Sample records for positioning error due

  1. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Chao, C; Columbia University, NY, NY

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less

  2. Precise Positioning Method for Logistics Tracking Systems Using Personal Handy-Phone System Based on Mahalanobis Distance

    NASA Astrophysics Data System (ADS)

    Yokoi, Naoaki; Kawahara, Yasuhiro; Hosaka, Hiroshi; Sakata, Kenji

    Focusing on the Personal Handy-phone System (PHS) positioning service used in physical distribution logistics, a positioning error offset method for improving positioning accuracy is invented. A disadvantage of PHS positioning is that measurement errors caused by the fluctuation of radio waves due to buildings around the terminal are large, ranging from several tens to several hundreds of meters. In this study, an error offset method is developed, which learns patterns of positioning results (latitude and longitude) containing errors and the highest signal strength at major logistic points in advance, and matches them with new data measured in actual distribution processes according to the Mahalanobis distance. Then the matching resolution is improved to 1/40 that of the conventional error offset method.

  3. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  4. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    PubMed Central

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  5. Aging and the intrusion superiority effect in visuo-spatial working memory.

    PubMed

    Cornoldi, Cesare; Bassani, Chiara; Berto, Rita; Mammarella, Nicola

    2007-01-01

    This study investigated the active component of visuo-spatial working memory (VSWM) in younger and older adults testing the hypotheses that elderly individuals have a poorer performance than younger ones and that errors in active VSWM tasks depend, at least partially, on difficulties in avoiding intrusions (i.e., avoiding already activated information). In two experiments, participants were presented with sequences of matrices on which three positions were pointed out sequentially: their task was to process all the positions but indicate only the final position of each sequence. Results showed a poorer performance in the elderly compared to the younger group and a higher number of intrusion (errors due to activated but irrelevant positions) rather than invention (errors consisting of pointing out a position never indicated by the experiementer) errors. The number of errors increased when a concurrent task was introduced (Experiment 1) and it was affected by different patterns of matrices (Experiment 2). In general, results show that elderly people have an impaired VSWM and produce a large number of errors due to inhibition failures. However, both the younger and the older adults' visuo-spatial working memory was affected by the presence of activated irrelevant information, the reduction of the available resources, and task constraints.

  6. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2017-01-01

    In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.

  7. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  8. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    PubMed

    Dionisio, Kathie L; Chang, Howard H; Baxter, Lisa K

    2016-11-25

    Exposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health. ZIP-code level estimates of exposure for six pollutants (CO, NO x , EC, PM 2.5 , SO 4 , O 3 ) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error. Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs. Substantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3-85% for population error, and 31-85% for total error. When CO, NO x or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copollutants based on the estimated type I error rate. The impact of exposure error must be considered when interpreting results of copollutant epidemiologic models, due to the possibility of attenuation of main pollutant RRs and the increased probability of false positives when measurement error is present.

  9. Coherent detection of position errors in inter-satellite laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu

    2007-09-01

    Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.

  10. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, S; Hong, C; Kim, M

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed withoutmore » the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.« less

  11. Experimental investigation of false positive errors in auditory species occurrence surveys

    USGS Publications Warehouse

    Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.

    2012-01-01

    False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.

  12. Triangulation Error Analysis for the Barium Ion Cloud Experiment. M.S. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1973-01-01

    The triangulation method developed specifically for the Barium Ion Cloud Project is discussed. Expression for the four displacement errors, the three slope errors, and the curvature error in the triangulation solution due to a probable error in the lines-of-sight from the observation stations to points on the cloud are derived. The triangulation method is then used to determine the effect of the following on these different errors in the solution: the number and location of the stations, the observation duration, east-west cloud drift, the number of input data points, and the addition of extra cameras to one of the stations. The pointing displacement errors, and the pointing slope errors are compared. The displacement errors in the solution due to a probable error in the position of a moving station plus the weighting factors for the data from the moving station are also determined.

  13. Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2004-03-09

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  14. Application Of The Phase Shifting Diffraction Interferometer For Measuring Convex Mirrors And Negative Lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2005-06-21

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  15. The role of visual spatial attention in adult developmental dyslexia.

    PubMed

    Collis, Nathan L; Kohnen, Saskia; Kinoshita, Sachiko

    2013-01-01

    The present study investigated the nature of visual spatial attention deficits in adults with developmental dyslexia, using a partial report task with five-letter, digit, and symbol strings. Participants responded by a manual key press to one of nine alternatives, which included other characters in the string, allowing an assessment of position errors as well as intrusion errors. The results showed that the dyslexic adults performed significantly worse than age-matched controls with letter and digit strings but not with symbol strings. Both groups produced W-shaped serial position functions with letter and digit strings. The dyslexics' deficits with letter string stimuli were limited to position errors, specifically at the string-interior positions 2 and 4. These errors correlated with letter transposition reading errors (e.g., reading slat as "salt"), but not with the Rapid Automatized Naming (RAN) task. Overall, these results suggest that the dyslexic adults have a visual spatial attention deficit; however, the deficit does not reflect a reduced span in visual-spatial attention, but a deficit in processing a string of letters in parallel, probably due to difficulty in the coding of letter position.

  16. Analysis of Sources of Large Positioning Errors in Deterministic Fingerprinting

    PubMed Central

    2017-01-01

    Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities. PMID:29186921

  17. Geographically correlated orbit error

    NASA Technical Reports Server (NTRS)

    Rosborough, G. W.

    1989-01-01

    The dominant error source in estimating the orbital position of a satellite from ground based tracking data is the modeling of the Earth's gravity field. The resulting orbit error due to gravity field model errors are predominantly long wavelength in nature. This results in an orbit error signature that is strongly correlated over distances on the size of ocean basins. Anderle and Hoskin (1977) have shown that the orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent ground tracks. This cross track correlation is verified here and is found to be significant out to nearly 1000 kilometers in the case of TOPEX/POSEIDON when using the GEM-T1 gravity model. Finally, it was determined that even the orbit error at points where ascending and descending ground traces cross is somewhat correlated. The implication of these various correlations is that the orbit error due to gravity error is geographically correlated. Such correlations have direct implications when using altimetry to recover oceanographic signals.

  18. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A; Yue, N

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on themore » range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.« less

  19. Automatic learning rate adjustment for self-supervising autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  20. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  1. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedam, S.; Docef, A.; Fix, M.

    2005-06-15

    The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less

  2. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  3. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters

    PubMed Central

    Park, Chan Gook

    2018-01-01

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539

  4. In search of periodic signatures in IGS REPRO1 solution

    NASA Astrophysics Data System (ADS)

    Mtamakaya, J. D.; Santos, M. C.; Craymer, M. R.

    2010-12-01

    We have been looking for periodic signatures in the REPRO1 solution recently released by the IGS. At this stage, a selected sub-set of IGS station time series in position and residual domain are under harmonic analysis. We can learn different things from this analysis. From the position domain, we can learn more about actual station motions. From the residual domain, we can learn more about mis-modelled or un-modelled errors. As far as error sources are concerned, we have investigated effects that may be due to tides, atmospheric loading, definition of the position of the figure axis and GPS constellation geometry. This poster presents and discusses our findings and presents insights on errors that need to be modelled or have their models improved.

  5. High-precision pointing with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Poppi, Sergio; Pernechele, Claudio; Pisanu, Tonino; Morsiani, Marco

    2010-07-01

    We present here the systems aimed to measure and minimize the pointing errors for the Sardinia Radio Telescope: they consist of an optical telescope to measure errors due to the mechanical structure deformations and a lasers system for the errors due to the subreflector displacement. We show here the results of the tests that we have done on the Medicina 32 meters VLBI radio telescope. The measurements demonstrate we can measure the pointing errors of the mechanical structure, with an accuracy of about ~1 arcsec. Moreover, we show the technique to measure the displacement of the subreflector, placed in the SRT at 22 meters from the main mirror, within +/-0.1 mm from its optimal position. These measurements show that we can obtain the needed accuracy to correct also the non repeatable pointing errors, which arise on time scale varying from seconds to minutes.

  6. On the timing problem in optical PPM communications.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1971-01-01

    Investigation of the effects of imperfect timing in a direct-detection (noncoherent) optical system using pulse-position-modulation bits. Special emphasis is placed on specification of timing accuracy, and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors, from which average error probabilities can be computed for specific synchronization methods. Of significant importance is shown to be the presence of a residual, or irreducible error probability, due entirely to the timing system, that cannot be overcome by the data channel.

  7. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels.

    PubMed

    Dasgupta, Subhashish; Banerjee, Rupak K; Hariharan, Prasanna; Myers, Matthew R

    2011-02-01

    Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  10. Optical truss and retroreflector modeling for picometer laser metrology

    NASA Astrophysics Data System (ADS)

    Hines, Braden E.

    1993-09-01

    Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.

  11. Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections

    USGS Publications Warehouse

    McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.

    2010-01-01

    The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.

  12. A method and implementation for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model

    NASA Astrophysics Data System (ADS)

    Swanson, Steven Roy

    The objective of the dissertation is to improve state estimation performance, as compared to a Kalman filter, when non-constant, or changing, biases exist in the measurement data. The state estimation performance increase will come from the use of a fuzzy model to determine the position and velocity gains of a state estimator. A method is proposed for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model. This method consists of using a fuzzy model to determine the gains of the state estimator, converting the heuristic knowledge into the fuzzy model, and then optimizing the fuzzy model with a genetic algorithm. This method is applied to the problem of state estimation of a cascaded global positioning system (GPS)/inertial reference unit (IRU) navigation system. The GPS position data contains two major sources for position bias. The first bias is due to satellite errors and the second is due to the time delay or lag from when the GPS position is calculated until it is used in the state estimator. When a change in the bias of the measurement data occurs, a state estimator will converge on the new measurement data solution. This will introduce errors into a Kalman filter's estimated state velocities, which in turn will cause a position overshoot as it converges. By using a fuzzy model to determine the gains of a state estimator, the velocity errors and their associated deficiencies can be reduced.

  13. Observations of TOPEX/Poseidon Orbit Errors Due to Gravitational and Tidal Modeling Errors Using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Haines, B.; Christensen, E.; Guinn, J.; Norman, R.; Marshall, J.

    1995-01-01

    Satellite altimetry must measure variations in ocean topography with cm-level accuracy. The TOPEX/Poseidon mission is designed to do this by measuring the radial component of the orbit with an accuracy of 13 cm or better RMS. Recent advances, however, have improved this accuracy by about an order of magnitude.

  14. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  15. The Effect of Antenna Position Errors on Redundant-Baseline Calibration of HERA

    NASA Astrophysics Data System (ADS)

    Orosz, Naomi; Dillon, Joshua; Ewall-Wice, Aaron; Parsons, Aaron; HERA Collaboration

    2018-01-01

    HERA (the Hydrogen Epoch of Reionization Array) is a large, highly-redundant radio interferometer in South Africa currently being built out to 350 14-m dishes. Its mission is to probe large scale structure during and prior to the epoch of reionization using the 21 cm hyperfine transition of neutral hydrogen. The array is designed to be calibrated using redundant baselines of known lengths. However, the dishes can deviate from ideal positions, with errors on the order of a few centimeters. This potentially increases foreground contamination of the 21 cm power spectrum in the cleanest part of Fourier space. The calibration algorithm treats groups of baselines that should be redundant, but are not due to position errors, as if they actually are. Accurate, precise calibration is critical because the foreground signals are 100,000 times stronger than the reionization signal. We explain the origin of this effect and discuss weighting strategies to mitigate it.

  16. Influence of ECG measurement accuracy on ECG diagnostic statements.

    PubMed

    Zywietz, C; Celikag, D; Joseph, G

    1996-01-01

    Computer analysis of electrocardiograms (ECGs) provides a large amount of ECG measurement data, which may be used for diagnostic classification and storage in ECG databases. Until now, neither error limits for ECG measurements have been specified nor has their influence on diagnostic statements been systematically investigated. An analytical method is presented to estimate the influence of measurement errors on the accuracy of diagnostic ECG statements. Systematic (offset) errors will usually result in an increase of false positive or false negative statements since they cause a shift of the working point on the receiver operating characteristics curve. Measurement error dispersion broadens the distribution function of discriminative measurement parameters and, therefore, usually increases the overlap between discriminative parameters. This results in a flattening of the receiver operating characteristics curve and an increase of false positive and false negative classifications. The method developed has been applied to ECG conduction defect diagnoses by using the proposed International Electrotechnical Commission's interval measurement tolerance limits. These limits appear too large because more than 30% of false positive atrial conduction defect statements and 10-18% of false intraventricular conduction defect statements could be expected due to tolerated measurement errors. To assure long-term usability of ECG measurement databases, it is recommended that systems provide its error tolerance limits obtained on a defined test set.

  17. Modulating Retro-Reflectors for Space, Tracking, Acquisition and Ranging using Multiple Quantum Well Technology (Preprint)

    DTIC Science & Technology

    2002-01-01

    feedback signals were derived from the motion of the platform rather than directly measured, though an actual spacecraft would likely utilize... large position error spikes due to target motion reversal. Of course, these tracking errors are highly dependent on the feedback gains chosen for the...Key Words: MQW Retromodulators, Modulating Retroreflector(s),Inter- spacecraft communications and navigation, space control

  18. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  19. Bladder cancer diagnosis with CT urography: test characteristics and reasons for false-positive and false-negative results.

    PubMed

    Trinh, Tony W; Glazer, Daniel I; Sadow, Cheryl A; Sahni, V Anik; Geller, Nina L; Silverman, Stuart G

    2018-03-01

    To determine test characteristics of CT urography for detecting bladder cancer in patients with hematuria and those undergoing surveillance, and to analyze reasons for false-positive and false-negative results. A HIPAA-compliant, IRB-approved retrospective review of reports from 1623 CT urograms between 10/2010 and 12/31/2013 was performed. 710 examinations for hematuria or bladder cancer history were compared to cystoscopy performed within 6 months. Reference standard was surgical pathology or 1-year minimum clinical follow-up. False-positive and false-negative examinations were reviewed to determine reasons for errors. Ninety-five bladder cancers were detected. CT urography accuracy: was 91.5% (650/710), sensitivity 86.3% (82/95), specificity 92.4% (568/615), positive predictive value 63.6% (82/129), and negative predictive value was 97.8% (568/581). Of 43 false positives, the majority of interpretation errors were due to benign prostatic hyperplasia (n = 12), trabeculated bladder (n = 9), and treatment changes (n = 8). Other causes include blood clots, mistaken normal anatomy, infectious/inflammatory changes, or had no cystoscopic correlate. Of 13 false negatives, 11 were due to technique, one to a large urinary residual, one to artifact. There were no errors in perception. CT urography is an accurate test for diagnosing bladder cancer; however, in protocols relying predominantly on excretory phase images, overall sensitivity remains insufficient to obviate cystoscopy. Awareness of bladder cancer mimics may reduce false-positive results. Improvements in CTU technique may reduce false-negative results.

  20. Compensation for loads during arm movements using equilibrium-point control.

    PubMed

    Gribble, P L; Ostry, D J

    2000-12-01

    A significant problem in motor control is how information about movement error is used to modify control signals to achieve desired performance. A potential source of movement error and one that is readily controllable experimentally relates to limb dynamics and associated movement-dependent loads. In this paper, we have used a position control model to examine changes to control signals for arm movements in the context of movement-dependent loads. In the model, based on the equilibrium-point hypothesis, equilibrium shifts are adjusted directly in proportion to the positional error between desired and actual movements. The model is used to simulate multi-joint movements in the presence of both "internal" loads due to joint interaction torques, and externally applied loads resulting from velocity-dependent force fields. In both cases it is shown that the model can achieve close correspondence to empirical data using a simple linear adaptation procedure. An important feature of the model is that it achieves compensation for loads during movement without the need for either coordinate transformations between positional error and associated corrective forces, or inverse dynamics calculations.

  1. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  2. Error reduction by combining strapdown inertial measurement units in a baseball stitch

    NASA Astrophysics Data System (ADS)

    Tracy, Leah

    A poor musical performance is rarely due to an inferior instrument. When a device is under performing, the temptation is to find a better device or a new technology to achieve performance objectives; however, another solution may be improving how existing technology is used through a better understanding of device characteristics, i.e., learning to play the instrument better. This thesis explores improving position and attitude estimates of inertial navigation systems (INS) through an understanding of inertial sensor errors, manipulating inertial measurement units (IMUs) to reduce that error and multisensor fusion of multiple IMUs to reduce error in a GPS denied environment.

  3. Development and Positioning Accuracy Assessment of Single-Frequency Precise Point Positioning Algorithms by Combining GPS Code-Pseudorange Measurements with Real-Time SSR Corrections

    PubMed Central

    Kim, Miso; Park, Kwan-Dong

    2017-01-01

    We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403

  4. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    NASA Astrophysics Data System (ADS)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  5. Reaching nearby sources: comparison between real and virtual sound and visual targets

    PubMed Central

    Parseihian, Gaëtan; Jouffrais, Christophe; Katz, Brian F. G.

    2014-01-01

    Sound localization studies over the past century have predominantly been concerned with directional accuracy for far-field sources. Few studies have examined the condition of near-field sources and distance perception. The current study concerns localization and pointing accuracy by examining source positions in the peripersonal space, specifically those associated with a typical tabletop surface. Accuracy is studied with respect to the reporting hand (dominant or secondary) for auditory sources. Results show no effect on the reporting hand with azimuthal errors increasing equally for the most extreme source positions. Distance errors show a consistent compression toward the center of the reporting area. A second evaluation is carried out comparing auditory and visual stimuli to examine any bias in reporting protocol or biomechanical difficulties. No common bias error was observed between auditory and visual stimuli indicating that reporting errors were not due to biomechanical limitations in the pointing task. A final evaluation compares real auditory sources and anechoic condition virtual sources created using binaural rendering. Results showed increased azimuthal errors, with virtual source positions being consistently overestimated to more lateral positions, while no significant distance perception was observed, indicating a deficiency in the binaural rendering condition relative to the real stimuli situation. Various potential reasons for this discrepancy are discussed with several proposals for improving distance perception in peripersonal virtual environments. PMID:25228855

  6. A simulation study to quantify the impacts of exposure ...

    EPA Pesticide Factsheets

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health.MethodsZIP-code level estimates of exposure for six pollutants (CO, NOx, EC, PM2.5, SO4, O3) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error.Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs.ResultsSubstantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3–85% for population error, and 31–85% for total error. When CO, NOx or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copoll

  7. Optimization of multimagnetometer systems on a spacecraft

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.

    1975-01-01

    The problem of optimizing the position of magnetometers along a boom of given length to yield a minimized total error is investigated. The discussion is limited to at most four magnetometers, which seems to be a practical limit due to weight, power, and financial considerations. The outlined error analysis is applied to some illustrative cases. The optimal magnetometer locations, for which the total error is minimum, are computed for given boom length, instrument errors, and very conservative magnetic field models characteristic for spacecraft with only a restricted or ineffective magnetic cleanliness program. It is shown that the error contribution by the magnetometer inaccuracy is increased as the number of magnetometers is increased, whereas the spacecraft field uncertainty is diminished by an appreciably larger amount.

  8. The effect of timing errors in optical digital systems.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1972-01-01

    The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.

  9. Positional error and time-activity patterns in near-highway proximity studies: an exposure misclassification analysis

    PubMed Central

    2013-01-01

    Background The growing interest in research on the health effects of near-highway air pollutants requires an assessment of potential sources of error in exposure assignment techniques that rely on residential proximity to roadways. Methods We compared the amount of positional error in the geocoding process for three different data sources (parcels, TIGER and StreetMap USA) to a “gold standard” residential geocoding process that used ortho-photos, large multi-building parcel layouts or large multi-unit building floor plans. The potential effect of positional error for each geocoding method was assessed as part of a proximity to highway epidemiological study in the Boston area, using all participants with complete address information (N = 703). Hourly time-activity data for the most recent workday/weekday and non-workday/weekend were collected to examine time spent in five different micro-environments (inside of home, outside of home, school/work, travel on highway, and other). Analysis included examination of whether time-activity patterns were differentially distributed either by proximity to highway or across demographic groups. Results Median positional error was significantly higher in street network geocoding (StreetMap USA = 23 m; TIGER = 22 m) than parcel geocoding (8 m). When restricted to multi-building parcels and large multi-unit building parcels, all three geocoding methods had substantial positional error (parcels = 24 m; StreetMap USA = 28 m; TIGER = 37 m). Street network geocoding also differentially introduced greater amounts of positional error in the proximity to highway study in the 0–50 m proximity category. Time spent inside home on workdays/weekdays differed significantly by demographic variables (age, employment status, educational attainment, income and race). Time-activity patterns were also significantly different when stratified by proximity to highway, with those participants residing in the 0–50 m proximity category reporting significantly more time in the school/work micro-environment on workdays/weekdays than all other distance groups. Conclusions These findings indicate the potential for both differential and non-differential exposure misclassification due to geocoding error and time-activity patterns in studies of highway proximity. We also propose a multi-stage manual correction process to minimize positional error. Additional research is needed in other populations and geographic settings. PMID:24010639

  10. Positional error and time-activity patterns in near-highway proximity studies: an exposure misclassification analysis.

    PubMed

    Lane, Kevin J; Kangsen Scammell, Madeleine; Levy, Jonathan I; Fuller, Christina H; Parambi, Ron; Zamore, Wig; Mwamburi, Mkaya; Brugge, Doug

    2013-09-08

    The growing interest in research on the health effects of near-highway air pollutants requires an assessment of potential sources of error in exposure assignment techniques that rely on residential proximity to roadways. We compared the amount of positional error in the geocoding process for three different data sources (parcels, TIGER and StreetMap USA) to a "gold standard" residential geocoding process that used ortho-photos, large multi-building parcel layouts or large multi-unit building floor plans. The potential effect of positional error for each geocoding method was assessed as part of a proximity to highway epidemiological study in the Boston area, using all participants with complete address information (N = 703). Hourly time-activity data for the most recent workday/weekday and non-workday/weekend were collected to examine time spent in five different micro-environments (inside of home, outside of home, school/work, travel on highway, and other). Analysis included examination of whether time-activity patterns were differentially distributed either by proximity to highway or across demographic groups. Median positional error was significantly higher in street network geocoding (StreetMap USA = 23 m; TIGER = 22 m) than parcel geocoding (8 m). When restricted to multi-building parcels and large multi-unit building parcels, all three geocoding methods had substantial positional error (parcels = 24 m; StreetMap USA = 28 m; TIGER = 37 m). Street network geocoding also differentially introduced greater amounts of positional error in the proximity to highway study in the 0-50 m proximity category. Time spent inside home on workdays/weekdays differed significantly by demographic variables (age, employment status, educational attainment, income and race). Time-activity patterns were also significantly different when stratified by proximity to highway, with those participants residing in the 0-50 m proximity category reporting significantly more time in the school/work micro-environment on workdays/weekdays than all other distance groups. These findings indicate the potential for both differential and non-differential exposure misclassification due to geocoding error and time-activity patterns in studies of highway proximity. We also propose a multi-stage manual correction process to minimize positional error. Additional research is needed in other populations and geographic settings.

  11. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  12. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladstone, D. J.; Li, S.; Jarvis, L. A.

    2011-07-15

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging,more » the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.« less

  13. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  14. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    PubMed

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-08-28

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  15. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study.

    PubMed

    Schwarz, Timo Julian; Weber, Markus; Dornia, Christian; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Craiovan, Benjamin

    2017-09-01

    Purpose  Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method  In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray's definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results  The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°-31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°-27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion  Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points   · Pelvic tilt and rotation influence cup orientation after THA. · Cup anteversion and inclination should be referenced to the pelvis. · Radiological measurement errors of cup position may be reduced by mathematical concepts. Citation Format · Schwarz TJ, Weber M, Dornia C et al. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study. Fortschr Röntgenstr 2017; 189: 864 - 873. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Spatial Representativeness Error in the Ground-Level Observation Networks for Black Carbon Radiation Absorption

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu

    2018-02-01

    There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation-constrained estimate, which is several times larger than the bottom-up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry-transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top-down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error.

  17. Local position control: A new concept for control of manipulators

    NASA Technical Reports Server (NTRS)

    Kelly, Frederick A.

    1988-01-01

    Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.

  18. Study on the influence of stochastic properties of correction terms on the reliability of instantaneous network RTK

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik

    2014-03-01

    The reliability of precision GNSS positioning primarily depends on correct carrier-phase ambiguity resolution. An optimal estimation and correct validation of ambiguities necessitates a proper definition of mathematical positioning model. Of particular importance in the model definition is the taking into account of the atmospheric errors (ionospheric and tropospheric refraction) as well as orbital errors. The use of the network of reference stations in kinematic positioning, known as Network-based Real-Time Kinematic (Network RTK) solution, facilitates the modeling of such errors and their incorporation, in the form of correction terms, into the functional description of positioning model. Lowered accuracy of corrections, especially during atmospheric disturbances, results in the occurrence of unaccounted biases, the so-called residual errors. The taking into account of such errors in Network RTK positioning model is possible by incorporating the accuracy characteristics of the correction terms into the stochastic model of observations. In this paper we investigate the impact of the expansion of the stochastic model to include correction term variances on the reliability of the model solution. In particular the results of instantaneous solution that only utilizes a single epoch of GPS observations, is analyzed. Such a solution mode due to the low number of degrees of freedom is very sensitive to an inappropriate mathematical model definition. Thus the high level of the solution reliability is very difficult to achieve. Numerical tests performed for a test network located in mountain area during ionospheric disturbances allows to verify the described method for the poor measurement conditions. The results of the ambiguity resolution as well as the rover positioning accuracy shows that the proposed method of stochastic modeling can increase the reliability of instantaneous Network RTK performance.

  19. Finite-time sliding surface constrained control for a robot manipulator with an unknown deadzone and disturbance.

    PubMed

    Ik Han, Seong; Lee, Jangmyung

    2016-11-01

    This paper presents finite-time sliding mode control (FSMC) with predefined constraints for the tracking error and sliding surface in order to obtain robust positioning of a robot manipulator with input nonlinearity due to an unknown deadzone and external disturbance. An assumed model feedforward FSMC was designed to avoid tedious identification procedures for the manipulator parameters and to obtain a fast response time. Two constraint switching control functions based on the tracking error and finite-time sliding surface were added to the FSMC to guarantee the predefined tracking performance despite the presence of an unknown deadzone and disturbance. The tracking error due to the deadzone and disturbance can be suppressed within the predefined error boundary simply by tuning the gain value of the constraint switching function and without the addition of an extra compensator. Therefore, the designed constraint controller has a simpler structure than conventional transformed error constraint methods and the sliding surface constraint scheme can also indirectly guarantee the tracking error constraint while being more stable than the tracking error constraint control. A simulation and experiment were performed on an articulated robot manipulator to validate the proposed control schemes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Measurement of static pressure on aircraft

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1958-01-01

    Existing data on the errors involved in the measurement of static pressure by means of static-pressure tubes and fuselage vents are presented. The errors associated with the various design features of static-pressure tubes are discussed for the condition of zero angle of attack and for the case where the tube is inclined to flow. Errors which result from variations in the configuration of static-pressure vents are also presented. Errors due to the position of a static-pressure tube in the flow field of the airplane are given for locations ahead of the fuselage nose, ahead of the wing tip, and ahead of the vertical tail fin. The errors of static-pressure vents on the fuselage of an airplane are also presented. Various methods of calibrating static-pressure installations in flight are briefly discussed.

  1. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  2. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  3. A Simple Lightning Assimilation Technique For Improving Retrospective WRF Simulations

    EPA Science Inventory

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain...

  4. A simple lightning assimilation technique for improving retrospective WRF simulations.

    EPA Science Inventory

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-F...

  5. Medical error and related factors during internship and residency.

    PubMed

    Ahmadipour, Habibeh; Nahid, Mortazavi

    2015-01-01

    It is difficult to determine the real incidence of medical errors due to the lack of a precise definition of errors, as well as the failure to report them under certain circumstances. We carried out a cross- sectional study in Kerman University of Medical Sciences, Iran in 2013. The participants were selected through the census method. The data were collected using a self-administered questionnaire, which consisted of questions on the participants' demographic data and questions on the medical errors committed. The data were analysed by SPSS 19. It was found that 270 participants had committed medical errors. There was no significant difference in the frequency of errors committed by interns and residents. In the case of residents, the most common error was misdiagnosis and in that of interns, errors related to history-taking and physical examination. Considering that medical errors are common in the clinical setting, the education system should train interns and residents to prevent the occurrence of errors. In addition, the system should develop a positive attitude among them so that they can deal better with medical errors.

  6. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Gardner, Chester S.

    1989-01-01

    Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.

  7. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  8. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  9. Accuracy and Landmark Error Calculation Using Cone-Beam Computed Tomography–Generated Cephalograms

    PubMed Central

    Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Heulfe, Inam; Harmon, Eric T.; Zhu, Hongtu; Proffit, William R.

    2010-01-01

    Objective To evaluate systematic differences in landmark position between cone-beam computed tomography (CBCT)–generated cephalograms and conventional digital cephalograms and to estimate how much variability should be taken into account when both modalities are used within the same longitudinal study. Materials and Methods Landmarks on homologous cone-beam computed tomographic–generated cephalograms and conventional digital cephalograms of 46 patients were digitized, registered, and compared via the Hotelling T2 test. Results There were no systematic differences between modalities in the position of most landmarks. Three landmarks showed statistically significant differences but did not reach clinical significance. A method for error calculation while combining both modalities in the same individual is presented. Conclusion In a longitudinal follow-up for assessment of treatment outcomes and growth of one individual, the error due to the combination of the two modalities might be larger than previously estimated. PMID:19905853

  10. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  11. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  12. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  13. Finite Time Control Design for Bilateral Teleoperation System With Position Synchronization Error Constrained.

    PubMed

    Yang, Yana; Hua, Changchun; Guan, Xinping

    2016-03-01

    Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.

  14. Alignment error of mirror modules of advanced telescope for high-energy astrophysics due to wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.

    2017-10-01

    One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.

  15. Calculation of Ophthalmic Viscoelastic Device–Induced Focus Shift During Femtosecond Laser–Assisted Cataract Surgery

    PubMed Central

    de Freitas, Carolina P.; Cabot, Florence; Manns, Fabrice; Culbertson, William; Yoo, Sonia H.; Parel, Jean-Marie

    2015-01-01

    Purpose. To assess if a change in refractive index of the anterior chamber during femtosecond laser-assisted cataract surgery can affect the laser beam focus position. Methods. The index of refraction and chromatic dispersion of six ophthalmic viscoelastic devices (OVDs) was measured with an Abbe refractometer. Using the Gullstrand eye model, the index values were used to predict the error in the depth of a femtosecond laser cut when the anterior chamber is filled with OVD. Two sources of error produced by the change in refractive index were evaluated: the error in anterior capsule position measured with optical coherence tomography biometry and the shift in femtosecond laser beam focus depth. Results. The refractive indices of the OVDs measured ranged from 1.335 to 1.341 in the visible light (at 587 nm). The error in depth measurement of the refilled anterior chamber ranged from −5 to +7 μm. The OVD produced a shift of the femtosecond laser focus ranging from −1 to +6 μm. Replacement of the aqueous humor with OVDs with the densest compound produced a predicted error in cut depth of 13 μm anterior to the expected cut. Conclusions. Our calculations show that the change in refractive index due to anterior chamber refilling does not sufficiently shift the laser beam focus position to cause the incomplete capsulotomies reported during femtosecond laser–assisted cataract surgery. PMID:25626971

  16. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang

    2018-04-01

    To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.

  17. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less

  18. Diagnosing and Correcting Mass Accuracy and Signal Intensity Error Due to Initial Ion Position Variations in a MALDI TOFMS

    NASA Astrophysics Data System (ADS)

    Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.

    2018-02-01

    Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days.

  19. Diagnosing and Correcting Mass Accuracy and Signal Intensity Error Due to Initial Ion Position Variations in a MALDI TOFMS

    NASA Astrophysics Data System (ADS)

    Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.

    2017-12-01

    Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. [Figure not available: see fulltext.

  20. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  1. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly.

    PubMed

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  2. A statistical study of radio-source structure effects on astrometric very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1989-01-01

    Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more.

  3. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position errors never exceeded 16 cm during these field tests.

  4. Recalculation of regional and detailed gravity database from Slovak Republic and qualitative interpretation of new generation Bouguer anomaly map

    NASA Astrophysics Data System (ADS)

    Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav

    2014-05-01

    In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.

  5. Spatial Representativeness Error in the Ground‐Level Observation Networks for Black Carbon Radiation Absorption

    PubMed Central

    Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu

    2018-01-01

    Abstract There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation‐constrained estimate, which is several times larger than the bottom‐up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry‐transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top‐down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error. PMID:29937603

  6. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.; Fessenden, T.

    1998-08-17

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  7. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y J; Fessenden, T

    1998-09-02

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  8. Development of a Procedure for the Selection of Candidate Vessels of Opportunity in Support of the Submarine Rescue Diving and Recompression System

    DTIC Science & Technology

    2005-06-01

    ACRONYMS AHT Anchor Handling Tug AP After Perpendicular ASRV Australian Submarine Rescue Vehicle ASSET Advanced Surface Ship Evaluation Tool AUWS...Five hours after the Squalus sank, its sister ship, USS Sculpin began searching at the Squalus’ reported position prior to diving. Due to an error...ashore in recording that position, Sculpin was searching five miles from Squalus’ actual position. Finally, Ensign Ned Denby on 21 the bridge of Sculpin

  9. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization

    PubMed Central

    Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros

    2017-01-01

    Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K-Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors. PMID:28394268

  10. Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization.

    PubMed

    Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros

    2017-04-10

    Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K -Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors.

  11. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation

    PubMed Central

    Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier

    2017-01-01

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622

  12. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  13. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  14. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, K; Takai, Y; Southern Tohoku BNCT Research Center, Koriyama

    2016-06-15

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostatemore » at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by post-indwelled CT images.« less

  15. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    PubMed

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  16. Error properties of Argos satellite telemetry locations using least squares and Kalman filtering.

    PubMed

    Boyd, Janice D; Brightsmith, Donald J

    2013-01-01

    Study of animal movements is key for understanding their ecology and facilitating their conservation. The Argos satellite system is a valuable tool for tracking species which move long distances, inhabit remote areas, and are otherwise difficult to track with traditional VHF telemetry and are not suitable for GPS systems. Previous research has raised doubts about the magnitude of position errors quoted by the satellite service provider CLS. In addition, no peer-reviewed publications have evaluated the usefulness of the CLS supplied error ellipses nor the accuracy of the new Kalman filtering (KF) processing method. Using transmitters hung from towers and trees in southeastern Peru, we show the Argos error ellipses generally contain <25% of the true locations and therefore do not adequately describe the true location errors. We also find that KF processing does not significantly increase location accuracy. The errors for both LS and KF processing methods were found to be lognormally distributed, which has important repercussions for error calculation, statistical analysis, and data interpretation. In brief, "good" positions (location codes 3, 2, 1, A) are accurate to about 2 km, while 0 and B locations are accurate to about 5-10 km. However, due to the lognormal distribution of the errors, larger outliers are to be expected in all location codes and need to be accounted for in the user's data processing. We evaluate five different empirical error estimates and find that 68% lognormal error ellipses provided the most useful error estimates. Longitude errors are larger than latitude errors by a factor of 2 to 3, supporting the use of elliptical error ellipses. Numerous studies over the past 15 years have also found fault with the CLS-claimed error estimates yet CLS has failed to correct their misleading information. We hope this will be reversed in the near future.

