bovine oocytes, were released from zona pellucida, enucleated, fused to foetal or adult somatic donor cells. The reconstructed embryos were reprogrammed, activated and cultured until blastocyst stage. No micromanipulators were used. Blastocyst rate and quality was scored. Some expanded (d7) blastocysts were transferred to recipient cattle and collected back at d17 to assess elongation. Results High developmental potential in vitro of cloned embryos to expanded (d7) blastocysts was achieved (52.6%). In one cell line, 65.7% of blastocysts was scored. Most blastocysts (87.4%) were graded as excellent. In vivo development to elongation (day-17) in temporary recipient cows also showed a high developmental potential (11/18 transferred blastocysts elongated). Conclusions Hand-made cloning is an efficient alternative for cloning in cattle. PMID:18205035

  19. Aflatoxins and ochratoxin A in different cocoa clones (Theobroma cacao L.) developed in the southern region of Bahia, Brazil.

    PubMed

    Maciel, Leonardo Fonseca; Felício, Ana Lúcia de Souza Madureira; Miranda, Lucas Caldeirão Rodrigues; Pires, Tassia Cavalcante; Bispo, Eliete da Silva; Hirooka, Elisa Yoko

    2018-01-01

    Brazil is the sixth largest producer of cocoa beans in the world, after Côte d'Ivoire, Ghana, Indonesia, Nigeria and Cameroon. The southern region of Bahia stands out as the country's largest producer, accounting for approximately 60% of production. Due to damage caused by infestation of the cocoa crop with the fungus Moniliophthora perniciosa, which causes 'witch's broom disease', research in cocoa beans has led to the cloning of species that are resistant to the disease; however, there is little information about the development of other fungal genera in these clones, such as Aspergillus, which do not represent a phytopathogenicity problem but can grow during the pre-processing of cocoa beans and produce mycotoxins. Thus, the aim of this work was to determine the presence of aflatoxin (AF) and ochratoxin A (OTA) in cocoa clones developed in Brazil. Aflatoxin and ochratoxin A contamination were determined in 130 samples from 13 cocoa clones grown in the south of Bahia by ultra-performance liquid chromatography with a fluorescence detector. The method was evaluated for limit of detection (LOD) (0.05-0.90 μg kg -1 ), limit of quantification (0.10-2.50 μg kg -1 ) and recovery (RSD) (89.40-95.80%) for AFB 1 , AFB 2 , AFG 1 , AFG 2 and OTA. Aflatoxin contamination was detected in 38% of the samples in the range of

  20. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat.

    PubMed

    Zhou, Bin; Wirsching, Peter; Janda, Kim D

    2002-04-16

    A naive, human single-chain Fv (scFv) phage-display library was used in bio-panning against live, native spores of Bacillus subtilis IFO 3336 suspended in solution. A direct in vitro panning and enzyme-linked immunosorbent assay-based selection afforded a panel of nine scFv-phage clones of which two, 5B and 7E, were chosen for further study. These two clones differed in their relative specificity and affinity for spores of B. subtilis IFO 3336 vs. a panel of spores from 11 other Bacillus species/strains. A variety of enzyme-linked immunosorbent assay protocols indicated these scFv-phage clones recognized different spore epitopes. Notably, some spore epitopes markedly changed between the free and microtiter-plate immobilized state as revealed by antibody-phage binding. An additional library selection procedure also was examined by constructing a Fab chain-shuffled sublibrary from the nine positive clones and by using a subtractive panning strategy to remove crossreactivity with B. licheniformis 5A24. The Fab-phage clone 52 was improved compared with 5B and was comparable to 7E in binding B. subtilis IFO 3336 vs. B. licheniformis 5A24, yet showed a distinctive crossreactivity pattern with other spores. We also developed a method to directly detect individual spores by using fluorescently labeled antibody-phage. Finally, a variety of "powders" that might be used in deploying spores of B. anthracis were examined for antibody-phage binding. The strategies described provide a foundation to discover human antibodies specific for native spores of B. anthracis that can be developed as diagnostic and therapeutic reagents.

  1. Detection of paroxysmal nocturnal hemoglobinuria clones in patients with myelodysplastic syndromes and related bone marrow diseases, with emphasis on diagnostic pitfalls and caveats

    PubMed Central

    Wang, Sa A.; Pozdnyakova, Olga; Jorgensen, Jeffrey L.; Medeiros, L. Jeffrey; Stachurski, Dariusz; Anderson, Mary; Raza, Azra; Woda, Bruce A.

    2009-01-01

    Background The presence of paroxysmal nocturnal hemoglobinuria clones in the setting of aplastic anemia or myelodysplastic syndrome has been shown to have prognostic and therapeutic implications. However, the status of paroxysmal nocturnal hemoglobinuria clones in various categories of myelodysplastic syndrome and in other bone marrow disorders is not well-studied. Design and Methods By using multiparameter flow cytometry immunophenotypic analysis with antibodies specific for four glycosylphosphatidylinositol-anchored proteins (CD55, CD59, CD16, CD66b) and performing an aerolysin lysis confirmatory test in representative cases, we assessed the paroxysmal nocturnal hemoglobinuria-phenotype granulocytes in 110 patients with myelodysplastic syndrome, 15 with myelodysplastic/myeloproliferative disease, 5 with idiopathic myelofibrosis and 6 with acute myeloid leukemia. Results Paroxysmal nocturnal hemoglobinuria-phenotype granulocytes were detected in nine patients with low grade myelodysplastic syndrome who showed clinicopathological features of bone marrow failure, similar to aplastic anemia. All paroxysmal nocturnal hemoglobinuria-positive cases demonstrated loss of the four glycosylphosphatidylinositol-anchored proteins, with CD16−CD66b− clones being larger than those of CD55−CD59− (p<0.05). Altered glycosylphosphatidylinositol-anchored protein expression secondary to granulocytic hypogranulation, immaturity, and/or immunophenotypic abnormalities was present in a substantial number of cases and diagnostically challenging. Conclusions These results show that routine screening for paroxysmal nocturnal hemoglobinuria clones in patients with an intrinsic bone marrow disease who show no clinical evidence of hemolysis has an appreciable yield in patients with low grade myelodysplastic syndromes. The recognition of diagnostic caveats and pitfalls associated with the underlying intrinsic bone marrow disease is essential in interpreting paroxysmal nocturnal hemoglobinuria testing correctly. In our experience, the CD16/CD66b antibody combination is superior to CD55/CD59 in screening for subclinical paroxysmal nocturnal hemoglobinuria because it detects a large clone size and is less subject to analytical interference. PMID:19001281

  2. Genotyping of Campylobacter jejuni from broiler carcasses and slaughterhouse environment by amplified fragment length polymorphism.

    PubMed

    Johnsen, G; Kruse, H; Hofshagen, M

    2006-12-01

    We examined the occurrence and diversity of Campylobacter jejuni on broiler carcasses during slaughter of an infected flock and in the slaughterhouse environment during slaughter and postdisinfection before a new production run. During the slaughter of a known C. jejuni infected broiler flock, samples were taken from broiler carcasses at 7 different stages during the process. Thirty-seven sites in the slaughterhouse environment were sampled both during process and postdisinfection. The samples were analyzed for C. jejuni, and genetic fingerprinting was performed using amplified fragment length polymorphism. All carcass samples were positive. Of the environmental samples collected during slaughter, 89% were positive; 100% of those from the arrival, stunning, scalding, defeathering, and evisceration facilities and 67% of those from the cooling and sorting facilities. Postdisinfection, 41% of the samples were positive; 71% of those from the arrival and stunning area, 60% of those from the scalding and defeathering area, and 20% of those from the evisceration, cooling, and sorting area. The C. jejuni isolates (n = 60) recovered were grouped into 4 different amplified fragment length polymorphism clones with a similarity index of 95% or greater. All isolates obtained from the flock and 94% of the isolates obtained from the environment during slaughtering belonged to clone A, whereas 1 environmental isolate belonged to each of the clones B and C. Isolates from clones A, B, and D were present postdisinfection. Only clone B was detected on flocks slaughtered during the previous week. The high level and continuous presence of Campylobacter in the environment constitutes a risk for transmission to negative carcasses. In Norway, where above 96% of the broiler flocks are Campylobacter-negative, this aspect is of special importance. The ability of Campylobacter to remain in the slaughterhouse environment through washing and disinfection is associated with constructional conditions of equipment and buildings, complicating cleaning and providing sufficient moisture. To reduce the probability of the workers acquiring campylobacteriosis, precautions should be taken when slaughtering Campylobacter-positive flocks.

  3. Microsatellite DNA capture from enriched libraries.

    PubMed

    Gonzalez, Elena G; Zardoya, Rafael

    2013-01-01

    Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.

  4. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    PubMed

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  5. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    PubMed

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.

  6. Black holes are almost optimal quantum cloners

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  7. Isolation of phage-display library-derived scFv antibody specific to Listeria monocytogenes by a novel immobilized method.

    PubMed

    Nguyen, X-H; Trinh, T-L; Vu, T-B-H; Le, Q-H; To, K-A

    2018-02-01

    To select Listeria monocytogenes-specific single-chain fragment variable (scFv) antibodies from a phage-display library by a novel simple and cost-effective immobilization method. Light expanded clay aggregate (LECA) was used as biomass support matrix for biopanning of a phage-display library to select L. monocytogenes-specific scFv antibody. Four rounds of positive selection against LECA-immobilized L. monocytogenes and an additional subtractive panning against Listeria innocua were performed. The phage clones selected using this panning scheme and LECA-based immobilization method exhibited the ability to bind L. monocytogenes without cross-reactivity toward 10 other non-L. monocytogenes bacteria. One of the selected phage clones was able to specifically recognize three major pathogenic serotypes (1/2a, 1/2b and 4b) of L. monocytogenes and 11 tested L. monocytogenes strains isolated from foods. The LECA-based immobilization method is applicable for isolating species-specific anti-L. monocytogenes scFv antibodies by phage display. The isolated scFv antibody has potential use in development of immunoassay-based methods for rapid detection of L. monocytogenes in food and environmental samples. In addition, the LECA immobilization method described here could feasibly be employed to isolate specific monoclonal antibodies against any given species of pathogenic bacteria from phage-display libraries. © 2017 The Society for Applied Microbiology.

  8. Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction.

    PubMed

    Codner, Gemma F; Lindner, Loic; Caulder, Adam; Wattenhofer-Donzé, Marie; Radage, Adam; Mertz, Annelyse; Eisenmann, Benjamin; Mianné, Joffrey; Evans, Edward P; Beechey, Colin V; Fray, Martin D; Birling, Marie-Christine; Hérault, Yann; Pavlovic, Guillaume; Teboul, Lydia

    2016-08-05

    Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).

  9. Isolation of human hexosaminidase. cap alpha. cDNA and expression of. cap alpha. chains in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiktorowicz, J.E.; Whitman, J.M.

    1986-05-01

    Pooled antisera against homogeneous, glutaraldehyde cross-linked hexosaminidase (hex) A was adsorbed with E. coli lysate insolubilized on Sepharose 4B. Aliquots of a human liver lambdagtll cDNA library (50,000-100,000 pfu) were plated on E. coli Y1090. Expression of cloned cDNA, after sufficient plaque growth at 42/sup 0/, was accomplished by induction with isopropylthiogalactoside soaked nitrocellulose filters. Identification of hex cDNA clones was performed by incubation of the filters with purified antisera. Protein A labelled with I-125 was used to develop the reactive plaques. Positive plaques, identified by autoradiography, were picked, replated at a lower density, and rescreened. This was repeated severalmore » more times until all plaques yielded positive signals. Identification of the clones as containing ..cap alpha.. or ..beta.. cDNA was accomplished by replating the purified phage and rescreening the plaques with anti-hex B antiserum preadsorbed with E. coli lysate. According to this protocol several hex ..cap alpha.. clones have been identified. While these clones generate ..beta..-galactosidase: hex ..cap alpha.. fusion proteins, these findings suggest that in the future it may be possible to obtain large quantities of unmodified hex ..cap alpha.. and ..beta.. polypeptides from E. coli for the study of the structural and enzymatic properties of these polypeptides and for diagnostic purposes in the GM2 gangliosidoses.« less

  10. Antimicrobial resistance and molecular characterization of Staphylococcus haemolyticus in a Chinese hospital.

    PubMed

    Yu, M-H; Chen, Y-G; Yu, Y-S; Chen, C-L; Li, L-J

    2010-05-01

    The aim of this study was to perform the molecular characterization of methicillin-resistant Staphylococcus haemolyticus (MRSH) from clinical specimens of patients in a Chinese hospital. One hundred and thirty-three strains of S. haemolyticus collected from April 2002 to April 2003 were analyzed. Antimicrobial susceptibility to 15 antimicrobial agents was determined by the broth microdilution method. The resistant rates to penicillin G and oxacillin were higher than 90%. There were no isolates resistant to linezolid or vancomycin, and only 6.0% of the strains were resistant to teicoplanin. The positivity rate for mecA genes was 90.2% by polymerase chain reaction (PCR). Ninety MRSH (isolated from inpatients and mecA-gene-positive) were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion. Twenty-five different PFGE patterns (A approximately Y) were found and a major clone (type A; n = 36) with five subtypes was identified. Clone A was detected during a 1-year period. Identical PFGE types were found in different wards and patients. The results of this study suggest the clonal spread of MRSH within our hospital. This emphasizes the need for control and prevention measures.

  11. Rooting of conifer propagules

    Treesearch

    R.L. Mott

    1977-01-01

    An outline of the general problems involved with the propagation of elite conifer clones by rooted cuttings is drawn from published reports. New approaches for resolving these problems can come from studies of clone production through tissue culture methods. Probable extension of tissue culture techniques will permit the establishment of clones from adult, proven trees...

  12. Cloning and study of the pectate lyase gene of Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.

    1986-04-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector lambda 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representativemore » gene libraries on phage vectors from no less than 1 ..mu..g of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, lambda 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it.« less

  13. High-Throughput Gene Mapping in Caenorhabditis elegans

    PubMed Central

    Swan, Kathryn A.; Curtis, Damian E.; McKusick, Kathleen B.; Voinov, Alexander V.; Mapa, Felipa A.; Cancilla, Michael R.

    2002-01-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 ± 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18. [The sequence data described in this paper have been submitted to the NCBI dbSNP data library under accession nos. 4388625–4389689 and GenBank dbSTS under accession nos. 973810–974874. The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: The C. elegans Sequencing Consortium and The Caenorhabditis Genetics Center.] PMID:12097347

  14. Limitations of the widely used GAM42a and BET42a probes targeting bacteria in the Gammaproteobacteria radiation.

    PubMed

    Yeates, Christine; Saunders, Aaron M; Crocetti, Gregory R; Blackall, Linda L

    2003-05-01

    The 23S rRNA-targeted probes GAM42a and BET42a provided equivocal results with the uncultured gammaproteobacterium 'Candidatus Competibacter phosphatis' where some cells bound GAM42a and other cells bound BET42a in fluorescence in situ hybridization (FISH) experiments. Probes GAM42a and BET42a span positions 1027-1043 in the 23S rRNA and differ from each other by one nucleotide at position 1033. Clone libraries were prepared from PCR products spanning the 16S rRNA genes, intergenic spacer region and 23S rRNA genes from two mixed cultures enriched in 'Candidatus C. phosphatis'. With individual clone inserts, the 16S rDNA portion was used to confirm the source organism as 'Candidatus C. phosphatis' and the 23S rDNA portion was used to determine the sequence of the GAM42a/BET42a probe target region. Of the 19 clones sequenced, 8 had the GAM42a probe target (T at position 1033) and 11 had G at position 1033, the only mismatch with GAM42a. However, none of the clones had the BET42a probe target (A at 1033). Non-canonical base-pairing between the 23S rRNA of 'Candidatus C. phosphatis' with G at position 1033 and GAM42a (G-A) or BET42a (G-T) is likely to explain the probing anomalies. A probe (GAM42_C1033) was optimized for use in FISH, targeting cells with G at position 1033, and was found to highlight not only some 'Candidatus C. phosphatis' cells, but also other bacteria. This demonstrates that there are bacteria in addition to 'Candidatus C. phosphatis' with the GAM42_C1033 probe target and not the BET42a or GAM42a probe target.

  15. Simplified methods for the construction of RNA and DNA virus infectious clones.

    PubMed

    Nagata, Tatsuya; Inoue-Nagata, Alice Kazuko

    2015-01-01

    Infectious virus clones are one of the most powerful tools in plant pathology, molecular biology, and biotechnology. The construction of infectious clones of RNA and DNA viruses, however, usually requires laborious cloning and subcloning steps. In addition, instability of the RNA virus genome is frequently reported after its introduction into the vector and transference to Escherichia coli. These difficulties hamper the cloning procedures, making it tedious and cumbersome. This chapter describes two protocols for a simple construction of infectious viruses, an RNA virus, the tobamovirus Pepper mild mottle virus, and a DNA virus, a bipartite begomovirus. For this purpose, the strategy of overlap-extension PCR was used for the construction of infectious tobamovirus clone and of rolling circle amplification (RCA) for the construction of a dimeric form of the begomovirus clone.

  16. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains.

  17. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ultra-low background DNA cloning system.

    PubMed

    Goto, Kenta; Nagano, Yukio

    2013-01-01

    Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  19. Bearded-Ear Encodes a MADS-box Transcription Factor Critical for Maize Floral Development

    USDA-ARS?s Scientific Manuscript database

    We cloned bde by positional cloning and found that it encodes zag3, a MADS-box transcription factor in the conserved AGL6 clade. Mutants in the maize homolog of AGAMOUS, zag1, have a subset of bde floral defects. bde; zag1 double mutants have a severe ear phenotype, not observed in either single m...

  20. Overview of post Cohen-Boyer methods for single segment cloning and for multisegment DNA assembly

    PubMed Central

    Sands, Bryan; Brent, Roger

    2016-01-01

    In 1973, Cohen and coworkers published a foundational paper describing the cloning of DNA fragments into plasmid vectors. In it, they used DNA segments made by digestion with restriction enzymes and joined these in vitro with DNA ligase. These methods established working recombinant DNA technology and enabled the immediate start of the biotechnology industry. Since then, “classical” recombinant DNA technology using restriction enzymes and DNA ligase has matured. At the same time, researchers have developed numerous ways to generate large, complex, multisegment DNA constructions that offer advantages over classical techniques. Here, we provide an overview of “post-Cohen-Boyer” techniques used for cloning single segments into vectors (T/A, Topo cloning, Gateway and Recombineering) and for multisegment DNA assembly (Biobricks, Golden Gate, Gibson, Yeast homologous recombination in vivo, and Ligase Cycling Reaction). We compare and contrast these methods and also discuss issues that researchers should consider before choosing a particular multisegment DNA assembly method. PMID:27152131

  1. Methods of rapid, early selection of poplar clones for maximum yield potential: a manual of procedures.

    Treesearch

    USDA FS

    1982-01-01

    Instructions, illustrated with examples and experimental results, are given for the controlled-environment propagation and selection of poplar clones. Greenhouse and growth-room culture of poplar stock plants and scions are described, and statistical techniques for discriminating among clones on the basis of growth variables are emphasized.

  2. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  3. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  4. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  5. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    PubMed

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  7. Anti-digoxin Fab variants generated by phage display.

    PubMed

    Murata, Viviane Midori; Schmidt, Mariana Costa Braga; Kalil, Jorge; Tsuruta, Lilian Rumi; Moro, Ana Maria

    2013-06-01

    Digoxin is a pharmaceutical used in the control of cardiac dysfunction. Its therapeutic window is narrow, with effect dosage very close to the toxic dosage. To counteract the toxic effect, polyclonal Fab fragments are commercially available. Our study is based on a monoclonal anti-digoxin antibody, which would provide a product with a specific potency and more precise dosage for the detoxification of patients under digoxin treatment. Phage display technology was used to select variants with high affinity. From an anti-digoxin hybridoma, RNA was extracted for subsequent cDNA synthesis. Specific primers were used for the LC and Fd amplifications, then cloned sequentially in a phagemid vector (pComb3X) for the combinatorial Fab library construction. Clones were selected for their ability to bind to digoxin-BSA. The presence of light and heavy chains was checked, randomly selected clones then sequenced and induced to produce soluble Fabs, and subsequently analyzed for anti-digoxin expression. Out of ten clones randomly chosen, six resulted positive expression of the product. The sequencing of these revealed two identical clones and one presenting a pseudogene in the LC. Four clones presenting variations in the framework1 showed binding to digoxin-BSA by ELISA and western blotting. The specific binding was further confirmed by Biacore(®), which allowed ranking of the clones. The development of these clones allowed the selection of variants with higher affinity than the original version.

  8. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  9. A first generation BAC-based physical map of the rainbow trout genome

    PubMed Central

    Palti, Yniv; Luo, Ming-Cheng; Hu, Yuqin; Genet, Carine; You, Frank M; Vallejo, Roger L; Thorgaard, Gary H; Wheeler, Paul A; Rexroad, Caird E

    2009-01-01

    Background Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species. Results The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map. Conclusion The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs. PMID:19814815

  10. Livestock-associated Staphylococcus aureus on Polish pig farms

    PubMed Central

    Mroczkowska, Aneta; Żmudzki, Jacek; Marszałek, Natalia; Orczykowska-Kotyna, Monika; Komorowska, Iga; Nowak, Agnieszka; Grzesiak, Anna; Czyżewska-Dors, Ewelina; Dors, Arkadiusz; Pejsak, Zygmunt; Hryniewicz, Waleria; Wyszomirski, Tomasz; Empel, Joanna

    2017-01-01

    Background Livestock-associated Staphylococcus aureus (LA-SA) draws increasing attention due to its particular ability to colonize farm animals and be transmitted to people, which in turn leads to its spread in the environment. The aim of the study was to determine the dissemination of LA-SA on pig farms selected throughout Poland, characterize the population structure of identified S. aureus, and assess the prevalence of LA-SA carriage amongst farmers and veterinarians being in contact with pigs. Methods and findings The study was conducted on 123 pig farms (89 farrow-to-finish and 34 nucleus herds), located in 15 out of 16 provinces of Poland. Human and pig nasal swabs, as well as dust samples were analyzed. S. aureus was detected on 79 (64.2%) farms from 14 provinces. Amongst these farms LA-SA-positive farms dominated (71/79, 89.9%, 95% CI [81.0%, 95.5%]). The prevalence of LA-MRSA-positive farms was lower than LA-MSSA-positive (36.6% of LA-SA-positive farms, 95% CI [25.5%, 48.9%] vs. 74.6%, 95% CI [62.9%, 84.2%]). In total, 190 S. aureus isolates were identified: 72 (38%) MRSA and 118 (62%) methicillin-susceptible S. aureus (MSSA), of which 174 (92%) isolates were classified to three livestock-associated lineages: CC398 (73%), CC9 (13%), and CC30/ST433 (6%). All CC398 isolates belonged to the animal clade. Four LA-MRSA clones were detected: ST433-IVa(2B) clone (n = 8, 11%), described to the best of our knowledge for the first time, and three ST398 clones (n = 64, 89%) with the most prevalent being ST398-V(5C2&5)c, followed by ST398-V(5C2), and ST398-IVa(2B). Nasal carriage of LA-SA by pig farmers was estimated at 13.2% (38/283), CC398 carriage at 12.7% (36/283) and ST398-MRSA carriage at 3.2% (9/283), whereas by veterinarians at 21.1% (8/38), 18.4% (7/38) and 10.5% (4/38), respectively. Conclusions The prevalence of LA-MRSA-positive pig farms in Poland has increased considerably since 2008, when the first MRSA EU baseline survey was conducted in Europe. On Polish pig farms CC398 of the animal clade predominates, this being also reflected in the prevalence of CC398 nasal carriage in farmers and veterinarians. However, finding a new ST433-IVa(2B) clone provides evidence for the continuing evolution of LA-MRSA and argues for further monitoring of S. aureus in farm animals. PMID:28151984

  11. Targeted mutagenesis of dengue virus type 2 replicon RNA by yeast in vivo recombination.

    PubMed

    Manzano, Mark; Padmanabhan, Radhakrishnan

    2014-01-01

    The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.

  12. Towards β-globin gene-targeting with integrase-defective lentiviral vectors.

    PubMed

    Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous

    2010-11-01

    We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.

  13. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  14. Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons

    PubMed Central

    Landeweert, Renske; Leeflang, Paula; Kuyper, Thom W.; Hoffland, Ellis; Rosling, Anna; Wernars, Karel; Smit, Eric

    2003-01-01

    Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (≥99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had ≥98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil. PMID:12514012

  15. Production and characterization of murine monoclonal antibody against synthetic peptide of CD34.

    PubMed

    Maleki, Leili Aghebati; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Akbari, Aliakbar Movassaghpour

    2013-01-01

    The treatment of hematologic malignancies and immunodeficiency diseases are offered by hematopoietic stem cells (HSCs) as a unique self-renewal and differentiation source which most commonly is selected by CD34 surface marker for HSC. The purpose of this study was to develop and characterize monoclonal antibody against CD34 antigen for detection of hematopoietic stem cells. Balb/c mice were immunized with two synthetic peptides of CD34 and Spleen cells were fused with SP2/0.Fused cells were grown in hypoxanthine, aminopterine and thymidine (HAT) selective medium and cloned by limiting dilution. Large scale of monoclonal antibodies was produced by mouse ascites production of mAb (in vivo) method. Monoclonal antibody was purified by chromatography. Then reactivity of these antibodies was evaluated in different immunological assays including ELISA, immunofluorescence (IF), western blot (WB) and flowcytometry. In this study, between five positive clone wells, two clones were chosen for limiting dilution. Limiting dilution product was one monoclone (3-D5 monoclone) with absorbance about 2. Isotype of this mAb was identified as IgG1 class with Kappa (κ) light chain. This antibody is highly specific and functional in biomedical applications such as ELISA, flowcytometry, immunofluorescence, and western blot assays.

  16. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.

    PubMed

    Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin

    2007-04-01

    Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.

  17. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    PubMed

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  18. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  19. Determination of multiple-clone infection at allelic dimorphism site of Plasmodium vivax merozoite surface protein-1 in the Republic of Korea by pyrosequencing assay.

    PubMed

    Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Sanghyun; Son, Ui-Han; Yun, Hae Soo; Joo, So-Young; Jeong, Sookwan; Rhee, Man Hee; Kwak, Dongmi; Xuan, Xuenan; Hong, Yeonchul; Chung, Dong-Il; Goo, Youn-Kyoung

    2017-12-01

    Allelic diversity leading to multiple gene polymorphisms of vivax malaria parasites has been shown to greatly contribute to antigenic variation and drug resistance, increasing the potential for multiple-clone infections within the host. Therefore, to identify multiple-clone infections and the predominant haplotype of Plasmodium vivax in a South Korean population, P. vivax merozoite surface protein-1 (PvMSP-1) was analyzed by pyrosequencing. Pyrosequencing of 156 vivax malaria-infected samples yielded 97 (62.18%) output pyrograms showing two main types of peak patterns of the dimorphic allele for threonine and alanine (T1476A). Most of the samples evaluated (88.66%) carried multiple-clone infections (wild- and mutant-types), whereas 11.34% of the same population carried only the mutant-type (1476A). In addition, each allele showed a high frequency of guanine (G) base substitution at both the first and third positions (86.07% and 81.13%, respectively) of the nucleotide combinations. Pyrosequencing of the PvMSP-1 42-kDa fragment revealed a heterogeneous parasite population, with the mutant-type dominant compared to the wild-type. Understanding the genetic diversity and multiple-clone infection rates may lead to improvements in vivax malaria prevention and strategic control plans. Further studies are needed to improve the efficacy of the pyrosequencing assay with large sample sizes and additional nucleotide positions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Molecular epidemiology of community-onset methicillin-resistant Staphylococcus aureus infections in Israel.

    PubMed

    Biber, A; Parizade, M; Taran, D; Jaber, H; Berla, E; Rubin, C; Rahav, G; Glikman, D; Regev-Yochay, G

    2015-08-01

    Data on community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) in Israel are scarce. The objective of this study was to characterize the major CA-MRSA clones in Israel. All clinical MRSA isolates detected in the community during a period of 2.5 years (2011-2013) from individuals insured by a major health maintenance organization in Israel were collected, with additional data from medical records. Antibiotic susceptibility patterns and staphylococcal chromosomal cassette mec (SCCmec) typing were determined. SCCmec IV and V isolates were further typed by pulsed-field gel electrophoresis (PFGE), spa typing, and detection of a panel of toxin genes. MRSA were detected in 280 patients, mostly from skin infections. Patients with SCCmec IV (n = 120, 43 %) were younger (p < 0.0001) and reported less contact with healthcare facilities. Almost all isolates were trimethoprim-sulfamethoxazole susceptible (98 %). spa-CC032, a typical nosocomial MRSA clone, accounted for 28 % of SCCmec IV. The two major CA-MRSA clones were t008 USA300 (13 %) and t991 (10 %); t991 was isolated mainly from children (75 %), was Panton-Valentine leukocidin (PVL) negative but eta-positive, and was typically susceptible to most antibiotic groups. PVL-positive strains (n = 31) included mainly USA300 (52 %) and t019 (13 %). While multiple genetic lineages were evident among community-onset MRSA in Israel, approximately 20 % are typical CA-MRSA clones, mainly USA300 and a local clone, t991.

  1. Human Cloning: Let's Discuss It.

    ERIC Educational Resources Information Center

    Taras, Loretta; Stavroulakis, Anthea M.; Ortiz, Mary T.

    1999-01-01

    Describes experiences with holding discussions on cloning at a variety of levels in undergraduate biology courses. Discusses teaching methods used and student reactions to the discussions. Contains 12 references. (WRM)

  2. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring

    PubMed Central

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo

    2016-01-01

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs. PMID:26435541

  3. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  4. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring.

