Sample records for positioning system based

  1. LGBTQ relationally based positive psychology: An inclusive and systemic framework.

    PubMed

    Domínguez, Daniela G; Bobele, Monte; Coppock, Jacqueline; Peña, Ezequiel

    2015-05-01

    Positive psychologists have contributed to our understandings of how positive emotions and flexible cognition enhance resiliency. However, positive psychologists' research has been slow to address the relational resources and interactions that help nonheterosexual families overcome adversity. Addressing overlooked lesbian, gay, bisexual, transgender, or queer (LGBTQ) and systemic factors in positive psychology, this article draws on family resilience literature and LGBTQ literature to theorize a systemic positive psychology framework for working with nonheterosexual families. We developed the LGBTQ relationally based positive psychology framework that integrates positive psychology's strengths-based perspective with the systemic orientation of Walsh's (1996) family resilience framework along with the cultural considerations proposed by LGBTQ family literature. We theorize that the LGBTQ relationally based positive psychology framework takes into consideration the sociopolitical adversities impacting nonheterosexual families and sensitizes positive psychologists, including those working in organized care settings, to the systemic interactions of same-sex loving relationships. (c) 2015 APA, all rights reserved).

  2. Robust Operation of Tendon-Driven Robot Fingers Using Force and Position-Based Control Laws

    NASA Technical Reports Server (NTRS)

    Hargrave, Brian (Inventor); Abdallah, Muhammad E (Inventor); Reiland, Matthew J (Inventor); Diftler, Myron A (Inventor); Strawser, Philip A (Inventor); Platt, Jr., Robert J. (Inventor); Ihrke, Chris A. (Inventor)

    2013-01-01

    A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.

  3. Platform Architecture for Decentralized Positioning Systems.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2017-04-26

    A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.

  4. Platform Architecture for Decentralized Positioning Systems

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2017-01-01

    A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414

  5. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  6. Augmented reality-based electrode guidance system for reliable electroencephalography.

    PubMed

    Song, Chanho; Jeon, Sangseo; Lee, Seongpung; Ha, Ho-Gun; Kim, Jonghyun; Hong, Jaesung

    2018-05-24

    In longitudinal electroencephalography (EEG) studies, repeatable electrode positioning is essential for reliable EEG assessment. Conventional methods use anatomical landmarks as fiducial locations for the electrode placement. Since the landmarks are manually identified, the EEG assessment is inevitably unreliable because of individual variations among the subjects and the examiners. To overcome this unreliability, an augmented reality (AR) visualization-based electrode guidance system was proposed. The proposed electrode guidance system is based on AR visualization to replace the manual electrode positioning. After scanning and registration of the facial surface of a subject by an RGB-D camera, the AR of the initial electrode positions as reference positions is overlapped with the current electrode positions in real time. Thus, it can guide the position of the subsequently placed electrodes with high repeatability. The experimental results with the phantom show that the repeatability of the electrode positioning was improved compared to that of the conventional 10-20 positioning system. The proposed AR guidance system improves the electrode positioning performance with a cost-effective system, which uses only RGB-D camera. This system can be used as an alternative to the international 10-20 system.

  7. Improved spring model-based collaborative indoor visible light positioning

    NASA Astrophysics Data System (ADS)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  8. A Spatial Division Clustering Method and Low Dimensional Feature Extraction Technique Based Indoor Positioning System

    PubMed Central

    Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao

    2014-01-01

    Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470

  9. Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry

    NASA Technical Reports Server (NTRS)

    Morris, Daniel Dale (Inventor); Chang, Hong (Inventor); Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Graf, Jodi Seaborn (Inventor)

    2016-01-01

    A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.

  10. Requirements for DGPS-based TSPI system used in aircraft noise certification tests

    DOT National Transportation Integrated Search

    1997-04-30

    This letter report addresses that portion of a noise certification applicants Differential Global Positioning System (DGPS-based), Time Space Position Information (TSPI) system which is to be used as a position reference in place of a laser tracke...

  11. Navigation and Positioning System Using High Altitude Platforms Systems (HAPS)

    NASA Astrophysics Data System (ADS)

    Tsujii, Toshiaki; Harigae, Masatoshi; Harada, Masashi

    Recently, some countries have begun conducting feasibility studies and R&D projects on High Altitude Platform Systems (HAPS). Japan has been investigating the use of an airship system that will function as a stratospheric platform for applications such as environmental monitoring, communications and broadcasting. If pseudolites were mounted on the airships, their GPS-like signals would be stable augmentations that would improve the accuracy, availability, and integrity of GPS-based positioning systems. Also, the sufficient number of HAPS can function as a positioning system independent of GPS. In this paper, a system design of the HAPS-based positioning system and its positioning error analyses are described.

  12. Research on correction algorithm of laser positioning system based on four quadrant detector

    NASA Astrophysics Data System (ADS)

    Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia

    2018-02-01

    This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.

  13. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  14. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  15. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  16. Lane-Level Vehicle Positioning : Integrating Diverse Systems for Precision and Reliability

    DOT National Transportation Integrated Search

    2013-05-13

    Integrated global positioning system/inertial navigation system (GPS/INS) technology, the backbone of vehicle positioning systems, cannot provide the precision and reliability needed for vehicle-based, lane-level positioning in all driving environmen...

  17. An in-Depth Survey of Visible Light Communication Based Positioning Systems

    PubMed Central

    Do, Trong-Hop; Yoo, Myungsik

    2016-01-01

    While visible light communication (VLC) has become the candidate for the wireless technology of the 21st century due to its inherent advantages, VLC based positioning also has a great chance of becoming the standard approach to positioning. Within the last few years, many studies on VLC based positioning have been published, but there are not many survey works in this field. In this paper, an in-depth survey of VLC based positioning systems is provided. More than 100 papers ranging from pioneering papers to the state-of-the-art in the field were collected and classified based on the positioning algorithms, the types of receivers, and the multiplexing techniques. In addition, current issues and research trends in VLC based positioning are discussed. PMID:27187395

  18. Realization of a CORDIC-Based Plug-In Accelerometer Module for PSG System in Head Position Monitoring for OSAS Patients

    PubMed Central

    Chou, Wen-Cheng; Shiao, Tsu-Hui; Shiao, Guang-Ming; Luo, Chin-Shan

    2017-01-01

    Overnight polysomnography (PSG) is currently the standard diagnostic procedure for obstructive sleep apnea (OSA). It has been known that monitoring of head position in sleep is crucial not only for the diagnosis (positional sleep apnea) but also for the management of OSA (positional therapy). However, there are no sensor systems available clinically to hook up with PSG for accurate head position monitoring. In this paper, an accelerometer-based sensing system for accurate head position monitoring is developed and realized. The core CORDIC- (COordinate Rotation DIgital Computer-) based tilting sensing algorithm is realized in the system to quickly and accurately convert accelerometer raw data into the desired head position tilting angles. The system can hook up with PSG devices for diagnosis to have head position information integrated with other PSG-monitored signals. It has been applied in an IRB test in Taipei Veterans General Hospital and has been proved that it can meet the medical needs of accurate head position monitoring for PSG diagnosis. PMID:29065608

  19. Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle

    PubMed Central

    Byun, Yeun Sub; Kim, Young Chol

    2016-01-01

    Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827

  20. Position detectors, methods of detecting position, and methods of providing positional detectors

    DOEpatents

    Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.

    2002-01-01

    Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.

  1. Secure positioning technique based on encrypted visible light map for smart indoor service

    NASA Astrophysics Data System (ADS)

    Lee, Yong Up; Jung, Gillyoung

    2018-03-01

    Indoor visible light (VL) positioning systems for smart indoor services are negatively affected by both cochannel interference from adjacent light sources and VL reception position irregularity in the three-dimensional (3-D) VL channel. A secure positioning methodology based on a two-dimensional (2-D) encrypted VL map is proposed, implemented in prototypes of the specific positioning system, and analyzed based on performance tests. The proposed positioning technique enhances the positioning performance by more than 21.7% compared to the conventional method in real VL positioning tests. Further, the pseudonoise code is found to be the optimal encryption key for secure VL positioning for this smart indoor service.

  2. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  3. Global Positioning System Standard Positioning Service Performance Standard

    DOT National Transportation Integrated Search

    2008-09-01

    The U.S. Global Positioning System (GPS) Standard Positioning Service (SPS) consists of space-based positioning, navigation, and timing (PNT) signals delivered free of direct user fees for peaceful civil, commercial, and scientific uses worldwide. Th...

  4. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    PubMed

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  5. Image processing occupancy sensor

    DOEpatents

    Brackney, Larry J.

    2016-09-27

    A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.

  6. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, Jones B.; Burleson, Robert R.; Pardue, Robert M.

    1982-01-01

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of position interferometers and part contour description data inputs to calculate error components for each axis of movement and output them to corresponding axis drives with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  7. Positional reference system for ultraprecision machining

    DOEpatents

    Arnold, J.B.; Burleson, R.R.; Pardue, R.M.

    1980-09-12

    A stable positional reference system for use in improving the cutting tool-to-part contour position in numerical controlled-multiaxis metal turning machines is provided. The reference system employs a plurality of interferometers referenced to orthogonally disposed metering bars which are substantially isolated from machine strain induced position errors for monitoring the part and tool positions relative to the metering bars. A microprocessor-based control system is employed in conjunction with the plurality of positions interferometers and part contour description data input to calculate error components for each axis of movement and output them to corresponding axis driven with appropriate scaling and error compensation. Real-time position control, operating in combination with the reference system, makes possible the positioning of the cutting points of a tool along a part locus with a substantially greater degree of accuracy than has been attained previously in the art by referencing and then monitoring only the tool motion relative to a reference position located on the machine base.

  8. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  9. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  10. Micromechanical slit positioning system as a transmissive spatial light modulator

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer

    2001-11-01

    Micro-slits have been prepared with a slit-width and a slit- length of 2 ... 1000 micrometers . Linear and two-dimensional arrays up to 10 x 110 slits have been developed and completed with a piezo-actuator for shifting. This system is a so-called mechanical slit positioning system. The light is switched by simple one- or two-dimensional displacement of coded slit masks in a one- or two-layer architecture. The slit positioning system belongs to the transmissive class of MEMS-based spatial light modulators (SLM). It has fundamental advantages for optical contrast and also can be used in the full spectral region. Therefore transmissive versions of SLM should be a future solution. Instrument architectures based on the slit positioning system can increase the resolution by subpixel generation, the throughput by HADAMARD transform mode, or select objects for multi-object-spectroscopy. The linear slit positioning system was space qualified within an advanced micro- spectrometer. A NIR multi-object-spectrometer for the Next Generation Space Telescope (NGST) is based on a field selector for selecting objects. The field selector is a SLM, which could be implemented by a slit positioning system.

  11. Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments

    PubMed Central

    Alshami, Iyad Husni; Sahibuddin, Shamsul; Firdaus, Firdaus

    2017-01-01

    The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples’ presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples’ presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples’ presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices. PMID:28783047

  12. Global Positioning System: Observations on Quarterly Reports from the Air Force

    DTIC Science & Technology

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS

  13. Fast and robust control of nanopositioning systems: Performance limits enabled by field programmable analog arrays.

    PubMed

    Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M

    2015-08-01

    This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.

  14. A Robust Indoor Autonomous Positioning System Using Particle Filter Based on ISM Band Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ikeda, Takeshi; Kawamoto, Mitsuru; Sashima, Akio; Suzuki, Keiji; Kurumatani, Koichi

    In the field of the ubiquitous computing, positioning systems which can provide users' location information have paid attention as an important technical element which can be applied to various services, for example, indoor navigation services, evacuation services, market research services, guidance services, and so on. A lot of researchers have proposed various outdoor and indoor positioning systems. In this paper, we deal with indoor positioning systems. Many conventional indoor positioning systems use expensive infrastructures, because the propagated times of radio waves are used to measure users' positions with high accuracy. In this paper, we propose an indoor autonomous positioning system using radio signal strengths (RSSs) based on ISM band communications. In order to estimate users' positions, the proposed system utilizes a particle filter that is one of the Monte Carlo methods. Because the RSS information is used in the proposed system, the equipments configuring the system are not expensive compared with the conventional indoor positioning systems and it can be installed easily. Moreover, because the particle filter is used to estimate user's position, even if the RSS fluctuates due to, for example, multi-paths, the system can carry out position estimation robustly. We install the proposed system in one floor of a building and carry out some experiments in order to verify the validity of the proposed system. As a result, we confirmed that the average of the estimation errors of the proposed system was about 1.8 m, where the result is enough accuracy for achieving the services mentioned above.

  15. Influence of the quality of intraoperative fluoroscopic images on the spatial positioning accuracy of a CAOS system.

    PubMed

    Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo

    2018-06-01

    Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.

  16. 15 CFR Appendix Vi to Subpart P of... - Special-Use Areas Boundary Coordinates and Use Designations

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...)—[Based on differential Global Positioning Systems data] Point Latitude Longitude 1 24 deg.56.83′ N 80 deg... Global Positioning Systems data] Point Latitude Longitude 1 24 deg.29.84′ N 81 deg.39.59′ W. 2 24 deg.29....29.84′ N 81 deg.39.59′ W. Looe Key (Research Only)—[Based on differential Global Positioning Systems...

  17. 76 FR 63899 - Positive Train Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ...-0028, Notice No. 2] RIN 2130-AC27 Positive Train Control Systems AGENCY: Federal Railroad...-based criteria in order to avoid positive train control (PTC) system implementation on track segments... and Compliance, Staff Director, Signal & Train Control Division, Federal Railroad Administration, Mail...

  18. Monitoring of GPS(Global Positioning System) System Performance

    DOT National Transportation Integrated Search

    1985-06-01

    The Global Positioning System (GPS), a worldwide satellite-based navigation system developed by the Department of Defense, is scheduled to become operational in late 1988. The system has the potential to become the primary radionaviagation system for...

  19. A research on the positioning technology of vehicle navigation system from single source to "ASPN"

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Haizhou; Chen, Yu; Chen, Hongyue; Sun, Qian

    2017-10-01

    Due to the suddenness and complexity of modern warfare, land-based weapon systems need to have precision strike capability on roads and railways. The vehicle navigation system is one of the most important equipments for the land-based weapon systems that have precision strick capability. There are inherent shortcomings for single source navigation systems to provide continuous and stable navigation information. To overcome the shortcomings, the multi-source positioning technology is developed. The All Source Positioning and Navigaiton (ASPN) program was proposed in 2010, which seeks to enable low cost, robust, and seamless navigation solutions for military to use on any operational platform and in any environment with or without GPS. The development trend of vehicle positioning technology was reviewed in this paper. The trend indicates that the positioning technology is developed from single source and multi-source to ASPN. The data fusion techniques based on multi-source and ASPN was analyzed in detail.

  20. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-03-11

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.

  1. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    PubMed Central

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  2. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang

    2018-04-01

    To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.

  3. Measuring and forecasting great tsunamis by GNSS-based vertical positioning of multiple ships

    NASA Astrophysics Data System (ADS)

    Inazu, D.; Waseda, T.; Hibiya, T.; Ohta, Y.

    2016-12-01

    Vertical ship positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined existing GNSS vertical position data of a navigating vessel. The result indicated that by using the kinematic Precise Point Positioning (PPP) method, tsunamis greater than 10^-1 m can be detected from the vertical position of the ship. Based on Automatic Identification System (AIS) data, tens of cargo ships and tankers are regularly identified navigating over the Nankai Trough, southwest of Japan. We then assumed that a future Nankai Trough great earthquake tsunami will be observed by ships at locations based on AIS data. The tsunami forecast capability by these virtual offshore tsunami measurements was examined. A conventional Green's function based inversion was used to determine the initial tsunami height distribution. Tsunami forecast tests over the Nankai Trough were carried out using simulated tsunami data of the vertical positions of multiple cargo ships/tankers on a certain day, and of the currently operating observations by deep-sea pressure gauges and Global Positioning System (GPS) buoys. The forecast capability of ship-based tsunami height measurements alone was shown to be comparable to or better than that using the existing offshore observations.

  4. Nanopositioning for polarimetric characterization.

    PubMed

    Qureshi, Naser; Kolokoltsev, Oleg V; Ortega-Martínez, Roberto; Ordoñez-Romero, C L

    2008-12-01

    A positioning system with approximately nanometer resolution has been developed based on a new implementation of a motor-driven screw scheme. In contrast to conventional positioning systems based on piezoelectric elements, this system shows remarkably low levels of drift and vibration, and eliminates the need for position feedback during typical data acquisition processes. During positioning or scanning processes, non-repeatability and hysteresis problems inherent in mechanical positioning systems are greatly reduced using a software feedback scheme. As a result, we are able to demonstrate an average mechanical resolution of 1.45 nm and near diffraction-limited imaging using scanning optical microscopy. We propose this approach to nanopositioning as a readily accessible alternative enabling high spatial resolution scanning probe characterization (e.g., polarimetry) and provide practical details for its implementation.

  5. Connected motorcycle system performance.

    DOT National Transportation Integrated Search

    2016-01-15

    This project characterized the performance of Connected Vehicle Systems (CVS) on motorcycles based on two key components: global positioning and wireless communication systems. Considering that Global Positioning System (GPS) and 5.9 GHz Dedicated Sh...

  6. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  7. 3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras

    PubMed Central

    Aguilera, Teodoro

    2017-01-01

    This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211

  8. The Global Positioning System--Direction for the Future [and] GPS Technology and Agriculture.

    ERIC Educational Resources Information Center

    Edmondson, Paul R.; Ginsburg, Alan

    1996-01-01

    Edmondson introduces a satellite-based radio navigation, positioning, and timing system that can be integrated into a variety of curriculum areas. Ginsburg describes how the global positioning system brings far-reaching benefits for crop growers and the environment. (Author)

  9. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.

    PubMed

    Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon

    2009-01-01

    Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  10. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  11. Improving Car Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  12. Received Signal Strength Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System

    PubMed Central

    Jan, Shau-Shiun; Yeh, Shuo-Ju; Liu, Ya-Wen

    2015-01-01

    The main approach for a Wi-Fi indoor positioning system is based on the received signal strength (RSS) measurements, and the fingerprinting method is utilized to determine the user position by matching the RSS values with the pre-surveyed RSS database. To build a RSS fingerprint database is essential for an RSS based indoor positioning system, and building such a RSS fingerprint database requires lots of time and effort. As the range of the indoor environment becomes larger, labor is increased. To provide better indoor positioning services and to reduce the labor required for the establishment of the positioning system at the same time, an indoor positioning system with an appropriate spatial interpolation method is needed. In addition, the advantage of the RSS approach is that the signal strength decays as the transmission distance increases, and this signal propagation characteristic is applied to an interpolated database with the Kriging algorithm in this paper. Using the distribution of reference points (RPs) at measured points, the signal propagation model of the Wi-Fi access point (AP) in the building can be built and expressed as a function. The function, as the spatial structure of the environment, can create the RSS database quickly in different indoor environments. Thus, in this paper, a Wi-Fi indoor positioning system based on the Kriging fingerprinting method is developed. As shown in the experiment results, with a 72.2% probability, the error of the extended RSS database with Kriging is less than 3 dBm compared to the surveyed RSS database. Importantly, the positioning error of the developed Wi-Fi indoor positioning system with Kriging is reduced by 17.9% in average than that without Kriging. PMID:26343673

  13. Received Signal Strength Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System.

    PubMed

    Jan, Shau-Shiun; Yeh, Shuo-Ju; Liu, Ya-Wen

    2015-08-28

    The main approach for a Wi-Fi indoor positioning system is based on the received signal strength (RSS) measurements, and the fingerprinting method is utilized to determine the user position by matching the RSS values with the pre-surveyed RSS database. To build a RSS fingerprint database is essential for an RSS based indoor positioning system, and building such a RSS fingerprint database requires lots of time and effort. As the range of the indoor environment becomes larger, labor is increased. To provide better indoor positioning services and to reduce the labor required for the establishment of the positioning system at the same time, an indoor positioning system with an appropriate spatial interpolation method is needed. In addition, the advantage of the RSS approach is that the signal strength decays as the transmission distance increases, and this signal propagation characteristic is applied to an interpolated database with the Kriging algorithm in this paper. Using the distribution of reference points (RPs) at measured points, the signal propagation model of the Wi-Fi access point (AP) in the building can be built and expressed as a function. The function, as the spatial structure of the environment, can create the RSS database quickly in different indoor environments. Thus, in this paper, a Wi-Fi indoor positioning system based on the Kriging fingerprinting method is developed. As shown in the experiment results, with a 72.2% probability, the error of the extended RSS database with Kriging is less than 3 dBm compared to the surveyed RSS database. Importantly, the positioning error of the developed Wi-Fi indoor positioning system with Kriging is reduced by 17.9% in average than that without Kriging.

  14. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.

    PubMed

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-12-21

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10-20 m (achieved by the standard positioning services) to about 3-5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50-80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test.

  15. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  16. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  17. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  18. VLC-based indoor location awareness using LED light and image sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Ju; Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    Recently, indoor LED lighting can be considered for constructing green infra with energy saving and additionally providing LED-IT convergence services such as visible light communication (VLC) based location awareness and navigation services. For example, in case of large complex shopping mall, location awareness to navigate the destination is very important issue. However, the conventional navigation using GPS is not working indoors. Alternative location service based on WLAN has a problem that the position accuracy is low. For example, it is difficult to estimate the height exactly. If the position error of the height is greater than the height between floors, it may cause big problem. Therefore, conventional navigation is inappropriate for indoor navigation. Alternative possible solution for indoor navigation is VLC based location awareness scheme. Because indoor LED infra will be definitely equipped for providing lighting functionality, indoor LED lighting has a possibility to provide relatively high accuracy of position estimation combined with VLC technology. In this paper, we provide a new VLC based positioning system using visible LED lights and image sensors. Our system uses location of image sensor lens and location of reception plane. By using more than two image sensor, we can determine transmitter position less than 1m position error. Through simulation, we verify the validity of the proposed VLC based new positioning system using visible LED light and image sensors.

  19. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.

    PubMed

    Mo, Jun; Deng, Zhongliang; Jia, Buyun; Bian, Xinmei

    2017-12-01

    Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.

  20. Real-time implementation of camera positioning algorithm based on FPGA & SOPC

    NASA Astrophysics Data System (ADS)

    Yang, Mingcao; Qiu, Yuehong

    2014-09-01

    In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.

  1. Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    PubMed Central

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-01-01

    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min. PMID:26492249

  2. A Low Cost Mobile Robot Based on Proportional Integral Derivative (PID) Control System and Odometer for Education

    NASA Astrophysics Data System (ADS)

    Haq, R.; Prayitno, H.; Dzulkiflih; Sucahyo, I.; Rahmawati, E.

    2018-03-01

    In this article, the development of a low cost mobile robot based on PID controller and odometer for education is presented. PID controller and odometer is applied for controlling mobile robot position. Two-dimensional position vector in cartesian coordinate system have been inserted to robot controller as an initial and final position. Mobile robot has been made based on differential drive and sensor magnetic rotary encoder which measured robot position from a number of wheel rotation. Odometry methode use data from actuator movements for predicting change of position over time. The mobile robot is examined to get final position with three different heading angle 30°, 45° and 60° by applying various value of KP, KD and KI constant.

  3. Position Accuracy Analysis of a Robust Vision-Based Navigation

    NASA Astrophysics Data System (ADS)

    Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.

    2018-05-01

    Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.

  4. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  5. Development of real-time extensometer based on image processing

    NASA Astrophysics Data System (ADS)

    Adinanta, H.; Puranto, P.; Suryadi

    2017-04-01

    An extensometer system was developed by using high definition web camera as main sensor to track object position. The developed system applied digital image processing techniques. The image processing was used to measure the change of object position. The position measurement was done in real-time so that the system can directly showed the actual position in both x and y-axis. In this research, the relation between pixel and object position changes had been characterized. The system was tested by moving the target in a range of 20 cm in interval of 1 mm. To verify the long run performance, the stability and linearity of continuous measurements on both x and y-axis, this measurement had been conducted for 83 hours. The results show that this image processing-based extensometer had both good stability and linearity.

  6. Global positioning method based on polarized light compass system

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong

    2018-05-01

    This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.

  7. A multi-mode manipulator display system for controlling remote robotic systems

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    The objective and contribution of the research presented in this paper is to provide a Multi-Mode Manipulator Display System (MMDS) to assist a human operator with the control of remote manipulator systems. Such systems include space based manipulators such as the space shuttle remote manipulator system (SRMS) and future ground controlled teleoperated and telescience space systems. The MMDS contains a number of display modes and submodes which display position control cues position data in graphical formats, based primarily on manipulator position and joint angle data. Therefore the MMDS is not dependent on visual information for input and can assist the operator especially when visual feedback is inadequate. This paper provides descriptions of the new modes and experiment results to date.

  8. 78 FR 979 - Petition for Positive Train Control Safety Plan Approval and System Certification of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...] Petition for Positive Train Control Safety Plan Approval and System Certification of the Electronic Train... the Federal Railroad Administration (FRA) for Positive Train Control (PTC) Safety Plan (PTCSP...-based train control system safety overlay designed to protect against the consequences of train-to-train...

  9. The Global Positioning System and Its Integration into College Geography Curricula.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lambert, Dean P.

    1996-01-01

    Introduces global positioning system (GPS) technology to nonspecialist geographers and recommends a framework for implementing GPS instructional modules in college geography courses. GPS was developed as a worldwide satellite-based system by the U.S. Department of Defense to simplify and improve military and civilian navigation and positioning.…

  10. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter.

    PubMed

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V

    2015-04-30

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time.

  11. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter

    PubMed Central

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V.

    2015-01-01

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641

  12. Seamless positioning and navigation by using geo-referenced images and multi-sensor data.

    PubMed

    Li, Xun; Wang, Jinling; Li, Tao

    2013-07-12

    Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments.

  13. Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi-Sensor Data

    PubMed Central

    Li, Xun; Wang, Jinling; Li, Tao

    2013-01-01

    Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments. PMID:23857267

  14. High-precision positioning system of four-quadrant detector based on the database query

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Deng, Xiao-guo; Su, Xiu-qin; Zheng, Xiao-qiang

    2015-02-01

    The fine pointing mechanism of the Acquisition, Pointing and Tracking (APT) system in free space laser communication usually use four-quadrant detector (QD) to point and track the laser beam accurately. The positioning precision of QD is one of the key factors of the pointing accuracy to APT system. A positioning system is designed based on FPGA and DSP in this paper, which can realize the sampling of AD, the positioning algorithm and the control of the fast swing mirror. We analyze the positioning error of facular center calculated by universal algorithm when the facular energy obeys Gauss distribution from the working principle of QD. A database is built by calculation and simulation with MatLab software, in which the facular center calculated by universal algorithm is corresponded with the facular center of Gaussian beam, and the database is stored in two pieces of E2PROM as the external memory of DSP. The facular center of Gaussian beam is inquiry in the database on the basis of the facular center calculated by universal algorithm in DSP. The experiment results show that the positioning accuracy of the high-precision positioning system is much better than the positioning accuracy calculated by universal algorithm.

  15. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services

    PubMed Central

    Wang, Liang; Li, Zishen; Zhao, Jiaojiao; Zhou, Kai; Wang, Zhiyu; Yuan, Hong

    2016-01-01

    Using mobile smart devices to provide urban location-based services (LBS) with sub-meter-level accuracy (around 0.5 m) is a major application field for future global navigation satellite system (GNSS) development. Real-time kinematic (RTK) positioning, which is a widely used GNSS-based positioning approach, can improve the accuracy from about 10–20 m (achieved by the standard positioning services) to about 3–5 cm based on the geodetic receivers. In using the smart devices to achieve positioning with sub-meter-level accuracy, a feasible solution of combining the low-cost GNSS module and the smart device is proposed in this work and a user-side GNSS RTK positioning software was developed from scratch based on the Android platform. Its real-time positioning performance was validated by BeiDou Navigation Satellite System/Global Positioning System (BDS/GPS) combined RTK positioning under the conditions of a static and kinematic (the velocity of the rover was 50–80 km/h) mode in a real urban environment with a SAMSUNG Galaxy A7 smartphone. The results show that the fixed-rates of ambiguity resolution (the proportion of epochs of ambiguities fixed) for BDS/GPS combined RTK in the static and kinematic tests were about 97% and 90%, respectively, and the average positioning accuracies (RMS) were better than 0.15 m (horizontal) and 0.25 m (vertical) for the static test, and 0.30 m (horizontal) and 0.45 m (vertical) for the kinematic test. PMID:28009835

  16. Electro-mechanical probe positioning system for large volume plasma device

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.