  17. Mass balance assessment using GPS

    NASA Technical Reports Server (NTRS)

    Hulbe, Christina L.

    1993-01-01

    Mass balance is an integral part of any comprehensive glaciological investigation. Unfortunately, it is hard to determine at remote locations where there is no fixed reference. The Global Positioning System (GPS) offers a solution. Simultaneous GPS observations at a known location and the remote field site, processed differentially, will accurately position the camp site. From there, a monument planted in the firn atop the ice can also be accurately positioned. Change in the monument's vertical position is a direct indicator of ice thickness change. Because the monument is not connected to the ice, its motion is due to both mass balance change and to the settling of firn as it densifies into ice. Observations of relative position change between the monument and anchors at various depths within the firn are used to remove the settling effect. An experiment to test this method has begun at Byrd Station on the West Antarctic Ice Sheet and the first epoch of observations was made. Analysis indicates that positioning errors will be very small. It appears likely that the largest errors involved with this technique will arise from ancillary data needed to determine firn settling.

  18. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    NASA Astrophysics Data System (ADS)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  19. Acute anxiety and social inference: An experimental manipulation with 7.5% carbon dioxide inhalation

    PubMed Central

    Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S

    2016-01-01

    Background: Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. Methods: For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Results: Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Conclusions: Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. PMID:27380750

  20. Acute anxiety and social inference: An experimental manipulation with 7.5% carbon dioxide inhalation.

    PubMed

    Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S

    2016-10-01

    Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. © The Author(s) 2016.

  1. Development of a decentralized multi-axis synchronous control approach for real-time networks.

    PubMed

    Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang

    2017-05-01

    The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption

    USGS Publications Warehouse

    Larson, Kristine M.; Poland, Michael; Miklius, Asta

    2010-01-01

    The global positioning system (GPS) is one of the most common techniques, and the current state of the art, used to monitor volcano deformation. In addition to slow (several centimeters per year) displacement rates, GPS can be used to study eruptions and intrusions that result in much larger (tens of centimeters over hours-days) displacements. It is challenging to resolve precise positions using GPS at subdaily time intervals because of error sources such as multipath and atmospheric refraction. In this paper, the impact of errors due to multipath and atmospheric refraction at subdaily periods is examined using data from the GPS network on Kīlauea Volcano, Hawai'i. Methods for filtering position estimates to enhance precision are both simulated and tested on data collected during the June 2007 intrusion and eruption. Comparisons with tiltmeter records show that GPS instruments can precisely recover the timing of the activity.

  3. A wavefront compensation approach to segmented mirror figure control

    NASA Technical Reports Server (NTRS)

    Redding, David; Breckenridge, Bill; Sevaston, George; Lau, Ken

    1991-01-01

    We consider the 'figure-control' problem for a spaceborn sub-millimeter wave telescope, the Precision Segmented Reflector Project Focus Mission Telescope. We show that performance of any figure control system is subject to limits on the controllability and observability of the quality of the wavefront. We present a wavefront-compensation method for the Focus Mission Telescope which uses mirror-figure sensors and three-axis segment actuator to directly minimize wavefront errors due to segment position errors. This approach shows significantly better performance when compared with a panel-state-compensation approach.

  4. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  5. Retaining a Resilient and Enduring Workforce: Examination of Duty/Position Rotational Assignments for Civilian Acquisition Positions

    DTIC Science & Technology

    2015-04-12

    decrease the number of errors due to fatigue” and improve production and efficiency ( Ivancevich , Konopaske, & Matteson, 2014, p. 151). “There are...Services, Ford, and Deloitte Services LP have utilized different forms of job rotation strategy” ( Ivancevich et al., 2014, p. 151). Further research...L. (2005, July). Job rotation. Credit Union Management, 28(7), 50–53. Ivancevich , J. M., Konopaske, R., & Matteson, M. T. (2014). Organizational

  6. Medición de posiciones astrométricas con CCD en la zona de Rup 21

    NASA Astrophysics Data System (ADS)

    Bustos Fierro, I. H.; Calderón, J. H.

    It is shown the utilization of the block adjustment method for the measurement of astrometric positions from a mosaic of sixteen CCD images with partial overlap, which were taken with the Telescope Jorge Sahade of CASLEO. The observations cover an area of 25' x 25' around the open cluster Rup21. The source of reference positions was ACT Reference Catalog. The internal error of the measured positions is analyzed, and the external error is estimated from the comparison with the catalog USNO-A. In this comparison it is found that the direct CCD images taken with focal reducer could be distorted by severe field curvature. The effect of the distortion presumably introduced by the optics is eliminated with the suitable corrections of the stellar positions measured on every frame, but a new systematic effect on scales of the entire field is observed, which could be due to the distribution of the reference stars.

  7. Effect of tumor amplitude and frequency on 4D modeling of Vero4DRT system.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Hayata, Masahiro; Tsuda, Shintaro; Yamada, Kiyoshi; Nagata, Yasushi

    2017-01-01

    An important issue in indirect dynamic tumor tracking with the Vero4DRT system is the accuracy of the model predictions of the internal target position based on surrogate infrared (IR) marker measurement. We investigated the predictive uncertainty of 4D modeling using an external IR marker, focusing on the effect of the target and surrogate amplitudes and periods. A programmable respiratory motion table was used to simulate breathing induced organ motion. Sinusoidal motion sequences were produced by a dynamic phantom with different amplitudes and periods. To investigate the 4D modeling error, the following amplitudes (peak-to-peak: 10-40 mm) and periods (2-8 s) were considered. The 95th percentile 4D modeling error (4D- E 95% ) between the detected and predicted target position ( μ  + 2SD) was calculated to investigate the 4D modeling error. 4D- E 95% was linearly related to the target motion amplitude with a coefficient of determination R 2  = 0.99 and ranged from 0.21 to 0.88 mm. The 4D modeling error ranged from 1.49 to 0.14 mm and gradually decreased with increasing target motion period. We analyzed the predictive error in 4D modeling and the error due to the amplitude and period of target. 4D modeling error substantially increased with increasing amplitude and decreasing period of the target motion.

  8. Detecting and overcoming systematic errors in genome-scale phylogenies.

    PubMed

    Rodríguez-Ezpeleta, Naiara; Brinkmann, Henner; Roure, Béatrice; Lartillot, Nicolas; Lang, B Franz; Philippe, Hervé

    2007-06-01

    Genome-scale data sets result in an enhanced resolution of the phylogenetic inference by reducing stochastic errors. However, there is also an increase of systematic errors due to model violations, which can lead to erroneous phylogenies. Here, we explore the impact of systematic errors on the resolution of the eukaryotic phylogeny using a data set of 143 nuclear-encoded proteins from 37 species. The initial observation was that, despite the impressive amount of data, some branches had no significant statistical support. To demonstrate that this lack of resolution is due to a mutual annihilation of phylogenetic and nonphylogenetic signals, we created a series of data sets with slightly different taxon sampling. As expected, these data sets yielded strongly supported but mutually exclusive trees, thus confirming the presence of conflicting phylogenetic and nonphylogenetic signals in the original data set. To decide on the correct tree, we applied several methods expected to reduce the impact of some kinds of systematic error. Briefly, we show that (i) removing fast-evolving positions, (ii) recoding amino acids into functional categories, and (iii) using a site-heterogeneous mixture model (CAT) are three effective means of increasing the ratio of phylogenetic to nonphylogenetic signal. Finally, our results allow us to formulate guidelines for detecting and overcoming phylogenetic artefacts in genome-scale phylogenetic analyses.

  9. Pennation angle dependency in skeletal muscle tissue doppler strain in dynamic contractions.

    PubMed

    Lindberg, Frida; Öhberg, Fredrik; Granåsen, Gabriel; Brodin, Lars-Åke; Grönlund, Christer

    2011-07-01

    Tissue velocity imaging (TVI) is a Doppler based ultrasound technique that can be used to study regional deformation in skeletal muscle tissue. The aim of this study was to develop a biomechanical model to describe the TVI strain's dependency on the pennation angle. We demonstrate its impact as the subsequent strain measurement error using dynamic elbow contractions from the medial and the lateral part of biceps brachii at two different loadings; 5% and 25% of maximum voluntary contraction (MVC). The estimated pennation angles were on average about 4° in extended position and increased to a maximal of 13° in flexed elbow position. The corresponding relative angular error spread from around 7% up to around 40%. To accurately apply TVI on skeletal muscles, the error due to angle changes should be compensated for. As a suggestion, this could be done according to the presented model. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation.

    PubMed

    Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui

    2017-11-01

    Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.

  11. Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach

    NASA Astrophysics Data System (ADS)

    Manno, Giorgio; Lo Re, Carlo; Ciraolo, Giuseppe

    2017-09-01

    In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.

  12. Cervical joint position sense in rugby players versus non-rugby players.

    PubMed

    Pinsault, Nicolas; Anxionnaz, Marion; Vuillerme, Nicolas

    2010-05-01

    To determine whether cervical joint position sense is modified by intensive rugby practice. A group-comparison study. University Medical Bioengineering Laboratory. Twenty young elite rugby players (10 forwards and 10 backs) and 10 young non-rugby elite sports players. Participants were asked to perform the cervicocephalic relocation test (CRT) to the neutral head position (NHP) that is, to reposition their head on their trunk, as accurately as possible, after full active left and right cervical rotation. Rugby players were asked to perform the CRT to NHP before and after a training session. Absolute and variable errors were used to assess accuracy and consistency of the repositioning for the three groups of Forwards, Backs and Non-rugby players, respectively. The 2 groups of Forwards and Backs exhibited higher absolute and variable errors than the group of Non-rugby players. No difference was found between the two groups of Forwards and Backs and no difference was found between Before and After the training session. The cervical joint position sense of young elite rugby players is altered compared to that of non-rugby players. Furthermore, Forwards and Backs demonstrated comparable repositioning errors before and after a specific training session, suggesting that cervical proprioceptive alteration is mainly due to tackling and not the scrum.

  13. Effect of eye position on saccades and neuronal responses to acoustic stimuli in the superior colliculus of the behaving cat.

    PubMed

    Populin, Luis C; Tollin, Daniel J; Yin, Tom C T

    2004-10-01

    We examined the motor error hypothesis of visual and auditory interaction in the superior colliculus (SC), first tested by Jay and Sparks in the monkey. We trained cats to direct their eyes to the location of acoustic sources and studied the effects of eye position on both the ability of cats to localize sounds and the auditory responses of SC neurons with the head restrained. Sound localization accuracy was generally not affected by initial eye position, i.e., accuracy was not proportionally affected by the deviation of the eyes from the primary position at the time of stimulus presentation, showing that eye position is taken into account when orienting to acoustic targets. The responses of most single SC neurons to acoustic stimuli in the intact cat were modulated by eye position in the direction consistent with the predictions of the "motor error" hypothesis, but the shift accounted for only two-thirds of the initial deviation of the eyes. However, when the average horizontal sound localization error, which was approximately 35% of the target amplitude, was taken into account, the magnitude of the horizontal shifts in the SC auditory receptive fields matched the observed behavior. The modulation by eye position was not due to concomitant movements of the external ears, as confirmed by recordings carried out after immobilizing the pinnae of one cat. However, the pattern of modulation after pinnae immobilization was inconsistent with the observations in the intact cat, suggesting that, in the intact animal, information about the position of the pinnae may be taken into account.

  14. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system.

    PubMed

    Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji

    2015-08-01

    To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.

  15. Measurement of upper extremity orientation by video stereometry system.

    PubMed

    Peterson, B; Palmerud, G

    1996-03-01

    In the attempt to gain a broader understanding of the causal relationships behind work-related symptoms of pain in the human shoulder, monitoring of arm position is crucial. Different methods have been used with varying accuracy. A video-based stereometry system, using infra-red light and reflecting markers for motion analysis, has been introduced for measurements in the fields of ergonomics, biomechanics and sports medicine. The purpose of this study is to investigate the sources of error in using this system for posture registration of the upper limb. Measurements are performed on a calibration fixture, on a mechanical model of the upper limb and on a subject with an exoskeleton. Particular, attention is given to inconsistencies and relative errors due to the finite geometrical precision with which the markers are positioned in the calibration fixture and on the studied objects, the limited capability to align the objects relative to the coordinate system of the calibration fixture and the errors connected to angular measurements using protractors etc. It is concluded that the system makes a valuable addition to existing instruments for non-contact posture measurement, and produces position data with an adequate accuracy in normal handling.

  16. In vivo dose verification method in catheter based high dose rate brachytherapy.

    PubMed

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Detector system dose verification comparisons for arc therapy: couch vs. gantry mount

    PubMed Central

    Manikandan, Arjunan; Nandy, Maitreyee; Sureka, Chandra Sekaran; Gossman, Michael S.; Sujatha, Nadendla; Rajendran, Vivek Thirupathur

    2014-01-01

    The aim of this study was to assess the performance of a gantry‐mounted detector system and a couch set detector system using a systematic multileaf collimator positional error manually introduced for volumetric‐modulated arc therapy. Four head and neck and esophagus VMAT plans were evaluated by measurement using an electronic portal imaging device and an ion chamber array. Each plan was copied and duplicated with a 1 mm systematic MLC positional error in the left leaf bank. Direct comparison of measurements for plans with and without the error permitted observational characteristics for quality assurance performance between detectors. A total of 48 different plans were evaluated for this testing. The mean percentage planar dose differences required to satisfy a 95% match between plans with and without the MLCPE were 5.2% ± 0.5% for the chamber array with gantry motion, 8.12% ± 1.04% for the chamber array with a static gantry at 0°, and 10.9% ± 1.4% for the EPID with gantry motion. It was observed that the EPID was less accurate due to overresponse of the MLCPE in the left leaf bank. The EPID always images bank‐A on the ipsilateral side of the detector, whereas for a chamber array or for a patient, that bank changes as it crosses the ‐90° or +90° position. A couch set detector system can reproduce the TPS calculated values most consistently. We recommend it as the most reliable patient specific QA system for MLC position error testing. This research is highlighted by the finding of up to 12.7% dose variation for H/N and esophagus cases for VMAT delivery, where the mere source of error was the stated clinically acceptability of 1 mm MLC position deviation of TG‐142. PACS numbers: 87.56.‐v, 87.55.‐x, 07.57.KP, 29.40.‐n, 85.25.Pb PMID:24892330

  18. SU-E-T-482: In Vivo Dosimetry of An Anthropomorphic Phantom by Using the RADPOS System for Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, R; Motegi, K; Hotta, K

    Purpose: Delivered doses in an anthropomorphic phantom were evaluated by using the RADPOS system for proton beam therapy. Methods: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing simultaneous online measurements of dose and spatial position. Through the RADPOS system, dose evaluation points can be determined. In vivo proton dosimetry was evaluated by using the RADPOS system and anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared to the treatment plan values that were calculated by a simplified Monte Carlo (SMC) method. Although the MOSFET responsemore » depends strongly on the linear energy transfer (LET) of proton beam, the MOSFET responses to proton beams were corrected with the SMC. Here, the SMC calculated only dose deposition determined by the experimental depth–dose distribution and lateral displacement of protons due to both multiple scattering effect in materials and incident angle. As a Result, the SMC could quickly calculate accurate doses in even heterogeneities. Results: In vivo dosimetry by using the RADPOS, as well as the MOSFET doses agreed in comparison with calculations by the SMC in the range of −3.0% to 8.3%. Most measurement errors occurred because of the uncertainties of dose calculations due to the position error of 1 mm. Conclusion: We evaluated the delivered doses in the anthropomorphic phantom by using the RADPOS system for proton beam therapy. The MOSFET doses agreed in comparison with calculations by the SMC within the measurement error. Therefore, we could successfully control the uncertainties of the measurement positions by using the RADPOS system within 1 mm in in vivo proton dosimetry. We aim for the clinical application of in vivo proton dosimetry with this RADPOS system.« less

  19. Maps of Jovian radio emission

    NASA Technical Reports Server (NTRS)

    Depater, I.

    1977-01-01

    Observations were made of Jupiter with the Westerbork telescope at all three frequencies available: 610 MHz, 1415 MHz, and 4995 MHz. The raw measurements were corrected for position errors, atmospheric extinction, Faraday rotation, clock, frequency, and baseline errors, and errors due to a shadowing effect. The data was then converted into brightness distribution of the sky by Fourier transformation. Maps of both thermal and nonthermal radiation were developed. Results indicate that the thermal disk of Jupiter measured at a wavelength of 6 cm has a temperature of 236 + or - 15 K. The radiation belts have an overall structure governed by the trapping of electrons in the dipolar field of the planet with significant beaming of the synchrotron radiation into the plane of the magnetic equator.

  20. Solutions to decrease a systematic error related to AAPH addition in the fluorescence-based ORAC assay.

    PubMed

    Mellado-Ortega, Elena; Zabalgogeazcoa, Iñigo; Vázquez de Aldana, Beatriz R; Arellano, Juan B

    2017-02-15

    Oxygen radical absorbance capacity (ORAC) assay in 96-well multi-detection plate readers is a rapid method to determine total antioxidant capacity (TAC) in biological samples. A disadvantage of this method is that the antioxidant inhibition reaction does not start in all of the 96 wells at the same time due to technical limitations when dispensing the free radical-generating azo initiator 2,2'-azobis (2-methyl-propanimidamide) dihydrochloride (AAPH). The time delay between wells yields a systematic error that causes statistically significant differences in TAC determination of antioxidant solutions depending on their plate position. We propose two alternative solutions to avoid this AAPH-dependent error in ORAC assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A Simple Approach to Fourier Aliasing

    ERIC Educational Resources Information Center

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and…

  2. Utility of PCR in diagnosing pulmonary tuberculosis.

    PubMed

    Bennedsen, J; Thomsen, V O; Pfyffer, G E; Funke, G; Feldmann, K; Beneke, A; Jenkins, P A; Hegginbothom, M; Fahr, A; Hengstler, M; Cleator, G; Klapper, P; Wilkins, E G

    1996-06-01

    At present, the rapid diagnosis of pulmonary tuberculosis rests with microscopy. However, this technique is insensitive and many cases of pulmonary tuberculosis cannot be initially confirmed. Nucleic acid amplification techniques are extremely sensitive, but when they are applied to tuberculosis diagnosis, they have given variable results. Investigators at six centers in Europe compared a standardized PCR system (Amplicor; Roche) against conventional culture methods. Defined clinical information was collected. Discrepant samples were retested, and inhibition assays and backup amplification with a separate primer pair were performed. Mycobacterium tuberculosis complex organisms were recovered from 654 (9.1%) of 7,194 samples and 293 (7.8%) of 3,738 patients. Four hundred fifty-two of the M. tuberculosis isolates from 204 patients were smear positive and culture positive. Among the culture-positive specimens, PCR had a sensitivity of 91.4% for smear-positive specimens and 60.9% for smear-negative specimens, with a specificity of 96.1%. Analysis of 254 PCR-positive, culture-negative specimens with discrepant results revealed that 130 were from patients with recently diagnosed tuberculosis and 94 represented a presumed laboratory error. Similar analysis of 118 PCR-negative, culture-positive specimens demonstrated that 27 discrepancies were due to presumed uneven aliquot distribution and 11 were due to presumed laboratory error; PCR inhibitors were detected in 8 specimens. Amplicor enables laboratories with little previous experience with nucleic acid amplification to perform PCR. Disease in more than 60% of the patients with tuberculosis with smear-negative, culture-positive specimens can be diagnosed at the time of admission, and potentially all patients with smear-positive specimens can immediately be confirmed as being infected with M. tuberculosis, leading to improved clinical management.

  3. Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.

    PubMed

    Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G

    2013-11-04

    Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.

  4. Subaperture test of wavefront error of large telescopes: error sources and stitching performance simulations

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Li, Shengyi; Wang, Guilin

    2014-11-01

    The wavefront error of large telescopes requires to be measured to check the system quality and also estimate the misalignment of the telescope optics including the primary, the secondary and so on. It is usually realized by a focal plane interferometer and an autocollimator flat (ACF) of the same aperture with the telescope. However, it is challenging for meter class telescopes due to high cost and technological challenges in producing the large ACF. Subaperture test with a smaller ACF is hence proposed in combination with advanced stitching algorithms. Major error sources include the surface error of the ACF, misalignment of the ACF and measurement noises. Different error sources have different impacts on the wavefront error. Basically the surface error of the ACF behaves like systematic error and the astigmatism will be cumulated and enlarged if the azimuth of subapertures remains fixed. It is difficult to accurately calibrate the ACF because it suffers considerable deformation induced by gravity or mechanical clamping force. Therefore a selfcalibrated stitching algorithm is employed to separate the ACF surface error from the subaperture wavefront error. We suggest the ACF be rotated around the optical axis of the telescope for subaperture test. The algorithm is also able to correct the subaperture tip-tilt based on the overlapping consistency. Since all subaperture measurements are obtained in the same imaging plane, lateral shift of the subapertures is always known and the real overlapping points can be recognized in this plane. Therefore lateral positioning error of subapertures has no impact on the stitched wavefront. In contrast, the angular positioning error changes the azimuth of the ACF and finally changes the systematic error. We propose an angularly uneven layout of subapertures to minimize the stitching error, which is very different from our knowledge. At last, measurement noises could never be corrected but be suppressed by means of averaging and environmental control. We simulate the performance of the stitching algorithm dealing with surface error and misalignment of the ACF, and noise suppression, which provides guidelines to optomechanical design of the stitching test system.

  5. Focal spot motion of linear accelerators and its effect on portal image analysis.

    PubMed

    Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel

    2003-06-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.

  6. Driving error and anxiety related to iPod mp3 player use in a simulated driving experience.

    PubMed

    Harvey, Ashley R; Carden, Randy L

    2009-08-01

    Driver distraction due to cellular phone usage has repeatedly been shown to increase the risk of vehicular accidents; however, the literature regarding the use of other personal electronic devices while driving is relatively sparse. It was hypothesized that the usage of an mp3 player would result in an increase in not only driving error while operating a driving simulator, but driver anxiety scores as well. It was also hypothesized that anxiety scores would be positively related to driving errors when using an mp3 player. 32 participants drove through a set course in a driving simulator twice, once with and once without an iPod mp3 player, with the order counterbalanced. Number of driving errors per course, such as leaving the road, impacts with stationary objects, loss of vehicular control, etc., and anxiety were significantly higher when an iPod was in use. Anxiety scores were unrelated to number of driving errors.

  7. Local indicators of geocoding accuracy (LIGA): theory and application

    PubMed Central

    Jacquez, Geoffrey M; Rommel, Robert

    2009-01-01

    Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795

  8. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  9. Crowded field photometry with deconvolved images.

    NASA Astrophysics Data System (ADS)

    Linde, P.; Spännare, S.

    A local implementation of the Lucy-Richardson algorithm has been used to deconvolve a set of crowded stellar field images. The effects of deconvolution on detection limits as well as on photometric and astrometric properties have been investigated as a function of the number of deconvolution iterations. Results show that deconvolution improves detection of faint stars, although artifacts are also found. Deconvolution provides more stars measurable without significant degradation of positional accuracy. The photometric precision is affected by deconvolution in several ways. Errors due to unresolved images are notably reduced, while flux redistribution between stars and background increases the errors.

  10. Subnanosecond GPS-based clock synchronization and precision deep-space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  11. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  12. Coping with medical error: a systematic review of papers to assess the effects of involvement in medical errors on healthcare professionals' psychological well-being.

    PubMed

    Sirriyeh, Reema; Lawton, Rebecca; Gardner, Peter; Armitage, Gerry

    2010-12-01

    Previous research has established health professionals as secondary victims of medical error, with the identification of a range of emotional and psychological repercussions that may occur as a result of involvement in error.2 3 Due to the vast range of emotional and psychological outcomes, research to date has been inconsistent in the variables measured and tools used. Therefore, differing conclusions have been drawn as to the nature of the impact of error on professionals and the subsequent repercussions for their team, patients and healthcare institution. A systematic review was conducted. Data sources were identified using database searches, with additional reference and hand searching. Eligibility criteria were applied to all studies identified, resulting in a total of 24 included studies. Quality assessment was conducted with the included studies using a tool that was developed as part of this research, but due to the limited number and diverse nature of studies, no exclusions were made on this basis. Review findings suggest that there is consistent evidence for the widespread impact of medical error on health professionals. Psychological repercussions may include negative states such as shame, self-doubt, anxiety and guilt. Despite much attention devoted to the assessment of negative outcomes, the potential for positive outcomes resulting from error also became apparent, with increased assertiveness, confidence and improved colleague relationships reported. It is evident that involvement in a medical error can elicit a significant psychological response from the health professional involved. However, a lack of literature around coping and support, coupled with inconsistencies and weaknesses in methodology, may need be addressed in future work.

  13. Evaluation of Heat Dissipation in the BPM Buttons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinayev,I.; Blednyhk, A.

    2009-05-04

    Growth of circulating current in the storage rings drastically increases heating of the beam position monitor (BPM) buttons due to the induced trapped modes is drastically increasing. Excessive heating can lead to the errors in the measuring of beam position or even catastrophic failures of the pick-up assembly. In this paper we present calculations of heat generated in the button for different geometries and materials. The obtained results are used for the optimization of the NSLS-II BPM buttons design.

  14. False Recognition in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease-Disinhibition or Amnesia?

    PubMed

    Flanagan, Emma C; Wong, Stephanie; Dutt, Aparna; Tu, Sicong; Bertoux, Maxime; Irish, Muireann; Piguet, Olivier; Rao, Sulakshana; Hodges, John R; Ghosh, Amitabha; Hornberger, Michael

    2016-01-01

    Episodic memory recall processes in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) can be similarly impaired, whereas recognition performance is more variable. A potential reason for this variability could be false-positive errors made on recognition trials and whether these errors are due to amnesia per se or a general over-endorsement of recognition items regardless of memory. The current study addressed this issue by analysing recognition performance on the Rey Auditory Verbal Learning Test (RAVLT) in 39 bvFTD, 77 AD and 61 control participants from two centers (India, Australia), as well as disinhibition assessed using the Hayling test. Whereas both AD and bvFTD patients were comparably impaired on delayed recall, bvFTD patients showed intact recognition performance in terms of the number of correct hits. However, both patient groups endorsed significantly more false-positives than controls, and bvFTD and AD patients scored equally poorly on a sensitivity index (correct hits-false-positives). Furthermore, measures of disinhibition were significantly associated with false positives in both groups, with a stronger relationship with false-positives in bvFTD. Voxel-based morphometry analyses revealed similar neural correlates of false positive endorsement across bvFTD and AD, with both patient groups showing involvement of prefrontal and Papez circuitry regions, such as medial temporal and thalamic regions, and a DTI analysis detected an emerging but non-significant trend between false positives and decreased fornix integrity in bvFTD only. These findings suggest that false-positive errors on recognition tests relate to similar mechanisms in bvFTD and AD, reflecting deficits in episodic memory processes and disinhibition. These findings highlight that current memory tests are not sufficient to accurately distinguish between bvFTD and AD patients.

  15. Validation of instrumentation to monitor dynamic performance of olympic weightlifters.

    PubMed

    Bruenger, Adam J; Smith, Sarah L; Sands, William A; Leigh, Michael R

    2007-05-01

    The purpose of this study was to validate the accuracy and reliability of the Weightlifting Video Overlay System (WVOS) used by coaches and sport biomechanists at the United States Olympic Training Center. Static trials with the bar set at specific positions and dynamic trials of a power snatch were performed. Static and dynamic values obtained by the WVOS were compared with values obtained by tape measure and standard video kinematic analysis. Coordinate positions (horizontal [X] and vertical [Y]) were compared on both ends (left and right) of the bar. Absolute technical error of measurement between WVOS and kinematic values were calculated (0.97 cm [left X], 0.98 cm [right X], 0.88 cm [left Y], and 0.53 cm [right Y]) for the static data. Pearson correlations for all dynamic trials exceeded r = 0.88. The greatest discrepancies between the 2 measuring systems were found to occur when there was twisting of the bar during the performance. This error was probably due to the location on the bar where the coordinates were measured. The WVOS appears to provide accurate position information when compared with standard kinematics; however, care must be taken in evaluating position measurements if there is a significant amount of twisting in the movement. The WVOS appears to be reliable and valid within reasonable error limits for the determination of weightlifting movement technique.

  16. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  17. Corrective Feedback and Second Language Acquisition: Differential Contributions of Implicit and Explicit Knowledge

    ERIC Educational Resources Information Center

    Ebadi, Mandana Rohollahzadeh; Saad, Mohd Rashid Mohd; Abedalaziz, Nabil

    2014-01-01

    The issue of error correction remains controversial in recent years due to the different positions of interface toward implicit and explicit knowledge of ESL learners. This study looks at the impacts of implicit corrective feedback in the form of recast on implicit and explicit knowledge of adult ESL learners. In an experimental study,…

  18. Radio structure effects on the optical and radio representations of the ICRF

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.; da Silva Neto, D. N.; Assafin, M.; Vieira Martins, R.

    Silva Neto et al. (2002) show that comparing the ICRF Ext.1 sources standard radio position (Ma et al. 1998) against their optical counterpart position (Zacharias et al. 1999, Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9±1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio stucture. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.

  19. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  20. Five-year lidar observational results and effects of El Chichon particles on Umkehr ozone data

    NASA Astrophysics Data System (ADS)

    Uchino, Osamu; Tabata, Isao; Kai, Kenji; Akita, Iwao

    1988-08-01

    Based on the values of integrated backscattering coefficient B, obtained from the ruby lidar measurements at the Meteorological Research Institude (MRI, at Tsukuba, Japan), the effect of dust particles due to two volcanic eruptions of Mt. El Chichon in 1982 on the Umkehr ozone data at the Tateno Aerological Observatory was determined. In addition, the effects of the aerosols on the Umkehr ozone data at Arosa, Switzerland were investigated using lidar data collected at Garmisch-Partenkirchen, Germany. It was found that both stratospheric and tropospheric aerosols induced a significant negative ozone error in the uppermost layers (33-47 km), caused a small and usually negative ozone error in layers between 16 and 33 km, and induced a significant positive ozone error in layers between 6 and 16 km.

  1. Representation of deformable motion for compression of dynamic cardiac image data

    NASA Astrophysics Data System (ADS)

    Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André

    2012-02-01

    We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.

  2. The efficacy of protoporphyrin as a predictive biomarker for lead exposure in canvasback ducks: effect of sample storage time

    USGS Publications Warehouse

    Franson, J.C.; Hohman, W.L.; Moore, J.L.; Smith, M.R.

    1996-01-01

    We used 363 blood samples collected from wild canvasback dueks (Aythya valisineria) at Catahoula Lake, Louisiana, U.S.A. to evaluate the effect of sample storage time on the efficacy of erythrocytic protoporphyrin as an indicator of lead exposure. The protoporphyrin concentration of each sample was determined by hematofluorometry within 5 min of blood collection and after refrigeration at 4 °C for 24 and 48 h. All samples were analyzed for lead by atomic absorption spectrophotometry. Based on a blood lead concentration of ≥0.2 ppm wet weight as positive evidence for lead exposure, the protoporphyrin technique resulted in overall error rates of 29%, 20%, and 19% and false negative error rates of 47%, 29% and 25% when hematofluorometric determinations were made on blood at 5 min, 24 h, and 48 h, respectively. False positive error rates were less than 10% for all three measurement times. The accuracy of the 24-h erythrocytic protoporphyrin classification of blood samples as positive or negative for lead exposure was significantly greater than the 5-min classification, but no improvement in accuracy was gained when samples were tested at 48 h. The false negative errors were probably due, at least in part, to the lag time between lead exposure and the increase of blood protoporphyrin concentrations. False negatives resulted in an underestimation of the true number of canvasbacks exposed to lead, indicating that hematofluorometry provides a conservative estimate of lead exposure.

  3. An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros

    2007-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.

  4. Optics measurement algorithms and error analysis for the proton energy frontier

    NASA Astrophysics Data System (ADS)

    Langner, A.; Tomás, R.

    2015-03-01

    Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β -functions (β*). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β* values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.

  5. Density Functional Calculations of Native Defects in CH 3 NH 3 PbI 3 : Effects of Spin–Orbit Coupling and Self-Interaction Error

    DOE PAGES

    Du, Mao-Hua

    2015-04-02

    We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less

  6. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  7. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less

  8. Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments

    PubMed Central

    Alshami, Iyad Husni; Sahibuddin, Shamsul; Firdaus, Firdaus

    2017-01-01

    The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices. PMID:28783047

  9. Review of current GPS methodologies for producing accurate time series and their error sources

    NASA Astrophysics Data System (ADS)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.

  10. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  11. Improved accuracy of ultrasound-guided therapies using electromagnetic tracking: in-vivo speed of sound measurements

    NASA Astrophysics Data System (ADS)

    Samboju, Vishal; Adams, Matthew; Salgaonkar, Vasant; Diederich, Chris J.; Cunha, J. Adam M.

    2017-02-01

    The speed of sound (SOS) for ultrasound devices used for imaging soft tissue is often calibrated to water, 1540 m/s1 , despite in-vivo soft tissue SOS varying from 1450 to 1613 m/s2 . Images acquired with 1540 m/s and used in conjunction with stereotactic external coordinate systems can thus result in displacement errors of several millimeters. Ultrasound imaging systems are routinely used to guide interventional thermal ablation and cryoablation devices, or radiation sources for brachytherapy3 . Brachytherapy uses small radioactive pellets, inserted interstitially with needles under ultrasound guidance, to eradicate cancerous tissue4 . Since the radiation dose diminishes with distance from the pellet as 1/r2 , imaging uncertainty of a few millimeters can result in significant erroneous dose delivery5,6. Likewise, modeling of power deposition and thermal dose accumulations from ablative sources are also prone to errors due to placement offsets from SOS errors7 . This work presents a method of mitigating needle placement error due to SOS variances without the need of ionizing radiation2,8. We demonstrate the effects of changes in dosimetry in a prostate brachytherapy environment due to patientspecific SOS variances and the ability to mitigate dose delivery uncertainty. Electromagnetic (EM) sensors embedded in the brachytherapy ultrasound system provide information regarding 3D position and orientation of the ultrasound array. Algorithms using data from these two modalities are used to correct bmode images to account for SOS errors. While ultrasound localization resulted in >3 mm displacements, EM resolution was verified to <1 mm precision using custom-built phantoms with various SOS, showing 1% accuracy in SOS measurement.

  12. Evidence of Non-Coincidence between Radio and Optical Positions of ICRF Sources.

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.; da Silva, D. N.; Assafin, M.; Vieira Martins, R.

    2003-11-01

    Silva Neto et al. (SNAAVM: 2002) show that comparing the ICRF Ext1 sources standard radio position (Ma et al., 1998) against their optical counterpart position(ZZHJVW: Zacharias et al., 1999; USNO A2.0: Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9 +/- 1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio structure. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.

  13. Cone beam CT-based set-up strategies with and without rotational correction for stereotactic body radiation therapy in the liver.

    PubMed

    Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per

    2017-06-01

    Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.