    PubMed

    Lee, Ji Hyun; Kim, Geon A; Kim, Rak Seung; Lee, Jong Su; Oh, Hyun Ju; Kim, Min Jung; Hong, Do Kyo; Lee, Byeong Chun

    2016-09-30

    In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs.

  6. Cloning cattle: the methods in the madness.

    PubMed

    Oback, Björn; Wells, David N

    2007-01-01

    Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

  7. Systematic cloning of an ORFeome using the Gateway system.

    PubMed

    Matsuyama, Akihisa; Yoshida, Minoru

    2009-01-01

    With the completion of the genome projects, there are increasing demands on the experimental systems that enable to exploit the entire set of protein-coding open reading frames (ORFs), viz. ORFeome, en masse. Systematic proteomic studies based on cloned ORFeomes are called "reverse proteomics," and have been launched in many organisms in recent years. Cloning of an ORFeome is such an attractive way for comprehensive understanding of biological phenomena, but is a challenging and daunting task. However, recent advances in techniques for DNA cloning using site-specific recombination and for high-throughput experimental techniques have made it feasible to clone an ORFeome with the minimum of exertion. The Gateway system is one of such the approaches, employing the recombination reaction of the bacteriophage lambda. Combining traditional DNA manipulation methods with modern technique of the recombination-based cloning system, it is possible to clone an ORFeome of an organism on an individual level.

  8. Construction of an infectious genomic clone of porcine parvovirus: effect of the 5'-end on DNA replication.

    PubMed

    Casal, J I; Diaz-Aroca, E; Ranz, A I; Manclus, J J

    1990-08-01

    The linear single-stranded DNA genome of the porcine parvovirus, an autonomous parvovirus, was cloned in duplex form into the bacterial plasmid pUC18 using a simple and reliable method. These clones were stable during propagation in Escherichia coli JM109. The recombinant clones of porcine parvovirus were infectious when transfected into monolayers of swine testes cells as identified by the development of cytopathic effect, indirect immunofluorescence with specific antiserum, and hemagglutination assays. DNA isolated from progeny virus arising from transfected infectious clones was found to be indistinguishable from wild-type DNA by restriction enzyme analysis. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. The presence of the turn of the 5'-end loop seems to be necessary to get stable infectious clones.

  9. Sequencing of cDNA Clones from the Genetic Map of Tomato (Lycopersicon esculentum)

    PubMed Central

    Ganal, Martin W.; Czihal, Rosemarie; Hannappel, Ulrich; Kloos, Dorothee-U.; Polley, Andreas; Ling, Hong-Qing

    1998-01-01

    The dense RFLP linkage map of tomato (Lycopersicon esculentum) contains >300 anonymous cDNA clones. Of those clones, 272 were partially or completely sequenced. The sequences were compared at the DNA and protein level to known genes in databases. For 57% of the clones, a significant match to previously described genes was found. The information will permit the conversion of those markers to STS markers and allow their use in PCR-based mapping experiments. Furthermore, it will facilitate the comparative mapping of genes across distantly related plant species by direct comparison of DNA sequences and map positions. [cDNA sequence data reported in this paper have been submitted to the EMBL database under accession nos. AA824695–AA825005 and the dbEST_Id database under accession nos. 1546519–1546862.] PMID:9724330

  10. Library Resources for Bac End Sequencing. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieter J. de Jong

    2000-10-01

    Studies directed towards the specific aims outlined for this research award are summarized. The RPCI II Human Bac Library has been expanded by the addition of 6.9-fold genomic coverage. This segment has been generated from a MBOI partial digest of the same anonymous donor DNA used for the rest of the library. A new cloning vector, pTARBAC1, has been constructed and used in the construction of RPCI-II segment 5. This new cloning vector provides a new strategy in identifying targeted genomic regions and will greatly facilitate a large-scale analysis for positional cloning. A new maleCS7BC/6J mouse BAC library has beenmore » constructed. RPCI-23 contain 576 plates (approx 210,000 clones) and represents approximately 11-fold coverage of the mouse genome.« less

  11. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  12. Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition.

    PubMed

    Valinsky, Lea; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2002-12-01

    Thorough assessments of fungal diversity are currently hindered by technological limitations. Here we describe a new method for identifying fungi, oligonucleotide fingerprinting of rRNA genes (OFRG). ORFG sorts arrayed rRNA gene (ribosomal DNA [rDNA]) clones into taxonomic clusters through a series of hybridization experiments, each using a single oligonucleotide probe. A simulated annealing algorithm was used to design an OFRG probe set for fungal rDNA. Analysis of 1,536 fungal rDNA clones derived from soil generated 455 clusters. A pairwise sequence analysis showed that clones with average sequence identities of 99.2% were grouped into the same cluster. To examine the accuracy of the taxonomic identities produced by this OFRG experiment, we determined the nucleotide sequences for 117 clones distributed throughout the tree. For all but two of these clones, the taxonomic identities generated by this OFRG experiment were consistent with those generated by a nucleotide sequence analysis. Eighty-eight percent of the clones were affiliated with Ascomycota, while 12% belonged to BASIDIOMYCOTA: A large fraction of the clones were affiliated with the genera Fusarium (404 clones) and Raciborskiomyces (176 clones). Smaller assemblages of clones had high sequence identities to the Alternaria, Ascobolus, Chaetomium, Cryptococcus, and Rhizoctonia clades.

  13. Direct introduction of gene constructs into the pronucleus-like structure of cloned embryos: a new strategy for the generation of genetically modified pigs.

    PubMed

    Kurome, Mayuko; Leuchs, Simon; Kessler, Barbara; Kemter, Elisabeth; Jemiller, Eva-Maria; Foerster, Beatrix; Klymiuk, Nikolai; Zakhartchenko, Valeri; Wolf, Eckhard

    2017-04-01

    Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed "nuclear injection". To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.

  14. Genetic basis and selection for life-history trait plasticity on alternative host plants for the cereal aphid Sitobion avenae.

    PubMed

    Dai, Xinjia; Gao, Suxia; Liu, Deguang

    2014-01-01

    Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones' life-history traits was unexpectedly low. The factor 'clone' alone explained 27.7-62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed.

  15. The evolution of chromosomal instability in Chinese hamster cells: a changing picture?

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    1998-01-01

    PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.

  16. High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses

    PubMed Central

    Dutta, Debashis; Johnson, Samuel; Dalal, Alisha; Deymier, Martin J.; Hunter, Eric

    2018-01-01

    Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV) and simian tropic HIV (stHIV). This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies. PMID:29758076

  17. An Investigative Graduate Laboratory Course for Teaching Modern DNA Techniques

    ERIC Educational Resources Information Center

    de Lencastre, Alexandre; Torello, A. Thomas; Keller, Lani C.

    2017-01-01

    This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the "Drosophila" ortholog of a human disease gene of their choosing using…

  18. Functional enucleation of porcine oocytes for somatic cell nuclear transfer using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2010-02-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer over the last decade. However, this method still results in very low efficiencies originating from biological and technical aspects. The highly-invasive mechanical enucleation belongs to the technical aspects and requires considerable micromanipulation skill. In this paper, we present a novel non-invasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically determined the metaphase plate position and shape. Subsequent irradiation of this volume with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation. We show that functional fs laser-based enucleation of porcine oocytes completely inhibited further embryonic development while maintaining intact oocyte morphology. In contrast, non-irradiated oocytes were able to develop to the blastocyst stage without significant differences to control oocytes. Our results indicate that fs laser systems offer great potential for oocyte imaging and enucleation as a fast, easy to use and reliable tool which may improve the efficiency of somatic cell clone production.

  19. Cloning and expression of N22 region of Torque Teno virus (TTV) genome and use of peptide in developing immunoassay for TTV antibodies

    PubMed Central

    2014-01-01

    Background Torque Teno Virus (TTV) is a DNA virus with high rate of prevalence globally. Since its discovery in 1997, several studies have questioned the role of this virus in causing disease. However, it still remains an enigma. Although methods are available for detection of TTV infection, there is still a need for simple, rapid and reliable method for screening of this virus in human population. Present investigation describes the cloning and expression of N22 region of TTV-genome and the use of expressed peptide in development of immunoassay to detect anti-TTV antibodies in serum. Since TTV genotype-1 is more common in India, the serum positive for genotype-1 was used as source of N22 for expression purpose. Methods Full length N22 region of ORF1 from TTV genotype-1 was amplified and cloned in pGEM®-T Easy vector. After cloning, the amplicon was transformed and expressed as a fusion protein containing hexa-histidine tag in pET-28a(+) vector using BL21 E. coli cells as host. Expression was conducted both in LB medium as well as ZYP-5052 auto-induction medium. The expressed peptide was purified using metal-chelate affinity chromatography and used as antigen in developing a blot immunoassay. Results Analysis of translated product by SDS-PAGE and western blotting demonstrated the presence of 25 kDa polypeptide produced after expression. Solubility studies showed the polypeptide to be associated with insoluble fraction. The use of this peptide as antigen in blot assay produced prominent spot on membrane treated with sera from TTV-infected patients. Analysis of sera from 75 patients with liver and renal diseases demonstrated a successful implication of N22 polypeptide based immunoassay in screening sera for anti-TTV antibodies. Comparison of the immunoassay developed using expressed N22 peptide with established PCR method for TTV-DNA detection showed good coherence between TTV-DNA and presence of anti-TTV antibodies in the sera analysed. Conclusions This concludes that TTV N22 region may be expressed and safely used as antigen for blot assay to detect anti-TTV antibodies in sera. PMID:24884576

  20. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  1. Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

    PubMed Central

    Guo, Yan; Zhang, Jinliang; Yan, Yongfeng; Wu, Jian; Zhu, Nengwu; Deng, Changyan

    2015-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost. PMID:25925066

  2. A triply cloned strain of xylella fastidiosa multiplies and induces symptoms of citrus variegated chlorosis in sweet orange

    PubMed

    Li; Zreik; Fernandes; Miranda; Teixeira; Ayres; Garnier; Bov

    1999-08-01

    Xylella fastidiosa isolate 8.1.b obtained from a sweet orange tree affected by citrus variegated chlorosis in the state of Sao Paulo, Brazil, and shown in 1993 to be the causal agent of the disease, was cloned by repeated culture in liquid and on solid PW medium, yielding triply cloned strain 9a5c. The eighth and the 16th passages of strain 9a5c were mechanically inoculated into sweet orange plants. Presence of X. fastidiosa in sweet orange leaves of shoots having grown after inoculation (first-flush shoots) was detected by DAS-ELISA and PCR. Thirty-eight days after inoculation, 70% of the 20 inoculated plants tested positive, and all plants gave strong positive reactions 90 days after inoculation. Symptoms first appeared after 3 months and were conspicuous after 5 months. X. fastidiosa was reisolated from sweet orange leaves, 44 days after inoculation. These results indicate that X. fastidiosa strain 9a5c, derived from pathogenic isolate 8.1.b by triply cloning, is also pathogenic. Strain 9a5c is now used for the X. fastidiosa genome sequencing project undertaken on a large scale in Brazil.http://link. springer-ny.com/link/service/journals/00284/bibs/39n2p106.html

  3. Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics

    PubMed Central

    Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG

    2007-01-01

    Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262

  4. Positive Selection of γδ CTL by TL Antigen Expressed in the Thymus

    PubMed Central

    Tsujimura, Kunio; Takahashi, Toshitada; Morita, Akimichi; Hasegawa-Nishiwaki, Hitomi; Iwase, Shigeru; Obata, Yuichi

    1996-01-01

    To elucidate the function of the mouse TL antigen in the thymus, we have derived two TL transgenic mouse strains by introducing Tla a -3 of A strain origin with its own promoter onto a C3H background with no expression of TL in the thymus. These transgenic mouse strains, both of which express high levels of Tlaa-3-TL antigen in their thymus, were analyzed for their T cell function with emphasis on cytotoxic T lymphocyte (CTL) generation. A T cell response against TL was induced in Tg.Tlaa-3-1, Tg.Tlaa-3-2, and control C3H mice by skin grafts from H-2K b/T3 b transgenic mice, Tg.Con.3-1, expressing T3b-TL ubiquitously. Spleen cells from mice that had rejected the T3b-TL positive skin grafts were restimulated in vitro with Tg.Con.3-1 irradiated spleen cells. In mixed lymphocyte cultures (MLC), approximately 20% and 15% of Thy-1+ T cells derived from Tg.Tlaa-3-1 and Tg.Tlaa-3-2, respectively, expressed TCRγδ, whereas almost all those from C3H expressed TCRαβ. The MLC from Tg.Tlaa-3-2 and C3H demonstrated high CTL activity against TL, while those from Tg.Tlaa-3-1 had little or none. The generation of γδ CTL recognizing TL in Tg.Tlaa-3-2, but not C3H mice, was confirmed by the establishment of CTL clones. A total of 14 γδ CTL clones were established from Tg.Tlaa-3-2, whereas none were obtained from C3H. Of the 14 γδ CTL clones, 8 were CD8+ and 6 were CD4−CD8− double negative. The CTL activity of all these clones was TL specific and inhibited by anti-TL, but not by anti-H-2 antibodies, demonstrating that they recognize TL directly without antigen presentation by H-2. The CTL activity was blocked by antibodies to TCRγδ and CD3, and also by antibodies to CD8α and CD8β in CD8+ clones, showing that the activity was mediated by TCRγδ and coreceptors. The thymic origin of these γδ CTL clones was indicated by the expression of Thy-1 and Ly-1 (CD5), and also CD8αβ heterodimers in CD8+ clones on their surfaces and by the usage of TCR Vγ4 chains in 12 of the 14 clones. Taken together, these results suggest that Tlaa-3-TL antigen expressed in the thymus engages in positive selection of a sizable population of γδ T cells. PMID:8976173

  5. cDNA library construction of two human Demodexspecies.

    PubMed

    Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li; Lei, YuYang; Dan, WeiChao

    2017-06-01

    The research of Demodex, a type of pathogen causing various dermatoses in animals and human beings, is lacking at RNA level. This study aims at extracting RNA and constructing cDNA library for Demodex. First, P. cuniculiand D. farinaewere mixed to establish homogenization method for RNA extraction. Second, D. folliculorumand D. breviswere collected and preserved in Trizol, which were mixed with D. farinaerespectively to extract RNA. Finally, cDNA library was constructed and its quality was assessed. The results indicated that for D. folliculorum& D. farinae, the recombination rate of cDNA library was 90.67% and the library titer was 7.50 × 104 pfu/ml. 17 of the 59 positive clones were predicted to be of D. folliculorum; For D. brevis& D. farinae, the recombination rate was 90.96% and the library titer was 7.85 x104 pfu/ml. 40 of the 59 positive clones were predicted to be of D. brevis. Further detection by specific primers demonstrated that mtDNA cox1, cox3and ATP6 detected from cDNA libraries had 96.52%-99.73% identities with the corresponding sequences in GenBank. In conclusion, the cDNA libraries constructed for Demodexmixed with D. farinaewere successful and could satisfy the requirements for functional genes detection.

  6. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques.

    PubMed

    Richardson, Ruth E; Bhupathiraju, Vishvesh K; Song, Donald L; Goulet, Tanuja A; Alvarez-Cohen, Lisa

    2002-06-15

    An anaerobic microbial consortium (referred to as ANAS) that reductively dechlorinates trichloroethene (TCE) completely to ethene with the transient production of cisdichloroethene (cDCE) and vinyl chloride was enriched from contaminated soil obtained from Alameda Naval Air Station. ANAS uses lactate as its electron donor and has been functionally stable for over 2 years. Following a brief exposure to oxygen, a subculture (designated VCC) derived from ANAS could dechlorinate TCE only to vinyl chloride with lactate as its electron donor. Three molecular methods were used concurrently to characterize the community structure of ANAS and VCC: clone library construction/clone sequencing, terminal restriction fragment length polymorphism (T-RFLP) analysis, and fluorescent in situ hybridization (FISH) with rRNA probes. The community structure of ANAS did not change significantly over the course of a single feeding/dechlorination cycle, and only minor fluctuations occurred over many feeding cycles spanning the course of 1 year. Clone libraries and T-RFLP analyses suggested that ANAS was dominated by populations belonging to three phylogenetic groups: Dehalococcoides species, Desulfovibrio species, and members of the Clostridiaceae (within the low G + C Gram-positives). FISH results suggest that members of the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster and high G + C Gram-positives (HGCs) were numerically important in ANAS despite their under-representation in the clone libraries. Parallel analyses of VCC samples suggested that Dehalococcoides species and Clostridiaceae were only minor populations in this community. Instead, VCC had increased populations of organisms in the beta and gamma subclasses of the Proteobacteria as well as significant populations of organisms in the CFB cluster. It is possible that symbiotic interactions are occurring between some of ANAS's phylogenetic groups under the enrichment conditions, including interspecies hydrogen transfer from Desulfovibrio species to Dehalococcoides species. However, the nucleic acid-based analyses performed here would need to be supplemented with chemical species data in order to test any hypotheses about functional roles of various community members. Additionally, these results suggest that an organism outside the Dehalococcoides genus may be capable of dechlorinating cDCE to vinyl chloride.

  7. Single-cell heterogeneity and cell-cycle-related viral gene bursts in the human leukaemia virus HTLV-1

    PubMed Central

    Billman, Martin R; Rueda, David; Bangham, Charles R M

    2017-01-01

    Background: The human leukaemia virus HTLV-1 expresses essential accessory genes that manipulate the expression, splicing and transport of viral mRNAs.  Two of these genes, tax and hbz, also promote proliferation of the infected cell, and both genes are thought to contribute to oncogenesis in adult T-cell leukaemia/lymphoma.  The regulation of HTLV-1 proviral latency is not understood.  tax, on the proviral plus strand, is usually silent in freshly-isolated cells, whereas the minus-strand-encoded hbz gene is persistently expressed at a low level.  However, the persistently activated host immune response to Tax indicates frequent expression of tax in vivo.  Methods: We used single-molecule RNA-FISH to quantify the expression of HTLV-1 transcripts at the single-cell level in a total of >19,000 cells from five T-cell clones, naturally infected with HTLV-1, isolated by limiting dilution from peripheral blood of HTLV-1-infected subjects.  Results: We found strong heterogeneity both within and between clones in the expression of the proviral plus-strand (detected by hybridization to the tax gene) and the minus-strand ( hbz gene). Both genes are transcribed in bursts; tax expression is enhanced in the absence of hbz, while hbz expression increased in cells with high tax expression. Surprisingly, we found that hbz expression is strongly associated with the S and G 2/M phases of the cell cycle, independent of tax expression.  Contrary to current belief, hbz is not expressed in all cells at all times, even within one clone.  In hbz-positive cells, the abundance of hbz transcripts showed a very strong positive linear correlation with nuclear volume. Conclusions: The occurrence of intense, intermittent plus-strand gene bursts in independent primary HTLV-1-infected T-cell clones from unrelated individuals strongly suggests that the HTLV-1 plus-strand is expressed in bursts in vivo.  Our results offer an explanation for the paradoxical correlations observed between the host immune response and HTLV-1 transcription. PMID:29062917

  8. Multiparameter FLAER-based flow cytometry for screening of paroxysmal nocturnal hemoglobinuria enhances detection rates in patients with aplastic anemia.

    PubMed

    Sachdeva, Man Updesh Singh; Varma, Neelam; Chandra, Dinesh; Bose, Parveen; Malhotra, Pankaj; Varma, Subhash

    2015-05-01

    Flow cytometry is the gold standard methodology for screening of paroxysmal nocturnal hemoglobinuria. In the last few years, proaerolysin conjugated with fluorescein (FLAER) has become an important component of antibody panel used for the detection of paroxysmal nocturnal hemoglobinuria (PNH) clone. This study aimed to compare PNH clone detection by flow cytometry in the pre-FLAER era versus the FLAER era. This was a retrospective analysis of 4 years and included 1004 individuals screened for PNH clone, either presenting as hemolytic anemia or as aplastic anemia. In the pre-FLAER time period, the RBCs and neutrophils were screened with antibodies against CD55 and CD59. With the introduction of FLAER, neutrophils were screened with FLAER/CD24/CD15 and monocytes with FLAER/CD14/CD33 combination. A comparative analysis was done for detection of PNH clone in aplastic anemia patients versus non-aplastic anemia patients, as well as between pre-FLAER and FLAER era. Out of a total of 1004 individuals, 59 (5.8%) were detected to have PNH clone positivity. The frequency of PNH clone detected in aplastic anemia and non-aplastic anemia groups was 12.02 and 3.36%, respectively. The detection rate of PNH clone increased from 4.5% (32/711) in the pre-FLAER era to 9.2% (27/293) with the introduction of FLAER. However, this increase could be attributed to increased detection of PNH clone in the aplastic anemia group, which showed a significant increase from 8.3 to 18.2% after use of FLAER. In the non-aplastic group, PNH clone was detected with similar frequencies before and after use of FLAER (3.2 versus 3.8%, respectively). Mean PNH clone size was lower in the aplastic anemia group when compared with the non-aplastic group. RBCs always showed a lower clone size than neutrophils. PNH clone on neutrophils and monocytes was however similar. Inclusion of FLAER increases the sensitivity of the test which is especially useful in picking up small PNH clones in patients of aplastic anemia.

  9. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers.

    PubMed Central

    Selander, R K; Beltran, P; Smith, N H; Helmuth, R; Rubin, F A; Kopecko, D J; Ferris, K; Tall, B D; Cravioto, A; Musser, J M

    1990-01-01

    Multilocus enzyme electrophoresis was employed to measure chromosomal genotypic diversity and evolutionary relationships among 761 isolates of the serovars Salmonella typhi, S. paratyphi A, S. paratyphi B, S. paratyphi C, and S. sendai, which are human-adapted agents of enteric fever, and S. miami and S. java, which are serotypically similar to S. sendai and S. paratyphi B, respectively, but cause gastroenteritis in both humans and animals. To determine the phylogenetic positions of the clones of these forms within the context of the salmonellae of subspecies I, comparative data for 22 other common serovars were utilized. Except for S. paratyphi A and S. sendai, the analysis revealed no close phylogenetic relationships among clones of different human-adapted serovars, which implies convergence in host adaptation and virulence factors. Clones of S. miami are not allied with those of S. sendai or S. paratyphi A, being, instead, closely related to strains of S. panama. Clones of S. paratyphi B and S. java belong to a large phylogenetic complex that includes clones of S. typhimurium, S. heidelberg, S. saintpaul, and S. muenchen. Most strains of S. paratyphi B belong to a globally distributed clone that is highly polymorphic in biotype, bacteriophage type, and several other characters, whereas strains of S. java represent seven diverse lineages. The flagellar monophasic forms of S. java are genotypically more similar to clones of S. typhimurium than to other clones of S. java or S. paratyphi B. Clones of S. paratyphi C are related to those of S. choleraesuis. DNA probing with a segment of the viaB region specific for the Vi capsular antigen genes indicated that the frequent failure of isolates of S. paratyphi C to express Vi antigen is almost entirely attributable to regulatory processes rather than to an absence of the structural determinant genes themselves. Two clones of S. typhisuis are related to those of S. choleraesuis and S. paratyphi C, but a third clone is not. Although the clones of S. decatur and S. choleraesuis are serologically and biochemically similar, they are genotypically very distinct. Two clones of S. typhi were distinguished, one globally distributed and another apparently confined to Africa; both clones are distantly related to those of all other serovars studied. Images PMID:1973153

  10. Mycobiome of the Bat White Nose Syndrome Affected Caves and Mines Reveals Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans

    PubMed Central

    Rajkumar, Sunanda S.; Li, Xiaojiang; Okoniewski, Joseph C.; Hicks, Alan C.; Davis, April D.; Broussard, Kelly; LaDeau, Shannon L.; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010–2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi (‘mycobiome’). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS. PMID:25264864

  11. Treatment of donor cell/embryo with different approaches to improve development after nuclear transfer.

    PubMed

    Mizutani, Eiji; Wakayama, Sayaka; Wakayama, Teruhiko

    2015-01-01

    The successful production of cloned animals by somatic cell nuclear transfer (SCNT) is a promising technology with many potential applications in basic research, medicine, and agriculture. However, the low efficiency and the difficulty of cloning are major obstacles to the widespread use of this technology. Since the first mammal cloned from an adult donor cell was born, many attempts have been made to improve animal cloning techniques, and some approaches have successfully improved its efficiency. Nuclear transfer itself is still difficult because it requires an accomplished operator with a practiced technique. Thus, it is very important to find simple and reproducible methods for improving the success rate of SCNT. In this chapter, we will review our recent protocols, which seem to be the simplest and most reliable method to date to improve development of SCNT embryos.

  12. Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli

    PubMed Central

    Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao

    2003-01-01

    AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370

  13. Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

    PubMed Central

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R.; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J.

    2013-01-01

    For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding. PMID:23592960

  14. Combinatorial pooling enables selective sequencing of the barley gene space.

    PubMed

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J

    2013-04-01

    For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.

  15. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    PubMed

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a significantly higher birth rate of healthy clones (0.5009% vs. 0.3362% and 0.2433%) than that resulting from P,D,L,Y-AFBs and P,D,L,Y-FFBs. This suggests that using LW-AFBs as donor cells results in a higher cloning efficiency in pigs, compared with the other two donor fibroblast cell types. The birth rate of healthy clones was significantly improved when the number of transferred cloned embryos was increased from 150-199 to 200-450 per recipient. However, increase of the number of transferred embryos from 200-249 to 250-450 per surrogate did not change the birth rate of healthy clones. This suggests that transfer of excessive (250-450) cloned embryos to an individual surrogate is not necessary for increasing the cloning efficiency in pigs, and the relatively optimal number of reconstructed embryos transferred to individual recipient is 200-249. Furthermore, our results indicated that the numbers of total born clones, clones born alive, and clones born healthy per litter have a significantly high positive correlation with each other. The present study provides useful information for improving SCNT efficiency in pigs.

  16. Effects of Donor Fibroblast Cell Type and Transferred Cloned Embryo Number on the Efficiency of Pig Cloning

    PubMed Central

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan

    2013-01-01

    Abstract Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150–199, 200–249, 250–299, 300–349, or 350–450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53±0.34) was similar with that associated with P,D,L,Y-FFBs (2.72±0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47±0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a significantly higher birth rate of healthy clones (0.5009% vs. 0.3362% and 0.2433%) than that resulting from P,D,L,Y-AFBs and P,D,L,Y-FFBs. This suggests that using LW-AFBs as donor cells results in a higher cloning efficiency in pigs, compared with the other two donor fibroblast cell types. The birth rate of healthy clones was significantly improved when the number of transferred cloned embryos was increased from 150–199 to 200–450 per recipient. However, increase of the number of transferred embryos from 200–249 to 250–450 per surrogate did not change the birth rate of healthy clones. This suggests that transfer of excessive (250–450) cloned embryos to an individual surrogate is not necessary for increasing the cloning efficiency in pigs, and the relatively optimal number of reconstructed embryos transferred to individual recipient is 200–249. Furthermore, our results indicated that the numbers of total born clones, clones born alive, and clones born healthy per litter have a significantly high positive correlation with each other. The present study provides useful information for improving SCNT efficiency in pigs. PMID:23256540

  17. Participation of the arcRACME protein in self-activation of the arc operon located in the arginine catabolism mobile element in pandemic clone USA300.

    PubMed

    Rozo, Zayda Lorena Corredor; Márquez-Ortiz, Ricaurte Alejandro; Castro, Betsy Esperanza; Gómez, Natasha Vanegas; Escobar-Pérez, Javier

    2017-07-01

    Staphylococcus aureus pandemic clone USA300 has, in addition to its constitutive arginine catabolism (arc) gene cluster, an arginine catabolism mobile element (ACME) carrying another such cluster, which gives this clone advantages in colonisation and infection. Gene arcR, which encodes an oxygen-sensitive transcriptional regulator, is inside ACME and downstream of the constitutive arc gene cluster, and this situation may have an impact on its activation. Different relative expression behaviours are proven here for arcRACME and the arcACME operon compared to the constitutive ones. We also show that the artificially expressed recombinant ArcRACME protein binds to the promoter region of the arcACME operon; this mechanism can be related to a positive feedback model, which may be responsible for increased anaerobic survival of the USA300 clone during infection-related processes.

  18. Mediating subpolitics in US and UK science news.

    PubMed

    Jensen, Eric

    2012-01-01

    The development of therapeutic cloning research sparked a scientific controversy pitting patients' hopes for cures against religious and anti-abortion opposition. The present study investigates this controversy by examining the production and content of Anglo-American print media coverage of the branch of embryonic stem cell research known as "therapeutic cloning." Data collection included press articles about therapeutic cloning (n = 5,185) and qualitative interviews with journalists (n = 18). Patient activists and anti-abortion groups emerged as key news sources in this coverage. Significant qualitative differences in the mediation of these subpolitical groups and their arguments for and against therapeutic cloning are identified. Results suggest that the perceived human interest news value of narratives of patient suffering may give patient advocacy groups a privileged position in journalistic coverage. Finally, Ulrich Beck's theoretical arguments about subpolitics are critically applied to the results to elicit further insights.

  19. Spatial constraints govern competition of mutant clones in human epidermis.

    PubMed

    Lynch, M D; Lynch, C N S; Craythorne, E; Liakath-Ali, K; Mallipeddi, R; Barker, J N; Watt, F M

    2017-10-24

    Deep sequencing can detect somatic DNA mutations in tissues permitting inference of clonal relationships. This has been applied to human epidermis, where sun exposure leads to the accumulation of mutations and an increased risk of skin cancer. However, previous studies have yielded conflicting conclusions about the relative importance of positive selection and neutral drift in clonal evolution. Here, we sequenced larger areas of skin than previously, focusing on cancer-prone skin spanning five decades of life. The mutant clones identified were too large to be accounted for solely by neutral drift. Rather, using mathematical modelling and computational lattice-based simulations, we show that observed clone size distributions can be explained by a combination of neutral drift and stochastic nucleation of mutations at the boundary of expanding mutant clones that have a competitive advantage. These findings demonstrate that spatial context and cell competition cooperate to determine the fate of a mutant stem cell.