    2018-05-01

    An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.

  17. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  18. Application of DGPS for Collision Avoidance in Intelligent Transportation Systems In a Wireless Environment

    DOT National Transportation Integrated Search

    2001-02-19

    The Global Positioning System (GPS) is a satellite based radio-navigation system. A relatively large number of vehicles are already equipped with GPS devices. This project evaluated the application of Global Positing System (GPS) technology in collis...

  19. A wireless sensor network based personnel positioning scheme in coal mines with blind areas.

    PubMed

    Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing

    2010-01-01

    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.

  20. A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas

    PubMed Central

    Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing

    2010-01-01

    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446

  1. The First Result of Relative Positioning and Velocity Estimation Based on CAPS

    PubMed Central

    Zhao, Jiaojiao; Ge, Jian; Wang, Liang; Wang, Ningbo; Zhou, Kai; Yuan, Hong

    2018-01-01

    The Chinese Area Positioning System (CAPS) is a new positioning system developed by the Chinese Academy of Sciences based on the communication satellites in geosynchronous orbit. The CAPS has been regarded as a pilot system to test the new technology for the design, construction and update of the BeiDou Navigation Satellite System (BDS). The system structure of CAPS, including the space, ground control station and user segments, is almost like the traditional Global Navigation Satellite Systems (GNSSs), but with the clock on the ground, the navigation signal in C waveband, and different principles of operation. The major difference is that the CAPS navigation signal is first generated at the ground control station, before being transmitted to the satellite in orbit and finally forwarded by the communication satellite transponder to the user. This design moves the clock from the satellite in orbit to the ground. The clock error can therefore be easily controlled and mitigated to improve the positioning accuracy. This paper will present the performance of CAPS-based relative positioning and velocity estimation as assessed in Beijing, China. The numerical results show that, (1) the accuracies of relative positioning, using only code measurements, are 1.25 and 1.8 m in the horizontal and vertical components, respectively; (2) meanwhile, they are about 2.83 and 3.15 cm in static mode and 6.31 and 10.78 cm in kinematic mode, respectively, when using the carrier-phase measurements with ambiguities fixed; and (3) the accuracy of the velocity estimation is about 0.04 and 0.11 m/s in static and kinematic modes, respectively. These results indicate the potential application of CAPS for high-precision positioning and velocity estimation and the availability of a new navigation mode based on communication satellites. PMID:29757204

  2. Adaptive control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.

  3. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    PubMed Central

    He, Xiang; Aloi, Daniel N.; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  4. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.

    PubMed

    He, Xiang; Aloi, Daniel N; Li, Jia

    2015-12-14

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  5. Adaptive control of space-based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A control method is presented that achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. The 15-DOF system dynamics are divided into two components: a 9-DOF invertible portion and 6-DOF noninvertible portion. A controller is then designed to achieve trajectory tracking of the invertible portion of the system, which consists of the manipulator-joint positions and the orientation of the base. The motion of the noninvertible portion is bounded but otherwise unspecified. This portion of the system consists of the position of the robot's base and the position of the reaction wheels. A simulation is presented to demonstrate the effectiveness of the controller. A quadratic polynomial is used to generate the desired trajectory to illustrate the trajectory-tracking capability of the controller.

  6. Towards a Decentralized Magnetic Indoor Positioning System

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-01-01

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145

  7. Towards a Decentralized Magnetic Indoor Positioning System.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-12-04

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  8. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  9. Force reflection with compliance control

    NASA Technical Reports Server (NTRS)

    Kim, Won S. (Inventor)

    1993-01-01

    Two types of systems for force-reflecting control, which enables high force-reflection gain, are presented: position-error-based force reflection and low-pass-filtered force reflection. Both of the systems are combined with shared compliance control. In the position-error-based class, the position error between the commanded and the actual position of a compliantly controlled robot is used to provide force reflection. In the low-pass-filtered force reflection class, the low-pass-filtered output of the compliance control is used to provide force reflection. The increase in force reflection gain can be more than 10-fold as compared to a conventional high-bandwidth pure force reflection system, when high compliance values are used for the compliance control.

  10. Method and system for controlling start of a permanent magnet machine

    DOEpatents

    Walters, James E.; Krefta, Ronald John

    2003-10-28

    Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.

  11. Secure positioning technique based on the encrypted visible light map

    NASA Astrophysics Data System (ADS)

    Lee, Y. U.; Jung, G.

    2017-01-01

    For overcoming the performance degradation problems of the conventional visible light (VL) positioning system, which are due to the co-channel interference by adjacent light and the irregularity of the VL reception position in the three dimensional (3-D) VL channel, the secure positioning technique based on the two dimensional (2-D) encrypted VL map is proposed, implemented as the prototype for the specific embedded positioning system, and verified by performance tests in this paper. It is shown from the test results that the proposed technique achieves the performance enhancement over 21.7% value better than the conventional one in the real positioning environment, and the well known PN code is the optimal stream encryption key for the good VL positioning.

  12. Evaluation of community-based systems for the surveillance of day three-positive Plasmodium falciparum cases in Western Cambodia.

    PubMed

    Cox, Jonathan; Dy Soley, Lek; Bunkea, Tol; Sovannaroth, Siv; Soy Ty, Kheang; Ngak, Song; Bjorge, Steven; Ringwald, Pascal; Mellor, Steven; Sintasath, David; Meek, Sylvia

    2014-07-22

    Delayed clearance of Plasmodium falciparum parasites is used as an operational indicator of potential artemisinin resistance. Effective community-based systems to detect P. falciparum cases remaining positive 72 hours after initiating treatment would be valuable for guiding case follow-up in areas of known resistance risk and for detecting areas of emerging resistance. Systems incorporating existing networks of village malaria workers (VMWs) to monitor day three-positive P. falciparum cases were piloted in three provinces in western Cambodia. Quantitative and qualitative data were used to evaluate the wider feasibility and sustainability of community-based surveillance of day three-positive P. falciparum cases. Of 294 day-3 blood slides obtained across all sites (from 297 day-0 positives), 63 were positive for P. falciparum, an overall day-3 positivity rate of 21%. There were significant variations in the systems implemented by different partners. Full engagement of VMWs and health centre staff is critical. VMWs are responsible for a range of individual tasks including preparing blood slides on day-0, completing forms, administering directly observed therapy (DOT) on days 0-2, obtaining follow-up slides on day-3 and transporting slides and paperwork to their supervising health centre. When suitably motivated, unsalaried VMWs are willing and able to produce good quality blood smears and achieve very high rates of DOT and day-3 follow-up. Community-based surveillance of day-3 P. falciparum cases is feasible, but highly intensive, and as such needs strong and continuous support, particularly supervision and training. The purpose and role of community-based day-3 surveillance should be assessed in the light of resource requirements; scaling-up would need to be systematic and targeted, based on clearly defined epidemiological criteria. To be truly comprehensive, the system would need to be extended beyond VMWs to other public and private health providers.

  13. Evaluation of community-based systems for the surveillance of day three-positive Plasmodium falciparum cases in Western Cambodia

    PubMed Central

    2014-01-01

    Background Delayed clearance of Plasmodium falciparum parasites is used as an operational indicator of potential artemisinin resistance. Effective community-based systems to detect P. falciparum cases remaining positive 72 hours after initiating treatment would be valuable for guiding case follow-up in areas of known resistance risk and for detecting areas of emerging resistance. Methods Systems incorporating existing networks of village malaria workers (VMWs) to monitor day three-positive P. falciparum cases were piloted in three provinces in western Cambodia. Quantitative and qualitative data were used to evaluate the wider feasibility and sustainability of community-based surveillance of day three-positive P. falciparum cases. Results Of 294 day-3 blood slides obtained across all sites (from 297 day-0 positives), 63 were positive for P. falciparum, an overall day-3 positivity rate of 21%. There were significant variations in the systems implemented by different partners. Full engagement of VMWs and health centre staff is critical. VMWs are responsible for a range of individual tasks including preparing blood slides on day-0, completing forms, administering directly observed therapy (DOT) on days 0–2, obtaining follow-up slides on day-3 and transporting slides and paperwork to their supervising health centre. When suitably motivated, unsalaried VMWs are willing and able to produce good quality blood smears and achieve very high rates of DOT and day-3 follow-up. Conclusions Community-based surveillance of day-3 P. falciparum cases is feasible, but highly intensive, and as such needs strong and continuous support, particularly supervision and training. The purpose and role of community-based day-3 surveillance should be assessed in the light of resource requirements; scaling-up would need to be systematic and targeted, based on clearly defined epidemiological criteria. To be truly comprehensive, the system would need to be extended beyond VMWs to other public and private health providers. PMID:25052222

  14. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  15. A New Indoor Positioning System Architecture Using GPS Signals.

    PubMed

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  16. SU-E-T-99: Design and Development of Isocenter Parameter System for CT Simulation Laser Based On DICOM RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, G

    2014-06-01

    Purpose: In order to receive DICOM files from treatment planning system and generate patient isocenter positioning parameter file for CT laser system automatically, this paper presents a method for communication with treatment planning system and calculation of isocenter parameter for each radiation field. Methods: Coordinate transformation and laser positioning file formats were analyzed, isocenter parameter was calculated via data from DICOM CT Data and DICOM RTPLAN file. An in-house software-DicomGenie was developed based on the object-oriented program platform-Qt with DCMTK SDK (Germany OFFIS company DICOM SDK) . DicomGenie was tested for accuracy using Philips CT simulation plan system (Tumor LOC,more » Philips) and A2J CT positioning laser system (Thorigny Sur Marne, France). Results: DicomGenie successfully established DICOM communication between treatment planning system, DICOM files were received by DicomGenie and patient laser isocenter information was generated accurately. Patient laser parameter data files can be used for for CT laser system directly. Conclusion: In-house software DicomGenie received and extracted DICOM data, isocenter laser positioning data files were created by DicomGenie and can be use for A2J laser positioning system.« less

  17. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    PubMed

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  18. Targeting agr- and agr-Like Quorum Sensing Systems for Development of Common Therapeutics to Treat Multiple Gram-Positive Bacterial Infections

    PubMed Central

    Gray, Brian; Hall, Pamela; Gresham, Hattie

    2013-01-01

    Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501

  19. Automatic dependent surveillance broadcast via GPS-Squitter: a major upgrade to the national airspace system

    NASA Astrophysics Data System (ADS)

    Jones, Ronnie D.; Knittel, George H.; Orlando, Vincent A.

    1995-06-01

    GPS-Squitter is a technology for surveillance of aircraft via broadcast of their GPS-determined positions to all listeners, using the Mode S data link. It can be used to provide traffic displays, on the ground for controllers and in the cockpit for pilots, and will enhance TCAS performance. It is compatible with the existing ground-based beacon interrogator radar system and is an evolutionary way to more from ground-based-radar surveillance to satellite-based surveillance. GPS-Squitter takes advantage of the substantial investment made by the U.S. in the powerful GPS position-determining system and has the potential to free the Federal Aviation Administration from having to continue maintaining a precise position-determining capability in ground-based radar. This would permit phasing out the ground-based secondary surveillance radar system over a period of 10 to 20 years and replacing it with much simpler ground stations, resulting in cost savings of hundreds of millions of dollars.

  20. Global Positioning Systems: Keeping Us on Track. Resources in Technology.

    ERIC Educational Resources Information Center

    Valesey, Brigitte G.

    1998-01-01

    The Global Positioning System is a satellite-based system used to determine location, speed, and precise time in any weather, anywhere on earth. Developed by the U.S. Air Force as a defense system, it is now available for civilian and commercial uses. (JOW)

  1. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot.

    PubMed

    Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun

    2018-01-01

    In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, "kinematics + optics" hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.

  2. Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot

    PubMed Central

    Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun

    2018-01-01

    In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning. PMID:29599948

  3. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.

    PubMed

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-09-25

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians' different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians' moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the "go and back" phenomenon caused by the instability of the Bluetooth-based positioning system and the "cross-wall" phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision.

  4. A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Li, Xin; Wang, Jian; Liu, Chunyan

    2015-01-01

    This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians’ different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians’ moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the “go and back” phenomenon caused by the instability of the Bluetooth-based positioning system and the “cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. PMID:26404277

  5. SU-F-T-469: A Clinically Observed Discrepancy Between Image-Based and Log- Based MLC Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, B; Ahmed, M; Siebers, J

    2016-06-15

    Purpose: To present a clinical case which challenges the base assumption of log-file based QA, by showing that the actual position of a MLC leaf can suddenly deviate from its programmed and logged position by >1 mm as observed with real-time imaging. Methods: An EPID-based exit-fluence dosimetry system designed to prevent gross delivery errors was used in cine mode to capture portal images during treatment. Visual monitoring identified an anomalous MLC leaf pair gap not otherwise detected by the automatic position verification. The position of the erred leaf was measured on EPID images and log files were analyzed for themore » treatment in question, the prior day’s treatment, and for daily MLC test patterns acquired on those treatment days. Additional standard test patterns were used to quantify the leaf position. Results: Whereas the log file reported no difference between planned and recorded positions, image-based measurements showed the leaf to be 1.3±0.1 mm medial from the planned position. This offset was confirmed with the test pattern irradiations. Conclusion: It has been clinically observed that log-file derived leaf positions can differ from their actual positions by >1 mm, and therefore cannot be considered to be the actual leaf positions. This cautions the use of log-based methods for MLC or patient quality assurance without independent confirmation of log integrity. Frequent verification of MLC positions through independent means is a necessary precondition to trusting log file records. Intra-treatment EPID imaging provides a method to capture departures from MLC planned positions. Work was supported in part by Varian Medical Systems.« less

  6. Fast Beam-Based BPM Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsche, K.; Loos, H.; Nuhn, H.-D.

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of themore » gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.« less

  7. Adaptive positive position feedback control with a feedforward compensator of a magnetostrictive beam for vibration suppression

    NASA Astrophysics Data System (ADS)

    Bian, Leixiang; Zhu, Wei

    2018-07-01

    In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.

  8. Continued use of an interactive computer game-based visual perception learning system in children with developmental delay.

    PubMed

    Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien

    2017-11-01

    This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken L. Stratton

    The objective of this project is to investigate the applicability of a combined Global Positioning System and Inertial Measurement Unit (GPS/IMU) for information based displays on earthmoving machines and for automated earthmoving machines in the future. This technology has the potential of allowing an information-based product like Caterpillar's Computer Aided Earthmoving System (CAES) to operate in areas with satellite shading. Satellite shading is an issue in open pit mining because machines are routinely required to operate close to high walls, which reduces significantly the amount of the visible sky to the GPS antenna mounted on the machine. An inertial measurementmore » unit is a product, which provides data for the calculation of position based on sensing accelerations and rotation rates of the machine's rigid body. When this information is coupled with GPS it results in a positioning system that can maintain positioning capability during time periods of shading.« less

  10. Effect of forest canopy on GPS-based movement data

    Treesearch

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (P<0.001) by effects of forest canopy. Global Positioning System error added an average of 27.5% additional...

  11. An online x-ray based position validation system for prostate hypofractionated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Sankar, E-mail: Sankar.Arumugam@sswahs.nsw.gov.au; Xing, Aitang; Sidhom, Mark

    Purpose: Accurate positioning of the target volume during treatment is paramount for stereotactic body radiation therapy (SBRT). In this work, the authors present the development of an in-house software tool to verify target position with an Elekta-Synergy linear accelerator using kV planar images acquired during treatment delivery. Methods: In-house software, SeedTracker, was developed in MATLAB to perform the following three functions: 1. predict intended seed positions in a planar view perpendicular to any gantry angle, simulating a portal imaging device, from the 3D seed co-ordinates derived from the treatment planning system; 2. autosegment seed positions in kV planar images; andmore » 3. report the position shift based on the seed positions in the projection images. The performance of SeedTracker was verified using a CIRS humanoid phantom (CIRS, VA, USA) implanted with three Civco gold seed markers (Civco, IA, USA) in the prostate. The true positive rate of autosegmentation (TPR{sub seg}) and the accuracy of the software in alerting the user when the isocenter position was outside the tolerance (TPR{sub trig}) were studied. Two-dimensional and 3D static position offsets introduced to the humanoid phantom and 3D dynamic offsets introduced to a gel phantom containing gold seeds were used for evaluation of the system. Results: SeedTracker showed a TPR{sub seg} of 100% in the humanoid phantom for projection images acquired at all angles except in the ranges of 80°–100° and 260°–280° where seeds are obscured by anatomy. This resulted in a TPR{sub trig} of 88% over the entire treatment range for considered 3D static offsets introduced to the phantom. For 2D static offsets where the position offsets were only introduced in the anterior–posterior and lateral directions, the TPR{sub trig} of SeedTracker was limited by both seed detectability and positional offset. SeedTracker showed a false positive trigger in the projection angle range between 130°–170° and 310°–350° (a maximum of 24% of treatment time) due to limited information that can be derived from monoscopic images. The system accurately determined the dynamic trajectory of the isocenter position in the superior and inferior direction for the studied dynamic offset scenarios based on the seed position in monoscopic images. Conclusions: The developed software has been shown to accurately autosegment the seed positions in kV planar images except for two 20° arcs where seeds are obscured by anatomical structures. The isocenter trajectories determined by the system, based on the monoscopic images, provide useful information for monitoring the prostate position. The developed system has potential application for monitoring prostate position during treatment delivery in linear accelerator based SBRT.« less

  12. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  13. 3D vision system for intelligent milking robot automation

    NASA Astrophysics Data System (ADS)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  14. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  15. Indoor positioning algorithm combined with angular vibration compensation and the trust region technique based on received signal strength-visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong

    2017-05-01

    Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.

  16. R&D for an innovative acoustic positioning system for the KM3NeT neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium

    2011-01-01

    An innovative Acoustic Positioning System for the km3-scale neutrino telescope has been designed and is under realization within the KM3NeT Consortium. Compared to the Acoustic Positioning Systems used for the km3 demonstrators, ANTARES and NEMO Phase 1, this new system is based on the “all data to shore” concept and it will permit the enhancement of detector positioning performances, reduction of costs and its use as real-time monitor of environmental acoustic noise.

  17. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  18. Indoor anti-occlusion visible light positioning systems based on particle filtering

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Huang, Zhitong; Li, Jianfeng; Zhang, Ruqi; Ji, Yuefeng

    2015-04-01

    As one of the most popular categories of mobile services, a rapid growth of indoor location-based services has been witnessed over the past decades. Indoor positioning methods based on Wi-Fi, radio-frequency identification or Bluetooth are widely commercialized; however, they have disadvantages such as low accuracy or high cost. An emerging method using visible light is under research recently. The existed visible light positioning (VLP) schemes using carrier allocation, time allocation and multiple receivers all have limitations. This paper presents a novel mechanism using particle filtering in VLP system. By this method no additional devices are needed and the occlusion problem in visible light would be alleviated which will effectively enhance the flexibility for indoor positioning.

  19. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    PubMed Central

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-01-01

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision. PMID:27153068

  20. Development of an indoor location based service test bed and geographic information system with a wireless sensor network.

    PubMed

    Jan, Shau-Shiun; Hsu, Li-Ta; Tsai, Wen-Ming

    2010-01-01

    In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

  1. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network

    PubMed Central

    Jan, Shau-Shiun; Hsu, Li-Ta; Tsai, Wen-Ming

    2010-01-01

    In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system. PMID:22319282

  2. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  3. Minimally invasive positioning robot system of femoral neck hollow screw implants based on x-ray error correction

    NASA Astrophysics Data System (ADS)

    Zou, Yunpeng; Xu, Ying; Hu, Lei; Guo, Na; Wang, Lifeng

    2017-01-01

    Aiming the high failure rate, the high radiation quantity and the poor positioning accuracy of femoral neck traditional surgery, this article develops a set of new positioning robot system of femoral neck hollow screw implants based on X-rays error correction, which bases on the study of x-rays perspective principle and the Motion Principle of 6 DOF(degree of freedom) series robot UR(Universal Robots). Compared with Computer Assisted Navigation System, this system owns better positioning accuracy and more simple operation. In addition, without extra Equipment of Visual Tracking, this system can reduce a lot of cost. During the surgery, Doctor can plan the operation path and the pose of mark needle according to the positive and lateral X-rays images of patients. Then they can calculate the pixel ratio according to the ratio of the actual length of mark line and the length on image. After that, they can calculate the amount of exercise of UR Robot according to the relative position between operation path and guide pin and the fixed relationship between guide pin and UR robot. Then, they can control UR to drive the positioning guide pin to the operation path. At this point, check the positioning guide pin and the planning path is coincident, if not, repeat the previous steps, until the positioning guide pin and the planning path coincide which will eventually complete the positioning operation. Moreover, to verify the positioning accuracy, this paper make an errors analysis aiming to thirty cases of the experimental model of bone. The result shows that the motion accuracy of the UR Robot is 0.15mm and the Integral error precision is within 0.8mm. To verify the clinical feasibility of this system, this article analysis on three cases of the clinical experiment. In the whole process of positioning, the X-rays irradiation time is 2-3s, the number of perspective is 3-5 and the whole positioning time is 7-10min. The result shows that this system can complete accurately femoral neck positioning surgery. Meanwhile, it can greatly reduce the X-rays radiation of medical staff and patients. To summarize, it has a significant value in clinical application.

  4. The Evolution of Computer-Assisted Total Hip Arthroplasty and Relevant Applications.

    PubMed

    Chang, Jun-Dong; Kim, In-Sung; Bhardwaj, Atul M; Badami, Ramachandra N

    2017-03-01

    In total hip arthroplasty (THA), the accurate positioning of implants is the key to achieve a good clinical outcome. Computer-assisted orthopaedic surgery (CAOS) has been developed for more accurate positioning of implants during the THA. There are passive, semi-active, and active systems in CAOS for THA. Navigation is a passive system that only provides information and guidance to the surgeon. There are 3 types of navigation: imageless navigation, computed tomography (CT)-based navigation, and fluoroscopy-based navigation. In imageless navigation system, a new method of registration without the need to register the anterior pelvic plane was introduced. CT-based navigation can be efficiently used for pelvic plane reference, the functional pelvic plane in supine which adjusts anterior pelvic plane sagittal tilt for targeting the cup orientation. Robot-assisted system can be either active or semi-active. The active robotic system performs the preparation for implant positioning as programmed preoperatively. It has been used for only femoral implant cavity preparation. Recently, program for cup positioning was additionally developed. Alternatively, for ease of surgeon acceptance, semi-active robot systems are developed. It was initially applied only for cup positioning. However, with the development of enhanced femoral workflows, this system can now be used to position both cup and stem. Though there have been substantial advancements in computer-assisted THA, its use can still be controversial at present due to the steep learning curve, intraoperative technical issues, high cost and etc. However, in the future, CAOS will certainly enable the surgeon to operate more accurately and lead to improved outcomes in THA as the technology continues to evolve rapidly.

  5. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.

    PubMed

    Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove

    2004-06-15

    An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.

  6. 47 CFR 90.475 - Operation of internal transmitter control systems in specially equipped systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... systems involving fixed systems whose base stations are controlled by such systems may automatically access these base stations through the microwave or operational fixed systems from positions in the PSTN, so long as the base stations and mobile units meet the requirements of § 90.483 and if a separate...

  7. Visible light communication based vehicle positioning using LED street light and rolling shutter CMOS sensors

    NASA Astrophysics Data System (ADS)

    Do, Trong Hop; Yoo, Myungsik

    2018-01-01

    This paper proposes a vehicle positioning system using LED street lights and two rolling shutter CMOS sensor cameras. In this system, identification codes for the LED street lights are transmitted to camera-equipped vehicles through a visible light communication (VLC) channel. Given that the camera parameters are known, the positions of the vehicles are determined based on the geometric relationship between the coordinates of the LEDs in the images and their real world coordinates, which are obtained through the LED identification codes. The main contributions of the paper are twofold. First, the collinear arrangement of the LED street lights makes traditional camera-based positioning algorithms fail to determine the position of the vehicles. In this paper, an algorithm is proposed to fuse data received from the two cameras attached to the vehicles in order to solve the collinearity problem of the LEDs. Second, the rolling shutter mechanism of the CMOS sensors combined with the movement of the vehicles creates image artifacts that may severely degrade the positioning accuracy. This paper also proposes a method to compensate for the rolling shutter artifact, and a high positioning accuracy can be achieved even when the vehicle is moving at high speeds. The performance of the proposed positioning system corresponding to different system parameters is examined by conducting Matlab simulations. Small-scale experiments are also conducted to study the performance of the proposed algorithm in real applications.

  8. Visible light communication and indoor positioning using a-SiCH device as receiver

    NASA Astrophysics Data System (ADS)

    Vieira, M. A.; Vieira, M.; Louro, P.; Vieira, P.; Fantoni, A.

    2017-08-01

    An indoor positioning system were trichromatic white LEDs are used both for illumination proposes and as transmitters and an optical processor, based on a-SiC:H technology, as mobile receiver is presented. OOK modulation scheme is used, and it provides a good trade-off between system performance and implementation complexity. The relationship between the transmitted data and the received digital output levels is decoded. The system topology for positioning is a self-positioning system in which the measuring unit is mobile. This unit receives the signals of several transmitters in known locations, and has the capability to compute its location based on the measured signals. LED bulbs work as transmitters, sending information together with different IDs related to their physical locations. A triangular topology for the unit cell is analysed. A 2D localization design, demonstrated by a prototype implementation is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The position is estimated through the visible multilateration metodh using several non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Data analysis showed that by using a pinpin double photodiode based on a a-SiC:H heterostucture as receiver, and RBGLEDs as transmitters it is possible not only to determine the mobile target's position but also to infer the motion direction over time, along with the received information in each position.

  9. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts.

    PubMed

    Emmert, Maximilian Y; Weber, Benedikt; Behr, Luc; Sammut, Sebastien; Frauenfelder, Thomas; Wolint, Petra; Scherman, Jacques; Bettex, Dominique; Grünenfelder, Jürg; Falk, Volkmar; Hoerstrup, Simon P

    2014-01-01

    While transcatheter aortic valve implantation (TAVI) has rapidly evolved for the treatment of aortic valve disease, the currently used bioprostheses are prone to continuous calcific degeneration. Thus, autologous, cell-based, living, tissue-engineered heart valves (TEHVs) with regeneration potential have been suggested to overcome these limitations. We investigate the technical feasibility of combining the concept of TEHV with transapical implantation technology using a state-of-the-art transcatheter delivery system facilitating the exact anatomical position in the systemic circulation. Trileaflet TEHVs fabricated from biodegradable synthetic scaffolds were sewn onto self-expanding Nitinol stents seeded with autologous marrow stromal cells, crimped and transapically delivered into the orthotopic aortic valve position of adult sheep (n = 4) using the JenaValve transapical TAVI System (JenaValve, Munich, Germany). Delivery, positioning and functionality were assessed by angiography and echocardiography before the TEHV underwent post-mortem gross examination. For three-dimensional reconstruction of the stent position of the anatomically oriented system, a computed tomography analysis was performed post-mortem. Anatomically oriented, transapical delivery of marrow stromal cell-based TEHV into the orthotopic aortic valve position was successful in all animals (n = 4), with a duration from cell harvest to TEHV implantation of 101 ± 6 min. Fluoroscopy and echocardiography displayed sufficient positioning, thereby entirely excluding the native leaflets. There were no signs of coronary obstruction. All TEHV tolerated the loading pressure of the systemic circulation and no acute ruptures occurred. Animals displayed intact and mobile leaflets with an adequate functionality. The mean transvalvular gradient was 7.8 ± 0.9 mmHg, and the mean effective orifice area was 1.73 ± 0.02 cm(2). Paravalvular leakage was present in two animals, and central aortic regurgitation due to a single-leaflet prolapse was detected in two, which was primarily related to the leaflet design. No stent dislocation, migration or affection of the mitral valve was observed. For the first time, we demonstrate the technical feasibility of a transapical TEHV delivery into the aortic valve position using a commercially available and clinically applied transapical implantation system that allows for exact anatomical positioning. Our data indicate that the combination of TEHV and a state-of-the-art transapical delivery system is feasible, representing an important step towards translational, transcatheter-based TEHV concepts.