  14. Effect of cephalometer misalignment on calculations of facial asymmetry.

    PubMed

    Lee, Ki-Heon; Hwang, Hyeon-Shik; Curry, Sean; Boyd, Robert L; Norris, Kevin; Baumrind, Sheldon

    2007-07-01

    In this study, we evaluated errors introduced into the interpretation of facial asymmetry on posteroanterior (PA) cephalograms due to malpositioning of the x-ray emitter focal spot. We tested the hypothesis that horizontal displacements of the emitter from its ideal position would produce systematic displacements of skull landmarks that could be fully accounted for by the rules of projective geometry alone. A representative dry skull with 22 metal markers was used to generate a series of PA images from different emitter positions by using a fully calibrated stereo cephalometer. Empirical measurements of the resulting cephalograms were compared with mathematical predictions based solely on geometric rules. The empirical measurements matched the mathematical predictions within the limits of measurement error (x= 0.23 mm), thus supporting the hypothesis. Based upon this finding, we generated a completely symmetrical mathematical skull and calculated the expected errors for focal spots of several different magnitudes. Quantitative data were computed for focal spot displacements of different magnitudes. Misalignment of the x-ray emitter focal spot introduces systematic errors into the interpretation of facial asymmetry on PA cephalograms. For misalignments of less than 20 mm, the effect is small in individual cases. However, misalignments as small as 10 mm can introduce spurious statistical findings of significant asymmetry when mean values for large groups of PA images are evaluated.

  15. A fiber Bragg grating sensor system for estimating the large deflection of a lightweight flexible beam

    NASA Astrophysics Data System (ADS)

    Peng, Te; Yang, Yangyang; Ma, Lina; Yang, Huayong

    2016-10-01

    A sensor system based on fiber Bragg grating (FBG) is presented which is to estimate the deflection of a lightweight flexible beam, including the tip position and the tip rotation angle. In this paper, the classical problem of the deflection of a lightweight flexible beam of linear elastic material is analysed. We present the differential equation governing the behavior of a physical system and show that this equation although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. We used epoxy glue to attach the FBG sensors to specific locations upper and lower surface of the beam in order to measure local strain measurements. A quasi-distributed FBG static strain sensor network is designed and established. The estimation results from FBG sensors are also compared to reference displacements from the ANSYS simulation results and the experimental results obtained in the laboratory in the static case. The errors of the estimation by FBG sensors are analysed for further error-correction and option-design. When the load weight is 20g, the precision is the highest, the position errors ex and ex are 0.19%, 0.14% respectively, the rotation error eθ, is 1.23%.

  16. Correcting for deformation in skin-based marker systems.

    PubMed

    Alexander, E J; Andriacchi, T P

    2001-03-01

    A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.

  17. Statistical Sensor Fusion of a 9-DOF Mems Imu for Indoor Navigation

    NASA Astrophysics Data System (ADS)

    Chow, J. C. K.

    2017-09-01

    Sensor fusion of a MEMS IMU with a magnetometer is a popular system design, because such 9-DoF (degrees of freedom) systems are capable of achieving drift-free 3D orientation tracking. However, these systems are often vulnerable to ambient magnetic distortions and lack useful position information; in the absence of external position aiding (e.g. satellite/ultra-wideband positioning systems) the dead-reckoned position accuracy from a 9-DoF MEMS IMU deteriorates rapidly due to unmodelled errors. Positioning information is valuable in many satellite-denied geomatics applications (e.g. indoor navigation, location-based services, etc.). This paper proposes an improved 9-DoF IMU indoor pose tracking method using batch optimization. By adopting a robust in-situ user self-calibration approach to model the systematic errors of the accelerometer, gyroscope, and magnetometer simultaneously in a tightly-coupled post-processed least-squares framework, the accuracy of the estimated trajectory from a 9-DoF MEMS IMU can be improved. Through a combination of relative magnetic measurement updates and a robust weight function, the method is able to tolerate a high level of magnetic distortions. The proposed auto-calibration method was tested in-use under various heterogeneous magnetic field conditions to mimic a person walking with the sensor in their pocket, a person checking their phone, and a person walking with a smartwatch. In these experiments, the presented algorithm improved the in-situ dead-reckoning orientation accuracy by 79.8-89.5 % and the dead-reckoned positioning accuracy by 72.9-92.8 %, thus reducing the relative positioning error from metre-level to decimetre-level after ten seconds of integration, without making assumptions about the user's dynamics.

  18. Position Sense in Chronic Pain: Separating Peripheral and Central Mechanisms in Proprioception in Unilateral Limb Pain.

    PubMed

    Tsay, Anthony J; Giummarra, Melita J

    2016-07-01

    Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  19. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less

  20. Effects of Type of Agreement Violation and Utterance Position on the Auditory Processing of Subject-Verb Agreement: An ERP Study

    PubMed Central

    Dube, Sithembinkosi; Kung, Carmen; Peter, Varghese; Brock, Jon; Demuth, Katherine

    2016-01-01

    Previous ERP studies have often reported two ERP components—LAN and P600—in response to subject-verb (S-V) agreement violations (e.g., the boys *runs). However, the latency, amplitude and scalp distribution of these components have been shown to vary depending on various experiment-related factors. One factor that has not received attention is the extent to which the relative perceptual salience related to either the utterance position (verbal inflection in utterance-medial vs. utterance-final contexts) or the type of agreement violation (errors of omission vs. errors of commission) may influence the auditory processing of S-V agreement. The lack of reports on these effects in ERP studies may be due to the fact that most studies have used the visual modality, which does not reveal acoustic information. To address this gap, we used ERPs to measure the brain activity of Australian English-speaking adults while they listened to sentences in which the S-V agreement differed by type of agreement violation and utterance position. We observed early negative and positive clusters (AN/P600 effects) for the overall grammaticality effect. Further analysis revealed that the mean amplitude and distribution of the P600 effect was only significant in contexts where the S-V agreement violation occurred utterance-finally, regardless of type of agreement violation. The mean amplitude and distribution of the negativity did not differ significantly across types of agreement violation and utterance position. These findings suggest that the increased perceptual salience of the violation in utterance final position (due to phrase-final lengthening) influenced how S-V agreement violations were processed during sentence comprehension. Implications for the functional interpretation of language-related ERPs and experimental design are discussed. PMID:27625617

  1. Effects of Type of Agreement Violation and Utterance Position on the Auditory Processing of Subject-Verb Agreement: An ERP Study.

    PubMed

    Dube, Sithembinkosi; Kung, Carmen; Peter, Varghese; Brock, Jon; Demuth, Katherine

    2016-01-01

    Previous ERP studies have often reported two ERP components-LAN and P600-in response to subject-verb (S-V) agreement violations (e.g., the boys (*) runs). However, the latency, amplitude and scalp distribution of these components have been shown to vary depending on various experiment-related factors. One factor that has not received attention is the extent to which the relative perceptual salience related to either the utterance position (verbal inflection in utterance-medial vs. utterance-final contexts) or the type of agreement violation (errors of omission vs. errors of commission) may influence the auditory processing of S-V agreement. The lack of reports on these effects in ERP studies may be due to the fact that most studies have used the visual modality, which does not reveal acoustic information. To address this gap, we used ERPs to measure the brain activity of Australian English-speaking adults while they listened to sentences in which the S-V agreement differed by type of agreement violation and utterance position. We observed early negative and positive clusters (AN/P600 effects) for the overall grammaticality effect. Further analysis revealed that the mean amplitude and distribution of the P600 effect was only significant in contexts where the S-V agreement violation occurred utterance-finally, regardless of type of agreement violation. The mean amplitude and distribution of the negativity did not differ significantly across types of agreement violation and utterance position. These findings suggest that the increased perceptual salience of the violation in utterance final position (due to phrase-final lengthening) influenced how S-V agreement violations were processed during sentence comprehension. Implications for the functional interpretation of language-related ERPs and experimental design are discussed.

  2. Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?

    NASA Astrophysics Data System (ADS)

    Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.

    2017-12-01

    The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.

  3. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Sen; Li, Guangjun; Wang, Maojie

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less

  4. Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists.

    PubMed

    Ruiz, María Herrojo; Jabusch, Hans-Christian; Altenmüller, Eckart

    2009-11-01

    Music performance is an extremely rapid process with low incidence of errors even at the fast rates of production required. This is possible only due to the fast functioning of the self-monitoring system. Surprisingly, no specific data about error monitoring have been published in the music domain. Consequently, the present study investigated the electrophysiological correlates of executive control mechanisms, in particular error detection, during piano performance. Our target was to extend the previous research efforts on understanding of the human action-monitoring system by selecting a highly skilled multimodal task. Pianists had to retrieve memorized music pieces at a fast tempo in the presence or absence of auditory feedback. Our main interest was to study the interplay between auditory and sensorimotor information in the processes triggered by an erroneous action, considering only wrong pitches as errors. We found that around 70 ms prior to errors a negative component is elicited in the event-related potentials and is generated by the anterior cingulate cortex. Interestingly, this component was independent of the auditory feedback. However, the auditory information did modulate the processing of the errors after their execution, as reflected in a larger error positivity (Pe). Our data are interpreted within the context of feedforward models and the auditory-motor coupling.

  5. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    NASA Astrophysics Data System (ADS)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  6. Early star catalogues of the southern sky. De Houtman, Kepler (second and third classes), and Halley

    NASA Astrophysics Data System (ADS)

    Verbunt, F.; van Gent, R. H.

    2011-06-01

    De Houtman in 1603, Kepler in 1627 and Halley in 1679 published the earliest modern catalogues of the southern sky. We provide machine-readable versions of these catalogues, make some comparisons between them, and briefly discuss their accuracy on the basis of comparison with data from the modern Hipparcos Catalogue. We also compare our results for De Houtman with those by Knobel in 1917 finding good overall agreement. About half of the ~ 200 new stars (with respect to Ptolemaios) added by De Houtman are in twelve new constellations, half in old constellations like Centaurus, Lupus and Argo. The right ascensions and declinations given by De Houtman have error distributions with widths of about 40', the longitudes and latitudes given by Kepler have error distributions with widths of about 45'. Halley improves on this by more than an order of magnitude to widths of about 3', and all entries in his catalogue can be identified. The measurement errors of Halley are due to a systematic deviation of his sextant (increasing with angle to 2' at 60°) and random errors of 0.7 arcmin. The position errors in the catalogue of Halley are dominated by the position errors in the reference stars, which he took from Brahe. The full Tables Houtman, Classis, Aliter and Halley (see Tables 6, 7, 8) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A93

  7. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  8. Pretending Pirates: Tracing the Toxic Trail in South Asia

    ERIC Educational Resources Information Center

    Singh, Nivedita; Dev, Santosh; Sengupta, Santoshi

    2018-01-01

    The recent decades that launched us into the 21st century had a long list of horrendous errors, and scams, which can be traced back to decisions made by those in positions of authority, whether in the public sphere or in business. It questions the very intentions and objectives of leaders and one wonders if failures were deliberate or due to the…

  9. Modeling the probability distribution of positional errors incurred by residential address geocoding.

    PubMed

    Zimmerman, Dale L; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard

    2007-01-10

    The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m) than 100%-matched automated geocoding (median error length = 168 m). The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  10. Aliasing errors in measurements of beam position and ellipticity

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  11. Panel positioning error and support mechanism for a 30-m THz radio telescope

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Okoh, Daniel; Zhou, Guo-Hua; Li, Ai-Hua; Li, Guo-Ping; Cheng, Jing-Quan

    2011-06-01

    A 30-m TeraHertz (THz) radio telescope is proposed to operate at 200 μm with an active primary surface. This paper presents sensitivity analysis of active surface panel positioning errors with optical performance in terms of the Strehl ratio. Based on Ruze's surface error theory and using a Monte Carlo simulation, the effects of six rigid panel positioning errors, such as piston, tip, tilt, radial, azimuthal and twist displacements, were directly derived. The optical performance of the telescope was then evaluated using the standard Strehl ratio. We graphically illustrated the various panel error effects by presenting simulations of complete ensembles of full reflector surface errors for the six different rigid panel positioning errors. Study of the panel error sensitivity analysis revealed that the piston error and tilt/tip errors are dominant while the other rigid errors are much less important. Furthermore, as indicated by the results, we conceived of an alternative Master-Slave Concept-based (MSC-based) active surface by implementating a special Series-Parallel Concept-based (SPC-based) hexapod as the active panel support mechanism. A new 30-m active reflector based on the two concepts was demonstrated to achieve correction for all the six rigid panel positioning errors in an economically feasible way.

  12. Greenland ice sheet albedo variability and feedback: 2000-2015

    NASA Astrophysics Data System (ADS)

    Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.

    2015-12-01

    Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.

  13. Testing of a technique for remotely measuring water salinity in an estuarine environment

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  14. Matching Electron Beams Without Secondary Collimation for Treatment of Extensive Recurrent Chest-Wall Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri

    2015-01-15

    Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less

  15. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  16. Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light

    NASA Astrophysics Data System (ADS)

    Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari

    2017-03-01

    Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.

  17. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Treesearch

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  18. Characterisation of false-positive observations in botanical surveys

    PubMed Central

    2017-01-01

    Errors in botanical surveying are a common problem. The presence of a species is easily overlooked, leading to false-absences; while misidentifications and other mistakes lead to false-positive observations. While it is common knowledge that these errors occur, there are few data that can be used to quantify and describe these errors. Here we characterise false-positive errors for a controlled set of surveys conducted as part of a field identification test of botanical skill. Surveys were conducted at sites with a verified list of vascular plant species. The candidates were asked to list all the species they could identify in a defined botanically rich area. They were told beforehand that their final score would be the sum of the correct species they listed, but false-positive errors counted against their overall grade. The number of errors varied considerably between people, some people create a high proportion of false-positive errors, but these are scattered across all skill levels. Therefore, a person’s ability to correctly identify a large number of species is not a safeguard against the generation of false-positive errors. There was no phylogenetic pattern to falsely observed species; however, rare species are more likely to be false-positive as are species from species rich genera. Raising the threshold for the acceptance of an observation reduced false-positive observations dramatically, but at the expense of more false negative errors. False-positive errors are higher in field surveying of plants than many people may appreciate. Greater stringency is required before accepting species as present at a site, particularly for rare species. Combining multiple surveys resolves the problem, but requires a considerable increase in effort to achieve the same sensitivity as a single survey. Therefore, other methods should be used to raise the threshold for the acceptance of a species. For example, digital data input systems that can verify, feedback and inform the user are likely to reduce false-positive errors significantly. PMID:28533972

  19. A procedure for the significance testing of unmodeled errors in GNSS observations

    NASA Astrophysics Data System (ADS)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  20. Utilizing the N beam position monitor method for turn-by-turn optics measurements

    NASA Astrophysics Data System (ADS)

    Langner, A.; Benedetti, G.; Carlà, M.; Iriso, U.; Martí, Z.; de Portugal, J. Coello; Tomás, R.

    2016-09-01

    The N beam position monitor method (N -BPM) which was recently developed for the LHC has significantly improved the precision of optics measurements that are based on BPM turn-by-turn data. The main improvement is due to the consideration of correlations for statistical and systematic error sources, as well as increasing the amount of BPM combinations which are used to derive the β -function at one location. We present how this technique can be applied at light sources like ALBA, and compare the results with other methods.

  1. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  2. The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC.

    PubMed

    Inghelbrecht, Veronique; Verhaevert, Jo; van Hecke, Tanja; Rogier, Hendrik

    2014-11-11

    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case.

  3. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  4. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  5. PDR with a Foot-Mounted IMU and Ramp Detection

    PubMed Central

    Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge

    2011-01-01

    The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701

  6. Compromised encoding of proprioceptively determined joint angles in older adults: the role of working memory and attentional load.

    PubMed

    Goble, Daniel J; Mousigian, Marianne A; Brown, Susan H

    2012-01-01

    Perceiving the positions and movements of one's body segments (i.e., proprioception) is critical for movement control. However, this ability declines with older age as has been demonstrated by joint angle matching paradigms in the absence of vision. The aim of the present study was to explore the extent to which reduced working memory and attentional load influence older adult proprioceptive matching performance. Older adults with relatively HIGH versus LOW working memory ability as determined by backward digit span and healthy younger adults, performed memory-based elbow position matching with and without attentional load (i.e., counting by 3 s) during target position encoding. Even without attentional load, older adults with LOW digit spans (i.e., 4 digits or less) had larger matching errors than younger adults. Further, LOW older adults made significantly greater errors when attentional loads were present during proprioceptive target encoding as compared to both younger and older adults with HIGH digit span scores (i.e., 5 digits or greater). These results extend previous position matching results that suggested greater errors in older adults were due to degraded input signals from peripheral mechanoreceptors. Specifically, the present work highlights the role cognitive factors play in the assessment of older adult proprioceptive acuity using memory-based matching paradigms. Older adults with LOW working memory appear prone to compromised proprioceptive encoding, especially when secondary cognitive tasks must be concurrently executed. This may ultimately result in poorer performance on various activities of daily living.

  7. Horizon sensors attitude errors simulation for the Brazilian Remote Sensing Satellite

    NASA Astrophysics Data System (ADS)

    Vicente de Brum, Antonio Gil; Ricci, Mario Cesar

    Remote sensing, meteorological and other types of satellites require an increasingly better Earth related positioning. From the past experience it is well known that the thermal horizon in the 15 micrometer band provides conditions of determining the local vertical at any time. This detection is done by horizon sensors which are accurate instruments for Earth referred attitude sensing and control whose performance is limited by systematic and random errors amounting about 0.5 deg. Using the computer programs OBLATE, SEASON, ELECTRO and MISALIGN, developed at INPE to simulate four distinct facets of conical scanning horizon sensors, attitude errors are obtained for the Brazilian Remote Sensing Satellite (the first one, SSR-1, is scheduled to fly in 1996). These errors are due to the oblate shape of the Earth, seasonal and latitudinal variations of the 15 micrometer infrared radiation, electronic processing time delay and misalignment of sensor axis. The sensor related attitude errors are thus properly quantified in this work and will, together with other systematic errors (for instance, ambient temperature variation) take part in the pre-launch analysis of the Brazilian Remote Sensing Satellite, with respect to the horizon sensor performance.

  8. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  9. Dynamic characterization of Galfenol

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.

    2015-04-01

    A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.

  10. Dynamic Characterization of Galfenol

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.

    2015-01-01

    A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.

  11. ADEPT, a dynamic next generation sequencing data error-detection program with trimming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shihai; Lo, Chien-Chi; Li, Po-E

    Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less

  12. ADEPT, a dynamic next generation sequencing data error-detection program with trimming

    DOE PAGES

    Feng, Shihai; Lo, Chien-Chi; Li, Po-E; ...

    2016-02-29

    Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less

  13. Gaze Tracking System for User Wearing Glasses

    PubMed Central

    Gwon, Su Yeong; Cho, Chul Woo; Lee, Hyeon Chang; Lee, Won Oh; Park, Kang Ryoung

    2014-01-01

    Conventional gaze tracking systems are limited in cases where the user is wearing glasses because the glasses usually produce noise due to reflections caused by the gaze tracker's lights. This makes it difficult to locate the pupil and the specular reflections (SRs) from the cornea of the user's eye. These difficulties increase the likelihood of gaze detection errors because the gaze position is estimated based on the location of the pupil center and the positions of the corneal SRs. In order to overcome these problems, we propose a new gaze tracking method that can be used by subjects who are wearing glasses. Our research is novel in the following four ways: first, we construct a new control device for the illuminator, which includes four illuminators that are positioned at the four corners of a monitor. Second, our system automatically determines whether a user is wearing glasses or not in the initial stage by counting the number of white pixels in an image that is captured using the low exposure setting on the camera. Third, if it is determined that the user is wearing glasses, the four illuminators are turned on and off sequentially in order to obtain an image that has a minimal amount of noise due to reflections from the glasses. As a result, it is possible to avoid the reflections and accurately locate the pupil center and the positions of the four corneal SRs. Fourth, by turning off one of the four illuminators, only three corneal SRs exist in the captured image. Since the proposed gaze detection method requires four corneal SRs for calculating the gaze position, the unseen SR position is estimated based on the parallelogram shape that is defined by the three SR positions and the gaze position is calculated. Experimental results showed that the average gaze detection error with 20 persons was about 0.70° and the processing time is 63.72 ms per each frame. PMID:24473283

  14. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    PubMed Central

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552

  15. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.

    PubMed

    Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J

    2018-01-01

    Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.

  16. Flight calibration of compensated and uncompensated pitot-static airspeed probes and application of the probes to supersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Webb, L. D.; Washington, H. P.

    1972-01-01

    Static pressure position error calibrations for a compensated and an uncompensated XB-70 nose boom pitot static probe were obtained in flight. The methods (Pacer, acceleration-deceleration, and total temperature) used to obtain the position errors over a Mach number range from 0.5 to 3.0 and an altitude range from 25,000 feet to 70,000 feet are discussed. The error calibrations are compared with the position error determined from wind tunnel tests, theoretical analysis, and a standard NACA pitot static probe. Factors which influence position errors, such as angle of attack, Reynolds number, probe tip geometry, static orifice location, and probe shape, are discussed. Also included are examples showing how the uncertainties caused by position errors can affect the inlet controls and vertical altitude separation of a supersonic transport.

  17. A simulation of GPS and differential GPS sensors

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  18. Measuring uncertainty in dose delivered to the cochlea due to setup error during external beam treatment of patients with cancer of the head and neck.

    PubMed

    Yan, M; Lovelock, D; Hunt, M; Mechalakos, J; Hu, Y; Pham, H; Jackson, A

    2013-12-01

    To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or -0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1-2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39-16.8) cGy, or 10.1 (0.8-32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%-9.06%) and 10.2% (0.7%-63.6%), respectively. Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%.

  19. Measuring uncertainty in dose delivered to the cochlea due to setup error during external beam treatment of patients with cancer of the head and neck

    PubMed Central

    Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A.

    2013-01-01

    Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup, the standard deviation of setup error reduced by 31%, 42%, and 54% in RL, AP, and SI direction, respectively, and consequently, the uncertainty of the mean dose to cochlea reduced more than 50%. The authors estimate that the effects of these uncertainties on the probability of hearing loss for an individual patient could be as large as 10%. PMID:24320510

  20. Evaluation of Natural Language Processing (NLP) Systems to Annotate Drug Product Labeling with MedDRA Terminology.

    PubMed

    Ly, Thomas; Pamer, Carol; Dang, Oanh; Brajovic, Sonja; Haider, Shahrukh; Botsis, Taxiarchis; Milward, David; Winter, Andrew; Lu, Susan; Ball, Robert

    2018-05-31

    The FDA Adverse Event Reporting System (FAERS) is a primary data source for identifying unlabeled adverse events (AEs) in a drug or biologic drug product's postmarketing phase. Many AE reports must be reviewed by drug safety experts to identify unlabeled AEs, even if the reported AEs are previously identified, labeled AEs. Integrating the labeling status of drug product AEs into FAERS could increase report triage and review efficiency. Medical Dictionary for Regulatory Activities (MedDRA) is the standard for coding AE terms in FAERS cases. However, drug manufacturers are not required to use MedDRA to describe AEs in product labels. We hypothesized that natural language processing (NLP) tools could assist in automating the extraction and MedDRA mapping of AE terms in drug product labels. We evaluated the performance of three NLP systems, (ETHER, I2E, MetaMap) for their ability to extract AE terms from drug labels and translate the terms to MedDRA Preferred Terms (PTs). Pharmacovigilance-based annotation guidelines for extracting AE terms from drug labels were developed for this study. We compared each system's output to MedDRA PT AE lists, manually mapped by FDA pharmacovigilance experts using the guidelines, for ten drug product labels known as the "gold standard AE list" (GSL) dataset. Strict time and configuration conditions were imposed in order to test each system's capabilities under conditions of no human intervention and minimal system configuration. Each NLP system's output was evaluated for precision, recall and F measure in comparison to the GSL. A qualitative error analysis (QEA) was conducted to categorize a random sample of each NLP system's false positive and false negative errors. A total of 417, 278, and 250 false positive errors occurred in the ETHER, I2E, and MetaMap outputs, respectively. A total of 100, 80, and 187 false negative errors occurred in ETHER, I2E, and MetaMap outputs, respectively. Precision ranged from 64% to 77%, recall from 64% to 83% and F measure from 67% to 79%. I2E had the highest precision (77%), recall (83%) and F measure (79%). ETHER had the lowest precision (64%). MetaMap had the lowest recall (64%). The QEA found that the most prevalent false positive errors were context errors such as "Context error/General term", "Context error/Instructions or monitoring parameters", "Context error/Medical history preexisting condition underlying condition risk factor or contraindication", and "Context error/AE manifestations or secondary complication". The most prevalent false negative errors were in the "Incomplete or missed extraction" error category. Missing AE terms were typically due to long terms, or terms containing non-contiguous words which do not correspond exactly to MedDRA synonyms. MedDRA mapping errors were a minority of errors for ETHER and I2E but were the most prevalent false positive errors for MetaMap. The results demonstrate that it may be feasible to use NLP tools to extract and map AE terms to MedDRA PTs. However, the NLP tools we tested would need to be modified or reconfigured to lower the error rates to support their use in a regulatory setting. Tools specific for extracting AE terms from drug labels and mapping the terms to MedDRA PTs may need to be developed to support pharmacovigilance. Conducting research using additional NLP systems on a larger, diverse GSL would also be informative. Copyright © 2018. Published by Elsevier Inc.

  1. Can the Pro-Drop Parameter Account for All the Errors in the Acquisition of Non-Referential "It" in L2 English?

    ERIC Educational Resources Information Center

    Antonova-Ünlü, Elena

    2015-01-01

    Numerous studies, examining the acquisition of non-referential it in [-pro-drop] English by learners of [+pro-drop] languages, have revealed that their participants omit non-referential subjects in English if their L1 allows null-subject position. However, due to the specificity of their focus, these studies have not considered other difficulties…

  2. An error analysis perspective for patient alignment systems.

    PubMed

    Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann

    2013-09-01

    This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.

  3. Realtime mitigation of GPS SA errors using Loran-C

    NASA Technical Reports Server (NTRS)

    Braasch, Soo Y.

    1994-01-01

    The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.

  4. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality.

    PubMed

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-02-04

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.

  5. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality

    PubMed Central

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-01-01

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320

  6. Addressing Loss of Efficiency Due to Misclassification Error in Enriched Clinical Trials for the Evaluation of Targeted Therapies Based on the Cox Proportional Hazards Model.

    PubMed

    Tsai, Chen-An; Lee, Kuan-Ting; Liu, Jen-Pei

    2016-01-01

    A key feature of precision medicine is that it takes individual variability at the genetic or molecular level into account in determining the best treatment for patients diagnosed with diseases detected by recently developed novel biotechnologies. The enrichment design is an efficient design that enrolls only the patients testing positive for specific molecular targets and randomly assigns them for the targeted treatment or the concurrent control. However there is no diagnostic device with perfect accuracy and precision for detecting molecular targets. In particular, the positive predictive value (PPV) can be quite low for rare diseases with low prevalence. Under the enrichment design, some patients testing positive for specific molecular targets may not have the molecular targets. The efficacy of the targeted therapy may be underestimated in the patients that actually do have the molecular targets. To address the loss of efficiency due to misclassification error, we apply the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential procedure, based on the Cox proportional hazard model, for treatment effects of the targeted treatment effect for the true-positive patients with the molecular targets. Our proposed procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated accuracy measures. We employed the expectation-maximization algorithm in conjunction with the bootstrap technique for estimation of the hazard ratio and its estimated variance. We report the results of simulation studies which empirically investigated the performance of the proposed method. Our proposed method is illustrated by a numerical example.

  7. Prospective evaluation of radionuclide scanning in detection of intestinal necrosis in neonatal necrotizing enterocolitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, G.M.; Sfakianakis, G.N.; Lobe, T.E.

    1981-06-01

    The ability of external imaging to demonstrate intestinal infarction in neonatal necrotizing enterocolitis (NEC) was prospectively evaluated. The radiopharmaceutical technetium--99m diphosphonate was injected intravenously and the patients subsequently underwent abdominal scanning. Clinical patient care and interpretation of the images were entirely independent throughout the study. Of 33 studies, 7 were positive, 4 were suspicious, and 22 were negative. One false positive study detected ischemia without transmural infarction. The second false positive scan occurred postoperatively and was due to misinterpretation of the hyperactivity along the surgical incision. None of the suspicious cases had damaged bowel. The two false negative studies clearlymore » failed to demonstrate frank intestinal necrosis. The presence of very small areas of infarction, errors in technical settings, subjective interpretation of scans and delayed clearance of the radionuclide in a critically ill neonate may all limit the accuracy of external abdominal scanning. However, in spite of an error rate of 12%, it is likely that this technique will enhance the present clinical, laboratory, and radiologic parameters of patient management in NEC.« less

  8. Evaluating remotely sensed plant count accuracy with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers

    NASA Astrophysics Data System (ADS)

    Leiva, Josue Nahun; Robbins, James; Saraswat, Dharmendra; She, Ying; Ehsani, Reza

    2017-07-01

    This study evaluated the effect of flight altitude and canopy separation of container-grown Fire Chief™ arborvitae (Thuja occidentalis L.) on counting accuracy. Images were taken at 6, 12, and 22 m above the ground using unmanned aircraft systems. Plants were spaced to achieve three canopy separation treatments: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. Plants were placed on two different ground covers: black fabric and gravel. A counting algorithm was trained using Feature Analyst®. Total counting error, false positives, and unidentified plants were reported for images analyzed. In general, total counting error was smaller when plants were fully separated. The effect of ground cover on counting accuracy varied with the counting algorithm. Total counting error for plants placed on gravel (-8) was larger than for those on a black fabric (-2), however, false positive counts were similar for black fabric (6) and gravel (6). Nevertheless, output images of plants placed on gravel did not show a negative effect due to the ground cover but was impacted by differences in image spatial resolution.

  9. Asteroid approach covariance analysis for the Clementine mission

    NASA Technical Reports Server (NTRS)

    Ionasescu, Rodica; Sonnabend, David

    1993-01-01

    The Clementine mission is designed to test Strategic Defense Initiative Organization (SDIO) technology, the Brilliant Pebbles and Brilliant Eyes sensors, by mapping the moon surface and flying by the asteroid Geographos. The capability of two of the instruments available on board the spacecraft, the lidar (laser radar) and the UV/Visible camera is used in the covariance analysis to obtain the spacecraft delivery uncertainties at the asteroid. These uncertainties are due primarily to asteroid ephemeris uncertainties. On board optical navigation reduces the uncertainty in the knowledge of the spacecraft position in the direction perpendicular to the incoming asymptote to a one-sigma value of under 1 km, at the closest approach distance of 100 km. The uncertainty in the knowledge of the encounter time is about 0.1 seconds for a flyby velocity of 10.85 km/s. The magnitude of these uncertainties is due largely to Center Finding Errors (CFE). These systematic errors represent the accuracy expected in locating the center of the asteroid in the optical navigation images, in the absence of a topographic model for the asteroid. The direction of the incoming asymptote cannot be estimated accurately until minutes before the asteroid flyby, and correcting for it would require autonomous navigation. Orbit determination errors dominate over maneuver execution errors, and the final delivery accuracy attained is basically the orbit determination uncertainty before the final maneuver.

  10. Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.

    PubMed

    Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian

    2014-03-01

    Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.

  11. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  12. Variable mid-latitude X-ray source 3U 0042+32

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Clark, G. W.; Dower, R.; Doxsey, R.; Jernigan, G.; Li, F.

    1977-01-01

    A celestial location with an error circle of radius one minute is reported for the mid-latitude X-ray source 3U 0042+32; comparison of observations from the Ariel-5 and Uhuru satellites with data obtained from two independent rotation modulation collimators yields the precise position. Studies to detect regular pulsations and energy spectra of the X-ray source are also discussed. Analysis of the peak X-ray flux in the error circle, as well as certain distance constraints, suggests that the source of the flux may be a neutron star in a distant galactic binary system having a companion that undergoes episodes of mass transfer due to eruption or orbital eccentricity.

  13. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  14. Free space optical ultra-wideband communications over atmospheric turbulence channels.

    PubMed

    Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu

    2010-08-02

    A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.

  15. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  16. Proprioceptive deficit in individuals with unilateral tearing of the anterior cruciate ligament after active evaluation of the sense of joint position.

    PubMed

    Cossich, Victor; Mallrich, Frédéric; Titonelli, Victor; de Sousa, Eduardo Branco; Velasques, Bruna; Salles, José Inácio

    2014-01-01

    To ascertain whether the proprioceptive deficit in the sense of joint position continues to be present when patients with a limb presenting a deficient anterior cruciate ligament (ACL) are assessed by testing their active reproduction of joint position, in comparison with the contralateral limb. Twenty patients with unilateral ACL tearing participated in the study. Their active reproduction of joint position in the limb with the deficient ACL and in the healthy contralateral limb was tested. Meta-positions of 20% and 50% of the maximum joint range of motion were used. Proprioceptive performance was determined through the values of the absolute error, variable error and constant error. Significant differences in absolute error were found at both of the positions evaluated, and in constant error at 50% of the maximum joint range of motion. When evaluated in terms of absolute error, the proprioceptive deficit continues to be present even when an active evaluation of the sense of joint position is made. Consequently, this sense involves activity of both intramuscular and tendon receptors.

  17. Intraoperative analysis of sentinel lymph nodes by imprint cytology for cancer of the breast.

    PubMed

    Shiver, Stephen A; Creager, Andrew J; Geisinger, Kim; Perrier, Nancy D; Shen, Perry; Levine, Edward A

    2002-11-01

    The utilization of lymphatic mapping techniques for breast carcinoma has made intraoperative evaluation of sentinel lymph nodes (SLN) attractive, because axillary lymph node dissection can be performed during the initial surgery if the SLN is positive. The optimal technique for rapid SLN assessment has not been determined. Both frozen sectioning and imprint cytology are used for rapid intraoperative SLN evaluation. A retrospective review of the intraoperative imprint cytology results of 133 SLN mapping procedures from 132 breast carcinoma patients was performed. SLN were evaluated intraoperatively by bisecting the lymph node and making imprints of each cut surface. Imprints were stained with hematoxylin and eosin (H&E) and Diff-Quik. Permanent sections were evaluated with up to four H&E stained levels and cytokeratin immunohistochemistry. Imprint cytology results were compared with final histologic results. Sensitivity and specificity of imprint cytology were 56% and 100%, respectively, producing a 100% positive predictive value and 88% negative predictive value. Imprint cytology was significantly more sensitive for macrometastasis than micrometastasis 87% versus 22% (P = 0.00007). Of 13 total false negatives, 11 were found to be due to sampling error and 2 due to errors in intraoperative interpretation. Both intraoperative interpretation errors involved a diagnosis of lobular breast carcinoma. The sensitivity and specificity of imprint cytology are similar to that of frozen section evaluation. Imprint cytology is therefore a viable alternative to frozen sectioning when intraoperative evaluation is required. If SLN micrometastasis is used to determine the need for further lymphadenectomy, more sensitive intraoperative methods will be needed to avoid a second operation.