  20. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core

    NASA Technical Reports Server (NTRS)

    Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.

    2004-01-01

    We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.

  1. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.

    PubMed

    Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki

    2003-09-01

    The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for immortalization of normal human embryonic fibroblasts by these viral oncogenes. The susceptibility of human cells to immortalization may be related to the state of differentiation of the cells. Copyright 2003 Wiley-Liss, Inc.

  2. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  3. Map-based cloning of a gene controlling Omega-3 fatty acid desaturation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arondel, V.; Lemieux, B.; Hwang, I.

    1992-11-20

    A gene from the flowering plant Arabidopsis thaliana that encodes an omega-3 desaturase was cloned on the basis of the genetic map position of a mutation affecting membrane and storage lipid fatty acid composition. Yeast artificial chromosomes covering the genetic locus were identified and used to probe a seed complementary DNA library. A complementary DNA clone for the desaturase was identified and introduced into roots of both wild-type and mutant plants by Ti plasmid-mediated transformation. Transgenic tissues of both mutant and wild-type plants had significantly increased amounts of the fatty acid produced by this desaturase. 24 refs., 2 figs., 1more » tabs.« less

  4. [Stem cells and therapeutic cloning, medical perspectives under discussion].

    PubMed

    Manuel, Catherine; Lafon, Claude; Hairion, Dominique; Antoniotti, Stéphanie

    2004-03-13

    Innovative biotechnical progress over the past few years regards stem cells and therapeutic cloning, which open promising medical horizons for many presently incurable diseases. THE CURRENT DEBATE: The research work in France has been stalled because of the prohibitions listed in the so-called "bioethical" laws of 1994. The ongoing revision of these laws is based on a certain number of ethical questions and launches a disputable parlementary debate. Other than reproductive cloning and research on the embryo, the possibilities provided by stem cells and therapeutic cloning should be emphasized and the different positions advanced specified, showing an evolution in the laws in France. ABUSIVE LEGISLATIVE PROHIBITIONS: The proposed law, which maintains the prohibition for research on the embryo, with a 5-Year dispensation, and which explicitly prohibits therapeutic cloning, is not in keeping with the widening of in this field expected by research teams. Many scientists and physicians, supported by patients' associations, are aware of the importance of therapeutic progress attached to such research. They should not be stalled in their studies by the prohibitions maintained in the new law.

  5. Assessment of fetal well-being in cattle by ultrasonography in normal, high-risk, and cloned pregnancies

    PubMed Central

    Buczinski, Sébastien; Fecteau, Gilles; Lefebvre, Réjean C.; Smith, Lawrence C.

    2011-01-01

    This study determined ultrasonographic parameters of fetuses and uterine adnexa in late pregnancy in normal, cloned, and high-risk pregnancies in relation to perinatal and neonatal outcome. Ten cows with normal pregnancies (CONTROL, mean pregnancy length 273 d), 10 sick cows with potentially compromised pregnancies (HIGH-RISK, mean pregnancy length 267 d), and 10 heifers with cloned pregnancies (CLONED, mean pregnancy length 274 d) were examined at more than 260 d of gestation. There was no difference in mean fetal heart rates among the groups. The cloned calves were heavier (57 ± 8 kg) than calves from CONTROL group (36 ± 7 kg), and calves from HIGH-RISK group (37 ± 13 kg) (P = 0.003). The diameter of the thoracic aorta was positively correlated (R = 0.62) with fetal birth weight in the CONTROL group (P = 0.01). Fetal activity was not associated with survival. The results suggest that transabdominal ultrasonographic assessment of the fetal well-being may serve as a potential tool for evaluation of the fetoplacental unit. PMID:21532817

  6. Cloning and characterization of a basic phospholipase A2 homologue from Micrurus corallinus (coral snake) venom gland.

    PubMed

    de Oliveira, Ursula Castro; Assui, Alessandra; da Silva, Alvaro Rossan de Brandão Prieto; de Oliveira, Jane Silveira; Ho, Paulo Lee

    2003-09-01

    During the cloning of abundant cDNAs expressed in the Micrurus corallinus coral snake venom gland, several putative toxins, including a phospholipase A2 homologue cDNA (clone V2), were identified. The V2 cDNA clone codes for a potential coral snake toxin with a signal peptide of 27 amino acid residues plus a predicted mature protein with 119 amino acid residues. The deduced protein is highly similar to known phospholipases A2, with seven deduced S-S bridges at the same conserved positions. This protein was expressed in Escherichia coli as a His-tagged protein that allowed the rapid purification of the recombinant protein. This protein was used to generate antibodies, which recognized the recombinant protein in Western blot. This antiserum was used to screen a large number of venoms, showing a ubiquitous distribution of immunorelated proteins in all elapidic venoms but not in the viperidic Bothrops jararaca venom. This is the first description of a complete primary structure of a phospholipase A2 homologue deduced by cDNA cloning from a coral snake.

  7. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  8. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  9. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome.

    PubMed

    Watanabe, Satoru; Shiwa, Yuh; Itaya, Mitsuhiro; Yoshikawa, Hirofumi

    2012-12-01

    Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.

  10. Monoclonal antibodies against simian virus 40 T antigens: evidence for distinct sublcasses of large T antigen and for similarities among nonviral T antigens.

    PubMed Central

    Gurney, E G; Harrison, R O; Fenno, J

    1980-01-01

    We have isolated three clones of hybrid cells which synthesize antibodies specific for determinants on simian virus 40 (SV40) T antigens. Mouse myeloma NS1 cells were fused with spleen cells from mice that had been immunized with SV40-transformed mouse cells. Hybrid cells were selected in HAT medium and cloned in soft agar. We used an enzyme-linked immunosorbent assay for detection and quantification of mouse antibodies against SV40 T antigens. Monoclonal antibodies from 3 of the 24 clones that scored as positive in the enzyme-linked immunosorbent assay were verified by immunoprecipitation to be specific for SV40 T antigens. Two clones (7 and 412) produced antibodies that recognized denaturation-sensitive antigenic determinants unique to large T antigen. Antibodies from clone 7 appeared to have a low affinity for large T antigen. Antibodies from clone 412 had a higher affinity for large T antigen but did not recognize a subclass of large T antigen that was recognized by tumor serum. Antibodies of the third clone, clone 122, recognized a denaturation-stable antigenic determinant of the 53,000-dalton mouse nonviral T antigen in SV40-transformed cells. Antibodies from clone 122 also recognized similar (51,000- to 56,000-dalton) nonviral T antigens in SV40-transormed or lytically infected cells from five mammalian species and in four uninfected mouse lines. From these observations, we have concluded that (i) the 94,000-dalton SV40 large T antigen may exist as immunologically distinguishable subclasses, and (ii) the nonviral T antigens of five mammalian species share at least one antigenic determinant. Images PMID:6155477

  11. Paroxysmal nocturnal hemoglobinuria clones in severe aplastic anemia patients treated with horse anti-thymocyte globulin plus cyclosporine

    PubMed Central

    Scheinberg, Phillip; Marte, Michael; Nunez, Olga; Young, Neal S.

    2010-01-01

    Background Clones of glycosylphosphatidylinositol-anchor protein-deficient cells are characteristic in paroxysmal nocturnal hemoglobinuria and are present in about 40–50% of patients with severe aplastic anemia. Flow cytometry has allowed for sensitive and precise measurement of glycosylphosphatidylinositol-anchor protein-deficient red blood cells and neutrophils in severe aplastic anemia. Design and Methods We conducted a retrospective analysis of paroxysmal nocturnal hemoglobinuria clones measured by flow cytometry in 207 consecutive severe aplastic anemia patients who received immunosuppressive therapy with a horse anti-thymocyte globulin plus cyclosporine regimen from 2000 to 2008. Results The presence of a glycosylphosphatidylinositol-anchor protein-deficient clone was detected in 83 (40%) patients pre-treatment, and the median clone size was 9.7% (interquartile range 3.5–29). In patients without a detectable clone pre-treatment, the appearance of a clone after immunosuppressive therapy was infrequent, and in most with a clone pre-treatment, clone size often decreased after immunosuppressive therapy. However, in 30 patients, an increase in clone size was observed after immunosuppressive therapy. The majority of patients with a paroxysmal nocturnal hemoglobinuria clone detected after immunosuppressive therapy did not have an elevated lactate dehydrogenase, nor did they experience hemolysis or thrombosis, and they did not require specific interventions with anticoagulation and/or eculizumab. Of the 7 patients who did require therapy for clinical paroxysmal nocturnal hemoglobinuria symptoms and signs, all had an elevated lactate dehydrogenase and a clone size greater than 50%. In all, 18 (8.6%) patients had a clone greater than 50% at any given time of sampling. Conclusions The presence of a paroxysmal nocturnal hemoglobinuria clone in severe aplastic anemia is associated with low morbidity and mortality, and specific measures to address clinical paroxysmal nocturnal hemoglobinuria are seldom required. PMID:20595102

  12. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  13. HIGH-THROUGHPUT IDENTIFICATION OF THE PREDOMINANT MALARIA PARASITE CLONE IN COMPLEX BLOOD STAGE INFECTIONS USING A MULTI-SNP MOLECULAR HAPLOTYPING ASSAY

    PubMed Central

    COLE-TOBIAN, JENNIFER L.; ZIMMERMAN, PETER A.; KING, CHRISTOPHER L.

    2013-01-01

    Individuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously. Allele abundance is determined by the highest mean fluorescent intensity of each allele. Using mixtures of plasmids encoding known haplotypes of the Pvdbp, single clones of P. vivax parasites from infected Aotus monkeys, and well-defined mixed infections from field samples, we were able to identify the predominant Pvdbp genotype with > 93% accuracy when the dominant clone is twice as abundant as a lesser genotype and > 97% of the time if the ratio was 5:1 or greater. Thus, the OLA can accurately, reproducibly, and rapidly determine the predominant parasite haplotype in complex blood stage infections. PMID:17255222

  14. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  15. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS hybrid clones exhibited a mesenchymal phenotype and, with the exception of one hybrid clone, responded to EGF with an increased migratory activity. Fusion of human breast epithelial cells and human breast cancer cells can give rise to hybrid clone cells that possess certain CS/IC properties, suggesting that cell fusion might be a mechanism underlying how tumor cells exhibiting a CS/IC phenotype could originate.

  16. ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data.

    PubMed

    Salehi, Sohrab; Steif, Adi; Roth, Andrew; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2017-03-01

    Next-generation sequencing (NGS) of bulk tumour tissue can identify constituent cell populations in cancers and measure their abundance. This requires computational deconvolution of allelic counts from somatic mutations, which may be incapable of fully resolving the underlying population structure. Single cell sequencing (SCS) is a more direct method, although its replacement of NGS is impeded by technical noise and sampling limitations. We propose ddClone, which analytically integrates NGS and SCS data, leveraging their complementary attributes through joint statistical inference. We show on real and simulated datasets that ddClone produces more accurate results than can be achieved by either method alone.

  17. Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer

    PubMed Central

    Han, Wonshik; Han, Mi-Ryung; Kang, Jason Jongho; Bae, Ji-Yeon; Lee, Ji Hyun; Bae, Young Ju; Lee, Jeong Eon; Shin, Hyuk-Jae; Hwang, Ki-Tae; Hwang, Sung-Eun; Kim, Sung-Won; Noh, Dong-Young

    2006-01-01

    Background A considerable proportion of estrogen receptor (ER)-positive breast cancer recurs despite tamoxifen treatment, which is a serious problem commonly encountered in clinical practice. We tried to find novel prognostic markers in this subtype of breast cancer. Methods We performed array comparative genomic hybridization (CGH) with 1,440 human bacterial artificial chromosome (BAC) clones to assess copy number changes in 28 fresh-frozen ER-positive breast cancer tissues. All of the patients included had received at least 1 year of tamoxifen treatment. Nine patients had distant recurrence within 5 years (Recurrence group) of diagnosis and 19 patients were alive without disease at least 5 years after diagnosis (Non-recurrence group). Results Potential prognostic variables were comparable between the two groups. In an unsupervised clustering analysis, samples from each group were well separated. The most common regions of gain in all samples were 1q32.1, 17q23.3, 8q24.11, 17q12-q21.1, and 8p11.21, and the most common regions of loss were 6q14.1-q16.3, 11q21-q24.3, and 13q13.2-q14.3, as called by CGH-Explorer software. The average frequency of copy number changes was similar between the two groups. The most significant chromosomal alterations found more often in the Recurrence group using two different statistical methods were loss of 11p15.5-p15.4, 1p36.33, 11q13.1, and 11p11.2 (adjusted p values <0.001). In subgroup analysis according to lymph node status, loss of 11p15 and 1p36 were found more often in Recurrence group with borderline significance within the lymph node positive patients (adjusted p = 0.052). Conclusion Our array CGH analysis with BAC clones could detect various genomic alterations in ER-positive breast cancers, and Recurrence group samples showed a significantly different pattern of DNA copy number changes than did Non-recurrence group samples. PMID:16608533

  18. [Scientific ethics of human cloning].

    PubMed

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  19. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin

    2015-01-01

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  20. Life-history trait plasticity and its relationships with plant adaptation and insect fitness: a case study on the aphid Sitobion avenae.

    PubMed

    Dai, Peng; Shi, Xiaoqin; Liu, Deguang; Ge, Zhaohong; Wang, Da; Dai, Xinjia; Yi, Zhihao; Meng, Xiuxiang

    2016-07-18

    Phenotypic plasticity has recently been considered a powerful means of adaptation, but its relationships with corresponding life-history characters and plant specialization levels of insects have been controversial. To address the issues, Sitobion avenae clones from three plants in two areas were compared. Varying amounts of life-history trait plasticity were found among S. avenae clones on barley, oat and wheat. In most cases, developmental durations and their corresponding plasticities were found to be independent, and fecundities and their plasticities were correlated characters instead. The developmental time of first instar nymphs for oat and wheat clones, but not for barley clones, was found to be independent from its plasticity, showing environment-specific effects. All correlations between environments were found to be positive, which could contribute to low plasticity in S. avenae. Negative correlations between trait plasticities and fitness of test clones suggest that lower plasticity could have higher adaptive value. Correlations between plasticity and specialization indices were identified for all clones, suggesting that plasticity might evolve as a by-product of adaptation to certain environments. The divergence patterns of life-history plasticities in S. avenae, as well as the relationships among plasticity, specialization and fitness, could have significant implications for evolutionary ecology of this aphid.

  1. Molecular analysis of microflora associated with dentoalveolar abscesses.

    PubMed Central

    Dymock, D; Weightman, A J; Scully, C; Wade, W G

    1996-01-01

    The microflora associated with three dentoalveolar abscesses was determined by cultural and molecular methods. 16S rRNA genes were randomly amplified by means of conserved eubacterial primers and cloned. Restriction fragment length polymorphism analysis of the clones and amplified genes encoding 16S rRNA from the cultured bacteria was used to detect putative unculturable bacteria. Clones representative of five predominant groups of uncultured organisms were sequenced. Two were identified as Porphyromonas gingivalis and Prevotella oris, and one was found to be closely related to Peptostreptococcus micros. The remaining two clones did not correspond to known, previously sequenced organisms. One was related to Zoogloea ramigera, a species of aerobic waterborne organisms, while the other was distantly related to the genus Prevotella. This study has demonstrated the possibility of the characterization of microflora associated with human infection by molecular methods without the inherent biases of culture. PMID:8904410

  2. DNA cloning: A personal view after 40 years

    PubMed Central

    Cohen, Stanley N.

    2013-01-01

    In November 1973, my colleagues A. C. Y. Chang, H. W. Boyer, R. B. Helling, and I reported in PNAS that individual genes can be cloned and isolated by enzymatically cleaving DNA molecules into fragments, linking the fragments to an autonomously replicating plasmid, and introducing the resulting recombinant DNA molecules into bacteria. A few months later, Chang and I reported that genes from unrelated bacterial species can be combined and propagated using the same approach and that interspecies recombinant DNA molecules can produce a biologically functional protein in a foreign host. Soon afterward, Boyer’s laboratory and mine published our collaborative discovery that even genes from animal cells can be cloned in bacteria. These three PNAS papers quickly led to the use of DNA cloning methods in multiple areas of the biological and chemical sciences. They also resulted in a highly public controversy about the potential hazards of laboratory manipulation of genetic material, a decision by Stanford University and the University of California to seek patents on the technology that Boyer and I had invented, and the application of DNA cloning methods for commercial purposes. In the 40 years that have passed since publication of our findings, use of DNA cloning has produced insights about the workings of genes and cells in health and disease and has altered the nature of the biotechnology and biopharmaceutical industries. Here, I provide a personal perspective of the events that led to, and followed, our report of DNA cloning. PMID:24043817

  3. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.

    PubMed

    Wang, Xiong; Zheng, Kai; Zheng, Huayu; Nie, Hongli; Yang, Zujun; Tang, Lixia

    2014-12-20

    Iterative saturation mutagenesis (ISM) has been shown to be a powerful method for directed evolution. In this study, the approach was modified (termed M-ISM) by combining the single-site saturation mutagenesis method with a DC-Analyzer-facilitated combinatorial strategy, aiming to evolve novel biocatalysts efficiently in the case where multiple sites are targeted simultaneously. Initially, all target sites were explored individually by constructing single-site saturation mutagenesis libraries. Next, the top two to four variants in each library were selected and combined using the DC-Analyzer-facilitated combinatorial strategy. In addition to site-saturation mutagenesis, iterative saturation mutagenesis also needed to be performed. The advantages of M-ISM over ISM were that the screening effort is greatly reduced, and the entire M-ISM procedure was less time-consuming. The M-ISM strategy was successfully applied to the randomization of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) when five interesting sites were targeted simultaneously. After screening 900 clones in total, six positive mutants were obtained. These mutants exhibited 4.0- to 9.3-fold higher k(cat) values than did the wild-type HheC toward 1,3-dichloro-2-propanol. However, with the ISM strategy, the best hit showed a 5.9-fold higher k(cat) value toward 1,3-DCP than the wild-type HheC, which was obtained after screening 4000 clones from four rounds of mutagenesis. Therefore, M-ISM could serve as a simple and efficient version of ISM for the randomization of target genes with multiple positions of interest.

  4. The "COLD-PCR approach" for early and cost-effective detection of tyrosine kinase inhibitor resistance mutations in EGFR-positive non-small cell lung cancer.

    PubMed

    Mairinger, Fabian D; Vollbrecht, Claudia; Streubel, Anna; Roth, Andreas; Landt, Olfert; Walter, Henry F R; Kollmeier, Jens; Mairinger, Thomas

    2014-01-01

    Activating epidermal growth factor receptor (EGFR) gene mutations can be successfully treated by EGFR tyrosine kinase inhibitors (EGFR-TKIs), but nearly 50% of all patients' exhibit progression of the disease until treatment because of T790M mutations. It is proposed that this is mostly caused by therapy-resistant tumor clones harboring a T790M mutation. Until now no cost-effective routine-diagnostic method for EGFR-resistance mutation status analysis is available leaving long-time response to TKI treatment to chance. Unambiguous identification of T790M EGFR mutations is mandatory to optimize initial treatment strategies. Artificial EGFR T790M mutations and human wild-type gDNA were prepared in several dilution series. Preferential amplification using coamplification at lower denaturation temperature-PCR (COLD-PCR) of the mutant sequence and subsequent HybProbe melting curve detection or pyrosequencing were performed in comparison to normal processing. COLD-PCR-based amplification allowed the detection of 0.125% T790M mutant DNA in a background of wild-type DNA in comparison to 5% while normal processing. These results were reproducible. COLD-PCR is a powerful and cost-effective tool for routine diagnostic to detect underrepresented tumor clones in clinical samples. A diagnostic tool for unambiguous identification of T790M-mutated minor tumor clones is now available enabling optimized therapy.

  5. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101.

    PubMed

    Kimura, M; Kaneko, I; Komiyama, M; Takatsuki, A; Koshino, H; Yoneyama, K; Yamaguchi, I

    1998-01-16

    Trichothecene mycotoxins such as deoxynivalenol, 4,15-diacetoxyscirpenol, and T-2 toxin, are potent protein synthesis inhibitors for eukaryotic organisms. The 3-O-acetyl derivatives of these toxins were shown to reduce their in vitro activity significantly as assessed by assays using a rabbit reticulocyte translation system. The results suggested that the introduction of an O-acetyl group at the C-3 position in the biosynthetic pathway works as a resistance mechanism for Fusarium species that produce t-type trichothecenes (trichothecenes synthesized via the precursor trichotriol). A gene responsible for the 3-O-acetylation reaction, Tri101, has been successfully cloned from a Fusarium graminearum cDNA library that was designed to be expressed in Schizosaccharomyces pombe. Fission yeast transformants were selected for their ability to grow in the presence of T-2 toxin, and this strategy allowed isolation of 25 resistant clones, all of which contained a cDNA for Tri101. This is the first drug-inactivating O-acetyltransferase gene derived from antibiotic-producing organisms. The open reading frame of Tri101 codes for a polypeptide of 451 amino acid residues, which shows no similarity to any other proteins reported so far. TRI101 from recombinant Escherichia coli catalyzes O-acetylation of the trichothecene ring specifically at the C-3 position in an acetyl-CoA-dependent manner. By using the Tri101 cDNA as a probe, two least overlapping cosmid clones that cover a region of 70 kilobase pairs have been isolated from the genome of F. graminearum. Other trichothecene biosynthetic genes, Tri4, Tri5, and Tri6, were not clustered in the region covered by these cosmid clones. These new cosmid clones are considered to be located in other parts of the large biosynthetic gene cluster and might be useful for the study of trichothecene biosynthesis.

  6. A novel cloning template designing method by using an artificial bee colony algorithm for edge detection of CNN based imaging sensors.

    PubMed

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.

  7. A Novel Cloning Template Designing Method by Using an Artificial Bee Colony Algorithm for Edge Detection of CNN Based Imaging Sensors

    PubMed Central

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903

  8. Contrasting in vitro effects for the combination of fludarabine, cytosine arabinoside (Ara-C) and granulocyte colony-stimulating factor (FLAG) compared with daunorubicin and Ara-C in P-glycoprotein-positive and P-glycoprotein-negative acute myeloblastic leukaemia.

    PubMed

    Higashi, Y; Turzanski, J; Pallis, M; Russell, N H

    2000-11-01

    It has been suggested that the FLAG remission induction regimen comprising fludarabine (F-ara), cytosine arabinoside (Ara-C) and granulocyte colony-stimulating factor (G-CSF) may be capable of overcoming P-glycoprotein (P-gp)-related multidrug resistance (MDR) in patients with acute myeloblastic leukaemia (AML). We have investigated the in vitro response of P-gp-positive and -negative AML clones to FLAG and compared this with their response to treatment with Ara-C and daunorubicin (DNR). Twenty-four cryopreserved samples from patients with AML were studied using a flow cytometric technique for the enumeration of viable (7-amino actinomycin D negative) cells. Samples consisted of 12 P-gp-positive and 12 P-gp-negative cases, as measured by the MRK16 antibody. The results were analysed by calculating the comparative drug resistance (CDR), i.e. the percentage cell death caused by Ara-C + DNR subtracted from the percentage cell death, caused by FLAG after 48 h incubation in suspension culture. P-gp-positive clones were shown to have a significantly higher CDR than P-gp-negative clones (P = 0. 001). Furthermore, a significant positive correlation (r2 = 0.40, P < 0.01) was found between P-gp protein expression and CDR. However, P-gp function, measured using cyclosporin modulation of rhodamine 123 (R123) uptake, was not associated with the CDR, demonstrating that there are other properties of P-gp, besides its role in drug efflux, that modulate the responsiveness of AML blasts to chemotherapy. These results are consistent with a potential benefit for FLAG in P-gp-positive AML, but not P-gp-negative AML, compared with standard anthracycline and Ara-C therapy.

  9. Use of a pooled clone method to isolate a novel Bacillus thuringiensis Cry2A toxin with activity against Ostrinia furnacalis.

    PubMed

    Shu, Changlong; Zhang, Jingtao; Chen, Guihua; Liang, Gemei; He, Kanglai; Crickmore, Neil; Huang, Dafang; Zhang, Jie; Song, Fuping

    2013-09-01

    A pooled clone method was developed to screen for cry2A genes. This metagenomic method avoids the need to analyse isolated Bacillus thuringiensis strains by performing gene specific PCR on plasmid-enriched DNA prepared from a pooled soil sample. Using this approach the novel holotype gene cry2Ah1 was cloned and characterized. The toxin gene was over-expressed in Escherichia coli Rosetta (DE3) and the expressed toxin accumulated in both the soluble and insoluble fractions. The soluble Cry2Ah1 was found to have a weight loss activity against Ostrinia furnacalis, and a growth inhibitory activity to both Cry1Ac-susceptible and resistant Helicoverpa armigera populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  11. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    PubMed

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  12. Single Amino Acid Residue in the A2 Domain of Major Histocompatibility Complex Class I Is Involved in the Efficiency of Equine Herpesvirus-1 Entry*

    PubMed Central

    Sasaki, Michihito; Kim, Eunmi; Igarashi, Manabu; Ito, Kimihito; Hasebe, Rie; Fukushi, Hideto; Sawa, Hirofumi; Kimura, Takashi

    2011-01-01

    Equine herpesvirus-1 (EHV-1), an α-herpesvirus of the family Herpesviridae, causes respiratory disease, abortion, and encephalomyelitis in horses. EHV-1 utilizes equine MHC class I molecules as entry receptors. However, hamster MHC class I molecules on EHV-1-susceptible CHO-K1 cells play no role in EHV-1 entry. To identify the MHC class I molecule region that is responsible for EHV-1 entry, domain exchange and site-directed mutagenesis experiments were performed, in which parts of the extracellular region of hamster MHC class I (clone C5) were replaced with corresponding sequences from equine MHC class I (clone A68). Substitution of alanine for glutamine at position 173 (Q173A) within the α2 domain of the MHC class I molecule enabled hamster MHC class I C5 to mediate EHV-1 entry into cells. Conversely, substitution of glutamine for alanine at position 173 (A173Q) in equine MHC class I A68 resulted in loss of EHV-1 receptor function. Equine MHC class I clone 3.4, which possesses threonine at position 173, was unable to act as an EHV-1 receptor. Substitution of alanine for threonine at position 173 (T173A) enabled MHC class I 3.4 to mediate EHV-1 entry into cells. These results suggest that the amino acid residue at position 173 of the MHC class I molecule is involved in the efficiency of EHV-1 entry. PMID:21949188

  13. Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies

    PubMed Central

    Sundquist, Andreas; Ronaghi, Mostafa; Tang, Haixu; Pevzner, Pavel; Batzoglou, Serafim

    2007-01-01

    While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology. PMID:17534434

  14. Rise and fall of outbreak-specific clone inside endemic pulsotype of Salmonella 4,[5],12:i:-; insights from high-resolution molecular surveillance in Emilia-Romagna, Italy, 2012 to 2015.

    PubMed

    Morganti, Marina; Bolzoni, Luca; Scaltriti, Erika; Casadei, Gabriele; Carra, Elena; Rossi, Laura; Gherardi, Paola; Faccini, Fabio; Arrigoni, Norma; Sacchi, Anna Rita; Delledonne, Marco; Pongolini, Stefano

    2018-03-01

    Background and aimEpidemiology of human non-typhoid salmonellosis is characterised by recurrent emergence of new clones of the pathogen over time. Some clonal lines of Salmonella have shaped epidemiology of the disease at global level, as happened for serotype Enteritidis or, more recently, for Salmonella 4,[5],12:i:-, a monophasic variant of serotype Typhimurium. The same clonal behaviour is recognisable at sub-serotype level where single outbreaks or more generalised epidemics are attributable to defined clones. The aim of this study was to understand the dynamics of a clone of Salmonella 4,[5],12:i:- over a 3-year period (2012-15) in a province of Northern Italy where the clone caused a large outbreak in 2013. Furthermore, the role of candidate outbreak sources was investigated and the accuracy of multilocus variable-number tandem repeat analysis (MLVA) was evaluated. Methods: we retrospectively investigated the outbreak through whole genome sequencing (WGS) and further monitored the outbreak clone for 2 years after its conclusion. Results: The study showed the transient nature of the clone in the population, possibly as a consequence of its occasional expansion in a food-processing facility. We demonstrated that important weaknesses characterise conventional typing methods applied to clonal pathogens such as Salmonella 4,[5],12:i:-, namely lack of accuracy for MLVA and inadequate resolution power for PFGE to be reliably used for clone tracking. Conclusions : The study provided evidence for the remarkable prevention potential of whole genome sequencing used as a routine tool in systems that integrate human, food and animal surveillance.

  15. Detection of anticentromere antibodies using cloned autoantigen CENP-B.

    PubMed

    Rothfield, N; Whitaker, D; Bordwell, B; Weiner, E; Senecal, J L; Earnshaw, W

    1987-12-01

    A solid-phase enzyme-linked immunosorbent assay has been established using a cloned fusion protein, CtermCENP-B [beta-gal], as antigen. The fusion protein carries the major epitope of CENP-B, the major centromeric autoantigen. The enzyme-linked immunosorbent assay was more sensitive than immunofluorescence techniques in detecting anticentromere antibodies in patients with scleroderma or Raynaud's disease, and was weakly positive in 3% of normal controls and in 3% of 70 patients with other connective tissue diseases.

  16. Predominance of Three Closely Related Methicillin-Resistant Staphylococcus aureus Clones Carrying a Unique ccrC-Positive SCCmec type III and the Emergence of spa t304 and t690 SCCmec type IV pvl+ MRSA Isolates in Kinta Valley, Malaysia.