  10. Multistage position-stabilized vibration isolation system for neutron interferometry

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

    1994-10-01

    A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

  11. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    ERIC Educational Resources Information Center

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  12. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS

    NASA Astrophysics Data System (ADS)

    Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin

    2013-12-01

    In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.

  13. A configurable electronics system for the ESS-Bilbao beam position monitors

    NASA Astrophysics Data System (ADS)

    Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.

  14. Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1991-01-01

    A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.

  15. A signal strength priority based position estimation for mobile platforms

    NASA Astrophysics Data System (ADS)

    Kalgikar, Bhargav; Akopian, David; Chen, Philip

    2010-01-01

    Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.

  16. GPS-based tracking system for TOPEX orbit determination

    NASA Technical Reports Server (NTRS)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  17. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    PubMed

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-09-23

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.

  18. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization

    PubMed Central

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-01-01

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314

  19. Performance Analysis of Grey-World-based Feature Detection and Matching for Mobile Positioning Systems

    NASA Astrophysics Data System (ADS)

    Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha

    2014-11-01

    This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile's method relative to the illumination environment, producing lower illumination error in five (5) different environments.

  20. Laser projection positioning of spatial contour curves via a galvanometric scanner

    NASA Astrophysics Data System (ADS)

    Tu, Junchao; Zhang, Liyan

    2018-04-01

    The technology of laser projection positioning is widely applied in advanced manufacturing fields (e.g. composite plying, parts location and installation). In order to use it better, a laser projection positioning (LPP) system is designed and implemented. Firstly, the LPP system is built by a laser galvanometric scanning (LGS) system and a binocular vision system. Applying Single-hidden Layer Feed-forward Neural Network (SLFN), the system model is constructed next. Secondly, the LGS system and the binocular system, which are respectively independent, are integrated through a datadriven calibration method based on extreme learning machine (ELM) algorithm. Finally, a projection positioning method is proposed within the framework of the calibrated SLFN system model. A well-designed experiment is conducted to verify the viability and effectiveness of the proposed system. In addition, the accuracy of projection positioning are evaluated to show that the LPP system can achieves the good localization effect.

  1. Loran-Based Buoy Position Auditing Systems - Analytical Evaluation

    DOT National Transportation Integrated Search

    1980-02-01

    An analytic evaluation and comparison of the following candidate Buoy Position Auditing System (BPAS) configurations is presented in this report: transmission of digital Time Difference (TD) data from a Loran-C receiver on the buoy, retransmission of...

  2. Intraformation positioning system

    NASA Astrophysics Data System (ADS)

    Sheldon, Stuart; Zadzora, Timothy

    1996-05-01

    The IntraFormation Positioning System is a networked relative navigation system currently being developed for rendezvous, join-up, and formation flight of Air Force helicopters and fixed wing aircraft in instrument meteorological conditions. The system is designed to be integrated into existing aircraft and will display relative positions of all aircraft within a formation, as well as the relative positions of other formations participating in coordinated missions. The system uses a Global Positioning System receiver integrated with the aircraft Inertial Navigation System to generate accurate aircraft position and velocity data. These data are transmitted over a data link to all participating aircraft and displayed as graphic symbols at the relative range and bearing to own aircraft on a situational awareness display format similar to a radar plan position indicator. Flight guidance computation is based on the difference between a desired formation slot position and current aircraft position relative to the formation lead aircraft. This information is presented on the flight director display allowing the pilot to null out position errors. The system is being developed for the Air Force Special Operations Command; however, it is applicable to all aircraft desiring improved formation situational awareness and formation flight coordination.

  3. Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon

    2014-05-01

    In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.

  4. Rapid deployable global sensing hazard alert system

    DOEpatents

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  5. A microcomputer-based position updating system for general aviation utilizing Loran-C

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1982-01-01

    Modern digital electronic technology is used to produce a device to convert LORAN C to useful pilot information using a simple software algebra and low cost microprocessor devices. Results indicate that the processor based LORAN C navigator has an accuracy of 1.0 nm or less over an area typically covered by a triad of Loran C stations and can execute a position update in less than 0.2 seconds. The system was tested in 30 hours of flight and proved that it can give reliable and accurate navigation information. Methods of converting time differences to position, design considerations for the microcomputer system, and the system for coordinate conversion are discussed. Testing with predetermined points and possible fixes for errors are also considered.

  6. The Performance Analysis of a Uav Based Mobile Mapping System Platform

    NASA Astrophysics Data System (ADS)

    Tsai, M. L.; Chiang, K. W.; Lo, C. F.; Ch, C. H.

    2013-08-01

    To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real-time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. This study develops a Direct Georeferencing (DG) based fixed-wing Unmanned Aerial Vehicle (UAV) photogrammetric platform where an Inertial Navigation System (INS)/Global Positioning System (GPS) integrated Positioning and Orientation System (POS) system is implemented to provide the DG capability of the platform. The performance verification indicates that the proposed platform can capture aerial images successfully. A flight test is performed to verify the positioning accuracy in DG mode without using Ground Control Points (GCP). The preliminary results illustrate that horizontal DG positioning accuracies in the x and y axes are around 5 m with 300 m flight height. The positioning accuracy in the z axis is less than 10 m. Such accuracy is good for near real-time disaster relief. The DG ready function of proposed platform guarantees mapping and positioning capability even in GCP free environments, which is very important for rapid urgent response for disaster relief. Generally speaking, the data processing time for the DG module, including POS solution generalization, interpolation, Exterior Orientation Parameters (EOP) generation, and feature point measurements, is less than one hour.

  7. A verification and errors analysis of the model for object positioning based on binocular stereo vision for airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Wang, Huan-huan; Wang, Jian; Liu, Feng; Cao, Hai-juan; Wang, Xiang-jun

    2014-12-01

    A test environment is established to obtain experimental data for verifying the positioning model which was derived previously based on the pinhole imaging model and the theory of binocular stereo vision measurement. The model requires that the optical axes of the two cameras meet at one point which is defined as the origin of the world coordinate system, thus simplifying and optimizing the positioning model. The experimental data are processed and tables and charts are given for comparing the positions of objects measured with DGPS with a measurement accuracy of 10 centimeters as the reference and those measured with the positioning model. Sources of visual measurement model are analyzed, and the effects of the errors of camera and system parameters on the accuracy of positioning model were probed, based on the error transfer and synthesis rules. A conclusion is made that measurement accuracy of surface surveillances based on binocular stereo vision measurement is better than surface movement radars, ADS-B (Automatic Dependent Surveillance-Broadcast) and MLAT (Multilateration).

  8. Quality assurance for kilo- and megavoltage in-room imaging and localization for off- and online setup error correction.

    PubMed

    Balter, James M; Antonuk, Larry E

    2008-01-01

    In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.

  9. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  10. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight Inspection Systems (FIS) by using GPS and WAAS in novel manners. The algorithms include Adaptive Carrier Smoothing (ACS), optimizing WAAS accuracy and stability, and reference point-based precise relative positioning for real-time and near-real-time applications. The developed systems are WAAS-aided FIS, WAAS-based FIS, and stand-alone GPS-based FIS. These systems offer both high efficiency and low cost, and they have different advantages over one another in terms of accuracy, integrity, and worldwide availability. The performance of each system is tested with experimental flight test data and shown to have accuracy that is sufficient for flight inspection and superior to the current Inertial-based AFIS.

  11. High precision position sensor based on CPA in a composite multi-layered system.

    PubMed

    Dey, Sanjeeb; Singh, Suneel; Rao, Desai Narayana

    2018-04-16

    We propose a scheme for high precision position sensing based on coherent perfect absorption (CPA) in a five-layered structure comprising three layers of metal-dielectric composites and two spacer (air) layers. Both the outermost interfaces of the five layered medium are irradiated by two identical coherent light waves at the same angle of incidence. We first investigate the occurrence of CPA in a symmetric layered structure as a function of different system parameters for oblique incidence. Thereafter, by shifting the middle layer, beginning from one end of the structure to the other, we observe the periodic occurrence of extremely narrow CPA resonances at several positions of the middle layer. Moreover this phenomenon is seen to recur even at many other wavelengths. We discuss how the position sensitivity of this phenomenon can be utilized for designing a CPA based high precision position sensing device.

  12. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.

  13. High angle of attack position sensing for the Southampton University magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Parker, David H.

    1987-01-01

    An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.

  14. The DGPS based navigation and positioning system of the Helsinki University of Technology Short SC7 Skyvan research aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauriainen, S.; Ahola, P.; Hallikainen, M.

    1996-10-01

    The typical airborne remote sensing measurements conducted by the Helsinki University of Technology laboratory of space technology require very precise navigation over the selected measurement sites. This means that both system performance as far as positioning is concerned and the actual flight track of the aircraft has to be within 10 meters. To meet these requirements, a custom made navigation system was designed and installed in the SHORT SC7 Skyvan research aircraft of the Helsinki University of Technology. The system is based on the Finnish national Differential GPS network providing positioning accuracy within a few meters within Finland. For pilotmore » guidance, a graphical user interface with mission specific software is used to give the pilots an overview of the relative position and orientation to the measurement target. In addition, the system is used to synchronize the scientific instruments and record the actual flight track. 2 refs., 2 figs.« less

  15. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  16. Accuracy and efficiency of an infrared based positioning and tracking system for patient set-up and monitoring in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Xu, Gongming; Pei, Xi; Cao, Ruifen; Hu, Liqin; Wu, Yican

    2015-03-01

    An infrared based positioning and tracking (IPT) system was introduced and its accuracy and efficiency for patient setup and monitoring were tested for daily radiotherapy treatment. The IPT system consists of a pair of floor mounted infrared stereoscopic cameras, passive infrared markers and tools used for acquiring localization information as well as a custom controlled software which can perform the positioning and tracking functions. The evaluation of IPT system characteristics was conducted based on the AAPM 147 task report. Experiments on spatial drift and reproducibility as well as static and dynamic localization accuracy were carried out to test the efficiency of the IPT system. Measurements of known translational (up to 55.0 mm) set-up errors in three dimensions have been performed on a calibration phantom. The accuracy of positioning was evaluated on an anthropomorphic phantom with five markers attached to the surface; the precision of the tracking ability was investigated through a sinusoidal motion platform. For the monitoring of the respiration, three volunteers contributed to the breathing testing in real time. The spatial drift of the IPT system was 0.65 mm within 60 min to be stable. The reproducibility of position variations were between 0.01 and 0.04 mm. The standard deviation of static marker localization was 0.26 mm. The repositioning accuracy was 0.19 mm, 0.29 mm, and 0.53 mm in the left/right (L/R), superior/inferior (S/I) and anterior/posterior (A/P) directions, respectively. The measured dynamic accuracy was 0.57 mm and discrepancies measured for the respiratory motion tracking was better than 1 mm. The overall positioning accuracy of the IPT system was within 2 mm. In conclusion, the IPT system is an accurate and effective tool for assisting patient positioning in the treatment room. The characteristics of the IPT system can successfully meet the needs for real time external marker tracking and patient positioning as well as respiration monitoring during image guided radiotherapy treatments.

  17. [Metrological analysis of measuring systems in testing an anticipatory reaction to the position of a moving object].

    PubMed

    Aksiuta, E F; Ostashev, A V; Sergeev, E V; Aksiuta, V E

    1997-01-01

    The methods of the information (entropy) error theory were used to make a metrological analysis of the well-known commercial measuring systems for timing an anticipative reaction (AR) to the position of a moving object, which is based on the electromechanical, gas-discharge, and electron principles. The required accuracy of measurement was ascertained to be achieved only by using the systems based on the electron principle of moving object simulation and AR measurement.

  18. Detecting lane departures from steering wheel signal.

    PubMed

    Sandström, Max; Lampsijärvi, Eetu; Holmström, Axi; Maconi, Göran; Ahmadzai, Shabana; Meriläinen, Antti; Hæggström, Edward; Forsman, Pia

    2017-02-01

    Current lane departure warning systems are video-based and lose data when road- and weather conditions are bad. This study sought to develop a lane departure warning algorithm based on the signal drawn from the steering wheel. The rationale is that a car-based lane departure warning system should be robust regardless of road- and weather conditions. N=34 professional driver students drove in a high-fidelity driving simulator at 80km/h for 55min every third hour during 36h of sustained wakefulness. During each driving session we logged the steering wheel- and lane position signals at 60Hz. To derive the lane position signal, we quantified the transfer function of the simulated vehicle and used it to derive the absolute lane position signal from the steering wheel signal. The Pearson correlation between the derived- and actual lane position signals was r=0.48 (based on 12,000km). Next we designed an algorithm that alerted, up to three seconds before they occurred, about upcoming lane deviations that exceeded 0.2m. The sensitivity of the algorithm was 47% and the specificity was 71%. To our knowledge this exceeds the performance of the current video-based systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Evolution of Computer-Assisted Total Hip Arthroplasty and Relevant Applications

    PubMed Central

    Kim, In-Sung; Bhardwaj, Atul M.; Badami, Ramachandra N.

    2017-01-01

    In total hip arthroplasty (THA), the accurate positioning of implants is the key to achieve a good clinical outcome. Computer-assisted orthopaedic surgery (CAOS) has been developed for more accurate positioning of implants during the THA. There are passive, semi-active, and active systems in CAOS for THA. Navigation is a passive system that only provides information and guidance to the surgeon. There are 3 types of navigation: imageless navigation, computed tomography (CT)-based navigation, and fluoroscopy-based navigation. In imageless navigation system, a new method of registration without the need to register the anterior pelvic plane was introduced. CT-based navigation can be efficiently used for pelvic plane reference, the functional pelvic plane in supine which adjusts anterior pelvic plane sagittal tilt for targeting the cup orientation. Robot-assisted system can be either active or semi-active. The active robotic system performs the preparation for implant positioning as programmed preoperatively. It has been used for only femoral implant cavity preparation. Recently, program for cup positioning was additionally developed. Alternatively, for ease of surgeon acceptance, semi-active robot systems are developed. It was initially applied only for cup positioning. However, with the development of enhanced femoral workflows, this system can now be used to position both cup and stem. Though there have been substantial advancements in computer-assisted THA, its use can still be controversial at present due to the steep learning curve, intraoperative technical issues, high cost and etc. However, in the future, CAOS will certainly enable the surgeon to operate more accurately and lead to improved outcomes in THA as the technology continues to evolve rapidly. PMID:28316957

  20. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position errors never exceeded 16 cm during these field tests.

  1. A Study of Vicon System Positioning Performance.

    PubMed

    Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier

    2017-07-07

    Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  2. A low cost PSD-based monocular motion capture system

    NASA Astrophysics Data System (ADS)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  3. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments.

    PubMed

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-12-02

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  4. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments

    PubMed Central

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-01-01

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means. PMID:27918454

  5. VELOC - A new kind of information system

    NASA Astrophysics Data System (ADS)

    Dittloff, H. J.; Keuser, H.; Langer, H.

    Based on the Global Positioning System (GPS), VELOC (Vehicle Location) is designed to be a vehicle information system for fleet management adaptable to various user groups, e.g., haulage and delivery companies, and service enterprises with vehicle fleets. The needs of these groups vary with respect to position accuracy, position update rate, and type of communication. The authors describe the requirements, specifications, and performance of VELOC. Special emphasis is placed on some substantial features of the VELOC center, namely the integration of DGPS, a comfortable user interface, and handling of vehicle positions on digital maps.

  6. 3D ultrasound-based patient positioning for radiotherapy

    NASA Astrophysics Data System (ADS)

    Wang, Michael H.; Rohling, Robert N.; Archip, Neculai; Clark, Brenda G.

    2006-03-01

    A new 3D ultrasound-based patient positioning system for target localisation during radiotherapy is described. Our system incorporates the use of tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, fully automatic 3D ultrasound-toultrasound registration, and OPTOTRAK IRLEDs for registering simulation CT to ultrasound data. The accuracy of the entire radiotherapy treatment process resulting from the use of our system, from simulation to the delivery of radiation, has been validated on a phantom. The overall positioning error is less than 5mm, which includes errors from estimation of the irradiated region location in the phantom.

  7. The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone

    NASA Astrophysics Data System (ADS)

    Liu, J.; Jiang, C.; Shi, Z.

    2017-09-01

    Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.

  8. A fast high-precision six-degree-of-freedom relative position sensor

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan

    2016-03-01

    Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.

  9. Integrating Wraparound into a Schoolwide System of Positive Behavior Supports

    ERIC Educational Resources Information Center

    Eber, Lucille; Hyde, Kelly; Suter, Jesse C.

    2011-01-01

    We describe the structure for implementation of the wraparound process within a multi-tiered system of school wide positive behavior support (SWPBS) to address the needs of the 1-5% of students with complex emotional/behavioral challenges. The installation of prerequisite system features that, based on a 3 year demonstration process, we consider…

  10. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living.

    PubMed

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-12-25

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world's population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an Indoor Positioning System for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.

  12. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living

    PubMed Central

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-01-01

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world’s population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an indoor positioning system for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch. PMID:28029142

  13. Algorithms development for the GEM-based detection system

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-09-01

    The measurement system based on GEM - Gas Electron Multiplier detector - is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an Xray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals and cluster charge values corresponding to the energy spectra.

  14. The research of adaptive-exposure on spot-detecting camera in ATP system

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Jia, Jian-jun; Zhang, Liang; Wang, Jian-Yu

    2013-08-01

    High precision acquisition, tracking, pointing (ATP) system is one of the key techniques of laser communication. The spot-detecting camera is used to detect the direction of beacon in laser communication link, so that it can get the position information of communication terminal for ATP system. The positioning accuracy of camera decides the capability of laser communication system directly. So the spot-detecting camera in satellite-to-earth laser communication ATP systems needs high precision on target detection. The positioning accuracy of cameras should be better than +/-1μ rad . The spot-detecting cameras usually adopt centroid algorithm to get the position information of light spot on detectors. When the intensity of beacon is moderate, calculation results of centroid algorithm will be precise. But the intensity of beacon changes greatly during communication for distance, atmospheric scintillation, weather etc. The output signal of detector will be insufficient when the camera underexposes to beacon because of low light intensity. On the other hand, the output signal of detector will be saturated when the camera overexposes to beacon because of high light intensity. The calculation accuracy of centroid algorithm becomes worse if the spot-detecting camera underexposes or overexposes, and then the positioning accuracy of camera will be reduced obviously. In order to improve the accuracy, space-based cameras should regulate exposure time in real time according to light intensity. The algorithm of adaptive-exposure technique for spot-detecting camera based on metal-oxide-semiconductor (CMOS) detector is analyzed. According to analytic results, a CMOS camera in space-based laser communication system is described, which utilizes the algorithm of adaptive-exposure to adapting exposure time. Test results from imaging experiment system formed verify the design. Experimental results prove that this design can restrain the reduction of positioning accuracy for the change of light intensity. So the camera can keep stable and high positioning accuracy during communication.

  15. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  16. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  17. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  18. Cellular-based preemption system

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  19. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage

    PubMed Central

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-01-01

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user positioning. PMID:27529252

  20. Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage.

    PubMed

    Lee, Kyuman; Baek, Hoki; Lim, Jaesung

    2016-08-12

    The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user positioning.

  1. Individual and Contextual Bases of Thriving in Adolescence: A View of the Issues

    ERIC Educational Resources Information Center

    Lerner, Richard M.; Lerner, Jacqueline V.; von Eye, Alexander; Bowers, Edmond P.; Lewin-Bizan, Selva

    2011-01-01

    We introduce this special issue on the individual and contextual bases of adolescent thriving by describing the relational developmental systems theory-based, positive youth development (PYD) perspective that frames much of contemporary research about health and positive development across the adolescent period and that, more specifically, frames…

  2. Nonlinear feedback model attitude control using CCD in magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Lin, CHIN-E.; Hou, Ann-San

    1994-01-01

    A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.

  3. A hybrid mobile-based patient location tracking system for personal healthcare applications.

    PubMed

    Chew, S H; Chong, P A; Gunawan, E; Goh, K W; Kim, Y; Soh, C B

    2006-01-01

    In the next generation of Infocommunications, mobile Internet-enabled devices and third generation mobile communication networks have become reality, location based services (LBS) are expected to be a major area of growth. Providing information, content and services through positioning technologies forms the platform for new services for users and developers, as well as creating new revenue channels for service providers. These crucial advances in location based services have opened up new opportunities in real time patient tracking for personal healthcare applications. In this paper, a hybrid mobile-based location technique using the global positioning system (GPS) and cellular mobile network infrastructure is employed to provide the location tracking capability. This function will be integrated into the patient location tracking system (PLTS) to assist caregivers or family members in locating patients such as elderly or dependents when required, especially in emergencies. The capability of this PLTS is demonstrated through a series of location detection tests conducted over different operating conditions. Although the model is at its initial stage of development, it has shown relatively good accuracy for position tracking and potential of using integrated wireless technology to enhance the existing personal healthcare communication system through location based services.

  4. Multipoint vibrometry with dynamic and static holograms.

    PubMed

    Haist, T; Lingel, C; Osten, W; Winter, M; Giesen, M; Ritter, F; Sandfort, K; Rembe, C; Bendel, K

    2013-12-01

    We report on two multipoint vibrometers with user-adjustable position of the measurement spots. Both systems are using holograms for beam deflection. The measurement is based on heterodyne interferometry with a frequency difference of 5 MHz between reference and object beam. One of the systems uses programmable positioning of the spots in the object volume but is limited concerning the light efficiency. The other system is based on static holograms in combination with mechanical adjustment of the measurement spots and does not have such a general efficiency restriction. Design considerations are given and we show measurement results for both systems. In addition, we analyze the sensitivity of the systems which is a major limitation compared to single point scanning systems.

  5. Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1991-01-01

    A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.

  6. Moon-Based INSAR Geolocation and Baseline Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Ruan, Zhixing; Lv, Mingyang; Dou, Changyong; Chen, Zhaoning

    2016-07-01

    Earth observation platform is a host, the characteristics of the platform in some extent determines the ability for earth observation. Currently most developing platforms are satellite, in contrast carry out systematic observations with moon based Earth observation platform is still a new concept. The Moon is Earth's only natural satellite and is the only one which human has reached, it will give people different perspectives when observe the earth with sensors from the moon. Moon-based InSAR (SAR Interferometry), one of the important earth observation technology, has all-day, all-weather observation ability, but its uniqueness is still a need for analysis. This article will discuss key issues of geometric positioning and baseline parameters of moon-based InSAR. Based on the ephemeris data, the position, liberation and attitude of earth and moon will be obtained, and the position of the moon-base SAR sensor can be obtained by coordinate transformation from fixed seleno-centric coordinate systems to terrestrial coordinate systems, together with the Distance-Doppler equation, the positioning model will be analyzed; after establish of moon-based InSAR baseline equation, the different baseline error will be analyzed, the influence of the moon-based InSAR baseline to earth observation application will be obtained.

  7. High order GPS base station support for Rhode Island

    DOT National Transportation Integrated Search

    2001-09-01

    The University of Rhode Island (URI) upgraded its Global Positioning System (GPS) Base Station to provide round-the-clock Internet access to survey-grade (+/- 2 cm accuracy) reference files using a web-based data distribution system. In August 2000, ...

  8. 77 FR 43405 - Final Standard Review Plan, Branch Technical Position 7-19 on Guidance for Evaluation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Digital Computer-Based Instrumentation and Control Systems.'' This BTP is to be cited as the acceptance criteria for Diversity and Defense-in-Depth in Digital Computer-Based Instrumentation and Control Systems... Evaluation of Diversity and Defense-in-Depth in Digital Computer-Based Instrumentation and Control Systems...

  9. Vision-Based SLAM System for Unmanned Aerial Vehicles

    PubMed Central

    Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131

  10. Hydrodynamic Equations for Flocking Models without Velocity Alignment

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    2017-10-01

    The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently that several flocking behaviors can emerge in the absence of velocity alignment and as a result of short-range, position-based, attractive forces that act inside a vision cone. Here, we derive the corresponding hydrodynamic equations of a microscopic position-based flocking model, reviewing and extending previous reported results. In particular, we show that three distinct macroscopic collective behaviors can be observed: i) the coarsening of aggregates with no orientational order, ii) the emergence of static, elongated nematic bands, and iii) the formation of moving, locally polar structures, which we call worms. The derived hydrodynamic equations indicate that active particles interacting via position-based interactions belong to a distinct class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems.

  11. A Position and Rate Control System: An Ingredient for Budget Planning.

    ERIC Educational Resources Information Center

    Gilbert, Linda L.

    A position and rate control system was undertaken at Florida State University in 1974 to alleviate the problems of the manual budgeting system. The budget master file was created biweekly by combining a subset of the current payroll/personnel data base with the updated budget information from the previous budget master file, keying on positional…

  12. Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning

    NASA Astrophysics Data System (ADS)

    Evennou, Frédéric; Marx, François

    2006-12-01

    This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.

  13. Modeling and Positioning of a PZT Precision Drive System.

    PubMed

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  14. Modeling and Positioning of a PZT Precision Drive System

    PubMed Central

    Liu, Che; Guo, Yanling

    2017-01-01

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140

  15. Results of the long range position-determining system tests. [Field Army system

    NASA Technical Reports Server (NTRS)

    Rhode, F. W.

    1973-01-01

    The long range position-determining system (LRPDS) has been developed by the Corps of Engineers to provide the Field Army with a rapid and accurate positioning capability. The LRPDS consists of an airborne reference position set (RPS), up to 30 ground based positioning sets (PS), and a position computing central (PCC). The PCC calculates the position of each PS based on the range change information provided by each Set. The positions can be relayed back to the PS again via RPS. Each PS unit contains a double oven precise crystal oscillator. The RPS contains a Hewlett-Packard cesium beam standard. Frequency drifts and off-sets of the crystal oscillators are taken in account in the data reduction process. A field test program was initiated in November 1972. A total of 54 flights were made which included six flights for equipment testing and 48 flights utilizing the field test data reduction program. The four general types of PS layouts used were: short range; medium range; long range; tactical configuration. The overall RMS radial error of the unknown positions varied from about 2.3 meters for the short range to about 15 meters for the long range. The corresponding elevation RMS errors vary from about 12 meters to 37 meters.

  16. Cadastral Database Positional Accuracy Improvement

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  17. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  18. Accuracy of a hexapod parallel robot kinematics based external fixator.

    PubMed

    Faschingbauer, Maximilian; Heuer, Hinrich J D; Seide, Klaus; Wendlandt, Robert; Münch, Matthias; Jürgens, Christian; Kirchner, Rainer

    2015-12-01

    Different hexapod-based external fixators are increasingly used to treat bone deformities and fractures. Accuracy has not been measured sufficiently for all models. An infrared tracking system was applied to measure positioning maneuvers with a motorized Precision Hexapod® fixator, detecting three-dimensional positions of reflective balls mounted in an L-arrangement on the fixator, simulating bone directions. By omitting one dimension of the coordinates, projections were simulated as if measured on standard radiographs. Accuracy was calculated as the absolute difference between targeted and measured positioning values. In 149 positioning maneuvers, the median values for positioning accuracy of translations and rotations (torsions/angulations) were below 0.3 mm and 0.2° with quartiles ranging from -0.5 mm to 0.5 mm and -1.0° to 0.9°, respectively. The experimental setup was found to be precise and reliable. It can be applied to compare different hexapod-based fixators. Accuracy of the investigated hexapod system was high. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Homography-based visual servo regulation of mobile robots.

    PubMed

    Fang, Yongchun; Dixon, Warren E; Dawson, Darren M; Chawda, Prakash

    2005-10-01

    A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.

  20. Positive Behavior Support in Schools (PBSIS): An Administrative Perspective on the Implementation of a Comprehensive School-Wide Intervention in an Urban Charter School

    ERIC Educational Resources Information Center

    Christofferson, Remi Dabney; Callahan, Kathe

    2015-01-01

    This research explores the implementation of a school-wide intervention program that was designed to foster and instill intrinsic values based on an external reward system. The Positive Behavior Support in Schools (PBSIS) is an intervention intended to improve the climate of schools using system-wide positive behavioral interventions to discourage…

  1. The NavTrax fleet management system

    NASA Astrophysics Data System (ADS)

    McLellan, James F.; Krakiwsky, Edward J.; Schleppe, John B.; Knapp, Paul L.