  18. Color extended visual cryptography using error diffusion.

    PubMed

    Kang, InKoo; Arce, Gonzalo R; Lee, Heung-Kyu

    2011-01-01

    Color visual cryptography (VC) encrypts a color secret message into n color halftone image shares. Previous methods in the literature show good results for black and white or gray scale VC schemes, however, they are not sufficient to be applied directly to color shares due to different color structures. Some methods for color visual cryptography are not satisfactory in terms of producing either meaningless shares or meaningful shares with low visual quality, leading to suspicion of encryption. This paper introduces the concept of visual information pixel (VIP) synchronization and error diffusion to attain a color visual cryptography encryption method that produces meaningful color shares with high visual quality. VIP synchronization retains the positions of pixels carrying visual information of original images throughout the color channels and error diffusion generates shares pleasant to human eyes. Comparisons with previous approaches show the superior performance of the new method.

  19. Registration of an on-axis see-through head-mounted display and camera system

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Rensing, Noa M.; Weststrate, Evan; Peli, Eli

    2005-02-01

    An optical see-through head-mounted display (HMD) system integrating a miniature camera that is aligned with the user's pupil is developed and tested. Such an HMD system has a potential value in many augmented reality applications, in which registration of the virtual display to the real scene is one of the critical aspects. The camera alignment to the user's pupil results in a simple yet accurate calibration and a low registration error across a wide range of depth. In reality, a small camera-eye misalignment may still occur in such a system due to the inevitable variations of HMD wearing position with respect to the eye. The effects of such errors are measured. Calculation further shows that the registration error as a function of viewing distance behaves nearly the same for different virtual image distances, except for a shift. The impact of prismatic effect of the display lens on registration is also discussed.

  20. The Frame Constraint on Experimentally Elicited Speech Errors in Japanese.

    PubMed

    Saito, Akie; Inoue, Tomoyoshi

    2017-06-01

    The so-called syllable position effect in speech errors has been interpreted as reflecting constraints posed by the frame structure of a given language, which is separately operating from linguistic content during speech production. The effect refers to the phenomenon that when a speech error occurs, replaced and replacing sounds tend to be in the same position within a syllable or word. Most of the evidence for the effect comes from analyses of naturally occurring speech errors in Indo-European languages, and there are few studies examining the effect in experimentally elicited speech errors and in other languages. This study examined whether experimentally elicited sound errors in Japanese exhibits the syllable position effect. In Japanese, the sub-syllabic unit known as "mora" is considered to be a basic sound unit in production. Results showed that the syllable position effect occurred in mora errors, suggesting that the frame constrains the ordering of sounds during speech production.

  1. Radar error statistics for the space shuttle

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

  2. Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995

    NASA Technical Reports Server (NTRS)

    Blerman, Gregory S.

    1995-01-01

    Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.

  3. Statistical approaches to account for false-positive errors in environmental DNA samples.

    PubMed

    Lahoz-Monfort, José J; Guillera-Arroita, Gurutzeta; Tingley, Reid

    2016-05-01

    Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies. © 2015 John Wiley & Sons Ltd.

  4. Optical system components for navigation grade fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  5. Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.

    NASA Astrophysics Data System (ADS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  6. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  7. Accurate estimation of sigma(exp 0) using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Rignot, Eric

    1995-01-01

    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.

  8. Assessing explicit error reporting in the narrative electronic medical record using keyword searching.

    PubMed

    Cao, Hui; Stetson, Peter; Hripcsak, George

    2003-01-01

    Many types of medical errors occur in and outside of hospitals, some of which have very serious consequences and increase cost. Identifying errors is a critical step for managing and preventing them. In this study, we assessed the explicit reporting of medical errors in the electronic record. We used five search terms "mistake," "error," "incorrect," "inadvertent," and "iatrogenic" to survey several sets of narrative reports including discharge summaries, sign-out notes, and outpatient notes from 1991 to 2000. We manually reviewed all the positive cases and identified them based on the reporting of physicians. We identified 222 explicitly reported medical errors. The positive predictive value varied with different keywords. In general, the positive predictive value for each keyword was low, ranging from 3.4 to 24.4%. Therapeutic-related errors were the most common reported errors and these reported therapeutic-related errors were mainly medication errors. Keyword searches combined with manual review indicated some medical errors that were reported in medical records. It had a low sensitivity and a moderate positive predictive value, which varied by search term. Physicians were most likely to record errors in the Hospital Course and History of Present Illness sections of discharge summaries. The reported errors in medical records covered a broad range and were related to several types of care providers as well as non-health care professionals.

  9. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems

    PubMed Central

    Bouda, Martin; Caplan, Joshua S.; Saiers, James E.

    2016-01-01

    Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not characterize the scaling of our digitizations well: the scaling exponent was a function of scale. Our findings serve as a caution against applying FD under the assumption of statistical self-similarity without rigorously evaluating it first. PMID:26925073

  10. MO-C-17A-04: Forecasting Longitudinal Changes in Oropharyngeal Tumor Morphology Throughout the Course of Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, A; UT Graduate School of Biomedical Sciences, Houston, TX; Rao, A

    2014-06-15

    Purpose: To generate, evaluate, and compare models that predict longitudinal changes in tumor morphology throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe the size, shape, and position of 35 oropharyngeal GTVs at each treatment fraction during intensity-modulated radiation therapy. The feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 GTV surface landmarks. The other was based on a spherical harmonic decomposition of these distances. Feature vectors over the course of therapy were describedmore » using static, linear, and mean models. The error of these models in forecasting GTV morphology was evaluated with leave-one-out cross-validation, and their accuracy was compared using Wilcoxon signed-rank tests. The effect of adjusting model parameters at 1, 2, 3, or 5 time points (adjustment points) was also evaluated. Results: The addition of a single adjustment point to the static model decreased the median error in forecasting the position of GTV surface landmarks by 1.2 mm (p<0.001). Additional adjustment points further decreased forecast error by about 0.4 mm each. The linear model decreased forecast error compared to the static model for feature vectors based on both shape descriptors (0.2 mm), while the mean model did so only for those based on the inter-landmark distances (0.2 mm). The decrease in forecast error due to adding adjustment points was greater than that due to model selection. Both effects diminished with subsequent adjustment points. Conclusion: Models of tumor morphology that include information from prior patients and/or prior treatment fractions are able to predict the tumor surface at each treatment fraction during radiation therapy. The predicted tumor morphology can be compared with patient anatomy or dose distributions, opening the possibility of anticipatory re-planning. American Legion Auxiliary Fellowship; The University of Texas Graduate School of Biomedical Sciences at Houston.« less

  11. Short RNA indicator sequences are not completely degraded by autoclaving

    PubMed Central

    Unnithan, Veena V.; Unc, Adrian; Joe, Valerisa; Smith, Geoffrey B.

    2014-01-01

    Short indicator RNA sequences (<100 bp) persist after autoclaving and are recovered intact by molecular amplification. Primers targeting longer sequences are most likely to produce false positives due to amplification errors easily verified by melting curves analyses. If short indicator RNA sequences are used for virus identification and quantification then post autoclave RNA degradation methodology should be employed, which may include further autoclaving. PMID:24518856

  12. Huntington’s Disease

    DTIC Science & Technology

    2012-05-01

    testing due to the inheritance pattern of the disease. The airman’s father and brother were both negative for the Huntington gene; however, both the...airman and his mother were found to be positive and underwent further genetic counseling. The airman had discussed the results and his concern with his...but modern genetic testing can now detect the defect in the HTT allele of chromosome #4.3 In affected individuals, errors in DNA replication occur

  13. Study on relationship of performance shaping factor in human error probability with prevalent stress of PUSPATI TRIGA reactor operators

    NASA Astrophysics Data System (ADS)

    Rahim, Ahmad Nabil Bin Ab; Mohamed, Faizal; Farid, Mohd Fairus Abdul; Fazli Zakaria, Mohd; Sangau Ligam, Alfred; Ramli, Nurhayati Binti

    2018-01-01

    Human factor can be affected by prevalence stress measured using Depression, Anxiety and Stress Scale (DASS). From the respondents feedback can be summarized that the main factor causes the highest prevalence stress is due to the working conditions that require operators to handle critical situation and make a prompt critical decisions. The relationship between the prevalence stress and performance shaping factors found that PSFFitness and PSFWork Process showed positive Pearson’s Correlation with the score of .763 and .826 while the level of significance, p = .028 and p = .012. These positive correlations with good significant values between prevalence stress and human performance shaping factor (PSF) related to fitness, work processes and procedures. The higher the stress level of the respondents, the higher the score of selected for the PSFs. This is due to the higher levels of stress lead to deteriorating physical health and cognitive also worsened. In addition, the lack of understanding in the work procedures can also be a factor that causes a growing stress. The higher these values will lead to the higher the probabilities of human error occur. Thus, monitoring the level of stress among operators RTP is important to ensure the safety of RTP.

  14. Role-modeling and medical error disclosure: a national survey of trainees.

    PubMed

    Martinez, William; Hickson, Gerald B; Miller, Bonnie M; Doukas, David J; Buckley, John D; Song, John; Sehgal, Niraj L; Deitz, Jennifer; Braddock, Clarence H; Lehmann, Lisa Soleymani

    2014-03-01

    To measure trainees' exposure to negative and positive role-modeling for responding to medical errors and to examine the association between that exposure and trainees' attitudes and behaviors regarding error disclosure. Between May 2011 and June 2012, 435 residents at two large academic medical centers and 1,187 medical students from seven U.S. medical schools received anonymous, electronic questionnaires. The questionnaire asked respondents about (1) experiences with errors, (2) training for responding to errors, (3) behaviors related to error disclosure, (4) exposure to role-modeling for responding to errors, and (5) attitudes regarding disclosure. Using multivariate regression, the authors analyzed whether frequency of exposure to negative and positive role-modeling independently predicted two primary outcomes: (1) attitudes regarding disclosure and (2) nontransparent behavior in response to a harmful error. The response rate was 55% (884/1,622). Training on how to respond to errors had the largest independent, positive effect on attitudes (standardized effect estimate, 0.32, P < .001); negative role-modeling had the largest independent, negative effect (standardized effect estimate, -0.26, P < .001). Positive role-modeling had a positive effect on attitudes (standardized effect estimate, 0.26, P < .001). Exposure to negative role-modeling was independently associated with an increased likelihood of trainees' nontransparent behavior in response to an error (OR 1.37, 95% CI 1.15-1.64; P < .001). Exposure to role-modeling predicts trainees' attitudes and behavior regarding the disclosure of harmful errors. Negative role models may be a significant impediment to disclosure among trainees.

  15. Phonological and Motor Errors in Individuals with Acquired Sound Production Impairment

    ERIC Educational Resources Information Center

    Buchwald, Adam; Miozzo, Michele

    2012-01-01

    Purpose: This study aimed to compare sound production errors arising due to phonological processing impairment with errors arising due to motor speech impairment. Method: Two speakers with similar clinical profiles who produced similar consonant cluster simplification errors were examined using a repetition task. We compared both overall accuracy…

  16. Geodetic positioning using a global positioning system of satellites

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1980-01-01

    Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.

  17. Bias estimation for moving optical sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2014-06-01

    Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  18. Rapid Identification and Susceptibility Testing of Candida spp. from Positive Blood Cultures by Combination of Direct MALDI-TOF Mass Spectrometry and Direct Inoculation of Vitek 2

    PubMed Central

    Idelevich, Evgeny A.; Grunewald, Camilla M.; Wüllenweber, Jörg; Becker, Karsten

    2014-01-01

    Fungaemia is associated with high mortality rates and early appropriate antifungal therapy is essential for patient management. However, classical diagnostic workflow takes up to several days due to the slow growth of yeasts. Therefore, an approach for direct species identification and direct antifungal susceptibility testing (AFST) without prior time-consuming sub-culturing of yeasts from positive blood cultures (BCs) is urgently needed. Yeast cell pellets prepared using Sepsityper kit were used for direct identification by MALDI-TOF mass spectrometry (MS) and for direct inoculation of Vitek 2 AST-YS07 card for AFST. For comparison, MALDI-TOF MS and Vitek 2 testing were performed from yeast subculture. A total of twenty four positive BCs including twelve C. glabrata, nine C. albicans, two C. dubliniensis and one C. krusei isolate were processed. Applying modified thresholds for species identification (score ≥1.5 with two identical consecutive propositions), 62.5% of BCs were identified by direct MALDI-TOF MS. AFST results were generated for 72.7% of BCs directly tested by Vitek 2 and for 100% of standardized suspensions from 24 h cultures. Thus, AFST comparison was possible for 70 isolate-antifungal combinations. Essential agreement (minimum inhibitory concentration difference ≤1 double dilution step) was 88.6%. Very major errors (VMEs) (false-susceptibility), major errors (false-resistance) and minor errors (false categorization involving intermediate result) amounted to 33.3% (of resistant isolates), 1.9% (of susceptible isolates) and 1.4% providing 90.0% categorical agreement. All VMEs were due to fluconazole or voriconazole. This direct method saved on average 23.5 h for identification and 15.1 h for AFST, compared to routine procedures. However, performance for azole susceptibility testing was suboptimal and testing from subculture remains indispensable to validate the direct finding. PMID:25489741

  19. Rapid identification and susceptibility testing of Candida spp. from positive blood cultures by combination of direct MALDI-TOF mass spectrometry and direct inoculation of Vitek 2.

    PubMed

    Idelevich, Evgeny A; Grunewald, Camilla M; Wüllenweber, Jörg; Becker, Karsten

    2014-01-01

    Fungaemia is associated with high mortality rates and early appropriate antifungal therapy is essential for patient management. However, classical diagnostic workflow takes up to several days due to the slow growth of yeasts. Therefore, an approach for direct species identification and direct antifungal susceptibility testing (AFST) without prior time-consuming sub-culturing of yeasts from positive blood cultures (BCs) is urgently needed. Yeast cell pellets prepared using Sepsityper kit were used for direct identification by MALDI-TOF mass spectrometry (MS) and for direct inoculation of Vitek 2 AST-YS07 card for AFST. For comparison, MALDI-TOF MS and Vitek 2 testing were performed from yeast subculture. A total of twenty four positive BCs including twelve C. glabrata, nine C. albicans, two C. dubliniensis and one C. krusei isolate were processed. Applying modified thresholds for species identification (score ≥ 1.5 with two identical consecutive propositions), 62.5% of BCs were identified by direct MALDI-TOF MS. AFST results were generated for 72.7% of BCs directly tested by Vitek 2 and for 100% of standardized suspensions from 24 h cultures. Thus, AFST comparison was possible for 70 isolate-antifungal combinations. Essential agreement (minimum inhibitory concentration difference ≤ 1 double dilution step) was 88.6%. Very major errors (VMEs) (false-susceptibility), major errors (false-resistance) and minor errors (false categorization involving intermediate result) amounted to 33.3% (of resistant isolates), 1.9% (of susceptible isolates) and 1.4% providing 90.0% categorical agreement. All VMEs were due to fluconazole or voriconazole. This direct method saved on average 23.5 h for identification and 15.1 h for AFST, compared to routine procedures. However, performance for azole susceptibility testing was suboptimal and testing from subculture remains indispensable to validate the direct finding.

  20. Neural evidence for enhanced error detection in major depressive disorder.

    PubMed

    Chiu, Pearl H; Deldin, Patricia J

    2007-04-01

    Anomalies in error processing have been implicated in the etiology and maintenance of major depressive disorder. In particular, depressed individuals exhibit heightened sensitivity to error-related information and negative environmental cues, along with reduced responsivity to positive reinforcers. The authors examined the neural activation associated with error processing in individuals diagnosed with and without major depression and the sensitivity of these processes to modulation by monetary task contingencies. The error-related negativity and error-related positivity components of the event-related potential were used to characterize error monitoring in individuals with major depressive disorder and the degree to which these processes are sensitive to modulation by monetary reinforcement. Nondepressed comparison subjects (N=17) and depressed individuals (N=18) performed a flanker task under two external motivation conditions (i.e., monetary reward for correct responses and monetary loss for incorrect responses) and a nonmonetary condition. After each response, accuracy feedback was provided. The error-related negativity component assessed the degree of anomaly in initial error detection, and the error positivity component indexed recognition of errors. Across all conditions, the depressed participants exhibited greater amplitude of the error-related negativity component, relative to the comparison subjects, and equivalent error positivity amplitude. In addition, the two groups showed differential modulation by task incentives in both components. These data implicate exaggerated early error-detection processes in the etiology and maintenance of major depressive disorder. Such processes may then recruit excessive neural and cognitive resources that manifest as symptoms of depression.

  1. Research on correction algorithm of laser positioning system based on four quadrant detector

    NASA Astrophysics Data System (ADS)

    Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia

    2018-02-01

    This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.

  2. Generalized site occupancy models allowing for false positive and false negative errors

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.

    2006-01-01

    Site occupancy models have been developed that allow for imperfect species detection or ?false negative? observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that ?false positive? errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.

  3. Air-Sea Interaction Processes in Low and High-Resolution Coupled Climate Model Simulations for the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Porto da Silveira, I.; Zuidema, P.; Kirtman, B. P.

    2017-12-01

    The rugged topography of the Andes Cordillera along with strong coastal upwelling, strong sea surface temperatures (SST) gradients and extensive but geometrically-thin stratocumulus decks turns the Southeast Pacific (SEP) into a challenge for numerical modeling. In this study, hindcast simulations using the Community Climate System Model (CCSM4) at two resolutions were analyzed to examine the importance of resolution alone, with the parameterizations otherwise left unchanged. The hindcasts were initialized on January 1 with the real-time oceanic and atmospheric reanalysis (CFSR) from 1982 to 2003, forming a 10-member ensemble. The two resolutions are (0.1o oceanic and 0.5o atmospheric) and (1.125o oceanic and 0.9o atmospheric). The SST error growth in the first six days of integration (fast errors) and those resulted from model drift (saturated errors) are assessed and compared towards evaluating the model processes responsible for the SST error growth. For the high-resolution simulation, SST fast errors are positive (+0.3oC) near the continental borders and negative offshore (-0.1oC). Both are associated with a decrease in cloud cover, a weakening of the prevailing southwesterly winds and a reduction of latent heat flux. The saturated errors possess a similar spatial pattern, but are larger and are more spatially concentrated. This suggests that the processes driving the errors already become established within the first week, in contrast to the low-resolution simulations. These, instead, manifest too-warm SSTs related to too-weak upwelling, driven by too-strong winds and Ekman pumping. Nevertheless, the ocean surface tends to be cooler in the low-resolution simulation than the high-resolution due to a higher cloud cover. Throughout the integration, saturated SST errors become positive and could reach values up to +4oC. These are accompanied by upwelling dumping and a decrease in cloud cover. High and low resolution models presented notable differences in how SST errors variability drove atmospheric changes, especially because the high resolution is sensitive to resurgence regions. This allows the model to resolve cloud heights and establish different radiative feedbacks.

  4. Modeling and characterization of multipath in global navigation satellite system ranging signals

    NASA Astrophysics Data System (ADS)

    Weiss, Jan Peter

    The Global Positioning System (GPS) provides position, velocity, and time information to users in anywhere near the earth in real-time and regardless of weather conditions. Since the system became operational, improvements in many areas have reduced systematic errors affecting GPS measurements such that multipath, defined as any signal taking a path other than the direct, has become a significant, if not dominant, error source for many applications. This dissertation utilizes several approaches to characterize and model multipath errors in GPS measurements. Multipath errors in GPS ranging signals are characterized for several receiver systems and environments. Experimental P(Y) code multipath data are analyzed for ground stations with multipath levels ranging from minimal to severe, a C-12 turboprop, an F-18 jet, and an aircraft carrier. Comparisons between receivers utilizing single patch antennas and multi-element arrays are also made. In general, the results show significant reductions in multipath with antenna array processing, although large errors can occur even with this kind of equipment. Analysis of airborne platform multipath shows that the errors tend to be small in magnitude because the size of the aircraft limits the geometric delay of multipath signals, and high in frequency because aircraft dynamics cause rapid variations in geometric delay. A comprehensive multipath model is developed and validated. The model integrates 3D structure models, satellite ephemerides, electromagnetic ray-tracing algorithms, and detailed antenna and receiver models to predict multipath errors. Validation is performed by comparing experimental and simulated multipath via overall error statistics, per satellite time histories, and frequency content analysis. The validation environments include two urban buildings, an F-18, an aircraft carrier, and a rural area where terrain multipath dominates. The validated models are used to identify multipath sources, characterize signal properties, evaluate additional antenna and receiver tracking configurations, and estimate the reflection coefficients of multipath-producing surfaces. Dynamic models for an F-18 landing on an aircraft carrier correlate aircraft dynamics to multipath frequency content; the model also characterizes the separate contributions of multipath due to the aircraft, ship, and ocean to the overall error statistics. Finally, reflection coefficients for multipath produced by terrain are estimated via a least-squares algorithm.

  5. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  6. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  7. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  8. Influence of Forecast Accuracy of Photovoltaic Power Output on Facility Planning and Operation of Microgrid under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sone, Akihito; Shimakage, Toyonari; Suzuoki, Yasuo

    A microgrid (MG) is one of the measures for enhancing the high penetration of renewable energy (RE)-based distributed generators (DGs). For constructing a MG economically, the capacity optimization of controllable DGs against RE-based DGs is essential. By using a numerical simulation model developed based on the demonstrative studies on a MG using PAFC and NaS battery as controllable DGs and photovoltaic power generation system (PVS) as a RE-based DG, this study discusses the influence of forecast accuracy of PVS output on the capacity optimization and daily operation evaluated with the cost. The main results are as follows. The required capacity of NaS battery must be increased by 10-40% against the ideal situation without the forecast error of PVS power output. The influence of forecast error on the received grid electricity would not be so significant on annual basis because the positive and negative forecast error varies with days. The annual total cost of facility and operation increases by 2-7% due to the forecast error applied in this study. The impact of forecast error on the facility optimization and operation optimization is almost the same each other at a few percentages, implying that the forecast accuracy should be improved in terms of both the number of times with large forecast error and the average error.

  9. Effect of Anisotropy on Shape Measurement Accuracy of Silicon Wafer Using Three-Point-Support Inverting Method

    NASA Astrophysics Data System (ADS)

    Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori

    This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.

  10. Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering

    PubMed Central

    Li, Jie; Fang, Xiangming

    2010-01-01

    Automated geocoding of patient addresses is an important data assimilation component of many spatial epidemiologic studies. Inevitably, the geocoding process results in positional errors. Positional errors incurred by automated geocoding tend to reduce the power of tests for disease clustering and otherwise affect spatial analytic methods. However, there are reasons to believe that the errors may often be positively spatially correlated and that this may mitigate their deleterious effects on spatial analyses. In this article, we demonstrate explicitly that the positional errors associated with automated geocoding of a dataset of more than 6000 addresses in Carroll County, Iowa are spatially autocorrelated. Furthermore, through two simulation studies of disease processes, including one in which the disease process is overlain upon the Carroll County addresses, we show that spatial autocorrelation among geocoding errors maintains the power of two tests for disease clustering at a level higher than that which would occur if the errors were independent. Implications of these results for cluster detection, privacy protection, and measurement-error modeling of geographic health data are discussed. PMID:20087879

  11. Statistical analysis of AFE GN&C aeropass performance

    NASA Technical Reports Server (NTRS)

    Chang, Ho-Pen; French, Raymond A.

    1990-01-01

    Performance of the guidance, navigation, and control (GN&C) system used on the Aeroassist Flight Experiment (AFE) spacecraft has been studied with Monte Carlo techniques. The performance of the AFE GN&C is investigated with a 6-DOF numerical dynamic model which includes a Global Reference Atmospheric Model (GRAM) and a gravitational model with oblateness corrections. The study considers all the uncertainties due to the environment and the system itself. In the AFE's aeropass phase, perturbations on the system performance are caused by an error space which has over 20 dimensions of the correlated/uncorrelated error sources. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at entry interface (EI) and still have acceptable delta-V capability at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 380 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degrees at EI would result in a 98-percent probability of mission success.

  12. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning

    PubMed Central

    Deng, Zhongliang

    2018-01-01

    Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization. PMID:29361718

  13. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.

    PubMed

    Deng, Zhongliang; Fu, Xiao; Wang, Hanhua

    2018-01-20

    Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.

  14. Propagation of stage measurement uncertainties to streamflow time series

    NASA Astrophysics Data System (ADS)

    Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary

    2016-04-01

    Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.

  15. [Epidemiology of refractive errors].

    PubMed

    Wolfram, C

    2017-07-01

    Refractive errors are very common and can lead to severe pathological changes in the eye. This article analyzes the epidemiology of refractive errors in the general population in Germany and worldwide and describes common definitions for refractive errors and clinical characteristics for pathologicaal changes. Refractive errors differ between age groups due to refractive changes during the life time and also due to generation-specific factors. Current research about the etiology of refractive errors has strengthened the influence of environmental factors, which led to new strategies for the prevention of refractive pathologies.

  16. Unforced errors and error reduction in tennis

    PubMed Central

    Brody, H

    2006-01-01

    Only at the highest level of tennis is the number of winners comparable to the number of unforced errors. As the average player loses many more points due to unforced errors than due to winners by an opponent, if the rate of unforced errors can be reduced, it should lead to an increase in points won. This article shows how players can improve their game by understanding and applying the laws of physics to reduce the number of unforced errors. PMID:16632568

  17. Error framing effects on performance: cognitive, motivational, and affective pathways.

    PubMed

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  18. Checklists in Neurosurgery to Decrease Preventable Medical Errors: A Review

    PubMed Central

    Enchev, Yavor

    2015-01-01

    Neurosurgery represents a zero tolerance environment for medical errors, especially preventable ones like all types of wrong site surgery, complications due to the incorrect positioning of patients for neurosurgical interventions and complications due to failure of the devices required for the specific procedure. Following the excellent and encouraging results of the safety checklists in intensive care medicine and in other surgical areas, the checklist was naturally introduced in neurosurgery. To date, the reported world experience with neurosurgical checklists is limited to 15 series with fewer than 20,000 cases in various neurosurgical areas. The purpose of this review was to study the reported neurosurgical checklists according to the following parameters: year of publication; country of origin; area of neurosurgery; type of neurosurgical procedure-elective or emergency; person in charge of the checklist completion; participants involved in completion; whether they prevented incorrect site surgery; whether they prevented complications due to incorrect positioning of the patients for neurosurgical interventions; whether they prevented complications due to failure of the devices required for the specific procedure; their specific aims; educational preparation and training; the time needed for checklist completion; study duration and phases; number of cases included; barriers to implementation; efforts to implementation; team appreciation; and safety outcomes. Based on this analysis, it could be concluded that neurosurgical checklists represent an efficient, reliable, cost-effective and time-saving tool for increasing patient safety and elevating the neurosurgeons’ self-confidence. Every neurosurgical department must develop its own neurosurgical checklist or adopt and modify an existing one according to its specific features and needs in an attempt to establish or develop its safety culture. The world, continental, regional and national neurosurgical societies could promote safety checklists and their benefits. PMID:26740891

  19. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  20. A Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields.

    PubMed

    Yu, Amy; Fahimian, Benjamin; Million, Lynn; Hsu, Annie

    2017-05-23

    Purpose  Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and pelvic fields. Due to the large irradiated volume and system limitations, such as field size and couch extension, a combination of couch shifts and sliding of patients are necessary to be correctly executed for accurate delivery of the plan. However, shifting of patients presents a substantial safety issue and has been shown to be prone to errors ranging from minor deviations to geometrical misses warranting a medical event. To address this complex setup and mitigate the safety issues relating to delivery, a practical technique for couch indexing of TLI treatments has been developed and evaluated through a retrospective analysis of couch position. Methods The indexing technique is based on the modification of the commonly available slide board to enable indexing of the patient position. Modifications include notching to enable coupling with indexing bars, and the addition of a headrest used to fixate the head of the patient relative to the slide board. For the clinical setup, a Varian Exact Couch TM (Varian Medical Systems, Inc, Palo Alto, CA) was utilized. Two groups of patients were treated: 20 patients with table indexing and 10 patients without. The standard deviations (SDs) of the couch positions in longitudinal, lateral, and vertical directions through the entire treatment cycle for each patient were calculated and differences in both groups were analyzed with Student's t-test. Results The longitudinal direction showed the largest improvement. In the non-indexed group, the positioning SD ranged from 2.0 to 7.9 cm. With the indexing device, the positioning SD was reduced to a range of 0.4 to 1.3 cm (p < 0.05 with 95% confidence level). The lateral positioning was slightly improved (p < 0.05 with 95% confidence level), while no improvement was observed in the vertical direction. Conclusions The conventional matched field TLI treatment is error-prone to geometrical setup error. The feasibility of full indexing TLI treatments was validated and shown to result in a significant reduction of positioning and shifting errors.

  1. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  2. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  3. Clinical image quality evaluation for panoramic radiography in Korean dental clinics

    PubMed Central

    Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak

    2012-01-01

    Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969

  4. [Measuring the effect of eyeglasses on determination of squint angle with Purkinje reflexes and the prism cover test].

    PubMed

    Barry, J C; Backes, A

    1998-04-01

    The alternating prism and cover test is the conventional test for the measurement of the angle of strabismus. The error induced by the prismatic effect of glasses is typically about 27-30%/10 D. Alternatively, the angle of strabismus can be measured with methods based on Purkinje reflex positions. This study examines the differences between three such options, taking into account the influence of glasses. The studied system comprised the eyes with or without glasses, a fixation object and a device for recording the eye position: in the case of the alternate prism and cover test, a prism bar was required; in the case of a Purkinje reflex based device, light sources for generation of reflexes and a camera for the documentation of the reflex positions were used. Measurements performed on model eyes and computer ray traces were used to analyze and compare the options. When a single corneal reflex is used, the misalignment of the corneal axis can be measured; the error in this measurement due to the prismatic effect of glasses was 7.6%/10 D, the smallest found in this study. The individual Hirschberg ratio can be determined by monocular measurements in three gaze directions. The angle of strabismus can be measured with Purkinje reflex based methods if the fundamental differences between these methods and the alternate prism and cover test, and if the influence of glasses and other sources of error are accounted for.

  5. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-10-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.

  6. False Positives in Multiple Regression: Unanticipated Consequences of Measurement Error in the Predictor Variables

    ERIC Educational Resources Information Center

    Shear, Benjamin R.; Zumbo, Bruno D.

    2013-01-01

    Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…

  7. An Upper Bound on Orbital Debris Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do no good because the analyst defaults to no knowledge of the combined, relative position error covariance matrix. It is reasonable to think, given an assumption of no covariance information, an analyst might still attempt to determine the error covariance matrix that results in an upper bound on the P (sub c). Without some guidance on limits to the shape, size and orientation of the unknown covariance matrix, the limiting case is a degenerate ellipse lying along the relative miss vector in the collision plane. Unless the miss position is exceptionally large or the at-risk object is exceptionally small, this method results in a maximum P (sub c) too large to be of practical use. For example, assuming that the miss distance is equal to the current ISS alert volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radius. The maximum (degenerate ellipse) P (sub c) is about 0.00136. At 40 kilometers, the maximum P (sub c) would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver threshold of 0.0001. In fact, a miss distance of almost 340 kilometers is necessary to reduce the maximum P (sub c) associated with this degenerate ellipse to the ISS maneuver threshold value. Such a result is frequently of no practical value to the analyst. Some improvement may be made with respect to this problem by realizing that while the position error covariance matrix of one of the objects (usually the debris object) may not be known the position error covariance matrix of the other object (usually the asset) is almost always available. Making use of the position error covariance information for the one object provides an improvement in finding a maximum P (sub c) which, in some cases, may offer real utility. The equations to be used are presented and their use discussed.

  8. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  9. WE-H-BRC-05: Catastrophic Error Metrics for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, S; Molloy, J

    Purpose: Intuitive evaluation of complex radiotherapy treatments is impractical, while data transfer anomalies create the potential for catastrophic treatment delivery errors. Contrary to prevailing wisdom, logical scrutiny can be applied to patient-specific machine settings. Such tests can be automated, applied at the point of treatment delivery and can be dissociated from prior states of the treatment plan, potentially revealing errors introduced early in the process. Methods: Analytical metrics were formulated for conventional and intensity modulated RT (IMRT) treatments. These were designed to assess consistency between monitor unit settings, wedge values, prescription dose and leaf positioning (IMRT). Institutional metric averages formore » 218 clinical plans were stratified over multiple anatomical sites. Treatment delivery errors were simulated using a commercial treatment planning system and metric behavior assessed via receiver-operator-characteristic (ROC) analysis. A positive result was returned if the erred plan metric value exceeded a given number of standard deviations, e.g. 2. The finding was declared true positive if the dosimetric impact exceeded 25%. ROC curves were generated over a range of metric standard deviations. Results: Data for the conventional treatment metric indicated standard deviations of 3%, 12%, 11%, 8%, and 5 % for brain, pelvis, abdomen, lung and breast sites, respectively. Optimum error declaration thresholds yielded true positive rates (TPR) between 0.7 and 1, and false positive rates (FPR) between 0 and 0.2. Two proposed IMRT metrics possessed standard deviations of 23% and 37%. The superior metric returned TPR and FPR of 0.7 and 0.2, respectively, when both leaf position and MUs were modelled. Isolation to only leaf position errors yielded TPR and FPR values of 0.9 and 0.1. Conclusion: Logical tests can reveal treatment delivery errors and prevent large, catastrophic errors. Analytical metrics are able to identify errors in monitor units, wedging and leaf positions with favorable sensitivity and specificity. In part by Varian.« less

  10. Distance Perception of Stereoscopically Presented Virtual Objects Optically Superimposed on Physical Objects by a Head-Mounted See-Through Display

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.

  11. Accuracy Assessments and Validation of an Expanded UV Irradiance Database from Satellite Total Ozone Mapping Spectrometer (TOMS)

    NASA Technical Reports Server (NTRS)

    Krotkov, N. A.; Herman, J.; Fioletov, V.; Seftor, C.; Larko, D.; Vasilkov, A.

    2004-01-01

    The TOMS UV irradiance database (1978 to 2000) has been expanded to include 5 new products (noon irradiance at 305, 310, 324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, which permit direct Comparisons with ground-based measurements from UV spectrometers. Sensitivity studies are conducted to estimate uncertainties of the new TOMS UV irradiance data due to algorithm apriori assumptions. Comparisons with Brewer spectrometers as well as filter radiometers are used to review of the sources of known errors. Inability to distinguish between snow and cloud cover using only TOMS data results in large errors in estimating surface UV using snow climatology. A correction is suggested for the case when the regional snow albedo is known from an independent source. The summer-time positive bias between TOMS UV estimations and Brewer measurements can be seen at all wavelengths. This suggests the difference is not related to ozone absorption effects. We emphasize that uncertainty of boundary layer UV aerosol absorption properties remains a major source of error in modeling UV irradiance in clear sky conditions. Neglecting aerosol absorption by the present TOMS algorithm results in a positive summertime bias in clear-sky UV estimations over many locations. Due to high aerosol variability the bias is strongly site dependent. Data from UV-shadow-band radiometer and well-calibrated CIMEL sun-sky radiometer are used to quantify the bias at NASA/GSFC site in Greenbelt, MD. Recommendations are given to enable potential users to better account for local conditions by combining standard TOMS UV data with ancillary ground measurements.

  12. Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error.