    PubMed

    Ho, Wai-Yew; Choo, Quok-Cheong; Chew, Choy-Hoong

    2017-03-01

    We investigated the epidemiology and clonality of 175 nonrepetitive methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical specimens collected between 2011 and 2012 in Kinta Valley in Malaysia. Molecular tools such as polymerase chain reaction, pulsed-field gel electrophoresis, and staphylococcal protein A (spa) typing were used. Our study revealed the predominance of three closely related ermA + SCCmec type III pulsotypes belonging to spa type t037 (Brazilian-Hungarian clone), which were deficient in the locus F, but positive for the ccrC gene in majority (65.7%) of the MRSA infections in this region. The first evidence of SCCmec type II MRSA in the country, belonging to spa type t2460, was also noted. Although the carriage of pvl gene was uncommon (8.6%) and mostly confined to either SCCmec type IV or SCCmec type V isolates, most of these isolates belonged to spa types t345 or t657, which are associated with the Bengal-Bay CA-MRSA clone. Interestingly, spa t304 and t690 SCCmec type IV pvl + were also detected among the MRSA isolates. Data from this study show the rise of uncommon clones among MRSA isolates in Malaysia.

  17. The rate-size trade-off structures intraspecific variation in Daphnia ambigua life history parameters.

    PubMed

    DeLong, John P; Hanley, Torrance C

    2013-01-01

    The identification of trade-offs is necessary for understanding the evolution and maintenance of diversity. Here we employ the supply-demand (SD) body size optimization model to predict a trade-off between asymptotic body size and growth rate. We use the SD model to quantitatively predict the slope of the relationship between asymptotic body size and growth rate under high and low food regimes and then test the predictions against observations for Daphnia ambigua. Close quantitative agreement between observed and predicted slopes at both food levels lends support to the model and confirms that a 'rate-size' trade-off structures life history variation in this population. In contrast to classic life history expectations, growth and reproduction were positively correlated after controlling for the rate-size trade-off. We included 12 Daphnia clones in our study, but clone identity explained only some of the variation in life history traits. We also tested the hypothesis that growth rate would be positively related to intergenic spacer length (i.e. the growth rate hypothesis) across clones, but we found that clones with intermediate intergenic spacer lengths had larger asymptotic sizes and slower growth rates. Our results strongly support a resource-based optimization of body size following the SD model. Furthermore, because some resource allocation decisions necessarily precede others, understanding interdependent life history traits may require a more nested approach.

  18. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability.

    PubMed

    Tsuruta, Lilian Rumi; Lopes Dos Santos, Mariana; Yeda, Fernanda Perez; Okamoto, Oswaldo Keith; Moro, Ana Maria

    2016-12-01

    Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).

  19. Optimization of embryo culture conditions for increasing efficiency of cloning in buffalo (Bubalus bubalis) and generation of transgenic embryos via cloning.

    PubMed

    Wadhwa, Neerja; Kunj, Neetu; Tiwari, Shuchita; Saraiya, Megha; Majumdar, Subeer S

    2009-09-01

    Cloning in bovine species is marred by low efficiency of blastocyst formation. Any increase in the efficiency of blastocyst formation upon nuclear transfer will greatly enhance the efficiency of cloning. In the present study, the effect of various media, protein sources, and growth factors on the development of cloned buffalo embryos was evaluated. Among various combinations tested, culture of cloned embryos in TCM-199 media on the feeder layer of Buffalo Oviductal Epithelial Cells (BOEC) in the presence of bovine serum albumin-free fatty acid (BSA-FFA) and leukemia inhibitory factor (LIF) provided most suitable environment for efficient development of cloned blastocysts. Under these conditions, we achieved a blastocyst formation rate of 43%, which is better than those reported previously. Because preimplantation embryonic development, in vivo, occurs in an environment of oviductal cells, the blastocysts generated by this method may presumably be more suitable for implantation and further development. Additionally, we generated green blastocysts from enucleated oocytes by transfer of nuclei from cells transfected with EGFP transgene, showing possibility of transgenesis via cloning in this species. To our knowledge, this is the first report regarding the production of transgenic cloned buffalo embryos and their developmental competence with respect to various media, cocultures, and supplements.

  20. Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics.

    PubMed

    Raats, Dina; Offek, Maya; Minz, Dror; Halpern, Malka

    2011-05-01

    The impact of refrigeration on raw cow milk bacterial communities in three farm bulk tanks and three dairy plant silo tanks was studied using two methods: DGGE and cloning. Both methods demonstrated that bacterial taxonomic diversity decreased during refrigeration. Gammaproteobacteria, especially Pseudomonadales, dominated the milk after refrigeration. Farm samples and dairy plant samples differed in their microbial community composition, the former showing prevalence of Gram-positive bacteria affiliated with the classes Bacilli, Clostridia and Actinobacteria, the latter showing prevalence of Gram-negative species belonging to the Gammaproteobacteria class. Actinobacteria prevalence in the farm milk samples immediately after collection stood at about 25% of the clones. A previous study had found that psychrotolerant Actinobacteria identified in raw cow milk demonstrated both lipolytic and proteolytic enzymatic activity. Thus, we conclude that although Pseudomonadales play an important role in milk spoilage after long periods of cold incubation, Actinobacteria occurrence may play an important role when assessing the quality of milk arriving at the dairy plant from different farms. As new cooling technologies reduce the initial bacterial counts of milk to very low levels, more sensitive and efficient methods to evaluate the bacterial quality of raw milk are required. The present findings are an important step towards achieving this goal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Cloning in America: constitutional rights and limits.

    PubMed

    Erwin, C

    2000-01-01

    As readers of science fiction are well aware, the term "clone" refers to asexually produced offspring, that is, produced by a process of cell-division which does not begin with the union of two sex cells. A clone would be the genetic twin of the cell donor. Propagation of plants by this method is, of course, commonplace, but mammalian reproduction in this fashion would be indeed a revolutionary accomplishment, with profound and disturbing implications.

  2. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study.

    PubMed

    Kulagin, Alexander; Lisukov, Igor; Ivanova, Maria; Golubovskaya, Irina; Kruchkova, Irina; Bondarenko, Sergey; Vavilov, Vladimir; Stancheva, Natalia; Babenko, Elena; Sipol, Alexandra; Pronkina, Natalia; Kozlov, Vladimir; Afanasyev, Boris

    2014-02-01

    Paroxysmal nocturnal haemoglobinuria (PNH) clones are frequently detected in patients with aplastic anaemia (AA). To evaluate the prognostic role of PNH clone presence we conducted a prospective study in 125 AA patients treated with combined immunosuppressive therapy (IST). Seventy-four patients (59%) had a PNH clone (PNH+ patients) at diagnosis, with a median clone size of 0·60% in granulocytes and 0·15% in red blood cells. The response rate at 6 months was higher in PNH+ patients than that in PNH- patients, both after first- and second-line IST: 68% vs. 45%, P = 0·0164 and 53% vs. 13%, P = 0·0502 respectively. Moreover, 42% of PNH+ patients achieved complete remission compared with only 16% of PNH- patients (P = 0·0029). In multivariate logistic regression analysis, PNH clone presence (odds ratio 2·56, P = 0·0180) and baseline absolute reticulocyte count (ARC) ≥30 × 10(9) /l (odds ratio 5·19, P = 0·0011) were independent predictors of response to treatment. Stratification according to PNH positivity and ARC ≥30 × 10(9) /l showed significant distinctions for cumulative incidence of response, overall and failure-free survival. The results of this prospective study confirmed the favourable prognostic value of PNH clone presence in the setting of IST for AA. © 2013 John Wiley & Sons Ltd.

  3. [Human cloning or cannibalism].

    PubMed

    Sokolowski, L M

    2001-01-01

    In this article I develop the idea presented in my previous work that human cloning would be of little practical use since almost any aim that one would like to attain by multiple cloning of a concrete man or a group of people, are unattainable or it might be achieved by easier, cheaper and more efficient traditional methods. For this reason cloning of a man is unlikely to occur on a larger scale and only few people will decide to clone themselves. In this sense no social effects of human cloning will be disastrous for the human population. Yet investigations in human genetics are very important since they may provide medical applications far more important than human cloning. It is argued that the main trend of modern medicine: organ transplantation from an alien donor, will become socially dangerous in near future since the number of donors will be drastically smaller than the number of potential patients waiting for transplantations. This in turn may cause social conflicts and a form of medical cannibalism may arise. These problems and conflicts will be avoided if organ transplantation from an alien donor is replaced by organ cloning, i.e. by transplanting an organ developed from the patient.

  4. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    PubMed Central

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  5. Molecular and phenetic characterization of the bacterial assemblage of Hot Lake, WA, an environment with high concentrations of magnesium sulphate, and its relevance to Mars

    NASA Astrophysics Data System (ADS)

    Kilmer, Brian R.; Eberl, Timothy C.; Cunderla, Brent; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2014-01-01

    Hot Lake (Oroville, WA) is an athalassohaline epsomite lake that can have precipitating concentrations of MgSO4 salts, mainly epsomite. Little biotic study has been done on epsomite lakes and it was unclear whether microbes isolated from epsomite lakes and their margins would fall within recognized halotolerant genera, common soil genera or novel phyla. Our initial study cultivated and characterized epsotolerant bacteria from the lake and its margins. Approximately 100 aerobic heterotrophic microbial isolates were obtained by repetitive streak-plating in high-salt media including either 10% NaCl or 2 M MgSO4. The collected isolates were all bacteria, nearly evenly divided between Gram-positive and Gram-negative clades, the most abundant genera being Halomonas, Idiomarina, Marinobacter, Marinococcus, Nesterenkonia, Nocardiopsis and Planococcus. Bacillus, Corynebacterium, Exiguobacterium, Kocuria and Staphylococcus also were cultured. This initial study included culture-independent community analysis of direct DNA extracts of lake margin soil using PCR-based clone libraries and 16S rRNA gene phylogeny. Clones assigned to Gram-positive bacterial clades (70% of total clones) were dominated by sequences related to uncultured actinobacteria. There were abundant Deltaproteobacteria clones related to bacterial sulphur metabolisms and clones of Legionella and Coxiella. These epsomite lake microbial communities seem to be divided between bacteria primarily associated with hyperhaline environments rich in NaCl and salinotolerant relatives of common soil organisms. Archaea appear to be in low abundance and none were isolated, despite near-saturated salinities. Growth of microbes at very high concentrations of magnesium and other sulphates has relevance to planetary protection and life-detection missions to Mars, where scant liquid water may form as deliquescent brines and appear as eutectic liquids.

  6. Antimicrobial Resistance Mechanisms and Genetic Diversity of Multidrug-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Malaysia.

    PubMed

    Biglari, Shirin; Hanafiah, Alfizah; Mohd Puzi, Shaliawani; Ramli, Ramliza; Rahman, Mostafizur; Lopes, Bruno Silvester

    2017-07-01

    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-bla OXA-23 and ISAba1-bla ADC and had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the bla OXA-51-like genes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.

  7. Bacteria Community in the Terrestrial Deep Subsurface Microbiology Research of the Chinese Continent Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Xia, Y.; Dong, H.; Dong, X.; Yang, K.; Dong, Z.; Huang, L.

    2005-12-01

    Microbial communities in the deep drill cores from the Chinese Continent Scientific Drilling were analyzed with culture-independent and dependent techniques. Genomic DNA was extracted from two metamorphic rocks: S1 from 430 and S13 from 1033 meters below the ground surface. The 16S rRNA gene was amplified by polymerase chain reaction (PCR) followed by cloning and sequencing. The total cell number was counted using the 4',6-diamidino-2-phenylindole (DAPI) staining and biomass of two specific bacteria were quantified using real-time PCR. Enrichment was set up for a rock from 3911 meters below the surface in medium for authotrophic methanogens (i.e., CO2 + H2). The total cell number in S13 was 1.0 × 104 cells per gram of rock. 16S rRNA gene analysis indicated that low G + C Gram positive sequences were dominant (50 percent of all 54 clone sequenced) followed by the alpha-, beta, and gamma-Proteobacteria. Within the low G + C Gram positive bacteria, most clone sequences were similar to species of Bacillus from various natural environments (deserts, rivers etc.). Within the Proteobacteria, our clone sequences were similar to species of Acinetobacter, Acidovorax, and Aeromonas. The RT-RCP results showed that biomass of two particular clone sequences (CCSD1305, similar to Aeromonas caviae and CCSD1307, similar to Acidovorax facilis) was 95 and 1258 cells/g, respectively. A bacterial isolate was obtained from the 3911-m rock in methanogenic medium. It was Gram negative with no flagella, immobile, and facultative anaerobic, and grows optimally at 65oC. Phylogenetic analysis indicated that it was closely related to the genus of Bacillus. Physiological tests further revealed that it was a strain of Bacillus caldotenax.

  8. Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: a systematic review

    PubMed Central

    Abdulgader, Shima M.; Shittu, Adebayo O.; Nicol, Mark P.; Kaba, Mamadou

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are a serious global problem, with considerable impact on patients and substantial health care costs. This systematic review provides an overview on the clonal diversity of MRSA, as well as the prevalence of Panton-Valentine leukocidin (PVL)-positive MRSA in Africa. A search on the molecular characterization of MRSA in Africa was conducted by two authors using predefined terms. We screened for articles published in English and French through to October 2014 from five electronic databases. A total of 57 eligible studies were identified. Thirty-four reports from 15 countries provided adequate genotyping data. CC5 is the predominant clonal complex in the healthcare setting in Africa. The hospital-associated MRSA ST239/ST241-III [3A] was identified in nine African countries. This clone was also described with SCCmec type IV [2B] in Algeria and Nigeria, and type V [5C] in Niger. In Africa, the European ST80-IV [2B] clone was limited to Algeria, Egypt and Tunisia. The clonal types ST22-IV [2B], ST36-II [2A], and ST612-IV [2B] were only reported in South Africa. No clear distinctions were observed between MRSA responsible for hospital and community infections. The community clones ST8-IV [2B] and ST88-IV [2B] were reported both in the hospital and community settings in Angola, Cameroon, Gabon, Ghana, Madagascar, Nigeria, and São Tomé and Príncipe. The proportion of PVL-positive MRSA carriage and/or infections ranged from 0.3 to 100% in humans. A number of pandemic clones were identified in Africa. Moreover, some MRSA clones are limited to specific countries or regions. We strongly advocate for more surveillance studies on MRSA in Africa. PMID:25983721

  9. Panton-Valentine Leukocidin-Positive Staphylococcus aureus in Ireland from 2002 to 2011: 21 Clones, Frequent Importation of Clones, Temporal Shifts of Predominant Methicillin-Resistant S. aureus Clones, and Increasing Multiresistance

    PubMed Central

    Shore, Anna C.; Tecklenborg, Sarah C.; Brennan, Gráinne I.; Ehricht, Ralf; Monecke, Stefan

    2014-01-01

    There has been a worldwide increase in community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) infections. CA-MRSA isolates commonly produce the Panton-Valentine leukocidin toxin encoded by the pvl genes lukF-PV and lukS-PV. This study investigated the clinical and molecular epidemiologies of pvl-positive MRSA and methicillin-susceptible S. aureus (MSSA) isolates identified by the Irish National MRSA Reference Laboratory (NMRSARL) between 2002 and 2011. All pvl-positive MRSA (n = 190) and MSSA (n = 39) isolates underwent antibiogram-resistogram typing, spa typing, and DNA microarray profiling for multilocus sequence type, clonal complex (CC) and/or sequence type (ST), staphylococcal cassette chromosome mec type assignment, and virulence and resistance gene detection. Where available, patient demographics and clinical data were analyzed. The prevalence of pvl-positive MRSA increased from 0.2% to 8.8%, and that of pvl-positive MSSA decreased from 20% to 2.5% during the study period. The pvl-positive MRSA and MSSA isolates belonged to 16 and 5 genotypes, respectively, with CC/ST8-MRSA-IV, CC/ST30-MRSA-IV, CC/ST80-MRSA-IV, CC1/ST772-MRSA-V, CC30-MSSA, CC22-MSSA, and CC121-MSSA predominating. Temporal shifts in the predominant pvl-positive MRSA genotypes and a 6-fold increase in multiresistant pvl-positive MRSA genotypes occurred during the study period. An analysis of patient data indicated that pvl-positive S. aureus strains, especially MRSA strains, had been imported into Ireland several times. Two hospital and six family clusters of pvl-positive MRSA were identified, and 70% of the patient isolates for which information was available were from patients in the community. This study highlights the increased burden and changing molecular epidemiology of pvl-positive S. aureus in Ireland over the last decade and the contribution of international travel to the influx of genetically diverse pvl-positive S. aureus isolates into Ireland. PMID:24371244

  10. Deep sequencing in library selection projects: what insight does it bring?

    PubMed

    Glanville, J; D'Angelo, S; Khan, T A; Reddy, S T; Naranjo, L; Ferrara, F; Bradbury, A R M

    2015-08-01

    High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Deep sequencing in library selection projects: what insight does it bring?

    PubMed Central

    Glanville, J; D’Angelo, S; Khan, T.A.; Reddy, S. T.; Naranjo, L.; Ferrara, F.; Bradbury, A.R.M.

    2015-01-01

    High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. PMID:26451649

  12. The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia.

    PubMed

    Taylor-Robinson, Andrew W; Walton, Simon; Swain, David L; Walsh, Kerry B; Vajta, Gábor

    2014-08-01

    Recent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization - IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Applications of genomic medicine in endocrinology and post-genomic endocrine research.

    PubMed

    Stratakis, Constantine A

    2005-01-01

    In the mid 1980's, two advances revolutionized Medicine in a way that is comparable only to some of the most important events in the approximately 3,000 years of its history. The first was the introduction of the concept of "positional cloning", i.e. the idea that one can identify genes for human disease though knowing nothing or very little about their function. The second was the discovery of the method of polymerase chain reaction (PCR) which made DNA easier to work with for all biomedical researchers and clinicians. Fresh in the history of Endocrinology were the great discoveries of neuroendocrinology, and even more contemporary and potent, the influence of the then emerging field of molecular endocrinology. Cancer medicine and traditional human genetics were the fields that benefited most from the first applications of the new genomic concepts and technologies. Almost two decades later, and after the first successful applications of positional cloning in Endocrine Genetics with the identification of RET, menin, PTEN and PRKAR1A in the various forms of multiple endocrine tumor syndromes, and a number of other genes in developmental diseases affecting the pituitary, thyroid, parathyroid, pancreas, adrenal and gonadal glands, endocrinology has made a comeback to the forefront of "genomically"- influenced as well as post-genomic Medicine. This report, using the example of endocrine tumor genetics, presents the process and some of the accomplishments of positional cloning and discusses the influence of endocrinology on contemporary translational research. The author suggests that some of the most traditional endocrine concepts, established in the previous two centuries, could help us understand the complex pathways recently unraveled in cancer genetics and, consequently, other fields. It is suggested that "Endocrine" genes that control cellular signaling act as "conductor" since they regulate differentiation, growth and proliferation. Their complex function and resultant "transcriptomes" are now being investigated by post-genomic Medicine. In cancer research, endocrine genes defy classic definitions of tumor suppressors and oncogenes and regulate gatekeepers, caretakers, and landscapers. In the post-genomic, translational Medicine, Endocrinology once again could help us to understand cellular regulation and pathophysiology and to design new treatments.

  14. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  15. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  16. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  17. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation.

    PubMed

    Lim, Jun Wei; Ge, Tianshu; Tong, Yen Wah

    2018-01-01

    This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of clone library and T-RFLP accurately predicted the dominant microbial groups and thus is a reliable and more economical way to monitor the evolution of microbial systems in AD sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  19. Characterization of a Highly Pathogenic Molecular Clone of Feline Immunodeficiency Virus Clade C

    PubMed Central

    de Rozières, Sohela; Mathiason, Candace K.; Rolston, Matthew R.; Chatterji, Udayan; Hoover, Edward A.; Elder, John H.

    2004-01-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4+-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV. PMID:15308694

  20. Characterization of a highly pathogenic molecular clone of feline immunodeficiency virus clade C.

    PubMed

    de Rozières, Sohela; Mathiason, Candace K; Rolston, Matthew R; Chatterji, Udayan; Hoover, Edward A; Elder, John H

    2004-09-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.

  1. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning.

    PubMed

    Breidt, Fred; Medina, Eduardo; Wafa, Doria; Pérez-Díaz, Ilenys; Franco, Wendy; Huang, Hsin-Yu; Johanningsmeier, Suzanne D; Kim, Jae Ho

    2013-03-01

    Commercial cucumber fermentations are typically carried out in 40000 L fermentation tanks. A secondary fermentation can occur after sugars are consumed that results in the formation of acetic, propionic, and butyric acids, concomitantly with the loss of lactic acid and an increase in pH. Spoilage fermentations can result in significant economic loss for industrial producers. The microbiota that result in spoilage remain incompletely defined. Previous studies have implicated yeasts, lactic acid bacteria, enterobacteriaceae, and Clostridia as having a role in spoilage fermentations. We report that Propionibacterium and Pectinatus isolates from cucumber fermentation spoilage converted lactic acid to propionic acid, increasing pH. The analysis of 16S rDNA cloning libraries confirmed and expanded the knowledge gained from previous studies using classical microbiological methods. Our data show that Gram-negative anaerobic bacteria supersede Gram-positive Fermincutes species after the pH rises from around 3.2 to pH 5, and propionic and butyric acids are produced. Characterization of the spoilage microbiota is an important first step in efforts to prevent cucumber fermentation spoilage. An understanding of the microorganisms that cause commercial cucumber fermentation spoilage may aid in developing methods to prevent the spoilage from occurring. © 2013 Institute of Food Technologists®

  2. Detection and analysis of bovine foamy virus infection by an indicator cell line.

    PubMed

    Ma, Zhe; Qiao, Wen-tao; Xuan, Cheng-hao; Xie, Jin-hui; Chen, Qi-min; Geng, Yun-qi

    2007-07-01

    To determine the infectivity and replication strategy of bovine foamy virus (BFV) in different cultured cells using the BFV indicator cell line (BICL) system. BFV infection was induced by the co-culture method or the transient transfection of the infectious BFV plasmid [pCMV (cytomegalovirus) - BFV] clone. The infectivity of BFV was monitored by the percentage of green fluorescent protein-positive cells in the BICL. The effect of reverse transcriptase inhibitor zidovudine (AZT) on BFV replication was also evaluated in the BICL. The titer of BFV in fetal bovine lung cells was 4-5-folds more than that in either 293T or HeLa (Cells from Henrietta lacks) cells using the co-culture method, and in the meantime was significantly higher than that produced by the infectious clone pCMV-BFV in the same cells. AZT had only a minor effect on viral titers when added to cells prior to the virus infection. In contrast, viral titers reduced sharply to the level of the negative control when the virus was produced from cells in the presence of AZT. BICL can be used for the titration of the BFV viral infection in non-cytopathic condition. In addition, we provide important evidence to show that reverse transcription is essential for BFV replication at a late step of viral infection.

  3. A BAC clone fingerprinting approach to the detection of human genome rearrangements

    PubMed Central

    Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco

    2007-01-01

    We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769

  4. International Symposium on Positive Strand RNA Viruses (2nd) Held in Vienna, Austria on June 26-30, 1989. Abstracts

    DTIC Science & Technology

    1989-07-01

    DEAE dextran-treated chicken embryo Iosdr specific probe hybridised in -olont bluis to a fiibroblasts (CEF). VEE antigens were demonstrated in 1,1...P 13 P 14 MOLECULAR CLONING ANDOEXPRESSION OF ARNA-DEPENDENT MOLECULAR CLONING OF DEFECTIVE-LIKE RNA OF TWO RNA POLYMERASE OF PLUM POX VIRUS IN...Mokhosi PpO)TEINS. RNA STIMULATED ATyase ACffVITY OF PLUM Dept of Microbiologo, RihodvoJs sv POX POTYVIROS C1 PROTEIN. GRAHiAMSTOWN, South Af~ir . Sonia

  5. Evolution of Fitness in Experimental Populations of Vesicular Stomatitis Virus

    PubMed Central

    Elena, S. F.; Gonzalez-Candelas, F.; Novella, I. S.; Duarte, E. A.; Clarke, D. K.; Domingo, E.; Holland, J. J.; Moya, A.

    1996-01-01

    The evolution of fitness in experimental clonal populations of vesicular stomatitis virus (VSV) has been compared under different genetic (fitness of initial clone) and demographic (population dynamics) regimes. In spite of the high genetic heterogeneity among replicates within experiments, there is a clear effect of population dynamics on the evolution of fitness. Those populations that went through strong periodic bottlenecks showed a decreased fitness in competition experiments with wild type. Conversely, mutant populations that were transferred under the dynamics of continuous population expansions increased their fitness when compared with the same wild type. The magnitude of the observed effect depended on the fitness of the original viral clone. Thus, high fitness clones showed a larger reduction in fitness than low fitness clones under dynamics with included periodic bottleneck. In contrast, the gain in fitness was larger the lower the initial fitness of the viral clone. The quantitative genetic analysis of the trait ``fitness'' in the resulting populations shows that genetic variation for the trait is positively correlated with the magnitude of the change in the same trait. The results are interpreted in terms of the operation of MULLER's ratchet and genetic drift as opposed to the appearance of beneficial mutations. PMID:8849878

  6. CRISPR-Cas9-Edited Site Sequencing (CRES-Seq): An Efficient and High-Throughput Method for the Selection of CRISPR-Cas9-Edited Clones.

    PubMed

    Veeranagouda, Yaligara; Debono-Lagneaux, Delphine; Fournet, Hamida; Thill, Gilbert; Didier, Michel

    2018-01-16

    The emergence of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) gene editing systems has enabled the creation of specific mutants at low cost, in a short time and with high efficiency, in eukaryotic cells. Since a CRISPR-Cas9 system typically creates an array of mutations in targeted sites, a successful gene editing project requires careful selection of edited clones. This process can be very challenging, especially when working with multiallelic genes and/or polyploid cells (such as cancer and plants cells). Here we described a next-generation sequencing method called CRISPR-Cas9 Edited Site Sequencing (CRES-Seq) for the efficient and high-throughput screening of CRISPR-Cas9-edited clones. CRES-Seq facilitates the precise genotyping up to 96 CRISPR-Cas9-edited sites (CRES) in a single MiniSeq (Illumina) run with an approximate sequencing cost of $6/clone. CRES-Seq is particularly useful when multiple genes are simultaneously targeted by CRISPR-Cas9, and also for screening of clones generated from multiallelic genes/polyploid cells. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  7. Short communication: evidence of HIV type 1 clade C env clones containing low V3 loop charge obtained from an AIDS patient in India that uses CXCR6 and CCR8 for entry in addition to CCR5.

    PubMed

    Gharu, Lavina; Ringe, Rajesh; Satyakumar, Anupindi; Patil, Ajit; Bhattacharya, Jayanta

    2011-02-01

    Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.

  8. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System.

    PubMed

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-03-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

  9. Comparative Analysis of Growth and Photosynthetic Characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) Hybrid Clones of Different Ploidides

    PubMed Central

    Bian, Xiuyan; Liu, Mengran; Sun, Yanshuang; Jiang, Jing; Wang, Fuwei; Li, Shuchun; Cui, Yonghong; Liu, Guifeng; Yang, Chuanping

    2015-01-01

    To evaluate differences among poplar clones of various ploidies, 12 hybrid poplar clones (P. simonii × P. nigra) × (P. nigra × P. simonii) with different ploidies were used to study phenotypic variation in growth traits and photosynthetic characteristics. Analysis of variance showed remarkable differences for each of the investigated traits among these clones (P < 0.01). Coefficients of phenotypic variation (PCV) ranged from 2.38% to 56.71%, and repeatability ranged from 0.656 to 0.987. The Pn (photosynthetic rate) photosynthetic photon flux density (PPFD) curves of the 12 clones were S-shaped, but the Pn-ambient CO2 (Ca) curves were shaped like an inverted “V”. The stomatal conductance (Gs)-PPFD and transpiration rate (Tr)-PPFD curves had an upward tendency; however, with increasing PFFD, the intercellular CO2 concentration (Ci)-PPFD curves had a downward tendency in all of the clones. The Pn-PPFD and Pn-Ca curves followed the pattern of a quadratic equation. The average light saturation point and light compensation point of the triploid clones were the highest and lowest, respectively, among the three types of clones. For Pn-Ca curves, diploid clones had a higher average CO2 saturation point and average CO2 compensation point compared with triploid and tetraploid clones. Correlation analyses indicated that all investigated traits were strongly correlated with each other. In future studies, molecular methods should be used to analyze poplar clones of different ploidies to improve our understanding of the growth and development mechanisms of polyploidy. PMID:25867100

  10. Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Rank, D N; Kothari, R K; Joshi, C G

    2011-09-01

    The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid.

  11. SPE-HPTLC of procyanidins from the barks of different species and clones of Salix.

    PubMed

    Pobłocka-Olech, Loretta; Krauze-Baranowska, Mirosława

    2008-11-04

    A SPE-HPTLC method was developed for the qualitative and quantitative analysis of procyanidin B(1) in willow barks. The chromatography was performed on HPTLC silica gel layer with the mobile phase chloroform-ethanol-formic acid (50:40:6 v/v/v), in the Automatic Developing Chamber-ADC 2. The methanol extracts from willow barks were purified by SPE method on RP-18 silica gel columns with methanol-water (7:93 v/v) as the eluent. The presence of procyanidin B(1) was revealed in the majority of investigated willow barks. The content of procyanidin B(1) varied from 0.26 mg/g in the extract of Salix purpurea clone 1067-2.24 mg/g in the extract of Salix alba clone 1100. The method was validated for linearity, precision, LOD, LOQ and repeatability.

  12. Quality Evalution of Potato Clones as Processed Material Cultivated in Lembang

    NASA Astrophysics Data System (ADS)

    Rahayu, S. T.; Handayani, T.; Levianny, P. S.