    The NavTrax System, a dispatch-type automatic vehicle location and navigation system, is discussed. Attention is given to its positioning, communication, digital mapping, and dispatch center components. The positioning module is a robust GPS (Global Positioning System)-based system integrated with dead reckoning devices by a decentralized-federated filter, making the module fault tolerant. The error behavior and characteristics of GPS, rate gyro, compass, and odometer sensors are discussed. The communications module, as presently configured, utilizes UHF radio technology, and plans are being made to employ a digital cellular telephone system. Polling and automatic smart vehicle reporting are also discussed. The digital mapping component is an intelligent digital single line road network database stored in vector form with full connectivity and address ranges. A limited form of map matching is performed for the purposes of positioning, but its main purpose is to define location once position is determined.

  2. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  3. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  4. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    PubMed

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  5. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles

    PubMed Central

    de Ponte Müller, Fabian

    2017-01-01

    Future driver assistance systems will rely on accurate, reliable and continuous knowledge on the position of other road participants, including pedestrians, bicycles and other vehicles. The usual approach to tackle this requirement is to use on-board ranging sensors inside the vehicle. Radar, laser scanners or vision-based systems are able to detect objects in their line-of-sight. In contrast to these non-cooperative ranging sensors, cooperative approaches follow a strategy in which other road participants actively support the estimation of the relative position. The limitations of on-board ranging sensors regarding their detection range and angle of view and the facility of blockage can be approached by using a cooperative approach based on vehicle-to-vehicle communication. The fusion of both, cooperative and non-cooperative strategies, seems to offer the largest benefits regarding accuracy, availability and robustness. This survey offers the reader a comprehensive review on different techniques for vehicle relative positioning. The reader will learn the important performance indicators when it comes to relative positioning of vehicles, the different technologies that are both commercially available and currently under research, their expected performance and their intrinsic limitations. Moreover, the latest research in the area of vision-based systems for vehicle detection, as well as the latest work on GNSS-based vehicle localization and vehicular communication for relative positioning of vehicles, are reviewed. The survey also includes the research work on the fusion of cooperative and non-cooperative approaches to increase the reliability and the availability. PMID:28146129

  6. Discrete Indoor Three-Dimensional Localization System Based on Neural Networks Using Visible Light Communication

    PubMed Central

    Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.

    2018-01-01

    Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525

  7. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  8. Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors.

    PubMed

    Núñez, José M; Araújo, Marta G; García-Tuñón, I

    2017-04-25

    A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system.

  9. Study on observation planning of LAMOST focal plane positioning system and its simulation

    NASA Astrophysics Data System (ADS)

    Zhai, Chao; Jin, Yi; Peng, Xiaobo; Xing, Xiaozheng

    2006-06-01

    Fiber Positioning System of LAMOST focal plane based on subarea thinking, adopts a parallel controllable positioning plan, the structure is designed as a round area and overlapped each other in order to eliminate the un-observation region. But it also makes the observation efficiency of the system become an important problem. In this paper According to the system, the model of LAMOST focal plane Observation Planning including 4000 fiber positioning units is built, Stars are allocated using netflow algorithm and mechanical collisions are diminished through the retreat algorithm, then the simulation of the system's observation efficiency is carried out. The problem of observation efficiency of LAMOST focal plane is analysed systemic and all-sided from the aspect of overlapped region, fiber positioning units, observation radius, collisions and so on. The observation efficiency of the system in theory is describes and the simulation indicates that the system's observation efficiency is acceptable. The analyses play an indicative role on the design of the LAMOST focal plane structure.

  10. A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications

    PubMed Central

    Barcelo, Marc; Vicario, Jose Lopez

    2017-01-01

    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications. PMID:28829386

  11. A real-time respiration position based passive breath gating equipment for gated radiotherapy: A preclinical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Weigang; Xu Anjie; Li Guichao

    2012-03-15

    Purpose: To develop a passive gating system incorporating with the real-time position management (RPM) system for the gated radiotherapy. Methods: Passive breath gating (PBG) equipment, which consists of a breath-hold valve, a controller mechanism, a mouthpiece kit, and a supporting frame, was designed. A commercial real-time positioning management system was implemented to synchronize the target motion and radiation delivery on a linear accelerator with the patient's breathing cycle. The respiratory related target motion was investigated by using the RPM system for correlating the external markers with the internal target motion while using PBG for passively blocking patient's breathing. Six patientsmore » were enrolled in the preclinical feasibility and efficiency study of the PBG system. Results: PBG equipment was designed and fabricated. The PBG can be manually triggered or released to block or unblock patient's breathing. A clinical workflow was outlined to integrate the PBG with the RPM system. After implementing the RPM based PBG system, the breath-hold period can be prolonged to 15-25 s and the treatment delivery efficiency for each field can be improved by 200%-400%. The results from the six patients showed that the diaphragm motion caused by respiration was reduced to less than 3 mm and the position of the diaphragm was reproducible for difference gating periods. Conclusions: A RPM based PBG system was developed and implemented. With the new gating system, the patient's breath-hold time can be extended and a significant improvement in the treatment delivery efficiency can also be achieved.« less

  12. Polar Satcom System and Related Method

    NASA Technical Reports Server (NTRS)

    Mitchell, James P. (Inventor)

    2016-01-01

    A system and method for communication relay via a repeater platform satellite vehicle to a near surface station in the Polar Region is disclosed. A preferred embodiment receives a plurality of positioning and content data from a plurality of constellations of Geosynchronous Equatorial Orbit (GEO) Satellite Vehicles (SAT). Additionally, the system receives a plurality of position, time and altitude data from constellations of available repeater platform (RP) SATs. The system receives a request for content from a near surface station located in an area lacking adequate line-of-sight to the GEO based signal. The system aligns antenna elements onboard the desired RP SATs to amplify and relay the GEO based signal toward the near surface station and vice versa. Additionally, the system commands directional antenna elements onboard the station to send and receive the relayed signal making the GEO based content available to the near surface station.

  13. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    NASA Astrophysics Data System (ADS)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  14. GPS-based satellite tracking system for precise positioning

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  15. Multipoint vibrometry with dynamic and static holograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haist, T.; Lingel, C.; Osten, W.

    2013-12-15

    We report on two multipoint vibrometers with user-adjustable position of the measurement spots. Both systems are using holograms for beam deflection. The measurement is based on heterodyne interferometry with a frequency difference of 5 MHz between reference and object beam. One of the systems uses programmable positioning of the spots in the object volume but is limited concerning the light efficiency. The other system is based on static holograms in combination with mechanical adjustment of the measurement spots and does not have such a general efficiency restriction. Design considerations are given and we show measurement results for both systems. Inmore » addition, we analyze the sensitivity of the systems which is a major limitation compared to single point scanning systems.« less

  16. Position and Orientation Tracking in a Ubiquitous Monitoring System for Parkinson Disease Patients With Freezing of Gait Symptom

    PubMed Central

    Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-01-01

    Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. Conclusions The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position. PMID:25098265

  17. Position and orientation tracking in a ubiquitous monitoring system for Parkinson disease patients with freezing of gait symptom.

    PubMed

    Takač, Boris; Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-07-15

    Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used. The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.

  18. Assessing the efficiency of different CSO positions based on network graph characteristics.

    PubMed

    Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W

    2013-01-01

    The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.

  19. Nurses' perceptions of research utilization in a corporate health care system.

    PubMed

    McCloskey, Donna Jo

    2008-01-01

    To explore selected characteristics of nurses based upon educational level (masters, baccalaureate, associate degree/diploma), years of experience, and hospital position (management, advanced practice, staff nurse) that might affect perceived availability of research resources, attitude towards research, support, and research use in practice. A descriptive nonexperimental mailed survey design was used for this study. Nurses in five hospitals within a corporate hospital system were surveyed using the Research Utilization Questionnaire (RUQ). The RUQ was used to measure nurses' perceptions of research utilization in the four dimensions of perceived use of research, attitude toward research, availability of research resources, and perceived support for research activities. ANOVA was used to analyze the data. Statistically significant differences (p<.001) were found in the perceived use of research, attitude toward research, availability of research resources, and perceived support for research activities based on educational level and organizational position. No significant differences were found in the perception of nurses based on years of experience. The results of this study have implications for staff nurses, administrators, advanced practice nurses, and educators working in hospital systems. The different perceptions based upon educational level and hospital position can be integrated and used at all levels of nursing practice to promote research utilization and evidence-based practice initiatives within the organizational structure. The results of this study have nursing implications within administration and for nursing practice. The different perceptions that were found based upon educational level and hospital position can be positively integrated and used by administrators and by nurses all levels of nursing practice to promote research utilization and evidence based practice initiatives within the organizational structure.

  20. The consistency of positive fully fuzzy linear system

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghassan O.; Alfifi, Hassan Y.

    2017-11-01

    In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.

  1. Miniature pipe crawler tractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, M.D.; Anderson, M.O.; Ferrante, T.A.

    2000-03-14

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantiallymore » diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.« less

  2. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    PubMed Central

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  3. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  4. Building a Critical Components for Successful Multimedia-Based Collaborative eLearning Design Framework

    ERIC Educational Resources Information Center

    Asanok, M.; Kitrakan, P.; Brahmawong, C.

    2008-01-01

    With newly developing multimedia and web-based technologies have provided opportunities of developing a multimedia-based collaborative eLearning systems. The development of eLearning systems has started a revolution for instructional content delivering, learning activities and social communication. Based on various positions on this issue have…

  5. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    NASA Astrophysics Data System (ADS)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  6. A study of an assisting robot for mandible plastic surgery based on augmented reality.

    PubMed

    Shi, Yunyong; Lin, Li; Zhou, Chaozheng; Zhu, Ming; Xie, Le; Chai, Gang

    2017-02-01

    Mandible plastic surgery plays an important role in conventional plastic surgery. However, its success depends on the experience of the surgeons. In order to improve the effectiveness of the surgery and release the burden of surgeons, a mandible plastic surgery assisting robot, based on an augmented reality technique, was developed. Augmented reality assists surgeons to realize positioning. Fuzzy control theory was used for the control of the motor. During the process of bone drilling, both the drill bit position and the force were measured by a force sensor which was used to estimate the position of the drilling procedure. An animal experiment was performed to verify the effectiveness of the robotic system. The position error was 1.07 ± 0.27 mm and the angle error was 5.59 ± 3.15°. The results show that the system provides a sufficient accuracy with which a precise drilling procedure can be performed. In addition, under the supervision's feedback of the sensor, an adequate safety level can be achieved for the robotic system. The system realizes accurate positioning and automatic drilling to solve the problems encountered in the drilling procedure, providing a method for future plastic surgery.

  7. Wireless sensing and vibration control with increased redundancy and robustness design.

    PubMed

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  8. Modeling the Behavior of an Underwater Acoustic Relative Positioning System Based on Complementary Set of Sequences

    PubMed Central

    Aparicio, Joaquín; Jiménez, Ana; Álvarez, Fernando J.; Ureña, Jesús; De Marziani, Carlos; Diego, Cristina

    2011-01-01

    The great variability usually found in underwater media makes modeling a challenging task, but helpful for better understanding or predicting the performance of future deployed systems. In this work, an underwater acoustic propagation model is presented. This model obtains the multipath structure by means of the ray tracing technique. Using this model, the behavior of a relative positioning system is presented. One of the main advantages of relative positioning systems is that only the distances between all the buoys are needed to obtain their positions. In order to obtain the distances, the propagation times of acoustic signals coded by Complementary Set of Sequences (CSS) are used. In this case, the arrival instants are obtained by means of correlation processes. The distances are then used to obtain the position of the buoys by means of the Multidimensional Scaling Technique (MDS). As an early example of an application using this relative positioning system, a tracking of the position of the buoys at different times is performed. With this tracking, the surface current of a particular region could be studied. The performance of the system is evaluated in terms of the distance from the real position to the estimated one. PMID:22247661

  9. Method and system for non-linear motion estimation

    NASA Technical Reports Server (NTRS)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  10. An investigation of collisions between fiber positioning units in LAMOST

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jie; Wang, Gang

    2016-04-01

    The arrangement of fiber positioning units in the LAMOST focal plane may lead to collisions during the fiber allocation process. To avoid these collisions, a software-based protection system has to abandon some targets located in the overlapping field of adjacent fiber units. In this paper, we first analyze the probability of collisions between fibers and infer their possible reasons. It is useful to solve the problem of collisions among fiber positioning units so as to improve the efficiency of LAMOST. Based on this, a collision handling system is designed by using a master-slave control structure between the micro control unit and microcomputer. Simulated experiments validate that the system can provide real-time inspection and swap information between the fiber unit controllers and the main controller.

  11. A metrology system for a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  12. A vision fusion treatment system based on ATtiny26L

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Zhang, Chunxi; Wang, Jiqiang

    2006-11-01

    Vision fusion treatment is an important and effective project to strabismus children. The vision fusion treatment system based on the principle for eyeballs to follow the moving visual survey pole is put forward first. In this system the original position of visual survey pole is about 35 centimeters far from patient's face before its moving to the middle position between the two eyeballs. The eyeballs of patient will follow the movement of the visual survey pole. When they can't follow, one or two eyeballs will turn to other position other than the visual survey pole. This displacement is recorded every time. A popular single chip microcomputer ATtiny26L is used in this system, which has a PWM output signal to control visual survey pole to move with continuously variable speed. The movement of visual survey pole accords to the modulating law of eyeballs to follow visual survey pole.

  13. The Additional Secondary Phase Correction System for AIS Signals

    PubMed Central

    Wang, Xiaoye; Zhang, Shufang; Sun, Xiaowen

    2017-01-01

    This paper looks at the development and implementation of the additional secondary phase factor (ASF) real-time correction system for the Automatic Identification System (AIS) signal. A large number of test data were collected using the developed ASF correction system and the propagation characteristics of the AIS signal that transmits at sea and the ASF real-time correction algorithm of the AIS signal were analyzed and verified. Accounting for the different hardware of the receivers in the land-based positioning system and the variation of the actual environmental factors, the ASF correction system corrects original measurements of positioning receivers in real time and provides corrected positioning accuracy within 10 m. PMID:28362330

  14. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  15. Precise Positioning Method for Logistics Tracking Systems Using Personal Handy-Phone System Based on Mahalanobis Distance

    NASA Astrophysics Data System (ADS)

    Yokoi, Naoaki; Kawahara, Yasuhiro; Hosaka, Hiroshi; Sakata, Kenji

    Focusing on the Personal Handy-phone System (PHS) positioning service used in physical distribution logistics, a positioning error offset method for improving positioning accuracy is invented. A disadvantage of PHS positioning is that measurement errors caused by the fluctuation of radio waves due to buildings around the terminal are large, ranging from several tens to several hundreds of meters. In this study, an error offset method is developed, which learns patterns of positioning results (latitude and longitude) containing errors and the highest signal strength at major logistic points in advance, and matches them with new data measured in actual distribution processes according to the Mahalanobis distance. Then the matching resolution is improved to 1/40 that of the conventional error offset method.

  16. GIS management system of power plant staff based on wireless fidelity indoor location technology

    NASA Astrophysics Data System (ADS)

    Zhang, Ting

    2017-05-01

    The labor conditions and environment of electric power production are quite complicated. It is very difficult to realize the real-time supervision of the employees' working conditions and safety. Using the existing base stations in the power plant, the wireless fidelity network is established to realize the wireless coverage of the work site. We can use mobile phone to communicate and achieve positioning. The main content of this project is based on the special environment of the power plant, designed a suitable for ordinary Android mobile phone indoor wireless fidelity positioning system, real-time positioning and record the scene of each employee's movement trajectory, has achieved real-time staff check Gang, Staff in place, and for the safety of employees to provide a guarantee.

  17. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    PubMed

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A New Position Location System Using DTV Transmitter Identification Watermark Signals

    NASA Astrophysics Data System (ADS)

    Wang, Xianbin; Wu, Yiyan; Chouinard, Jean-Yves

    2006-12-01

    A new position location technique using the transmitter identification (TxID) RF watermark in the digital TV (DTV) signals is proposed in this paper. Conventional global positioning system (GPS) usually does not work well inside buildings due to the high frequency and weak field strength of the signal. In contrast to the GPS, the DTV signals are received from transmitters at relatively short distance, while the broadcast transmitters operate at levels up to the megawatts effective radiated power (ERP). Also the RF frequency of the DTV signal is much lower than the GPS, which makes it easier for the signal to penetrate buildings and other objects. The proposed position location system based on DTV TxID signal is presented in this paper. Practical receiver implementation issues including nonideal correlation and synchronization are analyzed and discussed. Performance of the proposed technique is evaluated through Monte Carlo simulations and compared with other existing position location systems. Possible ways to improve the accuracy of the new position location system is discussed.

  19. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    PubMed

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  20. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    ERIC Educational Resources Information Center

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  1. Toward Creating Synergy Among Policy, Procedures, and Implementation of Evidence-Based Models in Child Welfare Systems: Two Case Examples.

    PubMed

    Chamberlain, Patricia

    2017-03-01

    Over the past four to five decades, multiple randomized controlled trials have verified that preventive interventions targeting key parenting skills can have far-reaching effects on improving a diverse array of child outcomes. Further, these studies have shown that parenting skills can be taught, and they are malleable. Given these advances, prevention scientists are in a position to make solid empirically based recommendations to public child service systems on using parent-mediated interventions to optimize positive outcomes for the children and families that they serve. Child welfare systems serve some of this country's most vulnerable children and families, yet they have been slow (compared to juvenile justice and mental health systems) to adopt empirically based interventions. This paper describes two child-welfare-initiated, policy-based case studies that have sought to scale-up research-based parenting skills into the routine services that caseworkers deliver to the families that they serve. In both case studies, the child welfare system leaders worked with evaluators and model developers to tailor policy, administrative, and fiscal system practices to institutionalize and sustain evidence-based practices into usual foster care services. Descriptions of the implementations, intervention models, and preliminary results are described.

  2. Precise positioning method for multi-process connecting based on binocular vision

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan

    2016-01-01

    With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.

  3. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications

    PubMed Central

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-01-01

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service. PMID:28574471

  4. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.

    PubMed

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-06-02

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.

  5. Naval Biodynamics Laboratory 1993 Command History

    DTIC Science & Technology

    1993-01-01

    position and alignment, camera optical calibration, photo target position, and standard anatomical coordinate systems based upon X-rays of each HRV...safety range. Before, during, and after each sled run, a physiological data acquisition system is used to collect and analyze physiological measurements ...experimental devices. It is also responsible for the configuring of field data measuring and acquisition systems for use aboard ships or at other field

  6. Helicopter precision approach capability using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1992-01-01

    The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.

  7. Improvement of the efficient referencing and sample positioning system for micro focused synchrotron X-ray techniques

    NASA Astrophysics Data System (ADS)

    Spangenberg, T.; Göttlicher, J.; Steininger, R.

    2016-05-01

    An efficient referencing and sample positioning system is a basic tool for a micro focus beamline at a synchrotron. The seven years ago introduced command line based system was upgraded at SUL-X beamline at ANKA [1]. A new combination of current server client techniques offers direct control and facilitates unexperienced users the handling of this frequently used tool.

  8. EmerLoc: location-based services for emergency medical incidents.

    PubMed

    Maglogiannis, I; Hadjiefthymiades, S

    2007-10-01

    Recent developments in positioning systems and telecommunications have provided the technology needed for the development of location aware medical applications. We developed a system, named EmerLoc, which is based upon this technology and uses a set of sensors that are attached to the patient's body, a micro-computing unit which is responsible for processing the sensor readings and a central monitoring unit, which coordinates the data flow. To demonstrate that the proposed system is technically feasible and acceptable for the potential users. Transmission speed is assessed mostly by means of transmission of DICOM compliant images in various operational scenarios. The positioning functionality was established both outdoor using GPS and indoor using the UCLA Nibble system. User acceptability was assessed in a hospital setting by 15 physicians who filled in a questionnaire after having used the system in an experimental setting. Transmission speeds ranged from 88kB/s for a IEEE 802.11 infrastructure to 2.5kB/s for a GSM/GPRS scenario. Positioning accuracy based on GPS was 5-10m. The physicians rated the technical aspects on average above 3 on a 5-point scale. Only the data presentation was assessed to be not satisfactory (2.81 on a 5-point scale). The reported results prove the feasibility of the proposed architecture and its alignment with widely established practices and standards, while the reaction of potential users who evaluated the system is quite positive.

  9. Predicting Positive Education Outcomes for Emerging Adults in Mental Health Systems of Care.

    PubMed

    Brennan, Eileen M; Nygren, Peggy; Stephens, Robert L; Croskey, Adrienne

    2016-10-01

    Emerging adults who receive services based on positive youth development models have shown an ability to shape their own life course to achieve positive goals. This paper reports secondary data analysis from the Longitudinal Child and Family Outcome Study including 248 culturally diverse youth ages 17 through 22 receiving mental health services in systems of care. After 12 months of services, school performance was positively related to youth ratings of school functioning and service participation and satisfaction. Regression analysis revealed ratings of young peoples' perceptions of school functioning, and their experience in services added to the significant prediction of satisfactory school performance, even controlling for sex and attendance. Finally, in addition to expected predictors, participation in planning their own services significantly predicted enrollment in higher education for those who finished high school. Findings suggest that programs and practices based on positive youth development approaches can improve educational outcomes for emerging adults.

  10. Accuracy improvement in the TDR-based localization of water leaks

    NASA Astrophysics Data System (ADS)

    Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian

    A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.

  11. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  12. Control of a multidegree of freedom standing wave ultrasonic motor driven precise positioning system

    NASA Astrophysics Data System (ADS)

    Ferreira, Antoine; Minotti, Patrice

    1997-04-01

    A newly developed positioning system incorporating a multidegree of freedom standing wave ultrasonic motor (SWUM) is presented and its advantageous features, operating principles, and some experimental results are described. The principle of motorization is based on the conversion, through frictional contact, of a stationary bending vibration sustained in a slotted metallic resonator, into rigid body displacements. A small autonomous multidegree of freedom nanopositioner using a SWUM motor is presented for fine positioning in scanning tunneling microscopy. The positioning system is achieved via the simultaneous operation of two identical pulse width modulation servo-control systems, each having a laser vibrometer position feedback loop. The closed loop position schemes are theoretically considered and their results are demonstrated and evaluated in practice. Evaluations of experimental tests indicate that a positioning resolution less than 100 nm are successfully achieved for an unlimited X-Y travel range with linear speeds between 1 mm s-1 and few cm s-1.

  13. School Engagement and Positive Youth Development: A Relational Developmental Systems Perspective

    ERIC Educational Resources Information Center

    Li, Yibing; Agans, Jennifer P.; Chase, Paul A.; Arbeit, Miriam R.; Weiner, Michelle B.; Lerner, Richard M.

    2014-01-01

    This chapter explains the links between relational developmental systems theory and the strength-based, positive youth development (PYD) perspective. The Five Cs model of PYD (involving competence, confidence, connection, character, and caring) is used to assess the role of school engagement in PYD. [This article originally appeared as NSSE…

  14. Georeferencing in Gnss-Challenged Environment: Integrating Uwb and Imu Technologies

    NASA Astrophysics Data System (ADS)

    Toth, C. K.; Koppanyi, Z.; Navratil, V.; Grejner-Brzezinska, D.

    2017-05-01

    Acquiring geospatial data in GNSS compromised environments remains a problem in mapping and positioning in general. Urban canyons, heavily vegetated areas, indoor environments represent different levels of GNSS signal availability from weak to no signal reception. Even outdoors, with multiple GNSS systems, with an ever-increasing number of satellites, there are many situations with limited or no access to GNSS signals. Independent navigation sensors, such as IMU can provide high-data rate information but their initial accuracy degrades quickly, as the measurement data drift over time unless positioning fixes are provided from another source. At The Ohio State University's Satellite Positioning and Inertial Navigation (SPIN) Laboratory, as one feasible solution, Ultra- Wideband (UWB) radio units are used to aid positioning and navigating in GNSS compromised environments, including indoor and outdoor scenarios. Here we report about experiences obtained with georeferencing a pushcart based sensor system under canopied areas. The positioning system is based on UWB and IMU sensor integration, and provides sensor platform orientation for an electromagnetic inference (EMI) sensor. Performance evaluation results are provided for various test scenarios, confirming acceptable results for applications where high accuracy is not required.

  15. Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline

    NASA Astrophysics Data System (ADS)

    Lin, Hsing-Wen; Chen, Ying-Tung; Wang, Jen-Hung; Wang, Shiang-Yu; Yoshida, Fumi; Ip, Wing-Huen; Miyazaki, Satoshi; Terai, Tsuyoshi

    2018-01-01

    Machine-learning techniques are widely applied in many modern optical sky surveys, e.g., Pan-STARRS1, PTF/iPTF, and the Subaru/Hyper Suprime-Cam survey, to reduce human intervention in data verification. In this study, we have established a machine-learning-based real-bogus system to reject false detections in the Subaru/Hyper-Suprime-Cam Strategic Survey Program (HSC-SSP) source catalog. Therefore, the HSC-SSP moving object detection pipeline can operate more effectively due to the reduction of false positives. To train the real-bogus system, we use stationary sources as the real training set and "flagged" data as the bogus set. The training set contains 47 features, most of which are photometric measurements and shape moments generated from the HSC image reduction pipeline (hscPipe). Our system can reach a true positive rate (tpr) ˜96% with a false positive rate (fpr) ˜1% or tpr ˜99% at fpr ˜5%. Therefore, we conclude that stationary sources are decent real training samples, and using photometry measurements and shape moments can reject false positives effectively.

  16. Study on an Indoor Positioning System for Harsh Environments Based on Wi-Fi and Bluetooth Low Energy.

    PubMed

    de Blasio, Gabriel; Quesada-Arencibia, Alexis; García, Carmelo R; Molina-Gil, Jezabel Miriam; Caballero-Gil, Cándido

    2017-06-06

    This paper presents a study of positioning system that provides advanced information services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough positioning and BLE for fine positioning. It is designed for use in public transportation system stations and terminals where the conditions are "hostile" or unfavourable due to signal noise produced by the continuous movement of passengers and buses, data collection conducted in the constant presence thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless communication infrastructure has already been deployed and positioned in a way that may not be optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a service that may be used to assist people with special needs. We present experimental results based on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis distance was also used in one case. The algorithm employed to compare fingerprints was the weighted k -nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94 to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon density (1 beacon per 45.7 m²), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m 90% of the time. Taking into account the fact that this system is designed to work in real situations in a scenario with high environmental fluctuations, and comparing the results with others obtained in laboratory scenarios, our results are promising and demonstrate that the system would be able to position users with these reasonable values of accuracy and precision.

  17. Study on an Indoor Positioning System for Harsh Environments Based on Wi-Fi and Bluetooth Low Energy

    PubMed Central

    de Blasio, Gabriel; Quesada-Arencibia, Alexis; García, Carmelo R.; Molina-Gil, Jezabel Miriam; Caballero-Gil, Cándido

    2017-01-01

    This paper presents a study of positioning system that provides advanced information services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough positioning and BLE for fine positioning. It is designed for use in public transportation system stations and terminals where the conditions are “hostile” or unfavourable due to signal noise produced by the continuous movement of passengers and buses, data collection conducted in the constant presence thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless communication infrastructure has already been deployed and positioned in a way that may not be optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a service that may be used to assist people with special needs. We present experimental results based on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis distance was also used in one case. The algorithm employed to compare fingerprints was the weighted k-nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94 to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon density (1 beacon per 45.7 m2), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m 90% of the time. Taking into account the fact that this system is designed to work in real situations in a scenario with high environmental fluctuations, and comparing the results with others obtained in laboratory scenarios, our results are promising and demonstrate that the system would be able to position users with these reasonable values of accuracy and precision. PMID:28587285

  18. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Performance analysis of multiple Indoor Positioning Systems in a healthcare environment.