    PubMed

    Treleaven, Julia; Jull, Gwendolen; Sterling, Michele

    2003-01-01

    Dizziness and/or unsteadiness are common symptoms of chronic whiplash-associated disorders. This study aimed to report the characteristics of these symptoms and determine whether there was any relationship to cervical joint position error. Joint position error, the accuracy to return to the natural head posture following extension and rotation, was measured in 102 subjects with persistent whiplash-associated disorder and 44 control subjects. Whiplash subjects completed a neck pain index and answered questions about the characteristics of dizziness. The results indicated that subjects with whiplash-associated disorders had significantly greater joint position errors than control subjects. Within the whiplash group, those with dizziness had greater joint position errors than those without dizziness following rotation (rotation (R) 4.5 degrees (0.3) vs 2.9 degrees (0.4); rotation (L) 3.9 degrees (0.3) vs 2.8 degrees (0.4) respectively) and a higher neck pain index (55.3% (1.4) vs 43.1% (1.8)). Characteristics of the dizziness were consistent for those reported for a cervical cause but no characteristics could predict the magnitude of joint position error. Cervical mechanoreceptor dysfunction is a likely cause of dizziness in whiplash-associated disorder.

  13. Antenna Deployment for the Localization of Partial Discharges in Open-Air Substations

    PubMed Central

    Robles, Guillermo; Fresno, José Manuel; Sánchez-Fernández, Matilde; Martínez-Tarifa, Juan Manuel

    2016-01-01

    Partial discharges are ionization processes inside or on the surface of dielectrics that can unveil insulation problems in electrical equipment. The charge accumulated is released under certain environmental and voltage conditions attacking the insulation both physically and chemically. The final consequence of a continuous occurrence of these events is the breakdown of the dielectric. The electron avalanche provokes a derivative of the electric field with respect to time, creating an electromagnetic impulse that can be detected with antennas. The localization of the source helps in the identification of the piece of equipment that has to be decommissioned. This can be done by deploying antennas and calculating the time difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this parameter can lead to great displacements of the calculated position of the source. Usually, four antennas are used to find the source but the array geometry has to be correctly deployed to have minimal errors in the localization. This paper demonstrates, by an analysis based on simulation and also experimentally, that the most common layouts are not always the best options and proposes a simple antenna layout to reduce the systematic error in the TDOA calculation due to the positions of the antennas in the array. PMID:27092501

  14. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  15. Medical errors; causes, consequences, emotional response and resulting behavioral change

    PubMed Central

    Bari, Attia; Khan, Rehan Ahmed; Rathore, Ahsan Waheed

    2016-01-01

    Objective: To determine the causes of medical errors, the emotional and behavioral response of pediatric medicine residents to their medical errors and to determine their behavior change affecting their future training. Methods: One hundred thirty postgraduate residents were included in the study. Residents were asked to complete questionnaire about their errors and responses to their errors in three domains: emotional response, learning behavior and disclosure of the error. The names of the participants were kept confidential. Data was analyzed using SPSS version 20. Results: A total of 130 residents were included. Majority 128(98.5%) of these described some form of error. Serious errors that occurred were 24(19%), 63(48%) minor, 24(19%) near misses,2(2%) never encountered an error and 17(12%) did not mention type of error but mentioned causes and consequences. Only 73(57%) residents disclosed medical errors to their senior physician but disclosure to patient’s family was negligible 15(11%). Fatigue due to long duty hours 85(65%), inadequate experience 66(52%), inadequate supervision 58(48%) and complex case 58(45%) were common causes of medical errors. Negative emotions were common and were significantly associated with lack of knowledge (p=0.001), missing warning signs (p=<0.001), not seeking advice (p=0.003) and procedural complications (p=0.001). Medical errors had significant impact on resident’s behavior; 119(93%) residents became more careful, increased advice seeking from seniors 109(86%) and 109(86%) started paying more attention to details. Intrinsic causes of errors were significantly associated with increased information seeking behavior and vigilance (p=0.003) and (p=0.01) respectively. Conclusion: Medical errors committed by residents have inadequate disclosure to senior physicians and result in negative emotions but there was positive change in their behavior, which resulted in improvement in their future training and patient care. PMID:27375682

  16. Quality assurance of dynamic parameters in volumetric modulated arc therapy.

    PubMed

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-07-01

    The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.

  17. A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2016-12-01

    An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.

  18. ERROR COMPENSATOR FOR A POSITION TRANSDUCER

    DOEpatents

    Fowler, A.H.

    1962-06-12

    A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)

  19. A position-aware linear solid constitutive model for peridynamics

    DOE PAGES

    Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.

    2015-11-06

    A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. We improved model behavior in the vicinity of free surfaces through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. Furthermore, the model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations onmore » simple benchmark problems show a sharp reduction in error relative to the LPS model.« less

  20. A position-aware linear solid constitutive model for peridynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.

    A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. We improved model behavior in the vicinity of free surfaces through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. Furthermore, the model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations onmore » simple benchmark problems show a sharp reduction in error relative to the LPS model.« less

  1. Statistical analysis of the 70 meter antenna surface distortions

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.; Chuang, K. L.

    1987-01-01

    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.

  2. Disclosure of Medical Errors: What Factors Influence How Patients Respond?

    PubMed Central

    Mazor, Kathleen M; Reed, George W; Yood, Robert A; Fischer, Melissa A; Baril, Joann; Gurwitz, Jerry H

    2006-01-01

    BACKGROUND Disclosure of medical errors is encouraged, but research on how patients respond to specific practices is limited. OBJECTIVE This study sought to determine whether full disclosure, an existing positive physician-patient relationship, an offer to waive associated costs, and the severity of the clinical outcome influenced patients' responses to medical errors. PARTICIPANTS Four hundred and seven health plan members participated in a randomized experiment in which they viewed video depictions of medical error and disclosure. DESIGN Subjects were randomly assigned to experimental condition. Conditions varied in type of medication error, level of disclosure, reference to a prior positive physician-patient relationship, an offer to waive costs, and clinical outcome. MEASURES Self-reported likelihood of changing physicians and of seeking legal advice; satisfaction, trust, and emotional response. RESULTS Nondisclosure increased the likelihood of changing physicians, and reduced satisfaction and trust in both error conditions. Nondisclosure increased the likelihood of seeking legal advice and was associated with a more negative emotional response in the missed allergy error condition, but did not have a statistically significant impact on seeking legal advice or emotional response in the monitoring error condition. Neither the existence of a positive relationship nor an offer to waive costs had a statistically significant impact. CONCLUSIONS This study provides evidence that full disclosure is likely to have a positive effect or no effect on how patients respond to medical errors. The clinical outcome also influences patients' responses. The impact of an existing positive physician-patient relationship, or of waiving costs associated with the error remains uncertain. PMID:16808770

  3. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  4. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew C.; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the detect-and-avoid (DAA) minimum operational performance standards (MOPS) for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance should be provided during recovery of DAA well clear separation with a non-cooperative VFR aircraft. Although the original hypothesis was that vertical maneuvers for DAA well clear recovery should only be offered when sensor vertical rate errors are small, this paper suggests that UAS climb and descent performance should be considered-in addition to sensor errors for vertical position and vertical rate-when determining whether to offer vertical guidance. A fast-time simulation study involving 108,000 encounters between a UAS and a non-cooperative visual-flight-rules aircraft was conducted. Results are presented showing that, when vertical maneuver guidance for DAA well clear recovery was suppressed, the minimum vertical separation increased by roughly 50 feet (or horizontal separation by 500 to 800 feet). However, the percentage of encounters that had a risk of collision when performing vertical well clear recovery maneuvers was reduced as UAS vertical rate performance increased and sensor vertical rate errors decreased. A class of encounter is identified for which vertical-rate error had a large effect on the efficacy of horizontal maneuvers due to the difficulty of making the correct left/right turn decision: crossing conflict with intruder changing altitude. Overall, these results support logic that would allow vertical maneuvers when UAS vertical performance is sufficient to avoid the intruder, based on the intruder's estimated vertical position and vertical rate, as well as the vertical rate error of the UAS' sensor.

  5. Subdaily alias and draconitic errors in the IGS orbits

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Ray, J.

    2011-12-01

    Harmonic signals with a fundamental period near the GPS draconitic year (351.2 d) and overtones up to the 8th multiple have been observed in the power spectra of nearly all products of the International GNSS Service (IGS), including station position time series [Ray et al., 2008; Collilieux et al., 2007; Santamaría-Gómez et al., 2011], apparent geocenter motions [Hugentobler et al., 2008], and orbit jumps between successive days and midnight discontinuities in Earth orientation parameter (EOP) rates [Ray and Griffiths, 2009]. Ray et al. [2008] suggested two mechanisms for the harmonics: mismodeling of orbit dynamics and aliasing of near-sidereal local station multipath effects. King and Watson [2010] have studied the propagation of local multipath errors into draconitic position variations, but orbit-related processes have been less well examined. Here we elaborate our earlier analysis of GPS orbit jumps [Griffiths and Ray, 2009; Gendt et al., 2010] where we observed some draconitic features as well as prominent spectral bands near 29, 14, 9, and 7 d periods. Finer structures within the sub-seasonal bands fall close to the expected alias frequencies of subdaily EOP tide lines but do not coincide precisely. While once-per-rev empirical orbit parameters should strongly absorb any subdaily EOP tide errors due to near-resonance of their respective periods, the observed differences require explanation. This has been done by simulating known EOP tidal errors and checking their impact on a long series of daily GPS orbits. Indeed, simulated tidal aliases are found to be very similar to the observed orbital features in the sub-seasonal bands. Moreover and unexpectedly, some low draconitic harmonics were also stimulated, potentially a source for the widespread errors in most IGS products.

  6. Localization of Southern Resident Killer Whales Using Two Star Arrays to Support Marine Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Deng, Zhiqun; Carlson, Thomas J.

    2012-10-19

    Tidal power has been identified as one of the most potential commercial-scale renewable energy sources. Puget Sound, Washington, is a potential site to deploy tidal power generating devices. The risk of injury for killer whales needs to be managed before the deployment of these types of devices can be approved by regulating authorities. A passive acoustic system consisting of two star arrays, each with four hydrophones, was designed and implemented for the detection and localization of Southern Resident killer whales. Deployment of the passive acoustic system was conducted at Sequim Bay, Washington. A total of nine test locations were chosen,more » within a radius of 250 m around the star arrays, to test our localization approach. For the localization algorithm, a least square solver was applied to obtain a bearing location from each star array. The final source location was determined by the intersection of the bearings given by each of the two star arrays. Bearing and distance errors were obtained to conduct comparison between the calculated and true (from Global Positioning System) locations. The results indicated that bearing errors were within 1.04º for eight of the test locations; one location had bearing errors slightly larger than expected due to the strong background noise at that position. For the distance errors, six of the test locations were within the range of 1.91 to 32.36 m. The other two test locations were near the intersection line between the centers of the two star arrays, which were expected to have large errors from the theoretical sensitivity analysis performed.« less

  7. Reward positivity: Reward prediction error or salience prediction error?

    PubMed

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  8. Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Jeff D.; Wong, Raimond; Swaminath, Anand

    Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less

  9. Improvement of CD-SEM mark position measurement accuracy

    NASA Astrophysics Data System (ADS)

    Kasa, Kentaro; Fukuhara, Kazuya

    2014-04-01

    CD-SEM is now attracting attention as a tool that can accurately measure positional error of device patterns. However, the measurement accuracy can get worse due to pattern asymmetry as in the case of image based overlay (IBO) and diffraction based overlay (DBO). For IBO and DBO, a way of correcting the inaccuracy arising from measurement patterns was suggested. For CD-SEM, although a way of correcting CD bias was proposed, it has not been argued how to correct the inaccuracy arising from pattern asymmetry using CD-SEM. In this study we will propose how to quantify and correct the measurement inaccuracy affected by pattern asymmetry.

  10. A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations

    NASA Astrophysics Data System (ADS)

    Whittaker, Lee; Brown, Michael L.; Battye, Richard A.

    2015-12-01

    We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.

  11. A steep peripheral ring in irregular cornea topography, real or an instrument error?

    PubMed

    Galindo-Ferreiro, Alicia; Galvez-Ruiz, Alberto; Schellini, Silvana A; Galindo-Alonso, Julio

    2016-01-01

    To demonstrate that the steep peripheral ring (red zone) on corneal topography after myopic laser in situ keratomileusis (LASIK) could possibly due to instrument error and not always to a real increase in corneal curvature. A spherical model for the corneal surface and modifying topography software was used to analyze the cause of an error due to instrument design. This study involved modification of the software of a commercially available topographer. A small modification of the topography image results in a red zone on the corneal topography color map. Corneal modeling indicates that the red zone could be an artifact due to an instrument-induced error. The steep curvature changes after LASIK, signified by the red zone, could be also an error due to the plotting algorithms of the corneal topographer, besides a steep curvature change.

  12. Error analysis for relay type satellite-aided search and rescue systems

    NASA Technical Reports Server (NTRS)

    Marini, J. W.

    1977-01-01

    An analysis was made of the errors in the determination of the position of an emergency transmitter in a satellite aided search and rescue system. The satellite was assumed to be at a height of 820 km in a near circular near polar orbit. Short data spans of four minutes or less were used. The error sources considered were measurement noise, transmitter frequency drift, ionospheric effects and error in the assumed height of the transmitter. The errors were calculated for several different transmitter positions, data rates and data spans. The only transmitter frequency used was 406 MHz, but the results can be scaled to different frequencies. In a typical case, in which four Doppler measurements were taken over a span of two minutes, the position error was about 1.2 km.

  13. Simulations using patient data to evaluate systematic errors that may occur in 4D treatment planning: a proof of concept study.

    PubMed

    St James, Sara; Seco, Joao; Mishra, Pankaj; Lewis, John H

    2013-09-01

    The purpose of this work is to present a framework to evaluate the accuracy of four-dimensional treatment planning in external beam radiation therapy using measured patient data and digital phantoms. To accomplish this, 4D digital phantoms of two model patients were created using measured patient lung tumor positions. These phantoms were used to simulate a four-dimensional computed tomography image set, which in turn was used to create a 4D Monte Carlo (4DMC) treatment plan. The 4DMC plan was evaluated by simulating the delivery of the treatment plan over approximately 5 min of tumor motion measured from the same patient on a different day. Unique phantoms accounting for the patient position (tumor position and thorax position) at 2 s intervals were used to represent the model patients on the day of treatment delivery and the delivered dose to the tumor was determined using Monte Carlo simulations. For Patient 1, the tumor was adequately covered with 95.2% of the tumor receiving the prescribed dose. For Patient 2, the tumor was not adequately covered and only 74.3% of the tumor received the prescribed dose. This study presents a framework to evaluate 4D treatment planning methods and demonstrates a potential limitation of 4D treatment planning methods. When systematic errors are present, including when the imaging study used for treatment planning does not represent all potential tumor locations during therapy, the treatment planning methods may not adequately predict the dose to the tumor. This is the first example of a simulation study based on patient tumor trajectories where systematic errors that occur due to an inaccurate estimate of tumor motion are evaluated.

  14. Experimental determination of the navigation error of the 4-D navigation, guidance, and control systems on the NASA B-737 airplane

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1978-01-01

    Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.

  15. Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma

    NASA Technical Reports Server (NTRS)

    Fisher, Brad L.

    2004-01-01

    The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.

  16. A modified technique to reduce tibial keel cutting errors during an Oxford unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2017-03-01

    Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.

  17. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.

    PubMed

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-09-25

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians' different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians' moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the "go and back" phenomenon caused by the instability of the Bluetooth-based positioning system and the "cross-wall" phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision.

  18. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-01-01

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians’ different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians’ moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the “go and back” phenomenon caused by the instability of the Bluetooth-based positioning system and the “cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. PMID:26404277

  19. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  20. A general model for attitude determination error analysis

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Seidewitz, ED; Nicholson, Mark

    1988-01-01

    An overview is given of a comprehensive approach to filter and dynamics modeling for attitude determination error analysis. The models presented include both batch least-squares and sequential attitude estimation processes for both spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief description of a dynamics model of strapdown gyros, but it does not cover other sensor models. Model parameters can be chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process, or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on this choice is that the time evolution of the consider parameters must not depend on any of the solve-for parameters. The result of an error analysis is an indication of the contributions of the various error sources to the uncertainties in the determination of the spacecraft solve-for parameters. The model presented gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due to measurement noise, the uncertainty due to dynamic noise (also known as process noise or measurement noise), the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.

  1. Differences among Job Positions Related to Communication Errors at Construction Sites

    NASA Astrophysics Data System (ADS)

    Takahashi, Akiko; Ishida, Toshiro

    In a previous study, we classified the communicatio n errors at construction sites as faulty intention and message pattern, inadequate channel pattern, and faulty comprehension pattern. This study seeks to evaluate the degree of risk of communication errors and to investigate differences among people in various job positions in perception of communication error risk . Questionnaires based on the previous study were a dministered to construction workers (n=811; 149 adminis trators, 208 foremen and 454 workers). Administrators evaluated all patterns of communication error risk equally. However, foremen and workers evaluated communication error risk differently in each pattern. The common contributing factors to all patterns wer e inadequate arrangements before work and inadequate confirmation. Some factors were common among patterns but other factors were particular to a specific pattern. To help prevent future accidents at construction sites, administrators should understand how people in various job positions perceive communication errors and propose human factors measures to prevent such errors.

  2. Algorithms for spacecraft formation flying navigation based on wireless positioning system measurements

    NASA Astrophysics Data System (ADS)

    Goh, Shu Ting

    Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.

  3. MFP scanner motion characterization using self-printed target

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bauer, Peter; Wagner, Jerry K.; Allebach, Jan P.

    2015-01-01

    Multifunctional printers (MFP) are products that combine the functions of a printer, scanner, and copier. Our goal is to help customers to be able to easily diagnose scanner or print quality issues with their products by developing an automated diagnostic system embedded in the product. We specifically focus on the characterization of scanner motions, which may be defective due to irregular movements of the scan-head. The novel design of our test page and two-stage diagnostic algorithm are described in this paper. The most challenging issue is to evaluate the scanner performance properly when both printer and scanner units contribute to the motion errors. In the first stage called the uncorrected-print-error-stage, aperiodic and periodic motion behaviors are characterized in both the spatial and frequency domains. Since it is not clear how much of the error is contributed by each unit, the scanned input is statistically analyzed in the second stage called the corrected-print-error-stage. Finally, the described diagnostic algorithms output the estimated scan error and print error separately as RMS values of the displacement of the scan and print lines, respectively, from their nominal positions in the scanner or printer motion direction. We validate our test page design and approaches by ground truth obtained from a high-precision, chrome-on-glass reticle manufactured using semiconductor chip fabrication technologies.

  4. SU-E-J-12: An Image-Guided Soft Robotic Patient Positioning System for Maskless Head-And-Neck Cancer Radiotherapy: A Proof-Of-Concept Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogunmolu, O; Gans, N; Jiang, S

    Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance ofmore » the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control will be pursued.« less

  5. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    PubMed

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Contingent negative variation (CNV) associated with sensorimotor timing error correction.

    PubMed

    Jang, Joonyong; Jones, Myles; Milne, Elizabeth; Wilson, Daniel; Lee, Kwang-Hyuk

    2016-02-15

    Detection and subsequent correction of sensorimotor timing errors are fundamental to adaptive behavior. Using scalp-recorded event-related potentials (ERPs), we sought to find ERP components that are predictive of error correction performance during rhythmic movements. Healthy right-handed participants were asked to synchronize their finger taps to a regular tone sequence (every 600 ms), while EEG data were continuously recorded. Data from 15 participants were analyzed. Occasional irregularities were built into stimulus presentation timing: 90 ms before (advances: negative shift) or after (delays: positive shift) the expected time point. A tapping condition alternated with a listening condition in which identical stimulus sequence was presented but participants did not tap. Behavioral error correction was observed immediately following a shift, with a degree of over-correction with positive shifts. Our stimulus-locked ERP data analysis revealed, 1) increased auditory N1 amplitude for the positive shift condition and decreased auditory N1 modulation for the negative shift condition; and 2) a second enhanced negativity (N2) in the tapping positive condition, compared with the tapping negative condition. In response-locked epochs, we observed a CNV (contingent negative variation)-like negativity with earlier latency in the tapping negative condition compared with the tapping positive condition. This CNV-like negativity peaked at around the onset of subsequent tapping, with the earlier the peak, the better the error correction performance with the negative shifts while the later the peak, the better the error correction performance with the positive shifts. This study showed that the CNV-like negativity was associated with the error correction performance during our sensorimotor synchronization study. Auditory N1 and N2 were differentially involved in negative vs. positive error correction. However, we did not find evidence for their involvement in behavioral error correction. Overall, our study provides the basis from which further research on the role of the CNV in perceptual and motor timing can be developed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Bias and heteroscedastic memory error in self-reported health behavior: an investigation using covariance structure analysis

    PubMed Central

    Kupek, Emil

    2002-01-01

    Background Frequent use of self-reports for investigating recent and past behavior in medical research requires statistical techniques capable of analyzing complex sources of bias associated with this methodology. In particular, although decreasing accuracy of recalling more distant past events is commonplace, the bias due to differential in memory errors resulting from it has rarely been modeled statistically. Methods Covariance structure analysis was used to estimate the recall error of self-reported number of sexual partners for past periods of varying duration and its implication for the bias. Results Results indicated increasing levels of inaccuracy for reports about more distant past. Considerable positive bias was found for a small fraction of respondents who reported ten or more partners in the last year, last two years and last five years. This is consistent with the effect of heteroscedastic random error where the majority of partners had been acquired in the more distant past and therefore were recalled less accurately than the partners acquired more recently to the time of interviewing. Conclusions Memory errors of this type depend on the salience of the events recalled and are likely to be present in many areas of health research based on self-reported behavior. PMID:12435276

  8. Exploring effective multiplicity in multichannel functional near-infrared spectroscopy using eigenvalues of correlation matrices

    PubMed Central

    Uga, Minako; Dan, Ippeita; Dan, Haruka; Kyutoku, Yasushi; Taguchi, Y-h; Watanabe, Eiju

    2015-01-01

    Abstract. Recent advances in multichannel functional near-infrared spectroscopy (fNIRS) allow wide coverage of cortical areas while entailing the necessity to control family-wise errors (FWEs) due to increased multiplicity. Conventionally, the Bonferroni method has been used to control FWE. While Type I errors (false positives) can be strictly controlled, the application of a large number of channel settings may inflate the chance of Type II errors (false negatives). The Bonferroni-based methods are especially stringent in controlling Type I errors of the most activated channel with the smallest p value. To maintain a balance between Types I and II errors, effective multiplicity (Meff) derived from the eigenvalues of correlation matrices is a method that has been introduced in genetic studies. Thus, we explored its feasibility in multichannel fNIRS studies. Applying the Meff method to three kinds of experimental data with different activation profiles, we performed resampling simulations and found that Meff was controlled at 10 to 15 in a 44-channel setting. Consequently, the number of significantly activated channels remained almost constant regardless of the number of measured channels. We demonstrated that the Meff approach can be an effective alternative to Bonferroni-based methods for multichannel fNIRS studies. PMID:26157982

  9. Validation of prostate-specific antigen laboratory values recorded in Surveillance, Epidemiology, and End Results registries.

    PubMed

    Adamo, Margaret Peggy; Boten, Jessica A; Coyle, Linda M; Cronin, Kathleen A; Lam, Clara J K; Negoita, Serban; Penberthy, Lynne; Stevens, Jennifer L; Ward, Kevin C

    2017-02-15

    Researchers have used prostate-specific antigen (PSA) values collected by central cancer registries to evaluate tumors for potential aggressive clinical disease. An independent study collecting PSA values suggested a high error rate (18%) related to implied decimal points. To evaluate the error rate in the Surveillance, Epidemiology, and End Results (SEER) program, a comprehensive review of PSA values recorded across all SEER registries was performed. Consolidated PSA values for eligible prostate cancer cases in SEER registries were reviewed and compared with text documentation from abstracted records. Four types of classification errors were identified: implied decimal point errors, abstraction or coding implementation errors, nonsignificant errors, and changes related to "unknown" values. A total of 50,277 prostate cancer cases diagnosed in 2012 were reviewed. Approximately 94.15% of cases did not have meaningful changes (85.85% correct, 5.58% with a nonsignificant change of <1 ng/mL, and 2.80% with no clinical change). Approximately 5.70% of cases had meaningful changes (1.93% due to implied decimal point errors, 1.54% due to abstract or coding errors, and 2.23% due to errors related to unknown categories). Only 419 of the original 50,277 cases (0.83%) resulted in a change in disease stage due to a corrected PSA value. The implied decimal error rate was only 1.93% of all cases in the current validation study, with a meaningful error rate of 5.81%. The reasons for the lower error rate in SEER are likely due to ongoing and rigorous quality control and visual editing processes by the central registries. The SEER program currently is reviewing and correcting PSA values back to 2004 and will re-release these data in the public use research file. Cancer 2017;123:697-703. © 2016 American Cancer Society. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

  10. Finkelstein's test: a descriptive error that can produce a false positive.

    PubMed

    Elliott, B G

    1992-08-01

    Over the last three decades an error in performing Finkelstein's test has crept into the English literature in both text books and journals. This error can produce a false-positive, and if relied upon, a wrong diagnosis can be made, leading to inappropriate surgery.

  11. Direct evidence for a position input to the smooth pursuit system.

    PubMed

    Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2005-07-01

    When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error. Here, we show that, when a visual target is flashed during ongoing smooth pursuit, it evokes a smooth eye movement toward the flash. The velocity of this evoked smooth movement is proportional to the position error of the flash; it is neither influenced by the velocity of the ongoing smooth pursuit eye movement nor by the occurrence of a saccade, but the effect is absent if the flash is ignored by the subject. Furthermore, the response started around 85 ms after the flash presentation and decayed with an average time constant of 276 ms. Thus this is the first direct evidence of a position input to the smooth pursuit system. This study shows further evidence for a coupling between saccadic and smooth pursuit systems. It also suggests that there is an interaction between position and velocity error signals in the control of more complex movements.

  12. The Importance of Semi-Major Axis Knowledge in the Determination of Near-Circular Orbits

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Schiesser, Emil R.

    1998-01-01

    Modem orbit determination has mostly been accomplished using Cartesian coordinates. This usage has carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented positioning accuracy of GPS has tended to focus attention more on the system's capability to locate the spacecraft's location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit adjustment maneuvers. For the quite common case of near-circular orbits, the degree to which position and velocity estimates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly produce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are the following: (1) downrange position error grows at the per orbit rate of 3(pi) times the SMA error; (2) a velocity change imparted to the orbit will have an error of (pi) divided by the orbit period times the SMA error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequential orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construction of the initial covariance accomplishes half of this objective, by specifying the partition of the covariance corresponding to down-track position and radial velocity errors. The remainder of the in-plane covariance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illustrates the effect of properly and not properly initializing a covariance. This figure was produced by propagating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial position coordinates, of about half of the lower subplot, whose initial covariance was based on other considerations.

  13. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in an Open Kinetic Chain.

    PubMed

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Fernández-Domínguez, Juan Carlos; Jiménez-Reyes, Pedro

    2017-12-18

    New methods are being validated to easily evaluate the knee joint position sense (JPS) due to its role in sports movement and the risk of injury. However, no studies to date have considered the open kinetic chain (OKC) technique, despite the biomechanical differences compared to closed kinetic chain movements. To analyze the validity and reliability of a digital inclinometer to measure the knee JPS in the OKC movement. The validity, inter-tester and intra-tester reliability of a digital inclinometer for measuring knee JPS were evaluated. Sports research laboratory. Eighteen athletes (11 males and 7 females; 28.4 ± 6.6 years; 71.9 ± 14.0 kg; 1.77 ± 0.09 m; 22.8 ± 3.2 kg/m 2 ) voluntary participated in this study. Absolute angular error (AAE), relative angular error (RAE) and variable angular error (VAE) of knee JPS in an OKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed excellent validity of the inclinometer to obtain proprioceptive errors compared to the video analysis in JPS tasks (AAE: ICC = 0.981, SEM = 0.08; RAE: ICC = 0.974, SEM = 0.12; VAE: ICC = 0.973, SEM = 0.07). Inter-tester reliability was also excellent for all the proprioceptive errors (AAE: ICC = 0.967, SEM = 0.04; RAE: ICC = 0.974, SEM = 0.03; VAE: ICC = 0.939, SEM = 0.08). Similar results were obtained for intra-tester reliability (AAE: ICC = 0.861, SEM = 0.1; RAE: ICC = 0.894, SEM = 0.1; VAE: ICC = 0.700, SEM = 0.2). The digital inclinometer is a valid and reliable method to assess the knee JPS in OKC. Sport professionals may evaluate the knee JPS to monitor its deterioration during training or improvements throughout the rehabilitation process.

  14. Performance of concatenated Reed-Solomon/Viterbi channel coding

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Yuen, J. H.

    1982-01-01

    The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance.

  15. SU-E-T-144: Effective Analysis of VMAT QA Generated Trajectory Log Files for Medical Accelerator Predictive Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, CM; Baydush, AH; Nguyen, C

    Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less

  16. Evaluation of the accuracy of the CyberKnife Synchrony™ Respiratory Tracking System using a plastic scintillator.

    PubMed

    Akino, Yuichi; Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshiichi; Hayashida, Miori; Mabuchi, Nobuhisa; Ogawa, Kazuhiko

    2018-06-01

    The Synchrony ™ Respiratory Tracking System of the CyberKnife ® Robotic Radiosurgery System (Accuray, Inc., Sunnyvale CA) enables real-time tracking of moving targets such as lung and liver tumors during radiotherapy. Although film measurements have been used for quality assurance of the tracking system, they cannot evaluate the temporal tracking accuracy. We have developed a verification system using a plastic scintillator that can evaluate the temporal accuracy of the CyberKnife Synchrony. A phantom consisting of a U-shaped plastic frame with three fiducial markers was used. The phantom was moved on a plastic scintillator plate. To identify the phantom position on the recording video in darkness, four pieces of fluorescent tape representing the corners of a 10 cm × 10 cm square around an 8 cm × 8 cm window were attached to the phantom. For a stable respiration model, the phantom was moved with the fourth power of a sinusoidal wave with breathing cycles of 4, 3, and 2 s and an amplitude of 1 cm. To simulate irregular breathing, the respiratory cycle was varied with Gaussian random numbers. A virtual target was generated at the center of the fluorescent markers using the MultiPlan ™ treatment planning system. Photon beams were irradiated using a fiducial tracking technique. In a dark room, the fluorescent light of the markers and the scintillation light of the beam position were recorded using a camera. For each video frame, a homography matrix was calculated from the four fluorescent marker positions, and the beam position derived from the scintillation light was corrected. To correct the displacement of the beam position due to oblique irradiation angles and other systematic measurement errors, offset values were derived from measurements with the phantom held stationary. The average SDs of beam position measured without phantom motion were 0.16 mm and 0.20 mm for lateral and longitudinal directions, respectively. For the stable respiration model, the tracking errors (mean ± SD) were 0.40 ± 0.64 mm, -0.07 ± 0.79 mm, and 0.45 ± 1.14 mm for breathing cycles of 4, 3, and 2 s, respectively. The tracking errors showed significant linear correlation with the phantom velocity. The correlation coefficients were 0.897, 0.913, and 0.957 for breathing cycles of 4, 3, and 2 s, respectively. The unstable respiration model also showed linear correlation between tracking errors and phantom velocity. The probability of tracking error incidents increased with decreasing length of the respiratory cycles. Although the tracking error incidents increased with larger variations in respiratory cycle, the effect on the cumulative probability was insignificant. For a respiratory cycle of 4 s, the maximum tracking error was 1.10 mm and 1.43 mm at the probability of 10% and 5%, respectively. Large tracking errors were observed when there was phase shift between the tumor and the LED marker. This technique allows evaluation of the motion tracking accuracy of the Synchrony ™ system over time by measurement of the photon beam. The velocity of the target and phase shift have significant effects on accuracy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina

    Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less

  18. SU-F-E-18: Training Monthly QA of Medical Accelerators: Illustrated Instructions for Self-Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Court, L; Wang, H; Aten, D

    Purpose: To develop and test clear illustrated instructions for training of monthly mechanical QA of medical linear accelerators. Methods: Illustrated instructions were created for monthly mechanical QA with tolerance tabulated, and underwent several steps of review and refinement. Testers with zero QA experience were then recruited from our radiotherapy department (1 student, 2 computational scientists and 8 dosimetrists). The following parameters were progressively de-calibrated on a Varian C-series linac: Group A = gantry angle, ceiling laser position, X1 jaw position, couch longitudinal position, physical graticule position (5 testers); Group B = Group A + wall laser position, couch lateral andmore » vertical position, collimator angle (3 testers); Group C = Group B + couch angle, wall laser angle, and optical distance indicator (3 testers). Testers were taught how to use the linac, and then used the instructions to try to identify these errors. A physicist observed each session, giving support on machine operation, as necessary. The instructions were further tested with groups of therapists, graduate students and physics residents at multiple institutions. We have also changed the language of the instructions to simulate using the instructions with non-English speakers. Results: Testers were able to follow the instructions. They determined gantry, collimator and couch angle errors within 0.4, 0.3, and 0.9degrees of the actual changed values, respectively. Laser positions were determined within 1mm, and jaw positions within 2mm. Couch position errors were determined within 2 and 3mm for lateral/longitudinal and vertical errors, respectively. Accessory positioning errors were determined within 1mm. ODI errors were determined within 2mm when comparing with distance sticks, and 6mm when using blocks, indicating that distance sticks should be the preferred approach for inexperienced staff. Conclusion: Inexperienced users were able to follow these instructions, and catch errors within the criteria suggested by AAPM TG142 for linacs used for IMRT.« less

  19. Position sense at the human elbow joint measured by arm matching or pointing.

    PubMed

    Tsay, Anthony; Allen, Trevor J; Proske, Uwe

    2016-10-01

    Position sense at the human elbow joint has traditionally been measured in blindfolded subjects using a forearm matching task. Here we compare position errors in a matching task with errors generated when the subject uses a pointer to indicate the position of a hidden arm. Evidence from muscle vibration during forearm matching supports a role for muscle spindles in position sense. We have recently shown using vibration, as well as muscle conditioning, which takes advantage of muscle's thixotropic property, that position errors generated in a forearm pointing task were not consistent with a role by muscle spindles. In the present study we have used a form of muscle conditioning, where elbow muscles are co-contracted at the test angle, to further explore differences in position sense measured by matching and pointing. For fourteen subjects, in a matching task where the reference arm had elbow flexor and extensor muscles contracted at the test angle and the indicator arm had its flexors conditioned at 90°, matching errors lay in the direction of flexion by 6.2°. After the same conditioning of the reference arm and extension conditioning of the indicator at 0°, matching errors lay in the direction of extension (5.7°). These errors were consistent with predictions based on a role by muscle spindles in determining forearm matching outcomes. In the pointing task subjects moved a pointer to align it with the perceived position of the hidden arm. After conditioning of the reference arm as before, pointing errors all lay in a more extended direction than the actual position of the arm by 2.9°-7.3°, a distribution not consistent with a role by muscle spindles. We propose that in pointing muscle spindles do not play the major role in signalling limb position that they do in matching, but that other sources of sensory input should be given consideration, including afferents from skin and joint.

  20. Tests and comparisons of gravity models.

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.