    2017-03-01

    Potatoes are widely grown in the temperate as well as tropical zones and are the fourth largest staple crop in the world after maize, wheat and rice. The study aimed to evaluate the quality of several potato clones as raw material on potato based products (chips and boiled). The study was conducted at Indonesian Vegetable Research Institute, Lembang about 1200 m asl height, in 2016. The design used was a randomized complete block design with three replications. The samples tested were 5 clones selection (clones number 1,2,3,4,10). In this study, variety Granola (Clone number 6) and Atlantic (Clone number 7) were used as a susceptible control, meanwhile the Katahdin (Clone number 8) and SP 951 (Clone number 9) were used as the resistant control. Chemical properties tested were starch, reduction sugar, water content, specific gravity, and Total Soluble Solute (TSS). The organoleptic assessment method used was hedonic test with scale of 1-5 (very like until very dislike) which had been done by 15 untrained panelists. Data was statisticaly analized by Duncan’s test (5%). Clone 1 and 2 were preferred by panelist as raw material for potato chips, which got score of ‘very like’ until ‘like’ for color, size, taste, and texture parameters. Although there was no significant difference on color and size parameters for all samples of that boiled potato there, however, clone no 8 can be considered as the most favourite based on taste and texture parameters.

  13. Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea.

    PubMed

    Kasai, Yuki; Oshima, Kohei; Ikeda, Fukiko; Abe, Jun; Yoshimitsu, Yuya; Harayama, Shigeaki

    2015-01-01

    Microalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea. In this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator. A self-cloning-based positive selection system for the genetic transformation of P. ellipsoidea was developed. Self-cloned P. ellipsoidea strains will require less-stringent containment measures for large-scale outdoor cultivation.

  14. Comparing four different ALK antibodies with manual immunohistochemistry (IHC) to screen for ALK-rearranged non-small cell lung cancer (NSCLC).

    PubMed

    Shen, Qin; Wang, Xuan; Yu, Bo; Shi, Shanshan; Liu, Biao; Wang, Yanfen; Xia, Qiuyuan; Rao, Qiu; Zhou, Xiaojun

    2015-12-01

    Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) screening is essential to its treatment such as crizotinib. Different assays have been developed to detect ALK rearrangements, such as fluorescence in situ hybridization (FISH), reverse transcriptase-PCR (RT-PCR), and immunohistochemistry (IHC). However, ALK detection has not been applied widely in all hospitals. Moreover, IHC has been proposed to be a pre-screening tool because of its wide application in clinics. Since the low expression of ALK protein, the sensitivity and specificity of ALK antibody are the keys to the success of IHC screening. Therefore, we compared different antibodies to find the best one for IHC detection. We evaluated ALK expression by four different ALK antibodies: clone D5F3 (Ventana), clone D5F3 (CST), clone 1A4/1H7 (OriGene Tech.), and clone 5A4 (Abcam) based on manual IHC in a cohort of 60 NSCLCs. The results were compared with those from automated IHC (clone D5F3, Ventana). All cases were evaluated independently by ALK FISH. 32 ALK-positive and 28 ALK-negative NSCLCs were identified by automated IHC (D5F3, Ventana) and FISH analysis. Based on conventional manual IHC, the sensitivity of four antibodies-D5F3 (Ventana), D5F3 (CST), 1A4/1H7 (OriGene Tech.), and 5A4 (Abcam)-was 93.8%, 84.4%, 93.8%, and 56.3%, respectively. Their specificities and positive predictive values were 100%. The percentage of strong-moderate staining was 65.6%, 62.5%, 68.8%, and 21.9%, respectively. Compared with automated IHC (D5F3, Ventana), each staining concordance was 96.7%, 91.7%, 96.7%, and 76.7%, respectively, and each presented staining heterogeneity (weak-moderate-strong intensity). These data indicated that manual IHC with a more reliable ALK antibody might provide an effective strategy for screening ALK gene rearrangements in all NSCLC patients, followed by confirmatory FISH analysis in IHC-positive cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase.

    PubMed

    Kim, Eunhye; Zheng, Zhong; Jeon, Yubyeol; Jin, Yong-Xun; Hwang, Seon-Ung; Cai, Lian; Lee, Chang-Kyu; Kim, Nam-Hyung; Hyun, Sang-Hwan

    2016-01-01

    Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimelman, Aya; Levy, Asaf; Sberro, Hila

    In the process of clone-based genome sequencing, initial assemblies frequently contain cloning gaps that can be resolved using cloning-independent methods, but the reason for their occurrence is largely unknown. By analyzing 9,328,693 sequencing clones from 393 microbial genomes we systematically mapped more than 15,000 genes residing in cloning gaps and experimentally showed that their expression products are toxic to the Escherichia coli host. A subset of these toxic sequences was further evaluated through a series of functional assays exploring the mechanisms of their toxicity. Among these genes our assays revealed novel toxins and restriction enzymes, and new classes of smallmore » non-coding toxic RNAs that reproducibly inhibit E. coli growth. Further analyses also revealed abundant, short toxic DNA fragments that were predicted to suppress E. coli growth by interacting with the replication initiator dnaA. Our results show that cloning gaps, once considered the result of technical problems, actually serve as a rich source for the discovery of biotechnologically valuable functions, and suggest new modes of antimicrobial interventions.« less

  17. Production of healthy cloned mice from bodies frozen at -20 degrees C for 16 years.

    PubMed

    Wakayama, Sayaka; Ohta, Hiroshi; Hikichi, Takafusa; Mizutani, Eiji; Iwaki, Takamasa; Kanagawa, Osami; Wakayama, Teruhiko

    2008-11-11

    Cloning animals by nuclear transfer provides an opportunity to preserve endangered mammalian species. However, it has been suggested that the "resurrection" of frozen extinct species (such as the woolly mammoth) is impracticable, as no live cells are available, and the genomic material that remains is inevitably degraded. Here we report production of cloned mice from bodies kept frozen at -20 degrees C for up to 16 years without any cryoprotection. As all of the cells were ruptured after thawing, we used a modified cloning method and examined nuclei from several organs for use in nuclear transfer attempts. Using brain nuclei as nuclear donors, we established embryonic stem cell lines from the cloned embryos. Healthy cloned mice were then produced from these nuclear transferred embryonic stem cells by serial nuclear transfer. Thus, nuclear transfer techniques could be used to "resurrect" animals or maintain valuable genomic stocks from tissues frozen for prolonged periods without any cryopreservation.

  18. Production of healthy cloned mice from bodies frozen at −20°C for 16 years

    PubMed Central

    Wakayama, Sayaka; Ohta, Hiroshi; Hikichi, Takafusa; Mizutani, Eiji; Iwaki, Takamasa; Kanagawa, Osami; Wakayama, Teruhiko

    2008-01-01

    Cloning animals by nuclear transfer provides an opportunity to preserve endangered mammalian species. However, it has been suggested that the “resurrection” of frozen extinct species (such as the woolly mammoth) is impracticable, as no live cells are available, and the genomic material that remains is inevitably degraded. Here we report production of cloned mice from bodies kept frozen at −20 °C for up to 16 years without any cryoprotection. As all of the cells were ruptured after thawing, we used a modified cloning method and examined nuclei from several organs for use in nuclear transfer attempts. Using brain nuclei as nuclear donors, we established embryonic stem cell lines from the cloned embryos. Healthy cloned mice were then produced from these nuclear transferred embryonic stem cells by serial nuclear transfer. Thus, nuclear transfer techniques could be used to “resurrect” animals or maintain valuable genomic stocks from tissues frozen for prolonged periods without any cryopreservation. PMID:18981419

  19. Comprehensive Analysis of Bacterial Flora in Postoperative Maxillary Cyst Fluid by 16S rRNA Gene and Culture Methods

    PubMed Central

    Sano, Naoto; Yamashita, Yoshio; Fukuda, Kazumasa; Taniguchi, Hatsumi; Goto, Masaaki; Miyamoto, Hiroshi

    2012-01-01

    Intracystic fluid was aseptically collected from 11 patients with postoperative maxillary cyst (POMC), and DNA was extracted from the POMC fluid. Bacterial species were identified by sequencing after cloning of approximately 580 bp of the 16S rRNA gene. Identification of pathogenic bacteria was also performed by culture methods. The phylogenetic identity was determined by sequencing 517–596 bp in each of the 1139 16S rRNA gene clones. A total of 1114 clones were classified while the remaining 25 clones were unclassified. A total of 103 bacterial species belonging to 42 genera were identified in POMC fluid samples by 16S rRNA gene analysis. Species of Prevotella (91%), Neisseria (73%), Fusobacterium (73%), Porphyromonas (73%), and Propionibacterium (73%) were found to be highly prevalent in all patients. Streptococcus mitis (64%), Fusobacterium nucleatum (55%), Propionibacterium acnes (55%), Staphylococcus capitis (55%), and Streptococcus salivarius (55%) were detected in more than 6 of the 11 patients. The results obtained by the culture method were different from those obtained by 16S rRNA gene analysis, but both approaches may be necessary for the identification of pathogens, especially of bacteria that are difficult to detect by culture methods, and the development of rational treatments for patients with POMC. PMID:22685668

  20. Unexpected heterogeneity derived from Cas9 ribonucleoprotein-introduced clonal cells at the HPRT1 locus.

    PubMed

    Sakuma, Tetsushi; Mochida, Keiji; Nakade, Shota; Ezure, Toru; Minagawa, Sachi; Yamamoto, Takashi

    2018-04-01

    Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  1. Horses in Denmark Are a Reservoir of Diverse Clones of Methicillin-Resistant and -Susceptible Staphylococcus aureus

    PubMed Central

    Islam, Md Zohorul; Espinosa-Gongora, Carmen; Damborg, Peter; Sieber, Raphael N.; Munk, Rikke; Husted, Louise; Moodley, Arshnee; Skov, Robert; Larsen, Jesper; Guardabassi, Luca

    2017-01-01

    Denmark is a country with high prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 in pigs. Even though pig farming is regarded as the main source of human infection or colonization with MRSA CC398, 10–15% of the human cases appear not to be linked to pigs. Following the recent reports of MRSA CC398 in horses in other European countries and the lack of knowledge on S. aureus carriage in this animal species, we carried out a study to investigate whether horses constitute a reservoir of MRSA CC398 in Denmark, and to gain knowledge on the frequency and genetic diversity of S. aureus in horses, including both methicillin-resistant and -susceptible S. aureus (MSSA). Nasal swabs were collected from 401 horses originating from 74 farms, either at their farms or prior to admission to veterinary clinics. Following culture on selective media, species identification by MALDI-TOF MS and MRSA confirmation by standard PCR-based methods, S. aureus and MRSA were detected in 54 (13%) and 17 (4%) horses originating from 30 (40%) and 7 (9%) farms, respectively. Based on spa typing, MSSA differed genetically from MRSA isolates. The spa type prevalent among MSSA isolates was t127 (CC1), which was detected in 12 horses from 11 farms and represents the most common S. aureus clone isolated from human bacteremia cases in Denmark. Among the 17 MRSA carriers, 10 horses from three farms carried CC398 t011 harboring the immune evasion cluster (IEC), four horses from two farms carried IEC-negative CC398 t034, and three horses from two farms carried a mecC-positive MRSA lineage previously associated with wildlife and domestic ruminants (CC130 t528). Based on whole-genome phylogenetic analysis of the 14 MRSA CC398, t011 isolates belonged to the recently identified horse-adapted clone in Europe and were closely related to human t011 isolates from three Danish equine veterinarians, whereas t034 isolates belonged to pig-adapted clones. Our study confirms that horses carry an equine-specific clone of MRSA CC398 that can be transmitted to veterinary personnel, and reveals that these animals are exposed to MRSA and MSSA clones that are likely to originate from livestock and humans, respectively. PMID:28421046

  2. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.

    PubMed

    Rodin, Sergey; Antonsson, Liselotte; Hovatta, Outi; Tryggvason, Karl

    2014-10-01

    A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.

  3. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods.

    PubMed

    Øbro, Nina F; Ryder, Lars P; Madsen, Hans O; Andersen, Mette K; Lausen, Birgitte; Hasle, Henrik; Schmiegelow, Kjeld; Marquart, Hanne V

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and/or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR-based monitoring.

  4. Isolation and characterization of two overlapping cosmid clones from the 4q35 region, near the facioscapulohumeral muscular dystrophy locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deidda, G.; Grisanti, P.; Vigneti, E.

    1994-09-01

    The gene for facioscapulohumeral muscular dystrophy (FSHD) has been localized by linkage analysis to the 4q35 region. The most telomeric p13E-11 prove has been shown to detect 4q35 DNA rearrangements in both sporadic and familial cases of the disease. With the aim of constructing a detailed physical map of the 4q35 region and searching for the mutant gene, we used p13E-11 probe to isolate cosmid clones from a human genomic library in a pCos-EMBL 2 vector. Two positive clones were isolated, clones 3 and 5, which partially overlap and carry human genomic inserts of 42 and 45 kb, respectively. Themore » cosmids share a common region containing the p13E-11 region and a stretch of KpnI units consisting of 3.2 kb tandemly repeated sequences (about 10). The restriction maps were constructed using the following enzymes: Bam HI, BgIII, Eco RI, EcoRV, KpnI and Sfi I. Clone 3 extends 4 kb upstream of C5 and stops within the Kpn repeats. Clone 5 extends 4 kb downstream from the Kpn repeats and it presents an additional EcoRI site. Clone 5 contains a stretch of Kpn sequences of nearly 32 kb, corresponding to 10 Kpn repeats; clone 3 contains a stretch of 29 kb corresponding to 9 Kpn repeats, as determined by PFGE analysis of partial digestion of the clones. Clone 5 seems to contain the entire Eco RI region prone to rearrangements in FSHD patients. From clone 5 several subclones were obtained, from the Kpn region and from the region spanning from the last Kpn repeat to the cloning site. No single copy sequences were detected. Subclones from the 3{prime} end region contain beta-satellite or Sau3A-like sequences. In situ hybridization with the whole C5 cosmid shows hybridization signals at the tip of chromosome 4 (4q35) and chromosome 10 (10q26), in the pericentromeric region of chromosome 1 (1q12) and in the p12 region of the acrocentric chromosomes (chr. 21, 22, 13, 14, 15).« less

  5. Decoding the codes: A content analysis of the news coverage of genetic cloning by three online news sites and three national daily newspapers, 1996 through 1998

    NASA Astrophysics Data System (ADS)

    Hyde, Jon E.

    This study compared news coverage of genetic cloning research in three online news sites (CNN.com, ABC.com, and MSNBC.com) and three national daily newspapers (The New York Times, The Washington Post, and USA Today). The study involved the analysis of 230 online and print news articles concerning genetic cloning published from 1996 through 1998. Articles were examined with respect to formats, sources, focus, tone, and assessments about the impact of cloning research. Findings indicated that while print news formats remained relatively constant for the duration of this study, online news formats changed significantly with respect to the kinds of media used to represent the news, the layouts used to represent cloning news, and the emphasis placed on audio-visual content. Online stories were as much as 20 to 70% shorter than print stories. More than 50% of the articles appearing online were composed by outside sources (wire services, guest columnists, etc.). By comparison, nearly 90% of the articles published by print newspapers were written "in-house" by science reporters. Online news sites cited fewer sources and cited a smaller variety of sources than the newspapers examined here. In both news outlets, however, the sources most frequently cited were those with vested interests in furthering cloning research. Both online and print news coverage of cloning tends to focus principally on the technical procedures and on the future benefits of cloning. More than 60% of the articles focused on the techniques and technologies of cloning. Less than 25% of the articles focused on social, ethical, or legal issues associated with cloning. Similarly, articles from all six sources (75%) tended to be both positive and future-oriented. Less than 5% of the total articles examined here had a strongly negative or critical tone. Moreover, both online and print news sources increasingly conveyed a strong sense of acceptance about the possibility of human cloning. Data from this study are among the first to indicate the ways in which online news outlets are transforming science news. Furthermore, this study reaffirms the need for a greater diversity of sources in assessing a broader spectrum of issues related to cloning.

  6. Cloning: Learning to Replay the Genetic Tape.

    ERIC Educational Resources Information Center

    Holden, David J.

    1979-01-01

    Describes how plants can be produced by cloning by using tissue culture methods to mass-produce rare native prairie plants and trying to transfer some of the genetic characteristics of native grasses into cultivated cereals. The experiment was conducted at South Dakota State University. (HM)

  7. Large-Scale Concatenation cDNA Sequencing

    PubMed Central

    Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.

    1997-01-01

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174

  8. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure

    PubMed Central

    ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO

    2011-01-01

    Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942

  9. Random integration of SV40 in SV40-transformed, immortalized human fibroblasts.

    PubMed

    Hara, H; Kaji, H

    1987-02-01

    We have studied the relationship between immortalization of SV40-transformed human embryonic fibroblasts and their SV40 integration sites. From several independently transformed cell pools, we have isolated clones which do not harbor unintegrated SV40 DNA. We have analysed whole-cell DNA from these clones, using the Southern blot method. Our results suggest that no specific integration sites in the cellular genome exist which are a prerequisite for the immortalization process. Although some integration sites were found to be predominant in pre-crisis clones, they could not be detected in the post-crisis clones. This suggests that none of these predominating sites is selected for during the crisis period.

  10. Molecular cloning and characterization of Bacillus alvei thiol-dependent cytolytic toxin expressed in Escherichia coli.

    PubMed

    Geoffroy, C; Alouf, J E

    1988-07-01

    A chromosomal DNA fragment from Bacillus alvei, encoding a thiol-dependent haemolytic product known as alveolysin (Mr 60,000, pI 5.0) was cloned in Escherichia coli SK1592, using pBR322 as the vector plasmid. Only a single haemolysin-positive clone was identified, by testing for haemolysis on blood agar plates. The haemolytic material was associated with the host bacterial cell. It was released by ultrasonic disruption and purified 267-fold. A 64 kDa polypeptide of pI 8.2 cofractionated with haemolytic activity during gel filtration chromatography and isoelectric focusing. It behaved identically to alveolysin in its activation by thiols, inactivation by thiol group reagents, inhibition by cholesterol, and neutralization, immunoprecipitation and immunoblotting by immune sera raised against alveolysin and streptolysin O.

  11. Isolation and characterization of 21 novel expressed DNA sequences from the distal region of human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko

    1994-07-15

    The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less

  12. Androgen receptor mediated epigenetic regulation of CRISP3 promoter in prostate cancer cells.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Deshmukh, Priyanka; Mahale, Smita D

    2018-07-01

    Cysteine-rich secretory protein 3 (CRISP3) is one of the most upregulated genes in prostate cancer. Androgen receptor (AR) plays an important role not only in initial stages of prostate cancer development but also in the advanced stage of castration-resistant prostate cancer (CRPC). Role of AR in regulation of CRISP3 expression is not yet known. In order to understand the regulation of CRISP3 expression, various overlapping fragments of CRISP3 promoter were cloned in pGL3 luciferase reporter vector. All constructs were transiently and stably transfected in PC3 (CRISP3 negative) and LNCaP (CRISP3 positive) cell lines and promoter activity was measured by luciferase assay. Promoter activity of LNCaP stable clones was significantly higher than PC3 stable clones. Further in CRISP3 negative PC3 and RWPE-1 cells, CRISP3 promoter was shown to be silenced by histone deacetylation. Treatment of LNCaP cells with DHT resulted in increase in levels of CRISP3 transcript and protein. AR dependency of CRISP3 promoter was also evaluated in LNCaP stable clones by luciferase assay. To provide molecular evidence of epigenetic regulation of CRISP3 promoter and its response to DHT, ChIP PCR was performed in PC3 and LNCaP cells. Our results demonstrate that CRISP3 expression in prostate cancer cells is androgen dependent and in AR positive cells, CRISP3 promoter is epigenetically regulated by AR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cloning-Independent and Counterselectable Markerless Mutagenesis System in Streptococcus mutans▿

    PubMed Central

    Xie, Zhoujie; Okinaga, Toshinori; Qi, Fengxia; Zhang, Zhijun; Merritt, Justin

    2011-01-01

    Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive- and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches. PMID:21948849

  14. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays.

    PubMed

    Tourlousse, Dieter M; Kurisu, Futoshi; Tobino, Tomohiro; Furumai, Hiroaki

    2013-05-01

    The goal of this study was to develop and validate a novel fosmid-clone-based metagenome isotope array approach - termed the community isotope array (CIArray) - for sensitive detection and identification of microorganisms assimilating a radiolabeled substrate within complex microbial communities. More specifically, a sample-specific CIArray was used to identify anoxic phenol-degrading microorganisms in activated sludge treating synthetic coke-oven wastewater in a single-sludge predenitrification-nitrification process. Hybridization of the CIArray with DNA from the (14) C-phenol-amended sample indicated that bacteria assimilating (14) C-atoms, presumably directly from phenol, under nitrate-reducing conditions were abundant in the reactor, and taxonomic assignment of the fosmid clone end sequences suggested that they belonged to the Gammaproteobacteria. The specificity of the CIArray was validated by quantification of fosmid-clone-specific DNA in density-resolved DNA fractions from samples incubated with (13) C-phenol, which verified that all CIArray-positive probes stemmed from microorganisms that assimilated isotopically labeled carbon. This also demonstrated that the CIArray was more sensitive than DNA-SIP, as the former enabled positive detection at a phenol concentration that failed to yield a 'heavy' DNA fraction. Finally, two operational taxonomic units distantly related to marine Gammaproteobacteria were identified to account for more than half of 16S rRNA gene clones in the 'heavy' DNA library, corroborating the CIArray-based identification. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Accelerated Evolution of the ASPM Gene Controlling Brain Size Begins Prior to Human Brain Expansion

    PubMed Central

    Solomon, Gregory; Gersch, William; Yoon, Young-Ho; Collura, Randall; Ruvolo, Maryellen; Barrett, J. Carl; Woods, C. Geoffrey; Walsh, Christopher A

    2004-01-01

    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size. PMID:15045028

  16. Biofantasies: genetics and medicine in the print news media.

    PubMed

    Petersen, A

    2001-04-01

    The contemporary news media is an important site for exploring the diverse and complex cultural images of genetics and its medical possibilities, and of the mechanisms by which these images are (re) produced and sustained. This article investigates how the print news media 'frames' stories on genetics and medicine. It is based on a discourse analysis of articles appearing in three Australian newspapers in the late 1990s. Gene stories were found to be prominent in each of the newspapers, and to emphasise the medical benefits of genetic research. Stories frequently cite and quote scientists, who explain the nature and significance of the research and/or its implications for treatment or prevention. Many stories focus on new genetic discoveries, and portray genetic researchers as involved in a quest to unlock nature's secrets. Stories of hope, and depictions of geneticists as warriors or heroes, appear regularly. The positive vision of genetics is supported by the use of particular metaphors, accompanying illustrative material, 'human interest' stories, and reference to credible sources. There is rarely mention of the influence of non-genetic factors and 'multifactorial' interactions on disorders, or questioning of the goals, direction, methods, or value of genetic research. Scientists made extensive use of the media in their efforts to maintain a positive image of research in the face of public concerns about scientists 'going too far', following the announcement of the cloning of Dolly. Boundaries were drawn between 'therapeutic cloning'--implicitly defined as 'good', useful, and legitimate--and 'reproductive cloning'--seen as 'bad', dangerous, and illegitimate. By framing news stories as they do, the print news media are likely to exert a powerful influence on public responses to health problems. With new genetic technologies becoming more integrated in preventive medicine and public health, it is important to investigate how news stories help shape the agenda for public debate.

  17. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples.

    PubMed

    Gokduman, Kurtulus; Avsaroglu, M Dilek; Cakiris, Aris; Ustek, Duran; Gurakan, G Candan

    2016-03-01

    The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) Larval Defoliation, Clone, and Season on Populus Foliar Phagostimulants

    Treesearch

    David R. Coyle; Joel D. McMillin; Richard B. Hall; Elwood R. Hart

    2003-01-01

    Abstract: The cottonwood leaf beetle, Chrysomela scripta F., is a serious defoliator of plantation Populus in the United States. Current control methods include biorational and synthetic chemicals as well as selecting Populus clones resistant or tolerant to C. scripta...

  19. Inferring Higher Functional Information for RIKEN Mouse Full-Length cDNA Clones With FACTS

    PubMed Central

    Nagashima, Takeshi; Silva, Diego G.; Petrovsky, Nikolai; Socha, Luis A.; Suzuki, Harukazu; Saito, Rintaro; Kasukawa, Takeya; Kurochkin, Igor V.; Konagaya, Akihiko; Schönbach, Christian

    2003-01-01

    FACTS (Functional Association/Annotation of cDNA Clones from Text/Sequence Sources) is a semiautomated knowledge discovery and annotation system that integrates molecular function information derived from sequence analysis results (sequence inferred) with functional information extracted from text. Text-inferred information was extracted from keyword-based retrievals of MEDLINE abstracts and by matching of gene or protein names to OMIM, BIND, and DIP database entries. Using FACTS, we found that 47.5% of the 60,770 RIKEN mouse cDNA FANTOM2 clone annotations were informative for text searches. MEDLINE queries yielded molecular interaction-containing sentences for 23.1% of the clones. When disease MeSH and GO terms were matched with retrieved abstracts, 22.7% of clones were associated with potential diseases, and 32.5% with GO identifiers. A significant number (23.5%) of disease MeSH-associated clones were also found to have a hereditary disease association (OMIM Morbidmap). Inferred neoplastic and nervous system disease represented 49.6% and 36.0% of disease MeSH-associated clones, respectively. A comparison of sequence-based GO assignments with informative text-based GO assignments revealed that for 78.2% of clones, identical GO assignments were provided for that clone by either method, whereas for 21.8% of clones, the assignments differed. In contrast, for OMIM assignments, only 28.5% of clones had identical sequence-based and text-based OMIM assignments. Sequence, sentence, and term-based functional associations are included in the FACTS database (http://facts.gsc.riken.go.jp/), which permits results to be annotated and explored through web-accessible keyword and sequence search interfaces. The FACTS database will be a critical tool for investigating the functional complexity of the mouse transcriptome, cDNA-inferred interactome (molecular interactions), and pathome (pathologies). PMID:12819151

  20. Polybacterial community analysis in human conjunctiva through 16S rRNA gene libraries.

    PubMed

    Deepthi, KrishnanNair Geetha; Jayasudha, Rajagopalaboopathi; Girish, Rameshan Nair; Manikandan, Palanisamy; Ram, Rammohan; Narendran, Venkatapathy; Prabagaran, Solai Ramatchandirane

    2018-05-14

    The conjunctival sac of healthy human harbours a variety of microorganisms. When the eye is compromised, an occasional inadvertent spread happens to the adjacent tissue, resulting in bacterial ocular infections. Microbiological investigation of the conjunctival swab is one of the broadly used modality to study the aetiological agent of conjunctiva. However, most of the time such methods yield unsatisfactory results. Hence, the present study intends to identify the bacterial community in human conjunctiva of pre-operative subjects through 16S rRNA gene libraries. Out of 45 samples collected from preoperative patients undergoing cataract surgery, 36 libraries were constructed with bacterial nested-PCR-positive samples. The representative clones with unique restriction pattern were generated through Amplified Ribosomal DNA Restriction Analysis (ARDRA) which were sequenced for phylogenetic affiliation. A total of 211 representative clones were obtained which were distributed in phyla Actinobacteria, Firmicutes, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, and Deinococcus-Thermus. Findings revealed the presence of polybacterial community, especially in some cases even though no bacterium or a single bacterium alone was identified through cultivable method. Remarkably, we identified 17 species which have never been reported in any ocular infections. The sequencing data reported 6 unidentified bacteria suggesting the possibility of novel organisms in the sample. Since, polybacterial community has been identified consisting of both gram positive and gram negative bacteria, a broad spectrum antibiotic therapy is advisable to the patients who are undergoing cataract surgery. Consolidated effort would significantly improve a clear understanding of the nature of microbial community in the human conjunctiva which will promote administration of appropriate antibiotic regimen and also help in the development of oligonucleotide probes to screen the predominant pathogens for early predisposition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector.

    PubMed

    Junqueira, Bruna Rayane Teodoro; Nicolini, Cícero; Lucinda, Natalia; Orílio, Anelise Franco; Nagata, Tatsuya

    2014-03-01

    Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Progress in gene targeting and gene therapy for retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectorsmore » for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.« less

  3. Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Challagundla, Lavanya; Luo, Xiao; Tickler, Isabella A.; Coombs, Geoffrey W.; Sordelli, Daniel O.; Brown, Eric L.; Skov, Robert; Larsen, Anders Rhod; Reyes, Jinnethe; Robledo, Iraida E.; Vazquez, Guillermo J.; Rivera, Raul; Fey, Paul D.; Stevenson, Kurt; Wang, Shu-Hua; Kreiswirth, Barry N.; Mediavilla, Jose R.; Arias, Cesar A.; Planet, Paul J.; Nolan, Rathel L.; Tenover, Fred C.; Goering, Richard V.

    2018-01-01

    ABSTRACT The USA300 North American epidemic (USA300-NAE) clone of methicillin-resistant Staphylococcus aureus has caused a wave of severe skin and soft tissue infections in the United States since it emerged in the early 2000s, but its geographic origin is obscure. Here we use the population genomic signatures expected from the serial founder effects of a geographic range expansion to infer the origin of USA300-NAE and identify polymorphisms associated with its spread. Genome sequences from 357 isolates from 22 U.S. states and territories and seven other countries are compared. We observe two significant signatures of range expansion, including decreases in genetic diversity and increases in derived allele frequency with geographic distance from the Pennsylvania region. These signatures account for approximately half of the core nucleotide variation of this clone, occur genome wide, and are robust to heterogeneity in temporal sampling of isolates, human population density, and recombination detection methods. The potential for positive selection of a gyrA fluoroquinolone resistance allele and several intergenic regions, along with a 2.4 times higher recombination rate in a resistant subclade, is noted. These results are the first to show a pattern of genetic variation that is consistent with a range expansion of an epidemic bacterial clone, and they highlight a rarely considered but potentially common mechanism by which genetic drift may profoundly influence bacterial genetic variation. PMID:29295910

  4. [The effect of retrovirus-mediated hTRT transfection into cultured oral keratinocytes].