    PubMed

    Van Haute, Tom; De Poorter, Eli; Crombez, Pieter; Lemic, Filip; Handziski, Vlado; Wirström, Niklas; Wolisz, Adam; Voigt, Thiemo; Moerman, Ingrid

    2016-02-03

    The combination of an aging population and nursing staff shortages implies the need for more advanced systems in the healthcare industry. Many key enablers for the optimization of healthcare systems require provisioning of location awareness for patients (e.g. with dementia), nurses, doctors, assets, etc. Therefore, many Indoor Positioning Systems (IPSs) will be indispensable in healthcare systems. However, although many IPSs have been proposed in literature, most of these have been evaluated in non-representative environments such as office buildings rather than in a hospital. To remedy this, the paper evaluates the performance of existing IPSs in an operational modern healthcare environment: the "Sint-Jozefs kliniek Izegem" hospital in Belgium. The evaluation (data-collecting and data-processing) is executed using a standardized methodology and evaluates the point accuracy, room accuracy and latency of multiple IPSs. To evaluate the solutions, the position of a stationary device was requested at 73 evaluation locations. By using the same evaluation locations for all IPSs the performance of all systems could objectively be compared. Several trends can be identified such as the fact that Wi-Fi based fingerprinting solutions have the best accuracy result (point accuracy of 1.21 m and room accuracy of 98%) however it requires calibration before use and needs 5.43 s to estimate the location. On the other hand, proximity based solutions (based on sensor nodes) are significantly cheaper to install, do not require calibration and still obtain acceptable room accuracy results. As a conclusion of this paper, Wi-Fi based solutions have the most potential for an indoor positioning service in case when accuracy is the most important metric. Applying the fingerprinting approach with an anchor installed in every two rooms is the preferred solution for a hospital environment.

  20. Neural network based automatic limit prediction and avoidance system and method

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)

    2001-01-01

    A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.

  1. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  2. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    NASA Astrophysics Data System (ADS)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  3. A open loop guidance architecture for navigationally robust on-orbit docking

    NASA Technical Reports Server (NTRS)

    Chern, Hung-Sheng

    1995-01-01

    The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.

  4. An application framework for computer-aided patient positioning in radiation therapy.

    PubMed

    Liebler, T; Hub, M; Sanner, C; Schlegel, W

    2003-09-01

    The importance of exact patient positioning in radiation therapy increases with the ongoing improvements in irradiation planning and treatment. Therefore, new ways to overcome precision limitations of current positioning methods in fractionated treatment have to be found. The Department of Medical Physics at the German Cancer Research Centre (DKFZ) follows different video-based approaches to increase repositioning precision. In this context, the modular software framework FIVE (Fast Integrated Video-based Environment) has been designed and implemented. It is both hardware- and platform-independent and supports merging position data by integrating various computer-aided patient positioning methods. A highly precise optical tracking system and several subtraction imaging techniques have been realized as modules to supply basic video-based repositioning techniques. This paper describes the common framework architecture, the main software modules and their interfaces. An object-oriented software engineering process has been applied using the UML, C + + and the Qt library. The significance of the current framework prototype for the application in patient positioning as well as the extension to further application areas will be discussed. Particularly in experimental research, where special system adjustments are often necessary, the open design of the software allows problem-oriented extensions and adaptations.

  5. Gender Differences in Positive Social-Emotional Functioning

    ERIC Educational Resources Information Center

    Romer, Natalie; Ravitch, N. Kathryn; Tom, Karalyn; Merrell, Kenneth W.; Wesley, Katherine L.

    2011-01-01

    We investigated gender differences of children and adolescents on positive social and emotional competencies using a new strength-based measure of positive social-emotional attributes and resilience--the Social-Emotional Assets and Resilience Scales (SEARS) cross-informant system. Caregivers, teachers, and students in grades kindergarten through…

  6. Multisensor Equipped Uav/ugv for Automated Exploration

    NASA Astrophysics Data System (ADS)

    Batzdorfer, S.; Bobbe, M.; Becker, M.; Harms, H.; Bestmann, U.

    2017-08-01

    The usage of unmanned systems for exploring disaster scenarios has become more and more important in recent times as a supporting system for action forces. These systems have to offer a well-balanced relationship between the quality of support and additional workload. Therefore within the joint research project ANKommEn - german acronym for Automated Navigation and Communication for Exploration - a system for exploration of disaster scenarios is build-up using multiple UAV und UGV controlled via a central ground station. The ground station serves as user interface for defining missions and tasks conducted by the unmanned systems, equipped with different environmental sensors like cameras - RGB as well as IR - or LiDAR. Depending on the exploration task results, in form of pictures, 2D stitched orthophoto or LiDAR point clouds will be transmitted via datalinks and displayed online at the ground station or will be processed in short-term after a mission, e.g. 3D photogrammetry. For mission planning and its execution, UAV/UGV monitoring and georeferencing of environmental sensor data, reliable positioning and attitude information is required. This is gathered using an integrated GNSS/IMU positioning system. In order to increase availability of positioning information in GNSS challenging scenarios, a GNSS-Multiconstellation based approach is used, amongst others. The present paper focuses on the overall system design including the ground station and sensor setups on the UAVs and UGVs, the underlying positioning techniques as well as 2D and 3D exploration based on a RGB camera mounted on board the UAV and its evaluation based on real world field tests.

  7. Development of a computer-assisted system for model-based condylar position analysis (E-CPM).

    PubMed

    Ahlers, M O; Jakstat, H

    2009-01-01

    Condylar position analysis is a measuring method for the three-dimensional quantitative acquisition of the position of the mandible in different conditions or at different points in time. Originally, the measurement was done based on a model, using special mechanical condylar position measuring instruments, and on a research scale with mechanical-electronic measuring instruments. Today, as an alternative, it is possible to take measurements with electronic measuring instruments applied directly to the patient. The computerization of imaging has also facilitated condylar position measurement by means of three-dimensional data records obtained by imaging examination methods, which has been used in connection with the simulation and quantification of surgical operation results. However, the comparative measurement of the condylar position at different points in time has so far not been possible to the required degree. An electronic measuring instrument, allowing acquisition of the condylar position in clinical routine and facilitating later calibration with measurements from later examinations by data storage and use of precise equalizing systems, was therefore designed by the present authors. This measuring instrument was implemented on the basis of already existing components from the Reference CPM und Cadiax Compact articulator and registration systems (Gamma Dental, Klosterneuburg, Austria) as well as the matching CMD3D evaluation software (dentaConcept, Hamburg).

  8. Low-Cost MEMS Sensors and Vision System for Motion and Position Estimation of a Scooter

    PubMed Central

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-01

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” scooter; which can be used as alternative to the “classical” approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter. PMID:23348036

  9. Low-Cost MEMS sensors and vision system for motion and position estimation of a scooter.

    PubMed

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-24

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a "Vespa" scooter; which can be used as alternative to the "classical" approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter.

  10. Learning Environment in Light of Positional, Institutional, and Cultural Interpretations: An Empirically-Based Conceptual Analysis

    ERIC Educational Resources Information Center

    Kovac, Velibor Bobo; Lund, Ingrid; Omdal, Heidi

    2017-01-01

    This study explores the possibility that the concept of learning environment (LE) is understood and interpreted differently by various users, depending on their relative positions in the educational system, institutional affiliation, and cultural heritage. The study employs a qualitative approach and is based on 14 semistructured separate…

  11. A Comparative Analysis of the Snort and Suricata Intrusion-Detection Systems

    DTIC Science & Technology

    2011-09-01

    Category: Test Rules Test #6: Simple LFI Attack 43 Snort True Positive: Snort generated an alert based on the ‘/etc/ passwd ’ string passed...through an HTTP command. Suricata True Positive: Suricata generated an alert based on the ‘/etc/ passwd ’ string passed through an HTTP command

  12. On-Board Imaging Validation of Optically Guided Stereotactic Radiosurgery Positioning System for Conventionally Fractionated Radiotherapy for Paranasal Sinus and Skull Base Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxim, Peter G.; Loo, Billy W.; Murphy, James D.

    2011-11-15

    Purpose: To evaluate the positioning accuracy of an optical positioning system for stereotactic radiosurgery in a pilot experience of optically guided, conventionally fractionated, radiotherapy for paranasal sinus and skull base tumors. Methods and Materials: Before each daily radiotherapy session, the positioning of 28 patients was set up using an optical positioning system. After this initial setup, the patients underwent standard on-board imaging that included daily orthogonal kilovoltage images and weekly cone beam computed tomography scans. Daily translational shifts were made after comparing the on-board images with the treatment planning computed tomography scans. These daily translational shifts represented the daily positionalmore » error in the optical tracking system and were recorded during the treatment course. For 13 patients treated with smaller fields, a three-degree of freedom (3DOF) head positioner was used for more accurate setup. Results: The mean positional error for the optically guided system in patients with and without the 3DOF head positioner was 1.4 {+-} 1.1 mm and 3.9 {+-} 1.6 mm, respectively (p <.0001). The mean positional error drifted 0.11 mm/wk upward during the treatment course for patients using the 3DOF head positioner (p = .057). No positional drift was observed in the patients without the 3DOF head positioner. Conclusion: Our initial clinical experience with optically guided head-and-neck fractionated radiotherapy was promising and demonstrated clinical feasibility. The optically guided setup was especially useful when used in conjunction with the 3DOF head positioner and when it was recalibrated to the shifts using the weekly portal images.« less

  13. Recognition for positive behavior as a critical youth development construct: conceptual bases and implications on youth service development.

    PubMed

    Law, Ben M F; Siu, Andrew M H; Shek, Daniel T L

    2012-01-01

    Recognition for positive behavior is an appropriate response of the social environment to elicit desirable external behavior among the youth. Such positive responses, rendered from various social systems, include tangible and intangible reinforcements. The following theories are used to explain the importance of recognizing positive behavior: operational conditioning, observational learning, self-determination, and humanistic perspective. In the current work, culturally and socially desirable behaviors are discussed in detail with reference to Chinese adolescents. Positive behavior recognition is especially important to adolescent development because it promotes identity formation as well as cultivates moral reasoning and social perspective thinking from various social systems. The significance of recognizing positive behavior is illustrated through the support, tutorage, invitation, and subsidy provided by Hong Kong's social systems in recognition of adolescent volunteerism. The practical implications of positive behavior recognition on youth development programs are also discussed in this work.

  14. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  15. Recognition for Positive Behavior as a Critical Youth Development Construct: Conceptual Bases and Implications on Youth Service Development

    PubMed Central

    Law, Ben M. F.; Siu, Andrew M. H.; Shek, Daniel T. L.

    2012-01-01

    Recognition for positive behavior is an appropriate response of the social environment to elicit desirable external behavior among the youth. Such positive responses, rendered from various social systems, include tangible and intangible reinforcements. The following theories are used to explain the importance of recognizing positive behavior: operational conditioning, observational learning, self-determination, and humanistic perspective. In the current work, culturally and socially desirable behaviors are discussed in detail with reference to Chinese adolescents. Positive behavior recognition is especially important to adolescent development because it promotes identity formation as well as cultivates moral reasoning and social perspective thinking from various social systems. The significance of recognizing positive behavior is illustrated through the support, tutorage, invitation, and subsidy provided by Hong Kong's social systems in recognition of adolescent volunteerism. The practical implications of positive behavior recognition on youth development programs are also discussed in this work. PMID:22666155

  16. Overview of GPS Adjacent Band Compatibility Assessment

    DOT National Transportation Integrated Search

    2014-09-18

    January 13, 2012 National SpaceBased Positioning, Navigation, and Timing (PNT) Executive Committee (EXCOM) cochair letter to National Telecommunications and Information Administration (NTIA) proposed to draft new Global Positioning System (GPS)...

  17. Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors

    PubMed Central

    Núñez, José M.; Araújo, Marta G.; García-Tuñón, I.

    2017-01-01

    A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system. PMID:28441330

  18. Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed; Kubo, Nobuaki

    2017-05-01

    Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.

  19. Automatic multi-camera calibration for deployable positioning systems

    NASA Astrophysics Data System (ADS)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  20. Evaluation of targeting errors in ultrasound-assisted radiotherapy

    PubMed Central

    Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai

    2014-01-01

    A method for validating the start-to-end accuracy of a 3D ultrasound-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3D ultrasound guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3D ultrasound guidance, and finally delivery of radiation, to be evaluated. The 3D ultrasound patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, automatic 3D ultrasound-to-ultrasound registration, and use of infra-red LED (IRED) markers of the optical position sensing system for registering simulation CT to ultrasound data. The mean target localization accuracy of this system was 2.5mm for four target locations inside the phantom, compared to 1.6mm obtained using the conventional patient positioning method of laser alignment. Since the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3D ultrasound-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1mm in magnitude. PMID:18723271

  1. Performance Analysis on Carrier Phase-Based Tightly-Coupled GPS/BDS/INS Integration in GNSS Degraded and Denied Environments

    PubMed Central

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-01-01

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings. PMID:25875191

  2. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments.

    PubMed

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-04-14

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.

  3. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    PubMed Central

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-01

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the requirements to quickly handle traffic accidents. The traffic police can remotely identify accident responsibility and the insurance personnel can remotely survey an accident. Moreover, the police and insurance joint management system has been carried out in Wuhan, Central China’s Hubei Province, and Wuxi, Eastern China’s Jiangsu Province. In a word, a system is developed to obtain and analyze multisource data including precise positioning and visual information, and a solution is proposed for efficient processing of traffic accidents. PMID:29320406

  4. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    PubMed

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the requirements to quickly handle traffic accidents. The traffic police can remotely identify accident responsibility and the insurance personnel can remotely survey an accident. Moreover, the police and insurance joint management system has been carried out in Wuhan, Central China's Hubei Province, and Wuxi, Eastern China's Jiangsu Province. In a word, a system is developed to obtain and analyze multisource data including precise positioning and visual information, and a solution is proposed for efficient processing of traffic accidents.

  5. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  6. An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros

    2007-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.

  7. Indoor visible light communication localization system utilizing received signal strength indication technique and trilateration method

    NASA Astrophysics Data System (ADS)

    Mousa, Farag I. K.; Almaadeed, Noor; Busawon, Krishna; Bouridane, Ahmed; Binns, Richard; Elliot, Ian

    2018-01-01

    Visible light communication (VLC) based on light-emitting diodes (LEDs) technology not only provides higher data rate for indoor wireless communications and offering room illumination but also has the potential for indoor localization. VLC-based indoor positioning using the received optical power levels from emitting LEDs is investigated. We consider both scenarios of line-of-sight (LOS) and LOS with non-LOS (LOSNLOS) positioning. The performance of the proposed system is evaluated under both noisy and noiseless channel as is the impact of different location codes on positioning error. The analytical model of the system with noise and the corresponding numerical evaluation for a range of signal-to-noise ratio (SNR) are presented. The results show that an accuracy of <10 cm on average is achievable at an SNR>12 dB.

  8. A Portable Farmland Information Collection System with Multiple Sensors.

    PubMed

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-10-22

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture-efficient use of agricultural resources, and improving the crop yields and quality-some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops.

  9. A Portable Farmland Information Collection System with Multiple Sensors

    PubMed Central

    Zhang, Jianfeng; Hu, Jinyang; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian

    2016-01-01

    Precision agriculture is the trend of modern agriculture, and it is also one of the important ways to realize the sustainable development of agriculture. In order to meet the production requirements of precision agriculture—efficient use of agricultural resources, and improving the crop yields and quality—some necessary field information in crop growth environment needs to be collected and monitored. In this paper, a farmland information collection system is developed, which includes a portable farmland information collection device based on STM32 (a 32-bit comprehensive range of microcontrollers based on ARM Crotex-M3), a remote server and a mobile phone APP. The device realizes the function of portable and mobile collecting of multiple parameters farmland information, such as chlorophyll content of crop leaves, air temperature, air humidity, and light intensity. UM220-III (Unicore Communication Inc., Beijing, China) is used to realize the positioning based on BDS/GPS (BeiDou Navigation Satellite System, BDS/Global Positioning System, GPS) dual-mode navigation and positioning system, and the CDMA (Code Division Multiple Access, CDMA) wireless communication module is adopted to realize the real-time remote transmission. The portable multi-function farmland information collection system is real-time, accurate, and easy to use to collect farmland information and multiple information parameters of crops. PMID:27782076

  10. Positioning performance improvements with European multiple-frequency satellite navigation - Galileo

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue

    2008-10-01

    The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity validation is crucial for any ambiguity resolution algorithm using searching method. This study has proposed to use both Ellipsoidal Integer Aperture (EIA) estimator and R-ratio test for ambiguity validation. Using real GPS data and simulated Galileo data, it has been demonstrated that the new method performs better than the use of EIA or the R-ratio test alone, with much less ambiguity mis-fixed rate.

  11. An electromechanical, patient positioning system for head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-01

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  12. Position reporting system using small satellites

    NASA Technical Reports Server (NTRS)

    Pavesi, B.; Rondinelli, G.; Graziani, F.

    1990-01-01

    A system able to provide position reporting and monitoring services for mobile applications represents a natural complement to the Global Positioning System (GPS) navigation system. The system architecture is defined on the basis of the communications requirements derived by user needs, allowing maximum flexibility in the use of channel capacity, and a very simple and low cost terminal. The payload is sketched, outlining the block modularity and the use of qualified hardware. The global system capacity is also derived. The spacecraft characteristics are defined on the basis of the payload requirements. A small bus optimized for Ariane IV, Delta II vehicles and based on the modularity concept is presented. The design takes full advantage of each launcher with a common basic bus or bus elements for a mass production.

  13. Optically powered and interrogated rotary position sensor for aircraft engine control applications

    NASA Astrophysics Data System (ADS)

    Spillman, W. B.; Crowne, D. H.; Woodward, D. W.

    A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.

  14. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  15. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.

    2015-04-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.

  16. Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities.

    PubMed

    Schatzl, Magdalena; Hackl, Florian; Glaser, Martin; Rauter, Patrick; Brehm, Moritz; Spindlberger, Lukas; Simbula, Angelica; Galli, Matteo; Fromherz, Thomas; Schäffler, Friedrich

    2017-03-15

    Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime.

  17. Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities

    PubMed Central

    2017-01-01

    Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime. PMID:28345012

  18. Arduino-based automation of a DNA extraction system.

    PubMed

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  19. A data processing method based on tracking light spot for the laser differential confocal component parameters measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin

    2013-12-01

    We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.

  20. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  1. Six degree of freedom fine motion positioning stage based on magnetic levitation

    NASA Technical Reports Server (NTRS)

    Arling, R. W.; Kohler, S. M.

    1994-01-01

    The design of a magnetically suspended six degree of freedom positioning system capable of nanometer positioning is presented. The sample holder is controlled in six degrees of freedom (DOF) over 300 micrometers of travel in the X, Y, and Z directions. A design and control summary and test results indicating stability and power dissipation are included in the paper. The system is vacuum compatible, uses commercially available materials, and requires minimal assembly and setup.

  2. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  3. Radar based Ground Level Reconstruction Utilizing a Hypocycloid Antenna Positioning System

    NASA Astrophysics Data System (ADS)

    Baer, Christoph; Musch, Thomas

    2015-01-01

    In this contribution we introduce a novel radar positioning system. It makes use of a mathematical curve, called hypocycloid, for a slanting movement of the radar antenna. By means of a planetary gear, a ball, and a universal joint as well as a stepping motor, a two dimensional positioning is provided by a uniaxial drive shaft exclusively. The fundamental position calculation and different signal processing algorithms are presented. By means of an 80 GHz FMCW radar system we performed several measurements on objects with discrete heights as well as on objects with continuous surfaces. The results of these investigations are essential part of this contribution and are discussed in detail.

  4. A Field-Based Learning Experience for Introductory Level GIS Students

    ERIC Educational Resources Information Center

    Carlson, Tom

    2007-01-01

    This article describes a pedagogic foundation for introducing a field-based geographic information systems (GIS) experience to the GIS curriculum at the university level and uses a dual evaluation methodology to monitor student learning and satisfaction. Students learned the basics of field-based global position systems (GPS) and GIS data…

  5. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.

    PubMed

    Huh, Jun-Ho; Seo, Kyungryong

    2017-12-19

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a "Smart Living". An indoor location-based control system that provides services by estimating user's indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.

  6. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems

    PubMed Central

    Huh, Jun-Ho; Seo, Kyungryong

    2017-01-01

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a “Smart Living”. An indoor location-based control system that provides services by estimating user’s indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields. PMID:29257044

  7. Excitation system for rotating synchronous machines

    DOEpatents

    Umans, Stephen D.; Driscoll, David J.

    2002-01-01

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  8. Accurate aircraft wind measurements using the global positioning system (GPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  9. Development and Testing of the Phase 0 Autonomous Formation Flight Research System

    NASA Technical Reports Server (NTRS)

    Petersen, Shane; Fantini, Jay; Norlin, Ken; Theisen, John; Krasiewski, Steven

    2004-01-01

    The Autonomous Formation Flight (AFF) project was initiated in 1995 to demonstrate at least 10-percent drag reduction by positioning a trailing aircraft in the wingtip vortex of a leading aircraft. If successful, this technology would provide increased fuel savings, reduced emissions, and extended flight duration for fleet aircraft flying in formation. To demonstrate this technology, the AFF project at NASA Dryden Flight Research Center developed a system architecture incorporating two F-18 aircraft flying in leading-trailing formation. The system architecture has been designed to allow the trailing aircraft to maintain station-keeping position relative to the leading aircraft within +/-10 ft. Development of this architecture would be directed at the design and development of a computing system to feed surface position commands into the flight control computers, thereby controlling the longitudinal and lateral position of the trailing aircraft. In addition, modification to the instrumentation systems of both aircraft, pilot displays, and a means of broadcasting the leading aircraft inertial and global positioning system-based positional data to the trailing aircraft would be needed. This presentation focuses on the design and testing of the AFF Phase 0 research system.

  10. Immersive cyberspace system

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor)

    1997-01-01

    An immersive cyberspace system is presented which provides visual, audible, and vibrational inputs to a subject remaining in neutral immersion, and also provides for subject control input. The immersive cyberspace system includes a relaxation chair and a neutral immersion display hood. The relaxation chair supports a subject positioned thereupon, and places the subject in position which merges a neutral body position, the position a body naturally assumes in zero gravity, with a savasana yoga position. The display hood, which covers the subject's head, is configured to produce light images and sounds. An image projection subsystem provides either external or internal image projection. The display hood includes a projection screen moveably attached to an opaque shroud. A motion base supports the relaxation chair and produces vibrational inputs over a range of about 0-30 Hz. The motion base also produces limited translation and rotational movements of the relaxation chair. These limited translational and rotational movements, when properly coordinated with visual stimuli, constitute motion cues which create sensations of pitch, yaw, and roll movements. Vibration transducers produce vibrational inputs from about 20 Hz to about 150 Hz. An external computer, coupled to various components of the immersive cyberspace system, executes a software program and creates the cyberspace environment. One or more neutral hand posture controllers may be coupled to the external computer system and used to control various aspects of the cyberspace environment, or to enter data during the cyberspace experience.

  11. Position, Orientation and Velocity Detection of Unmanned Underwater Vehicles (UUVs) Using an Optical Detector Array

    PubMed Central

    Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson

    2017-01-01

    This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936

  12. Assessment of LightSquared Terrestrial Broadband System Effects on GPS Receivers and GPS-dependent Applications

    DOT National Transportation Integrated Search

    2011-06-01

    The Executive Steering Group (ESG) of the National Executive Committee (EXCOM) for : Space-Based Positioning, Navigation, and Timing (PNT) directed the National Space-Based : PNT Systems Engineering Forum (NPEF) to conduct an assessment of the effect...

  13. 76 FR 68791 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...: Employment Application System for Entry-Level Legal Positions. 3. Current OMB approval number: 3150-XXXX. 4... seeking to implement a Web-based job application system that will allow the NRC Office of the General... Honor Law Graduate program or temporary, summer legal positions through the Summer Internship Program...

  14. A Group-learning Approach to Academic and Transferable Skills through an Exercise in the Global Positioning System.

    ERIC Educational Resources Information Center

    Brown, Giles H.

    1999-01-01

    Describes a project based on the Global Positioning System (GPS) that offers students a chance to design and implement a mini-research program to prepare them for an undergraduate research project. Discusses the context of the GPS exercise, teaching and learning outcomes, and advantages and evaluation of the exercise. (CMK)

  15. Poster — Thur Eve — 40: Automated Quality Assurance for Remote-Afterloading High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Anthony; Ravi, Ananth

    2014-08-15

    High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QAmore » solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.« less

  16. Healthcare system and the wealth-health gradient: a comparative study of older populations in six countries.

    PubMed

    Maskileyson, Dina

    2014-10-01

    The present study provides a comparative analysis of the association between wealth and health in six healthcare systems (Sweden, the United Kingdom, Germany, the Czech Republic, Israel, the United States). National samples of individuals fifty years and over reveal considerable cross-country variations in health outcomes. In all six countries wealth and health are positively associated. The findings also show that state-based healthcare systems produce better population health outcomes than private-based healthcare systems. The results indicate that in five out of the six countries studied, the wealth-health gradients were remarkably similar, despite significant variations in healthcare system type. Only in the United States was the association between wealth and health substantially different from, and much greater than that in the other five countries. The findings suggest that private-based healthcare system in the U.S. is likely to promote stronger positive associations between wealth and health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Positive position control of robotic manipulators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Gumusel, L.

    1989-01-01

    The present, simple and accurate position-control algorithm, which is applicable to fast-moving and lightly damped robot arms, is based on the positive position feedback (PPF) strategy and relies solely on position sensors to monitor joint angles of robotic arms to furnish stable position control. The optimized tuned filters, in the form of a set of difference equations, manipulate position signals for robotic system performance. Attention is given to comparisons between this PPF-algorithm controller's experimentally ascertained performance characteristics and those of a conventional proportional controller.

  18. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning.

    PubMed

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-05-25

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles.

  19. A Highly Reliable and Cost-Efficient Multi-Sensor System for Land Vehicle Positioning

    PubMed Central

    Li, Xu; Xu, Qimin; Li, Bin; Song, Xianghui

    2016-01-01

    In this paper, we propose a novel positioning solution for land vehicles which is highly reliable and cost-efficient. The proposed positioning system fuses information from the MEMS-based reduced inertial sensor system (RISS) which consists of one vertical gyroscope and two horizontal accelerometers, low-cost GPS, and supplementary sensors and sources. First, pitch and roll angle are accurately estimated based on a vehicle kinematic model. Meanwhile, the negative effect of the uncertain nonlinear drift of MEMS inertial sensors is eliminated by an H∞ filter. Further, a distributed-dual-H∞ filtering (DDHF) mechanism is adopted to address the uncertain nonlinear drift of the MEMS-RISS and make full use of the supplementary sensors and sources. The DDHF is composed of a main H∞ filter (MHF) and an auxiliary H∞ filter (AHF). Finally, a generalized regression neural network (GRNN) module with good approximation capability is specially designed for the MEMS-RISS. A hybrid methodology which combines the GRNN module and the AHF is utilized to compensate for RISS position errors during GPS outages. To verify the effectiveness of the proposed solution, road-test experiments with various scenarios were performed. The experimental results illustrate that the proposed system can achieve accurate and reliable positioning for land vehicles. PMID:27231917

  20. Implementation and performance of the metrology system for the multi-object optical and near-infrared spectrograph MOONS

    NASA Astrophysics Data System (ADS)

    Drass, Holger; Vanzi, Leonardo; Torres-Torriti, Miguel; Dünner, Rolando; Shen, Tzu-Chiang; Belmar, Francisco; Dauvin, Lousie; Staig, Tomás.; Antognini, Jonathan; Flores, Mauricio; Luco, Yerko; Béchet, Clémentine; Boettger, David; Beard, Steven; Montgomery, David; Watson, Stephen; Cabral, Alexandre; Hayati, Mahmoud; Abreu, Manuel; Rees, Phil; Cirasuolo, Michele; Taylor, William; Fairley, Alasdair

    2016-08-01

    The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will cover the Very Large Telescope's (VLT) field of view with 1000 fibres. The fibres will be mounted on fibre positioning units (FPU) implemented as two-DOF robot arms to ensure a homogeneous coverage of the 500 square arcmin field of view. To accurately and fast determine the position of the 1000 fibres a metrology system has been designed. This paper presents the hardware and software design and performance of the metrology system. The metrology system is based on the analysis of images taken by a circular array of 12 cameras located close to the VLTs derotator ring around the Nasmyth focus. The system includes 24 individually adjustable lamps. The fibre positions are measured through dedicated metrology targets mounted on top of the FPUs and fiducial markers connected to the FPU support plate which are imaged at the same time. A flexible pipeline based on VLT standards is used to process the images. The position accuracy was determined to 5 μm in the central region of the images. Including the outer regions the overall positioning accuracy is 25 μm. The MOONS metrology system is fully set up with a working prototype. The results in parts of the images are already excellent. By using upcoming hardware and improving the calibration it is expected to fulfil the accuracy requirement over the complete field of view for all metrology cameras.