    1971-01-01

    Optical observations of the GEOS satellites were used to obtain orbital solutions with different sets of geopotential coefficients. The solutions were compared before and after modification to high order terms (necessary because of resonance) and were then analyzed by comparing subsequent observations with predicted trajectories. The most important source of error in orbit determination and prediction for the GEOS satellites is the effect of resonance found in most published sets of geopotential coefficients. Modifications to the sets yield greatly improved orbits in most cases. The results of these comparisons suggest that with the best optical tracking systems and gravity models, satellite position error due to gravity model uncertainty can reach 50-100 m during a heavily observed 5-6 day orbital arc. If resonant coefficients are estimated, the uncertainty is reduced considerably.

  1. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  2. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.

  3. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  4. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  5. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, E.; Mann, J.; Bingöl, F.

    2010-05-01

    A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2°. The results of the vertical conical scans were promising, and yielded positive flow angles for a sector where the forest is fetch-limited. However, more data and analysis are needed for a complete evaluation of the lidar technique.

  6. Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law

    NASA Astrophysics Data System (ADS)

    Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang

    2017-04-01

    This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.

  7. Analytic aerotriangulation utilizing Skylab earth terrain camera (S-190B) photography. [from Charlotte, North Carolina to Rappahannock River in Virginia

    NASA Technical Reports Server (NTRS)

    Keller, M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Inherent errors in using nonmetric Skylab photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The final block adjustment was executed holding to 14 of the office-identified photo control points. Solution accuracy was evaluated by comparing the analytically computed ground positions of the withheld photo control points with their known ground positions and also by determining the standard errors of these points from variance values. A horizontal position RMS error of 15 meters was attained. The maximum observed error in position at a control point was 25 meters.

  8. Segmentation, classification, and pose estimation of military vehicles in low resolution laser radar images

    NASA Astrophysics Data System (ADS)

    Neulist, Joerg; Armbruster, Walter

    2005-05-01

    Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.

  9. Modeling and calculation of impact friction caused by corner contact in gear transmission

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Chen, Siyu

    2014-09-01

    Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.

  10. Experimental test of visuomotor updating models that explain perisaccadic mislocalization.

    PubMed

    Van Wetter, Sigrid M C I; Van Opstal, A John

    2008-10-23

    Localization of a brief visual target is inaccurate when presented around saccade onset. Perisaccadic mislocalization is maximal in the saccade direction and varies systematically with the target-saccade onset disparity. It has been hypothesized that this effect is either due to a sluggish representation of eye position, to low-pass filtering of the visual event, to saccade-induced compression of visual space, or to a combination of these effects. Despite their differences, these schemes all predict that the pattern of localization errors varies systematically with the saccade amplitude and kinematics. We tested these predictions for the double-step paradigm by analyzing the errors for saccades of widely varying amplitudes. Our data show that the measured error patterns are only mildly influenced by the primary-saccade amplitude over a large range of saccade properties. An alternative possibility, better accounting for the data, assumes that around saccade onset perceived target location undergoes a uniform shift in the saccade direction that varies with amplitude only for small saccades. The strength of this visual effect saturates at about 10 deg and also depends on target duration. Hence, we propose that perisaccadic mislocalization results from errors in visual-spatial perception rather than from sluggish oculomotor feedback.

  11. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  12. Precise aircraft single-point positioning using GPS post-mission orbits and satellite clock corrections

    NASA Astrophysics Data System (ADS)

    Lachapelle, G.; Cannon, M. E.; Qiu, W.; Varner, C.

    1996-09-01

    Aircraft single point position accuracy is assessed through a comparison of the single point coordinates with corresponding DGPS-derived coordinates. The platform utilized for this evaluation is a Naval Air Warfare Center P-3 Orion aircraft. Data was collected over a period of about 40 hours, spread over six days, off Florida's East Coast in July 94, using DGPS reference stations in Jacksonville, FL, and Warminster, PA. The analysis of results shows that the consistency between aircraft single point and DGPS coordinates obtained in single point positioning mode and DGPS mode is about 1 m (rms) in latitude and longitude, and 2 m (rms) in height, with instantaneous errors of up to a few metres due to the effect of the ionosphere on the single point L1 solutions.

  13. Non-linear dynamic compensation system

    NASA Technical Reports Server (NTRS)

    Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)

    1992-01-01

    A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.

  14. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  15. A correlated meta-analysis strategy for data mining "OMIC" scans.

    PubMed

    Province, Michael A; Borecki, Ingrid B

    2013-01-01

    Meta-analysis is becoming an increasingly popular and powerful tool to integrate findings across studies and OMIC dimensions. But there is the danger that hidden dependencies between putatively "independent" studies can cause inflation of type I error, due to reinforcement of the evidence from false-positive findings. We present here a simple method for conducting meta-analyses that automatically estimates the degree of any such non-independence between OMIC scans and corrects the inference for it, retaining the proper type I error structure. The method does not require the original data from the source studies, but operates only on summary analysis results from these in OMIC scans. The method is applicable in a wide variety of situations including combining GWAS and or sequencing scan results across studies with dependencies due to overlapping subjects, as well as to scans of correlated traits, in a meta-analysis scan for pleiotropic genetic effects. The method correctly detects which scans are actually independent in which case it yields the traditional meta-analysis, so it may safely be used in all cases, when there is even a suspicion of correlation amongst scans.

  16. Effect of Detector Dead Time on the Performance of Optical Direct-Detection Communication Links

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1988-01-01

    Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detect ion sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulted (PPM) channel is studied by analyzing the error probability. It is shown that, when back- ground noise is negligible, the performance of the detector with dead time is similar to that o f a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on background intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.

  17. Astronaut Biography Project for Countermeasures of Human Behavior and Performance Risks in Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Banks, Akeem

    2012-01-01

    This final report will summarize research that relates to human behavioral health and performance of astronauts and flight controllers. Literature reviews, data archival analyses, and ground-based analog studies that center around the risk of human space flight are being used to help mitigate human behavior and performance risks from long duration space flights. A qualitative analysis of an astronaut autobiography was completed. An analysis was also conducted on exercise countermeasure publications to show the positive affects of exercise on the risks targeted in this study. The three main risks targeted in this study are risks of behavioral and psychiatric disorders, risks of performance errors due to poor team performance, cohesion, and composition, and risks of performance errors due to sleep deprivation, circadian rhythm. These three risks focus on psychological and physiological aspects of astronauts who venture out into space on long duration space missions. The purpose of this research is to target these risks in order to help quantify, identify, and mature countermeasures and technologies required in preventing or mitigating adverse outcomes from exposure to the spaceflight environment

  18. Effect of detector dead time on the performance of optical direct-detection communication links

    NASA Astrophysics Data System (ADS)

    Chen, C.-C.

    1988-05-01

    Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detection sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulated (PPM) channel is studied by analyzing the error probability. It is shown that, when background noise is negligible, the performance of the detector with dead time is similar to that of a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on badkground intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.

  19. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  20. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    PubMed Central

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  1. Focusing in Arthurs-Kelly-type joint measurements with correlated probes.

    PubMed

    Bullock, Thomas J; Busch, Paul

    2014-09-19

    Joint approximate measurement schemes of position and momentum provide us with a means of inferring pieces of complementary information if we allow for the irreducible noise required by quantum theory. One such scheme is given by the Arthurs-Kelly model, where information about a system is extracted via indirect probe measurements, assuming separable uncorrelated probes. Here, following Di Lorenzo [Phys. Rev. Lett. 110, 120403 (2013)], we extend this model to both entangled and classically correlated probes, achieving full generality. We show that correlated probes can produce more precise joint measurement outcomes than the same probes can achieve if applied alone to realize a position or momentum measurement. This phenomenon of focusing may be useful where one tries to optimize measurements with limited physical resources. Contrary to Di Lorenzo's claim, we find that there are no violations of Heisenberg's error-disturbance relation in these generalized Arthurs-Kelly models. This is simply due to the fact that, as we show, the measured observable of the system under consideration is covariant under phase space translations and as such is known to obey a tight joint measurement error relation.

  2. Analysis of DGPS/INS and MLS/INS final approach navigation errors and control performance data

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Spitzer, Cary R.

    1992-01-01

    Flight tests were conducted jointly by NASA Langley Research Center and Honeywell, Inc., on a B-737 research aircraft to record a data base for evaluating the performance of a differential DGPS/inertial navigation system (INS) which used GPS Course/Acquisition code receivers. Estimates from the DGPS/INS and a Microwave Landing System (MLS)/INS, and various aircraft parameter data were recorded in real time aboard the aircraft while flying along the final approach path to landing. This paper presents the mean and standard deviation of the DGPS/INS and MLS/INS navigation position errors computed relative to the laser tracker system and of the difference between the DGPS/INS and MLS/INS velocity estimates. RMS errors are presented for DGPS/INS and MLS/INS guidance errors (localizer and glideslope). The mean navigation position errors and standard deviation of the x position coordinate of the DGPS/INS and MLS/INS systems were found to be of similar magnitude while the standard deviation of the y and z position coordinate errors were significantly larger for DGPS/INS compared to MLS/INS.

  3. Quality assurance of dynamic parameters in volumetric modulated arc therapy

    PubMed Central

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-01-01

    Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206

  4. Use of Positive Blood Cultures for Direct Identification and Susceptibility Testing with the Vitek 2 System

    PubMed Central

    de Cueto, Marina; Ceballos, Esther; Martinez-Martinez, Luis; Perea, Evelio J.; Pascual, Alvaro

    2004-01-01

    In order to further decrease the time lapse between initial inoculation of blood culture media and the reporting of results of identification and antimicrobial susceptibility tests for microorganisms causing bacteremia, we performed a prospective study in which specially processed fluid from positive blood culture bottles from Bactec 9240 (Becton Dickinson, Cockeysville, Md.) containing aerobic media were directly inoculated into Vitek 2 system cards (bio-Mérieux, France). Organism identification and susceptibility results were compared with those obtained from cards inoculated with a standardized bacterial suspension obtained following subculture to agar; 100 consecutive positive monomicrobic blood cultures, consisting of 50 gram-negative rods and 50 gram-positive cocci, were included in the study. For gram-negative organisms, 31 of the 50 (62%) showed complete agreement with the standard method for species identification, while none of the 50 gram-positive cocci were correctly identified by the direct method. For gram-negative rods, there were 50% categorical agreements between the direct and standard methods for all drugs tested. The very major error rate was 2.4%, and the major error rate was 0.6%. The overall error rate for gram-negatives was 6.6%. Complete agreement in clinical categories of all antimicrobial agents evaluated was obtained for 19 of 50 (38%) gram-positive cocci evaluated; the overall error rate was 8.4%, with 2.8% minor errors, 2.4% major errors, and 3.2% very major errors. These findings suggest that the Vitek 2 cards inoculated directly from positive Bactec 9240 bottles do not provide acceptable bacterial identification or susceptibility testing in comparison with corresponding cards tested by a standard method. PMID:15297523

  5. Condom Use Errors and Problems: A Comparative Study of HIV-Positive Versus HIV-Negative Young Black MSM

    PubMed Central

    Crosby, Richard; Mena, Leandro; Yarber, William L.; Graham, Cynthia A.; Sanders, Stephanie A.; Milhausen, Robin R.

    2015-01-01

    Objective To describe self-reported frequencies of selected condom use errors and problems among young (ages 15–29) Black MSM (YBMSM) and to compare the observed prevalence of these errors/problems by HIV serostatus. Methods Between September 2012 October 2014, electronic interview data were collected from 369 YBMSM attending a federally supported STI clinic located in the southern U.S. Seventeen condom use errors and problems were assessed. Chi-square tests were used to detect significant differences in the prevalence of these 17 errors and problems between HIV-negative and HIV-positive men. Results The recall period was the past 90 days. The overall mean number of errors/problems was 2.98 (sd=2.29). The mean for HIV-negative men was 2.91 (sd=2.15) and the mean for HIV-positive men was 3.18 (sd=2.57). These means were not significantly different (t=1.02, df=367, P=.31). Only two significant differences were observed between HIV-negative and HIV-positive men. Breakage (P = .002) and slippage (P = .005) were about twice as likely among HIV-positive men. Breakage occurred for nearly 30% of the HIV-positive men compared to about 15% among HIV-negative men. Slippage occurred for about 16% of the HIV-positive men compared to about 9% among HIV-negative men. Conclusion A need exists to help YBMSM acquire the skills needed to avert breakage and slippage issues that could lead to HIV transmission. Beyond these two exceptions, condom use errors and problems were ubiquitous in this population regardless of HIV serostatus. Clinic-based intervention is warranted for these young men, including education about correct condom use and provision of free condoms and long-lasting lubricants. PMID:26462188

  6. Estimation of true incidence of polio: overcoming misclassification errors due to stool culture insensitivity.

    PubMed

    Srinivas, V; Puliyel, Jacob M

    2007-08-01

    The diagnosis of polio dependents on culturing the virus in stool samples of children with AFP. Using data obtained under the "Right to Information Act" of instances where only one of the two samples was positive for polio, it was possible to estimate the sensitivity of the system to detect cases of polio. The calculations suggest that there were 1625 (95% CI 1528 to 1725) cases of polio in India in 2006 rather than the 674 reported widely!

  7. Simulation of a navigator algorithm for a low-cost GPS receiver

    NASA Technical Reports Server (NTRS)

    Hodge, W. F.

    1980-01-01

    The analytical structure of an existing navigator algorithm for a low cost global positioning system receiver is described in detail to facilitate its implementation on in-house digital computers and real-time simulators. The material presented includes a simulation of GPS pseudorange measurements, based on a two-body representation of the NAVSTAR spacecraft orbits, and a four component model of the receiver bias errors. A simpler test for loss of pseudorange measurements due to spacecraft shielding is also noted.

  8. A Literature Review of Millimeter and Submillimeter Radiation Absorption and Scattering in the Atmosphere

    DTIC Science & Technology

    1978-10-01

    N0 #»T TIONAL P ECTRUM A SICAL PR EROMETER ECORD TH 15 CM.-l K.P. ; S PLICATIO INEERING ENSITY 0 EnUENClE F TREE T BILITY 0 AVE RADI D...NECESSARY, BUT THAT EXPERIMENTS AT SEVERAL SPECI - MEN THICKNESSES IS OBLIGATORY. IT IS SHOWN THAT THE ERROR DUE TO THE VAPOR PHASE ABOVE THE LIQUID...THIS IS A COMPILATION OF ION-NEUTRAL REACTIONS 166 RATE CONSTANTS OF ATMOSPHERICALLY IMPORTANT SPECIES THE REACTIONS REPORTED ARE POSITIVE AND

  9. Women Content in Units: Force Development Test (MAX WAC)

    DTIC Science & Technology

    1977-10-03

    ARTEPs, the positive nature of the responses to th"se questions suggests that it is -alikely that gros& errors would be made.usin& the ARTEP as a basis...companies, while the second ARTEP was conducted solely for the purpose& of the project. The unofficial nature of the second ARTEP was alto true for the...been excluded from this section of the report due to its voluminous and, in some cases, draft style nature . All refrences are available for inspection

  10. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  11. Pencil beam proton radiography using a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-07

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  12. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.

    2007-10-01

    Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.

  13. Effect of endorectal balloon positioning errors on target deformation and dosimetric quality during prostate SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Gan, Gregory; Kavanagh, Brian; Miften, Moyed

    2013-11-01

    An inflatable endorectal balloon (ERB) is often used during stereotactic body radiation therapy (SBRT) for treatment of prostate cancer in order to reduce both intrafraction motion of the target and risk of rectal toxicity. However, the ERB can exert significant force on the prostate, and this work assessed the impact of ERB position errors on deformation of the prostate and treatment dose metrics. Seventy-one cone-beam computed tomography (CBCT) image datasets of nine patients with clinical stage T1cN0M0 prostate cancer were studied. An ERB (Flexi-Cuff, EZ-EM, Westbury, NY) inflated with 60 cm3 of air was used during simulation and treatment, and daily kilovoltage (kV) CBCT imaging was performed to localize the prostate. The shape of the ERB in each CBCT was analyzed to determine errors in position, size, and shape. A deformable registration algorithm was used to track the dose received by (and deformation of) the prostate, and dosimetric values such as D95, PTV coverage, and Dice coefficient for the prostate were calculated. The average balloon position error was 0.5 cm in the inferior direction, with errors ranging from 2 cm inferiorly to 1 cm superiorly. The prostate was deformed primarily in the AP direction, and tilted primarily in the anterior-posterior/superior-inferior plane. A significant correlation was seen between errors in depth of ERB insertion (DOI) and mean voxel-wise deformation, prostate tilt, Dice coefficient, and planning-to-treatment prostate inter-surface distance (p < 0.001). Dosimetrically, DOI is negatively correlated with prostate D95 and PTV coverage (p < 0.001). For the model of ERB studied, error in ERB position can cause deformations in the prostate that negatively affect treatment, and this additional aspect of setup error should be considered when ERBs are used for prostate SBRT. Before treatment, the ERB position should be verified, and the ERB should be adjusted if the error is observed to exceed tolerable values.

  14. Comparing errors in ED computer-assisted vs conventional pediatric drug dosing and administration.

    PubMed

    Yamamoto, Loren; Kanemori, Joan

    2010-06-01

    Compared to fixed-dose single-vial drug administration in adults, pediatric drug dosing and administration requires a series of calculations, all of which are potentially error prone. The purpose of this study is to compare error rates and task completion times for common pediatric medication scenarios using computer program assistance vs conventional methods. Two versions of a 4-part paper-based test were developed. Each part consisted of a set of medication administration and/or dosing tasks. Emergency department and pediatric intensive care unit nurse volunteers completed these tasks using both methods (sequence assigned to start with a conventional or a computer-assisted approach). Completion times, errors, and the reason for the error were recorded. Thirty-eight nurses completed the study. Summing the completion of all 4 parts, the mean conventional total time was 1243 seconds vs the mean computer program total time of 879 seconds (P < .001). The conventional manual method had a mean of 1.8 errors vs the computer program with a mean of 0.7 errors (P < .001). Of the 97 total errors, 36 were due to misreading the drug concentration on the label, 34 were due to calculation errors, and 8 were due to misplaced decimals. Of the 36 label interpretation errors, 18 (50%) occurred with digoxin or insulin. Computerized assistance reduced errors and the time required for drug administration calculations. A pattern of errors emerged, noting that reading/interpreting certain drug labels were more error prone. Optimizing the layout of drug labels could reduce the error rate for error-prone labels. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. CORRECTION OF THE INERTIAL EFFECT RESULTING FROM A PLATE MOVING UNDER LOW FRICTION CONDITIONS

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2007-01-01

    The purpose of the present study was to develop a set of equations that can be employed to remove the inertial effect introduced by the movable platform upon which a person stands during a slip induced in gait; this allows the real ground reaction force (GRF) and its center of pressure (COP) to be determined. Analyses were also performed to determine how sensitive the COP offsets were to the changes of the parameters in the equation that affected the correction of the inertial effect. In addition, the results were verified empirically using a low friction movable platform together with a stationary object, a pendulum, and human subjects during a slip induced during gait. Our analyses revealed that the amount of correction required for the inertial effect due to the movable component is affected by its mass and its center of mass (COM) position, acceleration, the friction coefficient, and the landing position of the foot relative to the COM. The maximum error in the horizontal component of the GRF was close to 0.09 body weight during the recovery from a slip in walking. When uncorrected, the maximum error in the COP measurement could reach as much as 4 cm. Finally, these errors were magnified in the joint moment computation and propagated proximally, ranging from 0.2 to 1.0 Nm/body mass from the ankle to the hip. PMID:17306274

  16. Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system

    NASA Technical Reports Server (NTRS)

    Huynh, Loc C.; Duval, R. W.

    1986-01-01

    The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures.

  17. Accuracy of vaginal symptom self-diagnosis algorithms for deployed military women.

    PubMed

    Ryan-Wenger, Nancy A; Neal, Jeremy L; Jones, Ashley S; Lowe, Nancy K

    2010-01-01

    Deployed military women have an increased risk for development of vaginitis due to extreme temperatures, primitive sanitation, hygiene and laundry facilities, and unavailable or unacceptable healthcare resources. The Women in the Military Self-Diagnosis (WMSD) and treatment kit was developed as a field-expedient solution to this problem. The primary study aims were to evaluate the accuracy of women's self-diagnosis of vaginal symptoms and eight diagnostic algorithms and to predict potential self-medication omission and commission error rates. Participants included 546 active duty, deployable Army (43.3%) and Navy (53.6%) women with vaginal symptoms who sought healthcare at troop medical clinics on base.In the clinic lavatory, women conducted a self-diagnosis using a sterile cotton swab to obtain vaginal fluid, a FemExam card to measure positive or negative pH and amines, and the investigator-developed WMSD Decision-Making Guide. Potential self-diagnoses were "bacterial infection" (bacterial vaginosis [BV] and/or trichomonas vaginitis [TV]), "yeast infection" (candida vaginitis [CV]), "no infection/normal," or "unclear." The Affirm VPIII laboratory reference standard was used to detect clinically significant amounts of vaginal fluid DNA for organisms associated with BV, TV, and CV. Women's self-diagnostic accuracy was 56% for BV/TV and 69.2% for CV. False-positives would have led to a self-medication commission error rate of 20.3% for BV/TV and 8% for CV. Potential self-medication omission error rates due to false-negatives were 23.7% for BV/TV and 24.8% for CV. The positive predictive value of diagnostic algorithms ranged from 0% to 78.1% for BV/TV and 41.7% for CV. The algorithms were based on clinical diagnostic standards. The nonspecific nature of vaginal symptoms, mixed infections, and a faulty device intended to measure vaginal pH and amines explain why none of the algorithms reached the goal of 95% accuracy. The next prototype of the WMSD kit will not include nonspecific vaginal signs and symptoms in favor of recently available point-of-care devices that identify antigens or enzymes of the causative BV, TV, and CV organisms.

  18. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less

  19. General Nobile and the Airship Italia: No Second-In-Command

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.

    2017-01-01

    The airship Italia, commanded by General Umberto Nobile, crashed during its return flight from the North Pole in 1928. Prior work has demonstrated the possibility that this crash was fatigue-related, due to significant sleep-deprivation on the part of its Commander, and to resulting errors in cognition and judgment. However, the underlying cause of the fatigue was likely due to the fact that the Commander did not have a Second-In-Command on board to take over duties while the Commander was allowed to rest. At that time the Second-In-Command was a formally designated position, and according to Nobiles previous writings was considered to be a necessary crew member on an airship.

  20. Forward and correctional OFDM-based visible light positioning

    NASA Astrophysics Data System (ADS)

    Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng

    2017-09-01

    Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.

  1. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  2. SU-G-BRB-11: On the Sensitivity of An EPID-Based 3D Dose Verification System to Detect Delivery Errors in VMAT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, P; Olaciregui-Ruiz, I; Mijnheer, B

    2016-06-15

    Purpose: To investigate the sensitivity of an EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. Methods: For this study 41 EPID-reconstructed 3D in vivo dose distributions of 15 different VMAT plans (H&N, lung, prostate and rectum) were selected. To simulate the effect of delivery errors, their TPS plans were modified by: 1) scaling of the monitor units by ±3% and ±6% and 2) systematic shifting of leaf bank positions by ±1mm, ±2mm and ±5mm. The 3D in vivo dose distributions where then compared to the unmodified and modified treatment plans. To determine the detectability of themore » various delivery errors, we made use of a receiver operator characteristic (ROC) methodology. True positive and false positive rates were calculated as a function of the γ-parameters γmean, γ1% (near-maximum γ) and the PTV dose parameter ΔD{sub 50} (i.e. D{sub 50}(EPID)-D{sub 50}(TPS)). The ROC curve is constructed by plotting the true positive rate vs. the false positive rate. The area under the ROC curve (AUC) then serves as a measure of the performance of the EPID dosimetry system in detecting a particular error; an ideal system has AUC=1. Results: The AUC ranges for the machine output errors and systematic leaf position errors were [0.64 – 0.93] and [0.48 – 0.92] respectively using γmean, [0.57 – 0.79] and [0.46 – 0.85] using γ1% and [0.61 – 0.77] and [ 0.48 – 0.62] using ΔD{sub 50}. Conclusion: For the verification of VMAT deliveries, the parameter γmean is the best discriminator for the detection of systematic leaf position errors and monitor unit scaling errors. Compared to γmean and γ1%, the parameter ΔD{sub 50} performs worse as a discriminator in all cases.« less

  3. Evaluation of Copan FLOQSwab for the molecular detection of Chlamydia trachomatis by Abbott RealTime CT PCR.

    PubMed

    Coorevits, L; Vanscheeuwijck, C; Traen, A; Bingé, L; Ryckaert, I; Padalko, E

    2015-12-01

    We evaluated Copan FLOQSwabs next to Abbott swabs for the detection of Chlamydia trachomatis (CT) by Abbott RealTime PCR. We collected 1062 paired swabs from female sex workers. The study was divided in two arms, according to the order of swab collection. If the Abbott swab was collected first, 501 couples were concordant and two discordant (Abbott negative and Copan positive). If the Copan swab was collected first, 537 couples were concordant and 10 discordant (eight Abbott negative and Copan positive and two Abbott positive and Copan negative). All discordant samples contained low levels of C. trachomatis. Technical issues lead to retesting of 64 Copan and 21 Abbott swabs. Our results show that Copan FLOQSwabs can be used interchangeably with Abbott swabs. While appearing to have an advantage in detecting more positive samples, the use of Copan swabs led to a higher retesting rate due to technical errors.

  4. 77 FR 41699 - Transportation of Household Goods in Interstate Commerce; Consumer Protection Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... due Revision due to agency Collection Old burden to error error (old-- error) IC1: ``Ready to Move... Revisions of Estimates of Annual Costs to Respondents Total cost Collection New cost Old cost reduction (new--old) IC1: ``Ready to Move?'' $288,000 $720,000 -$432,000 ``Rights & Responsibilities'' 3,264,000 8,160...

  5. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding

    PubMed Central

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-01-01

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components. PMID:28492481

  6. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  7. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-05-11

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components.

  8. Sensitivity in error detection of patient specific QA tools for IMRT plans

    NASA Astrophysics Data System (ADS)

    Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.

    2016-03-01

    The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.

  9. Medication errors in anesthesia: unacceptable or unavoidable?

    PubMed

    Dhawan, Ira; Tewari, Anurag; Sehgal, Sankalp; Sinha, Ashish Chandra

    Medication errors are the common causes of patient morbidity and mortality. It adds financial burden to the institution as well. Though the impact varies from no harm to serious adverse effects including death, it needs attention on priority basis since medication errors' are preventable. In today's world where people are aware and medical claims are on the hike, it is of utmost priority that we curb this issue. Individual effort to decrease medication error alone might not be successful until a change in the existing protocols and system is incorporated. Often drug errors that occur cannot be reversed. The best way to 'treat' drug errors is to prevent them. Wrong medication (due to syringe swap), overdose (due to misunderstanding or preconception of the dose, pump misuse and dilution error), incorrect administration route, under dosing and omission are common causes of medication error that occur perioperatively. Drug omission and calculation mistakes occur commonly in ICU. Medication errors can occur perioperatively either during preparation, administration or record keeping. Numerous human and system errors can be blamed for occurrence of medication errors. The need of the hour is to stop the blame - game, accept mistakes and develop a safe and 'just' culture in order to prevent medication errors. The newly devised systems like VEINROM, a fluid delivery system is a novel approach in preventing drug errors due to most commonly used medications in anesthesia. Similar developments along with vigilant doctors, safe workplace culture and organizational support all together can help prevent these errors. Copyright © 2016. Published by Elsevier Editora Ltda.

  10. Error, rather than its probability, elicits specific electrocortical signatures: a combined EEG-immersive virtual reality study of action observation.

    PubMed

    Pezzetta, Rachele; Nicolardi, Valentina; Tidoni, Emmanuele; Aglioti, Salvatore Maria

    2018-06-06

    Detecting errors in one's own actions, and in the actions of others, is a crucial ability for adaptable and flexible behavior. Studies show that specific EEG signatures underpin the monitoring of observed erroneous actions (error-related negativity, error-positivity, mid-frontal theta oscillations). However, the majority of studies on action observation used sequences of trials where erroneous actions were less frequent than correct actions. Therefore, it was not possible to disentangle whether the activation of the performance monitoring system was due to an error - as a violation of the intended goal - or a surprise/novelty effect, associated with a rare and unexpected event. Combining EEG and immersive virtual reality (IVR-CAVE system), we recorded the neural signal of 25 young adults who observed in first-person perspective, simple reach-to-grasp actions performed by an avatar aiming for a glass. Importantly, the proportion of erroneous actions was higher than correct actions. Results showed that the observation of erroneous actions elicits the typical electro-cortical signatures of error monitoring and therefore the violation of the action goal is still perceived as a salient event. The observation of correct actions elicited stronger alpha suppression. This confirmed the role of the alpha frequency band in the general orienting response to novel and infrequent stimuli. Our data provides novel evidence that an observed goal error (the action slip) triggers the activity of the performance monitoring system even when erroneous actions, which are, typically, relevant events, occur more often than correct actions and thus are not salient because of their rarity.

  11. Helicopter force-feel and stability augmentation system with parallel servo-actuator

    NASA Technical Reports Server (NTRS)

    Hoh, Roger H. (Inventor)

    2006-01-01

    A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.

  12. Sub-nanosecond clock synchronization and precision deep space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  13. Error reduction study employing a pseudo-random binary sequence for use in acoustic pyrometry of gases

    NASA Astrophysics Data System (ADS)

    Ewan, B. C. R.; Ireland, S. N.

    2000-12-01

    Acoustic pyrometry uses the temperature dependence of sound speed in materials to measure temperature. This is normally achieved by measuring the transit time for a sound signal over a known path length and applying the material relation between temperature and velocity to extract an "average" temperature. Sources of error associated with the measurement of mean transit time are discussed in implementing the technique in gases, one of the principal causes being background noise in typical industrial environments. A number of transmitted signal and processing strategies which can be used in the area are examined and the expected error in mean transit time associated with each technique is quantified. Transmitted signals included pulses, pure frequencies, chirps, and pseudorandom binary sequences (prbs), while processing involves edge detection and correlation. Errors arise through the misinterpretation of the positions of edge arrival or correlation peaks due to instantaneous deviations associated with background noise and these become more severe as signal to noise amplitude ratios decrease. Population errors in the mean transit time are estimated for the different measurement strategies and it is concluded that PRBS combined with correlation can provide the lowest errors when operating in high noise environments. The operation of an instrument based on PRBS transmitted signals is described and test results under controlled noise conditions are presented. These confirm the value of the strategy and demonstrate that measurements can be made with signal to noise amplitude ratios down to 0.5.

  14. A path reconstruction method integrating dead-reckoning and position fixes applied to humpback whales.

    PubMed

    Wensveen, Paul J; Thomas, Len; Miller, Patrick J O

    2015-01-01

    Detailed information about animal location and movement is often crucial in studies of natural behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed information, but without additional positional data this method results in uncertainty that grows with time. Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time under water. We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error measurements made during calibrations. High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied most by distance to the whale. By systematically accounting for the observation errors in the position fixes, our model provides a quantitative estimate of location uncertainty that can be appropriately incorporated into analyses of animal movement. This generic method has potential application for a wide range of marine animal species and data recording systems.

  15. Remediating Common Math Errors.

    ERIC Educational Resources Information Center

    Wagner, Rudolph F.

    1981-01-01

    Explanations and remediation suggestions for five types of mathematics errors due either to perceptual or cognitive difficulties are given. Error types include directionality problems, mirror writing, visually misperceived signs, diagnosed directionality problems, and mixed process errors. (CL)

  16. Intimate Partner Violence, 1993-2010

    MedlinePlus

    ... appendix table 2 for standard errors. *Due to methodological changes, use caution when comparing 2006 NCVS criminal ... appendix table 2 for standard errors. *Due to methodological changes, use caution when comparing 2006 NCVS criminal ...

  17. Intrusion errors in visuospatial working memory performance.

    PubMed

    Cornoldi, Cesare; Mammarella, Nicola

    2006-02-01

    This study tested the hypothesis that failure in active visuospatial working memory tasks involves a difficulty in avoiding intrusions due to information that is already activated. Two experiments are described, in which participants were required to process several series of locations on a 4 x 4 matrix and then to produce only the final location of each series. Results revealed a higher number of errors due to already activated locations (intrusions) compared with errors due to new locations (inventions). Moreover, when participants were required to pay extra attention to some irrelevant (non-final) locations by tapping on the table, intrusion errors increased. Results are discussed in terms of current models of working memory functioning.

  18. Simple Sample Preparation Method for Direct Microbial Identification and Susceptibility Testing From Positive Blood Cultures.

    PubMed

    Pan, Hong-Wei; Li, Wei; Li, Rong-Guo; Li, Yong; Zhang, Yi; Sun, En-Hua

    2018-01-01

    Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.

  19. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  20. Investigation of writing error in staggered heated-dot magnetic recording systems

    NASA Astrophysics Data System (ADS)

    Tipcharoen, W.; Warisarn, C.; Tongsomporn, D.; Karns, D.; Kovintavewat, P.

    2017-05-01

    To achieve an ultra-high storage capacity, heated-dot magnetic recording (HDMR) has been proposed, which heats a bit-patterned medium before recording data. Generally, an error during the HDMR writing process comes from several sources; however, we only investigate the effects of staggered island arrangement, island size fluctuation caused by imperfect fabrication, and main pole position fluctuation. Simulation results demonstrate that a writing error can be minimized by using a staggered array (hexagonal lattice) instead of a square array. Under the effect of main pole position fluctuation, the writing error is higher than the system without main pole position fluctuation. Finally, we found that the error percentage can drop below 10% when the island size is 8.5 nm and the standard deviation of the island size is 1 nm in the absence of main pole jitter.

  1. An Upper Bound on High Speed Satellite Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.

  2. Goldmann tonometer error correcting prism: clinical evaluation.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko T; Schwiegerling, Jim; Levine, Jason; Kew, Corin

    2017-01-01

    Clinically evaluate a modified applanating surface Goldmann tonometer prism designed to substantially negate errors due to patient variability in biomechanics. A modified Goldmann prism with a correcting applanation tonometry surface (CATS) was mathematically optimized to minimize the intraocular pressure (IOP) measurement error due to patient variability in corneal thickness, stiffness, curvature, and tear film adhesion force. A comparative clinical study of 109 eyes measured IOP with CATS and Goldmann prisms. The IOP measurement differences between the CATS and Goldmann prisms were correlated to corneal thickness, hysteresis, and curvature. The CATS tonometer prism in correcting for Goldmann central corneal thickness (CCT) error demonstrated a reduction to <±2 mmHg in 97% of a standard CCT population. This compares to only 54% with CCT error <±2 mmHg using the Goldmann prism. Equal reductions of ~50% in errors due to corneal rigidity and curvature were also demonstrated. The results validate the CATS prism's improved accuracy and expected reduced sensitivity to Goldmann errors without IOP bias as predicted by mathematical modeling. The CATS replacement for the Goldmann prism does not change Goldmann measurement technique or interpretation.