    PubMed

    Huang, Ji-yan; Liu, Wei; Zhou, Zeng-tong; Zhou, Hai-wen

    2014-06-01

    Human telomerase reverse transcriptase (hTRT) was transfected into cultured oral keratinocytes (OKC) mediated by pBABE-tert recombined retrovirus to investigate the effect on OKC lifespan. pBABE-tert recombined retrovirus loaded with hTRT gene was amplified by transfected PT67 cells, and then transfected into cultured OKC in vitro. The positive clones of OKC were separated by puromycin and subcultured. Telomerase activity was analyzed by telomerase PCR-ELISA and PCR-PAGE. The hTRT positive clones of OKC showed telomerase expression, with extending lifespan to 8-9 passages. The hTRT transfected OKC can prolong doubly lifespan but not be immortalized, which indicates that cellular immortality mechanism is complicated and multi-controled. Telomerase activity is the key for cell immortalization but not the only impact factor.

  5. Comparison of randomly cloned and whole genomic DNA probes for the detection of Porphyromonas gingivalis and Bacteroides forsythus

    PubMed Central

    Wong, M.; DiRienzo, J.M.; Lai, C.-H.; Listgarten, M. A.

    2012-01-01

    Whole genomic and randomly-cloned DNA probes for two fastidious periodontal pathogens, Porphyromonas gingivalis and Bacteroides forsythus were labeled with digoxigenin and detected by a colorimetric method. The specificity and sensitivity of the whole genomic and cloned probes were compared. The cloned probes were highly specific compared to the whole genomic probes. A significant degree of cross-reactivity with Bacteroides species. Capnocytophaga sp. and Prevotella sp. was observed with the whole genomic probes. The cloned probes were less sensitive than the whole genomic probes and required at least 106 target cells or a minimum of 10 ng of target DNA to be detected during hybridization. Although a ten-fold increase in sensitivity was obtained with the whole genomic probes, cross-hybridization to closely related species limits their reliability in identifying target bacteria in subgingival plaque samples. PMID:8636873

  6. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  7. Towards a transcription map spanning a 250 kb area within the DiGeorge syndrome chromosome region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, W.; Emanuel, B.S.; Siegert, J.

    1994-09-01

    DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are congenital anomalies affecting predominantly the thymus, parathyroid glands, heart and craniofacial development. Detection of 22q11.2 deletions in the majority of DGS and VCFS patients implicate 22q11 haploinsufficiency in the etiology of these disorders. The VCFS/DGS critical region lies within the proximal portion of a commonly deleted 1.2 Mb region in 22q11. A 250 kb cosmid contig covering this critical region and containing D22S74 (N25) has been established. From this contig, eleven cosmids with minimal overlap were biotinylated by nick translation, and hybridized to PCR-amplified cDNAs prepared from different tissues. The use ofmore » cDNAs from a variety of tissues increases the likelihood of identifying low abundance transcripts and tissue-specific expressed sequences. A DGCR-specific cDNA sublibrary consisting of 670 cDNA clones has been constructed. To date, 49 cDNA clones from this sub-library have been identified with single copy probes and cosmids containing putative CpG islands. Based on sequence analysis, 25 of the clones contain regions of homology to several cDNAs which map within the proximal contig. LAN is a novel partial cDNA isolated from a fetal brain library probed with one of the cosmids in the proximal contig. Using LAN as a probe, we have found 19 positive clones in the DGCR-specific cDNA sub-library (4 clones from fetal brain, 14 from adult skeletal muscle and one from fetal liver). Some of the LAN-positive clones extend the partial cDNA in the 5{prime} direction and will be useful in assembling a full length transcript. This resource will be used to develop a complete transcriptional map of the critical region in order to identify candidate gene(s) involved in the etiology of DGS/VCFS and to determine the relationship between the transcriptional and physical maps of 22q11.« less

  8. Cloning and characterization of soybean gene Fg1 encoding flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase.

    PubMed

    Rojas Rodas, Felipe; Di, Shaokang; Murai, Yoshinori; Iwashina, Tsukasa; Sugawara, Satoko; Mori, Tetsuya; Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Saito, Kazuki; Takahashi, Ryoji

    2016-11-01

    Flavonoids are important secondary metabolites in plants. Sugar-sugar glycosyltransferases are involved in the final step of flavonoid biosynthesis and contribute to the structural diversity of flavonoids. This manuscript describes the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. The results provide a glimpse on the possible evolution of sugar-sugar glycosyltransferase genes and identify putative amino acids responsible for the recognition of the hydroxyl group of the sugar moiety and specification of sugar. A scheme for the genetic control of flavonol glycoside biosynthesis is proposed. Flavonol glycosides (FGs) are predominant in soybean leaves and they show substantial differences among genotypes. In previous studies, we identified two flavonoid glycoside glycosyltransferase genes that segregated in recombinant inbred lines developed from a cross between cultivars Nezumisaya and Harosoy; one was responsible for the attachment of glucose to the 2″-position of glucose or galactose that is bound to the 3-position of kaempferol and the other was involved in the attachment of glucose to the 6″-position. This study was conducted to clone and characterize the 6″-glucosyltransferase gene. Linkage mapping indicated that the gene was located in the molecular linkage group I (chromosome 20). Based on the genome sequence, we cloned a candidate cDNA, GmF3G6"Gt from Harosoy but the corresponding cDNA could not be amplified by PCR from Nezumisaya. The coding region of GmF3G6″Gt in Harosoy is 1386 bp long encoding 462 amino acids. This gene was not expressed in leaves of Nezumisaya. The GmF3G6″Gt recombinant protein converted UDP-glucose and kaempferol 3-O-glucoside or kaempferol 3-O-galactoside to kaempferol 3-O-glucosyl-(1→6)-glucoside or kaempferol 3-O-glucosyl-(1→6)-galactoside, respectively. These results indicate that GmF3G6″Gt encodes a flavonol 3-O-glucoside/galactoside (1→6) glucosyltransferase and corresponds to the Fg1 gene. GmF3G6″Gt had an amino acid similarity of 82 % with GmF3G6″Rt encoding flavonol 3-O-glucoside/galactoside (1→6) rhamnosyltransferase, suggesting a recent evolutionary divergence of the two genes. This may be the first cloning of a sugar-sugar glucosyltransferase gene in the UGT family that attaches glucose to the 6″-position of sugar bound to a flavonol. A scheme for the control of FG biosynthesis is proposed.

  9. A unique circovirus-like genome detected in pig feces

    USDA-ARS?s Scientific Manuscript database

    Using a metagenomic approach and molecular cloning methods, we identified, cloned, and sequenced the complete genome of a novel circular DNA virus, porcine stool-associated virus (PoSCV4), from pig feces. Phylogenetic analysis of the deduced replication initiator protein showed that PoSCV4 is most r...

  10. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    USDA-ARS?s Scientific Manuscript database

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  11. Inoculation methods for Populus tremuloides resistant to Hypoxylon canker

    Treesearch

    S. A. Enebak; Michael E. Ostry; N. A. Anderson

    1999-01-01

    Canker expansion and the amount of callus tissue formed were measured monthly on 60 ramets from each of five trembling aspen (Populus tremuloides Michx.) clones that had been inoculated in wounds with Entoleuca mammata (= Hypoxylon marnmatum (Wahl.) Mill) over a 12-month period. At the clone level, the prevalence...

  12. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C0t method.

    PubMed

    Gouveia, Juceli Gonzalez; Wolf, Ivan Rodrigo; de Moraes-Manécolo, Vivian Patrícia Oliveira; Bardella, Vanessa Belline; Ferracin, Lara Munique; Giuliano-Caetano, Lucia; da Rosa, Renata; Dias, Ana Lúcia

    2016-12-01

    Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C 0 t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C 0 t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.

  13. Recombinant expression of a putative prophage amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its biofilm

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a Gram-positive, non-sporeforming, catalase-positive rod that is a major bacterial food-borne disease agent, causing listeriosis. Listeria can be associated with uncooked meats including poultry, uncooked vegetables, soft cheeses and unpasteurized milk. The bacterium can be...

  14. A rapid and reliable PCR method for genotyping the ABO blood group.

    PubMed

    O'Keefe, D S; Dobrovic, A

    1993-01-01

    The ABO blood group has been used extensively as a marker in population studies, epidemiology, and forensic work. However, until the cloning of the gene, it was not possible to determine the genotype of group A and B individuals without recourse to family studies. We have developed a method to determine the ABO genotype directly from human DNA using multiplex PCR and restriction enzyme analysis. Two PCR fragments spanning positions 258 and 700 of the cDNA sequence are amplified. The site at position 258 allows us to differentiate the O allele from the A and B alleles. The site at position 700 allows us to distinguish the B allele from the A and O alleles. Analysis at the two sites thus allows us to distinguish the three alleles. The multiplex PCR product is digested separately with four enzymes, two for each of the sites. The pair of enzymes for each site cut in a reciprocal fashion. Whereas one enzyme for each site is theoretically sufficient for genotyping, the use of complementary pairs of enzymes prevents the assignment of a false genotype as a result of false negative or partial digestion. This method is fast and reliable, does not rely on probing of blots, and should be widely applicable.

  15. Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT.

    PubMed

    Sununliganon, Laddawun; Singhatanadgit, Weerachai

    2012-01-01

    Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.

  16. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library.

    PubMed

    Nguyen, Nhung Hong; Maruset, Lalita; Uengwetwanit, Tanaporn; Mhuantong, Wuttichai; Harnpicharnchai, Piyanun; Champreda, Verawat; Tanapongpipat, Sutipa; Jirajaroenrat, Kanya; Rakshit, Sudip K; Eurwilaichitr, Lily; Pongpattanakitshote, Somchai

    2012-01-01

    Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.

  17. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  18. Production of cloned mice by somatic cell nuclear transfer.

    PubMed

    Kishigami, Satoshi; Wakayama, Sayaka; Thuan, Nguyen Van; Ohta, Hiroshi; Mizutani, Eiji; Hikichi, Takafusa; Bui, Hong-Thuy; Balbach, Sebastian; Ogura, Atsuo; Boiani, Michele; Wakayama, Teruhiko

    2006-01-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning remains < 5%. Nevertheless, the techniques have potential as important tools for future research in basic biology. We have been able to develop a stable NT method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although manipulation of the piezo unit is complex, once mastered it is of great help not only in NT experiments but also in almost all other forms of micromanipulation. In addition to this technique, embryonic stem (ES) cell lines established from somatic cell nuclei by NT can be generated relatively easily from a variety of mouse genotypes and cell types. Such NT-ES cells can be used not only for experimental models of human therapeutic cloning but also as a backup of the donor cell's genome. Our most recent protocols for mouse cloning, as described here, will allow the production of cloned mice in > or = 3 months.

  19. Using somatic-cell nuclear transfer to study aging.

    PubMed

    Kishigami, Satoshi; Lee, Ah Reum; Wakayama, Teruhiko

    2013-01-01

    In mammals, a diploid genome following fertilization of haploid cells, an egg, and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual's inevitable demise. Since it was first reported in 1997 that Dolly the sheep had been cloned, many mammalian species have been cloned successfully using somatic-cell nuclear transfer (SCNT). The success of SCNT in mammals enables us not only to reproduce offspring without germ cells, that is, to "passage" a unique diploid genome, but also to address valuable biological questions on development, nuclear reprogramming, and epigenetic memory. Successful cloning can also support epigenetic reprogramming where the aging clock is reset or reversed. Recent work using iPS cell technology has explored the practicality and led to the recapitulation of premature aging with iPSCs from progeroid laminopathies. As a result, reprogramming tools are also expected to contribute to studying biological age. However, the efficiency of animal cloning is still low in most cases and the mechanism of reprogramming in cloned embryos is still largely unclear. Here, based on recent advances, we describe an improved, more efficient mouse cloning protocol using histone deacetylase inhibitors (HDACis) and latrunculin A, which increases the success rates of producing cloned mice or establishing ES cells fivefold. This improved method of cloning will provide a strong tool to address many issues including biological aging more easily and with lower cost.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernoch, Antonin; Soubusta, Jan; Celechovska, Lucie

    We report on experimental implementation of the optimal universal asymmetric 1->2 quantum cloning machine for qubits encoded into polarization states of single photons. Our linear-optical machine performs asymmetric cloning by partially symmetrizing the input polarization state of signal photon and a blank copy idler photon prepared in a maximally mixed state. We show that the employed method of measurement of mean clone fidelities exhibits strong resilience to imperfect calibration of the relative efficiencies of single-photon detectors used in the experiment. Reliable characterization of the quantum cloner is thus possible even when precise detector calibration is difficult to achieve.

  1. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  2. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  3. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    PubMed Central

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  4. Cloning, purification, crystallization and preliminary crystallographic analysis of SecA from Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meining, Winfried, E-mail: wim@csb.ki.se; Scheuring, Johannes; Fischer, Markus

    2006-06-01

    SecA ATPase from E. faecalis has been cloned, overexpressed, purified and crystallized. Crystals belong to space group C2 and diffract to 2.4 Å resolution. The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 Å resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 Å,more » α = γ = 90.0, β = 119.1°. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.« less

  5. Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones.

    PubMed

    Shang, Bo; Feng, Zhaozhong; Li, Pin; Calatayud, Vicent

    2018-03-01

    The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60 ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper > middle > lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.

    PubMed

    Folmes, Clifford D L; Martinez-Fernandez, Almudena; Perales-Clemente, Ester; Li, Xing; McDonald, Amber; Oglesbee, Devin; Hrstka, Sybil C; Perez-Terzic, Carmen; Terzic, Andre; Nelson, Timothy J

    2013-07-01

    Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases. Copyright © 2013 AlphaMed Press.

  7. Functional heterogeneity and heritability in CHO cell populations.

    PubMed

    Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C

    2013-01-01

    In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and isolate CHO cell variants with improved functional properties in vitro. Copyright © 2012 Wiley Periodicals, Inc.

  8. Diversity of spirochetes in endodontic infections.

    PubMed

    Sakamoto, Mitsuo; Siqueira, José F; Rôças, Isabela N; Benno, Yoshimi

    2009-05-01

    The diversity of spirochetes in primary endodontic infections of teeth with chronic apical periodontitis or acute apical abscesses was investigated using 16S rRNA gene clone library analysis. The prevalences of three common cultivable oral Treponema species were also determined using species-specific nested PCR. All detected spirochetes belonged to the genus Treponema. Overall, 28 different taxa were identified from the 431 clones sequenced: 9 cultivable and validly named species, 1 cultivable as-yet-uncharacterized strain, and 18 as-yet-uncultivated phylotypes, 17 of which were novel. The large majority of clones (94%) were from cultivable named species. The numbers of Treponema species/phylotypes per selected positive sample ranged from 2 to 12. Species-specific nested PCR detected T. denticola, T. socranskii, and T. maltophilum in 59 (66%), 33 (37%), and 26 (29%) of the 90 cases of primary endodontic infections, respectively. Clone library analysis revealed diverse Treponema species/phylotypes as part of the microbiota associated with asymptomatic and symptomatic (abscess) endodontic infections. Although several as-yet-uncultivated Treponema phylotypes were disclosed, including novel taxa, cultivable named species were more abundant and frequently detected.

  9. The ethics of human reproductive cloning: when world views collide.

    PubMed

    Cohen, Cynthia B

    2004-01-01

    Two camps in bioethics with seemingly opposing world views have staked out conflicting positions regarding the ethics of human reproductive cloning. These camps do not appear to share common concepts or ways of reasoning through which to exchange views and come to a meeting of minds about uses of this technology. Yet analysis of their respective approaches to several issues surrounding reproductive cloning, such as where the ethical limits of individual reproductive choice lie, whether the use of this technology would violate human dignity, whether it would create risks to the resulting fetuses and children that would make its use intolerable, and whether it would challenge certain core social values, reveals that they are not wholly opposed to one another. Indeed, it displays that they hold certain beliefs, values, and concerns in common. Moreover, it indicates that the different world views that they each presuppose, while flawed in certain respects, do not collide in every respect, but can be reconciled in significant ways that provide fertile ground for agreement about several issues related to human reproductive cloning.

  10. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  11. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  12. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  13. Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa.

    PubMed

    Lazaros, Leandros; Kitsou, Chrysoula; Kostoulas, Charilaos; Bellou, Sofia; Hatzi, Elissavet; Ladias, Paris; Stefos, Theodoros; Markoula, Sofia; Galani, Vasiliki; Vartholomatos, Georgios; Tzavaras, Theodore; Georgiou, Ioannis

    2017-03-01

    To investigate the expression of long interspersed element (LINE) 1, human endogenous retrovirus (HERV) K10, and short interspersed element-VNTR-Alu element (SVA) retrotransposons in ejaculated human spermatozoa by means of reverse-transcription (RT) polymerase chain reaction (PCR) analysis as well as the potential incorporation of cloned human and mouse active retroelements in human sperm cell genome. Laboratory study. University research laboratories and academic hospital. Normozoospermic and oligozoospermic white men. RT-PCR analysis was performed to confirm the retrotransposon expression in human spermatozoa. Exogenous retroelements were tagged with a plasmid containing a green fluorescence (EGFP) retrotransposition cassette, and the de novo retrotransposition events were tested with the use of PCR, fluorescence-activated cell sorting analysis, and confocal microscopy. Retroelement expression in human spermatozoa, incorporation of cloned human and mouse active retroelements in human sperm genome, and de novo retrotransposition events in human spermatozoa. RT-PCR products of expressed human LINE-1, HERV-K10, and SVA retrotransposons were observed in ejaculated human sperm samples. The incubation of human spermatozoa with either retrotransposition-active human LINE-1 and HERV-K10 or mouse reverse transcriptase-deficient VL30 retrotransposons tagged with an EGFP-based retrotransposition cassette led to EGFP-positive spermatozo; 16.67% of the samples were positive for retrotransposition. The respective retrotransposition frequencies for the LINE-1, HERV-K10, and VL30 retrotransposons in the positive samples were 0.34 ± 0.13%, 0.37 ± 0.17%, and 0.30 ± 0.14% per sample of 10,000 spermatozoa. Our results show that: 1) LINE-1, HERV-K10, and SVA retrotransposons are transcriptionally expressed in human spermatozoa; 2) cloned active retroelements of human and mammalian origin can be incorporated in human sperm genome; 3) active reverse transcriptases exist in human spermatozoa; and 4) de novo retrotransposition events occur in human spermatozoa. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge

    USDA-ARS?s Scientific Manuscript database

    The present study aimed to identify organisms with ANAMMOX activity in a reactor maintained in a laboratory. Molecular methods as fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) and cloning of 16S-rDNA genes probing for Planctomycetes were performed. Seventeen clones were ...

  15. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    USDA-ARS?s Scientific Manuscript database

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  16. DNA book.

    PubMed

    Kawai, Jun; Hayashizaki, Yoshihide

    2003-06-01

    We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and delivery, such as high temperatures and humidity. Almost all genes (95%-100% of randomly selected RIKEN mouse cDNA clones) were recovered successfully by use of PCR. Readers can start their experiments after a 2-h PCR amplification without waiting for the delivery of DNA clones. The DNA Book thus provides a novel method for delivering DNA in a timely and cost-effective manner. A sample DNA sheet (carrying RIKEN mouse cDNA clones encoding genes of enzymes for the TCA cycle) is included in this issue for field-testing. We would greatly appreciate it if readers could attempt to extract DNA and report the results and whether the DNA sheet was shipped to readers in good condition.

  17. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  18. Variation in biological properties of cauliflower mosaic virus clones.

    PubMed

    al-Kaff, N; Covey, S N

    1994-11-01

    Infectious clones were prepared from virion DNA of three cauliflower mosaic virus (CaMV) isolates, 11/3, Xinjiang (XJ), and Aust, to investigate pathogenic variation in virus populations. Of 10 infectious clones obtained for isolate 11/3, four pathotypes were identified, each producing symptoms in turnip that differed from those of the 11/3 wild-type. Virus from two clonal groups of 11/3 was transmissible by aphids whereas that from two others was not. Of the five infectious clones obtained from isolate XJ, two groups were identified, one of which differed symptomatically from the wild-type. Only one infectious clone was obtained from isolate Aust and this had properties similar to the wild-type. Restriction enzyme polymorphisms were found in some clonal groups and these correlated with symptoms. Other groups with different pathogenic properties could not be distinguished apart by restriction site polymorphisms. Further variation was observed in the nucleotide sequences of gene II (coding for aphid transmission factor) from these viruses as compared with other CaMV isolates. In the aphid non-transmissible clones of isolate 11/3, one had a Gly to Arg mutation in gene II similar to that of other non-deleted non-transmissible CaMV isolates. The second had a 322 bp deletion at the site of a small direct repeat similar to that of isolate CM4-184 although occurring in a different position. The gene II deletion of isolate 11/3 produced a frame-shift that separated genes II and III by 60 bp. Most CaMV clones studied remained biologically stable producing similar symptoms during subsequent passages. However, one clone (11/3-7) produced two new biotypes during its first passage suggesting that it was relatively unstable. Our results show that wild-type populations of CaMV contain a range of infectious genome variants with contrasting biological properties and differing stability. We suggest that a variety of significant viral phenotypic changes can occur during each infection cycle resulting from relatively small genome changes.

  19. DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells.

    PubMed Central

    Topal, M D; Baker, M S

    1982-01-01

    Synchronized C3H/10T1/2 clone 8 cells were treated in vitro with a nontoxic dose of N-methyl-N-nitrosourea during their S phase. Chromatographic isolation of the deoxyribonucleotide DNA precursor pool and measurement of the precursor content per cell showed that a nucleic acid residue in the precursor pool is 190-13,000 times more susceptible to methylation than a residue in the DNA duplex, depending on the site of methylation. This conclusion comes from measurements indicating that, for example, the N-1 position of adenine in dATP is 6.3 times more methylated than the same position in the DNA, even though the adenine content of the pool is only a fraction (0.0005) of the adenine content of the DNA helix. The comparative susceptibility between pool and DNA was found to vary with the site of methylation in the order the N-1 position of adenine greater than phosphate greater than the N-3 position of adenine greater than the O6 position of guanine greater than the N-7 position of guanine. The significance of these results for chemical mutagenesis and carcinogenesis is discussed. PMID:6954535

  20. Fluorescence-based recombination assay for sensitive and specific detection of genotoxic carcinogens in human cells.

    PubMed

    Ireno, Ivanildce C; Baumann, Cindy; Stöber, Regina; Hengstler, Jan G; Wiesmüller, Lisa

    2014-05-01

    In vitro genotoxicity tests are known to suffer from several shortcomings, mammalian cell-based assays, in particular, from low specificities. Following a novel concept of genotoxicity detection, we developed a fluorescence-based method in living human cells. The assay quantifies DNA recombination events triggered by DNA double-strand breaks and damage-induced replication fork stalling predicted to detect a broad spectrum of genotoxic modes of action. To maximize sensitivities, we engineered a DNA substrate encompassing a chemoresponsive element from the human genome. Using this substrate, we screened various human tumor and non-transformed cell types differing in the DNA damage response, which revealed that detection of genotoxic carcinogens was independent of the p53 status but abrogated by apoptosis. Cell types enabling robust and sensitive genotoxicity detection were selected for the generation of reporter clones with chromosomally integrated DNA recombination substrate. Reporter cell lines were scrutinized with 21 compounds, stratified into five sets according to the established categories for identification of carcinogenic compounds: genotoxic carcinogens ("true positives"), non-genotoxic carcinogens, compounds without genotoxic or carcinogenic effect ("true negatives") and non-carcinogenic compounds, which have been reported to induce chromosomal aberrations or mutations in mammalian cell-based assays ("false positives"). Our results document detection of genotoxic carcinogens in independent cell clones and at levels of cellular toxicities <60 % with a sensitivity of >85 %, specificity of ≥90 % and detection of false-positive compounds <17 %. Importantly, through testing cyclophosphamide in combination with primary hepatocyte cultures, we additionally provide proof-of-concept for the identification of carcinogens requiring metabolic activation using this novel assay system.

  1. Characteristics of escape mutations from occult hepatitis B virus infected patients with hematological malignancies in South Egypt.

    PubMed

    Elkady, Abeer; Iijima, Sayuki; Aboulfotuh, Sahar; Mostafa Ali, Elsayed; Sayed, Douaa; Abdel-Aziz, Nashwa M; Ali, Amany M; Murakami, Shuko; Isogawa, Masanori; Tanaka, Yasuhito

    2017-03-28

    To investigate the prevalence and virological characteristics of occult hepatitis B virus (HBV) infections in patients with hematological malignancies in South Egypt. Serum samples were collected from 165 patients with hematological malignancies to monitor titers of HBV DNA, hepatitis B surface antigen (HBsAg), and antibodies to HBV core (anti-HBc) and surface antigens. Serum samples negative for HBsAg and positive for anti-HBc were subjected to nucleic acid extraction and HBV DNA detection by real-time polymerase chain reaction. DNA sequences spanning the S region were analyzed in cases with occult HBV infection. In vitro comparative study of constructed 1.24-fold wild type and S protein mutant HBV genotype D clones was further performed. HBV DNA was detected in 23 (42.6%) of 54 patients with hematological malignancies who were HBsAg negative, but anti-HBc positive, suggesting the presence of occult HBV infection. The complete HBV genome was retrieved from 6 occult HBV patients, and P120T and S143L were detected in 3 and 2 cases, respectively. Site directed mutagenesis was done to produce 1.24-fold genotype D clones with amino acid mutations T120 and L143. The in vitro analyses revealed that a lower level of extracellular HBsAg was detected by chemiluminescence enzyme immunoassay (CLEIA) with the clone containing T120 mutation, compared with the wild type or the clone with S143L mutation despite the similar levels of extracellular and intracellular HBsAg detected by Western blot. Southern blot experiments showed that the levels of intracellular HBV DNA were not different between these clones. Occult HBV infection is common in patients with hematological malignancies and associated with P120T and S143L mutations. 120T mutation impairs the detection of HBsAg by CLEIA.

  2. Targeted disruption of the murine Facc gene: Towards the establishment of a mouse model for Fanconi anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M.; Auerbach, W.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by bone marrow failure, congenital malformations and predisposition to malignancies. The gene responsible for the defect in FA group C has been cloned and designated the Fanconi Anemia Complementation Group C gene (FACC). A murine cDNA for this gene (Facc) was also cloned. Here we report our progress in the establishment of a mouse model for FA. The mouse Facc cDNA was used as probe to screen a genomic library of mouse strain 129. More than twenty positive clones were isolated. Three of them were mapped and found to be overlappingmore » clones, encompassing the genomic region from exon 8 to the end of the 3{prime} UTR of the mouse cDNA. A targeting vector was constructed using the most 5{prime} mouse genomic sequence available. The end result of the homologous recombination is that exon 8 is deleted and the neo gene is inserted. The last exon, exon 14, is essential for the complementing function of the FACC gene product; the disruption in the middle of the murine Facc gene should render this locus biologically inactive. This targeting vector was linearized and electroporated into R1 embryonic stem (ES) cells which were derived from the 129 mouse. Of 102 clones screened, 19 positive cell lines were identified. Four targeted cell lines have been used to produce chimeric mice. 129-derived ES cells were aggregated ex vivo into the morulas derived from CD1 mice and then implanted into foster mothers. 22 chimeras have been obtained. Moderately and strongly chimeric mice have been bred to test for germline transmission. Progeny with the expected coat color derived from 2 chimeras are currently being examined to confirm transmission of the targeted allele.« less

  3. Nuclear transfer to prevent mitochondrial DNA disorders: revisiting the debate on reproductive cloning.

    PubMed

    Bredenoord, A L; Dondorp, W; Pennings, G; De Wert, G

    2011-02-01

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount to reproductive cloning, one theoretical variant, blastomere transfer does. This seems the most challenging both technically and ethically. It is prohibited by many jurisdictions and also the scientific community seems to avoid it. Nevertheless, this paper examines the moral acceptability of blastomere transfer as a method to prevent mtDNA disorders. The reason for doing so is that most objections against reproductive cloning refer to reproductive adult cloning, while blastomere transfer would amount to reproductive embryo cloning. After clarifying this conceptual difference, this paper examines whether the main non-safety objections brought forward against reproductive cloning also apply in the context of blastomere transfer. The conclusion is that if this variant were to become safe and effective, dismissing it because it would involve reproductive cloning is unjustified. Nevertheless, as it may lead to more complex ethical appraisals than the other variants, researchers should initially focus on the development of the other types of nuclear transfer to prevent mtDNA disorders. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  5. Ribosomal Binding Site Switching: An Effective Strategy for High-Throughput Cloning Constructions

    PubMed Central

    Li, Yunlong; Zhang, Yong; Lu, Pei; Rayner, Simon; Chen, Shiyun

    2012-01-01

    Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions. PMID:23185557

  6. How to improve the success rate of mouse cloning technology.

    PubMed

    Thuan, Nguyen Van; Kishigami, Satoshi; Wakayama, Teruhiko

    2010-02-01

    It has now been 13 years since the first cloned mammal Dolly the sheep was generated from somatic cells using nuclear transfer (SCNT). Since then, this technique has been considered an important tool not only for animal reproduction but also for regenerative medicine. However, the success rate is still very low and the mechanisms involved in genomic reprogramming are not yet clear. Moreover, the NT technique requires donated fresh oocyte, which raises ethical problems for production of human cloned embryo. For this reason, the use of induced pluripotent stem cells for genomic reprogramming and for regenerative medicine is currently a hot topic in this field. However, we believe that the NT approach remains the only valid way for the study of reproduction and basic biology. For example, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, and it can generate offspring from a single cell or even a frozen dead body. Thanks to much hard work by many groups, cloning success rates are increasing slightly year by year, and NT cloning is now becoming a more applicable method. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.