  1. Location Based Service in Indoor Environment Using Quick Response Code Technology

    NASA Astrophysics Data System (ADS)

    Hakimpour, F.; Zare Zardiny, A.

    2014-10-01

    Today by extensive use of intelligent mobile phones, increased size of screens and enriching the mobile phones by Global Positioning System (GPS) technology use of location based services have been considered by public users more than ever.. Based on the position of users, they can receive the desired information from different LBS providers. Any LBS system generally includes five main parts: mobile devices, communication network, positioning system, service provider and data provider. By now many advances have been gained in relation to any of these parts; however the users positioning especially in indoor environments is propounded as an essential and critical issue in LBS. It is well known that GPS performs too poorly inside buildings to provide usable indoor positioning. On the other hand, current indoor positioning technologies such as using RFID or WiFi network need different hardware and software infrastructures. In this paper, we propose a new method to overcome these challenges. This method is using the Quick Response (QR) Code Technology. QR Code is a 2D encrypted barcode with a matrix structure which consists of black modules arranged in a square grid. Scanning and data retrieving process from QR Code is possible by use of different camera-enabled mobile phones only by installing the barcode reader software. This paper reviews the capabilities of QR Code technology and then discusses the advantages of using QR Code in Indoor LBS (ILBS) system in comparison to other technologies. Finally, some prospects of using QR Code are illustrated through implementation of a scenario. The most important advantages of using this new technology in ILBS are easy implementation, spending less expenses, quick data retrieval, possibility of printing the QR Code on different products and no need for complicated hardware and software infrastructures.

  2. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control.

  3. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control. PMID:22247676

  4. The FONT5 Bunch-by-Bunch Position and Angle Feedback System at ATF2

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Burrows, P. N.; Christian, G. B.; Constance, B.; Davis, M. R.; Gerbershagen, A.; Perry, C.; Resta-Lopez, J.

    The FONT5 upstream beam-based feedback system at ATF2 is designed to correct the position and angle jitter at the entrance to the ATF2 final-focus system, and also to demonstrate a prototype intra-train feedback system for the International Linear Collider interaction point. We discuss the hardware, from stripline BPMs to kickers, and RF and digital signal processing, as well as presenting results from the latest beam tests at ATF2.

  5. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.

    PubMed

    Wojewoda, K K; Culmer, P R; Gallagher, J F; Jackson, A E; Levesley, M C

    2017-07-01

    This paper presents a real time hybrid 2D position and orientation tracking system developed for an upper limb rehabilitation robot. Designed to work on a table-top, the robot is to enable home-based upper-limb rehabilitative exercise for stroke patients. Estimates of the robot's position are computed by fusing data from two tracking systems, each utilizing a different sensor type: laser optical sensors and a webcam. Two laser optical sensors are mounted on the underside of the robot and track the relative motion of the robot with respect to the surface on which it is placed. The webcam is positioned directly above the workspace, mounted on a fixed stand, and tracks the robot's position with respect to a fixed coordinate system. The optical sensors sample the position data at a higher frequency than the webcam, and a position and orientation fusion scheme is proposed to fuse the data from the two tracking systems. The proposed fusion scheme is validated through an experimental set-up whereby the rehabilitation robot is moved by a humanoid robotic arm replicating previously recorded movements of a stroke patient. The results prove that the presented hybrid position tracking system can track the position and orientation with greater accuracy than the webcam or optical sensors alone. The results also confirm that the developed system is capable of tracking recovery trends during rehabilitation therapy.

  6. A Modular Localization System as a Positioning Service for Road Transport

    PubMed Central

    Brida, Peter; Machaj, Juraj; Benikovsky, Jozef

    2014-01-01

    In recent times smart devices have attracted a large number of users. Since many of these devices allow position estimation using Global Navigation Satellite Systems (GNSS) signals, a large number of location-based applications and services have emerged, especially in transport systems. However GNSS signals are affected by the environment and are not always present, especially in dense urban environment or indoors. In this work firstly a Modular Localization Algorithm is proposed to allow seamless switching between different positioning modules. This helps us develop a positioning system that is able to provide position estimates in both indoor and outdoor environments without any user interaction. Since the proposed system can run as a service on any smart device, it could allow users to navigate not only in outdoor environments, but also indoors, e.g., underground garages, tunnels etc. Secondly we present the proposal of a 2-phase map reduction algorithm which allows one to significantly reduce the complexity of position estimation processes in case that positioning is performed using a fingerprinting framework. The proposed 2-phase map reduction algorithm can also improve the accuracy of the position estimates by filtering out reference points that are far from the mobile device. Both algorithms were implemented into a positioning system and tested in real world conditions in both indoor and outdoor environments. PMID:25353979

  7. The Effect of the Leader in Me, a School-Wide Positive Behavior Intervention System (SW-PBIS), Based on Student Achievement and Office Discipline Referrals for Fifth Grade Students in a Rural Elementary School in North Central Washington State

    ERIC Educational Resources Information Center

    Miller, Christopher A.

    2016-01-01

    The purpose this study was to examine the implementation of The Leader in Me, a school-wide positive behavior intervention system (SW-PBIS), and analyze its impact on 5th grade students based on student achievement and office discipline referrals in a rural elementary school in North Central Washington state. The school was in the first year of…

  8. Beam rider for an Articulated Robot Manipulator (ARM) accurate positioning of long flexible manipulators

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.

    1990-01-01

    Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.

  9. Spectrally-balanced chromatic approach-lighting system

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1977-01-01

    Approach lighting system employing combinations of red and blue lights reduces problem of color-based optical illusions. System exploits inherent chromatic aberration of eye to create three-dimensional effect, giving pilot visual clues of position.

  10. Technical Note: High temporal resolution characterization of gating response time.

    PubMed

    Wiersma, Rodney D; McCabe, Bradley P; Belcher, Andrew H; Jensen, Patrick J; Smith, Brett; Aydogan, Bulent

    2016-06-01

    Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.

  11. Technical Note: High temporal resolution characterization of gating response time

    PubMed Central

    Wiersma, Rodney D.; McCabe, Bradley P.; Belcher, Andrew H.; Jensen, Patrick J.; Smith, Brett; Aydogan, Bulent

    2016-01-01

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly. PMID:27277028

  12. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  13. A simple webcam-based approach for the measurement of rodent locomotion and other behavioural parameters.

    PubMed

    Tort, Adriano B L; Neto, Waldemar P; Amaral, Olavo B; Kazlauckas, Vanessa; Souza, Diogo O; Lara, Diogo R

    2006-10-15

    We hereby describe a simple and inexpensive approach to evaluate the position and locomotion of rodents in an arena. The system is based on webcam registering of animal behaviour with subsequent analysis on customized software. Based on black/white differentiation, it provides rapid evaluation of animal position over a period of time, and can be used in a myriad of behavioural tasks in which locomotion, velocity or place preference are variables of interest. A brief review of the results obtained so far with this system and a discussion of other possible applications in behavioural neuroscience are also included. Such a system can be easily implemented in most laboratories and can significantly reduce the time and costs involved in behavioural analysis, especially in developing countries.

  14. Position control of an electro-pneumatic system based on PWM technique and FLC.

    PubMed

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Design of cold chain logistics remote monitoring system based on ZigBee and GPS location

    NASA Astrophysics Data System (ADS)

    Zong, Xiaoping; Shao, Heling

    2017-03-01

    This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.

  16. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  17. Monitoring and analysis of data in cyberspace

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M. (Inventor); Angelino, Robert (Inventor)

    2001-01-01

    Information from monitored systems is displayed in three dimensional cyberspace representations defining a virtual universe having three dimensions. Fixed and dynamic data parameter outputs from the monitored systems are visually represented as graphic objects that are positioned in the virtual universe based on relationships to the system and to the data parameter categories. Attributes and values of the data parameters are indicated by manipulating properties of the graphic object such as position, color, shape, and motion.

  18. JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 2

    DTIC Science & Technology

    1989-03-16

    accidents caused by strikes by robots,5 a quantitative model for safety evaluation,6 and evaluations of actual systems7 in order to contribute to...Mobile Robot Position Referencing Using Map-Based Vision Systems.... 160 Safety Evaluation of Man-Robot System 171 Fuzzy Path Pattern of Automatic...camera are made after the robot stops to prevent damage from occurring through obstacle interference. The position of the camera is indicated on the

  19. A Context-Aware Model to Provide Positioning in Disaster Relief Scenarios

    PubMed Central

    Moreno, Daniel; Ochoa, Sergio F.; Meseguer, Roc

    2015-01-01

    The effectiveness of the work performed during disaster relief efforts is highly dependent on the coordination of activities conducted by the first responders deployed in the affected area. Such coordination, in turn, depends on an appropriate management of geo-referenced information. Therefore, enabling first responders to count on positioning capabilities during these activities is vital to increase the effectiveness of the response process. The positioning methods used in this scenario must assume a lack of infrastructure-based communication and electrical energy, which usually characterizes affected areas. Although positioning systems such as the Global Positioning System (GPS) have been shown to be useful, we cannot assume that all devices deployed in the area (or most of them) will have positioning capabilities by themselves. Typically, many first responders carry devices that are not capable of performing positioning on their own, but that require such a service. In order to help increase the positioning capability of first responders in disaster-affected areas, this paper presents a context-aware positioning model that allows mobile devices to estimate their position based on information gathered from their surroundings. The performance of the proposed model was evaluated using simulations, and the obtained results show that mobile devices without positioning capabilities were able to use the model to estimate their position. Moreover, the accuracy of the positioning model has been shown to be suitable for conducting most first response activities. PMID:26437406

  20. Optical Indoor Positioning System Based on TFT Technology.

    PubMed

    Gőzse, István

    2015-12-24

    A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low.

  1. A Heterogeneous Wireless Identification Network for the Localization of Animals Based on Stochastic Movements

    PubMed Central

    Gutiérrez, Álvaro; González, Carlos; Jiménez-Leube, Javier; Zazo, Santiago; Dopico, Nelson; Raos, Ivana

    2009-01-01

    The improvement in the transmission range in wireless applications without the use of batteries remains a significant challenge in identification applications. In this paper, we describe a heterogeneous wireless identification network mostly powered by kinetic energy, which allows the localization of animals in open environments. The system relies on radio communications and a global positioning system. It is made up of primary and secondary nodes. Secondary nodes are kinetic-powered and take advantage of animal movements to activate the node and transmit a specific identifier, reducing the number of batteries of the system. Primary nodes are battery-powered and gather secondary-node transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. The system allows tracking based on contextual information obtained from statistical data. PMID:22412344

  2. Toward an operational water vapor remote sensing system using the global positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, S.I.; Chadwick, R.B.; Wolf, d.W.

    1995-04-01

    Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause weather. Recent experiments have demonstrated that data from Global Positioning System (GPS) satellites can be used to monitor precipitable water vapor (PWV) with millimeter accuracy and sub-hourly temporal resolution. Major advantages of GPS-based systems include the following: they work under virtually all weather conditions; individual systems do not have to be calibrated; and, they are relatively inexpensive.

  3. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    PubMed

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  4. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    PubMed Central

    Lin, Hao-Ting

    2017-01-01

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally. PMID:28587220

  5. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  6. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly.

    PubMed

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly.

  7. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    PubMed Central

    Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015

  8. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  9. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter

    PubMed Central

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-01-01

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369

  10. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter.

    PubMed

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-02-03

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.

  11. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  12. Accuracy of an infrared marker-based patient positioning system (ExacTrac®) for stereotactic body radiotherapy in localizing the planned isocenter using fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes-Rodríguez, María de los Ángeles, E-mail: angy24538@yahoo.com; Mitsoura, Eleni; Hernández-Bojórquez, Mariana

    2014-11-07

    Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as themore » isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.« less

  13. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  14. Monaural Sound Localization Based on Structure-Induced Acoustic Resonance

    PubMed Central

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  15. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  16. Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.

    PubMed

    Belcher, Andrew H; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D

    2017-11-13

    Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient's skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system's effectiveness in maintaining the target's 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system's effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system's success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.

  17. NASA Runway Incursion Prevention System (RIPS) Dallas-Fort Worth Demonstration Performance Analysis

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Evers, Carl; Esche, Jeff; Sleep, Benjamin; Jones, Denise R. (Technical Monitor)

    2002-01-01

    NASA's Aviation Safety Program Synthetic Vision System project conducted a Runway Incursion Prevention System (RIPS) flight test at the Dallas-Fort Worth International Airport in October 2000. The RIPS research system includes advanced displays, airport surveillance system, data links, positioning system, and alerting algorithms to provide pilots with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warnings of runway incursions. This report describes the aircraft and ground based runway incursion alerting systems and traffic positioning systems (Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B)). A performance analysis of these systems is also presented.

  18. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  19. Geo-Caching: Place-Based Discovery of Virginia State Parks and Museums

    ERIC Educational Resources Information Center

    Gray, Howard Richard

    2007-01-01

    The use of Global Positioning Systems (GPS) units has exploded in recent years along with the computer technology to access this data-based information. Geo-caching is an exciting game using GPS that provides place-based information regarding the public lands, facilities and cultural heritage programs within the Virginia Parks and Museum system.…

  20. A Solar Position Sensor Based on Image Vision.

    PubMed

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  1. A Solar Position Sensor Based on Image Vision

    PubMed Central

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Rosales, Pedro; Suastegui, José

    2017-01-01

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors’ evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays’ direction as well as the tilt and sensor position. The sensor’s characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors. PMID:28758935

  2. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements

    PubMed Central

    Krzysztof, Naus; Aleksander, Nowak

    2016-01-01

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884

  3. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    PubMed

    Krzysztof, Naus; Aleksander, Nowak

    2016-08-15

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  4. Model identification and vision-based H∞ position control of 6-DoF cable-driven parallel robots

    NASA Astrophysics Data System (ADS)

    Chellal, R.; Cuvillon, L.; Laroche, E.

    2017-04-01

    This paper presents methodologies for the identification and control of 6-degrees of freedom (6-DoF) cable-driven parallel robots (CDPRs). First a two-step identification methodology is proposed to accurately estimate the kinematic parameters independently and prior to the dynamic parameters of a physics-based model of CDPRs. Second, an original control scheme is developed, including a vision-based position controller tuned with the H∞ methodology and a cable tension distribution algorithm. The position is controlled in the operational space, making use of the end-effector pose measured by a motion-tracking system. A four-block H∞ design scheme with adjusted weighting filters ensures good trajectory tracking and disturbance rejection properties for the CDPR system, which is a nonlinear-coupled MIMO system with constrained states. The tension management algorithm generates control signals that maintain the cables under feasible tensions. The paper makes an extensive review of the available methods and presents an extension of one of them. The presented methodologies are evaluated by simulations and experimentally on a redundant 6-DoF INCA 6D CDPR with eight cables, equipped with a motion-tracking system.

  5. Impulse position control algorithms for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  6. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    NASA Astrophysics Data System (ADS)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  7. The Marcraft floor-leveling system for urban rehabilitation

    Treesearch

    David G. Martens; E. Paul Craft

    1967-01-01

    A speedy and efficient system has been developed for installing wooden screeds that can be used as a base for laying a level new floor over an old sagging floor. The screeds are held in position by means of a new leveling device, and rigid urethane foam is sprayed under the screeds to hold them permanently in a level position.

  8. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    PubMed Central

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  9. Creation of graphic database specifying android arm mechanism work envelope taking into account forbidden zones position

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nebritov, V. I.

    2017-06-01

    The structure of graphic database specifying the shape and the work envelope projection position of an android arm mechanism with various positions of the known in advance forbidden zones is proposed. The technique of analytical assignment of the work envelope based on the methods of analytical geometry and theory of sets is represented. The conducted studies can be applied in creation of knowledge bases for intellectual systems of android control functioning independently in the sophisticated environment.

  10. GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network

    NASA Astrophysics Data System (ADS)

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-09-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.

  11. Map based navigation for autonomous underwater vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuohy, S.T.; Leonard, J.J.; Bellingham, J.G.

    1995-12-31

    In this work, a map based navigation algorithm is developed wherein measured geophysical properties are matched to a priori maps. The objectives is a complete algorithm applicable to a small, power-limited AUV which performs in real time to a required resolution with bounded position error. Interval B-Splines are introduced for the non-linear representation of two-dimensional geophysical parameters that have measurement uncertainty. Fine-scale position determination involves the solution of a system of nonlinear polynomial equations with interval coefficients. This system represents the complete set of possible vehicle locations and is formulated as the intersection of contours established on each map frommore » the simultaneous measurement of associated geophysical parameters. A standard filter mechanisms, based on a bounded interval error model, predicts the position of the vehicle and, therefore, screens extraneous solutions. When multiple solutions are found, a tracking mechanisms is applied until a unique vehicle location is determined.« less

  12. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  13. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  14. Integrated navigation fusion strategy of INS/UWB for indoor carrier attitude angle and position synchronous tracking.

    PubMed

    Fan, Qigao; Wu, Yaheng; Hui, Jing; Wu, Lei; Yu, Zhenzhong; Zhou, Lijuan

    2014-01-01

    In some GPS failure conditions, positioning for mobile target is difficult. This paper proposed a new method based on INS/UWB for attitude angle and position synchronous tracking of indoor carrier. Firstly, error model of INS/UWB integrated system is built, including error equation of INS and UWB. And combined filtering model of INS/UWB is researched. Simulation results show that the two subsystems are complementary. Secondly, integrated navigation data fusion strategy of INS/UWB based on Kalman filtering theory is proposed. Simulation results show that FAKF method is better than the conventional Kalman filtering. Finally, an indoor experiment platform is established to verify the integrated navigation theory of INS/UWB, which is geared to the needs of coal mine working environment. Static and dynamic positioning results show that the INS/UWB integrated navigation system is stable and real-time, positioning precision meets the requirements of working condition and is better than any independent subsystem.

  15. Robust all-source positioning of UAVs based on belief propagation

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Wenyun; Wang, Jiabo

    2013-12-01

    For unmanned air vehicles (UAVs) to survive hostile operational environments, it is always preferable to utilize all wireless positioning sources available to fuse a robust position. While belief propagation is a well-established method for all source data fusion, it is not an easy job to handle all the mathematics therein. In this work, a comprehensive mathematical framework for belief propagation-based all-source positioning of UAVs is developed, taking wireless sources including Global Navigation Satellite Systems (GNSS) space vehicles, peer UAVs, ground control stations, and signal of opportunities. Based on the mathematical framework, a positioning algorithm named Belief propagation-based Opportunistic Positioning of UAVs (BOPU) is proposed, with an unscented particle filter for Bayesian approximation. The robustness of the proposed BOPU is evaluated by a fictitious scenario that a group of formation flying UAVs encounter GNSS countermeasures en route. Four different configurations of measurements availability are simulated. The results show that the performance of BOPU varies only slightly with different measurements availability.

  16. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  17. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods.

    PubMed

    Lin, Jiarui; Gao, Kai; Gao, Yang; Wang, Zheng

    2017-10-01

    In order to detect the position of the cutting shield at the head of a double shield tunnel boring machine (TBM) during the excavation, this paper develops a combined measurement system which is mainly composed of several optical feature points, a monocular vision sensor, a laser target sensor, and a total station. The different elements of the combined system are mounted on the TBM in suitable sequence, and the position of the cutting shield in the reference total station frame is determined by coordinate transformations. Subsequently, the structure of the feature points and matching technique for them are expounded, the position measurement method based on monocular vision is presented, and the calibration methods for the unknown relationships among different parts of the system are proposed. Finally, a set of experimental platforms to simulate the double shield TBM is established, and accuracy verification experiments are conducted. Experimental results show that the mean deviation of the system is 6.8 mm, which satisfies the requirements of double shield TBM guidance.

  18. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  19. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  20. An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology

    PubMed Central

    Winata, Doni

    2018-01-01

    The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer’s smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol. PMID:29587399

  1. An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology.

    PubMed

    Yohan, Alexander; Lo, Nai-Wei; Winata, Doni

    2018-03-25

    The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer's smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol.

  2. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems.

    PubMed

    de Vries, W H K; Veeger, H E J; Cutti, A G; Baten, C; van der Helm, F C T

    2010-07-20

    Inertial Magnetic Measurement Systems (IMMS) are becoming increasingly popular by allowing for measurements outside the motion laboratory. The latest models enable long term, accurate measurement of segment motion in terms of joint angles, if initial segment orientations can accurately be determined. The standard procedure for definition of segmental orientation is based on the measurement of positions of bony landmarks (BLM). However, IMMS do not deliver position information, so an alternative method to establish IMMS based, anatomically understandable segment orientations is proposed. For five subjects, IMMS recordings were collected in a standard anatomical position for definition of static axes, and during a series of standardized motions for the estimation of kinematic axes of rotation. For all axes, the intra- and inter-individual dispersion was estimated. Subsequently, local coordinate systems (LCS) were constructed on the basis of the combination of IMMS axes with the lowest dispersion and compared with BLM based LCS. The repeatability of the method appeared to be high; for every segment at least two axes could be determined with a dispersion of at most 3.8 degrees. Comparison of IMMS based with BLM based LCS yielded compatible results for the thorax, but less compatible results for the humerus, forearm and hand, where differences in orientation rose to 17.2 degrees. Although different from the 'gold standard' BLM based LCS, IMMS based LCS can be constructed repeatable, enabling the estimation of segment orientations outside the laboratory. A procedure for the definition of local reference frames using IMMS is proposed. 2010 Elsevier Ltd. All rights reserved.

  3. Systematic methods for knowledge acquisition and expert system development

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.

  4. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy.

    PubMed

    Crop, Frederik; Pasquier, David; Baczkiewic, Amandine; Doré, Julie; Bequet, Lena; Steux, Emeline; Gadroy, Anne; Bouillon, Jacqueline; Florence, Clement; Muszynski, Laurence; Lacour, Mathilde; Lartigau, Eric

    2016-09-08

    A surface imaging system, Catalyst (C-Rad), was compared with laser-based positioning and daily mega voltage computed tomography (MVCT) setup for breast patients with nodal involvement treated by helical TomoTherapy. Catalyst-based positioning performed better than laser-based positioning. The respective modalities resulted in a standard deviation (SD), 68% confidence interval (CI) of positioning of left-right, craniocaudal, anterior-posterior, roll: 2.4 mm, 2.7 mm, 2.4 mm, 0.9° for Catalyst positioning, and 6.1 mm, 3.8 mm, 4.9 mm, 1.1° for laser-based positioning, respectively. MVCT-based precision is a combination of the interoperator variability for MVCT fusion and the patient movement during the time it takes for MVCT and fusion. The MVCT fusion interoperator variability for breast patients was evaluated at one SD left-right, craniocaudal, ant-post, roll as: 1.4 mm, 1.8 mm, 1.3 mm, 1.0°. There was no statistically significant difference between the automatic MVCT registration result and the manual adjustment; the automatic fusion results were within the 95% CI of the mean result of 10 users, except for one specific case where the patient was positioned with large yaw. We found that users add variability to the roll correction as the automatic registration was more consistent. The patient position uncertainty confidence interval was evaluated as 1.9 mm, 2.2 mm, 1.6 mm, 0.9° after 4 min, and 2.3 mm, 2.8 mm, 2.2 mm, 1° after 10 min. The combination of this patient movement with MVCT fusion interoperator variability results in total standard deviations of patient posi-tion when treatment starts 4 or 10 min after initial positioning of, respectively: 2.3 mm, 2.8 mm, 2.0 mm, 1.3° and 2.7 mm, 3.3 mm, 2.6 mm, 1.4°. Surface based positioning arrives at the same precision when taking into account the time required for MVCT imaging and fusion. These results can be used on a patient-per-patient basis to decide which positioning system performs the best after the first 5 fractions and when daily MVCT can be omitted. Ideally, real-time monitoring is required to reduce important intrafraction movement. © 2016 The Authors.

  5. Facial Video-Based Photoplethysmography to Detect HRV at Rest.

    PubMed

    Moreno, J; Ramos-Castro, J; Movellan, J; Parrado, E; Rodas, G; Capdevila, L

    2015-06-01

    Our aim is to demonstrate the usefulness of photoplethysmography (PPG) for analyzing heart rate variability (HRV) using a standard 5-min test at rest with paced breathing, comparing the results with real RR intervals and testing supine and sitting positions. Simultaneous recordings of R-R intervals were conducted with a Polar system and a non-contact PPG, based on facial video recording on 20 individuals. Data analysis and editing were performed with individually designated software for each instrument. Agreement on HRV parameters was assessed with concordance correlations, effect size from ANOVA and Bland and Altman plots. For supine position, differences between video and Polar systems showed a small effect size in most HRV parameters. For sitting position, these differences showed a moderate effect size in most HRV parameters. A new procedure, based on the pixels that contained more heart beat information, is proposed for improving the signal-to-noise ratio in the PPG video signal. Results were acceptable in both positions but better in the supine position. Our approach could be relevant for applications that require monitoring of stress or cardio-respiratory health, such as effort/recuperation states in sports. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Density-based penalty parameter optimization on C-SVM.

    PubMed

    Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An

    2014-01-01

    The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sword, Charles Keith

    A scanner system and method for acquisition of position-based ultrasonic inspection data are described. The scanner system includes an inspection probe and a first non-contact linear encoder having a first sensor and a first scale to track inspection probe position. The first sensor is positioned to maintain a continuous non-contact interface between the first sensor and the first scale and to maintain a continuous alignment of the first sensor with the inspection probe. The scanner system may be used to acquire two-dimensional inspection probe position data by including a second non-contact linear encoder having a second sensor and a secondmore » scale, the second sensor positioned to maintain a continuous non-contact interface between the second sensor and the second scale and to maintain a continuous alignment of the second sensor with the first sensor.« less

  8. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  9. Prototyping sensor network system for automatic vital signs collection. Evaluation of a location based automated assignment of measured vital signs to patients.

    PubMed

    Kuroda, T; Noma, H; Naito, C; Tada, M; Yamanaka, H; Takemura, T; Nin, K; Yoshihara, H

    2013-01-01

    Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors. The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Bluetooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis. The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system's "confidence", i.e. the probability of estimation error, must be effective to reduce the oversights. This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.

  10. Geodetic positioning using a global positioning system of satellites

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1980-01-01

    Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.

  11. Theory and Practice of Positive Feminist Therapy: A Culturally Responsive Approach to Divorce Therapy with Chinese Women

    ERIC Educational Resources Information Center

    Tzou, Jean Yuh-Jin; Kim, Eunha; Waldheim, Kim

    2012-01-01

    Positive Feminist Therapy (PFT) is a strength-based culturally responsive therapy model specifically designed for helping Chinese women facing marital conflicts and divorce, integrating Empowerment Feminist Therapy, systems theory, and positive psychology. To help clients become change agents, PFT uses clients' existing strengths to develop…

  12. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  13. Tool calibration system for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  14. sUAS Position Estimation and Fusion in GPS-Degraded and GPS-Denied Environments using an ADS-B Transponder and Local Area Multilateration

    NASA Astrophysics Data System (ADS)

    Larson, Robert Sherman

    An Unmanned Aerial Vehicle (UAV) and a manned aircraft are tracked using ADS-B transponders and the Local Area Multilateration System (LAMS) in simulated GPS-degraded and GPS-denied environments. Several position estimation and fusion algorithms are developed for use with the Autonomous Flight Systems Laboratory (AFSL) TRansponder based Position Information System (TRAPIS) software. At the lowest level, these estimation and fusion algorithms use raw information from ADS-B and LAMS data streams to provide aircraft position estimates to the ground station user. At the highest level, aircraft position is estimated using a discrete time Kalman filter with real-time covariance updates and fusion involving weighted averaging of ADS-B and LAMS positions. Simulation and flight test results are provided, demonstrating the feasibility of incorporating an ADS-B transponder on a commercially-available UAS and maintaining situational awareness of aircraft positions in GPS-degraded and GPS-denied environments.