  3. Correlation of Head Impacts to Change in Balance Error Scoring System Scores in Division I Men's Lacrosse Players.

    PubMed

    Miyashita, Theresa L; Diakogeorgiou, Eleni; Marrie, Kaitlyn

    Investigation into the effect of cumulative subconcussive head impacts has yielded various results in the literature, with many supporting a link to neurological deficits. Little research has been conducted on men's lacrosse and associated balance deficits from head impacts. (1) Athletes will commit more errors on the postseason Balance Error Scoring System (BESS) test. (2) There will be a positive correlation to change in BESS scores and head impact exposure data. Prospective longitudinal study. Level 3. Thirty-four Division I men's lacrosse players (age, 19.59 ± 1.42 years) wore helmets instrumented with a sensor to collect head impact exposure data over the course of a competitive season. Players completed a BESS test at the start and end of the competitive season. The number of errors from pre- to postseason increased during the double-leg stance on foam ( P < 0.001), tandem stance on foam ( P = 0.009), total number of errors on a firm surface ( P = 0.042), and total number of errors on a foam surface ( P = 0.007). There were significant correlations only between the total errors on a foam surface and linear acceleration ( P = 0.038, r = 0.36), head injury criteria ( P = 0.024, r = 0.39), and Gadd Severity Index scores ( P = 0.031, r = 0.37). Changes in the total number of errors on a foam surface may be considered a sensitive measure to detect balance deficits associated with cumulative subconcussive head impacts sustained over the course of 1 lacrosse season, as measured by average linear acceleration, head injury criteria, and Gadd Severity Index scores. If there is microtrauma to the vestibular system due to repetitive subconcussive impacts, only an assessment that highly stresses the vestibular system may be able to detect these changes. Cumulative subconcussive impacts may result in neurocognitive dysfunction, including balance deficits, which are associated with an increased risk for injury. The development of a strategy to reduce total number of head impacts may curb the associated sequelae. Incorporation of a modified BESS test, firm surface only, may not be recommended as it may not detect changes due to repetitive impacts over the course of a competitive season.

  4. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    NASA Astrophysics Data System (ADS)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  5. 26 CFR 301.6621-3 - Higher interest rate payable on large corporate underpayments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resulting from a math error on Y's return. Y did not request an abatement of the assessment pursuant to...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...

  6. 26 CFR 301.6621-3 - Higher interest rate payable on large corporate underpayments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... resulting from a math error on Y's return. Y did not request an abatement of the assessment pursuant to...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...

  7. 26 CFR 301.6621-3 - Higher interest rate payable on large corporate underpayments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... resulting from a math error on Y's return. Y did not request an abatement of the assessment pursuant to...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...

  8. 26 CFR 301.6621-3 - Higher interest rate payable on large corporate underpayments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resulting from a math error on Y's return. Y did not request an abatement of the assessment pursuant to...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...

  9. 26 CFR 301.6621-3 - Higher interest rate payable on large corporate underpayments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resulting from a math error on Y's return. Y did not request an abatement of the assessment pursuant to...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...,000 amount shown as due on the math error assessment notice (plus interest) on or before January 31...

  10. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. Error Types and Error Positions in Neglect Dyslexia: Comparative Analyses in Neglect Patients and Healthy Controls

    ERIC Educational Resources Information Center

    Weinzierl, Christiane; Kerkhoff, Georg; van Eimeren, Lucia; Keller, Ingo; Stenneken, Prisca

    2012-01-01

    Unilateral spatial neglect frequently involves a lateralised reading disorder, neglect dyslexia (ND). Reading of single words in ND is characterised by left-sided omissions and substitutions of letters. However, it is unclear whether the distribution of error types and positions within a word shows a unique pattern of ND when directly compared to…

  12. Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement

    PubMed Central

    Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe

    2014-01-01

    This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378

  13. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.

    2014-10-15

    Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less

  14. Refraction corrected calibration for aquatic locomotion research: application of Snell's law improves spatial accuracy.

    PubMed

    Henrion, Sebastian; Spoor, Cees W; Pieters, Remco P M; Müller, Ulrike K; van Leeuwen, Johan L

    2015-07-07

    Images of underwater objects are distorted by refraction at the water-glass-air interfaces and these distortions can lead to substantial errors when reconstructing the objects' position and shape. So far, aquatic locomotion studies have minimized refraction in their experimental setups and used the direct linear transform algorithm (DLT) to reconstruct position information, which does not model refraction explicitly. Here we present a refraction corrected ray-tracing algorithm (RCRT) that reconstructs position information using Snell's law. We validated this reconstruction by calculating 3D reconstruction error-the difference between actual and reconstructed position of a marker. We found that reconstruction error is small (typically less than 1%). Compared with the DLT algorithm, the RCRT has overall lower reconstruction errors, especially outside the calibration volume, and errors are essentially insensitive to camera position and orientation and the number and position of the calibration points. To demonstrate the effectiveness of the RCRT, we tracked an anatomical marker on a seahorse recorded with four cameras to reconstruct the swimming trajectory for six different camera configurations. The RCRT algorithm is accurate and robust and it allows cameras to be oriented at large angles of incidence and facilitates the development of accurate tracking algorithms to quantify aquatic manoeuvers.

  15. Effects of tropospheric and ionospheric refraction errors in the utilization of GEOS-C altimeter data

    NASA Technical Reports Server (NTRS)

    Goad, C. C.

    1977-01-01

    The effects of tropospheric and ionospheric refraction errors are analyzed for the GEOS-C altimeter project in terms of their resultant effects on C-band orbits and the altimeter measurement itself. Operational procedures using surface meteorological measurements at ground stations and monthly means for ocean surface conditions are assumed, with no corrections made for ionospheric effects. Effects on the orbit height due to tropospheric errors are approximately 15 cm for single pass short arcs (such as for calibration) and 10 cm for global orbits of one revolution. Orbit height errors due to neglect of the ionosphere have an amplitude of approximately 40 cm when the orbits are determined from C-band range data with predominantly daylight tracking. Altimeter measurement errors are approximately 10 cm due to residual tropospheric refraction correction errors. Ionospheric effects on the altimeter range measurement are also on the order of 10 cm during the GEOS-C launch and early operation period.

  16. Dental Students' Interpretations of Digital Panoramic Radiographs on Completely Edentate Patients.

    PubMed

    Kratz, Richard J; Nguyen, Caroline T; Walton, Joanne N; MacDonald, David

    2018-03-01

    The ability of dental students to interpret digital panoramic radiographs (PANs) of edentulous patients has not been documented. The aim of this retrospective study was to compare the ability of second-year (D2) dental students with that of third- and fourth-year (D3-D4) dental students to interpret and identify positional errors in digital PANs obtained from patients with complete edentulism. A total of 169 digital PANs from edentulous patients were assessed by D2 (n=84) and D3-D4 (n=85) dental students at one Canadian dental school. The correctness of the students' interpretations was determined by comparison to a gold standard established by assessments of the same PANs by two experts (a graduate student in prosthodontics and an oral and maxillofacial radiologist). Data collected were from September 1, 2006, when digital radiography was implemented at the university, to December 31, 2012. Nearly all (95%) of the PANs were acceptable diagnostically despite a high proportion (92%) of positional errors detected. A total of 301 positional errors were identified in the sample. The D2 students identified significantly more (p=0.002) positional errors than the D3-D4 students. There was no significant difference (p=0.059) in the distribution of radiographic interpretation errors between the two student groups when compared to the gold standard. Overall, the category of extragnathic findings had the highest number of false negatives (43) reported. In this study, dental students interpreted digital PANs of edentulous patients satisfactorily, but they were more adept at identifying radiographic findings compared to positional errors. Students should be reminded to examine the entire radiograph thoroughly to ensure extragnathic findings are not missed and to recognize and report patient positional errors.

  17. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports.

    PubMed

    Hoppe, Matthias W; Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen

    2018-01-01

    This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6-8.0%; CV: 1.1-5.1%) and sprint mechanical properties (TEE: 4.5-14.3%; CV: 3.1-7.5%) than the 10 Hz GPS (TEE: 3.0-12.9%; CV: 2.5-13.0% and TEE: 4.1-23.1%; CV: 3.3-20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0-6.0%; CV: 0.7-5.0% and TEE: 2.1-9.2%; CV: 1.6-7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that 18 Hz GPS has enhanced validity and reliability for determining movement patterns in team sports compared to 10 Hz GPS, whereas 20 Hz LPS had superior validity and reliability overall. However, compared to 10 Hz GPS, 18 Hz GPS and 20 Hz LPS technologies had more outliers due to measurement errors, which limits their practical applications at this time.

  18. SU-F-E-09: Respiratory Signal Prediction Based On Multi-Layer Perceptron Neural Network Using Adjustable Training Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, W; Jiang, M; Yin, F

    Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, amore » Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results demonstrate that the ASMLP respiratory prediction method is more accurate than MLP method and can improve the respiration forecast accuracy.« less

  19. Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement accuracy study.

    PubMed

    Blumenfeld, Philip; Hata, Nobuhiko; DiMaio, Simon; Zou, Kelly; Haker, Steven; Fichtinger, Gabor; Tempany, Clare M C

    2007-09-01

    To quantify needle placement accuracy of magnetic resonance image (MRI)-guided core needle biopsy of the prostate. A total of 10 biopsies were performed with 18-gauge (G) core biopsy needle via a percutaneous transperineal approach. Needle placement error was assessed by comparing the coordinates of preplanned targets with the needle tip measured from the intraprocedural coherent gradient echo images. The source of these errors was subsequently investigated by measuring displacement caused by needle deflection and needle susceptibility artifact shift in controlled phantom studies. Needle placement error due to misalignment of the needle template guide was also evaluated. The mean and standard deviation (SD) of errors in targeted biopsies was 6.5 +/- 3.5 mm. Phantom experiments showed significant placement error due to needle deflection with a needle with an asymmetrically beveled tip (3.2-8.7 mm depending on tissue type) but significantly smaller error with a symmetrical bevel (0.6-1.1 mm). Needle susceptibility artifacts observed a shift of 1.6 +/- 0.4 mm from the true needle axis. Misalignment of the needle template guide contributed an error of 1.5 +/- 0.3 mm. Needle placement error was clinically significant in MRI-guided biopsy for diagnosis of prostate cancer. Needle placement error due to needle deflection was the most significant cause of error, especially for needles with an asymmetrical bevel. (c) 2007 Wiley-Liss, Inc.

  20. SU-G-JeP3-05: Geometry Based Transperineal Ultrasound Probe Positioning for Image Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camps, S; With, P de; Verhaegen, F

    2016-06-15

    Purpose: The use of ultrasound (US) imaging in radiotherapy is not widespread, primarily due to the need for skilled operators performing the scans. Automation of probe positioning has the potential to remove this need and minimize operator dependence. We introduce an algorithm for obtaining a US probe position that allows good anatomical structure visualization based on clinical requirements. The first application is on 4D transperineal US images of prostate cancer patients. Methods: The algorithm calculates the probe position and orientation using anatomical information provided by a reference CT scan, always available in radiotherapy workflows. As initial test, we apply themore » algorithm on a CIRS pelvic US phantom to obtain a set of possible probe positions. Subsequently, five of these positions are randomly chosen and used to acquire actual US volumes of the phantom. Visual inspection of these volumes reveal if the whole prostate, and adjacent edges of bladder and rectum are fully visualized, as clinically required. In addition, structure positions on the acquired US volumes are compared to predictions of the algorithm. Results: All acquired volumes fulfill the clinical requirements as specified in the previous section. Preliminary quantitative evaluation was performed on thirty consecutive slices of two volumes, on which the structures are easily recognizable. The mean absolute distances (MAD) between actual anatomical structure positions and positions predicted by the algorithm were calculated. This resulted in MAD of 2.4±0.4 mm for prostate, 3.2±0.9 mm for bladder and 3.3±1.3 mm for rectum. Conclusion: Visual inspection and quantitative evaluation show that the algorithm is able to propose probe positions that fulfill all clinical requirements. The obtained MAD is on average 2.9 mm. However, during evaluation we assumed no errors in structure segmentation and probe positioning. In future steps, accurate estimation of these errors will allow for better evaluation of the achieved accuracy.« less

  1. Sex differences in the shoulder joint position sense acuity: a cross-sectional study.

    PubMed

    Vafadar, Amir K; Côté, Julie N; Archambault, Philippe S

    2015-09-30

    Work-related musculoskeletal disorders (WMSD) is the most expensive form of work disability. Female sex has been considered as an individual risk factor for the development of WMSD, specifically in the neck and shoulder region. One of the factors that might contribute to the higher injury rate in women is possible differences in neuromuscular control. Accordingly the purpose of this study was to estimate the effect of sex on shoulder joint position sense acuity (as a part of shoulder neuromuscular control) in healthy individuals. Twenty-eight healthy participants, 14 females and 14 males were recruited for this study. To test position sense acuity, subjects were asked to flex their dominant shoulder to one of the three pre-defined angle ranges (low, mid and high-ranges) with eyes closed, hold their arm in that position for three seconds, go back to the starting position and then immediately replicate the same joint flexion angle, while the difference between the reproduced and original angle was taken as the measure of position sense error. The errors were measured using Vicon motion capture system. Subjects reproduced nine positions in total (3 ranges × 3 trials each). Calculation of absolute repositioning error (magnitude of error) showed no significant difference between men and women (p-value ≥ 0.05). However, the analysis of the direction of error (constant error) showed a significant difference between the sexes, as women tended to mostly overestimate the target, whereas men tended to both overestimate and underestimate the target (p-value ≤ 0.01, observed power = 0.79). The results also showed that men had a significantly more variable error, indicating more variability in their position sense, compared to women (p-value ≤ 0.05, observed power = 0.78). Differences observed in the constant JPS error suggest that men and women might use different neuromuscular control strategies in the upper limb. In addition, higher JPS variability observed in men might be one of the factors that could contribute to their lower rate of musculoskeletal disorders, compared to women. The result of this study showed that shoulder position sense, as part of the neuromuscular control system, differs between men and women. This finding can help us better understand the reasons behind the higher rate of musculoskeletal disorders in women, especially in the working environments.

  2. Improving Localization Accuracy: Successive Measurements Error Modeling

    PubMed Central

    Abu Ali, Najah; Abu-Elkheir, Mervat

    2015-01-01

    Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345

  3. Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction.

    PubMed

    Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang

    2018-05-08

    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.

  4. Error analysis of 3D-PTV through unsteady interfaces

    NASA Astrophysics Data System (ADS)

    Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier

    2018-03-01

    The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be performed.

  5. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    PubMed Central

    Ruotsalainen, Laura; Kirkko-Jaakkola, Martti; Rantanen, Jesperi; Mäkelä, Maija

    2018-01-01

    The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM) and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU), sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS) sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF), which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf) in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is tested via two experiments, one at a university’s premises and another in realistic tactical conditions. The results show significant improvement on the horizontal localization when the measurement errors are carefully modelled and their inclusion into the particle filtering implementation correctly realized. PMID:29443918

  6. Increasing the reliability of solution exchanges by monitoring solenoid valve actuation.

    PubMed

    Auzmendi, Jerónimo Andrés; Moffatt, Luciano

    2010-01-15

    Solenoid valves are a core component of most solution perfusion systems used in neuroscience research. As they open and close, they control the flow of solution through each perfusion line, thereby modulating the timing and sequence of chemical stimulation. The valves feature a ferromagnetic plunger that moves due to the magnetization of the solenoid and returns to its initial position with the aid of a spring. The delays between the time of voltage application or removal and the actual opening or closing of the valve are difficult to predict beforehand and have to be measured experimentally. Here we propose a simple method for monitoring whether and when the solenoid valve opens and closes. The proposed method detects the movement of the plunger as it generates a measurable signal on the solenoid that surrounds it. Using this plunger signal, we detected the opening and closing of diaphragm and pinch solenoid valves with a systematic error of less than 2ms. After this systematic error is subtracted, the trial-to-trial error was below 0.2ms.

  7. Mitigation of Angle Tracking Errors Due to Color Dependent Centroid Shifts in SIM-Lite

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; An, Xin; Goullioud, Renaud; Shao, Michael; Shen, Tsae-Pyng; Wehmeier, Udo J.; Weilert, Mark A.; Wang, Xu; Werne, Thomas A.; Wu, Janet P.; hide

    2010-01-01

    The SIM-Lite astrometric interferometer will search for Earth-size planets in the habitable zones of nearby stars. In this search the interferometer will monitor the astrometric position of candidate stars relative to nearby reference stars over the course of a 5 year mission. The elemental measurement is the angle between a target star and a reference star. This is a two-step process, in which the interferometer will each time need to use its controllable optics to align the starlight in the two arms with each other and with the metrology beams. The sensor for this alignment is an angle tracking CCD camera. Various constraints in the design of the camera subject it to systematic alignment errors when observing a star of one spectrum compared with a start of a different spectrum. This effect is called a Color Dependent Centroid Shift (CDCS) and has been studied extensively with SIM-Lite's SCDU testbed. Here we describe results from the simulation and testing of this error in the SCDU testbed, as well as effective ways that it can be reduced to acceptable levels.

  8. Lunar crescent visibility

    NASA Technical Reports Server (NTRS)

    Doggett, Leroy E.; Schaefer, Bradley E.

    1994-01-01

    We report the results of five Moonwatches, in which more than 2000 observers throughout North America attempted to sight the thin lunar crescent. For each Moonwatch we were able to determine the position of the Lunar Date Line (LDL), the line along which a normal observer has a 50% probability of spotting the Moon. The observational LDLs were then compared with predicted LDLs derived from crescent visibility prediction algorithms. We find that ancient and medieval rules are higly unreliable. More recent empirical criteria, based on the relative altitude and azimuth of the Moon at the time of sunset, have a reasonable accuracy, with the best specific formulation being due to Yallop. The modern theoretical model by Schaefer (based on the physiology of the human eye and the local observing conditions) is found to have the least systematic error, the least average error, and the least maximum error of all models tested. Analysis of the observations also provided information about atmospheric, optical and human factors that affect the observations. We show that observational lunar calendars have a natural bias to begin early.

  9. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-12-31

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less

  10. Sensitivity and specificity of dosing alerts for dosing errors among hospitalized pediatric patients

    PubMed Central

    Stultz, Jeremy S; Porter, Kyle; Nahata, Milap C

    2014-01-01

    Objectives To determine the sensitivity and specificity of a dosing alert system for dosing errors and to compare the sensitivity of a proprietary system with and without institutional customization at a pediatric hospital. Methods A retrospective analysis of medication orders, orders causing dosing alerts, reported adverse drug events, and dosing errors during July, 2011 was conducted. Dosing errors with and without alerts were identified and the sensitivity of the system with and without customization was compared. Results There were 47 181 inpatient pediatric orders during the studied period; 257 dosing errors were identified (0.54%). The sensitivity of the system for identifying dosing errors was 54.1% (95% CI 47.8% to 60.3%) if customization had not occurred and increased to 60.3% (CI 54.0% to 66.3%) with customization (p=0.02). The sensitivity of the system for underdoses was 49.6% without customization and 60.3% with customization (p=0.01). Specificity of the customized system for dosing errors was 96.2% (CI 96.0% to 96.3%) with a positive predictive value of 8.0% (CI 6.8% to 9.3). All dosing errors had an alert over-ridden by the prescriber and 40.6% of dosing errors with alerts were administered to the patient. The lack of indication-specific dose ranges was the most common reason why an alert did not occur for a dosing error. Discussion Advances in dosing alert systems should aim to improve the sensitivity and positive predictive value of the system for dosing errors. Conclusions The dosing alert system had a low sensitivity and positive predictive value for dosing errors, but might have prevented dosing errors from reaching patients. Customization increased the sensitivity of the system for dosing errors. PMID:24496386

  11. Adaptive use of research aircraft data sets for hurricane forecasts

    NASA Astrophysics Data System (ADS)

    Biswas, M. K.; Krishnamurti, T. N.

    2008-02-01

    This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.

  12. Methodology issues concerning the accuracy of kinematic data collection and analysis using the ariel performance analysis system

    NASA Technical Reports Server (NTRS)

    Wilmington, R. P.; Klute, Glenn K. (Editor); Carroll, Amy E. (Editor); Stuart, Mark A. (Editor); Poliner, Jeff (Editor); Rajulu, Sudhakar (Editor); Stanush, Julie (Editor)

    1992-01-01

    Kinematics, the study of motion exclusive of the influences of mass and force, is one of the primary methods used for the analysis of human biomechanical systems as well as other types of mechanical systems. The Anthropometry and Biomechanics Laboratory (ABL) in the Crew Interface Analysis section of the Man-Systems Division performs both human body kinematics as well as mechanical system kinematics using the Ariel Performance Analysis System (APAS). The APAS supports both analysis of analog signals (e.g. force plate data collection) as well as digitization and analysis of video data. The current evaluations address several methodology issues concerning the accuracy of the kinematic data collection and analysis used in the ABL. This document describes a series of evaluations performed to gain quantitative data pertaining to position and constant angular velocity movements under several operating conditions. Two-dimensional as well as three-dimensional data collection and analyses were completed in a controlled laboratory environment using typical hardware setups. In addition, an evaluation was performed to evaluate the accuracy impact due to a single axis camera offset. Segment length and positional data exhibited errors within 3 percent when using three-dimensional analysis and yielded errors within 8 percent through two-dimensional analysis (Direct Linear Software). Peak angular velocities displayed errors within 6 percent through three-dimensional analyses and exhibited errors of 12 percent when using two-dimensional analysis (Direct Linear Software). The specific results from this series of evaluations and their impacts on the methodology issues of kinematic data collection and analyses are presented in detail. The accuracy levels observed in these evaluations are also presented.

  13. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  14. Safety margins in older adults increase with improved control of a dynamic object

    PubMed Central

    Hasson, Christopher J.; Sternad, Dagmar

    2014-01-01

    Older adults face decreasing motor capabilities due to pervasive neuromuscular degradations. As a consequence, errors in movement control increase. Thus, older individuals should maintain larger safety margins than younger adults. While this has been shown for object manipulation tasks, several reports on whole-body activities, such as posture and locomotion, demonstrate age-related reductions in safety margins. This is despite increased costs for control errors, such as a fall. We posit that this paradox could be explained by the dynamic challenge presented by the body or also an external object, and that age-related reductions in safety margins are in part due to a decreased ability to control dynamics. To test this conjecture we used a virtual ball-in-cup task that had challenging dynamics, yet afforded an explicit rendering of the physics and safety margin. The hypotheses were: (1) When manipulating an object with challenging dynamics, older adults have smaller safety margins than younger adults. (2) Older adults increase their safety margins with practice. Nine young and 10 healthy older adults practiced moving the virtual ball-in-cup to a target location in exactly 2 s. The accuracy and precision of the timing error quantified skill, and the ball energy relative to an escape threshold quantified the safety margin. Compared to the young adults, older adults had increased timing errors, greater variability, and decreased safety margins. With practice, both young and older adults improved their ability to control the object with decreased timing errors and variability, and increased their safety margins. These results suggest that safety margins are related to the ability to control dynamics, and may explain why in tasks with simple dynamics older adults use adequate safety margins, but in more complex tasks, safety margins may be inadequate. Further, the results indicate that task-specific training may improve safety margins in older adults. PMID:25071566

  15. Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, S.; Peter, M.

    2017-05-01

    In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.

  16. Reduction of ZTD outliers through improved GNSS data processing and screening strategies

    NASA Astrophysics Data System (ADS)

    Stepniak, Katarzyna; Bock, Olivier; Wielgosz, Pawel

    2018-03-01

    Though Global Navigation Satellite System (GNSS) data processing has been significantly improved over the years, it is still commonly observed that zenith tropospheric delay (ZTD) estimates contain many outliers which are detrimental to meteorological and climatological applications. In this paper, we show that ZTD outliers in double-difference processing are mostly caused by sub-daily data gaps at reference stations, which cause disconnections of clusters of stations from the reference network and common mode biases due to the strong correlation between stations in short baselines. They can reach a few centimetres in ZTD and usually coincide with a jump in formal errors. The magnitude and sign of these biases are impossible to predict because they depend on different errors in the observations and on the geometry of the baselines. We elaborate and test a new baseline strategy which solves this problem and significantly reduces the number of outliers compared to the standard strategy commonly used for positioning (e.g. determination of national reference frame) in which the pre-defined network is composed of a skeleton of reference stations to which secondary stations are connected in a star-like structure. The new strategy is also shown to perform better than the widely used strategy maximizing the number of observations available in many GNSS programs. The reason is that observations are maximized before processing, whereas the final number of used observations can be dramatically lower because of data rejection (screening) during the processing. The study relies on the analysis of 1 year of GPS (Global Positioning System) data from a regional network of 136 GNSS stations processed using Bernese GNSS Software v.5.2. A post-processing screening procedure is also proposed to detect and remove a few outliers which may still remain due to short data gaps. It is based on a combination of range checks and outlier checks of ZTD and formal errors. The accuracy of the final screened GPS ZTD estimates is assessed by comparison to ERA-Interim reanalysis.

  17. A map overlay error model based on boundary geometry

    USGS Publications Warehouse

    Gaeuman, D.; Symanzik, J.; Schmidt, J.C.

    2005-01-01

    An error model for quantifying the magnitudes and variability of errors generated in the areas of polygons during spatial overlay of vector geographic information system layers is presented. Numerical simulation of polygon boundary displacements was used to propagate coordinate errors to spatial overlays. The model departs from most previous error models in that it incorporates spatial dependence of coordinate errors at the scale of the boundary segment. It can be readily adapted to match the scale of error-boundary interactions responsible for error generation on a given overlay. The area of error generated by overlay depends on the sinuosity of polygon boundaries, as well as the magnitude of the coordinate errors on the input layers. Asymmetry in boundary shape has relatively little effect on error generation. Overlay errors are affected by real differences in boundary positions on the input layers, as well as errors in the boundary positions. Real differences between input layers tend to compensate for much of the error generated by coordinate errors. Thus, the area of change measured on an overlay layer produced by the XOR overlay operation will be more accurate if the area of real change depicted on the overlay is large. The model presented here considers these interactions, making it especially useful for estimating errors studies of landscape change over time. ?? 2005 The Ohio State University.

  18. Mars approach navigation using Doppler and range measurements to surface beacons and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.; Estefan, Jeffrey A.

    1991-01-01

    Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.

  19. Star tracker operation in a high density proton field

    NASA Technical Reports Server (NTRS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  20. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris.

    PubMed

    Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan

    2015-07-22

    Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation.

  1. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris

    PubMed Central

    Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan

    2015-01-01

    Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation. PMID:26205276

  2. Post-error Brain Activity Correlates With Incidental Memory for Negative Words

    PubMed Central

    Senderecka, Magdalena; Ociepka, Michał; Matyjek, Magdalena; Kroczek, Bartłomiej

    2018-01-01

    The present study had three main objectives. First, we aimed to evaluate whether short-duration affective states induced by negative and positive words can lead to increased error-monitoring activity relative to a neutral task condition. Second, we intended to determine whether such an enhancement is limited to words of specific valence or is a general response to arousing material. Third, we wanted to assess whether post-error brain activity is associated with incidental memory for negative and/or positive words. Participants performed an emotional stop-signal task that required response inhibition to negative, positive or neutral nouns while EEG was recorded. Immediately after the completion of the task, they were instructed to recall as many of the presented words as they could in an unexpected free recall test. We observed significantly greater brain activity in the error-positivity (Pe) time window in both negative and positive trials. The error-related negativity amplitudes were comparable in both the neutral and emotional arousing trials, regardless of their valence. Regarding behavior, increased processing of emotional words was reflected in better incidental recall. Importantly, the memory performance for negative words was positively correlated with the Pe amplitude, particularly in the negative condition. The source localization analysis revealed that the subsequent memory recall for negative words was associated with widespread bilateral brain activity in the dorsal anterior cingulate cortex and in the medial frontal gyrus, which was registered in the Pe time window during negative trials. The present study has several important conclusions. First, it indicates that the emotional enhancement of error monitoring, as reflected by the Pe amplitude, may be induced by stimuli with symbolic, ontogenetically learned emotional significance. Second, it indicates that the emotion-related enhancement of the Pe occurs across both negative and positive conditions, thus it is preferentially driven by the arousal content of an affective stimuli. Third, our findings suggest that enhanced error monitoring and facilitated recall of negative words may both reflect responsivity to negative events. More speculatively, they can also indicate that post-error activity of the medial prefrontal cortex may selectively support encoding for negative stimuli and contribute to their privileged access to memory. PMID:29867408

  3. Climbing fibers predict movement kinematics and performance errors.

    PubMed

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control. Copyright © 2017 the American Physiological Society.

  4. Evaluation of dynamic electromagnetic tracking deviation

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Bax, Michael; Shahidi, Ramin; Bergmann, Helmar; Birkfellner, Wolfgang

    2009-02-01

    Electromagnetic tracking systems (EMTS's) are widely used in clinical applications. Many reports have evaluated their static behavior and errors caused by metallic objects were examined. Although there exist some publications concerning the dynamic behavior of EMTS's the measurement protocols are either difficult to reproduce with respect of the movement path or only accomplished at high technical effort. Because dynamic behavior is of major interest with respect to clinical applications we established a simple but effective modal measurement easy to repeat at other laboratories. We built a simple pendulum where the sensor of our EMTS (Aurora, NDI, CA) could be mounted. The pendulum was mounted on a special bearing to guarantee that the pendulum path is planar. This assumption was tested before starting the measurements. All relevant parameters defining the pendulum motion such as rotation center and length are determined by static measurement at satisfactory accuracy. Then position and orientation data were gathered over a time period of 8 seconds and timestamps were recorded. Data analysis provided a positioning error and an overall error combining both position and orientation. All errors were calculated by means of the well know equations concerning pendulum movement. Additionally, latency - the elapsed time from input motion until the immediate consequences of that input are available - was calculated using well-known equations for mechanical pendulums for different velocities. We repeated the measurements with different metal objects (rods made of stainless steel type 303 and 416) between field generator and pendulum. We found a root mean square error (eRMS) of 1.02mm with respect to the distance of the sensor position to the fit plane (maximum error emax = 2.31mm, minimum error emin = -2.36mm). The eRMS for positional error amounted to 1.32mm while the overall error was 3.24 mm. The latency at a pendulum angle of 0° (vertical) was 7.8ms.

  5. Analysis of Position Error Headway Protection

    DOT National Transportation Integrated Search

    1975-07-01

    An analysis is developed to determine safe headway on PRT systems that use point-follower control. Periodic measurements of the position error relative to a nominal trajectory provide warning against the hazards of overspeed and unexpected stop. A co...

  6. Parametric Modulation of Error-Related ERP Components by the Magnitude of Visuo-Motor Mismatch

    ERIC Educational Resources Information Center

    Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik

    2011-01-01

    Errors generate typical brain responses, characterized by two successive event-related potentials (ERP) following incorrect action: the error-related negativity (ERN) and the positivity error (Pe). However, it is unclear whether these error-related responses are sensitive to the magnitude of the error, or instead show all-or-none effects. We…

  7. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  8. [Transposition errors during learning to reproduce a sequence by the right- and the left-hand movements: simulation of positional and movement coding].

    PubMed

    Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N

    2012-01-01

    Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.

  9. Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe).

    PubMed

    Herrmann, Martin J; Römmler, Josefine; Ehlis, Ann-Christine; Heidrich, Anke; Fallgatter, Andreas J

    2004-07-01

    We investigated error processing of 39 subjects engaging the Eriksen flanker task. In all 39 subjects a pronounced negative deflection (ERN/Ne) and a later positive component (Pe) were observed after incorrect as compared to correct responses. The neural sources of both components were analyzed using LORETA source localization. For the negative component (ERN/Ne) we found significantly higher brain electrical activity in medial prefrontal areas for incorrect responses, whereas the positive component (Pe) was localized nearby but more rostral within the anterior cingulate cortex (ACC). Thus, different neural generators were found for the ERN/Ne and the Pe, which further supports the notion that both error-related components represent different aspects of error processing.

  10. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, Kathleen T.; Fischell Department of Bioengineering, University of Maryland, College Park, MD; McAvoy, Thomas J.

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precisionmore » in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.« less

  11. The propagation of inventory-based positional errors into statistical landslide susceptibility models

    NASA Astrophysics Data System (ADS)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Glade, Thomas

    2016-12-01

    There is unanimous agreement that a precise spatial representation of past landslide occurrences is a prerequisite to produce high quality statistical landslide susceptibility models. Even though perfectly accurate landslide inventories rarely exist, investigations of how landslide inventory-based errors propagate into subsequent statistical landslide susceptibility models are scarce. The main objective of this research was to systematically examine whether and how inventory-based positional inaccuracies of different magnitudes influence modelled relationships, validation results, variable importance and the visual appearance of landslide susceptibility maps. The study was conducted for a landslide-prone site located in the districts of Amstetten and Waidhofen an der Ybbs, eastern Austria, where an earth-slide point inventory was available. The methodological approach comprised an artificial introduction of inventory-based positional errors into the present landslide data set and an in-depth evaluation of subsequent modelling results. Positional errors were introduced by artificially changing the original landslide position by a mean distance of 5, 10, 20, 50 and 120 m. The resulting differently precise response variables were separately used to train logistic regression models. Odds ratios of predictor variables provided insights into modelled relationships. Cross-validation and spatial cross-validation enabled an assessment of predictive performances and permutation-based variable importance. All analyses were additionally carried out with synthetically generated data sets to further verify the findings under rather controlled conditions. The results revealed that an increasing positional inventory-based error was generally related to increasing distortions of modelling and validation results. However, the findings also highlighted that interdependencies between inventory-based spatial inaccuracies and statistical landslide susceptibility models are complex. The systematic comparisons of 12 models provided valuable evidence that the respective error-propagation was not only determined by the degree of positional inaccuracy inherent in the landslide data, but also by the spatial representation of landslides and the environment, landslide magnitude, the characteristics of the study area, the selected classification method and an interplay of predictors within multiple variable models. Based on the results, we deduced that a direct propagation of minor to moderate inventory-based positional errors into modelling results can be partly counteracted by adapting the modelling design (e.g. generalization of input data, opting for strongly generalizing classifiers). Since positional errors within landslide inventories are common and subsequent modelling and validation results are likely to be distorted, the potential existence of inventory-based positional inaccuracies should always be considered when assessing landslide susceptibility by means of empirical models.

  12. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  13. Towards an evaluation framework for Laboratory Information Systems.

    PubMed

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  14. Action Monitoring in boys with ADHD, their Nonaffected Siblings and Normal Controls: Evidence for an Endophenotype

    PubMed Central

    Albrecht, Bjoern; Brandeis, Daniel; Uebel, Henrik; Heinrich, Hartmut; Mueller, Ueli C.; Hasselhorn, Marcus; Steinhausen, Hans-Christoph; Rothenberger, Aribert; Banaschewski, Tobias

    2008-01-01

    Background Attention deficit/hyperactivity disorder is a very common and highly heritable child psychiatric disorder associated with dysfunctions in fronto-striatal networks that control attention and response organisation. Aim of this study was to investigate whether features of action monitoring related to dopaminergic functions represent endophenotypes which are brain functions on the pathway from genes and environmental risk factors to behaviour. Methods Action monitoring and error processing as indicated by behavioural and electrophysiological parameters during a flanker task were examined in boys with ADHD combined type according to DSM-IV (N=68), their nonaffected siblings (N=18) and healthy controls with no known family history of ADHD (N=22). Results Boys with ADHD displayed slower and more variable reaction-times. Error negativity (Ne) was smaller in boys with ADHD compared to healthy controls, while nonaffected siblings displayed intermediate amplitudes following a linear model predicted by genetic concordance. The three groups did not differ on error positivity (Pe). N2 amplitude enhancement due to conflict (incongruent flankers) was reduced in the ADHD group. Nonaffected siblings also displayed intermediate N2 enhancement. Conclusions Converging evidence from behavioural and ERP findings suggests that action monitoring and initial error processing, both related to dopaminergically modulated functions of anterior cingulate cortex, might be an endophenotype related to ADHD. PMID:18339358

  15. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  16. Effects of free convection and friction on heat-pulse flowmeter measurement

    NASA Astrophysics Data System (ADS)

    Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing

    2012-03-01

    SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.