  7. Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost

    PubMed Central

    Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred

    2016-01-01

    Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895

  8. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic traits characteristic of high-performance clones and enables informed decisions on which clones provide a good match for a particular process platform. The proposed approach also provides a mechanistic link between observed clone phenotype, process setup, and feeding regimes, and thereby offers concrete starting points for subsequent process optimization. Biotechnol. Bioeng. 2016;113: 2005-2019. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Progressive myoclonus epilepsy EPM1 locus maps to a 175-kb interval in distal 21q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virtaneva, K.; Miao, J.; Traeskelin, A.L.

    1996-06-01

    The EPM1 locus responsible for progressive myoclonus epilepsy of Unverricht-Lundborg type (MIM 254800) maps to a region in distal chromosome 21q where positional cloning has been hampered by the lack of physical and genetic mapping resolution. We here report the use of a recently constituted contig of cosmid, BAC, and P1 clones that allowed new polymorphic markers to be positioned. These were typed in 53 unrelated disease families from an isolated Finnish population in which a putative single ancestral EPM1 mutation has segregated for an estimated 100 generations. By thus exploiting historical recombinations in haplotype analysis, EPM1 could be assignedmore » to the {approximately}175-kb interval between the markers D21S2040 and D21S1259. 26 refs., 2 figs., 4 tabs.« less

  10. Immunological Evidence for the Existence of a Carrier Protein for Sucrose Transport in Tonoplast Vesicles from Red Beet (Beta vulgaris L.) Root Storage Tissue.

    PubMed Central

    Getz, H. P.; Grosclaude, J.; Kurkdjian, A.; Lelievre, F.; Maretzki, A.; Guern, J.

    1993-01-01

    Monoclonal antibodies were raised in mice against a highly purified tonoplast fraction from isolated red beet (Beta vulgaris L. ssp. conditiva) root vacuoles. Positive hybridoma clones and sub-clones were identified by prescreening using an enzyme-linked immunosorbent assay (ELISA) and by postscreening using a functional assay. This functional assay consisted of testing the impact of hybridoma supernatants and antibody-containing ascites fluids on basal and ATP-stimulated sugar uptake in vacuoles, isolated from protoplasts, as well as in tonoplast vesicles, prepared from tissue homogenates of red beet roots. Antibodies from four clones were particularly positive in ELISAs and they inhibited sucrose uptake significantly. These antibodies were specific inhibitors of sucrose transport, but they exhibited relatively low membrane and species specificity since uptake into red beet root protoplasts and sugarcane tonoplast vesicles was inhibited as well. Fast protein liquid chromatography assisted size exclusion chromatography on Superose 6 columns yielded two major peaks in the 55 to 65-kD regions and in the 110- to 130-kD regions of solubilized proteins from red beet root tonoplasts, which reacted positively in immunoglobulin-M(IgM)-specific ELISAs with anti-sugarcane tonoplast monoclonal IgM antibodies. Only reconstituted proteoliposomes containing polypeptides from the 55- to 65-kD band took up [14C]-sucrose with linear rates for 2 min, suggesting that this fraction contains the tonoplast sucrose carrier. PMID:12231863

  11. Evaluation of the Helicobacteraceae in the oral cavity of dogs.

    PubMed

    Craven, Melanie; Recordati, Camilla; Gualdi, Valentina; Pengo, Graziano; Luini, Mario; Scanziani, Eugenio; Simpson, Kenneth W

    2011-11-01

    To determine the Helicobacter spp present in the oral cavity of dogs and the relationship of those organisms with gastric Helicobacter spp to better define the potential for dog-human and dog-dog transmission. Saliva and dental plaque from 28 dogs and gastric biopsy specimens from a subset of 8 dogs. PCR-based screening for Helicobacter spp was conducted on samples obtained from the oral cavity of 28 dogs. Comparative analysis was conducted on Helicobacteraceae 16S rDNA clone libraries from the oral cavity and stomach of a subset of 8 dogs (5 vomiting and 3 healthy) that had positive PCR results for Helicobacter spp. Helicobacteraceae DNA was identified in the oral cavity of 24 of 28 dogs. Analysis of cloned 16S rDNA amplicons from 8 dogs revealed that Wolinella spp was the most common (8/8 dogs) and abundant (52/57 [91%] clones) member of the Helicobacteraceae family in the oral cavity. Only 2 of 8 dogs harbored Helicobacter spp in the oral cavity, and 1 of those was coinfected with Helicobacter heilmannii and Helicobacter felis in samples obtained from the stomach and saliva. Evaluation of oral cavity DNA with Wolinella-specific PCR primers yielded positive results for 16 of 20 other dogs (24/28 samples were positive for Wolinella spp). Wolinella spp rather than Helicobacter spp were the predominant Helicobacteraceae in the oral cavity of dogs. The oral cavity of dogs was apparently not a zoonotically important reservoir of Helicobacter spp that were non-Helicobacter pylori organisms.

  12. [The Spectrum of Mutations in Genes Associated with Resistance to Rifampicin, Isoniazid, and Fluoroquinolones in the Clinical Strains of M. tuberculosis Reflects the Transmissibility of Mutant Clones].

    PubMed

    Ergeshov, A; Andreevskaya, S N; Larionova, E E; Smirnova, T G; Chernousova, L N

    2017-01-01

    To study the transmissibility of drug resistant mutant clones, M. tuberculosis samples were isolated from the patients of the clinical department and the polyclinic of the Central TB Research Institute (n = 1455) for 2011-2014. A number of clones were phenotypically resistant to rifampicin (n = 829), isoniazid (n = 968), and fluoroquinolones (n = 220). We have detected 21 resistance-associated variants in eight codons of rpoB, six variants in three codons of katG, three variants in two positions of inhA, four variants in four positions of ahpC, and nine variants in five codons of gyrA, which were represented in the analyzed samples with varied frequencies. Most common mutations were rpoB 531 Ser→Leu (77.93%), katG 315 (Ser→Thr) (94.11%), and gyrA 94 (Asp→Gly) (45.45%). We found that the mutations at position 15 of inhA (C→T) (frequency of 25.72%) are commonly associated with katG 315 (Ser→Thr). This association of two DNA variants may arise due to the double selection by coexposure of M. tuberculosis to isoniazid and ethionamide. The high transmissibility of mutated strains was observed, which may be explained by the minimal influence of the resistance determinants on strain viability. The high transmissibility of resistant variants may also explain the large populational prevalence of drug-resistant TB strains.

  13. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end ofmore » the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.« less

  14. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the ..beta..-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonalmore » monospecific antibody. Single-stranded (/sup 32/P)labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting.« less

  15. [Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library].

    PubMed

    Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli

    2010-07-01

    To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.

  16. Screening and identification of RhD antigen mimic epitopes from a phage display random peptide library for the serodiagnosis of haemolytic disease of the foetus and newborn.

    PubMed

    Wang, Jiao; Song, Jingjing; Zhou, Shuimei; Fu, Yourong; Bailey, Jeffrey A; Shen, Changxin

    2018-01-16

    Identification of RhD antigen epitopes is a key component in understanding the pathogenesis of haemolytic disease of the foetus and newborn. Research has indicated that phage display libraries are useful tools for identifying novel mimic epitopes (mimotopes) which may help to determine antigen specificity. We selected the mimotopes of blood group RhD antigen by affinity panning a phage display library using monoclonal anti-D. After three rounds of biopanning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA) and then sent for sequencing and peptides synthesis. Next, competitive ELISA and erythrocyte haemagglutination inhibition tests were carried out to confirm the inhibitory activity of the synthetic peptide. To evaluate the diagnostic performance of the synthetic peptide, a diagnostic ELISA was examined. Fourteen of 35 phage clones that were chosen randomly from the titering plate were considered to be positive. Following DNA sequencing and translation, 11 phage clones were found to represent the same peptide - RMKMLMMLMRRK (P4) - whereas each of the other three clones represented a unique peptide. Through the competitive ELISA and erythrocyte haemagglutination inhibition tests, the peptide (P4) was verified to have the ability to mimic the RhD antigen. The diagnostic ELISA for P4 proved to be sensitive (82.61%) and specific (88.57%). This study reveals that the P4 peptide can mimic RhD antigen and paves the way for the development of promising targeted diagnostic and therapeutic platforms for haemolytic disease of the foetus and newborn.

  17. [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471].

    PubMed

    Ding, Linxian; Zhang, Pinghua; Hong, Huachang; Lin, Hongjun; Yokota, Akira

    2012-01-01

    The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria. Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3). Then the pET15b plasmid expression vector was used to confirm the purification of the recombinant proteins via SDS-PAGE. The VBNC state cells from the high-GC Gram-positive bacteria, Rhodococcus sp. DS471, were used to confirm the promotion and recovery of growth capacity. Rhodococcus sp. DS471 were isolated from soil and closely related to Micrococcus luteus IAM 14879. The gene sequences confirmed that the rpf gene from Micrococcus luteus IAM 14879 that was expressed in Escherichia coli, was 672 bp. SDS-PAGE analysis showed that the recombinant Rpf protein was obtained successfully, and further studies showed it capable of promoting the recovery of the VBNC state by about 100-fold relative to the control. Rpf of Micrococus luteus IAM 14879 can be successfully cloned and expressed in Escherichia coli and shows a strong ability to promote the recovery of the VBNC state of cells of Rhodococcus sp. DS471.

  18. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    PubMed

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  19. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    PubMed

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  20. Enhanced surveillance of invasive listeriosis in the Lombardy region, Italy, in the years 2006-2010 reveals major clones and an increase in serotype 1/2a

    PubMed Central

    2013-01-01

    Background Invasive listeriosis is a rare, life-threatening foodborne disease. Lombardy, an Italian region accounting for 16% of the total population, reported 55% of all listeriosis cases in the years 2006-2010. The aim of our study was to provide a snapshot of listeriosis epidemiology in this region after the implementation of a voluntary laboratory-based surveillance system. Methods We characterized by serotyping, pulsed-field gel electrophoresis, multilocus sequence typing and detection of epidemic clone markers, 134 isolates from 132 listeriosis cases, including 15 pregnancy-related cases, occurring in the years 2006-2010 in Lombardy. Demographic and clinical characteristics of cases have also been described. Results The mean age of non pregnancy-associated cases was 64.7 years, with 55.9% of cases being older than 65 years. Cases having no underlying medical conditions accounted for 11.6%. The all-cause fatality rate of 83 cases with a known survival outcome was 25.3%. Serotypes 1/2a and 4b comprised 52.2% and 38.8% of isolates, respectively. Seventy-three AscI pulsotypes and 25 sequence types assigned to 23 clonal complexes were recognized. Moreover, 53 (39.5%) isolates tested positive for the epidemic clone markers. Twelve molecular subtype clusters including at least three isolates were detected, with cluster 11 (1/2a/ST38) including 31 isolates identified during the entire study period. No outbreaks were notified to public health authorities during this period. Conclusions The findings of our study proved that epidemiology of listeriosis in Lombardy is characterized by a high prevalence of major clones and the increasing role of serotype 1/2a. Molecular subtyping is an essential tool in the epidemiology and surveillance of listeriosis. Rapid molecular cluster detection could alert about putative outbreaks, thus increasing the chance of detecting and inactivating routes of transmission. PMID:23530941

  1. The effect of sampling techniques used in the multiconfigurational Ehrenfest method

    NASA Astrophysics Data System (ADS)

    Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.

    2018-05-01

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  2. The effect of sampling techniques used in the multiconfigurational Ehrenfest method.

    PubMed

    Symonds, C; Kattirtzi, J A; Shalashilin, D V

    2018-05-14

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  3. Date of shoot collection, genotype, and original shoot position affect early rooting of dormant hardwood cuttings of Populus

    Treesearch

    R. S., Jr. Zalesny; A.H. Wiese

    2006-01-01

    Identifying superior combinations among date of dormant- season shoot collection, genotype, and original shoot position can increase the rooting potential of Populus cuttings. Thus, the objectives of our study were to: 1) evaluate variation among clones in early rooting from hardwood cuttings processed every three weeks from shoots collected...

  4. Isoforms of the major peanut allergen Ara h 2: IgE binding in children with peanut allergy.

    PubMed

    Hales, Belinda J; Bosco, Anthony; Mills, Kristina L; Hazell, Lee A; Loh, Richard; Holt, Patrick G; Thomas, Wayne R

    2004-10-01

    The major peanut allergen Ara h 2 consists of two isoforms, namely Ara h 2.0101 and Ara h 2.0201. The recently identified Ara h 2.0201 isoform contains an extra 12 amino acids including an extra copy of the reported immunodominant epitope DPYSPS. This study aimed to evaluate the IgE binding of the two Ara h 2 isoforms. Ten clones of Ara h 2 were sequenced to assess the relative frequency of the Ara h 2 isoforms and to identify whether there was further variation in the Ara h 2 sequence. IgE binding to Ara h 2.0101 and Ara h 2.0201 was measured for 70 peanut-allergic children using an IgE DELFIA assay to quantitate specific IgE binding. A competition assay was used to measure whether Ara h 2.0201 contained IgE epitopes other than those found for Ara h 2.0101. The original Ara h 2.0101 sequence was found for 6/10 clones and Ara h 2.0201 was found for 2/10 clones. Ara h 2.0201 had the expected insertion of 12 amino acids as well as substitutions at positions 40 (40G) and 142 (142E). Two new isoforms were identified as different polymorphisms of position 142. One Ara h 2.01 clone (Ara h 2.0102) contained 142E and one Ara h 2.02 clone (Ara h 2.0202) contained 142D. A polymorphism that was previously identified by other investigators at position 77 (77Q or 77R) was not found for any of the 10 sequences. Although the level of IgE binding to Ara h 2.0201 of individual patients was frequently higher than the binding to Ara h 2.0101 (p < 0.01), there was a strong correlation in binding to both isoforms (r = 0.987, p < 0.0001) and when analyzed as a group the means were similar. Ara h 2.0101 was not as efficient at blocking reactivity to Ara h 2.0201 indicating there is an additional IgE specificity for the Ara h 2.0201 isoform. Ara h 2.0201 has similar but higher IgE binding than the originally sequenced Ara h 2.0101 isoform and contains other IgE specificities.

  5. Base-Calling Algorithm with Vocabulary (BCV) Method for Analyzing Population Sequencing Chromatograms

    PubMed Central

    Fantin, Yuri S.; Neverov, Alexey D.; Favorov, Alexander V.; Alvarez-Figueroa, Maria V.; Braslavskaya, Svetlana I.; Gordukova, Maria A.; Karandashova, Inga V.; Kuleshov, Konstantin V.; Myznikova, Anna I.; Polishchuk, Maya S.; Reshetov, Denis A.; Voiciehovskaya, Yana A.; Mironov, Andrei A.; Chulanov, Vladimir P.

    2013-01-01

    Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing. PMID:23382983

  6. Significant expression of thyroid transcription factor-1 in pulmonary squamous cell carcinoma detected by SPT24 monoclonal antibody and CSA-II system.

    PubMed

    Kashima, Kenji; Hashimoto, Hisashi; Nishida, Haruto; Arakane, Motoki; Yada, Naomi; Daa, Tsutomu; Yokoyama, Shigeo

    2014-01-01

    In contrast to the usefulness of thyroid transcription factor-1 (TTF-1) in distinguishing primary adenocarcinoma of the lung from metastatic lesions, TTF-1 expression in pulmonary squamous cell carcinoma is reported to be at low level and not a suitable immunohistochemical marker. We hypothesized that the highly sensitive detection system, CSA-II, can visualize even faint expression of TTF-1 in pulmonary squamous cell carcinoma. In this study, 2 commercially available clones of TTF-1 monoclonal antibody, 8G7G3/1 and SPT24, were used for staining 38 cases of pulmonary squamous cell carcinoma, in combination with the CSA-II and the conventional detection system, EnVision. The combined use of the 8G7G3/1 clone with EnVision and CSA-II showed a positive reaction in only 1 and 4 cases, respectively. The use of SPT24 clone showed positive staining in 5 cases with EnVision and in 20 of 38 cases (52.6%) with the CSA-II. Interestingly, positive staining by the SPT24-CSA-II technique of samples from tissue blocks preserved for <2 years was 73.6% compared with only 31.5% in those preserved for >2 years. In addition, a 6-month preservation of the cut sections resulted in stain fading and decreased positivity (50%), compared with freshly cut sections. We conclude that the use of the SPT24 monoclonal antibody with the CSA-II system can detect even weak expression of TTF-1 in pulmonary squamous cell carcinoma. This staining technique can potentially allow the discrimination of primary squamous cell carcinoma of the lung from metastatic lesions, especially in freshly prepared paraffin sections.

  7. Bacterial diversity associated with the rotifer Brachionus plicatilis sp. complex determined by culture-dependent and -independent methods.

    PubMed

    Ishino, Ryota; Iehata, Shunpei; Nakano, Miyo; Tanaka, Reiji; Yoshimatsu, Takao; Maeda, Hiroto

    2012-03-01

    The bacterial communities associated with rotifers (Brachionus plicatilis sp. complex) and their culture water were determined using culture-dependent and -independent methods (16S rRNA gene clone library). The bacterial communities determined by the culture-independent method were more diverse than those determined by the culture-dependent method. Although the culture-dependent method indicated the bacterial community of rotifers was relatively similar to that of the culture water, 16S rRNA gene clone library analyses revealed a great difference between the two microbiotas. Our results suggest that most bacteria associated with rotifers are not easily cultured using conventional methods, and that the microbiota of rotifers do not correspond with that of the culture water completely.

  8. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    PubMed

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.

  9. Reproductive cloning, genetic engineering and the autonomy of the child: the moral agent and the open future.

    PubMed

    Mameli, M

    2007-02-01

    Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans.

  10. Reproductive cloning, genetic engineering and the autonomy of the child: the moral agent and the open future

    PubMed Central

    Mameli, M

    2007-01-01

    Some authors have argued that the human use of reproductive cloning and genetic engineering should be prohibited because these biotechnologies would undermine the autonomy of the resulting child. In this paper, two versions of this view are discussed. According to the first version, the autonomy of cloned and genetically engineered people would be undermined because knowledge of the method by which these people have been conceived would make them unable to assume full responsibility for their actions. According to the second version, these biotechnologies would undermine autonomy by violating these people's right to an open future. There is no evidence to show that people conceived through cloning and genetic engineering would inevitably or even in general be unable to assume responsibility for their actions; there is also no evidence for the claim that cloning and genetic engineering would inevitably or even in general rob the child of the possibility to choose from a sufficiently large array of life plans. PMID:17264194

  11. Birth of cloned mice from vaginal smear cells after somatic cell nuclear transfer.

    PubMed

    Kuwayama, Hiroki; Tanabe, Yoshiaki; Wakayama, Teruhiko; Kishigami, Satoshi

    2017-05-01

    Less invasive methods for donor cell collection will facilitate reproduction of wild animals using somatic-cell nuclear transfer. Stages of the estrous cycle in mice have long been studies using somatic cells that can be collected from vaginal walls using cotton tipped swabs in a relatively non-invasive manner. In this study, we examined the feasibility of these cells as sources of nuclei for somatic-cell cloning using nuclear transfer. Estrous cycles generally comprise proestrus, estrus, metestrus, and diestrus stages. In the present experiments, more than 60% of cells were nucleated in vaginal smears from all but the estrus stage. However, after somatic-cell nuclear transfer of cells from proestrus, metestrus, and diestrus stages, 66%, 50%, and 72% of cloned embryos developed to the morula/blastocyst, and cloned female mouse birth rates after embryo transfer were 1.5%, 0.3%, and 1%, respectively. These results show that noninvasively collected vaginal smears contain somatic cells that can be used to clone female mice. Copyright © 2017. Published by Elsevier Inc.

  12. Preimplantation development of somatic cell cloned embryos in the common marmoset (Callithrix jacchus).

    PubMed

    Sotomaru, Yusuke; Hirakawa, Reiko; Shimada, Akiko; Shiozawa, Seiji; Sugawara, Ayako; Oiwa, Ryo; Nobukiyo, Asako; Okano, Hideyuki; Tamaoki, Norikazu; Nomura, Tatsuji; Hiyama, Eiso; Sasaki, Erika

    2009-12-01

    The somatic cell nuclear transfer technique has been applied to various mammals to produce cloned animals; however, a standardized method is not applicable to all species. We aimed here to develop optimum procedures for somatic cell cloning in nonhuman primates, using common marmosets. First, we confirmed that parthenogenetic activation of in vitro matured oocytes was successfully induced by electrical stimulation (three cycles of 150 V/mm, 50 microsec x 2, 20 min intervals), and this condition was applied to the egg activation procedure in the subsequent experiments. Next, nuclear transfer to recipient enucleated oocytes was performed 1 h before, immediately after, or 1 h after egg activation treatment. The highest developmental rate was observed when nuclear transfer was performed 1 h before activation, but none of the cloned embryos developed beyond the eight-cell stage. To investigate the causes of the low developmental potential of cloned embryos, a study was performed to determine whether the presence of metaphase II (MII) chromosome in recipient ooplasm has an effect on developmental potential. As a result, only tetraploid cloned embryos produced by transferring a donor cell into a recipient bearing the MII chromosome developed into blastocysts (66.7%). In contrast, neither parthenogenetic embryos nor cloned embryos (whether diploid or tetraploid) produced using enucleated oocytes developed past the eight-cell stage. These results suggest that MII chromosome, or cytoplasm proximal to the MII chromosome, plays a major role in the development of cloned embryos in common marmosets.

  13. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  14. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  15. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    PubMed

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S.

  16. Nitrous Oxide Reductase (nosZ) Gene Fragments Differ between Native and Cultivated Michigan Soils

    PubMed Central

    Stres, Blaž; Mahne, Ivan; Avguštin, Gorazd; Tiedje, James M.

    2004-01-01

    The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are α-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in γ-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (Dmean = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (Dmean = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community. PMID:14711656

  17. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  18. Sequence Typing Confirms that a Predominant Listeria monocytogenes Clone Caused Human Listeriosis Cases and Outbreaks in Canada from 1988 to 2010

    PubMed Central

    Reimer, Aleisha; Verghese, Bindhu; Lok, Mei; Ziegler, Jennifer; Farber, Jeffrey; Pagotto, Franco; Graham, Morag; Nadon, Celine A.

    2012-01-01

    Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsed-field gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades. PMID:22337989

  19. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded Antigens for Rapid Diagnosis and Vaccine Development

    DTIC Science & Technology

    1986-11-26

    cloning at the SalI site of pUCI8 vector DNA, iii) by treatment with EcoRl DNA methylase, ligation to EcoRI and cloning at the EcoRl site of pUCI8...cDNA to synthetic Sail linker 10 2.3.10 Treatment of DEN-2 cDNA with EcoRi methylase, followed 10 by ligation to EcoRI linkers and digestion with...picked by the mini plasmid preparation method as described in Maniatis et al. (1982). The procedure followed involved briefly treatment with a

  20. Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning.

    PubMed

    Kurome, Mayuko; Fujimura, Tatsuya; Murakami, Hiroshi; Takahagi, Yoichi; Wako, Naohiro; Ochiai, Takashi; Miyazaki, Koji; Nagashima, Hiroshi

    2003-01-01

    This paper methodologically compares the electro-fusion (EF) and intracytoplasmic injection (ICI) methods, as well as simultaneous fusion/activation (SA) and delayed activation (DA), in somatic nuclear transfer in pigs using fetal fibroblast cells. Comparison of the remodeling pattern of donor nuclei after nuclear transfer by ICI or EF showed that a high rate (80-100%) of premature chromosome condensation occurred in both cases whether or not Ca2+ was present in the fusion medium. Formation of pseudo-pronuclei tended to be lower for nuclear transfer performed by the ICI method (65% vs. 85-97%, p < 0.05). In vitro developmental potential of nuclear transfer embryos reconstructed with IVM oocytes using the EF method was higher than that of those produced by the ICI method (blastocyst formation: 19 vs. 5%, p < 0.05), and it was not improved using in vivo-matured oocytes as recipient cytoplasts. Embryos produced using SA protocol developed to blastocysts with the same degree of efficiency as those produced under the DA protocol (11 vs. 12%). Use of the EF method in conjunction with SA was shown to be an efficient method for producing cloned pigs based on producing a cloned normal pig fetus. However, subtle differences in nuclear remodeling patterns between the SA and DA protocols may imply variations in their nuclear reprogramming efficiency.

  1. Asymmetric single-strand polymorphism: an accurate and cost-effective method to amplify and sequence allelic variants

    USDA-ARS?s Scientific Manuscript database

    We needed to obtain an alternative to conventional cloning to generate high-quality DNA sequences from a variety of nuclear orthologs for phylogenetic studies in potato, to save time and money and to avoid problems typically encountered in cloning. We tested a variety of SSCP protocols to include pu...

  2. Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus.

    PubMed Central

    Giardina, P; Cannio, R; Martirani, L; Marzullo, L; Palmieri, G; Sannia, G

    1995-01-01

    The gene (pox1) encoding a phenol oxidase from Pleurotus ostreatus, a lignin-degrading basidiomycete, was cloned and sequenced, and the corresponding pox1 cDNA was also synthesized and sequenced. The isolated gene consists of 2,592 bp, with the coding sequence being interrupted by 19 introns and flanked by an upstream region in which putative CAAT and TATA consensus sequences could be identified at positions -174 and -84, respectively. The isolation of a second cDNA (pox2 cDNA), showing 84% similarity, and of the corresponding truncated genomic clones demonstrated the existence of a multigene family coding for isoforms of laccase in P. ostreatus. PCR amplifications of specific regions on the DNA of isolated monokaryons proved that the two genes are not allelic forms. The POX1 amino acid sequence deduced was compared with those of other known laccases from different fungi. PMID:7793961

  3. Molecular characterization and expression of microbial inulinase genes.

    PubMed

    Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming

    2013-05-01

    Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.

  4. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater

    PubMed Central

    Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911

  5. Urushiol (poison ivy)-triggered suppressor T cell clone generated from peripheral blood.

    PubMed Central

    Kalish, R S; Morimoto, C

    1988-01-01

    Allergic contact dermatitis to Toxicodendron radicans (poison ivy) is mediated by the hapten urushiol. An urushiol-specific, interleukin 2 (IL-2)-dependent T cell clone (RLB9-7) was generated from the peripheral blood of a patient with a history of allergic contact dermatitis to T. radicans. This clone proliferated specifically to both leaf extract and pure urushiol. Although the clone had the phenotype CD3+CD4+CD8+, proliferation to antigen was blocked by anti-CD8 and anti-HLA-A, B, C, but not by anti-CD4, suggesting that CD4 was not functionally associated with the T cell receptor. Furthermore, studies with antigen-presenting cells from MHC-typed donors indicated that the clone was MHC class 1 restricted. RLB9-7 was WT31 positive, indicating it bears the alpha beta T cell receptor. The clone lacked significant natural killer cell activity and produced only low levels of IL-2 or gamma-interferon upon antigen stimulation. Addition of RLB9-7 to autologous peripheral blood mononuclear cells in the presence of urushiol inhibited the pokeweed mitogen-driven IgG synthesis. This suppression was resistant to irradiation (2,000 rad) and was not seen when RLB9-7 was added to allogeneic cells, even in the presence of irradiated autologous antigen-presenting cells, suggesting that suppression was MHC restricted and not mediated by nonspecific soluble factors. However, RLB9-7 cells in the presence of urushiol inhibited the synthesis of tetanus toxoid-specific IgG by autologous lymphocytes, indicating that the suppression, although triggered specifically by urushiol, was nonspecific. PMID:2458387

  6. Generation and functional characterization of a clonal murine periportal Kupffer cell line from H-2Kb -tsA58 mice.

    PubMed

    Dory, Daniel; Echchannaoui, Hakim; Letiembre, Maryse; Ferracin, Fabrizia; Pieters, Jean; Adachi, Yoshiyuki; Akashi, Sachiko; Zimmerli, Werner; Landmann, Regine

    2003-07-01

    Murine Kupffer cells (KCs) are heterogeneous and survive only for a short time in vitro. Here, a clonal, murine KC line was generated from transgenic mice, expressing the thermolabile mutant tsA58 of the Simian virus 40 large T antigen under the control of the H-2K(b) promoter. Thirty-three degrees Celsius and 37 degrees C but not 39 degrees C have been permissive for growth of the clone; it required conditioned media from hepatocytes and endothelial cells for proliferation. In contrast to primary cells, the cells of the clone were uniform, survived detachment, and could therefore be analyzed by cytofluorimetry. The clone, as primary KCs, constitutively expressed nonspecific esterase, peroxidase, MOMA-2, BM8, scavenger receptor A, CD14, and Toll-like receptor 4 (TLR4); the antigen-presenting molecules CD40, CD80, and CD1d; and endocytosed dextran-fluorescein isothiocyanate. It lacked complement, Fc receptors, F4/80 marker, and the phagosomal coat protein tryptophan aspartate-containing coat protein (TACO). The clone exhibited CD14- and TLR4/MD2-independent, plasma-dependent lipopolysaccharide (LPS) binding, Escherichia coli and Streptococcus pneumoniae phagocytosis, and LPS- and interferon-gamma-induced NO production but no tumor necrosis factor alpha, interleukin (IL)-6, or IL-10 release. The large size, surface-marker expression, and capacity to clear gram-negative and -positive bacteria indicate that the clone was derived from the periportal, large KC subpopulation. The clone allows molecular studies of anti-infective and immune functions of KCs.