  15. Single-camera visual odometry to track a surgical X-ray C-arm base.

    PubMed

    Esfandiari, Hooman; Lichti, Derek; Anglin, Carolyn

    2017-12-01

    This study provides a framework for a single-camera odometry system for localizing a surgical C-arm base. An application-specific monocular visual odometry system (a downward-looking consumer-grade camera rigidly attached to the C-arm base) is proposed in this research. The cumulative dead-reckoning estimation of the base is extracted based on frame-to-frame homography estimation. Optical-flow results are utilized to feed the odometry. Online positional and orientation parameters are then reported. Positional accuracy of better than 2% (of the total traveled distance) for most of the cases and 4% for all the cases studied and angular accuracy of better than 2% (of absolute cumulative changes in orientation) were achieved with this method. This study provides a robust and accurate tracking framework that not only can be integrated with the current C-arm joint-tracking system (i.e. TC-arm) but also is capable of being employed for similar applications in other fields (e.g. robotics).

  16. Systems of care as asset-building communities: implementing strengths-based planning and positive youth development.

    PubMed

    McCammon, Susan L

    2012-06-01

    Using a strength-based approach is one of the hallmarks of the system of care (SOC) initiative, and is consistent with the foundations of community psychology. However, while strengths-based planning is recommended and child and family teams often list child and family strengths, the care plans often do not incorporate the strengths in strategies and interventions. The research base regarding strength implementation and effectiveness is summarized, and needed research is outlined. Steps are offered for promoting the use of strengths in SOCS. Implementing programs from the field of positive youth development is advocated as a way that the educational and criminal justice systems could be more actively engaged in implementing strength-based strategies in SOCs. Promoting SOCs to focus more attentively to asset-building (at the child, family, and community level) is compatible with a public health model that addresses mental health concerns in the context of a full range of supports and services so that all children might experience good mental health and realize their potential.

  17. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis.

    PubMed

    Leardini, Alberto; Lullini, Giada; Giannini, Sandro; Berti, Lisa; Ortolani, Maurizio; Caravaggi, Paolo

    2014-09-11

    Several rehabilitation systems based on inertial measurement units (IMU) are entering the market for the control of exercises and to measure performance progression, particularly for recovery after lower limb orthopaedic treatments. IMU are easy to wear also by the patient alone, but the extent to which IMU's malpositioning in routine use can affect the accuracy of the measurements is not known. A new such system (Riablo™, CoRehab, Trento, Italy), using audio-visual biofeedback based on videogames, was assessed against state-of-the-art gait analysis as the gold standard. The sensitivity of the system to errors in the IMU's position and orientation was measured in 5 healthy subjects performing two hip joint motion exercises. Root mean square deviation was used to assess differences in the system's kinematic output between the erroneous and correct IMU position and orientation.In order to estimate the system's accuracy, thorax and knee joint motion of 17 healthy subjects were tracked during the execution of standard rehabilitation tasks and compared with the corresponding measurements obtained with an established gait protocol using stereophotogrammetry. A maximum mean error of 3.1 ± 1.8 deg and 1.9 ± 0.8 deg from the angle trajectory with correct IMU position was recorded respectively in the medio-lateral malposition and frontal-plane misalignment tests. Across the standard rehabilitation tasks, the mean distance between the IMU and gait analysis systems was on average smaller than 5°. These findings showed that the tested IMU based system has the necessary accuracy to be safely utilized in rehabilitation programs after orthopaedic treatments of the lower limb.

  18. Research on the Forward and Reverse Calculation Based on the Adaptive Zero-Velocity Interval Adjustment for the Foot-Mounted Inertial Pedestrian-Positioning System

    PubMed Central

    Wang, Qiuying; Guo, Zheng; Sun, Zhiguo; Cui, Xufei; Liu, Kaiyue

    2018-01-01

    Pedestrian-positioning technology based on the foot-mounted micro inertial measurement unit (MIMU) plays an important role in the field of indoor navigation and has received extensive attention in recent years. However, the positioning accuracy of the inertial-based pedestrian-positioning method is rapidly reduced because of the relatively low measurement accuracy of the measurement sensor. The zero-velocity update (ZUPT) is an error correction method which was proposed to solve the cumulative error because, on a regular basis, the foot is stationary during the ordinary gait; this is intended to reduce the position error growth of the system. However, the traditional ZUPT has poor performance because the time of foot touchdown is short when the pedestrians move faster, which decreases the positioning accuracy. Considering these problems, a forward and reverse calculation method based on the adaptive zero-velocity interval adjustment for the foot-mounted MIMU location method is proposed in this paper. To solve the inaccuracy of the zero-velocity interval detector during fast pedestrian movement where the contact time of the foot on the ground is short, an adaptive zero-velocity interval detection algorithm based on fuzzy logic reasoning is presented in this paper. In addition, to improve the effectiveness of the ZUPT algorithm, forward and reverse multiple solutions are presented. Finally, with the basic principles and derivation process of this method, the MTi-G710 produced by the XSENS company is used to complete the test. The experimental results verify the correctness and applicability of the proposed method. PMID:29883399

  19. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence time for Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking, respectively. Moreover, the misleading information is about 2 % for all navigation phases that is considered less safe is not in immediate danger because the horizontal position error is less than the navigation alert limits.

  20. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  1. Positioning and tracking control system analysis for mobile free space optical network

    NASA Astrophysics Data System (ADS)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  2. Modeling the long-term evolution of space debris

    DOEpatents

    Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.

    2017-03-07

    A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.

  3. A novel wireless local positioning system for airport (indoor) security

    NASA Astrophysics Data System (ADS)

    Zekavat, Seyed A.; Tong, Hui; Tan, Jindong

    2004-09-01

    A novel wireless local positioning system (WLPS) for airport (or indoor) security is introduced. This system is used by airport (indoor) security guards to locate all of, or a group of airport employees or passengers within the airport area. WLPS consists of two main parts: (1) a base station that is carried by security personnel; hence, introducing dynamic base station (DBS), and (2) a transponder (TRX) that is mounted on all people (including security personnel) present at the airport; thus, introducing them as active targets. In this paper, we (a) draw a futuristic view of the airport security systems, and the flow of information at the airports, (b) investigate the techniques of extending WLPS coverage area beyond the line-of-sight (LoS), and (c) study the performance of this system via standard transceivers, and direct sequence code division multiple access (DS-CDMA) systems with and without antenna arrays and conventional beamforming (BF).

  4. A Novel Method for Constructing a WIFI Positioning System with Efficient Manpower

    PubMed Central

    Du, Yuanfeng; Yang, Dongkai; Xiu, Chundi

    2015-01-01

    With the rapid development of WIFI technology, WIFI-based indoor positioning technology has been widely studied for location-based services. To solve the problems related to the signal strength database adopted in the widely used fingerprint positioning technology, we first introduce a new system framework in this paper, which includes a modified AP firmware and some cheap self-made WIFI sensor anchors. The periodically scanned reports regarding the neighboring APs and sensor anchors are sent to the positioning server and serve as the calibration points. Besides the calculation of correlations between the target points and the neighboring calibration points, we take full advantage of the important but easily overlooked feature that the signal attenuation model varies in different regions in the regression algorithm to get more accurate results. Thus, a novel method called RSSI Geography Weighted Regression (RGWR) is proposed to solve the fingerprint database construction problem. The average error of all the calibration points’ self-localization results will help to make the final decision of whether the database is the latest or has to be updated automatically. The effects of anchors on system performance are further researched to conclude that the anchors should be deployed at the locations that stand for the features of RSSI distributions. The proposed system is convenient for the establishment of practical positioning system and extensive experiments have been performed to validate that the proposed method is robust and manpower efficient. PMID:25868078

  5. A novel method for constructing a WIFI positioning system with efficient manpower.

    PubMed

    Du, Yuanfeng; Yang, Dongkai; Xiu, Chundi

    2015-04-10

    With the rapid development of WIFI technology, WIFI-based indoor positioning technology has been widely studied for location-based services. To solve the problems related to the signal strength database adopted in the widely used fingerprint positioning technology, we first introduce a new system framework in this paper, which includes a modified AP firmware and some cheap self-made WIFI sensor anchors. The periodically scanned reports regarding the neighboring APs and sensor anchors are sent to the positioning server and serve as the calibration points. Besides the calculation of correlations between the target points and the neighboring calibration points, we take full advantage of the important but easily overlooked feature that the signal attenuation model varies in different regions in the regression algorithm to get more accurate results. Thus, a novel method called RSSI Geography Weighted Regression (RGWR) is proposed to solve the fingerprint database construction problem. The average error of all the calibration points' self-localization results will help to make the final decision of whether the database is the latest or has to be updated automatically. The effects of anchors on system performance are further researched to conclude that the anchors should be deployed at the locations that stand for the features of RSSI distributions. The proposed system is convenient for the establishment of practical positioning system and extensive experiments have been performed to validate that the proposed method is robust and manpower efficient.

  6. Classifications of central solar domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  7. SU-E-J-12: An Image-Guided Soft Robotic Patient Positioning System for Maskless Head-And-Neck Cancer Radiotherapy: A Proof-Of-Concept Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogunmolu, O; Gans, N; Jiang, S

    Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance ofmore » the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control will be pursued.« less

  8. The precision measurement and assembly for miniature parts based on double machine vision systems

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.

    2015-02-01

    In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.

  9. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.

  10. Moiré deflectometry-based position detection for optical tweezers.

    PubMed

    Khorshad, Ali Akbar; Reihani, S Nader S; Tavassoly, Mohammad Taghi

    2017-09-01

    Optical tweezers have proven to be indispensable tools for pico-Newton range force spectroscopy. A quadrant photodiode (QPD) positioned at the back focal plane of an optical tweezers' condenser is commonly used for locating the trapped object. In this Letter, for the first time, to the best of our knowledge, we introduce a moiré pattern-based detection method for optical tweezers. We show, both theoretically and experimentally, that this detection method could provide considerably better position sensitivity compared to the commonly used detection systems. For instance, position sensitivity for a trapped 2.17 μm polystyrene bead is shown to be 71% better than the commonly used QPD-based detection method. Our theoretical and experimental results are in good agreement.

  11. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling

    PubMed Central

    Zhang, Chunxi; Lin, Tie

    2016-01-01

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method. PMID:27483270

  12. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.

    PubMed

    Zhang, Chunxi; Lin, Tie

    2016-07-28

    In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method.

  13. 33 CFR 3.01-1 - General description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration (NOAA) using the NAD 1983 coordinate system and projected to the WGS 1984 grid system. Both coordinate systems are geocentric and similar such that they are Global Positioning System (GPS) compatible... based upon boundaries and points located using the WGS 1984 world grid system. When referenced, the...

  14. Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beeft.

    PubMed

    Arthur, Terrance M; Bosilevac, Joseph M; Nou, Xiangwu; Koohmaraie, Mohammad

    2005-08-01

    Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.

  15. Prescription and over-the-counter medications tool kit.

    DOT National Transportation Integrated Search

    2011-04-01

    Automatic vehicle location (AVL) is a computer-based vehicle tracking system. For transit, the actual real-time position of each vehicle is measured and its location is relayed to a control center. Actual position determination and relay techniques v...

  16. Study on Mobile Object Positioning and Alarming System Based on the “Map World” in the Core Area of the Silk Road Economic Belt

    NASA Astrophysics Data System (ADS)

    Mu, Kai

    2017-02-01

    The established “Map World” on the National Geographic Information Public Service Platform offers free access to many geographic information in the Core Area of the Silk Road Economic Belt. Considering the special security situation and severe splittism and anti-splittism struggles in the Core Area of the Silk Road Economic Belt, a set of moving target positioning and alarming platform based on J2EE platform and B/S structure was designed and realized by combining the “Map World” data and global navigation satellite system. This platform solves various problems, such as effective combination of Global Navigation Satellite System (GNSS) and “Map World” resources, moving target alarming setting, inquiry of historical routes, system management, etc.

  17. Automation of the targeting and reflective alignment concept

    NASA Technical Reports Server (NTRS)

    Redfield, Robin C.

    1992-01-01

    The automated alignment system, described herein, employs a reflective, passive (requiring no power) target and includes a PC-based imaging system and one camera mounted on a six degree of freedom robot manipulator. The system detects and corrects for manipulator misalignment in three translational and three rotational directions by employing the Targeting and Reflective Alignment Concept (TRAC), which simplifies alignment by decoupling translational and rotational alignment control. The concept uses information on the camera and the target's relative position based on video feedback from the camera. These relative positions are converted into alignment errors and minimized by motions of the robot. The system is robust to exogenous lighting by virtue of a subtraction algorithm which enables the camera to only see the target. These capabilities are realized with relatively minimal complexity and expense.

  18. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages

    PubMed Central

    Wang, Sheng-Shih

    2018-01-01

    The continuous global increase in the number of cars has led to an increase in parking issues, particularly with respect to the search for available parking spaces and finding cars. In this paper, we propose a navigation system for car owners to find their cars in indoor parking garages. The proposed system comprises a car-searching mobile app and a positioning-assisting subsystem. The app guides car owners to their cars based on a “turn-by-turn” navigation strategy, and has the ability to correct the user’s heading orientation. The subsystem uses beacon technology for indoor positioning, supporting self-guidance of the car-searching mobile app. This study also designed a local coordinate system to support the identification of the locations of parking spaces and beacon devices. We used Android as the platform to implement the proposed car-searching mobile app, and used Bytereal HiBeacon devices to implement the proposed positioning-assisting subsystem. We also deployed the system in a parking lot in our campus for testing. The experimental results verified that the proposed system not only works well, but also provides the car owner with the correct route guidance information. PMID:29734753

  19. Metabolic power and energetic costs of professional Australian Football match-play.

    PubMed

    Coutts, Aaron J; Kempton, Thomas; Sullivan, Courtney; Bilsborough, Johann; Cordy, Justin; Rampinini, Ermanno

    2015-03-01

    To compare the metabolic power demands between positional groups, and examine temporal changes in these parameters during Australian Football match-play. Longitudinal observational study. Global positioning system data were collected from 39 Australian Football players from the same club during 19 Australian Football League competition games over two seasons. A total of 342 complete match samples were obtained for analysis. Players were categorised into one of six positional groups: tall backs, mobile backs, midfielders, tall forwards, mobile forwards and rucks. Instantaneous raw velocity data obtained from the global positioning system units was exported to a customised spreadsheet which provided estimations of both speed-based (e.g. total and high-speed running distance) and derived metabolic power and energy expenditure variables (e.g. average metabolic power, high-power distance, total energy expenditure). There were significant differences between positional groups for both speed-based and metabolic power indices, with midfielders covering more total and high-speed distance, as well as greater average and overall energy expenditure compared to other positions (all p<0.001). There were reductions in total, high-speed, and high-power distance, as well as average metabolic power throughout the match (all p<0.001). Positional differences exist for both metabolic power and traditional running based variables. Generally, midfielders, followed by mobile forwards and mobile backs had greater activity profiles compared to other position groups. We observed that the reductions in most metabolic power variables during the course of the match are comparable to traditional running based metrics. This study demonstrates that metabolic power data may contribute to our understanding of the physical demands of Australian Football. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  1. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.; ,

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  2. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with the most stable intermetallics were found to have the strongest interaction in the liquid state. Eventually, a new criteria was formulated to select electrode materials for liquid metal batteries. Systems with the most stable intermetallics, which can be evaluated by the enthalpy of formation of these systems, will yield the highest voltage when assembled as positive and negative electrodes in a liquid metal battery. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  3. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    DTIC Science & Technology

    2011-12-01

    Reconnaissance Squadron stationed at Keesler Air Force Base in Biloxi, Mississippi, and the National Oceanic and Atmospheric Administration (NOAA) Aircraft...implementation of the National Center for Atmospheric Research (NCAR) Global Positioning System (GPS) dropsonde in specialized boundary-layer...transiting the western Pacific, Gulf of Mexico, and Atlantic Ocean basins. 107 APPENDIX A: NCAR GPS DROPSONDES The Global Positioning System (GPS

  4. Using Data to Inform Systems: Assessing Teacher Implementation of Key Features of Program-Wide Positive Behavioral Support in Head Start Classrooms

    ERIC Educational Resources Information Center

    Stormont, Melissa; Covington, Sandra; Lewis, Timothy J.

    2006-01-01

    To date, data-based research has not been conducted specifically on the use of systems of schoolwide positive behavioral support (SW-PBS) in early childhood settings; however, several articles have described how the process can be implemented to support children in early childhood settings. Research has also documented early childhood teachers'…

  5. Automatic control system of high precision welding of workpieces in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. N.; Zvezdin, V. V.; Israfilov, I. H.; Portnov, S. M.

    2014-12-01

    In this paper, based on the conducted patent research, the system of laser welding control with different geometry of weld and shapes of parts is developed. The method of monitoring the position of the spot of laser radiation in relation to the curved weld is worked out; it is based on the tracking the edges of the welded parts by low-power laser radiation reflected from the surface of the parts. It allows to make the positioning of the focus of laser radiation in relation to the juncture of the welded parts automatically.

  6. A navigated mechatronic system with haptic features to assist in surgical interventions.

    PubMed

    Pieck, S; Gross, I; Knappe, P; Kuenzler, S; Kerschbaumer, F; Wahrburg, J

    2003-01-01

    In orthopaedic surgery, the development of new computer-based technologies such as navigation systems and robotics will facilitate more precise, reproducible results in surgical interventions. There are already commercial systems available for clinical use, though these still have some limitations and drawbacks. This paper presents an alternative approach to a universal modular surgical assistant system for supporting less or minimally invasive surgery. The position of a mechatronic arm, which is part of the system, is controlled by a navigation system so that small patient movements are automatically detected and compensated for in real time. Thus, the optimal tool position can be constantly maintained without the need for rigid bone or patient fixation. Furthermore, a force control mode of the mechatronic assistant system, based on a force-torque sensor, not only increases safety during surgical interventions but also facilitates hand-driven direct positioning of the arm. A prototype has been successfully tested in clinical applications at the Orthopadische Universitätsklinik Frankfurt. For the first time worldwide, implantation of the cup prosthesis in total hip replacement surgery has been carried out with the assistance of a mechatronic arm. According to measurements by the digitizing system, operating tool angle deviation remained below 0.5 degrees, relative to the preoperative planning. The presented approach to a new kind of surgical mechatronic assistance system supports the surgeon as needed by optimal positioning of the surgical instruments. Due to its modular design, it is applicable to a wide range of tasks in surgical interventions, e.g., endoscope guidance, bone preparation, etc.

  7. Technical Note: High temporal resolution characterization of gating response time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu; McCabe, Bradley P.; Belcher, Andrew H.

    2016-06-15

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ONmore » and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.« less

  8. Experimental Evaluation of an Invasive Medical Instrument Based on a Displacement Measurement System.

    PubMed

    Fotiadis, Dimitris A; Astaras, Alexandros; Bamidis, Panagiotis D; Papathanasiou, Kostas; Kalfas, Anestis

    2015-09-01

    This paper presents a novel method for tracking the position of a medical instrument's tip. The system is based on phase locking a high frequency signal transmitted from the medical instrument's tip to a reference signal. Displacement measurement is established having the loop open, in order to get a low frequency voltage representing the medical instrument's movement; therefore, positioning is established by means of conventional measuring techniques. The voltage-controlled oscillator stage of the phase-locked loop (PLL), combined to an appropriate antenna, comprises the associated transmitter located inside the medical instrument tip. All the other low frequency PLL components, low noise amplifier and mixer, are located outside the human body, forming the receiver part of the system. The operating details of the proposed system were coded in Verilog-AMS. Simulation results indicate robust medical instrument tracking in 1-D. Experimental evaluation of the proposed position tracking system is also presented. The experiments described in this paper are based on a transmitter moving opposite a stationary receiver performing either constant velocity or uniformly accelerated movement, and also together with two stationary receivers performing constant velocity movement again. This latter setup is implemented in order to demonstrate the prototype's accuracy for planar (2-D) motion measurements. Error analysis and time-domain analysis are presented for system performance characterization. Furthermore, preliminary experimental assessment using a saline solution container to more closely approximate the human body as a radio frequency wave transmission medium has proved the system's capability of operating underneath the skin.

  9. A novel navigation system for maxillary positioning in orthognathic surgery: Preclinical evaluation.

    PubMed

    Lutz, Jean-Christophe; Nicolau, Stéphane; Agnus, Vincent; Bodin, Frédéric; Wilk, Astrid; Bruant-Rodier, Catherine; Rémond, Yves; Soler, Luc

    2015-11-01

    Appropriate positioning of the maxilla is critical in orthognathic surgery. As opposed to splint-based positioning, navigation systems are versatile and appropriate in assessing the vertical dimension. Bulk and disruption to the line of sight are drawbacks of optical navigation systems. Our aim was to develop and assess a novel navigation system based on electromagnetic tracking of the maxilla, including real-time registration of head movements. Since the software interface has proved to greatly influence the accuracy of the procedure, we purposely designed and evaluated an original, user-friendly interface. A sample of 12 surgeons had to navigate the phantom osteotomized maxilla to eight given target positions using the software we have developed. Time and accuracy (translational error and angular error) were compared between a conventional and a navigated session. A questionnaire provided qualitative evaluation. Our system definitely allows a reduction in variability of time and accuracy among different operators. Accuracy was improved in all surgeons (mean terror difference = 1.11 mm, mean aerror difference = 1.32°). Operative time was decreased in trainees. Therefore, they would benefit from such a system that could also serve for educational purposes. The majority of surgeons who strongly agreed that such a navigation system would prove very helpful in complex deformities, also stated that it would be helpful in everyday orthognathic procedures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. [Optimization of end-tool parameters based on robot hand-eye calibration].

    PubMed

    Zhang, Lilong; Cao, Tong; Liu, Da

    2017-04-01

    A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.

  11. Commissioning and quality assurance of an integrated system for patient positioning and setup verification in particle therapy.

    PubMed

    Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G

    2014-08-01

    In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.

  12. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2017-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  13. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2014-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  14. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  15. Multi-Stage System for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an artificial neural network classifier. The multi-stage system allows tuning the detection sensitivity and the identification specificity individually in each stage. It is easier to achieve optimized ATR operation based on its specific goal. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar and video image datasets.

  16. Embedded wavelet-based face recognition under variable position

    NASA Astrophysics Data System (ADS)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  17. Solar energy system economic evaluation for IBM System 3, Glendo, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This analysis was based on the technical and economic models in f-chart design procedures with inputs based on the characteristics of the parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings, and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables was also investigated.

  18. [A wireless power transmission system for capsule endoscope].

    PubMed

    Xin, Wenhui; Yan, Guozheng; Wang, Wenxing

    2010-06-01

    In order to deliver power to the capsule endoscope, whose position and orientation are always changing when traveling along the alimentary tract, a wireless power transmission system based on electromagnetic coupling was proposed. The system is composed of Helmholtz transmitting coil and three-dimensional receiving coil. Helmholtz coil outside the body generates a uniform magnetic field covering the whole alimentary tract; three-dimensional coil inside retrieves stable power regardless of its position and orientation. The transmitter and receiver were designed and implemented, and the experiments validated the feasibility of the system. The results show that at least 320 mW of usable power can be transmitted to capsule endoscope when its position and orientation are changing at random and the transmitting power is 25W.

  19. Impulse position control algorithms for nonlinear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesekin, A. N., E-mail: sesekin@list.ru; Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990; Nepp, A. N., E-mail: anepp@urfu.ru

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of suchmore » regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.« less

  20. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  1. Method to improve accuracy of positioning object by eLoran system with applying standard Kalman filter

    NASA Astrophysics Data System (ADS)

    Grunin, A. P.; Kalinov, G. A.; Bolokhovtsev, A. V.; Sai, S. V.

    2018-05-01

    This article reports on a novel method to improve the accuracy of positioning an object by a low frequency hyperbolic radio navigation system like an eLoran. This method is based on the application of the standard Kalman filter. Investigations of an affection of the filter parameters and the type of the movement on accuracy of the vehicle position estimation are carried out. Evaluation of the method accuracy was investigated by separating data from the semi-empirical movement model to different types of movements.

  2. A Developmental Examination of School-Wide Positive Behavior Support in Elementary School: Behavior Patterns, School Climate, and Academic Achievement

    ERIC Educational Resources Information Center

    Betters-Bubon, Jennifer

    2012-01-01

    School-wide Positive Behavior Support (SWPBS) programs integrate research-based practice within a three-tier approach of prevention and intervention to impact change within school systems. Research suggests positive changes in student outcomes with the implementation of SWPBS. Supported by social-ecological and behavioral theory, this longitudinal…

  3. Diffeomorphometry and geodesic positioning systems for human anatomy.

    PubMed

    Miller, Michael I; Younes, Laurent; Trouvé, Alain

    2014-03-01

    The Computational Anatomy project has largely been a study of large deformations within a Riemannian framework as an efficient point of view for generating metrics between anatomical configurations. This approach turns D'Arcy Thompson's comparative morphology of human biological shape and form into a metrizable space. Since the metric is constructed based on the geodesic length of the flows of diffeomorphisms connecting the forms, we call it diffeomorphometry . Just as importantly, since the flows describe algebraic group action on anatomical submanifolds and associated functional measurements, they become the basis for positioning information, which we term geodesic positioning . As well the geodesic connections provide Riemannian coordinates for locating forms in the anatomical orbit, which we call geodesic coordinates . These three components taken together - the metric, geodesic positioning of information, and geodesic coordinates - we term the geodesic positioning system . We illustrate via several examples in human and biological coordinate systems and machine learning of the statistical representation of shape and form.

  4. Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    PubMed Central

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally. PMID:22164012

  5. Research on the filtering algorithm in speed and position detection of maglev trains.

    PubMed

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train's structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  6. A Lymph Node Staging System for Gastric Cancer: A Hybrid Type Based on Topographic and Numeric Systems.

    PubMed

    Choi, Yoon Young; An, Ji Yeong; Katai, Hitoshi; Seto, Yasuyuki; Fukagawa, Takeo; Okumura, Yasuhiro; Kim, Dong Wook; Kim, Hyoung-Il; Cheong, Jae-Ho; Hyung, Woo Jin; Noh, Sung Hoon

    2016-01-01

    Although changing a lymph node staging system from an anatomically based system to a numerically based system in gastric cancer offers better prognostic performance, several problems can arise: it does not offer information on the anatomical extent of disease and cannot represent the extent of lymph node dissection. The purpose of this study was to discover an alternative lymph node staging system for gastric cancer. Data from 6025 patients who underwent gastrectomy for primary gastric cancer between January 2000 and December 2010 were reviewed. The lymph node groups were reclassified into lesser-curvature, greater-curvature, and extra-perigastric groups. Presence of any metastatic lymph node in one group was considered positive. Lymph node groups were further stratified into four (new N0-new N3) according to the number of positive lymph node groups. Survival outcomes with this new N staging were compared with those of the current TNM system. For validation, two centers in Japan (large center, n = 3443; medium center, n = 560) were invited. Even among the same pN stages, the more advanced new N stage showed worse prognosis, indicating that the anatomical extent of metastatic lymph nodes is important. The prognostic performance of the new staging system was as good as that of the current TNM system for overall advanced gastric cancer as well as lymph node-positive gastric cancer (Harrell C-index was 0.799, 0.726, and 0.703 in current TNM and 0.799, 0.727, and 0.703 in new TNM stage). Validation sets supported these outcomes. The new N staging system demonstrated prognostic performance equal to that of the current TNM system and could thus be used as an alternative.

  7. Crystal identification for a dual-layer-offset LYSO based PET system via Lu-176 background radiation and mean shift algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang

    2018-01-01

    Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.