  17. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  18. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  19. A cryogenic 'set-and-forget' deformable mirror

    NASA Astrophysics Data System (ADS)

    Trines, Robin; Janssen, Huub; Paalvast, Sander; Teuwen, Maurice; Brandl, Bernhard; Rodenhuis, Michiel

    2016-07-01

    This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming. The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror. The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances. A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that the actuators can provide sufficient stroke to correct the 2 μm rms WFE. The resolution of the actuator influence functions is found to be 0.24 nm rms or better depending on the position of the actuator within the grid. Superposition of the actuator influence functions shows that a 2 μm rms WFE can be accurately corrected with a 38 nm fitting error. Due to the manufacturing method of the demonstrator an artificially large print-through error of 182 nm is observed. The main cause of this print-through error has been identified and will be reduced in future design iterations. After these design changes the system is expected to have a total residual error of less than 70 nm and offer diffraction limited performance (λ14) for wavelengths of 1 μm and above.

  20. [A Quality Assurance (QA) System with a Web Camera for High-dose-rate Brachytherapy].

    PubMed

    Hirose, Asako; Ueda, Yoshihiro; Oohira, Shingo; Isono, Masaru; Tsujii, Katsutomo; Inui, Shouki; Masaoka, Akira; Taniguchi, Makoto; Miyazaki, Masayoshi; Teshima, Teruki

    2016-03-01

    The quality assurance (QA) system that simultaneously quantifies the position and duration of an (192)Ir source (dwell position and time) was developed and the performance of this system was evaluated in high-dose-rate brachytherapy. This QA system has two functions to verify and quantify dwell position and time by using a web camera. The web camera records 30 images per second in a range from 1,425 mm to 1,505 mm. A user verifies the source position from the web camera at real time. The source position and duration were quantified with the movie using in-house software which was applied with a template-matching technique. This QA system allowed verification of the absolute position in real time and quantification of dwell position and time simultaneously. It was evident from the verification of the system that the mean of step size errors was 0.31±0.1 mm and that of dwell time errors 0.1±0.0 s. Absolute position errors can be determined with an accuracy of 1.0 mm at all dwell points in three step sizes and dwell time errors with an accuracy of 0.1% in more than 10.0 s of the planned time. This system is to provide quick verification and quantification of the dwell position and time with high accuracy at various dwell positions without depending on the step size.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Y; Macq, B; Bondar, L

    Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees,more » and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for complex error scenarios. Yafei Xing and Luiza Bondar are funded by BEWARE grants from the Walloon Region. The work presents simulations results for a prompt gamma camera prototype developed by IBA.« less

  2. How personal standards perfectionism and evaluative concerns perfectionism affect the error positivity and post-error behavior with varying stimulus visibility.

    PubMed

    Drizinsky, Jessica; Zülch, Joachim; Gibbons, Henning; Stahl, Jutta

    2016-10-01

    Error detection is required in order to correct or avoid imperfect behavior. Although error detection is beneficial for some people, for others it might be disturbing. We investigated Gaudreau and Thompson's (Personality and Individual Differences, 48, 532-537, 2010) model, which combines personal standards perfectionism (PSP) and evaluative concerns perfectionism (ECP). In our electrophysiological study, 43 participants performed a combination of a modified Simon task, an error awareness paradigm, and a masking task with a variation of stimulus onset asynchrony (SOA; 33, 67, and 100 ms). Interestingly, relative to low-ECP participants, high-ECP participants showed a better post-error accuracy (despite a worse classification accuracy) in the high-visibility SOA 100 condition than in the two low-visibility conditions (SOA 33 and SOA 67). Regarding the electrophysiological results, first, we found a positive correlation between ECP and the amplitude of the error positivity (Pe) under conditions of low stimulus visibility. Second, under the condition of high stimulus visibility, we observed a higher Pe amplitude for high-ECP-low-PSP participants than for high-ECP-high-PSP participants. These findings are discussed within the framework of the error-processing avoidance hypothesis of perfectionism (Stahl, Acharki, Kresimon, Völler, & Gibbons, International Journal of Psychophysiology, 97, 153-162, 2015).

  3. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  4. Cervicocephalic kinesthetic sensibility in young and middle-aged adults with or without a history of mild neck pain.

    PubMed

    Teng, C-C; Chai, H; Lai, D-M; Wang, S-F

    2007-02-01

    Previous research has shown that there is no significant relationship between the degree of structural degeneration of the cervical spine and neck pain. We therefore sought to investigate the potential role of sensory dysfunction in chronic neck pain. Cervicocephalic kinesthetic sensibility, expressed by how accurately an individual can reposition the head, was studied in three groups of individuals, a control group of 20 asymptomatic young adults and two groups of middle-aged adults (20 subjects in each group) with or without a history of mild neck pain. An ultrasound-based three-dimensional coordinate measuring system was used to measure the position of the head and to test the accuracy of repositioning. Constant error (indicating that the subject overshot or undershot the intended position) and root mean square errors (representing total errors of accuracy and variability) were measured during repositioning of the head to the neutral head position (Head-to-NHP) and repositioning of the head to the target (Head-to-Target) in three cardinal planes (sagittal, transverse, and frontal). Analysis of covariance (ANCOVA) was used to test the group effect, with age used as a covariate. The constant errors during repositioning from a flexed position and from an extended position to the NHP were significantly greater in the middle-aged subjects than in the control group (beta=0.30 and beta=0.60, respectively; P<0.05 for both). In addition, the root mean square errors during repositioning from a flexed or extended position to the NHP were greater in the middle-aged subjects than in the control group (beta=0.27 and beta=0.49, respectively; P<0.05 for both). The root mean square errors also increased during Head-to-Target in left rotation (beta=0.24;P<0.05), but there was no difference in the constant errors or root mean square errors during Head-to-NHP repositioning from other target positions (P>0.05). The results indicate that, after controlling for age as a covariate, there was no group effect. Thus, age appears to have a profound effect on an individual's ability to accurately reposition the head toward the neutral position in the sagittal plane and repositioning the head toward left rotation. A history of mild chronic neck pain alone had no significant effect on cervicocephalic kinesthetic sensibility.

  5. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  6. Force reflection with compliance control

    NASA Technical Reports Server (NTRS)

    Kim, Won S. (Inventor)

    1993-01-01

    Two types of systems for force-reflecting control, which enables high force-reflection gain, are presented: position-error-based force reflection and low-pass-filtered force reflection. Both of the systems are combined with shared compliance control. In the position-error-based class, the position error between the commanded and the actual position of a compliantly controlled robot is used to provide force reflection. In the low-pass-filtered force reflection class, the low-pass-filtered output of the compliance control is used to provide force reflection. The increase in force reflection gain can be more than 10-fold as compared to a conventional high-bandwidth pure force reflection system, when high compliance values are used for the compliance control.

  7. Conical-Domain Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The conical-domain model is a computational model, now undergoing development, for estimating ionospheric delays of Global Positioning System (GPS) signals. Relative to the standard ionospheric delay model described below, the conical-domain model offers improved accuracy. In the absence of selective availability, the ionosphere is the largest source of error for single-frequency users of GPS. Because ionospheric signal delays contribute to errors in GPS position and time measurements, satellite-based augmentation systems (SBASs) have been designed to estimate these delays and broadcast corrections. Several national and international SBASs are currently in various stages of development to enhance the integrity and accuracy of GPS measurements for airline navigation. In the Wide Area Augmentation System (WAAS) of the United States, slant ionospheric delay errors and confidence bounds are derived from estimates of vertical ionospheric delay modeled on a grid at regularly spaced intervals of latitude and longitude. The estimate of vertical delay at each ionospheric grid point (IGP) is calculated from a planar fit of neighboring slant delay measurements, projected to vertical using a standard, thin-shell model of the ionosphere. Interpolation on the WAAS grid enables estimation of the vertical delay at the ionospheric pierce point (IPP) corresponding to any arbitrary measurement of a user. (The IPP of a given user s measurement is the point where the GPS signal ray path intersects a reference ionospheric height.) The product of the interpolated value and the user s thin-shell obliquity factor provides an estimate of the user s ionospheric slant delay. Two types of error that restrict the accuracy of the thin-shell model are absent in the conical domain model: (1) error due to the implicit assumption that the electron density is independent of the azimuthal angle at the IPP and (2) error arising from the slant-to-vertical conversion. At low latitudes or at mid-latitudes under disturbed conditions, the accuracy of SBAS systems based upon the thin-shell model suffers due to the presence of complex ionospheric structure, high delay values, and large electron density gradients. Interpolation on the vertical delay grid serves as an additional source of delay error. The conical-domain model permits direct computation of the user s slant delay estimate without the intervening use of a vertical delay grid. The key is to restrict each fit of GPS measurements to a spatial domain encompassing signals from only one satellite. The conical domain model is so named because each fit involves a group of GPS receivers that all receive signals from the same GPS satellite (see figure); the receiver and satellite positions define a cone, the satellite position being the vertex. A user within a given cone evaluates the delay to the satellite directly, using (1) the IPP coordinates of the line of sight to the satellite and (2) broadcast fit parameters associated with the cone. The conical-domain model partly resembles the thin-shell model in that both models reduce an inherently four-dimensional problem to two dimensions. However, unlike the thin-shell model, the conical domain model does not involve any potentially erroneous simplifying assumptions about the structure of the ionosphere. In the conical domain model, the initially four-dimensional problem becomes truly two-dimensional in the sense that once a satellite location has been specified, any signal path emanating from a satellite can be identified by only two coordinates; for example, the IPP coordinates. As a consequence, a user s slant-delay estimate converges to the correct value in the limit that the receivers converge to the user s location (or, equivalently, in the limit that the measurement IPPs converge to the user s IPP).

  8. Interactions between moist heating and dynamics in atmospheric predictability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straus, D.M.; Huntley, M.A.

    1994-02-01

    The predictability properties of a fixed heating version of a GCM in which the moist heating is specified beforehand are studied in a series of identical twin experiments. Comparison is made to an identical set of experiments using the control GCM, a five-level R30 version of the COLA GCM. The experiments each contain six ensembles, with a single ensemble consisting of six 30-day integrations starting from slightly perturbed Northern Hemisphere wintertime initial conditions. The moist heating from each integration within a single control ensemble was averaged over the ensemble. This averaged heating (a function of three spatial dimensions and time)more » was used as the prespecified heating in each member of the corresponding fixed heating ensemble. The errors grow less rapidly in the fixed heating case. The most rapidly growing scales at small times (global wavenumber 6) have doubling times of 3.2 days compared to 2.4 days for the control experiments. The predictability times for the most energetic scales (global wavenumbers 9-12) are about two weeks for the fixed heating experiments, compared to 9 days for the control. The ratio of error energy in the fixed heating to the control case falls below 0.5 by day 8, and then gradually increases as the error growth slows in the control case. The growth of errors is described in terms of budgets of error kinetic energy (EKE) and error available potential energy (EAPE) developed in terms of global wavenumber n. The diabatic generation of EAPE (G[sub APE]) is positive in the control case and is dominated by midlatitude heating errors after day 2. The fixed heating G[sub APE] is negative at all times due to longwave radiative cooling. 36 refs., 9 figs., 1 tab.« less

  9. Robust Linear Models for Cis-eQTL Analysis.

    PubMed

    Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C

    2015-01-01

    Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.

  10. Acetaminophen attenuates error evaluation in cortex

    PubMed Central

    Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.

    2016-01-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161

  11. Helicopter Airborne Laser Positioning System (HALPS)

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Christiansen, Howard; Cross, Jeffrey; Totah, Joseph

    1990-01-01

    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight.

  12. SU-G-JeP1-09: Evaluation of Transperineal Ultrasound Imaging as a Potential Solution for Target Tracking During Ablative Body Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, M; Han, B; Hancock, S

    Purpose: Prostate SABR is emerging as a clinically viable, potentially cost effective alternative to prostate IMRT but its adoption is contingent on providing solutions for accurate tracking during beam delivery. Our goal is to evaluate the performance of the Clarity Autoscan ultrasound monitoring system for inter-fractional prostate motion tracking in both phantoms and in-vivo. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. The probe was placed before KV imaging and real-time tracking was started and continued until the endmore » of treatment. Initial absolute 3D positions of fiducials were estimated from KV images. Fiducial positions in MV images subsequently acquired during beam delivery were compared with predicted positions based on Clarity estimated motion. Results: Phantom studies with motion amplitudes of ±1.5, ±3, ±6 mm in lateral direction and ±2 mm in longitudinal direction resulted in tracking errors of −0.03 ± 0.3, −0.04 ± 0.6, −0.2 ± 0.9 mm, respectively, in lateral direction and −0.05 ± 0.30 mm in longitudinal direction. In phantom, measured and predicted fiducial positions in MV images were within 0.1 ± 0.6 mm. Four patients consented to participate in the study and data was acquired over a total of 140 fractions. MV imaging tracking was possible in about 75% of the time (due to occlusion of fiducials) compared to 100% with Clarity. Overall range of estimated motion by Clarity was 0 to 4.0 mm. In-vivo fiducial localization error was 1.2 ± 1.0 mm compared to 1.8 ± 1.9 mm if not taking Clarity estimated motion into account. Conclusion: Real-time transperineal ultrasound tracking reduces uncertainty in prostate position due to intrafractional motion. Research was supported by Elekta.« less

  13. Adaptation of catch-up saccades during the initiation of smooth pursuit eye movements.

    PubMed

    Schütz, Alexander C; Souto, David

    2011-04-01

    Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit-in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.

  14. Validation of a stereo camera system to quantify brain deformation due to breathing and pulsatility.

    PubMed

    Faria, Carlos; Sadowsky, Ofri; Bicho, Estela; Ferrigno, Giancarlo; Joskowicz, Leo; Shoham, Moshe; Vivanti, Refael; De Momi, Elena

    2014-11-01

    A new stereo vision system is presented to quantify brain shift and pulsatility in open-skull neurosurgeries. The system is endowed with hardware and software synchronous image acquisition with timestamp embedding in the captured images, a brain surface oriented feature detection, and a tracking subroutine robust to occlusions and outliers. A validation experiment for the stereo vision system was conducted against a gold-standard optical tracking system, Optotrak CERTUS. A static and dynamic analysis of the stereo camera tracking error was performed tracking a customized object in different positions, orientations, linear, and angular speeds. The system is able to detect an immobile object position and orientation with a maximum error of 0.5 mm and 1.6° in all depth of field, and tracking a moving object until 3 mm/s with a median error of 0.5 mm. Three stereo video acquisitions were recorded from a patient, immediately after the craniotomy. The cortical pulsatile motion was captured and is represented in the time and frequency domain. The amplitude of motion of the cloud of features' center of mass was inferior to 0.8 mm. Three distinct peaks are identified in the fast Fourier transform analysis related to the sympathovagal balance, breathing, and blood pressure with 0.03-0.05, 0.2, and 1 Hz, respectively. The stereo vision system presented is a precise and robust system to measure brain shift and pulsatility with an accuracy superior to other reported systems.

  15. Concepts and Preliminary Data Toward the Realization of Image-guided Liver Surgery

    PubMed Central

    Cash, David M.; Miga, Michael I.; Glasgow, Sean C.; Dawant, Benoit M.; Clements, Logan W.; Cao, Zhujiang; Galloway, Robert L.; Chapman, William C.

    2013-01-01

    Image-guided surgery provides navigational assistance to the surgeon by displaying the surgical probe position on a set of preoperative tomograms in real time. In this study, the feasibility of implementing image-guided surgery concepts into liver surgery was examined during eight hepatic resection procedures. Preoperative tomographic image data were acquired and processed. Accompanying intraoperative data on liver shape and position were obtained through optically tracked probes and laser range scanning technology. The preoperative and intraoperative representations of the liver surface were aligned using the iterative closest point surface matching algorithm. Surface registrations resulted in mean residual errors from 2 to 6 mm, with errors of target surface regions being below a stated goal of 1 cm. Issues affecting registration accuracy include liver motion due to respiration, the quality of the intraoperative surface data, and intraoperative organ deformation. Respiratory motion was quantified during the procedures as cyclical, primarily along the cranial–caudal direction. The resulting registrations were more robust and accurate when using laser range scanning to rapidly acquire thousands of points on the liver surface and when capturing unique geometric regions on the liver surface, such as the inferior edge. Finally, finite element models recovered much of the observed intraoperative deformation, further decreasing errors in the registration. Image-guided liver surgery has shown the potential to provide surgeons with important navigation aids that could increase the accuracy of targeting lesions and the number of patients eligible for surgical resection. PMID:17458587

  16. Air data position-error calibration using state reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.

    1984-01-01

    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.

  17. Precision and Error of Three-dimensional Phenotypic Measures Acquired from 3dMD Photogrammetric Images

    PubMed Central

    Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.

    2015-01-01

    The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436

  18. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Does Imprecision in The Waggle Dance Fit Patterns Predicted by The Tuned-Error Hypothesis?

    PubMed

    Tanner, David A; Visscher, P Kirk

    2010-05-01

    The waggle dance of the honey bee is used to recruit nest mates to a resource, though direction indicated for a resource may vary greatly within a single dance. Some authors suggest that this variation exits as an adaptation to distribute recruits across a patch of flowers, and that, due to the variation's inverse relationship with distance, the shape of the recruit distribution will remain constant for resources at different distances. In this study, we test this hypothesis by examining how variation in the indication of direction and distance changes with respect to distance. We find that imprecision in the communication of direction does not diminish rapidly enough to accommodate an adaptive-error hypothesis, and we also find that variation in the indication of distance has a positive relationship with the distance of a resource from the hive.

  20. Does Imprecision in The Waggle Dance Fit Patterns Predicted by The Tuned-Error Hypothesis?

    PubMed Central

    Visscher, P. Kirk

    2010-01-01

    The waggle dance of the honey bee is used to recruit nest mates to a resource, though direction indicated for a resource may vary greatly within a single dance. Some authors suggest that this variation exits as an adaptation to distribute recruits across a patch of flowers, and that, due to the variation’s inverse relationship with distance, the shape of the recruit distribution will remain constant for resources at different distances. In this study, we test this hypothesis by examining how variation in the indication of direction and distance changes with respect to distance. We find that imprecision in the communication of direction does not diminish rapidly enough to accommodate an adaptive-error hypothesis, and we also find that variation in the indication of distance has a positive relationship with the distance of a resource from the hive. PMID:20414338

  1. Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input

    NASA Astrophysics Data System (ADS)

    Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko

    2011-09-01

    In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.

  2. Divergence compensation for hardware-in-the-loop simulation of stiffness-varying discrete contact in space

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Hu, Yan

    2016-11-01

    The hardware-in-the-loop (HIL) contact simulation for flying objects in space is challenging due to the divergence caused by the time delay. In this study, a divergence compensation approach is proposed for the stiffness-varying discrete contact. The dynamic response delay of the motion simulator and the force measurement delay are considered. For the force measurement delay, a phase lead based force compensation approach is used. For the dynamic response delay of the motion simulator, a response error based force compensation approach is used, where the compensation force is obtained from the real-time identified contact stiffness and real-time measured position response error. The dynamic response model of the motion simulator is not required. The simulations and experiments show that the simulation divergence can be compensated effectively and satisfactorily by using the proposed approach.

  3. VLBI height corrections due to gravitational deformation of antenna structures

    NASA Astrophysics Data System (ADS)

    Sarti, P.; Negusini, M.; Abbondanza, C.; Petrov, L.

    2009-12-01

    From an analysis of regional European VLBI data we evaluate the impact of a VLBI signal path correction model developed to account for gravitational deformations of the antenna structures. The model was derived from a combination of terrestrial surveying methods applied to telescopes at Medicina and Noto in Italy. We find that the model corrections shift the derived height components of these VLBI telescopes' reference points downward by 14.5 and 12.2 mm, respectively. No other parameter estimates nor other station positions are affected. Such systematic height errors are much larger than the formal VLBI random errors and imply the possibility of significant VLBI frame scale distortions, of major concern for the International Terrestrial Reference Frame (ITRF) and its applications. This demonstrates the urgent need to investigate gravitational deformations in other VLBI telescopes and eventually correct them in routine data analysis.

  4. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  5. Is Comprehension Necessary for Error Detection? A Conflict-Based Account of Monitoring in Speech Production

    ERIC Educational Resources Information Center

    Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.

    2011-01-01

    Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the…

  6. Error-Related Psychophysiology and Negative Affect

    ERIC Educational Resources Information Center

    Hajcak, G.; McDonald, N.; Simons, R.F.

    2004-01-01

    The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…

  7. The Phylogeny of Rickettsia Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution?

    PubMed Central

    Murray, Gemma G. R.; Weinert, Lucy A.; Rhule, Emma L.; Welch, John J.

    2016-01-01

    Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives. PMID:26559010

  8. Potential and Limitations of an Improved Method to Produce Dynamometric Wheels

    PubMed Central

    García de Jalón, Javier

    2018-01-01

    A new methodology for the estimation of tyre-contact forces is presented. The new procedure is an evolution of a previous method based on harmonic elimination techniques developed with the aim of producing low cost dynamometric wheels. While the original method required stress measurement in many rim radial lines and the fulfillment of some rigid conditions of symmetry, the new methodology described in this article significantly reduces the number of required measurement points and greatly relaxes symmetry constraints. This can be done without compromising the estimation error level. The reduction of the number of measuring radial lines increases the ripple of demodulated signals due to non-eliminated higher order harmonics. Therefore, it is necessary to adapt the calibration procedure to this new scenario. A new calibration procedure that takes into account angular position of the wheel is completely described. This new methodology is tested on a standard commercial five-spoke car wheel. Obtained results are qualitatively compared to those derived from the application of former methodology leading to the conclusion that the new method is both simpler and more robust due to the reduction in the number of measuring points, while contact forces’ estimation error remains at an acceptable level. PMID:29439427

  9. Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy

    PubMed Central

    Lazar, Josef; Klapetek, Petr; Valtr, Miroslav; Hrabina, Jan; Buchta, Zdenek; Cip, Onrej; Cizek, Martin; Oulehla, Jindrich; Sery, Mojmir

    2014-01-01

    We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment. PMID:24451463

  10. A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors

    PubMed Central

    Nefti-Meziani, Samia; Carbonaro, Nicola

    2017-01-01

    Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively. PMID:28858252

  11. A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors.

    PubMed

    Russo, Stefania; Nefti-Meziani, Samia; Carbonaro, Nicola; Tognetti, Alessandro

    2017-08-31

    Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively.

  12. NIST Ionization Chamber "A" Sample-Height Corrections.

    PubMed

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber "A" (PIC "A") to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10(-5) to 10(-3) per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC "A". In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures.

  13. Pixel-super-resolved lensfree holography using adaptive relaxation factor and positional error correction

    NASA Astrophysics Data System (ADS)

    Zhang, Jialin; Chen, Qian; Sun, Jiasong; Li, Jiaji; Zuo, Chao

    2018-01-01

    Lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and field-of-view (FOV) of conventional lens-based microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). In this paper, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method to address the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Furthermore, an automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target across a wide imaging area of {29.85 mm2 and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel-size (1.67 μm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.

  14. A compensation method of lever arm effect for tri-axis hybrid inertial navigation system based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Liu, Zengjun; Wang, Lei; Li, Kui; Gao, Jiaxin

    2017-05-01

    Hybrid inertial navigation system (HINS) is a new kind of inertial navigation system (INS), which combines advantages of platform INS, strap-down INS and rotational INS. HINS has a physical platform to isolate the angular motion as platform INS does, HINS also uses strap-down attitude algorithms and applies rotation modulation technique. Tri-axis HINS has three gimbals to isolate the angular motion in the dynamic base, in which way the system can reduce the effects of angular motion and improve the positioning precision. However, the angular motion will affect the compensation of some error parameters, especially for the lever arm effect. The lever arm effect caused by position errors between the accelerometers and rotation center cannot be ignored due to the rapid rotation of inertial measurement unit (IMU) and it will cause fluctuation and stage in velocity in HINS. The influences of angular motion on the lever arm effect compensation are analyzed firstly in this paper, and then the compensation method of lever arm effect based on the photoelectric encoders in dynamic base is proposed. Results of experiments on turntable show that after compensation, the fluctuations and stages in velocity curve disappear.

  15. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    PubMed

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  16. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    PubMed

    Seo, Heewon; Park, Yoomi; Min, Byung Joo; Seo, Myung Eui; Kim, Ju Han

    2017-01-01

    The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  17. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    NASA Astrophysics Data System (ADS)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  18. Autocollimation system for measuring angular deformations with reflector designed by quaternionic method

    NASA Astrophysics Data System (ADS)

    Hoang, Phong V.; Konyakhin, Igor A.

    2017-06-01

    Autocollimators are widely used for angular measurements in instrument-making and the manufacture of elements of optical systems (wedges, prisms, plane-parallel plates) to check their shape parameters (rectilinearity, parallelism and planarity) and retrieve their optical parameters (curvature radii, measure and test their flange focusing). Autocollimator efficiency is due to the high sensitivity of the autocollimation method to minor rotations of the reflecting control element or the controlled surface itself. We consider using quaternions to optimize reflector parameters during autocollimation measurements as compared to the matrix technique. Mathematical model studies have demonstrated that the orthogonal positioning of the two basic unchanged directions of the tetrahedral reflector of the autocollimator is optimal by the criterion of reducing measurement errors where the axis of actual rotation is in a bisecting position towards them. Computer results are presented of running quaternion models that yielded conditions for diminishing measurement errors provided apriori information is available on the position of rotation axis. A practical technique is considered for synthesizing the parameters of the tetrahedral reflector that employs the newly-retrieved relationships. Following the relationships found between the angles of the tetrahedral reflector and the angles of the parameters of its initial orientation, an applied technique was developed to synthesize the control element for autocollimation measurements in case apriori information is available on the axis of actual rotation during monitoring measurements of shaft or pipeline deformation.

  19. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    PubMed Central

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  20. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    PubMed

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  1. DORIS Starec ground antenna characterization and impact on positioning

    NASA Astrophysics Data System (ADS)

    Tourain, C.; Moreaux, G.; Auriol, A.; Saunier, J.

    2016-12-01

    In a geodetic radio frequency observing system the phase center offsets and phase center variations of ground antennae are a fundamental component of mathematical models of the system observables. In this paper we describe work aimed at improving the DORIS Starec ground antenna phase center definition model. Seven antennas were analyzed in the Compact Antenna Test Range (CATR), a dedicated CNES facility. With respect to the manufacturer specified phase center offset, the measured antennae varied between -6 mm and +4 mm due to manufacturing variations. To solve this problem, discussions were held with the manufacturer, leading to an improvement of the manufacturing process. This work results in a reduction in the scatter to ±1 mm. The phase center position has been kept unchanged and associated phase law has been updated and provided to users of the International DORIS Service (IDS). This phase law is applicable to all Starec antennas (before and after manufacturing process consolidation) and is azimuth independent. An error budget taking into account these updated characteristics has been established for the antenna alone: ±2 mm on the horizontal plane and ±3 mm on the up component, maximum error values for antennas named type C (Saunier et al., 2016) produced with consolidated manufacturing process. Finally the impact of this updated characterization on positioning results has been analyzed and shows a scale offset only of the order of +12 mm for the Terrestrial Reference Frame.

  2. Decisions to shoot in a weapon identification task: The influence of cultural stereotypes and perceived threat on false positive errors.

    PubMed

    Fleming, Kevin K; Bandy, Carole L; Kimble, Matthew O

    2010-01-01

    The decision to shoot a gun engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC), where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and electroencephalogram (EEG) activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of Middle-Eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERNs were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERNs, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of Middle-Eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to Middle-Eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance.

  3. Decisions to Shoot in a Weapon Identification Task: The Influence of Cultural Stereotypes and Perceived Threat on False Positive Errors

    PubMed Central

    Fleming, Kevin K.; Bandy, Carole L.; Kimble, Matthew O.

    2014-01-01

    The decision to shoot engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC) where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and EEG activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of middle-eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERN’s were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERN’s, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of middle-eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to middle-eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance. PMID:19813139

  4. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.

  5. Effect of surgical guide design and surgeon's experience on the accuracy of implant placement.

    PubMed

    Hinckfuss, Simon; Conrad, Heather J; Lin, Lianshan; Lunos, Scott; Seong, Wook-Jin

    2012-08-01

    Implant position is a key determinant of esthetic and functional success. Achieving the goal of ideal implant position may be affected by case selection, prosthodontically driven treatment planning, site preparation, surgeon's experience and use of a surgical guide. The combined effect of surgical guide design, surgeon's experience, and size of the edentulous area on the accuracy of implant placement was evaluated in a simulated clinical setting. Twenty-one volunteers were recruited to participate in the study. They were divided evenly into 3 groups (novice, intermediate, and experienced). Each surgeon placed implants in single and double sites using 4 different surgical guide designs (no guide, tube, channel, and guided) and written instructions describing the ideal implant positions. A definitive typodont was constructed that had 3 implants in prosthetically determined ideal positions of single and double sites. The position and angulation of implants placed by the surgeons in the duplicate typodonts was measured using a computerized coordinate measuring machine and compared to the definitive typodont. The mean absolute positional error for all guides was 0.273, 0.340, 0.197 mm in mesial-distal, buccal-lingual, vertical positions, respectively, with an overall range of 0.00 to 1.81 mm. The mean absolute angle error for all guides was 1.61° and 2.39° in the mesial-distal and buccal-lingual angulations, respectively, with an overall range of 0.01° to 9.7°. Surgical guide design had a statistically significant effect on the accuracy of implant placement regardless of the surgeon's experience level. Experienced surgeons had significantly less error in buccal-lingual angulation. The size of the edentulous sites was found to affect both implant angle and position significantly. The magnitude of error in position and angulation caused by surgical guide design, surgeon's experience, and site size reported in this study are possibly not large enough to be clinically significant; however, it is likely that errors would be magnified in clinical practice. Future research is recommended to evaluate the effect of surgical guide design in vivo on implant angulation and position error.

  6. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  7. Asymmetric Memory Circuit Would Resist Soft Errors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Perlman, Marvin

    1990-01-01

    Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.

  8. Global distortion of GPS networks associated with satellite antenna model errors

    NASA Astrophysics Data System (ADS)

    Cardellach, E.; Elósegui, P.; Davis, J. L.

    2007-07-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by ˜1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PCO errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm yr-1 level, which will impact high-precision crustal deformation studies.

  9. Global Distortion of GPS Networks Associated with Satellite Antenna Model Errors

    NASA Technical Reports Server (NTRS)

    Cardellach, E.; Elosequi, P.; Davis, J. L.

    2007-01-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.

  10. SU-G-TeP2-13: Patient-Specific Reduction of Range Uncertainties in Proton Therapy by Proton Radiography with a Multi-Layer Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffet, S; Macq, B; Farace, P

    2016-06-15

    Purpose: The conversion from Hounsfield units (HU) to stopping powers is a major source of range uncertainty in proton therapy (PT). Our contribution shows how proton radiographs (PR) acquired with a multi-layer ionization chamber in a PT center can be used for accurate patient positioning and subsequently for patient-specific optimization of the conversion from HU to stopping powers. Methods: A multi-layer ionization chamber was used to measure the integral depth-dose (IDD) of 220 MeV pencil beam spots passing through several anthropomorphic phantoms. The whole area of interest was imaged by repositioning the couch and by acquiring a 45×45 mm{sup 2}more » frame for each position. A rigid registration algorithm was implemented to correct the positioning error between the proton radiographs and the planning CT. After registration, the stopping power map obtained from the planning CT with the calibration curve of the treatment planning system was used together with the water equivalent thickness gained from two proton radiographs to generate a phantom-specific stopping power map. Results: Our results show that it is possible to make a registration with submillimeter accuracy from proton radiography obtained by sending beamlets separated by more than 1 mm. This was made possible by the complex shape of the IDD due to the presence of lateral heterogeneities along the path of the beam. Submillimeter positioning was still possible with a 5 mm spot spacing. Phantom specific stopping power maps obtained by minimizing the range error were cross-verified by the acquisition of an additional proton radiography where the phantom was positioned in a random but known manner. Conclusion: Our results indicate that a CT-PR registration algorithm together with range-error based optimization can be used to produce a patient-specific stopping power map. Sylvain Deffet reports financial funding of its PhD thesis by Ion Beam Applications (IBA) during the confines of the study and outside the submitted work. Francois Vander Stappen reports being employed by Ion Beam Applications (IBA) during the confines of the study and outside the submitted work.« less

  11. Using a Commercial Ethernet PHY Device in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  12. SU-E-T-325: The New Evaluation Method of the VMAT Plan Delivery Using Varian DynaLog Files and Modulation Complexity Score (MCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K

    2014-06-01

    Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less

  13. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes in pre- and post-examination steps must be minimized to guarantee the total quality of laboratory services.

  14. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks

    PubMed Central

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-01-01

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668

  15. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    PubMed

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  16. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  17. Automated segmentation of geographic atrophy using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wang, Ziyuan; Sadda, SriniVas R.

    2018-02-01

    Geographic atrophy (GA) is an end-stage manifestation of the advanced age-related macular degeneration (AMD), the leading cause of blindness and visual impairment in developed nations. Techniques to rapidly and precisely detect and quantify GA would appear to be of critical importance in advancing the understanding of its pathogenesis. In this study, we develop an automated supervised classification system using deep convolutional neural networks (CNNs) for segmenting GA in fundus autofluorescene (FAF) images. More specifically, to enhance the contrast of GA relative to the background, we apply the contrast limited adaptive histogram equalization. Blood vessels may cause GA segmentation errors due to similar intensity level to GA. A tensor-voting technique is performed to identify the blood vessels and a vessel inpainting technique is applied to suppress the GA segmentation errors due to the blood vessels. To handle the large variation of GA lesion sizes, three deep CNNs with three varying sized input image patches are applied. Fifty randomly chosen FAF images are obtained from fifty subjects with GA. The algorithm-defined GA regions are compared with manual delineation by a certified grader. A two-fold cross-validation is applied to evaluate the algorithm performance. The mean segmentation accuracy, true positive rate (i.e. sensitivity), true negative rate (i.e. specificity), positive predictive value, false discovery rate, and overlap ratio, between the algorithm- and manually-defined GA regions are 0.97 +/- 0.02, 0.89 +/- 0.08, 0.98 +/- 0.02, 0.87 +/- 0.12, 0.13 +/- 0.12, and 0.79 +/- 0.12 respectively, demonstrating a high level of agreement.

  18. Comparison between a typical and a simplified model for blast load-induced structural response

    NASA Astrophysics Data System (ADS)

    Abd-Elhamed, A.; Mahmoud, S.

    2017-02-01

    As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less

  20. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

Top