  7. Female reproductive success decreases with display size in monkshood, Aconitum kusnezoffii (Ranunculaceae)

    PubMed Central

    Liao, Wan-Jin; Hu, Yi; Zhu, Bi-Ru; Zhao, Xia-Qing; Zeng, Yan-Fei; Zhang, Da-Yong

    2009-01-01

    Background and Aims Reduction in female fitness in large clones can occur as a result of increased geitonogamous self-fertilization and its influence through inbreeding depression. This possibility was investigated in the self-compatible, bee-pollinated perennial herb Aconitum kusnezoffii which varies in clone size. Methods Field investigations were conducted on pollinator behaviour, flowering phenology and variation in seed set. The effects of self-pollination following controlled self- and cross-pollination were also examined. Selfing rates of differently sized clones were assessed using allozyme markers. Key Results High rates of geitonogamous pollination were associated with large display size. Female fitness at the ramet level decreased with clone size. Fruit and seed set under cross-pollination were significantly higher than those under self-pollination. The pre-dispersal inbreeding depression was estimated as 0·502 based on the difference in seed set per flower between self- and cross-pollinated flowers. Selfing rates of differently sized clones did not differ. Conclusions It is concluded that in A. kusnezoffii the negative effects of self-pollination causing reduced female fertility with clone size arise primarily from a strong early-acting inbreeding depression leading to the abortion of selfed embryos prior to seed maturation. PMID:19767308

  8. The potential and biological test on cloned cassava crop remains on local sheep

    NASA Astrophysics Data System (ADS)

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  9. Shifts in the Clonal Distribution of Methicillin-Resistant Staphylococcus aureus in Kuwait Hospitals: 1992-2010

    PubMed Central

    Boswihi, Samar S.; Udo, Edet E.; Al-Sweih, Noura

    2016-01-01

    Background As the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) is constantly changing globally, determining the prevailing MRSA clones in a local healthcare facility is important for better management of infections. This study investigated clonal composition and distribution of MRSA isolates in Kuwait’s hospitals using a combination of molecular typing methods. Materials and Methods In total, 400 non-repeat MRSA isolates were obtained between 1992 and 2010 in 13 public hospitals and were characterized using antibiogram, SCCmec typing, spa typing, and multilocus-sequence typing. Clonal assignment and detection of virulence factors and antibiotic resistance genes were performed by DNA microarray. Results The isolates were resistant to kanamycin (74.2%), erythromycin (69.5%), tetracycline (66.7%), gentamicin (61%), ciprofloxacin, (61%), fusidic acid (53.5%), clindamycin (41.5%), high-level mupirocin resistance (5.2%) and carried aphA3, aacA-aphD, ermA, ermC, mupA, tetK, tetM, fusC and far1. Molecular typing revealed 31 different MRSA clones consisting of ST239-MRSA-III (52.2%), ST22-MRSA-IV (9.2%), ST80-MRSA-IV (7.5%), ST5-MRSA-II/IV/V/VI (6.5%), ST30-MRSA-IV (3.5%), ST241-MRSA-III (2.7%), ST6-MRSA-IV (2.2%), ST36-MRSA-II (2%) and ST772-MRSA-V (1.75%). The isolates differed in the carriage of genes for enterotoxins, Panton–Valentine leukocidin (PVL), toxic shock syndrome toxin (tst-1), arginine catabolic mobile element (ACME) and exfoliative toxins. The number of clones increased from one (ST239-III-t037) in 1992 to 30 in 2010 including ST8-IV-t008 [PVL+] [ACME+] (USA300), ST772-V (Bengal Bay clone) and ST2816 identified for the first time in Kuwait. Conclusion The study revealed that the MRSA isolates belonged to diverse clones that changed in numbers and diversity overtime. Although ST239-MRSA-III, a healthcare-associated clone remained the dominant MRSA clone overtime, the newly emerged clones consisted mostly of community-associated. PMID:27631623

  10. Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat.

    PubMed

    Kojima, T; Habu, Y; Iida, S; Ogihara, Y

    2000-05-01

    The amplified restriction fragment length polymorphism (AFLP)-based mRNA fingerprinting (AMF) method makes it possible systematically and conveniently to identify differentially expressed cDNAs with high reproducibility. We have applied the AMF method to the cloning of the Q gene of common wheat, which is located on the long arm of chromosome 5A and pleiotropically controls the spike morphology and the threshing character of seeds. Using the AMF method, we compared the fingerprints of mRNA samples extracted from the young spikes of Triticum aestivum cv. Chinese Spring (CS) carrying the Q gene to those of a chromosome deletion line of CS, namely, q5, which lacks 15% of 5AL including the Q gene. Approximately 12,200 fragments were produced after PCR with 256 primer combinations. Of these, 92 fragments were differentially expressed between CS and q5. Northern and Southern analyses showed that 16 fragments gave specific or relatively stronger transcript signals in CS, and these clones were present in single copy or in low copy numbers in the wheat genome. Four clones were genetically mapped to the region deleted in q5. Subsequently, one clone, pTaQ22, was mapped at the same locus as the Q gene, indicating that pTaQ22 corresponds to the Q gene or is tightly linked to it. DNA sequence data showed that pTaQ22 had no homology to any known genes, thus suggesting a novel function for this gene in flower morphogenesis. This AMF method might provide a straightforward method for isolating genes in the hexaploid background of common wheat.

  11. Flavonoid Composition of Tarocco (Citrus sinensis L. Osbeck) Clone "Lempso" and Fast Antioxidant Activity Screening by DPPH-UHPLC-PDA-IT-TOF.

    PubMed

    Sommella, Eduardo; Pagano, Francesco; Pepe, Giacomo; Ostacolo, Carmine; Manfra, Michele; Chieppa, Marcello; Di Sanzo, Rosa; Carabetta, Sonia; Campiglia, Pietro; Russo, Mariateresa

    2017-11-01

    Clonal selection and hybridisation are valid strategies to obtain fruits with enhanced sensorial and nutraceutical properties. Within Citrus sinensis varieties, Tarocco clone "Lempso" is a typical product of the Calabria region (Italy) characterised by its red pulp. This is the first report concerning its accurate profiling. To characterise in detail the flavonoid composition of Lempso clone and to compare its antioxidant potential with other Citrus varieties by a fast screening method. Extracts were subjected to solid phase extraction and the qualitative/quantitative profile was elucidated through ultra-high performance liquid chromatography (UHPLC) coupled to photodiode array (PDA) and ion trap time-of-flight (IT-TOF) mass spectrometry detection, and compared to both Cleopatra mandarin (Citrus reticulata) and blood orange (Citrus sinensis (L.) Osbeck) Sanguinello varieties. The antioxidant activity was assessed by pre-column 2,2'-diphenyl-1-picrylhydrazyl (DPPH) reaction coupled to UHPLC-PDA. Lempso is characterised by flavonoids (17) and anthocyanins (8). Flavanones content (Hesperidin: 57.19 ± 0.49, Vicenin-2: 4.59 ± 0.03, Narirutin: 5.78 ± 0.13 mg/100 mL) was considerably higher than Cleopatra and Sanguinello varieties. The developed DPPH-UHPLC-PDA method provides information regarding the single contributions to antioxidant activity, highlighting how Ferulic acid, Quercetin and Cyanidin derivatives possess considerable radical scavenging activity (> 50%). The total antioxidant activity was also evaluated and compared with positive controls, showing higher scavenging activity than Cleopatra and Sanguinello (IC 50 : 333.76 ± 10.81 μg/mL vs. 452.62 ± 10.81 and 568.39 ± 26.98 μg/mL, respectively). These data evidence the nutraceutical potential of Lempso variety, which could be an ingredient for functional beverages. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Assignment of the human PAX4 gene to chromosome band 7q32 by fluorescence in situ hybridization.

    PubMed

    Tamura, T; Izumikawa, Y; Kishino, T; Soejima, H; Jinno, Y; Niikawa, N

    1994-01-01

    Of the nine known members of a human paired box-containing gene family (Pax), only PAX4 has not been precisely localized. We screened a cosmid library of human genomic DNA using polymerase chain reaction products for PAX4 as a probe and isolated three positive cosmid clones. Sequence analysis revealed that at least two of them had exon-like sequences and showed extensive homology to Pax-4 in the mouse. These two cosmid clones were mapped to human chromosome band 7q32 by fluorescence in situ hybridization.

  13. Clonal T-Cell Receptor γ-Chain Gene Rearrangements in Differential Diagnosis of Lymphomatoid Papulosis From Skin Metastasis of Nodal Anaplastic Large-Cell Lymphoma

    PubMed Central

    Akilov, Oleg E.; Pillai, Raju K.; Grandinetti, Lisa M.; Kant, Jeffrey A.; Geskin, Larisa

    2012-01-01

    Background In patients with a history of nodal anaplastic large-cell lymphoma (ALCL), differentiation of type C lymphomatoid papulosis from cutaneous involvement of systemic ALCL may be challenging because the 2 entities may exhibit identical histologic features. Although metastatic ALCL generally carries the same clone as the primary lymphoma, expression of a distinct clone likely represents a distinct process. Observations A 54-year-old white man had a history of anaplastic lymphoma kinase 1–negative ALCL in the right inguinal lymph node 6 years ago. A complete response was achieved after 6 cycles of CHOP (cyclophosphamide, doxorubicin, vincristine [Oncovin], and prednisone administered in 21-day cycles) and radiation therapy. After 3½ years, the patient observed waxing and waning papules and nodules. Examination of the biopsy specimen revealed a dense CD30+ lymphocytic infiltrate; no evidence of systemic malignancy was evident on positron emission tomography. Although clinically the presentation was consistent with lymphomatoid papulosis, metastatic ALCL had to be excluded. Polymerase chain reaction analysis with T-cell receptor γ-chain gene rearrangement (TCR-γR) was performed on the original lymph node and new skin lesions. Results of the TCR-γR analysis were positive for clonality in both lesions. However, separate clonal processes were identified. The identification of distinct clones supported the clinical impression of lymphomatoid papulosis. Conclusion Polymerase chain reaction analysis of TCR-γR is a useful method for distinguishing different clonal processes and is recommended when differentiation of primary and secondary lymphoproliferative disorders is required. PMID:21844453

  14. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.

    PubMed

    Bakhshinejad, Babak; Zade, Hesam Motaleb; Shekarabi, Hosna Sadat Zahed; Neman, Sara

    2016-12-01

    Phage display is known as a powerful methodology for the identification of targeting ligands that specifically bind to a variety of targets. The high-throughput screening of phage display combinatorial peptide libraries is performed through the affinity selection method of biopanning. Although phage display selection has proven very successful in the discovery of numerous high-affinity target-binding peptides with potential application in drug discovery and delivery, the enrichment of false-positive target-unrelated peptides (TUPs) without any actual affinity towards the target remains a major problem of library screening. Selection-related TUPs may emerge because of binding to the components of the screening system rather than the target. Propagation-related TUPs may arise as a result of faster growth rate of some phage clones enabling them to outcompete slow-propagating clones. Amplification of the library between rounds of biopanning makes a significant contribution to the selection of phage clones with propagation advantage. Distinguishing nonspecific TUPs from true target binders is of particular importance for the translation of biopanning findings from basic research to clinical applications. Different experimental and in silico approaches are applied to assess the specificity of phage display-derived peptides towards the target. Bioinformatic tools are playing a rapidly growing role in the analysis of biopanning data and identification of target-irrelevant TUPs. Recent progress in the introduction of efficient strategies for TUP detection holds enormous promise for the discovery of clinically relevant cell- and tissue-homing peptides and paves the way for the development of novel targeted diagnostic and therapeutic platforms in pharmaceutical areas.

  15. Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Edgar, Alasdair J; Chacón, Matilde R; Bishop, Anne E; Yacoub, Magdi H; Polak, Julia M

    2006-01-01

    Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively. PMID:16390543

  16. Microeukaryote Community Patterns along an O2/H2S Gradient in a Supersulfidic Anoxic Fjord (Framvaren, Norway)†

    PubMed Central

    Behnke, Anke; Bunge, John; Barger, Kathryn; Breiner, Hans-Werner; Alla, Victoria; Stoeck, Thorsten

    2006-01-01

    To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O2/H2S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O2/H2S gradient. PMID:16672511

  17. Burkholderia cepacia complex in Serbian patients with cystic fibrosis: prevalence and molecular epidemiology.

    PubMed

    Vasiljevic, Z V; Novovic, K; Kojic, M; Minic, P; Sovtic, A; Djukic, S; Jovcic, B

    2016-08-01

    The Burkholderia cepacia complex (Bcc) organisms remain significant pathogens in patients with cystic fibrosis (CF). This study was performed to evaluate the prevalence, epidemiological characteristics, and presence of molecular markers associated with virulence and transmissibility of the Bcc strains in the National CF Centre in Belgrade, Serbia. The Bcc isolates collected during the four-year study period (2010-2013) were further examined by 16 s rRNA gene, pulsed-field gel electrophoresis of genomic DNA, multilocus sequence typing analysis, and phylogenetic analysis based on concatenated sequence of seven alleles. Fifty out of 184 patients (27.2 %) were colonized with two Bcc species, B. cenocepacia (n = 49) and B. stabilis (n = 1). Thirty-four patients (18.5 %) had chronic colonization. Typing methods revealed a high level of similarity among Bcc isolates, indicating a person-to-person transmission or acquisition from a common source. New sequence types (STs) were identified, and none of the STs with an international distribution were found. One centre-specific ST, B. cenocepacia ST856, was highly dominant and shared by 48/50 (96 %) patients colonized by Bcc. This clone was characterized by PCR positivity for both the B. cepacia epidemic strain marker and cable pilin, and showed close genetic relatedness to the epidemic strain CZ1 (ST32). These results indicate that the impact of Bcc on airway colonization in the Serbian CF population is high and virtually exclusively limited to a single clone of B. cenocepacia. The presence of a highly transmissible clone and probable patient-to-patient spread was observed.

  18. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: expression of green fluorescent protein in the Nsp2 region.

    PubMed

    Fang, Ying; Rowland, Raymond R R; Roof, Michael; Lunney, Joan K; Christopher-Hennings, Jane; Nelson, Eric A

    2006-12-01

    The recent emergence of a unique group of North American type 1 porcine reproductive and respiratory syndrome virus (PRRSV) in the United States presents new disease control problems for a swine industry that has already been impacted seriously by North American type 2 PRRSV. In this study, a full-length cDNA infectious clone was generated from a low-virulence North American type 1 PRRSV isolate, SD01-08. In vitro studies demonstrated that the cloned virus maintained growth properties similar to those of the parental virus. Virological, pathological, and immunological observations from animals challenged with cloned viruses were similar to those from animals challenged with the parental virus and a modified live virus vaccine. To further explore the potential use as a viral backbone for expressing foreign genes, the green fluorescent protein (GFP) was inserted into a unique deletion site located at amino acid positions 348 and 349 of the predicted Nsp2 region in the virus, and expression of the Nsp2-GFP fusion protein was visualized by fluorescent microscopy. The availability of this North American type 1 infectious clone provides an important research tool for further study of the basic viral biology and pathogenic mechanisms of this group of type 1 PRRSV in the United States.

  19. A Full-Length cDNA Infectious Clone of North American Type 1 Porcine Reproductive and Respiratory Syndrome Virus: Expression of Green Fluorescent Protein in the Nsp2 Region▿

    PubMed Central

    Fang, Ying; Rowland, Raymond R. R.; Roof, Michael; Lunney, Joan K.; Christopher-Hennings, Jane; Nelson, Eric A.

    2006-01-01

    The recent emergence of a unique group of North American type 1 porcine reproductive and respiratory syndrome virus (PRRSV) in the United States presents new disease control problems for a swine industry that has already been impacted seriously by North American type 2 PRRSV. In this study, a full-length cDNA infectious clone was generated from a low-virulence North American type 1 PRRSV isolate, SD01-08. In vitro studies demonstrated that the cloned virus maintained growth properties similar to those of the parental virus. Virological, pathological, and immunological observations from animals challenged with cloned viruses were similar to those from animals challenged with the parental virus and a modified live virus vaccine. To further explore the potential use as a viral backbone for expressing foreign genes, the green fluorescent protein (GFP) was inserted into a unique deletion site located at amino acid positions 348 and 349 of the predicted Nsp2 region in the virus, and expression of the Nsp2-GFP fusion protein was visualized by fluorescent microscopy. The availability of this North American type 1 infectious clone provides an important research tool for further study of the basic viral biology and pathogenic mechanisms of this group of type 1 PRRSV in the United States. PMID:16971421

  20. Production of Recombinant Human scFv Against Tetanus Toxin Heavy Chain by Phage Display Technology.

    PubMed

    Khalili, Ehsan; Lakzaei, Mostafa; Rasaee, Mohhamad Javad; Aminian, Mahdi

    2015-10-01

    Tetanus, as a major cause of death in developing countries, is caused by tetanus neurotoxin. Recombinant antibodies against tetanus neurotoxin can be useful in tetanus management. Phage display of antibody fragments from immune human antibody libraries with single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. The aim of this study was the generation of a single chain fragment of variable region (scFv) library and selection of specific antibodies with high affinity against tetanus toxin. Immune human single chain fragment variable (HuscFv) antibody phagemid library was displayed on pIII of filamentous bacteriophage. Selection of scFv clones was performed against tetanus toxin antigens after three rounds of panning. The selected scFv clones were analyzed for inhibition of tetanus toxin binding to ganglioside GT1b. After the third round of panning, over 35 HuscFv phages specific for tetanus toxin were isolated from this library of which 15 clones were found to bind specifically to tetanus toxin. The selected HuscFv phages expressed as a soluble HuscFv peptide and some clones showed positive signals against tetanus toxin. We found that six HuscFv clones inhibit toxin binding to ganglioside GT1b. These selected antibodies can be used in the management of tetanus.

  1. Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production.

    PubMed

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; Udaondo, Zulema; Molina-Santiago, Carlos; Roca, Amalia; Solano, Jennifer; Molina-Alcaide, Eduarda; Segura, Ana; Ramos, Juan-Luis

    2018-04-17

    The success of second-generation (2G) ethanol technology relies on the efficient transformation of hemicellulose into monosaccharides and, particularly, on the full conversion of xylans into xylose for over 18% of fermentable sugars. We sought new hemicellulases using ruminal liquid, after enrichment of microbes with industrial lignocellulosic substrates and preparation of metagenomic libraries. Among 150 000 fosmid clones tested, we identified 22 clones with endoxylanase activity and 125 with β-xylosidase activity. These positive clones were sequenced en masse, and the analysis revealed open reading frames with a low degree of similarity with known glycosyl hydrolases families. Among them, we searched for enzymes that were thermostable (activity at > 50°C) and that operate at high rate at pH around 5. Upon a wide series of assays, the clones exhibiting the highest endoxylanase and β-xylosidase activities were identified. The fosmids were sequenced, and the corresponding genes cloned, expressed and proteins purified. We found that the activity of the most active β-xylosidase was at least 10-fold higher than that in commercial enzymatic fungal cocktails. Endoxylanase activity was in the range of fungal enzymes. Fungal enzymatic cocktails supplemented with the bacterial hemicellulases exhibited enhanced release of sugars from pretreated sugar cane straw, a relevant agricultural residue. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Phylogenetic and gene expression analysis of cyanobacteria and diatoms in the twilight waters of the temperate northeast Pacific Ocean.

    PubMed

    Gao, Weimin; Shi, Xu; Wu, Jieying; Jin, Yuguang; Zhang, Weiwen; Meldrum, Deirdre R

    2011-11-01

    In this study, to explore the microbial community structure and its functionality in the deep-sea environments, we initially performed a 16S ribosomal RNA (rRNA)-based community structure analyses for microbial communities in the sea water collected from sites of 765-790 m in depth in the Pacific Ocean. Interestingly, in the clone library we detected the presence of both photoautotrophic bacteria such as cyanobacteria and photoheterotrophic bacteria, such as Chloroflexus sp. To further explore the existence and diversity of possible light-utilizing microorganisms, we then constructed and analyzed a 23S rRNA plastid gene cloning library. The results showed that the majority of this cloning library was occupied by oxygenic photoautotrophic organisms, such as diatoms Thalassiosira spp. and cyanobacterium Synechococcus sp. In addition, the diversity of these oxygenic photoautotrophic organisms was very limited. Moreover, both reverse-transcription PCR and quantitative reverse-transcription PCR approaches had been employed to detect expression of the genes involved in protein synthesis and photosynthesis of photoautotrophic organisms, and the positive results were obtained. The possible mechanisms underlying the existence of very limited diversity of photosynthetic organisms at this depth of ocean, as well as the positive detection of rRNA and mRNA of diatom and cyanobacteria, were discussed.

  3. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    PubMed Central

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; De Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-01-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase. PMID:27874020

  4. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    NASA Astrophysics Data System (ADS)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  5. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    PubMed Central

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  6. [Detection of Toxoplasma gondii DNA in human lymph node tissue by in situ hybridization].

    PubMed

    Liu, C; Ke, O; Tan, D; Zhang, Z

    1998-01-01

    To detect the presence of Toxoplasma gondii in lymph node tissue in patients with Toxoplasma infection. T. gondii (RH strain) specific DNA fragment clones were obtained by using PCR and gene recombination technique. The DNA fragments used as hybridization probes were labelled with digoxigenin by random primer method. The technique of in situ hybridization (ISH) was used to detect T. g DNA in the lymph node sections. Four out of 120 samples T. g DNA were found positive, one with Hodgkin's disease (HD) (1/32), one with non-Hodgkin's lymphoma (NHL) (1/41) and 2 with chronic lymphadenitis (CL) (2/47). The total positive rate was 3.3%. It was demonstrated that this highly specific probe could detect 10 pg of the total RH strain T. g DNA. ISH was applicable in detecting pathogens in the lymph node tissues of individuals with Toxoplasma infection.

  7. In vitro high throughput phage display selection of ovarian cancer avid phage clones for near-infrared optical imaging.

    PubMed

    Soendergaard, Mette; Newton-Northup, Jessica R; Deutscher, Susan L

    2014-01-01

    Ovarian cancer is among the leading causes of cancer deaths in women, and is the most fatal gynecological malignancy. Poor outcomes of the disease are a direct result of inadequate detection and diagnostic methods, which may be overcome by the development of novel efficacious screening modalities. However, the advancement of such technologies is often time-consuming and costly. To overcome this hurdle, our laboratory has established a time and cost effective method of selecting and identifying ovarian carcinoma avid bacteriophage (phage) clones using high throughput phage display technology. These phage clones were selected from a filamentous phage fusion vector (fUSE5) 15-amino acid peptide library against human ovarian carcinoma (SKOV-3) cells, and identified by DNA sequencing. Two phage clones, pM6 and pM9, were shown to exhibit high binding affinity and specificity for SKOV-3 cells using micropanning, cell binding and fluorescent microscopy studies. To validate that the binding was mediated by the phage-displayed peptides, biotinylated peptides (M6 and M9) were synthesized and the specificity for ovarian carcinoma cells was analyzed. These results showed that M6 and M9 bound to SKOV-3 cells in a dose-response manner and exhibited EC50 values of 22.9 ± 2.0 μM and 12.2 ± 2.1μM (mean ± STD), respectively. Based on this, phage clones pM6 and pM9 were labeled with the near-infrared fluorophore AF680, and examined for their pharmacokinetic properties and tumor imaging abilities in vivo. Both phage successfully targeted and imaged SKOV-3 tumors in xenografted nude mice, demonstrating the ability of this method to quickly and cost effectively develop novel ovarian carcinoma avid phage.

  8. Production of cloned mice from somatic cells, ES cells, and frozen bodies.

    PubMed

    Wakayama, Sayaka; Mizutani, Eiji; Wakayama, Teruhiko

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, therefore, the nuclear transfer (NT) method has been thought of as a "black box approach" and inadequate to determine the detail of how genomic reprogramming occurs. However, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, as well as can create live animals. At present, this is the only technique available for the preservation and propagation of valuable genetic resources from mutant mice that are infertile or too old, or recovered from carcasses, without the use of germ cells. This chapter describes a basic protocol for mouse cloning and embryonic stem (ES) cell establishment from cloned embryo using a piezo-actuated micromanipulator. This technique will greatly help not only in mouse cloning but also in other forms of micromanipulation such as intracytoplasmic sperm injection (ICSI) into oocytes or ES cell injection into blastocysts. In addition, we describe a new, more efficient mouse cloning protocol using histone deacetylase inhibitor (HDACi), which increases the success rates of cloned mice or establish rate of ES cells to fivefold. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    PubMed Central

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  10. Capturing diversity of marine heterotrophic protists: one cell at a time

    PubMed Central

    Heywood, Jane L; Sieracki, Michael E; Bellows, Wendy; Poulton, Nicole J; Stepanauskas, Ramunas

    2011-01-01

    Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups. PMID:20962875

  11. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    PubMed Central

    2012-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370

  12. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo

    2010-10-22

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.

  13. Generation of Infectious Poliovirus with Altered Genetic Information from Cloned cDNA.

    PubMed

    Bujaki, Erika

    2016-01-01

    The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.

  14. Vascular alterations underlie developmental problems manifested in cloned cattle before or after birth.

    PubMed

    Maiorka, Paulo Cesar; Favaron, Phelipe Oliveira; Mess, Andrea Maria; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications).

  15. Vascular Alterations Underlie Developmental Problems Manifested in Cloned Cattle before or after Birth

    PubMed Central

    Favaron, Phelipe Oliveira; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications). PMID:25584533

  16. Simultaneous occurrence of t(9;22)(q34;q11.2) and t(16;16)(p13;q22) in a patient with chronic myeloid leukemia in blastic phase.

    PubMed

    Zámecníkova, Adriana; Al Bahar, Soad; Ramesh, Pandita

    2008-06-01

    Coexistence of two specific chromosomal translocations in the same clone is an infrequent phenomenon and has only rarely been reported in hematological malignancies. We report a combination of t(16;16)(p13;q22), the Philadelphia translocation t(9;22)(q34;q11.2), and deletion of the long arm of chromosome 7 in a patient with chronic myeloid leukemia in blast phase. Monotherapy treatment with imatinib mesylate resulted in the disappearance of the Ph-positive clone, but with persistence of t(16;16) and del(7) in all of the metaphases examined. The case illustrates that, although imatinib mesylate can be an effective treatment in eradication of the BCR-ABL fusion gene cells, the occurrence of additional specific abnormalities in Philadelphia-positive leukemias may pose a significant therapeutic challenge. (c) 2008 Elsevier Inc.

  17. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation.

    PubMed

    Zhang, J; Talbot, W S; Schier, A F

    1998-01-23

    The zebrafish one-eyed pinhead (oep) mutation disrupts embryonic development, resulting in cyclopia and defects in endoderm, prechordal plate, and ventral neuroectoderm formation. We report the molecular isolation of oep using a positional cloning approach. The oep gene encodes a novel EGF-related protein with similarity to the EGF-CFC proteins cripto, cryptic, and FRL-1. Wild-type oep protein contains a functional signal sequence and is membrane-associated. Following ubiquitous maternal and zygotic expression, highest levels of oep mRNA are found in the gastrula margin and in axial structures and forebrain. Widespread misexpression of both membrane-attached and secreted forms of oep rescues prechordal plate and forebrain development in mutant embryos but does not lead to the ectopic induction of these cell types in wild-type fish. These results establish an essential but permissive role for an EGF-related ligand during vertebrate gastrulation.

  18. The T-cell receptor beta chain CDR3 region of BV8S1/BJ1S5 transcripts in type 1 diabetes.

    PubMed

    Naserke, H E; Durinovic-Bellò, I; Seidel, D; Ziegler, A G

    1996-01-01

    We recently described the T-cell receptor (TCR) beta chain CDR3 motif S-SDRLG-NQPQH (BV8S1-BJ1S5) in an islet-specific T-cell clone (K2.12) from a type 1 diabetic patient (AS). A similar motif (RLGNQ) was also reported in a T-cell clone of non-obese diabetic (NOD) mice by others. In order to determine the frequency of our motif in selected and unselected T-cell populations, we cloned and sequenced the CDR3 region of BV8S1-BJ1S5 transcripts. These transcripts were derived from unstimulated peripheral blood T lymphocytes from two type 1 diabetic patients (AS and FS) and their non-diabetic sibling (WS), as well as from an islet-specific T-cell line of one of the patients. In addition, we compared the structure and composition of the CDR3 region in BV8S1-BJ1S5 transcripts from peripheral blood T cells between the patients and their non-diabetic sibling (>50 sequences each). We found that 30% of the islet-specific T-cell line cDNA clones expressed the entire sequence-motif, whereas it was absent in the clones of unstimulated peripheral blood T cells from both patients and their non-diabetic sibling. The average length of the CDR3 region was shorter in the patients (mean AS 9.9, FS 9.9, versus WS 10.7, p = 0.0037) and the number of inserted nucleotides in N nucleotide addition at the DJ-junction lower (mean AS 3.5, FS 3. 2, versus WS 5.2, P = <10(-4)) as compared with their non-diabetic sibling. Moreover, the pattern of amino acid usage in the CDR3 region was dissimilar at positions 5 and 6, where polar amino acids predominated in both diabetic siblings. In contrast, basic amino acids are preferentially used at position 5 in the clones of the non-diabetic sibling. These data provide information on the general structure of the TCR(BV8S1-BJ1S5) CDR3 region in type 1 diabetes and may indicate differences in the amino and nucleic acid composition of the TCR beta chain CDR3 region between two type 1 diabetic patients and their non-diabetic sibling.

  19. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...

  20. Cloning and Molecular Analysis of a Mannitol Operon of Phosphoenolpyruvate-dependent Phosphotransferase (PTS) type From Vibrio cholerae O395

    PubMed Central

    Kumar, Sanath; Smith, Kenneth P.; Floyd, Jody L.; Varela, Manuel F.

    2010-01-01

    A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395 and its activity studied in Escherichia coli. The 3.9 kb operon comprising of three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD) and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8±1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon. PMID:21184218

Top