  8. An Automatic Detection System of Lung Nodule Based on Multi-Group Patch-Based Deep Learning Network.

    PubMed

    Jiang, Hongyang; Ma, He; Qian, Wei; Gao, Mengdi; Li, Yan

    2017-07-14

    High-efficiency lung nodule detection dramatically contributes to the risk assessment of lung cancer. It is a significant and challenging task to quickly locate the exact positions of lung nodules. Extensive work has been done by researchers around this domain for approximately two decades. However, previous computer aided detection (CADe) schemes are mostly intricate and time-consuming since they may require more image processing modules, such as the computed tomography (CT) image transformation, the lung nodule segmentation and the feature extraction, to construct a whole CADe system. It is difficult for those schemes to process and analyze enormous data when the medical images continue to increase. Besides, some state of the art deep learning schemes may be strict in the standard of database. This study proposes an effective lung nodule detection scheme based on multi-group patches cut out from the lung images, which are enhanced by the Frangi filter. Through combining two groups of images, a four-channel convolution neural networks (CNN) model is designed to learn the knowledge of radiologists for detecting nodules of four levels. This CADe scheme can acquire the sensitivity of 80.06% with 4.7 false positives per scan and the sensitivity of 94% with 15.1 false positives per scan. The results demonstrate that the multi-group patch-based learning system is efficient to improve the performance of lung nodule detection and greatly reduce the false positives under a huge amount of image data.

  9. Rethinking Health Professions Education through the Lens of Interprofessional Practice and Education

    ERIC Educational Resources Information Center

    Brandt, Barbara F.

    2018-01-01

    Using adult learning principles, health professions educators are well positioned to create interprofessional learning systems for collaborative, team-based practice in the transforming health-care system.

  10. Empowered Learning in Secondary Schools: Promoting Positive Youth Development through a Multi­Tiered System of Supports

    ERIC Educational Resources Information Center

    Hazel, Cynthia E.

    2016-01-01

    Positive youth development is a strengths-based, positive psychology approach to fostering adolescents' educational engagement and achievement. It focuses not just on students' academic development but also on their vocational, social, and emotional development. The positive youth development philosophy is at the heart of Cynthia Hazel's unique…

  11. Development of automatic pre-tracking system for fillet weld based on laser trigonometry

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoqin; Yu, Fusheng

    2005-01-01

    In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.

  12. Cellular Automata-Based Application for Driver Assistance in Indoor Parking Areas.

    PubMed

    Caballero-Gil, Cándido; Caballero-Gil, Pino; Molina-Gil, Jezabel

    2016-11-15

    This work proposes an adaptive recommendation mechanism for smart parking that takes advantage of the popularity of smartphones and the rise of the Internet of Things. The proposal includes a centralized system to forecast available indoor parking spaces, and a low-cost mobile application to obtain data of actual and predicted parking occupancy. The described scheme uses data from both sources bidirectionally so that the centralized forecast system is fed with data obtained with the distributed system based on smartphones, and vice versa. The mobile application uses different wireless technologies to provide the forecast system with actual parking data and receive from the system useful recommendations about where to park. Thus, the proposal can be used by any driver to easily find available parking spaces in indoor facilities. The client software developed for smartphones is a lightweight Android application that supplies precise indoor positioning systems based on Quick Response codes or Near Field Communication tags, and semi-precise indoor positioning systems based on Bluetooth Low Energy beacons. The performance of the proposed approach has been evaluated by conducting computer simulations and real experimentation with a preliminary implementation. The results have shown the strengths of the proposal in the reduction of the time and energy costs to find available parking spaces.

  13. Cellular Automata-Based Application for Driver Assistance in Indoor Parking Areas †

    PubMed Central

    Caballero-Gil, Cándido; Caballero-Gil, Pino; Molina-Gil, Jezabel

    2016-01-01

    This work proposes an adaptive recommendation mechanism for smart parking that takes advantage of the popularity of smartphones and the rise of the Internet of Things. The proposal includes a centralized system to forecast available indoor parking spaces, and a low-cost mobile application to obtain data of actual and predicted parking occupancy. The described scheme uses data from both sources bidirectionally so that the centralized forecast system is fed with data obtained with the distributed system based on smartphones, and vice versa. The mobile application uses different wireless technologies to provide the forecast system with actual parking data and receive from the system useful recommendations about where to park. Thus, the proposal can be used by any driver to easily find available parking spaces in indoor facilities. The client software developed for smartphones is a lightweight Android application that supplies precise indoor positioning systems based on Quick Response codes or Near Field Communication tags, and semi-precise indoor positioning systems based on Bluetooth Low Energy beacons. The performance of the proposed approach has been evaluated by conducting computer simulations and real experimentation with a preliminary implementation. The results have shown the strengths of the proposal in the reduction of the time and energy costs to find available parking spaces. PMID:27854282

  14. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, R; Sun, B; Zhao, T

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculatedmore » on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.« less

  15. Accurate positioning based on acoustic and optical sensors

    NASA Astrophysics Data System (ADS)

    Cai, Kerong; Deng, Jiahao; Guo, Hualing

    2009-11-01

    Unattended laser target designator (ULTD) was designed to partly take the place of conventional LTDs for accurate positioning and laser marking. Analyzed the precision, accuracy and errors of acoustic sensor array, the requirements of laser generator, and the technology of image analysis and tracking, the major system modules were determined. The target's classification, velocity and position can be measured by sensors, and then coded laser beam will be emitted intelligently to mark the excellent position at the excellent time. The conclusion shows that, ULTD can not only avoid security threats, be deployed massively, and accomplish battle damage assessment (BDA), but also be fit for information-based warfare.

  16. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  17. A clinically observed discrepancy between image-based and log-based MLC positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Brian, E-mail: bpn2p@virginia.edu; Ahmed, Mahmoud; Kathuria, Kunal

    2016-06-15

    Purpose: To present a clinical case in which real-time intratreatment imaging identified an multileaf collimator (MLC) leaf to be consistently deviating from its programmed and logged position by >1 mm. Methods: An EPID-based exit-fluence dosimetry system designed to prevent gross delivery errors was used to capture cine during treatment images. The author serendipitously visually identified a suspected MLC leaf displacement that was not otherwise detected. The leaf position as recorded on the EPID images was measured and log-files were analyzed for the treatment in question, the prior day’s treatment, and for daily MLC test patterns acquired on those treatment days.more » Additional standard test patterns were used to quantify the leaf position. Results: Whereas the log-file reported no difference between planned and recorded positions, image-based measurements showed the leaf to be 1.3 ± 0.1 mm medial from the planned position. This offset was confirmed with the test pattern irradiations. Conclusions: It has been clinically observed that log-file derived leaf positions can differ from their actual position by >1 mm, and therefore cannot be considered to be the actual leaf positions. This cautions the use of log-based methods for MLC or patient quality assurance without independent confirmation of log integrity. Frequent verification of MLC positions through independent means is a necessary precondition to trust log-file records. Intratreatment EPID imaging provides a method to capture departures from MLC planned positions.« less

  18. On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach.

    PubMed

    Baigzadehnoe, Barmak; Rahmani, Zahra; Khosravi, Alireza; Rezaie, Behrooz

    2017-09-01

    In this paper, the position and force tracking control problem of cooperative robot manipulator system handling a common rigid object with unknown dynamical models and unknown external disturbances is investigated. The universal approximation properties of fuzzy logic systems are employed to estimate the unknown system dynamics. On the other hand, by defining new state variables based on the integral and differential of position and orientation errors of the grasped object, the error system of coordinated robot manipulators is constructed. Subsequently by defining the appropriate change of coordinates and using the backstepping design strategy, an adaptive fuzzy backstepping position tracking control scheme is proposed for multi-robot manipulator systems. By utilizing the properties of internal forces, extra terms are also added to the control signals to consider the force tracking problem. Moreover, it is shown that the proposed adaptive fuzzy backstepping position/force control approach ensures all the signals of the closed loop system uniformly ultimately bounded and tracking errors of both positions and forces can converge to small desired values by proper selection of the design parameters. Finally, the theoretic achievements are tested on the two three-link planar robot manipulators cooperatively handling a common object to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system.

    PubMed

    Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji

    2015-08-01

    To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.

  20. Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator.

    PubMed

    Pepley, David F; Gordon, Adam B; Yovanoff, Mary A; Mirkin, Katelin A; Miller, Scarlett R; Han, David C; Moore, Jason Z

    Ultrasound guided central venous catheterization (CVC) is a common surgical procedure with complication rates ranging from 5 to 21 percent. Training is typically performed using manikins that do not simulate anatomical variations such as obesity and abnormal vessel positioning. The goal of this study was to develop and validate the effectiveness of a new virtual reality and force haptic based simulation platform for CVC of the right internal jugular vein. A CVC simulation platform was developed using a haptic robotic arm, 3D position tracker, and computer visualization. The haptic robotic arm simulated needle insertion force that was based on cadaver experiments. The 3D position tracker was used as a mock ultrasound device with realistic visualization on a computer screen. Upon completion of a practice simulation, performance feedback is given to the user through a graphical user interface including scoring factors based on good CVC practice. The effectiveness of the system was evaluated by training 13 first year surgical residents using the virtual reality haptic based training system over a 3 month period. The participants' performance increased from 52% to 96% on the baseline training scenario, approaching the average score of an expert surgeon: 98%. This also resulted in improvement in positive CVC practices including a 61% decrease between final needle tip position and vein center, a decrease in mean insertion attempts from 1.92 to 1.23, and a 12% increase in time spent aspirating the syringe throughout the procedure. A virtual reality haptic robotic simulator for CVC was successfully developed. Surgical residents training on the simulation improved to near expert levels after three robotic training sessions. This suggests that this system could act as an effective training device for CVC. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Technician-free system for image-guided bronchoscopy

    NASA Astrophysics Data System (ADS)

    Khare, Rahul; Bascom, Rebecca; Higgins, William E.

    2013-03-01

    Previous studies have shown that guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. However, most of these systems suffer from one or more of the following limitations: 1) an attending technician must carefully keep the system position synchronized with the bronchoscope position during the procedure; 2) extra bronchoscope tracking hardware may be required; 3) guidance cannot take place in real time; 4) the guidance system is unable to detect and correct faulty bronchoscope maneuvers; and 5) a resynchronization procedure must be followed after adverse events such as patient cough or dynamic airway collapse. Here, we propose an image-based system for technician-free bronchoscopy guidance that relies on two features. First, our system precomputes a guidance plan that suggests natural bronchoscope maneuvers at every bifurcation leading toward a region of interest (ROI). Second, our system enables bronchoscope position verification that relies on a global-registration algorithm to establish the global bronchoscope position and, thus, provide the physician with updated navigational information during bronchoscopy. The system can handle general navigation to an ROI, as well as adverse events, and is directly controlled by the physician by a foot pedal. Guided bronchoscopy results using airway-tree phantoms and human cases demonstrate the efficacy of the system.

  2. Prospective multicenter study of ultrasound-based measurements of fetal head station and position throughout labor.

    PubMed

    Vitner, D; Paltieli, Y; Haberman, S; Gonen, R; Ville, Y; Nizard, J

    2015-11-01

    To assess the relationship between fetal head position and head station during labor, as measured using an ultrasound-based system, and the occurrence of occiput posterior (OP) position at delivery. This was an international prospective observational study including women who delivered between January 2009 and September 2013 in four centers: one in Brooklyn, NY, USA; one in Haifa, Israel; and two in Paris, France. We used an ultrasound-based system (LaborPro) to monitor fetal head station and position non-invasively throughout labor. We collected data on demographics, labor parameters and outcome. A total of 595 women were included. In 563 (94.6%) women, fetal head position at delivery was occiput anterior (OA), in 31 (5.2%) it was OP and in one (0.2%) it was occiput transverse. In 89% of pregnancies with intrapartum OP when fetal head station was above -2, the head position turned to OA at delivery; the equivalent figures were 74% and 63% OA at delivery when intrapartum OP was diagnosed at head stations of -2 to < 0, and 0 and below, respectively. Cesarean delivery was performed in 35% of pregnancies with fetal head in OP position at delivery, as opposed to 10% of those with non-OP position at delivery. On retrospective analysis, all deliveries in OP were already in OP at station -2 and below. In this first assessment of fetal head position at delivery according to fetal head position at various station levels, our data show that 100% of OP positions at delivery were already in OP position at station -2 and below. We did not observe rotation from a non-OP to an OP position from station -2 and below. Nearly two-thirds of fetuses in OP at station 0 and below will rotate to an OA position for delivery. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  3. A Blueprint for a Strengths-Based Level System in Schools

    ERIC Educational Resources Information Center

    Rubin, Ron

    2005-01-01

    In spite of the proven research studies that cite the beneficial effects of a positive, assets-based approach to child development and discipline (Scales, 2000; Jones & Jones, 1998; Benson, Galbraith, & Espeland, 1994), numerous school systems adhere to the articulation of tiered levels of misconduct, which identify minor to severe types of…

  4. Effects of an Intelligent Web-Based English Instruction System on Students' Academic Performance

    ERIC Educational Resources Information Center

    Jia, J.; Chen, Y.; Ding, Z.; Bai, Y.; Yang, B.; Li, M.; Qi, J.

    2013-01-01

    This research conducted quasi-experiments in four middle schools to evaluate the long-term effects of an intelligent web-based English instruction system, Computer Simulation in Educational Communication (CSIEC), on students' academic attainment. The analysis of regular examination scores and vocabulary test validates the positive impact of CSIEC,…

  5. Pharmacoeconomic guidelines and their implementation in the positive list system in South Korea.

    PubMed

    Bae, Eun Young; Lee, Eui Kyung

    2009-01-01

    This article reviews the change in the reimbursement and pricing system in South Korea, which was the precursor to the eventual implementation of evidence-based decision-making. There has been pressure on Korea's National Health Insurance system to control its skyrocketing expenditures on drugs. As a result, a series of cost-containment policies have been implemented. The idea of economic evidence-based decision-making was first introduced in Korea in 2001 when the government announced cost-effectiveness as one of the criteria for reimbursement decisions. After this announcement, the Health Insurance Review and Assessment Service (HIRA) developed guidelines, which became the standard for economic evaluations. In 2006, the drug listing system for reimbursement was changed from a negative to a positive system under the drug expenditure rationalization plan. Under this new system, only drugs that are proven economically and clinically valuable can be listed, and applicants have to submit economic evaluation studies to support the cost-effectiveness of their drugs. Once new applications are submitted, HIRA reviews them, and the Drug Reimbursement Evaluation Committee (DREC) decides whether or not to recommend the submitted drugs. In its reimbursement decisions, the DREC considers not only cost-effectiveness but also the availability of therapeutic alternatives, the severity of the condition treated, and the impact on the budget, among other measures. After the introduction of the positive list system, 56% of drugs were determined to be appropriate for reimbursement by the DREC. Despite limited human resources, experience, and quality local data, Korea is continuing to make efforts to establish a system of evidence-based decision-making.

  6. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  7. Procedures for woody vegetation surveys in the Kazgail rural council area, Kordofan, Sudan

    USGS Publications Warehouse

    Falconer, Allan; Cross, Matthew D.; Orr, Donald G.

    1990-01-01

    Efforts to reforest parts of the Kordofan Province of Sudan are receiving support from international development agencies. These efforts include planning and implementing reforestation activities that require the collection of natural resources and socioeconomic data, and the preparation of base maps. A combination of remote sensing, geographic information system and global positioning systems procedures are used in this study to meet these requirements.Remote sensing techniques were used to provide base maps and to guide the compilation of vegetation resources maps. These techniques provided a rapid and efficient method for documenting available resources. Pocket‐sized global positioning system units were used to establish the location of field data collected for mapping and resource analysis. A microcomputer data management system tabulated and displayed the field data. The resulting system for data analysis, management, and planning has been adopted for the mapping and inventory of the Gum Belt of Sudan.

  8. Concentration solar power optimization system and method of using the same

    DOEpatents

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  9. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE PAGES

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...

    2017-11-15

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  10. Case mix adjusted nursing-home reimbursement: a critical review of the evidence.

    PubMed

    Weissert, W G; Musliner, M C

    1992-01-01

    Nursing-home case mix adjusted payment systems typically base payments on estimates of patients' care needs, but to date the data on their effectiveness are ambiguous. Studies mainly show that access for patients most in need of care appears to improve under these systems. Case mix based payment systems have both positive and negative effects on quality of care and require compensating mechanisms for the potentially harmful incentives they can generate. On the positive side, nursing homes are paid more equitably; the negative aspect is reflected in higher costs, particularly for administration. A Health Care Financing Administration (HCFA) demonstration project may provide insights, but its limited number of predominantly small, rural, participating states, its tandem quality assurance system, and potentially confounding market variables may restrict the value of this project. We do not yet have the data to assess the impact of instituting case mix adjustment systems.

  11. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  12. Energy absorbing system for mechanical impacts

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1972-01-01

    System is described based on use of arrangement of crushable hollow spheres bonded together in layers of progressively different diameter, with largest diameter spheres positioned to receive impact forces initially. System is particularly useful for delivery of payloads by air-drop techniques.

  13. Neural network-based position synchronised internal force control scheme for cooperative manipulator system

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Xu, Fan; Lu, GuoDong

    2017-09-01

    More complex problems of simultaneous position and internal force control occur with cooperative manipulator systems than that of a single one. In the presence of unwanted parametric and modelling uncertainties as well as external disturbances, a decentralised position synchronised force control scheme is proposed. With a feedforward neural network estimating engine, a precise model of the system dynamics is not required. Unlike conventional cooperative or synchronised controllers, virtual position and virtual synchronisation errors are introduced for internal force tracking control and task space position synchronisation. Meanwhile joint space synchronisation and force measurement are unnecessary. Together with simulation studies and analysis, the position and the internal force errors are shown to asymptotically converge to zero. Moreover, the controller exhibits different characteristics with selected synchronisation factors. Under certain settings, it can deal with temporary cooperation by an intelligent retreat mechanism, where less internal force would occur and rigid collision can be avoided. Using a Lyapunov stability approach, the controller is proven to be robust in face of the aforementioned uncertainties.

  14. Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology

    NASA Astrophysics Data System (ADS)

    Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.

    2004-11-01

    Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of ±10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.

  15. An Augmented Reality Endoscope System for Ureter Position Detection.

    PubMed

    Yu, Feng; Song, Enmin; Liu, Hong; Li, Yunlong; Zhu, Jun; Hung, Chih-Cheng

    2018-06-25

    Iatrogenic injury of ureter in the clinical operation may cause the serious complication and kidney damage. To avoid such a medical accident, it is necessary to provide the ureter position information to the doctor. For the detection of ureter position, an ureter position detection and display system with the augmented ris proposed to detect the ureter that is covered by human tissue. There are two key issues which should be considered in this new system. One is how to detect the covered ureter that cannot be captured by the electronic endoscope and the other is how to display the ureter position that provides stable and high-quality images. Simultaneously, any delayed processing of the system should disturb the surgery. The aided hardware detection method and target detection algorithms are proposed in this system. To mark the ureter position, a surface-lighting plastic optical fiber (POF) with the encoded light-emitting diode (LED) light is used to indicate the ureter position. The monochrome channel filtering algorithm (MCFA) is proposed to locate the ureter region more precisely. The ureter position is extracted using the proposed automatic region growing algorithm (ARGA) that utilizes the statistical information of the monochrome channel for the selection of growing seed point. In addition, according to the pulse signal of encoded light, the recognition of bright and dark frames based on the aided hardware (BDAH) is proposed to expedite the processing speed. Experimental results demonstrate that the proposed endoscope system can identify 92.04% ureter region in average.

  16. Absolute position calculation for a desktop mobile rehabilitation robot based on three optical mouse sensors.

    PubMed

    Zabaleta, Haritz; Valencia, David; Perry, Joel; Veneman, Jan; Keller, Thierry

    2011-01-01

    ArmAssist is a wireless robot for post stroke upper limb rehabilitation. Knowing the position of the arm is essential for any rehabilitation device. In this paper, we describe a method based on an artificial landmark navigation system. The navigation system uses three optical mouse sensors. This enables the building of a cheap but reliable position sensor. Two of the sensors are the data source for odometry calculations, and the third optical mouse sensor takes very low resolution pictures of a custom designed mat. These pictures are processed by an optical symbol recognition algorithm which will estimate the orientation of the robot and recognize the landmarks placed on the mat. The data fusion strategy is described to detect the misclassifications of the landmarks in order to fuse only reliable information. The orientation given by the optical symbol recognition (OSR) algorithm is used to improve significantly the odometry and the recognition of the landmarks is used to reference the odometry to a absolute coordinate system. The system was tested using a 3D motion capture system. With the actual mat configuration, in a field of motion of 710 × 450 mm, the maximum error in position estimation was 49.61 mm with an average error of 36.70 ± 22.50 mm. The average test duration was 36.5 seconds and the average path length was 4173 mm.

  17. Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    PubMed Central

    Barea, Rafael; Boquete, Luciano; Rodriguez-Ascariz, Jose Manuel; Ortega, Sergio; López, Elena

    2011-01-01

    This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes. PMID:22346579

  18. Consensus for second-order multi-agent systems with position sampled data

    NASA Astrophysics Data System (ADS)

    Wang, Rusheng; Gao, Lixin; Chen, Wenhai; Dai, Dameng

    2016-10-01

    In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated. The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13F030005) and the National Natural Science Foundation of China (Grant No. 61501331).

  19. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  20. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    NASA Astrophysics Data System (ADS)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  1. An Indoor Positioning Technique Based on a Feed-Forward Artificial Neural Network Using Levenberg-Marquardt Learning Method

    NASA Astrophysics Data System (ADS)

    Pahlavani, P.; Gholami, A.; Azimi, S.

    2017-09-01

    This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.

  2. A position and attitude vision measurement system for wind tunnel slender model

    NASA Astrophysics Data System (ADS)

    Cheng, Lei; Yang, Yinong; Xue, Bindang; Zhou, Fugen; Bai, Xiangzhi

    2014-11-01

    A position and attitude vision measurement system for drop test slender model in wind tunnel is designed and developed. The system used two high speed cameras, one is put to the side of the model and another is put to the position where the camera can look up the model. Simple symbols are set on the model. The main idea of the system is based on image matching technique between the 3D-digital model projection image and the image captured by the camera. At first, we evaluate the pitch angles, the roll angles and the position of the centroid of a model through recognizing symbols in the images captured by the side camera. And then, based on the evaluated attitude info, giving a series of yaw angles, a series of projection images of the 3D-digital model are obtained. Finally, these projection images are matched with the image which captured by the looking up camera, and the best match's projection images corresponds to the yaw angle is the very yaw angle of the model. Simulation experiments are conducted and the results show that the maximal error of attitude measurement is less than 0.05°, which can meet the demand of test in wind tunnel.

  3. Optical Indoor Positioning System Based on TFT Technology

    PubMed Central

    Gőzse, István

    2015-01-01

    A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low. PMID:26712753

  4. Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System

    PubMed Central

    Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan

    2015-01-01

    In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620

  5. Dynamic Inversion based Control of a Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje

    2006-01-01

    The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,

  6. Mutual solubility of water and structural/positional isomers of N-alkylpyridinium-based ionic liquids.

    PubMed

    Freire, Mara G; Neves, Catarina M S S; Shimizu, Karina; Bernardes, Carlos E S; Marrucho, Isabel M; Coutinho, João A P; Canongia Lopes, José N; Rebelo, Luís Paulo N

    2010-12-09

    Despite many previous important contributions to the characterization of the liquid-liquid phase behavior of ionic liquids (ILs) plus water systems, a gap still exists as far as the effect of isomers (of ILs) is concerned. Therefore, in this work, a comprehensive study of the liquid-liquid equilibria between water and isomeric pyridinium-based ionic liquids has been performed. Atmospheric pressure mutual solubilities between water and pyridinium-based ionic liquids combined with the common anion bis[(trifluoromethyl)sulfonyl]imide were experimentally determined between (288.15 and 318.15) K. The main goal of this work is to study the isomeric effects on the pyridinium-based cation, namely, the structural and positional isomerism, as well as the alkyl side chain length. To the best of our knowledge, the influence of both structural and positional isomerism on the liquid-liquid behavior in ionic-liquid-water-containing systems is an unexplored field and is here assessed for the first time. Moreover, from the experimental solubility data, several infinite dilution molar thermodynamic functions of solution, namely, the Gibbs energy, the enthalpy, and the entropy, were estimated and discussed. In addition, aiming at gathering a broader picture of the underlying thermodynamic solvation phenomenon, molecular dynamics simulations were also carried out for the same experimental systems.

  7. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes

    PubMed Central

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-yung

    2016-01-01

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency. PMID:27792156

  8. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.

    PubMed

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-Yung

    2016-10-25

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency.

  9. Nonlinear Friction Compensation of Ball Screw Driven Stage Based on Variable Natural Length Spring Model and Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Asaumi, Hiroyoshi; Fujimoto, Hiroshi

    Ball screw driven stages are used for industrial equipments such as machine tools and semiconductor equipments. Fast and precise positioning is necessary to enhance productivity and microfabrication technology of the system. The rolling friction of the ball screw driven stage deteriorate the positioning performance. Therefore, the control system based on the friction model is necessary. In this paper, we propose variable natural length spring model (VNLS model) as the friction model. VNLS model is simple and easy to implement as friction controller. Next, we propose multi variable natural length spring model (MVNLS model) as the friction model. MVNLS model can represent friction characteristic of the stage precisely. Moreover, the control system based on MVNLS model and disturbance observer is proposed. Finally, the simulation results and experimental results show the advantages of the proposed method.

  10. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  11. Determining Barriers and Facilitators Associated With Willingness to Use a Personal Health Information Management System to Support Worksite Wellness Programs.

    PubMed

    Neyens, David M; Childers, Ashley Kay

    2017-07-01

    To determine the barriers and facilitators associated with willingness to use personal health information management (PHIM) systems to support an existing worksite wellness program (WWP). The study design involved a Web-based survey. The study setting was a regional hospital. Hospital employees comprised the study subjects. Willingness, barriers, and facilitators associated with PHIM were measured. Bivariate logit models were used to model two binary dependent variables. One model predicted the likelihood of believing PHIM systems would positively affect overall health and willingness to use. Another predicted the likelihood of worrying about online security and not believing PHIM systems would benefit health goals. Based on 333 responses, believing PHIM systems would positively affect health was highly associated with willingness to use PHIM systems (p < .01). Those comfortable online were 7.22 times more willing to use PHIM systems. Participants in exercise-based components of WWPs were 3.03 times more likely to be willing to use PHIM systems. Those who worried about online security were 5.03 times more likely to believe PHIM systems would not help obtain health goals. Comfort with personal health information online and exercise-based WWP experience was associated with willingness to use PHIM systems. However, nutrition-based WWPs did not have similar effects. Implementation barriers relate to technology anxiety and trust in security, as well as experience with specific WWP activities. Identifying differences between WWP components and addressing technology concerns before implementation of PHIM systems into WWPs may facilitate improved adoption and usage.

  12. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing

    PubMed Central

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-01-01

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505

  13. Conceptual Design of a Communication-Based Deep Space Navigation Network

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  14. A near-optimal low complexity sensor fusion technique for accurate indoor localization based on ultrasound time of arrival measurements from low-quality sensors

    NASA Astrophysics Data System (ADS)

    Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.

    2009-05-01

    A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.

  15. Evaluation of Emerging Technologies for Traffic Crash Reporting

    DOT National Transportation Integrated Search

    1998-02-01

    An evaluation was performed of the effect of emerging technologies on traffic accident reporting. The technologies evaluated were standard laptop and pen-based portable computers, Global Positioning Systems (GPS), Geographic Information Systems (GIS)...

  16. Handheld pose tracking using vision-inertial sensors with occlusion handling

    NASA Astrophysics Data System (ADS)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  17. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system utilizes a 50 channel digital receiver capable of navigating in high dynamic environments and high altitudes fed by antennas mounted diametrically opposed on the second stage airframe skin. To enhance cost effectiveness, the GPS MT System design implemented existing commercial parts and common environmental and interface requirements for both EELVs. The EELV GPS MT System design is complete, successfully qualified and has demonstrated that the system performs as simulated. This paper summarizes the current development status, system cost comparison, and performance capabilities of the EELV GPS MT System.

  18. An INS/WiFi Indoor Localization System Based on the Weighted Least Squares.

    PubMed

    Chen, Jian; Ou, Gang; Peng, Ao; Zheng, Lingxiang; Shi, Jianghong

    2018-05-07

    For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m.

  19. An INS/WiFi Indoor Localization System Based on the Weighted Least Squares

    PubMed Central

    Chen, Jian; Ou, Gang; Zheng, Lingxiang; Shi, Jianghong

    2018-01-01

    For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m. PMID:29735960

  20. Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images

    PubMed Central

    Izquierdo, Alberto; Suárez, Luis; Suárez, David

    2017-01-01

    Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485

Top